
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-031 July 5, 2010

ChitChat: Making Video Chat Robust to
Packet Loss
Jue Wang and Dina Katabi

ChitChat: Making Video Chat Robust to Packet Loss

Paper 1569335057

Jue Wang and Dina Katabi
MIT CSAIL

ABSTRACT

Video chat is increasingly popular among Internet users.

Often, however, chatting sessions suffer from packet loss,

which causes video outage and poor quality. Existing solu-

tions however are unsatisfying. Retransmissions increase the

delay and hence can interact negatively with the strict timing

requirements of interactive video. FEC codes introduce extra

overhead and hence reduce the bandwidth available for video

data even in the absence of packet loss.

This paper presents ChitChat, a new approach for reliable

video chat that neither delays frames nor introduces band-

width overhead. The key idea is to ensure that the informa-

tion in each packet describes the whole frame. As a result,

even when some packets are lost, the receiver can still use

the received packets to decode a smooth version of the orig-

inal frame. This reduces frame loss and the resulting video

freezes and improves the perceived video quality. We have

implemented ChitChat and evaluated it over multiple Inter-

net paths. In comparison to Windows Live Messenger 2009,

our method reduces the occurrences of video outage events

by more than an order of magnitude.

1 INTRODUCTION

Video chat is increasingly used for both personal and

business communications [25]. Measurements show a fast

growth in video conferencing over Skype, Windows Live

Messenger, Google Talk, etc. [10]; and the trend is likely to

become stronger with the introduction of Apple FaceTime

over mobile phones. This interest in video communication

shows that, if video chat is made reliable, video telephony

may gradually replace audio telephony. Today however, In-

ternet video calls suffer from transient packet loss, which

causes frame freeze and bad quality [13, 28]. Without bet-

ter mechanisms for handling packet loss, video chat will not

reach its full potential.

While much of the literature has studied the problem of

reliable video delivery, it often does not distinguish video

chat from live video streaming [33, 20, 54, 44, 16]. In fact,

both applications suffer from significant quality degradation

in the presence of packet loss. They also both have real-time

requirements. Nonetheless, video chat has unique character-

istics that set it apart from live streaming. Specifically:

• Due to its interactive nature, video chat has much stricter

timing constraints than live streaming. While video

streaming is insensitive to a start-up buffering delay of

tens of seconds [31], the ITU G.114 standard recom-

mends a maximum delay of 150 ms for video calls in

order to ensure lip synchronization [39]. Meeting this

timing constraint is challenging given today’s process-

ing [46] and propagation delays. Hence any additional

latency to tackle transient packet losses is highly unde-

sirable.

• Video chat is more likely to suffer from packet drops at

access links than live streaming. Specifically, a video chat

application sends video in both directions. Technologies

like ADSL and cable modem however have significantly

lower uplink speeds than downlink speeds [12], making

the uplink a likely bottleneck for video chat applications.

As a result of these characteristics, solutions for packet

loss proposed in the context of streaming applications [33,

20, 54, 44, 16] are mostly ineffective for chatting applica-

tions.

(a) Forward error correcting codes (FEC): FEC codes

are inefficient for dealing with transient packet loss in video

calls. Typical Internet loss rate is less than 1% [53]. In princi-

ple, an FEC code that combines every 100 packets together,

adding only one or two packets of redundancy, can recover

from such a loss rate. In video chat, however, coding across

frames is precluded by the need to play each frame as soon

as it arrives, with no extra delay. Coding within a frame re-

quires adding at least a single FEC packet per frame. Yet,

each frame in consumer video chat applications (e.g., Skype)

is typically sent using 2 to 5 packets [24].1 Hence, even when

the loss rate is as low as 1%, a minimal FEC redundancy

of one packet per frame increases bandwidth usage by 20%

to 50%. Thus, FEC is likely to increase the loss rate in a

congested environment. Indeed, past studies of Skype show

that the use of FEC increases the bandwidth overhead by

20% [45] to 50% [24].

(b) Path Diversity: Proposals for routing packets over mul-

tiple paths using an overlay network [1, 17, 16, 36], while

effective at reducing packet drops in the core of the Internet,

cannot deal with losses on the access links of the commu-

nicating nodes. Since the latter losses are common in video

chat [45], this approach too is not effective for these applica-

tions.

(c) Retransmissions: Commercial video chat softwares try

to avoid packet retransmissions [19] because such a mecha-
1Skype and Windows Live Messengers, transmit at 200–700 Kbps with an

average frame rate of 10-15 fps and an average frame size of 2 to 5 pack-

ets [45, 24].

1

nism requires delaying the received frames and hence inter-

acts badly with the tight timing constraints of video calls.

This paper introduces ChitChat, a new approach for deal-

ing with packet loss in video calls. ChitChat neither requires

the receiver to delay a frame, nor introduces bandwidth over-

head. Further it addresses both edge and core losses. Our ba-

sic idea is simple. We want to ensure that the information in

each packet in a frame describes the whole frame. As a result,

even when some packets are lost, the receiver can still use

the received packets to decode a smooth version of the orig-

inal frame. This reduces frame loss and the resulting video

freezes and improves the perceived video quality.

To achieve our objective of having each packet describe

the whole frame, we mix the information in a frame before

presenting it to the video codec. However, naively mixing the

information in each frame destroys the codec’s ability to rec-

ognize objects as they move across frames, and use this in-

formation to compress the video. To deal with this issue, we

design our information mixing algorithm to be shift-invariant

(i.e., a movement of an object in the pixel domain trans-

lates into a corresponding movement in the mixed frame). We

show that this approach allows existing codecs to continue to

work efficiently in the presence of information mixing.

We have implemented ChitChat and evaluated it over

multiple Internet paths, within the U.S. and between U.S. and

China. We also compared it with Windows Live Messenger

2009, a popular video chat software [9]. Our results show:

• In comparison to Windows Live Messenger, ChitChat re-

duces the number of of outage events by 15x (from a total

of 195 outages to only 13 outages).

• Further, at all loss rates, ChitChat’s video quality is

higher than that of Windows Live Messenger. Particu-

larly, for loss rates of 1% to 10%, ChitChat improves the

average video quality (PSNR) by 3 to 6 dB over Windows

Live Messenger.

• Finally, in the absence of packet loss ChitChat delivers

the same video quality as Windows Live Messenger.

2 RELATED WORK

Past work has recognized the negative impact of packet

loss on video applications [23, 50, 48, 51] and proposed tech-

niques for dealing with the problem [18, 44, 52, 40]. These

proposals can be divided into two categories: solutions for

Internet-core losses, and solutions for last-hop losses.

Many solutions for dealing with losses in the core of

the network employs path diversity, i.e., different versions

of the video are sent over independent paths to avoid cor-

related drops. For example, in [16], the authors use multi-

ple description coding, and send different descriptions over

different paths to the receiver. SplitStream [22] employs

multiple distribution trees and splits the load among the

nodes while taking into account heterogeneous bandwidth

resources. PROMISE [30] uses peer-to-peer delivery, mon-

itors the path to potential peers and dynamically switches

between them to improve performance. Approaches that use

Reference
SelectionSelection

Mixed
Video Codec

Info
Mixing

Motion
Compensation

DCT
Residuals

Pixel
ValuesPixels

Mixing

Motion Vectors
Entropy Coding

Motion Vectors

Interleavingg

Packets

Figure 1—A Block Diagram of ChitChat’s Architecture. The grey boxes

refer to ChitChat’s components. The white boxes are typical components of

today’s codecs.

path diversity to reduce losses are complementary to our de-

sign. They however cannot deal with losses on access links,

while ChitChat can address both core and last-hop losses.

