
L19 – Cache Issues   16.004 – Fall 2002 11/12/0

2

Cache Issues
What did you get for 7?

Hit.

8?

Miss.

14?

Hit.

19?

Miss!

FIFO?

LRU.

Write-back?

No, through



L19 – Cache Issues   26.004 – Fall 2002 11/12/0

2

General Cache Principle

SETUP:

• Requestor making a stream of lookup requests to a data store.

• Some observed predictability – e.g. locality – in reference patterns.

requestor
Data store

t
M

Access time: tM

tag

data

requestor
Data store

t
M

Average  access time: tC + (1−α)tM

Cache

t
C

<< t
M

tag

data

tag

data

This request is made only when tag can’t be found in 

cache, i.e., with probability 1−α, where α is the 

probability that the cache has the data (a “hit”)

TRICK:

• Small, fast cache memory between requestor & data store

• Cache holds <tag, value> pairs most likely to be requested



L19 – Cache Issues   36.004 – Fall 2002 11/12/0

2

Cache Applications

CPU

Cache

memory

Main

memory

address

address

Mem[address]

Mem[address]

t
C

= 1 cycle

t
M

= 10−20 cycles

Memory system: assuming a hit ratio 

of 95% and tM=20 cycles, average 

access time is 2 cycles (urk!).  Cache is 

worthwhile, but doesn’t eliminate 

problem.

This request is made only when tag can’t be 

found in cache, i.e., with probability 1−α, 

where α is the probability that the cache has 

the data (a “hit”)

World-Wide Web: links, back/forward 

navigation give good predictability.  

Bonus: good cache performance 

reduces effective tM by reducing 

contention.

Browser

History/

Proxy Server

HTTP

Server

URL

URL

Web page

Web page

t
C

= microseconds

t
M

= milliseconds



L19 – Cache Issues   46.004 – Fall 2002 11/12/0

2

Memory System Caches

Problem: Memory access times (IF, MEM) limit Beta clock speed.

Solution: Use cache for both instruction fetches and data accesses:

- assume HIT time for pipeline clock period;

- STALL pipe on misses.

IF

RF

ALU

WB

MEM

MAIN 
MEMORY

Cache Variants: 

- Separate I & D caches

- Level 1 cache on CPU chip, 

Level 2 cache off-chip.

Variants: 

- Separate I & D caches

- Level 1 cache on CPU chip, 

Level 2 cache off-chip.



L19 – Cache Issues   56.004 – Fall 2002 11/12/0

2

Basic Cache Algorithm

ON REFERENCE TO Mem[X]: 

Look for X among cache tags...

HIT: X = TAG(i) , for some cache line i

• READ: return DATA(i)

• WRITE: change DATA(i); Start Write to Mem(X)

MISS: X not found in TAG of any cache line

• REPLACEMENT SELECTION:

Select some line k to hold Mem[X] (Allocation)

• READ: Read Mem[X]

Set TAG(k)=X, DATA(K)=Mem[X]

• WRITE: Start Write to Mem(X)

Set TAG(k)=X, DATA(K)= new Mem[X]

MAIN
MEMORY

CPU

(1−α)

Tag Data

A

B

Mem[A]

Mem[B]



L19 – Cache Issues   66.004 – Fall 2002 11/12/0

2

Cache Design Issues

Associativity – a basic tradeoff between

• Parallel Searching (expensive) vs

• Constraints on which addresses can be stored where

Block Size:

• Amortizing cost of tag over multiple words of data

Replacement Strategy:

• OK, we’ve missed.  Gotta add this new address/value pair to the 

cache.  What do we kick out?

Least Recently Used: discard the one we haven’t used the longest.

Pausible alternatives, (e.g. random replacement.

Write Strategy:

• When do we write cache contents to main memory?



L19 – Cache Issues   76.004 – Fall 2002 11/12/0

2

Fully Associative Cache

TAG Data

= ?

TAG Data

= ?

TAG Data

= ?

Address

from CPU

Miss

Data to CPU

…

0

1Data from memory

READ HIT:

One of the cache tags matches 

the incoming address; the data 

associated with that tag is 

returned to CPU.  Update usage 

info.

READ MISS:

None of the cache tags 

matched, so initiate access to 

main memory and stall CPU until

complete.  Update LRU cache 

entry with address/data.

One cache “line”

32 bits30 bits

Issue: For every data word in the cache we need nearly a word of memory to store the tag!



