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XII. PLASMA DYNAMICS

A. Basic Plasma Research

1. NONLINEAR WAVE INTERACTIONS AND SYMBOLIC

COMPUTATIONS

National Science Foundation (Grant ENG75-06242)

Abraham Bers, George L. Johnston, Kevin Hunter, Nathaniel J. Fisch,

John L. Kulp, Jr. , Allan H. Reiman, Alan E. Throop

During the past year we have completed three studies of nonlinear interactions in a

plasma. -3 The first two have direct bearing on understanding and describing laser-
plasma (pellet) interactions and RF plasma heating in general. In the third study we
have achieved an analytic description of the onset of nonlaminarity in streaming insta-
bilities, and this deepens our understanding of one of the most fundamental of plasma
instabilities, the beam-plasma interaction. Each of these studies has produced a doc-

toral thesis, and the results have been presented at various national 4 ' 5 and interna-

tional plasma meetings. Journal articles are being prepared for publication.

We have successfully arrived at a rather complete solution of the three-wavepacket
9-11

nonlinear interaction problem in time and space. Thus we have been able to show
that certain decay interactions can lead to the generation of solitons, and that explosive
instabilities (negative and positive energy wave interactions) have a threshold that
depends on the wavepacket extent. We have also determined in what way the reflection
in backscattering interactions depends upon pulse shape. We have recently generalized
our results to describe such nonlinear interactions in two dimensions in steady state,
and to account for plasma inhomogeneities. We plan to pursue this work to obtain a
broad understanding of this fundamental nonlinear problem. Our approach makes use
of the powerful analytical methods of inverse scattering, together with computer simula-
tions and symbolic computation.

We have also discovered a new and simple way of formulating equations for strong

turbulence in plasmas. 1 2 , 13 Thus we have shown how resonance-broadening correc-
tions can be found for all weak-turbulence interactions. We plan to pursue this further
to find out how our results extend to interactions in more than one dimension, and to
plasmas in a magnetic field.

Our plans also include the active use of symbolic computation in all aspects of our
work. Use of the computer system MACSYMA has become habitual within our group.

Our pioneering work in achieving this will be detailed in a forthcoming report. 1 4

References

1. D. C. Watson, "Third-Order Theory of Pump-Driven Plasma Instabilities - Laser-
Pellet Interactions," Ph.D. Thesis, Department of Electrical Engineering, M. I. T.,
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dient," Ph.D. Thesis, Department of Physics, M. I. T., May 1975.
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4. D. C. Watson and A. Bers, "Magnetized Vlasov Wave Coupling and Lower Hybrid-
to-Bernstein Parametric Downconversion," Bull. Am. Phys. Soc., Ser. II, 20,
1376 (1975).

5. F. W. Chambers and A. Bers, "One-Dimensional Inhomogeneous Coupling of Modes
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of Sydney, Australia, 1975, pp. 19. 1-19.4.
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Congress on Waves and Instabilities in Plasmas, Innsbruck, Austria, March 1975.

9. A. Reiman, D. J. Kaup, and A. Bers, "Time-Space Evolution of Nonlinear Pulse
Interactions in a Homogeneous Plasma - Theory and Simulation," Bull. Am. Phys.
Soc., Ser. II, 20, 1291 (1975).

10. D. J. Kaup, A. Reiman, and A. Bers, "Nonlinear Evolution of Stimulated Back-
scattering," Bull. Am. Phys. Soc., Ser. II, 20, 1291 (1975).

11. A. Bers and A. Reiman, "Time-Space Evolution of 3-Wave Interactions in an Inho-
mogeneous Plasma," Bull. Am. Phys. Soc., Ser. II, 20, 1291 (1975).

12. N. J. Fisch and A. Bers, "Resonance Broadening for Wave-Particle and Wave-
Wave Turbulence," Phys. Rev. Letters 35, 373 (1975).

13. N. J. Fisch and A. Bers, "Model for New Renormalized Turbulence Equations,"
Bull. Am. Phys. Soc., Ser. II, 20, 1367 (1975).

14. J. L. Kulp, C. F. F. Karney, and A. Bers, "Symbolic Computation in Nonlinear
Plasma Wave Interactions," R. L. E. and Project MAC Report, M. I. T., 1975 (in
preparation).

2. STUDIES OF NONLINEAR WAVE-PARTICLE INTERACTIONS

National Science Foundation (Grant ENG75 -0 6242)

Peter A. Politzer, Ady Hershcovitch

Recent work on plasma theory has concentrated on analyses of the nonlinear inter-
actions between the plasma and the self-consistent electromagnetic radiation fields.
Interpretation of experimental observations in terms of theoretical predictions has been
hampered because of the generally complex nature of the interaction between a plasma
and the device in which it is produced. In order to study in detail the phenomenon of
nonlinear wave-induced diffusion of plasma particles, and to overcome many of the
experimental problems, we use a counterstreaming electron-beam facility, which repre-
sents a close approximation to the idealized plasma models used in theoretical
calculations. In this device we are able to observe the time history of both the particle
distribution function and the electric field spectrum. We are specifically concerned with
the nonlinear evolution of the "half-cyclotron frequency" instability that occurs spontane-
ously in this device. Using the formalism developed by T. H. Dupree and others, we
have calculated the nonlinear velocity space diffusion coefficients appropriate to this
unstable system. The experimental configuration allows direct measurement of this
diffusion and thus good comparison with the theory. These theories of plasma turbu-
lence also distinguish between resonant and nonresonant wave-particle interactions, as
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well as between large-amplitude single-wave effects and the effects of broadband turbu-
lence. In particular, we have shown that the presence of a broad turbulent-wave spec-
trum should significantly modify the velocity space diffusion coefficient and lead to
stabilization of the half-cyclotron instability. We are now undertaking to test this pre-
diction by application of a controlled spectrum of turbulent electric fields to the electron
beams. These calculations and experiments should provide a direct test of the theory
of wave-induced diffusion of particles in velocity space, and indicate applications of this
theory to more complex plasma configurations.

3. TRAPPED-PARTICLE EXPERIMENTS

National Science Foundation (Grant ENG75-06242)

Lawrence M. Lidsky, Louis R. Pasquarelli

We have developed the theory of the cylindrical geometry analog of the toroidal
trapped-particle mode predicted by B. Coppi and used this theory to predict the behav-
ior of a particular set of trapped-particle modes. These modes were detected, their
linear properties have been measured, and the results have been published. We are
now investigating the saturation mechanism of these modes, paying particular attention
to the effect of weak electron-neutral collisions. The experimental apparatus on which
the earlier measurements were conducted has been improved so that we can operate in
a lower collision frequency regime.