Past solutions for losses on the access links are mainly

limited to retransmission or forward error correction. Some

designs buffer corrupted frames and ask for retransmission of

lost packets [33, 20]. Others add forward error correction at

the sender to allow the receiver to recover from losses with-

out retransmissions [54, 44]. However, as explained in §1,

FEC is inefficient for today’s Internet where the loss rate is

usually below 1% [26, 53], and could potentially be recov-

ered by adding only 1% packet redundancy; yet the fact that

video chat has to code over a short block length of 1 frame,

increases the redundancy overhead to 20% to 50%.

ChitChat’s information mixing algorithm is motivated by

SoftCast, a recent proposal for wireless video [34]. SoftCast

however addresses a different problem: it enables a wire-

less transmitter to broadcast a video stream that each mul-

ticast receiver decodes to a video quality commensurate with

its wireless channel quality. SoftCast also requires changing

both the physical layer and the video codec, while ChitChat

works with existing video codecs and physical layers.

Also related to our work are mechanisms for media rate

control, such as TFRC [29], DCCP [38], and others [37, 14,

43]. These protocols control the transmission rate to ensure

that the sender does not transmit way above the available

bandwidth and hence does not cause excessive packet loss.

Rate control is complementary to our design; it addresses

long term persistent losses, rather than transient losses, which

are unavoidable in today’s best effort Internet.

3 CHITCHAT AT A HIGH LEVEL

ChitChat is a video-chat centric approach to deal with

transient packet loss. Its design ensures that: 1) received

frames can be decoded immediately and displayed, 2) no ex-

tra bandwidth is required, and 3) the approach works with

both edge and core losses.

ChitChat’s architecture, illustrated in Figure 1, has three

components that together improve resilience to lost packets:

• The information mixing module codes a frame content to

2

ensure that the impact of a packet loss is not concentrated

in particular corrupted patches, but is rather smoothly dis-

tributed over the frame.

• The mixing-aware reference selection module ensures

that the video codec can effectively compress the content

in the presence of information mixing.

• The interleaving module distributes the video data into

packets in a manner that allows the receiver to reconstruct

a smoothly degraded version of a frame from any subset

of its received packets.

As the figure shows, ChitChat operates in conjunction

with standard codecs (e.g., MPEG-4/H.264), which makes

it easy to integrate in existing video chat applications. The

following sections describe ChitChat’s components in detail.

4 INFORMATION MIXING

ChitChat introduces a preprocessing step that mixes the

pixel values in each frame before passing the frames to the

video codec. The mixing is done using a Hadamard trans-

form [35]. Hadamard coding has been used in multiple prior

systems to smooth out the impact of channel errors. For ex-

ample, both MIMO systems [15] and SoftCast [34] apply

a Hadamard-based code to the symbols transmitted over a

wireless channel. In contrast, ChitChat applies a Hadamard

transform to the pixels directly. Hence, it can operate without

changing the physical layer or the codec. To the best of our

knowledge, ChitChat is the first system to show that applying

a Hadamard transform to the pixels themselves improves the

video quality in the presence of packet loss.

We first explain the Hadamard transform, then describe

how we apply it in our context.

4.1 Hadamard Transform

The Hadamard matrix is an orthogonal matrix whose en-

tries are -1 and 1. In particular, the 4-dimensional Hadamard

matrix looks as follows:

H =
1

2
·









1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1









The Hadamard transformed version of a, b, c, and d is









â

b̂

ĉ

d̂









=
1

2
·









1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1









·









a

b

c

d









Hadamard transform has the property of evenly distribut-

ing the error. If we receive corrupted versions of the trans-

mitted values: â + ea, b̂ + eb, ĉ + ec, d̂ + ed, with errors ea,

eb, ec, ed, we can reconstruct the original values as:









ã

b̃

c̃

d̃









=
1

2
·









1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1









·









â + ea

b̂ + eb

ĉ + ec

d̂ + ed









=









a

b

c

d









+
1

2
·









ea + eb + ec + ed

ea − eb + ec − ed

ea + eb − ec − ed

ea − eb − ec + ed









From the above equation we can see that any error in the

transmitted signal â or b̂ or ĉ or d̂ is evenly distributed to the

4 reconstructed numbers.

At the same time, the sum of square error is still e2
a +e2

b +
e2

c + e2
d. (This is because Hadamard is an orthogonal matrix.)

The two properties above work greatly towards our goal

of a smooth degradation in face of loss or error. 1) by apply-

ing Hadamard, we will be able to distribute the channel noise

evenly on the pixels we combine together; 2) quantization

noise which results from the lossy compression applied by

the codec is still evenly distributed on pixels as if did not ap-

ply Hadamard to them; 3) the total sum of square error does

not change, meaning that given the same degree of quantiza-

tion and same amount of loss, the overall quality (i.e., PSNR)

of the part of image we are combining won’t change.

Said differently, Hadamard distributes the noise resulting

from a packet loss over a frame without adding any extra

noise. This creates a smooth frame with no jarring corrupted

patches. Also when the noise is distributed over a larger area,

it tends to become easier to correct using simple denoising

algorithms leveraging only local information.

4.2 Hadamard Mixing in our Design

We apply the Hadamard transform directly in the pixel

domain, before any compression. Given a frame, we first

compute the average luminance in the frame and subtract

it from all pixels. We refer to this average as the DC value

in the frame. We pass this value directly to the interleaving

component which includes it in every packet for this frame

to ensure its reliable delivery in the face of losses. Removing

the DC value before coding images or frames is typical in the

literature [27] and does not change how the codec works.

As in MPEG, we divide the frame into macroblocks,

where each macroblock contains 16 × 16 pixels. We take

every 4 adjacent macroblocks and code them together using

the Hadamard matrix. In particular, consider 4 adjacent mac-

roblocks, A, B, C and D. We represent these macroblocks as

follows:

[

A B

C D

]

=















2

6

6

6

6

6

4

a1 a17 · · · a225
a2 a18 · · · a226

.

.

.

.

.

.

.
.
.

.

.

.

a16 a32 · · · a256

3

7

7

7

7

7

5

2

6

6

6

6

6

4

b1 b17 · · · b225
b2 b18 · · · b226

.

.

.

.

.

.

.
.
.

.

.

.

b16 b32 · · · b256

3

7

7

7

7

7

5

2

6

6

6

6

6

4

c1 c17 · · · c225
c2 c18 · · · c226

.

.

.

.

.

.

.
.
.

.

.

.

c16 c32 · · · c256

3

7

7

7

7

7

5

2

6

6

6

6

6

4

d1 d17 · · · d225
d2 d18 · · · d226

.

.

.

.

.

.

.
.
.

.

.