L19 – Cache Issues   86.004 – Fall 2002 11/12/0

2

Increasing Block Size 
More Data/Tag

A31:4 Mem[A] Mem[A+4] Mem[A+8] Mem[A+12]

= ?

[3:2]

[31:4]
32ADDR

DATA

HIT

• blocks of 2B words, on 2B word boundaries

• always read/write 2B word block from/to memory

• locality: access on word in block, others likely

• cost: some fetches of unaccessed words

BIG WIN if there is a wide path to memory

Enlarge each line in fully-associative cache:

TAG D0 D1 D2 D3
4 x 32 = 128 bits28 bits

Overhead < ¼ bit of 

Tag per bit of data



L19 – Cache Issues   96.004 – Fall 2002 11/12/0

2

Block size vs. Miss rate

0

5

10

15

20

25

16 32 64 128 256

1k

4k

16k

64k

256k

Miss rate

(%)

Block size (bytes)

Cache size

(bytes)

• locality: larger blocks → reduce miss rate – to a point!

• fixed cache size: larger blocks

→ fewer lines in cache

→ higher miss rate, especially in small caches

• Speculative prefetch has its limits… and costs!

H&P: Figure 5.11



L19 – Cache Issues   106.004 – Fall 2002 11/12/0

2

Block size vs. Access time

0

5

10

15

20

16 32 64 128 256

1k

4k

16k
64k

256k

Average

access time

(cycles)

Block size (bytes)

Cache size

(bytes)
H&P: Figure 5.13

• Average access time = 1 + (miss rate)*(miss penalty)

• assumed miss penalty (time it takes to read block from memory):

40 cycles latency, then 16 bytes every 2 cycles



L19 – Cache Issues   116.004 – Fall 2002 11/12/0

2

Direct-Mapped Cache

= ?

[3:2]

[31:8]
32

ADDR

DATA

HIT

TAG D0 D1 D2 D3

[7:4] Use ordinary 

(fast) static 

RAM for tag and 

data storage

Only one comparator for entire cache!

0

15

16 cache lines 

→4 bit index

0x12 M[0x1230] M[0x1234] M[0x1238] M[0x123C]
0x12 M[0x1240] M[0x1244] M[0x1248] M[0x124C]

24-bit Tag!



L19 – Cache Issues   126.004 – Fall 2002 11/12/0

2

Fully-assoc. vs. Direct-mapped

Fully-associative N-line cache:

• N tag comparators, registers 

used for tag/data storage ($$$)

• Location A might be cached in 

any one of the N cache lines; no

“collisions” possible

• Replacement strategy (e.g., 

LRU) used to pick which line to 

use when loading new word(s) 

into cache  

Direct-mapped N-line cache:

• 1 tag comparator, SRAM used 

for tag/data storage ($)

• Location A is cached in a

specific line of the cache 

determined by its address;

address “collisions” possible

• Replacement strategy not 

needed: each word can only be 

cached in one specific cache 

line



L19 – Cache Issues   136.004 – Fall 2002 11/12/0

2

Cache Benchmarking

Suppose this loop is entered with R3=4000:

ADR:         Instruction I D

400:    LD(R3,0,R0)     400    4000+...
404:    ADDC(R3,4,R3)   404
408:    BNE(R0,400)     408

GOAL: Given some cache design, simulate (by hand or machine) execution 

well enough to determine hit ratio.

1. Observe that the sequence of memory locations referenced is

400, 4000, 404, 408, 400, 4004, ...

We can use this simpler reference string, rather than the program, to 

simulate cache behavior.

2. We can make our life easier in many cases by converting to word

addresses:  100, 1000, 101, 102, 100, 1001, ...

(Word Addr = (Byte Addr)/4)



L19 – Cache Issues   146.004 – Fall 2002 11/12/0

2

Cache Simulation
Is there anything between fully-associative and direct-mapped?