4. DRIFT-WAVE TURBULENCE

National Science Foundation (Grant ENG75-06242)

Thomas H. Dupree, David J. Tetrault

Great progress has been made in obtaining the solution to the nonlinear equations
describing drift-wave turbulence. Many of the features of the spectrum observed exper-
imentally are predicted by the solutions. In the collisionless case there is good agree-
ment for the number of modes observed and the amplitude and frequency width of each
mode. The theory also predicts the very interesting transition between the single, zero-
width mode spectrum of the collisional case and the many-mode, finite-width collision-
less case. The transition occurs at the point where inertial and viscous effects are
equal. The basic concepts used to gain an understanding of drift-wave turbulence
appear to have wide application to other kinds of plasma turbulence.

5. INTENSE RELATIVISTIC ELECTRON BEAMS

National Science Foundation (Grant ENG75-06242)

U.S. Energy Research and Development Administration (Contract E(11-1)-2766)

George Bekefi, Thaddeus Orzechowski

During the past year, we have studied the motion of electrons and ions in a relativ-
istic diode subjected to a crossed magnetic field. This work has been largely completed.
We have found that the electron motion agrees with predictions from theory that take
account in a self-consistent way of the self-electric and self-magnetic fields in the diode.
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We have also found that the motion of plasma can be substantially reduced by an exter-
nally imposed crossed magnetic field of several kilogauss. This slowing down of plasma
motion agrees with a magnetohydrodynamic computer code for the case of moving hydro-
gen plasma.

During the coming year, we shall concentrate on two areas of study.
a. Our relativistic diode is a crossed-beam microwave device and we already have

evidence of copious microwave radiation. Our program is to study the microwave spec-
trum ranging from 3-cm wavelengths down to 8-mm wavelengths.

b. A relativistic electron diode also has great potential as a source of intense ion
beams. We have begun a study of various promising geometries, using the perpendic-
ular magnetic field as a means of suppressing electron motion.

6. CHARGE EXCHANGE IN OPTICALLY EXCITED ALKALI

METAL VAPORS

National Science Foundation (Grant ENG75-06242)

Edward W. Maby, Louis D. Smullin, Richard R. Freeman

A promising means of heating a plasma to the high temperatures required to support
a controlled fusion process is by injection of high-energy neutral hydrogen. This neutral
beam may best be produced by converting the low-energy output of an H ion source into
H ions by means of a double charge-exchange reaction with cesium, accelerating the H
ions to the desired energy and neutralizing the beam by stripping away the excess elec-
trons. We intend to study this charge-exchange mechanism in detail and to investigate
improvement in its efficiency by optically exciting the cesium. Work on this project
began September 1, 1975.

For our preliminary effort, an experimental configuration is being constructed
similar to that shown in Fig. XII-1. A sodium oven has been designed and fabricated

DYE LASER,/------r

RF H+ SOURCE

_.----.-- - .- DETECTOR

CHARGE EXCHANGE A H Ho, H ANALYSER

INTERACTION REGION

SODIUM OVEN

Fig. XII-1. Experimental configuration.

to produce a narrow molecular beam to intersect the H+ and dye laser beams at right

angles. The H+ source is RF activated and potentially capable of 500 [A output. Its
characteristics are now being studied, and use of a dye laser has been arranged.
Associated vacuum and other peripheral equipment has been constructed.
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B. Plasma Research Related to Fusion

Confinement Systems

1. PHYSICS OF HIGH-TEMPERATURE PLASMAS

U. S. Energy Research and Development Agency (Contract E(11-1)-3070)

Bruno Coppi

An understanding of the physics of high-temperature plasmas is of primary impor-
tance in the solution of the problem of controlled thermonuclear fusion. One of the goals
in this field of research is the magnetic confinement and heating of plasmas with densi-

ties of the order of or larger than 1014 particles/cm3 and thermal energies between
5 keV and 10 keV. The macroscopic transport properties (e. g., particle diffusion,
thermal conductivity, and electrical resistivity) of plasmas in these regimes are weakly
affected by two-body collisions between particles. These transport coefficients are sig-
nificantly influenced by the types of collective modes that can be excited in them such
as density fluctuations caused by microinstabilities.

In this general area we have carried out a theoretical and experimental program
during 1975 and relevant contributions have been presented at national and international
conferences. Several papers have been published in professional journals. The primary
focus has been on the experimental effort developed around the Alcator machine. Our
purpose has been to realize plasmas capable of sustaining very high current densities
without becoming macroscopically unstable, in order to achieve the highest possible
rate of resistive heating of the plasma itself.

Alcator's unique properties of lack of impurities (Z i1), high current density, and
large toroidal field, have led to its emergence as the preeminent toroidal confinement
device. Specifically, we can point to the following achievements:

(i) Peak plasma densities up to "6. 5 X 1014/cm-3, with energy confinement times

of -20 ms, which yields nT values of approximately 1013 which exceed those of any
existing confinement system by a considerable factor.

(ii) Plasma currents up to 220 kA, corresponding to approximately 1100 A/cm2

current density.

(iii) Stable discharges sustained for up to 650 ms without feedback control of the
vertical (positioning) magnetic field.

(iv) Since the particle density can be varied over two orders of magnitude while
obtaining microscopically stable plasma, we have been able to study a sequence of
plasma regimes with a varying degree of collisionality and to derive valuable infor-
mation about the nature of various transport coefficients such as electrical resistivity
and energy replacement time. In particular, we have identified a new (" slide-away")
regime where strong noncollisional ion heating occurs as a result of current-driven
microinstabilities that we have investigated experimentally and theoretically.

(v) The confinement device Rector, which was realized for the purpose of studying
noncircular plasma cross sections, has produced stable toroidal equilibria with this
feature. Detailed measurements of temperature and density distributions in a noncir-
cular toroidal plasma column have been obtained for the first time by Thomson scat-
tering measurements.