.

d16 d32 · · · d256

3

7

7

7

7

7

5















3

Without Hadamard With Hadamard

Original

(a)

(b) (c)

Figure 2—Hadamard mixing spreads the error and produces less jar-

ring frames. (a) shows the original image (b) shows the image after adding

noise to a macroblock and denoising the resulting erroneous block, (c) shows

a Hadamard-mixed version of the image after adding noise, unmixing, and

then denoising. The figures shows that Hadamard mixing spreads the noise,

allowing the receiver to easily denoise the image.

To apply the Hadamard transform on these 4 mac-

roblocks, we rearrange the values in each macroblock into a

vector, e.g., (a1, a2, · · · , a256), and use the Hadamard matrix,

H, to combine the 4 vectors:









â1 â2 · · · â256

b̂1 b̂2 · · · b̂256

ĉ1 ĉ2 · · · ĉ256

d̂1 d̂2 · · · d̂256









= H ·









a1 a2 · · · a256

b1 b2 · · · b256

c1 c2 · · · c256

d1 d2 · · · d256









We then rearrange the coded vectors into 4 mixed mac-

roblocks Â, B̂, Ĉ, and D̂. We repeat the process on all non-

overlapping sets of 4 adjacent macroblocks in the original

frame to produce a mixed frame.

4.3 Effect of Hadamard Mixing on a Toy Example

Video codecs typically code frames as differences with

respect to the previous frame. Thus, when a packet is lost

for a frame, we lose the corresponding differences, which

leads to some noisy macroblocks. To understand the effect

of Hadamard mixing on these losses, let us consider the toy

example in Fig 2. Specifically, we take an image, corrupt one

of its macroblocks, and observe the impact of corruption,

with and without Hadamard mixing. Figure 2(a) shows the

original image; whereas the top row in Figures 2(b) and 2(c)

shows the image after adding random noise for the cases with

and without Hadamard mixing. (The noise is Gaussian with

a mean of 0 and a standard deviation of 40. These parameters

are set to produce noise magnitudes comparable to what we

see due to packet losses in our experiments.)

Then, we try to recover the original image by denois-

ing. Denoising filtering is recommended by MPEG-4 in post-

processing [47]. Here we use a simple smoothing filter which

only operates on adjacent pixels. For the Hadamard-mixed

image, however, we first invert the Hadamard transform

before applying denoising. The results after denoising are

shown in the bottom row in Figures 2(b) and 2(c). As can be

m
e

R
e

fe
re

n
c
e

 F
ra

m
R

a
m

e
C

u
rr

e
n

t
F

ra

(a) (b) (c)

Figure 3—Challenges with motion compensation. Column (a) shows two

consecutive frames in the pixel domain. The ball has moved from one frame

to the next. Column (b) shows the same two frames after Hadamard trans-

form. One cannot see an object that moved across the two frames though

the original frames represent a moving ball. Column (c) shows the same two

frames with an alternative Hadamard transform where the boundaries of the

combined blocks move from one frame to the next, with the moving ball.

Now, one can see that the area in the dashed square moved from one frame

to the next.

seen from the figures, the errors with Hadamard-mixing look

less jarring, which shows the benefit of applying Hadamard.

Note that the error we will see due to packet loss will not,

in general, be random Gaussian noise; and will depend on

the lost information. But as we show in our evaluation, the

general effect of Hadamard continues to spread the noise and

deliver a better video quality.

5 MIXING-AWARE REFERENCE SELECTION

Video codecs (e.g., MPEG4/H.264) exploit correlation

across frames to compress the video. They do so by encod-

ing a frame with respect to a prior frame, called a reference

frame. Specifically, for each block in the current frame, the

codec finds the closest block in the reference frame, where

the distance is typically computed as the sum of square er-

rors [49]. The codec computes a motion vector that repre-

sents the vertical and horizontal shifts between the block and

its closest reference block. It then encodes the current block

using the differences from its closest reference block and the

motion vector. This form of compression is called motion

compensation.2

One cannot naively give the codec the sequence of

Hadamard-mixed frames and expect motion compensation to

continue to work as if the frames were not mixed. Figure 3

illustrates this issue. The first column in the figure shows two

consecutive frames in the pixel domain. The ball has moved

between the two frames. Thus, the codec can compress the

current frame simply by representing the macroblock with

the ball as a shifted version of some block in the previous

frame. The middle column in the figure shows the same two

frames after Hadamard-mixing. It is no longer the case that

2The typical block size for motion compensation is 16× 16 pixels. MPEG-

4 however has the option of using different block sizes depending on the

level of motion in the video. In a video conferencing applications, the back-

ground is relatively static and we expect slow/medium motion except for the

speakers’ faces and gestures. So in the prototype we built, we only imple-

mented 16 × 16 block size, although all of the MPEG-4 sizes can be easily

incorporated in our algorithm.

4

one can see an object that moved between the current frame

and the previous frame. Thus, if we simply give the codec the

sequence of Hadamard-mixed frames, motion compensation

would fail in finding how a block moved across frames.

Luckily however the way we apply the Hadamard trans-

form is shift invariant as will be proved. That is if an object

shifts position in the original pixel domain, it will also shift

by the same amount after the Hadamard transform. One may

then wonder how come the two Hadamard-mixed frames in

column (b) in Figure 3 do not show a moving object? The

reason is simple: It is because the boundaries of the blocks

over which we perform the Hadamard transform do not shift

with the moving object. Figure 3(c) shows an alternative

Hadamard transform of the original frames in Figure 3(a)

where we move the boundaries of the Hadamard-combined

blocks with the moving ball. These frames show a moving

block, and hence are easily compressed by today’s codecs.

The above argument shows that one can perform effec-

tive motion compensation if one computes the Hadamard

transform over all possible shifts of the macroblocks. Even

if we assume that object movement between frames stays

within a limited area, and hence limit our search, similarly

to MPEG, to an area of -16 to 15 in both the x and y co-

ordinates, there are 1024 candidate shifts for the Hadamard

transform. Given a typical frame size of 240 × 320 and a

block size of 16 × 16 we need to do Hadamard transform

240 × 320/16/16 × 1024 = 307, 200 times for each frame.

this overhead is unacceptable.

This problem however can be solved with a negligi-

ble computation overhead. The key insight is that there

is a huge amount of shared information between these

shifted Hadamard-transformed blocks. In particular since

these shifted blocks that we need to calculate Hadamard

transform on share a great number of pixels and our mixing

is shift invariant, we can perform the computations for each

pixel once and reuse it in all these blocks, and thus signifi-

cantly reduce the overhead. Below we explain our algorithm

which exploits this insight.

5.1 Algorithm

Let’s define the 4 adjacent macroblocks we are working

on as:
[

A B

C D

]

A = F (x0 : x0 + 15, y0 : y0 + 15)
B = F (x0 + 16 : x0 + 31, y0 : y0 + 15)
C = F (x0 : x0 + 15, y0 + 16 : y0 + 31)
D = F (x0 + 16 : x0 + 31, y0 + 16 : y0 + 31)

After the Hadamard transform we have:
[

Â B̂

Ĉ D̂

]

= H

([

A B

C D

])

Let frame R be the reference frame for frame F. Many

codecs use the previous frame as the reference frame. How-

ever, our algorithm can work with any reference chosen by

the codec.