Addr Line#   Miss?
100     0       M
1000     1       M
101     2       M
102     3       M
100     0
1001     1       M
101     2
102     3
100     0
1002     1       M
101     2
102     3
100     0
1003     1       M
101     2
102     3

4-line Fully-associative/LRU

1/4 miss

Addr Line#   Miss?
100     0       M
1000     0       M
101     1       M
102     2       M
100     0       M
1001     1       M
101     1       M
102     2
100     0
1002     2       M
101     1
102     2       M
100     0
1003     3       M
101     1
102     2

4-line Direct-mapped

7/16 miss

Compulsory

Misses

Capacity

Miss

Collision

Miss



L19 – Cache Issues   156.004 – Fall 2002 11/12/0

2

N-way Set-Associative Cache

k

HIT

DATA TO CPU

INCOMING   ADDRESS

=? =? =?

t

0

MEM DATA

N direct-mapped caches, each with 2t lines

T
h

is
 s

a
m

e
 li

n
e

 in
 e

a
c

h
 s

u
b

c
a

c
h

e
is

 p
a

rt
 o

f 
a

 s
e

t



L19 – Cache Issues   166.004 – Fall 2002 11/12/0

2

How many lines in a set?

time

address

data

stack

program

1 instructions

2 stack

3 4 data (src, dest)



L19 – Cache Issues   176.004 – Fall 2002 11/12/0

2

0

2

4

6

8

10

12

14

1k 2k 4k 8k 16k 32k 64k 128k

1-way
2-way
4-way
8-way
fully assoc.

Associativity vs. miss rate

Miss rate

(%)

Cache size (bytes)

Associativity

H&P: Figure 5.9

• 8-way is (almost) as effective as fully-associative

• rule of thumb: N-line direct-mapped == N/2-line 2-way set assoc.

(direct-mapped)



L19 – Cache Issues   186.004 – Fall 2002 11/12/0

2

Associativity: Full vs 2-way

Addr Line#   Miss?
100     0       M
1000     1       M
101     2       M
102     3       M
100     0
1001     4       M
101     2
102     3
100     0
1002     5       M
101     2
102     3
100     0
1003     6       M
101     2
102     3

8-line Fully-associative, LRU

1/4 miss

Addr Line/N   Miss?
100    0,0      M
1000    0,1      M
101    1,0      M
102    2,0      M
100    0,0
1001    1,1      M
101    1,0
102    2,0
100    0,0
1002    2,1      M
101    1,0
102    2,0
100    0,0
1003    3,1      M
101    1,0
102    2,0

2-way, 8-line total, LRU

1/4 miss



L19 – Cache Issues   196.004 – Fall 2002 11/12/0

2

ISSUE: Replacement Strategy

Associativity implies choices…

address

Fully associative

• compare addr with each 

tag simultaneously

• location A can be stored 

in any cache line

address

Direct-mapped

• compare addr with 

only one tag

• location A can be 

stored in exactly one 

cache line

N

address

N-way set associative

• compare addr with N  

tags simultaneously

• location A can be stored 

in exactly one set, but in 

any of the N cache lines 

belonging to that set



L19 – Cache Issues   206.004 – Fall 2002 11/12/0

2

Replacement Strategy

LRU (Least-recently used)

• keeps most-recently used locations in cache

• need to keep ordered list of N items → N! orderings

→O(log2N!) = O(N log2N) “LRU bits” + complex logic

FIFO/LRR (first-in, first-out/least-recently replaced)

• cheap alternative: replace oldest item (dated by access time)

• within each set: keep one counter that points to victim line

Random (select replacement line using random, uniform distribution)

• no “pathological” reference streams causing wost-case results

• use pseudo-random generator to get reproducible behavior;

• use real randomness to prevent reverse engineering!

(0,1,2,3) Hit 2 -> (2,0,1,3)

(2,0,1,3) Hit 1 -> (1,2,0,3)

(1,2,0,3) Miss  -> (3,1,2,0)

(3,1,2,0) Hit 3 -> (3,1,2,0)

Overhead is

O(N log2N)

bits/set

Overhead is

O(log2N)

bits/set

Overhead is

O(log2N)

bits/cache!



L19 – Cache Issues   216.004 – Fall 2002 11/12/0

2

Replacement Strategy vs. Miss Rate

1.12%1.12%1.13%1.13%1.17%1.15%256KB

1.53%1.39%1.66%1.54%2.01%1.88%64KB

4.96%4.39%5.29%4.67%5.69%5.18%16KB

RandomLRURandomLRURandomLRUSize

8-way4-way2-way

Associativity

H&P: Figure 5.4

• FIFO was reported to be worse than random or LRU

• little difference between random and LRU for larger-size caches



L19 – Cache Issues   226.004 – Fall 2002 11/12/0

2

Valid bits
V

1

1

0
0

0
0

0

MAIN 
MEMORYCPU A Mem[A]

B Mem[B]

TAG DATA

Problem:

• Ignoring cache lines that don't contain anything of value... e.g., on

- start-up

- “Back door” changes to memory (eg loading program from disk)

Solution: 

• Extend each TAG with VALID bit.