We have also profited from continuing collaborations with scientists from overseas
institutions and, in particular, with teams from Jutphaas (Holland), Frascati (Italy) and
the Kurchatov Institute (Moscow).
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Research - Theoretical

2. RADIO-FREQUENCY HEATING AND HIGH-FREQUENCY

MICROTURBULENCE

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Abraham Bers

We are now studying two major problems relevant to toroidal plasmas.

a. RF Heating with External Power near the Lower Hybrid Frequency

This research is directed toward exploring the possibilities of supplementary heating
of Tokamak plasmas. Theoretical studies are being carried out to determine the extent
of the penetration of microwave power into a Tokamak through the density gradient. Fur-
ther study of the nonlinear processes by which the associated field energy can be
imparted to the plasma particles and eventually randomized so that plasma heating
actually results is under way. The question is also being raised about what negative
effects, if any, might be caused by introducing such fields into a fusion plasma. In par-
ticular, possible effects on the plasma transport properties should be studied.

During the past year, we have completed several studies relevant to these problems.
We have made a detailed analysis of linear wave penetration from a waveguide array at

the wall, including finding the criteria for the array design1 and for either electrostatic

or whistler-Alfv6n excitation. We have determined the conditions under which such

fields in the plasma can excite electrostatic ion cyclotron waves1 3 and ion Bernstein
4

waves parametrically. We have also initiated studies of nonlinear stochastic mecha-

nisms that can lead to ion heating, 5' 6 and of nonlinear self-modulation effects that may
6

affect the penetration of the fields. We plan to pursue these studies to evaluate toroidal
effects that are important in this type of heating. Symbolic computation using MACSYMA
has been found extremely valuable for this problem. We also plan to interact with
experiments on Alcator and ATC in which this type of heating is being tried.

References

1. A. Bers, in R. C. Cross (Ed.), Proceedings of the U. S.-Australian Workshop on
Plasma Waves, University of Sydney, Sydney, Australia, 1975, p. 5. 1.

2. A. Bers, C. F. F. Karney, and K. Theilhaber, Progress Report No. 115, Research
Laboratory of Electronics, M.I. T., January 1975, pp. 184-204.

3. C. F. F. Karney and A. Bers, Progress Report No. 116, Research Laboratory of
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4. D. C. Watson and A. Bers, Progress Report No. 116, Research Laboratory of
Electronics, M.I.T., July 1975, pp. 107-116.

5. A. Bers, C. F. F. Karney, and D. C. Watson, Proc. Seventh European Conference
on Controlled Fusion and Plasma Physics, Lausanne, Switzerland, September 1-5,
1975, Vol. II, p. 193.

6. C. F. F. Karney, A. Bers, and D. C. Watson, "Linear and Nonlinear Absorption
of RF Power near the Lower Hybrid Frequency," Bull. Am. Phys. Soc., Ser. II,
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b. High-Frequency Instabilities and Microturbulence

At present we are studying instabilities that have their energy source in the tail of

the electron velocity distribution function. Such tails are prominent in Tokamaks when

the applied field is moderate, i. e., not so high that the distribution function is in the

runaway regime but still high enough that the electron density in the tail is an apprecia-

ble fraction of the bulk density.1 There are many reasons why it is important to study
such microinstabilities. First, the weak turbulence resulting from such instabilities
may be useful in heating the ions. Second, such turbulence may be useful in eliminating

trapped-particle effects and their associated deleterious instabilities and transport.
Third, the study should lead to a better understanding of the formation and/or inhibition

of the electron distribution function tail. Also, in the evolving (early time) stages of

any Tokamak, discharge conditions exist under which high-frequency microinstabilities
can be excited. This may be of significance in understanding the scaling of plasma char-
acteristics that are reached in the steady (long-time) stage of Tokamak discharges.
Heretofore this aspect of Tokamak plasma scaling has been completely ignored. Finally,
such microinstabilities can lead to enhanced transport and/or radiation from a plasma
that may be significant for a reactor.

During the past year, we have directed this work toward understanding the observed
anomalous radiation and ion heating in the Alcator low-density regime. In this regime
the effective drift velocity is an appreciable fraction of the electron thermal velocity,
and an appreciable high-energy tail has been observed. We have shown that such an
anisotropy in the electron distribution function can generate instabilities of the low-
frequency electron plasma waves ( pecos 0) which parametrically downconvert to very

short-wavelength lower hybrid waves at cpi, and propagate across the magnetic field.

We have also developed a nonlinear model to describe how the short-wavelength fields

at . can heat the ions. Z ' 3 Much of this theoretical work is still being refined and
pl

strongly coupled to further experimental refinements of the data from Alcator in this
regime of its operation. We also plan to pay attention to the recently observed anoma-
lous emission at pe and in the electron cyclotron harmonic regime. Such observations

have been made on the French Tokamak (TFR) and on Alcator and we plan to interact
with these.

References

1. A. Bers, "High-frequency Microturbulence in Tokamak Plasmas," part of an invited
talk presented to the Second International Congress on Waves and Instabilities in
Plasmas, Institute for Theoretical Physics, University of Innsbruck, Austria,
March 17-21, 1975.

2. A. Bers and M. S. Tekula, Proc. Seventh European Conference on Controlled Fusion
and Plasma Physics, Lausanne, Switzerland, September 1-5, 1975, Vol. II, p. 194.

3. M. S. Tekula and A. Bers, "Theory of Anomalous RF Radiation and Ion Heating by
Microinstabilities in Alcator," Bull. Am. Phys. Soc., Ser. II, 20, 1359 (1975).
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3. TRANSPORT COEFFICIENTS AND COLLECTIVE MODES

U. S. Energy Research and Development Administration (Contract E(l1-1)-3070)

Bruno Coppi

We expect that the most important transport coefficient in magnetically confined
thermonuclear plasmas will be determined by collective modes. In this case the anal-
ysis of the nonlinear effects caused by microinstabilities that can be excited in high-
temperature regimes becomes of primary consequence. In particular, we need to know
whether certain modes arising from the presence of trapped particles produce sufficient
scattering of their orbits to inhibit the more violent interchange modes involving the
majority of trapped particles that are subject to unfavorable magnetic curvature drifts
in a typical Tokamak geometry. We are also concerned with the anomalous slowing down
and diffusion of a fast population of injected ions at a particles, and so forth.

The problem of electrical resistivity in high-temperature toroidal systems in the
presence of trapped particles has been studied under restrictive and often unrealistic
conditions (e. g. , where the Spitzer-H[rm approximation is valid). This involves under-
standing the evolution of the runaway portion of the electron distribution, the effects of
current-driven modes, wave-particle resonance processes for the transfer of energy
and momentum to the ions, and so forth. Our effort in this area is also directed at
providing a basis for an interpretation of the experimental results produced by the
Alcator experiment.