We construct 4 auxiliary reference frames in transform
domain RÂ, RB̂, RĈ, RD̂ in the following way.

RÂ(x, y) =
1

2
[R(x, y)+R(x+16, y)+R(x, y+16)+R(x+16, y+16)]

RB̂(x, y) =
1

2
[R(x−16, y)−R(x, y)+R(x−16, y+16)−R(x, y+16)]

RĈ(x, y) =
1

2
[R(x, y−16)+R(x+16, y−16)−R(x, y)−R(x+16, y)]

RD̂(x, y) =
1

2
[R(x−16, y−16)−R(x, y−16)−R(x−16, y)+R(x, y)]

When the pixel is out of range, e.g., x − 16 ≤ 0, we use the

boundary pixel.

Given the above auxiliary reference frames, motion com-

pensation on Hadamard-mixed frames requires only a minor

tweak on motion compensation in the pixel domain. Specif-

ically, without information mixing, given a macroblock in

frame F, the codec would search an area of width rx and

height ry in the reference frame R, looking for the closest

block. However, with information mixing, the codec treats

each one of the mixed macroblock slightly differently. When

it searches for a closest representation of Â in the reference,

the codec searches in the neighboring region in the auxiliary

frame RÂ. Similarly, to find the prediction for B̂, it searches

in RB̂; in RĈ to find a prediction for Ĉ; and in RD̂ to find a

prediction for D̂.

This approach effectively solves the boundary issues dis-

cussed earlier. In particular, because of fixed boundaries, a

pixel which would have been in Â in the original frame could

end up in some B̂ in the reference frame, in which case mo-

tion compensation would fail to find how a block moves

across frames. To address this issue, our algorithm essentially

removes these boundaries in the reference frame by comput-

ing the four axillary frames. Thus, we create auxiliary refer-

ence RÂ, which has only the Â transform, auxiliary reference

RB̂ which has only the B̂ transform, and so on. We can then

perform motion compensation for each of these blocks by

searching in the corresponding reference frame.

Note that once the four auxiliary frames are computed,

the search for the closest block has the same complexity

as in the case without information mixing. This is because,

for each Hadamard-mixed macroblock, the codec needs to

search only a single auxiliary reference frame (RÂ, RB̂, RĈ or

RD̂). The time for computing the auxiliary frames themselves

is relatively small in comparison to the motion search, which

requires exploring all possible pixel shifts, and is known

to be the most computationally expensive part of today’s

codecs [49].

Finally, after motion compensation, today’s codecs en-

code the residuals using 8 × 8 two dimensional DCT, order

the 64 DCT coefficients in zigzag order, and use entropy cod-

ing to encode the motion vectors and DCT coefficients [49].

With ChitChat, these steps proceed without modification.

5.2 Intra-coded Frames

Video codecs occasionally send frames that are coded

independently without any reference frames. These frames

5

1 1
4

N
+ 1K + 1

4

N
K+ + 

1
2

N
+

3
1

4

N
+ 1

2

N
K+ +

3
1

4

N
K+ + 

2 2
4

N
+ 

2
2

N
+

3
1

4

N
+

 

 Figure 4—Interleaving the Macroblocks. The macroblocks are interleaved

to ensure that adjacent macroblocks will not be transmitted in the same

packet.

are typically called I-frame. In video chat, I-frames are in-

frequent since there is rarely a change of scene, and hence

coding with respect to a prior frame is significantly more effi-

cient than introducing an independent frame. In fact chatting

programs tend to introduce an I-frame every 300 frames [42].

From the perspective of ChitChat, I-frames can be regarded

as frames whose reference is an all-zero frame. With this rep-

resentation, our description applies to I-frames as well.

6 INTERLEAVING AND PACKETIZATION

After the codec is done compressing the video, for each

mixed macroblock, it produces a motion vector and quan-

tized DCT coefficients. Next, the macroblocks (with their

motion vectors and DCT coefficients) need to be distributed

into packets.

In current off-the-shelf video conferencing software, e.g.

Skype, Windows Live Messenger, Google Talk, only a few

packets are sent for each frame in the video. From our ex-

periment, we see an average packet size of about 700 bytes

and 2-5 packets are sent for each frame of size 240 × 320.

This means each packet contains the information for ap-

proximately 100 macroblocks. Without interleaving, adja-

cent macroblocks, Â, B̂, Ĉ, and D̂, will be transmitted in the

same packet, which renders the goal of distributing error in a

frame impossible.

Given that our algorithm enables distribution of the error

among adjacent blocks, we certainly need interleaving to put

the information for Â, B̂, Ĉ and D̂ in different packets. Fur-

ther, given the bursty nature of packet loss in the Internet, we

would definitely want to put the information for Â, B̂, Ĉ and

D̂ in packets as far away from each other as possible.

Thus, we use an interleaving matrix to reorder the mac-

roblocks in one frame, as shown in Figure 4. Each cell in the

graph represents one mixed macroblock. The number in the

cell is the new position of the macroblock in the order af-

ter interleaving. N is the total number of macroblocks in the

frame. K is the number of 32 × 32-size blocks in each col-

umn in a frame. Adjacent 32 × 32-size blocks are shaded in

different colors. The idea is to put Â, B̂, Ĉ and D̂ as far away

from each other as possible in the new order. Since there are

N macroblocks in the frame, we perform interleaving so that

Â, B̂, Ĉ and D̂ have a minimum gap of N
4

. For example, Â of

the upper-left-most 32× 32-size block will be the first in the

new order after interleaving; B̂ will be the N
4

+ 1
th

; Ĉ will be

the N
2

+ 1
th

; D̂ will be the 3N
4

+ 1
th

. And as we move on to

the next 32× 32-size block, we can put the Â of this block in

the position after the Â of the previous block.

This interleaving order ensures that information for Â, B̂,

Ĉ and D̂ is placed as far away from each other as possible in

transmission, which means Â, B̂, Ĉ and D̂ will end up being

transmitted in as many different packets as possible.

7 VIDEO RECOVERY AT THE RECEIVER

At the decoder, we reorder the macroblocks back into the

original spatial order before interleaving. Since our interleav-

ing matrix is not random, from the packet loss information

we will know exactly which macroblocks are lost.

We distinguish three scenarios. First, if no packet loss

occurs, all macroblocks will be received and the frame can

be fully recovered by inverting the encoding applied by the

video codec, then taking the inverse Hadamard transform.

(In fact, the inverse Hadamard transform is the same as the

Hadamard transform).

Second, if all the packets for a frame are lost, then the

best any scheme can do is to present the last reconstructed

frame to the user.

Third, it’s uncommon for all the packets for a frame to

be lost, based on our experiment and other literature [5].

Knowing the interleaving matrix, the receiver can map the

lost packets into lost macroblocks. Note that when a mac-

roblock is lost, both its motion vector and the residuals from

subtracting the reference block are lost, because these two

are in the packet. Thus, to recover a lost macroblock we need

to estimate its motion vector and the residuals.

As in today’s codecs, we estimate a lost motion vector us-

ing the motion vectors of nearby blocks [49]. For example, if

the motion vector for Ĉ is lost, we will use the motion vector

of Â or B̂ or D̂ (the first one that the decoder has received) as

an estimation for Ĉ.