• • Valid bit must be set for cache line to HIT.

• • At power-up / reset : clear all valid bits

• • Set valid bit when cache line is first replaced.

• • Cache Control Feature:  Flush cache by clearing all valid bits, Under 

program/external control.



L19 – Cache Issues   236.004 – Fall 2002 11/12/0

2

Handling of WRITES

Observation: Most (90+%) of memory accesses are READs.  How should we 

handle writes?  Issues:

Write-through: CPU writes are cached, but also written to main memory 

(stalling the CPU until write is completed). Memory always holds “the 

truth”.

Write-behind: CPU writes are cached; writes to main memory may be 

buffered, perhaps pipelined.  CPU keeps executing while writes are 

completed (in order) in the background.

Write-back: CPU writes are cached, but not immediately written to main 

memory.  Memory contents can be “stale”.

Our cache thus far uses write-through.

Can we improve write performance?



L19 – Cache Issues   246.004 – Fall 2002 11/12/0

2

Write-through

ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: X == TAG(i) , for some cache line i

•READ: return DATA[I]
•WRITE: change DATA[I]; Start Write to Mem[X]

MISS: X not found in TAG of any cache line

•REPLACEMENT SELECTION:
Select some line k to hold Mem[X]

•READ: Read Mem[X]
Set TAG[k] = X, DATA[k] = Mem[X]

•WRITE: Start Write to Mem[X]
Set TAG[k] = X, DATA[k] = new Mem[X]



L19 – Cache Issues   256.004 – Fall 2002 11/12/0

2

Write-back

ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: X = TAG(i) , for some cache line I

•READ: return DATA(i)
•WRITE: change DATA(i); Start Write to Mem[X]

MISS: X not found in TAG of any cache line

•REPLACEMENT SELECTION:
Select some line k to hold Mem[X]
Write Back: Write Data(k) to Mem[Tag[k]]

•READ: Read Mem[X]
Set TAG[k] = X, DATA[k] = Mem[X]

•WRITE: Start Write to Mem[X]
Set TAG[k] = X, DATA[k] = new Mem[X]

Is write-back worth the trouble?  Depends on (1) cost of write; (2) consistency issues.



L19 – Cache Issues   266.004 – Fall 2002 11/12/0

2

Write-back w/ “Dirty” bits

ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: X = TAG(i) , for some cache line I
•READ: return DATA(i)
•WRITE: change DATA(i); Start Write to Mem[X] D[i]=1

MISS: X not found in TAG of any cache line
•REPLACEMENT SELECTION:

Select some line k to hold Mem[X]
If D[k] == 1 (Write Back) Write Data(k) to Mem[Tag[k]]

•READ: Read Mem[X]; Set TAG[k] = X, DATA[k] = Mem[X], D[k]=0
•WRITE: Start Write to Mem[X] D[k]=1

Set TAG[k] = X, DATA[k] = new Mem[X]

MAIN 
MEMORYCPU A Mem[A]

B Mem[B]

TAG DATAV

1

1

0
0

0
0

0

D

1

0



L19 – Cache Issues   276.004 – Fall 2002 11/12/0

2

Cache Analysis

Given a cache design, find pathological reference string:

• Simulate cache by hand; maximize misses

• On miss, note replaced address.  Make that the next reference!

Comparing caches A and B:

• Usually can find pathological cases for each, making the other look 
better…

• Whenever caches make different replacement decisions, you can 
devise a next reference to make either cache look better!

Dominance:

• Cache A dominates cache B if, for every reference string, A 
contains every value contained by B. Thus A won’t miss unless B 
misses as well.

• Example: Given 2 otherwise identical fully-associative, LRU 
caches, a bigger one dominates a smaller one.



L19 – Cache Issues   286.004 – Fall 2002 11/12/0

2

Caches: Summary
Associativity:

• Less important as size increases

• 2-way or 4-way usually plenty for typical program clustering; BUT additional 

associativity

• Smooths performance curve

• Reduces number of select bits (we’ll see shortly how this helps)

• TREND: Invest in RAM, not comparators.

Replacement Strategy:

• BIG caches: any sane approach works well

• REAL randomness assuages paranoia!

Performance analysis:

• Tedious hand synthesis may build intuition from simple examples, BUT

• Computer simulation of cache behavior on REAL programs (or using REAL 

trace data) is the basis for most real-world cache design decisions.