An effort is being undertaken to understand the regimes of operation of a toroidal
material testing reactor, a high-density deuterium-tritium experiment operating close
to ignition conditions. For this purpose numerical transport codes are being developed,
including the effects of collisions and collective modes as well as empirical information
from the most recent experiments.

Work is being carried out on the transport theory of impurities in thermonuclear

plasmas; in particular, on self-decontamination processesI that lead to accumulation
of impurities toward the outer edge of the plasma column. The results are being cor-
related with observations made on the Alcator device. The transport of a dense cold
plasma accumulated at the edge of a hot-plasma column by appropriate microinstabili-
ties is also being studied, because of the high-density regimes realized in Alcator and
Pulsator experiments.

References

1. B. Coppi, "Plasma MAodes Due to Impurity and Magnetically Trapped Ions," Phys.
Rev. Letters 31, 1443-1446 (1973).

4. NONLINEAR AND TURBULENCE THEORY

U. S. Energy Research and Development Administration (Contract E(ll-1)-3070)

Thomas H. Dupree, David A. Ehst

We are studying a variety of problems that arise when strong mode coupling and
wave-particle interactions occur simultaneously. The nonlinear theory of trapped-
particle modes and drift waves are examples. Other examples are low-frequency equi-
librium hydrodynamic fluctuations such as convective modes. We hope to develop a
theory that will predict the nonlinear state, including transport properties, fluctuation
amplitudes, and spectra.
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5. TOKAMAK TRANSPORT THEORY

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Dieter J. Sigmar, Steven P. Hirshman, Hark C. Chan, Kenneth Rubenstein

This research is focused on three areas of Tokamak plasma transport theory: Neo-
classical transport in multi-ion species plasmas including the alpha particles, MHD
equilibrium and collisional transport in Tokamak plasmas at large values of beta
poloidal, and interaction of neutral hydrogen with plasma and buildup of Tokamak plasma
density by hydrogen gas feed.

The severe effect of small impurity ion concentrations on the energy confinement
time and fusion plasma dynamics in general has been widely recognized. The alpha
particles, an impurity species themselves, are needed in the plasma to impart their
energy but if they accumulate in the center they threaten to choke the fusion process.
We have approached the time evolution of these phenomena through impurity transport

theory and alpha-particle turbulence.1, 2

To be economical, fusion reactors have to work at large ratios Pp of particle pres-

sure to poloidal magnetic field pressure. Both experimentally and theoretically, the
regime Pp ~ A (where A is the toroidal aspect ratio) has been largely unexplored. A

3
paper on this subject will appear soon.

The pioneering nT-values of Alcator rely on the fact that neutral hydrogen bled in
at the wall is converted to plasma without significantly lowering the plasma temperature

or destroying the equilibrium. We hope to obtain the scaling laws of this process4
through a self-consistent theory of the hydrogen and plasma components.

References

1. D. Sigmar and S. P. Hirshman, "Approximate Fokker-Planck Collision Operators
for Transport Theory Applications" (submitted to Phys. Fluids).

2. S. P. Hirshman, "Transport Properties of Toroidal Plasmas in a Mixed Collision-
ality Regime," Phys. Fluids 19, 155-158 (1976).

3. D. Sigmar and J. P. Freidberg, "Tokamak Transport at Large Poloidal Beta, Con-
sidering MHD Stability Limits," Fluid Topical Conference on High Beta Plasmas,
Culham, England, September 9-12, 1975.

4. J. F. Clarke and D. Sigmar, "Interaction of Neutral Hydrogen and Plasma Including
Wall Reflection," Seventh European Conference on Controlled Fusion and Plasma
Physics, Lausanne, Switzerland, September 1-5, 1975, Vol. I, p. 134.

6. TEMPORAL BEHAVIOR OF A TOROIDAL PLASMA DISCHARGE

U. S. Energy Research and Development Administration (Contract E( 1-1)-3070)

James E. McCune, Paul W. Chrisman, Jay Fisher

Introduction

Our goal is to understand the time development of a toroidal plasma discharge
(Tokamak). As a first step, we have investigated the effects of resistivity and viscosity
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on the dynamics of such a plasma discharge in the "high-collisionality" regime, for which
the dissipative MHD equations are applicable. A general invariant form for the viscous
force density in this magnetized plasma has been derived from the results of Braginsky
in the limit cT ei >> 1, and has been shown to be consistent with the results of other

2-4recent studies that were carried out under more restrictive assumptions. Anticipating
conclusion of our work in this regime, we have also begun work in lower collisionality
situations.

Finite-P effects are included throughout. This provides a yardstick whereby we can
decide, by comparison with other less general studies, whether and when such phenom-
ena actually affect the results materially. For example, it has become customary to

5, 6use the "model" field of Pfirsch and Schliter in many calculations, calling on the
low-P assumption for justification not to relate the poloidal field, for example, with the
plasma current density. As long as caution is exercised, we find that many " steady-
state" phenomena can indeed be described adequately by the model field, 3 since the influ-
ence of the toroidal geometry is dominant over many finite- effects in the long-time
limits of the various temporal stages of the discharge.

On the other hand, time-dependent phenomena are materially affected by the rela-
tionship between the plasma current density and the induced field. This is obviously
true in the study of the "field-penetration" phase, 7 during which Faraday induction occurs
in conjunction with the setting up of those portions of the magnetic field associated with
the currents driven in the plasma. A less obvious fact is that the well-known poloidal

spin-up instability 8' 9 is vitally affected by finite-P because the nature of this instability
can be greatly changed, depending on whether or not aB/at = 0.

We believe that study of the time-dependent problem will emerge gradually as a key
to understanding " steady-state" and quasi-steady operation of both present toroidal
plasma experiments and eventual fusion devices. It appears essential to recognize the
different time scales over which various important phenomena occur in order to estab-
lish the actual regime(s) in which a given experiment will operate. This belief is accen-
tuated by the fact that actually many experiments do not have a sufficiently long operating
time to achieve a steady state; interpretation of the results can be vitally changed, once
this is recognized.

Equally interesting is the recognition of the possibility that it may turn out to be
desirable to operate a fusion device on a pulsed, quasi-steady basis. For example, we
may wish to scale such a machine so that a sufficient confinement period for net fusion
power production can be achieved over an operating time that is still too short for certain
deleterious "long-time" effects to set in. The exploration of this possibility provides
further motivation for the present research.