Now that we estimated the lost motion vector, how do we

estimate the lost residuals? In fact, there is no need to esti-

mate the lost residuals. Since Ĉ contains mixed information

about A, B, C and D, after unmixing, the error will be dis-

tributed over all four macroblocks and no single block will

experience a dramatic corruption.

Continuing with our example where block Ĉ is lost, let

Ĉ′ be the reference block that the estimated motion vector

points to. We then reconstruct a representation of the 4 adja-

cent macroblocks as follows:

[

Â B̂

Ĉ′ D̂

]

.

We then invert the Hadamard transform to obtain an estimate

of the three original macroblocks A, B, C, and D.

Note that we use the same algorithm used by MPEG to re-

cover lost motion vector, then simply inverted the Hadamard

mixing. However, this simple algorithm for recovering mo-

tion vectors works better in combination with our Hadamard

6

scheme than without it. If the motion vector we recover is

exactly the same as the lost one, then the error on this mac-

roblock would only be the residual in the lost macroblocks.

The mixing will evenly distribute this error across the four

adjacent macroblocks, smoothing it and reducing the jarring

effect. Similarly if the motion vector we estimated is differ-

ent from the lost one, the error caused by this estimate will

also be equally distributed to all four macroblocks.

The last step at our decoder is an out-of-loop smooth-

ing block in the pixel domain, which is commonly used by

commercial softwares and highly recommended by MPEG-4

[47]. This is because certain artifacts might be seen on the

decoded frames due to block-based transforms and quantiza-

tion. H.264 has an intricate in-loop deblocking filter to deal

with this problem [47]. However, in our design, to mitigate

this phenomenon, we use a simple total variation based de-

noising method [21], which will originally run multiple itera-

tions to achieve a desired degree of smoothness. Yet to ensure

low complexity, we force the denoising to stop after a maxi-

mum of 10 iterations. Moreover, since this smoothing block

is out of loop (only exists at the decoder), the only timeline

we have to meet is the display time to the user. Thus, another

option is to let the decoder keep iteratively smooth the frame

until the frame’s play time is due.

8 EXPERIMENT SETUP

8.1 Video Quality Metrics

Ideally, video quality is measured as the mean of the

scores given by human judges who rate video call sam-

ples [6]. Human studies however need controlled environ-

ments and are quite expensive to run. Instead, tests of video

quality typically use objective measures that can be com-

puted automatically [7]. Among these it is widely common

to use the Peak Signal-to-Noise Ratio (PSNR) and video out-

ages, which are the two metrics we employ in this study.

8.1.1 Peak Signal-to-Noise Ratio (PSNR)

The PSNR of a single frame is a function of the mean

square error (MSE) between the reconstructed frame and its

original version. Overall PSNR of a sequence of frames is the

a function of the MSE between the reconstructed sequence

and the original sequence.

MSE =
1

m · n
·

m−1
∑

i=0

n−1
∑

j=0

[I(i, j)− K(i, j)]
2

PSNR = 10 · log10

(2L − 1)2

MSE
[dB]

L is the number of bits used to encode each pixel lumi-

nance, typically 8 bits. m is the number of columns and n is

the number of rows in a frame. I is the reconstructed frame

or sequence and K is the original version. A typically good

PSNR is around 35 dB and it is generally agreed upon that

PSNR values below 20 dB are unacceptable [55].

8.1.2 Video Outage

Surveys show that the vast majority of users identify

video freezing and lag as the biggest annoyance in video

conferencing, instead of less clear images [13]. Hence, video

outage has been suggested as an alternative metric for video

quality, particularly for video conferencing applications [32].

Further, it has been found that a frame rate of below 5 fps

in a slow/medium video is noticeable by a normal user, and

people will find video of a frame rate lower than 3 fps to

be jerky [11]. Thus, we define a video outage to be an event

where the video stalls for more than 1/3 a second. The dura-

tion of an outage is the period of time that the video stalls.

8.1.3 Measuring Outages and PSNR

Measuring video outage and PSNR is complicated by the

fact that we want to compare against Windows Live Mes-

senger (WLM), which is a proprietary closed software. In

particular, to measure video outage, we need to know which

frames are sent by the sender and which frames are received

by the receiver; to measure PSNR, we need to capture all the

raw frames both at the sender and at the receiver and compare

them for loss of quality. For WLM, however, we can only see

the coded packets; but we do not have access to the pixel val-

ues. To work around this issue, we use the approach proposed

in [46]. Specifically, we screen-capture [2] all the frames that

are displayed on the screens both on the sender and the re-

ceiver’s sides by WLM. We perform the screen capture 30

times per second. Since the highest frame rate of the original

video is 15 fps, a capture sample rate of 30 fps is sufficient

to record all the frames displayed on the screen. To make

sure this screen capture process does not introduce any arti-

facts or noise, we tested it by playing multiple raw videos on

the machines we used in the experiment and screen-capturing

them. The screen-captured video output proved to be always

the same as the displayed raw video input, pixel by pixel.

Apart from this, to be completely fair to WLM, we perform

the same screen capture on all our decoded videos using the

other compared schemes, and use the screen-capture output

for measurement.

Once we have the original encoded sent video and re-

ceived decoded video, we need to accurately match the de-

coded frames to the encoded frames and the original frames,

so that we can calculate the frame rate, video outage and

PSNR of the decoded video. Again we use a trick proposed

in [46] where we imprint an index number of the frame on a

16 × 16 area at the bottom-left corner of each frame.

8.2 Measured Internet Paths

The focus of our algorithm is to cope with packet loss

in video chat. Packet loss generally happens in the following

three situations. 1) Congestion in limited bandwidth environ-

ment. 2) Wireless loss. 3) Large variation in bandwidth. To

evaluate our design under these circumstances, we conduct

experiment over the following Internet paths:

• MIT office building and Residential area in Cambridge,

7

MA: On this trace, the two locations are 0.4 miles from

each other. One end is the high speed connection of an

MIT office. The other end is a residential DSL wireless

connection provided by Verizon, usually shared with two

roommates. The average loss rate observed on this path

was 1%.

• MIT office building and Residential area in College Sta-

tion, TX: The two locations are approximately 1900 miles

from each other. The first end is at same MIT office

above, while the other end is a residential DSL connec-

tion provided by Suddenlink, used exclusively by the ex-

periment laptop. The average loss rate observed on this

path was 4%.

• MIT graduate dorm and Tsinghua graduate dorm in Bei-

jing, China: This is a cross-Pacific link with a distance

of about 12000 miles. At the MIT side, high speed Eth-

ernet connection with abundant bandwidth was used. At

the Tsinghua graduate dorm in Beijing, wired connection

was used. One thing to notice is that Tsinghua University

is where you can find almost the highest Internet connec-

tion speed in China. The average loss rate observed on

this path was 0.4 %.

The experiments are conducted over a period of 3 weeks, dur-

ing which we collect a total of 5 hours of video data over

each path. To limit the computational overhead, we sample

the traces at intervals of 10 minutes and process each time a

window of 1 minute.

8.3 Compared Schemes

We compare the following four schemes.