Time-Scale Formalism

In the initial part of our work10 - 1 3 we studied the dissipative MHD equation and
obtained a general form for the viscous stresses. The use of a multiple-time-scale
formalism was introduced and shown to be advantageous in setting forth in an under-
standable fashion the sequence of events occurring in a toroidal plasma discharge. It
then became possible to study the conditions under which the plasma spin-up in a torus

11-14
can be stabilized by viscosity or other effects. This question is treated under the

assumption that B = 0 or, in other words, that complete field penetration has already
S 8,9occurred prior to spin-up. It has been shown in complete generality for that case

that the spin-up is always stabilized at a poloidal speed such that the "geodesic speed,"
i. e., the poloidal speed projected onto the field lines at the same radius, remains
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subsonic for any finite viscosity. Thus there is no need to speculate on the existence

of a shock wave8 as the mechanism required to provide such stabilization.

Two useful features of the time-dependent theory deserve special mention. First,

we find that the energy-transport problem, which we have not yet treated, can be dis-

cussed virtually independently of the dynamical problem. This provides a fresh frame-
14

work within which many crucial energy-transport questions can be posed. Second,

since many machines operate "initially" (over a short time scale) in the high collision-

ality (MHD) regime and only then pass into lower collisionality regimes, the multiple-

time-scale concept is useful even in deciding which physical description of the plasma

is relevant. For example, we can readily visualize a situation in which the MHD

description is relevant at the start (over the "fast" time period, including the field-

penetration phenomenon), whereas the more complex description of kinetic theory is

required in later phases of the discharge. If such a picture is applicable, the present

theory of the short-time behavior of the plasma will be useful even for devices designed

to operate (eventually) in the low-collisionality situation. In this case the field penetra-

tion (and spin-up) may well be described by the classical resistive MHD picture, whereas

the long-time plasma mass diffusion (particle loss) may require a kinetic description.

With regard to time scales, provided MHD waves and instabilities are "unresolved"

or averaged out, the field penetration time T1 is measured by

r 2

T = n (1)
1 Ti

where ro is the plasma minor radius, and Ti the resistivity. This time is the same as

2
TI = Te i  (2)

Spe

with T = electron-ion collision time, and c/ pe = the classical skin depth of the resis-

tive plasma. For densities and machine sizes of fusion interest, T1 is many times T ei
15

From (2) and the formulas of Spitzer 1 5 it is trivial to work out numerical values for T1.

For an MHID discharge the next slower time scale, T 2 , is longer by the inverse square of

the aspect ratio, 12 ' 13 i.e., by a factor E = R 2 /r 2 .

Recent Results and Projected Work

The spin-up instability in a viscous, toroidal, 1MHD plasma has been treated by

Chrismanl4 for the case B 0. The results provide an important example of "finite-p"
effects; that is, self-consistent induced fields can change the spin-up stability criteria

qualitatively (compare these results with those of Hazeltine et al. 8, 9 ) . Chrisman has
also discussed possible energy-transport phenomena in the light of the new theory with
the hope of gaining new insight into this crucial problem.

As we have pointed out, over time T1 a toroidal plasma discharge may evolve from

an initial " MHD plasma" to a " low-collisionality" plasma in which trapping phenomena
become significant. In order to treat this problem in a general way, we are investi-
gating relevant time scales that are appropriate to low-collisionality regimes. An obvious
time scale is the "bounce-time" -ro/<v 11), We expect that there will be others, which

we shall sort out by a multiple-time-scale formalism.
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Direct treatment of the time-dependent problem at low collisionalities makes use of
the drift-kinetic equation for the guiding-center distribution. Our approach to solution,
in addition to the use of multiple-time-scale methods, is to model this distribution in
terms of a finite set of its velocity-space moments, monitor these moments in time with
the help of the standard set of moment equations, and "close" this set with appropriate
use of the collision operator. The latter procedure is in effect a generalization of the
neo-classical transport studies, with due emphasis on flux-averaged quantities and their
(averaged) time dependence.

A portion of this work was carried out in collaboration with the late Dr. Karl U.
von Hagenow (d. November 20, 1975), at the Max-Planck-Institut f-ir Plasmaphysik,
under the terms of the agreement between the Institute and EURATON. Two of us
(J. E. McCune and P. W. Chrisman) wish to express their deep gratitude for the
opportunity of collaborating with Dr. von Hagenow and their profound sorrow at his
passing from us.
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Research - Experimental

7. TOKAMAK RESEARCH

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

George Bekefi, Lawrence M. Lidsky, Peter A. Politzer, Louis D. Smullin

We propose to carry out a wide-range program on hot toroidal discharges using
Tokamaks of research size specifically designed for easy accessibility with a variety
of diagnostic apparatus.

Our operating facility, at present, is Versator I, a toroidal device with major radius
54 cm, and minor radius 14 cm. The maximum toroidal magnetic field is 5 kG; the
ohmic current driven by an air core transformer does not exceed 12 kA. The electron

12 -3 13 -3
density N lies in the range 10 cm -3 X 10 cm , the electron temperature Te
100 eV, and the ion temperature T i < 50 eV.

Versator I is being upgraded to increase the capacitor bank that energizes the toroi-
dal field from 40 kJ to 200 kJ. This will raise the toroidal magnetic field from ~5 kG
to a little over 10 kG. It is hoped that Te will be raised to ~300 eV thereby, and hence

allow operation in the "collisionless" electron regime.

The usefulness of Versator I is limited by two constraints. First, it has few large
diagnostic windows, and the overall accessibility leaves much to be desired. Second,

-7
the base pressure is of order 5 X 10 Torr. For certain impurity and vacuum studies,

-8
base pressures of -1 X 10-8 Torr are mandatory. For these reasons, we are planning
partly to build and partly to purchase a new facility, Versator II. Versator II would be
similar in design to "Erasmus" but would have much better vacuum capability and diag-
nostic portholes that are better engineered. We expect to place the order for this new
system and have it fully operational within a year.

Our research will encompass the following subjects.

(a) Parameter Studies of Tokamak Plasmas

There is evidence from studies on Alcator that after suitable preparation and thor-
ough discharge cleaning, the toroidal discharge can be run over a wide range of

12 14 -3
densities (10 N 1014 cm ) and possibly of electron temperatures. We plan to
map out the entire range carefully, making detailed measurements of electron and ion
temperatures, densities, and density gradients. The greater part of this work will be
done with Thomson-scattering methods, microwave interferometry, and by measurement
of charge-exchange neutrals.

Versator II will be designed specifically to allow us to measure, by Thomson scat-
tering, the electron temperature parallel to the toroidal field. Hitherto, only T I has
been measured in Tokamak research.

(b) Development of Novel Diagnostics

We propose to concentrate on the development of new techniques for simultaneous
determination of time and space spectra of various fluctuating plasma parameters.
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Thus, for example, when an instability is observed the aim will be to determine the
w-k dispersion characteristics. If the turbulence is broadband, we would wish to mea-sure simultaneously the time and space correlation functions. This requires develop-
ment of on-line data acquisition and processing, and novel (say TV-like) displays.
Spatial Fourier analysis and spatial filtering techniques are being considered.

Specifically, we shall begin by using as our probe the fluctuations of the light inten-
sity emanating from the plasma. We shall make two-point crosscorrelation and auto-
correlation measurements in time and space. An alternative scheme that is under
consideration is to use laser excitation of specific atomic transitions and then to study
the line intensity and linewidth of the excited transitions. This can yield the plasma
density and temperature spatially resolved along the laser beam.

(c) Electromagnetic Millimeter-Wave Diagnostics

We propose to study more elaborate probing techniques than conventional millimeter-
wave interferometry for measuring average density, in an effort to learn more about the
structure of the discharge. In Tokamaks the large plasma current produces a poloidal
field that twists the dc field lines. Thus an incident RF wave will have its polarization
twisted as it passes through the plasma. We hope to be able to determine something
about the current distribution in the cross section by measuring the complex values of
the emerging parallel and perpendicular fields, using independent measurements of total
plasma current and of density distribution (from scattering). The theory is now being
developed and will be verified on Versator.

Another approach toward measuring plasma structure is the use of probing signals
sent along the column and detected at a number of points away from the source. The
intent here is to discover whether the subsurface exploration techniques used on the
Moon and in some geophysical studies can be applied to plasmas that not only are inho-
mogeneous but also anisotropic. Professor J. A. Kong has been a major contributor
to the theory of such geophysical explorations and he proposes to study the extension
of these ideas to plasmas.

(d) Quantitative UV Spectroscopy (50 A-1000 A)

Quantitative spectroscopy of highly ionized atoms is a relatively new field, and has
not yet been well explored. Absolute measurements of line radiation, for example, can
serve as a powerful diagnostic of plasma impurities. For this, radiative transition
probabilities, oscillator strengths, level excitation, cross sections, and so forth, must
be known. They can be measured only in hot discharges of known properties. In this
work we are seeking cooperation with a team of scientists from Johns Hopkins Univer-
sity who are now actively engaged in UV spectroscopy.

(e) Vacuum Technology

The discharge-cleaning procedure for Alcator has resulted in a breakthrough con-
cerning plasma purity of these hot discharges, although the reason why this particular
technique gives such a uniquely low impurity level is still not understood. We propose
to measure absolute impurity levels spectroscopically, in conjunction with careful
studies of the surface physics when materials are in contact with hot electrons and ions
of the Tokamak plasma. Specifically, we shall measure the time development of impu-
rities during discharge cleaning. The variable parameters will be the fill pressure of
the gas, the partial pressures of the different gases, if mixtures are tried, and the
power of the RF oscillator generating the discharge plasma. There is preliminary
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evidence that the species of impurity (oxygen, carbon) depends on the strength of the
discharge.

The use of pulsed gas feed has been an important element in our ability to push
Alcator to high-density operation. But we have only had available pulsed valve feeding
at a single location. Nothing is known about the effects of filling and spreading time or
of asymmetries. Would two or four equally spaced valves be better than one? Would
a programmed gas fill have any advantages over a simple gas burst? We intend to study
this problem on Versator.

(f) Fluctuations and Instabilities

As we sweep through the available range of plasma densities and temperatures of
Tokamak discharges, different fine-grained instabilities are expected. Among these,
the two most interesting are an ion-acoustic instability when the electron drift becomes
comparable with the electron thermal velocity, and trapped-particle instability when
the temperature becomes sufficiently high to make the electrons "collisionless" (i. e.,
the mean-free path becomes greater than the bounce length). Neither instability has
been positively identified; the last-named has probably never been seen in toroidal
geometry. We shall study these fluctuations in time and space.

(g) Cyclotron Radiation

There is evidence from other Tokamaks that anomalously large emission occurs at
the electron cyclotron frequency and its harmonics. We are instrumenting a microwave
detector designed to study the electron cyclotron emission from Versator I.

8. NEUTRAL-BEAM RESEARCH

U. S. Energy Research and Development Administration (Contract E(11 -1)-3070)

Louis D. Smullin

We are studying the problem of designing more efficient plasma sources for positive
ion extraction. The study of injected electron-beam systems with high order -cusp
insulation of the lateral walls is proceeding well, and we expect to demonstrate full-
sized units during this year. We do not plan to exploit them technically; we would pre-
fer to study in greater detail the mechanisms of the low-pressure, hot-cathode discharge
whose details are still largely unknown and hardly more understood than Langmuir's
initial ideas of the 1920s. We also plan to study some of the details of plasma leakage
through a high-order c-cusp system.

We are also addressing the problem of producing intense negative ion beams by
double charge exchange in a Cs vapor cell. We have begun to study enhanced charge
exchange in optically excited alkali vapors (under National Science Foundation support)
and are building the first-generation apparatus for these studies. It is not yet clear that
this would be a technically practical system even if the physics works out as we hope.
We plan, however, to broaden and expand our studies in order to arrive at practical,
efficient configurations of vapor cells that are compatible with the requirements of high-
current, large cross-section, well-focused beams.
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9. NEUTRAL-BEAM SOURCES FOR PLASMA HEATING

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Louis D. Smullin, Leslie Bromberg, Peter T. Kenyon

We are studying the behavior of plasma discharges from which high-current positive

ion (H + or D + ) beams are extracted at currents of 10-50 A. Our goal is to achieve a
significantly lower power consumption than that of existing devices (Berkeley Multifila-
ment Arc, duo-PIGatron, etc.) which require approximately (1-5 kW)/A (discharge
power)/(extracted ion current). We reduce plasma losses to the walls by providing a
high-order cusp field around the plasma chamber with permanent magnets. The fringing
field of the solenoid at the cathode reduces loss to the back walls. We find that the effi-
ciency of the discharge depends on the details of the cathode geometry and have com-
pared several different configurations. Present experimental results with arc powers

<2 kW indicate that we should be able to construct a 10 A, 40 cm2 device consuming no
more than 4-5 kW. The performance of these devices depends in an important way on
the details of the cathode geometry. We are testing a family of different cylindrical
cathodes to determine the best L/D ratio and to understand the scaling laws. We shall

undertake the design of a 100 cm2 , 50 A system later this year.