• Windows Live Messenger 2009. Windows Live Messen-

ger is an instant messaging client created by Microsoft

and it has over 330 million active users by June 2009 [8].

Its free video call service sees more than 230 million

video conversations each month, with an average length

of 13.3 minutes, making it one of the largest consumer

video telephony providers in the world [8].

• H.264 AVC/MPEG-4 Part 10. H.264 AVC/MPEG-4 Part

10 is a state-of-the-art video codec standardized by

ITU-T Video Coding Experts Group together with the

ISO/IEC Moving Picture Experts Group (MPEG).It is

widely adopted by applications like Blu-ray, Youtube and

video conferencing softwares. We use the reference im-

plementation available at [4].3

• H.264 AVC/MPEG-4 Part 10 with FEC. This scheme

uses the same video codec as above, with one FEC packet

being added to every encoded frame.

• ChitChat integrated with the same H.264 codec above but

without any FEC.

3The exact command that we run is: time ffmpeg re pix fmt gray force fps

g 12 i input.avi psnr vcodec libx264 vpre fast vpre baseline strict 1 r 15/1

force fps qscale Q b B output.mp4.

8.3.1 Ensuring a Fair Comparison

In this work, our goal is to tackle the problem of robust-

ness to packet loss without changing the details of the un-

derlying video codec or other components of the video chat

program. Therefore, to compare different schemes, we need

to keep certain factors the same for all of them. This issue

however is complicated by the fact Windows Live Messen-

ger is a proprietary software, and hence we cannot control its

parameters. Thus, to ensure fairness we force the other three

schemes, as much as possible, to use the same parameters

and setup as Windows Live Messenger (WLM).

Specifically, commercial video conferencing applications

like Windows Live Messenger all have their own built-in rate

control mechanisms [45]. The rate control algorithm esti-

mates the available bandwidth and adapts the video frame

rate accordingly (i.e., reduces the frame rate in time of

congestion and increases it when spare bandwidth becomes

available). Using a different rate control algorithm across the

compared scheme will result in unfair comparison as the dif-

ferences in video quality may be due to differences in the

bandwidth usage and the frame rate enforced by rate control.

However since Windows Live Messenger is not open source,

we can neither change its rate control mechanism nor learn

its detail to implement it for the other compared schemes.

Thus, to ensure that all schemes make the same decisions

about their bandwidth usage and frame rate we run our exper-

iments as follows. We run WLM video calls between various

pairs of locations to collect trace data. We capture all the sent

packets and received packets. In addition to muting the sound

during the video call, we also classify the packets based on

the payload. Since the payload sizes of audio packets and

video packets are very distinct, we make sure all the packets

we consider are dedicated to encoded video information.

To make sure that all schemes react to the rate adaptation

decisions in the same way, then force the other three schemes

to send the same number of packets at the same points in

time using the same packet size, which ensures an identi-

cal usage of bandwidth. We also make all compared schemes

send the exact same frames during the experiment, which en-

sures the same frame rate for all schemes at any moment.

With these two constraints, we guarantee all four compared

schemes conform to the same rate control decisions, which

are those taken by the Windows Live Messenger built-in rate

adaptation mechanism.

Ideally we would like also to make all compared schemes

use the same video codec. This is however not doable, as

Windows Live Messenger employs the VC-1 codec [41],

which is proprietary. Our scheme, on the other hand, uses the

H.264 codec. This, however, should not put Windows Mes-

senger at a disadvantage. This is because, the VC-1 codec is

known to generally have a better quality than H.264. Specif-

ically, the viewers in a test conducted by DVD Forum rated

the quality of VC-1 the best among VC-1, H.264, MPEG-4

Advanced Simple Profile and MPEG-2 [41].

8

8.4 Tested Video

Instead of having our own video conference, which might

depend on our environment and the humans conducting the

call, we use standard reference videos available at Xiph.org.

We experiment with the videos: Deadline, Salesman, and

Susan. We chose these videos because, among the available

reference test video sequences, they best represent a video

conferencing setting: A talking person with a relatively static

background. We use a frame rate of 15 fps and crop the

frames to 320 × 240, which are the default values for Skype

and Windows Messenger. We take 20 seconds of the each

video and repeat it to form a long sequence, which we then

feed into WLM as a pre-recorded source replacing the web-

cam input [3].

9 EVALUATION

We compare ChitChat with Windows Live Messenger

2009, H.264 and H.264 with FEC.

9.1 Impact of Packet Loss on Video Quality

We would like to examine the PSNR of the decoded

videos in presence of packet loss, for the four schemes. Thus,

as recommended by ITU-T Video Coding Experts Group [7],

we calculate the average PSNR over each 5-second interval,

between all frames of the source sequence and the corre-

sponding reconstructed frames. We look at the relationship

between packet loss rate and average PSNR for these inter-

vals. When a source frame is lost in the decoded sequence,

video conferencing applications generally display the most

recent usable frame. Therefore, the PSNR of this frame will

be calculated between the source frame and the most re-

cent usable frame. Average PSNR calculated this way reflects

both the compressed video quality and the robustness of the

system against packet loss since it introduces penalty for lost

pictures.

(a) How Do the Four Schemes Compare?

Figure 5 plots the average PSNR at different loss rates. The

results are computed over all the intervals for all traces. The

figure shows the following:

• When no loss occurs, the average PSNR of ChitChat is

as good as WLM 2009 and H.264, which proves the mix-

ing of information in ChitChat does not render the stan-

dard video compression less efficient. In contrast, at zero

losses, the FEC-based approach has a PSNR 3 dB lower

than the other schemes. This is because rate control forces

all schemes to use exactly the same rate. Hence to add an

FEC packet per frame, the codec needs to compress the

video more (i.e., quantize more), resulting in lower qual-

ity even without loss.

• As the loss rate increases, ChitChat’s average PSNR

drops much slower than the other schemes. At a typ-

ical Internet loss rate of 1%, ChitChat has an average

PSNR of 35 dB, 0.8 dB lower than the PSNR without

loss. In contrast, at 1% loss rate, the PSNR of Windows

Live Messenger and H.264 drops by about than 3 dB and

5 dB respectively. The PSNR of the FEC scheme drops

by 1.2 dB at this loss rate; however this comes at the cost

of reducing the PSNR in times of no losses. At a high loss

rate of 15%, ChitChat still achieves an average PSNR of

32 dB while the other schemes’ PSNR all drops to below

26 dB, which indicates a significant amount of dropped

frames.

• On the same figure, the vertical bars show the maximum

and minimum PSNR within each loss rate bucket for all

four schemes. ChitChat has a much more consistent per-

formance (smaller standard deviation) than the others.

• Finally, we note that the video quality of ChitChat, Win-

dows Messenger and H.264 is the same at zero loss rate,

and differs only in the presence of packet loss. This shows

that ChitChat’s gains are due to differences in reacting to

packet loss rather than the differences in the codec. The

FEC scheme uses H.264 and hence its reduced PSNR at

zero loss rate is not due to the codec but rather to the

overhead of FEC.

(b) Detailed Comparison with FEC

Aside from its excessive overhead when used in interactive

applications, FEC also suffers from the well-known cliff-

effect, which is especially amplified in video applications.