We have developed a model capable of predicting quantitatively the performance of
the Berkeley Multifilament Arc (see Part II, Sec. XII-B. 8). We propose to continue
these studies in the more complex geometry of our magnetically confined plasma
sources.

10. COHERENT SCATTERING EXPERIMENT: SCATTERING OF

10. 6 pm RADIATION

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Lawrence M. Lidsky

We have completed the first stages of an experimental investigation of coherent scat-
tering from a well-diagnosed steady-state laboratory plasma. The experiment is based
on the use of an extremely stable 10. 6 jm CO2 laser oscillator-amplifier system and a

completely liquid nitrogen-cooled viewing system utilizing an electrically scanned Fabry-
Perot interferometer and a liquid helium-cooled interference filter. We have success-
fully measured the plasma frequency wing of the scattered spectrum and compared it
with theoretical predictions based on other measurements. We are attempting to
measure the low-frequency "ion" feature of the spectrum, but we have encountered
difficulties because the necessity of operating the interferometer near liquid nitrogen
temperature puts very severe requirements on it. We have extended the theory of the
low-frequency wing to include the effect of moderately strong collisions.
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Fusion Technology Studies

Our research into various technological problems associated with the design, con-
struction, and operation of controlled thermonuclear reactors continues. Our goals are
to evaluate the engineering requirements for fusion reactors, assess the possible appli-
cations of this power source, and produce the engineering data required for the design
of a reactor. As well as this work in progress, we have completed an experimental
study simulating the cyclic stresses that are expected in the first wall of a theta-pinch
reactor.

11. FISSION-FUSION SYMBIOSIS

U. S. Energy Research and Development Administration (Contract E(ll-1)-3070)

Lawrence M. Lidsky, Donald L. Cook, Mark Gottlieb, Kenneth J. Laskey

Because of various high-energy neutron multiplying reactions, fusion reactors oper-
ating on the D-T cycle will be copious sources of excess neutrons. We are investigating

the possibility of using these neutrons for the production of fissile U2 3 3 in a thorium
containing blanket and assessing the relative merits of various schemes with respect
to engineering and economic constraints. We have developed the requisite neutronic
codes, performed a simplified analysis of the value of fusion-produced fuel in a fission
fuel in a fission reactor economy, and have analyzed several reference engineering
designs. We have found that reprocessing costs will play a dominant role in the eco-
nomics of fissile reactors. At the present stage in our studies, the most economical
design appears to be based on a highly thermalized molten salt system.

12. HIGH-INTENSITY NEUTRON SOURCE

U.S. Energy Research and Development Administration (Contract E(11-1)-3070)

Lawrence M. Lidsky, Alan R. Forbes

The gas target source is a prime candidate for the intense 14 MeV neutron facility
that must be developed for testing fusion reactor material. We are planning to perform
experimental measurements of the detailed behavior of a beam-heated jet in a quarter-
scale intermittently pulsed model of such a device. Our goal is to compare theoretical
predictions and extensive numerical computations with experimental results. In this
effort we expect to be working in close collaboration with the Los Alamos Scientific Lab-
oratory. All major components of our system have been procured or constructed and
preliminary assembly is now taking place.

13. EBT-RX

U.S. Energy Research and Development Administration (Contract E(11-1)-3070)

Lawrence M. Lidsky, David A. Ehst, Aniket Pant, David L. Kaplan

In close collaboration with the Oak Ridge National Laboratory we have begun a study
of the fusion-reactor potential of the EBT concept.
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The primary goal of the EBT-RX study is development by October 15, 1976 of two
conceptually realizable, first-order optimized EBT reactor models and a list of thecritical assumptions and approximations implicit in these models. One of the concep-
tual designs will be completely microwave-driven; with the other design we shall explore
the possibilities inherent in beam-augmented systems. The reference designs will help
delineate the appropriate scale sizes, operating regimes, and support system require-
ments, and will demonstrate the sensitivity of scale and operating characteristics to
changes in system or plasma parameters. The ultimate aims of this study are to focus
the attention of the experimental-theoretical group on the physics of the most plausible
operating regimes, define support system (microwave, neutral-beam, instrumentation
and control) technology goals, and encourage action as early as possible on particularly
critical design problems such as magnet shielding. The Oak Ridge National Laboratory-
Massachusetts Institute of Technology interaction will be structured to take advantage
of the existing strengths of both organizations. In particular, the wide range of techno-
logical expertise available within the M. I. T. community will be combined with the exper-
imental and theoretical understanding of the EBT concept at ORNL. This joint study will
also serve to augment these strengths. It will acquaint a wider range of faculty and
research staff at M. I. T. with problems of controlled thermonuclear research interest,
set up an organizational model for implementing future "moderate scale" technology
studies (e. g. , high-field Tokamaks), and furnish an excellent medium for motivating
and educating students.

14. PELLET FUELING OF FUSION REACTORS

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Peter A. Politzer, Mark L. McKinstry, Warren K. Brewer,
Clarence E. Thomas

There are several serious questions associated with the operation of a quasi steady-
state fusion reactor. Among these is the problem of introducing cold deuterium and
tritium fuel material into the core of the reacting plasma. We are exploring the feasi-
bility of injecting small solid D-T pellets at high velocity. The ablation rate of the pel-
let surface, and hence the distribution of fuel in the plasma, is determined by a complex
interaction between the energy input from the hot dilute plasma and the outward flow of
cold dense fuel. The dominant effect is the shielding of the pellet surface by the sur-
rounding cold-plasma cloud that excludes the magnetic field from the region around the
pellet. We are pursuing a theoretical analysis of this shielding phenomenon in order to
make an estimate of the ablation rate and the pellet lifetime. We are also undertaking
an experimental test that will simulate for short times the energy flux that would be
encountered by a pellet in a thermonuclear reactor.
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C. Other Plasma Research