In particular, a scheme that adds one packet of redundancy to

each frame can completely recover from one packet loss per

frame. However, frames that have two or more lost packets

will be as corrupted as if no FEC was used. In fact, even

with an average loss rate as low as 1%, it is not uncom-

mon for multiple packets of a frame to get lost from time

to time. In particular, Figure 6 shows the PSNR degradation

of ChitChat and H.264+FEC for the MIT-Cambridge DSL

trace. This trace has an overall packet loss rate of 1%. We can

see that the FEC scheme can maintain a relatively constant

PSNR with small standard deviation at loss rates below 1%,

yet as soon as the loss rate nears 2%, a wide range of PSNR is

observed. In other words, even a 25% FEC redundancy does

not prevent frame quality from worsening severely even with

just 2% of packet loss. On the contrary, ChitChat’s degra-

dation is both much slower and much smoother. By mixing

the information and letting each packet carry equally impor-

tant information for the entire frame, we allow the receiver

to recover a smooth version of the frame with relatively high

quality, without a cliff effect.

9.2 Video Outage

We would like to examine the frequency and duration of

outages experienced by the four schemes. Recall that an out-

age is as a video stalls for more than 1/3 of a second, which

is the threshold at which humans perceive the video to be

jerky [11].

It is important to note that due to rate control, the sender

might decide to encode at a lower rate than 3 fps, causing

video stalls. Such outages are not due to packet loss; rather

they are caused by the rate control algorithm detecting lack of

9

 20

 25

 30

 35

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
v
e

ra
g

e
 P

S
N

R
 (

d
B

)

Packet Loss Rate

(a) ChitChat

 20

 25

 30

 35

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
v
e

ra
g

e
 P

S
N

R
 (

d
B

)

Packet Loss Rate

(b) Windows Live Messenger 2009

 20

 25

 30

 35

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
v
e

ra
g

e
 P

S
N

R
 (

d
B

)

Packet Loss Rate

(c) H.264

 20

 25

 30

 35

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
v
e

ra
g

e
 P

S
N

R
 (

d
B

)

Packet Loss Rate

(d) H.264 with one FEC packet per frame

Figure 5—PSNR at different loss rate. The figure shows that ChitChat’s video quality is significantly higher than the compared schemes over the whole

range of loss rates.

70

ChitChat Loss-caused Outages

50

60

u
ra

n
c
e
s

30

40

e
r

o
f

O
c
c
u

10

20

N
u
m

b
e

0 1 2 3 4 5 6 7 8 9
0

Outage Durations (s)

(a) ChitChat’s Loss-Caused Outages

70

WLM 2009 Loss-caused Outages

50

60

u
ra

n
c
e
s

30

40

e
r

o
f

O
c
c
u

10

20

N
u
m

b
e

0 1 2 3 4 5 6 7 8 9
0

Outage Durations (s)

(b) Windows Live Messenger’s Loss-Caused Outages

70

H.264 Loss-caused Outages

50

60

u
ra

n
c
e
s

30

40

e
r

o
f

O
c
c
u

10

20

N
u
m

b
e

0 1 2 3 4 5 6 7 8 9
0

Outage Durations (s)

(c) H.264’s Loss-Caused Outages

70

H.264+FEC Loss-caused Outages

50

60

u
ra

n
c
e
s

30

40

e
r

o
f

O
c
c
u

10

20

N
u
m

b
e

0 1 2 3 4 5 6 7 8 9
0

Outage Durations (s)

(d) H.264+FEC’s Loss-Caused Outages

Figure 8—Histograms of Loss-Caused Outage Duration

available bandwidth. Also, they are the same for all compared

schemes since by the design of our experiments (see §8.3.1)

all schemes send the same number of packets at the same

time instances, experience the same packet losses, and react

10

 20
 22
 24
 26
 28
 30
 32
 34
 36

 0 0.01 0.02 0.03 0.04 0.05 0.06

A
v
e
ra

g
e
 P

S
N

R
 (

d
B

)

Packet Loss Rate

(a) ChitChat

 20
 22
 24
 26
 28
 30
 32
 34
 36

 0 0.01 0.02 0.03 0.04 0.05 0.06

A
v
e
ra

g
e
 P

S
N

R
 (

d
B

)

Packet Loss Rate

(b) H.264+FEC

Figure 6—With increased loss rate, FEC shows a cliff-effect while

ChitChat degrades smoothly.

60

70
Sender Side Outages

s

50

60

c
u
ra

n
c
e
s

30

40

e
r

o
f
O

c
c

10

20

N
u
m

b
e

0 1 2 3 4 5 6 7 8 9
0

Outage Duration (s)

Figure 7—A histogram of sender-side outages. These outages are the re-

sult of the rate control algorithm detecting the lack of bandwidth and resort-

ing to a very low frame rate.

using the same rate control algorithm.

Thus, in our study, we distinguish the sender-side outages

due to rate control, from the additional outages seen only at

the receiver because of packet loss and the resulting frame

loss. Figure 7 shows a histogram of the outages at the sender

side. Figure 8 shows the additional outages at the receiver,

for all four compared schemes.

The figures show that ChitChat dramatically reduces the

occurrence of loss-caused outage events, and eliminates all

long lasting outages. In comparison to Windows Live Mes-

senger, ChitChat reduces the occurrence of outage events by

15x (from a total of 195 outages to only 13 outages). In com-

parison to H.264, ChitChat reduces the occurrence of outages

by 11x (from 148 to 13 outages). In comparison to the FEC

scheme, ChitChat reduces the occurrence of outages by 4x

(from 53 to 13 outages).

Interestingly, Windows Live Messenger has significantly

more short outages than H.264 and the FEC scheme, but is

more robust to long-lasting outages. One explanation for the

smaller number of long outages is that WLM uses some ac-

knowledgment mechanism that allows the sender to quickly

discover an outage and stop using lost frames as reference

frames. One also can explain the larger number of short out-

ages as being due to excessive usage of motion compensation

and coding later frames with respect to reference frames (i.e.,

interframe coding) as opposed to frequently sending frame

that are independently coded without any reference frame

(i.e., I-frames).

10 CONCLUSION

We present a new approach for improving robust video

transmission over the Internet. It significantly reduces the oc-

currences of video stalls due to packet loss and improves the

overall video quality. By providing a satisfying user experi-

ence even in presence of packet loss, this approach can con-

tribute to making video chat reach its full potential.

REFERENCES

[1] Akamai. http://www.akamai.com.

[2] Camtasia studio. http://www.techsmith.com/.

[3] Fake webcam. http://www.fakewebcam.com/.

[4] Ffmpeg. http://www.ffmpeg.org/.

[5] Indepth: Packet loss burstiness.

http://www.voiptroubleshooter.com/

indepth/burstloss.html.

[6] Itu-r bt.500-11 recommendation: Methodology for the

subjective assessment of the quality of television pictures.

[7] Itu-t rec. j.247 (08/08) objective perceptual multimedia video

quality measurement in the presence of a full reference.

[8] Messengersays blog.

http://messengersays.spaces.live.com/.

[9] Windows live messenger.

http://messenger-msn-live.com.

[10] Skype fast facts q4 2008, 2008.

[11] Quality of experience for mobile video users, 2009.

[12] At&t high speed internet dsl plans, 2010.

http://www.att.com/gen/general?pid=10891.

[13] Video conferencing is here. Are you ready or falling behind.

Technical report, Global IP Solutions, 2010.

[14] T. Ahmed, A. Mehaoua, R. Boutaba, and Y. Iraqi. video

streaming with fine-grained tcp-friendly rate adaptation. In in

Lecture Notes in Computer Science, pages 18–31.

Springer-Verlag.

[15] S. Akhlaghi, A. K. Kh, and A. Falahati. Reducing the effect

of channel time variations in mimo broadcast systems, 2006.

[16] J. Apostolopoulos. Reliable video communication over lossy

packet networks using multiple state encoding and path

diversity. In Visual Communications and Image Processing

(VCIP, 2001.

[17] J. G. Apostolopoulos and M. D. Trott. Path diversity for

enhanced media streaming. IEEE Communications

Magazine, 42:80–87, 2004.

[18] J. G. Apostolopoulos and M. D. Trott. Path diversity for

enhanced media streaming. IEEE Communications

Magazine, 42:80–87, 2004.

[19] S. A. Baset and H. Schulzrinne. An analysis of the skype

peer-to-peer internet telephony protocol. 2004.

[20] A. C. Begen and Y. Altunbasak. Redundancy-controllable

adaptive retransmission timeout estimation for packet video.

In NOSSDAV ’06: Proceedings of the 2006 international

workshop on Network and operating systems support for

digital audio and video, pages 1–7, New York, NY, USA,

2006. ACM.

[21] X. Bresson and T. F. Chan. Fast dual minimization of the

vectorial total variation norm and applications to color image

processing, 2008.

[22] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,

A. Rowstron, and A. Singh. Splitstream: High-bandwidth

11

content distribution in cooperative environments. 2003.

[23] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei.

Quantifying skype user satisfaction. SIGCOMM Comput.

Commun. Rev., 36(4):399–410, 2006.

[24] L. D. Cicco, S. Mascolo, and V. Palmisano. Skype video

responsiveness to bandwidth variations. In In NOSSDAV,

2008.

[25] J. Dunagan and M. Liebhold. The future of real-time video

communication. Technical report, The Institute for the

FutureIFTF, 2009.

[26] M. Ellis and C. Perkins. Packet loss characteristics of

iptv-like traffic on residential links. In 7th Annual IEEE

Consumer Communications & Networking Conference,

Workshop on Emerging Internet Video Technologies, 2010.

[27] A. Gersho and R. M. Gray. Vector quantization and signal

compression, 1991.

[28] L. Gharai and T. Lehman. Experiences with high definition

interactive video conferencing. In in Proceedings of the IEEE

International Conference on Multimedia and Expo, pages

433–436, 2006.

[29] M. Handley, S. Floyd, J. Padhye, and J. Widmer. Tcp friendly

rate control (tfrc): Protocol specification, 2003.

[30] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava.

Promise: Peer-to-peer media streaming using collectcast,

2003.

[31] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A

measurement study of a large-scale p2p iptv system, 2007.

[32] S. S. Hemami. Robust video coding - an overview, 2007.

[33] F. Hou, P. Ho, and X. S. Shen. A novel differentiated

retransmission scheme for mpeg video streaming over

wireless links. Int. J. Wire. Mob. Comput., 1(3/4):260–267,

2006.

[34] S. Jakubczak, H. Rahul, and D. Katabi. One-size-fits-all

wireless video. In ACM SIGCOMM HotNets, 2009.

[35] J. Johnson. In search of the optimal walsh-hadamard

transform. In Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, pages 3347–3350,

2000.

[36] D. Jurca, D. Jurca, P. Frossard, and P. Frossard. Packet

selection and scheduling for multipath video streaming. IEEE

Transactions on Multimedia, 9, 2006.

[37] M. A. Khojastepour and A. Sabharwal. Delay-constrained

scheduling: Power efficiency, filter design, and bounds. In

IEEE INFOCOM, Hong Kong, pages 7–11, 2004.

[38] E. Kohler, M. Handley, and S. Floyd. Designing dccp:

Congestion control without reliability, 2003.

[39] C. Lewis and S. Pickavance.

[40] Z. Liu, Y. Shen, S. S. Panwar, K. W. Ross, and Y. Wang.

Using layered video to provide incentives in p2p live

streaming. In P2P-TV ’07: Proceedings of the 2007

workshop on Peer-to-peer streaming and IP-TV, pages

311–316, New York, NY, USA, 2007. ACM.

[41] J. Loomis and M. Wasson. Vc-1 technical overview, 2007.

[42] M.Dreese. A quick introduction to divx recording, 2003.

[43] J. M. Monteiro, R. N. Vaz, A. M. Grilo, and M. S. Nunes.

Rate adaptation for wireless video streaming based on error

statistics. Int. J. Wire. Mob. Comput., 2(2/3):150–158, 2007.

[44] T. Nguyen and A. Zakhor. Distributed video streaming with

forward error correction, 2002.

[45] Omer Boyaci, Andrea Forte, and Henning Schulzrinne.

Performance of video chat applications under congestion. In

International Symposium on Multimedia, December 2009.

[46] Omer Boyaci, Andrea Forte, Salman Abdul Baset, and

Henning Schulzrinne. vDelay: A Tool to Measure

Capture-to-Display Latency and Frame-rate. In International

Symposium on Multimedia, December 2009.

[47] G. Raja and M. J. Mirza. In-loop deblocking filter for jvt

h.264/avc. In ISPRA’06: Proceedings of the 5th WSEAS

International Conference on Signal Processing, Robotics and

Automation, pages 235–240, Stevens Point, Wisconsin, USA,

2006. World Scientific and Engineering Academy and

Society (WSEAS).

[48] A. R. Reibman and D. Poole. Characterizing packet loss

impairments in compressed video. In IEEE Int. Conf. Image

Proc, 2007.

[49] I. E. Richardson. H.264 and mpeg-4 video compression:

Video coding for next generation multimedia, 2003.

[50] Stephan Wenger. H.264/avc over ip. IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, 13, July 2003.

[51] T. Stockhammer, M. M. Hannuksela, and T. Wiegand.

H.264/avc in wireless environments. IEEE Transactions on

Circuits and Systems for Video Technology, 13:657–673,

2003.

[52] Y. Wang, S. Panwar, S. Lin, and S. Mao. Wireless video

transport using path diversity: Multiple description vs.

layered coding. In Image Processing Proceedings, pages

21–24, 2002.

[53] Y. A. Wang, C. Huang, J. Li, and K. W. Ross. Queen:

Estimating packet loss rate between arbitrary internet hosts.

In PAM ’09: Proceedings of the 10th International

Conference on Passive and Active Network Measurement,

pages 57–66, Berlin, Heidelberg, 2009. Springer-Verlag.

[54] H. Wu, M. Claypool, and R. Kinicki. Adjusting forward error

correction with temporal scaling for tcp-friendly streaming

mpeg. Technical report, ACM TOMCCAP, 2005.

[55] H. Zhao, Y. Q. Shi, and N. Ansari. Hhiding data in

multimedia streaming over networks. In 2010 8th Annual

Communication Networks and Services Research Conference,

2010.

12