1. PLASMA TURBULENCE IN THE VICINITY OF A MAGNETIC

NEUTRAL LINE

Research Laboratory of Electronics, M. I. T. Industrial Fellowship

Peter A. Politzer, David O. Overskei

The behavior of a collisionless plasma in the vicinity of a magnetic neutral line has
been investigated. The geometry is of interest for certain types of laboratory plasma-
containment devices such as Tokamaks with limiters, and for astrophysical processes
such as solar flares and the neutral sheet in the geomagnetic tail. An electric field
applied along the neutral line results in a redistribution of plasma density that is con-
sistent with E X B flows. The development of a complex spectrum of low-frequency
waves, ci < W < .pi, is observed. These waves are spatially localized to the vicinity

of the neutral line and propagate antiparallel to the applied electric field. As the elec-
tric field is increased the wave spectrum changes from a complex mode structure to a
broad turbulence spectrum. Heating of both bulk and tail of the electron energy distri-
bution is observed. Typical measured values of density, electron temperature, and
electric field indicate an anomalously large resistivity. Preliminary theoretical sta-
bility analyses indicate that the observed instability is a variant of the current-driven
ion-acoustic mode, which gives rise to significant heating of the electron distribution.
Such a process may play an important role in the generation of energetic particles in
solar flares and in the geomagnetic neutral sheet. For the first time, an equilibrium
model has been developed for this configuration and it is being used in a more detailed
stability analysis.
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A. Basic Plasma Research

1. TIME-SPACE EVOLUTION OF THE THREE-WAVE INTERACTION

IN A HOMOGENEOUS PLASMA

National Science Foundation (Grant ENG75-06242)

Abraham Bers, Allan H. Reiman, David J. Kaup

In this report and in Sections XII-A. 2 and XII-A. 3 we describe the complete time-

space evolution of the lowest order nonlinear conservative coupling of three undamped

waves in a medium. The homogeneous interaction has been described 1 by

at( + 1  a8xal = Ka 2a 3  (1a)

a+ v 2  a 2 = -P2 K ala 3  (Ib)

(t 3 x a 3  3K ala 2. (Ic)

Here the ai(x,t) are (complex) wave packet amplitudes, the vi are group velocities, the

pi = ±1 are signs of the wave energies, and K is the (complex) coupling coefficient. Our
23results are based upon a numerical simulation of various interactions ' and upon a

formulation of the solution of Eqs. 1 in the inverse scattering framework. 4 These

approaches complement each other, and have allowed us to extract and analyze the

important characteristics of the explosive, decay, and backscattering interactions that

we shall now summarize. A more complete description of both simulation and analytic

work will appear in another publication. 6 Backscattering will be discussed in detail in

Section XII-A. 2 and the effects of inhomogeneities in Section XII-A. 3.

Explosive Interactions (pl = -1 = -P 2 = -P 3 or pl = 1 = -p 2 = -P 3 )

It is well known that when the spatial variation in the envelopes ai(x, t) = ai(t) is
7

ignored the solution to Eqs. 1 always becomes unbounded in a finite time. That this

need not be so for finite-extent envelopes has also been recognized.8 Figure XII-2 shows

the results of our numerical solution of Eqs. 1 for this case with the initial amplitudes

of a 2 and a 3 chosen small compared with al. The interaction is only found to be explo-

sive, as shown in Fig. XII-2c, if initially a 2 and a 3 can evolve into growing normal

modes, as shown in Fig. XII-2b. This condition can be established from Eqs. lb and Ic

by assuming that since al is large it does not change much during the initial buildup of

a2 and a 3 . A WKB analysis then shows that the buildup of normal modes requires

(vZ-v1)(V-V 3) - 0 and
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Do Kal(x,t= 0)
Ai1  = dx 2 (2)

_ v 2 V)(V3 _V1) 1/2

In arriving at Eq. 2 we assumed that a i goes to zero only at the pulse edges and that

arg (al) is independent of x. If this is not so, the WKB analysis can still be carried out

but the condition for growing normal modes is more complicated.

If the inequality in Eq. 2 is satisfied, the interaction will evolve "explosively" in the

sense that all wave packets grow in a finite time to produce a singularity, as shown by

the large spatially narrow spike in Fig. XII-2c. On the other hand, if M l < 7/2 there

is essentially no interaction in the time during which the wave packets separate and move

apart.

t 555

t= 3.5

t= 0 "

1  / °  60

ai a2

\2 20

0 ,0 0
17 20 10 20 15 20 0 2 4

x x x M2

(a) (b) (c) (d)

Fig. XII-2. Interaction of three waves with pl = -1, p 2 = p 3 = 1. (a)-(c) Time

development for initial configuration with a 3 (x,t= 0) -0, M1= Z.4>

7/2, M 2 = .14. Times are normalized to 1 = K(al = 1). Other

units arbitrary. Note change of scale in (c). (d) Threshold con-
dition for nonoverlapping colliding pulses 1 and 2 with a 3 (x, t = 0) E 0.

Parameters above the curve give explosive instability.

In the inverse scattering formalism for solving Eqs. 1, Eq. 2 corresponds to the WKB

condition that the initial al envelope contain at least one soliton. This follows by recog-

nizing that the integrand of M 1 is the scattering potential of the associated Zakharov-

Shabat (Z-S) eigenvalue problem. 4 ' 9 In this formalism the explosive instability is iden-

tified by the fact that when the middle group velocity envelope has a soliton and the

envelopes do not separate, the solution of the scattering problem becomes singular. The

condition for infinitesimal stability is that the middle group velocity envelope contain

no solitons (bound states). In the WKB approximation this gives M 1 < 7/2; a sufficient
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condition, even if the WKB analysis is not valid, is M 1 < 0. 903. From the inverse scat-
tering formalism we also find a stability condition for finite perturbations,

(tan2M) (sinh2M2) < 1, (3)

which is plotted in Fig. XII-2d. Even if M 1 < 7T/2 an explosive instability may ensue if

M2 is sufficiently large. M 2 is defined analogously to M1 of Eq. 2 with al - a2, v 1 - v 2 ,
v 2 - v3, and v3 -v 1

Decay Interactions with Solitons (pl = p2 
= p 3 = +1)

Again we consider the case wherein the highest frequency wave packet aI (x,t) has the

middle group velocity (v2 -v 1 )( 1 -v 3 )>0. In a case of prime interest this wave packet is

initially of an amplitude al (x,t)I much larger than both a 2 (x,t=0)1 and Ia 3 (x,t=0) .
Figure XII-3a gives the results of computations on the evolution of the nonlinear inter-

action from such initial conditions. We note that the buildup of wave packets 2 and 3

causes the pump wave packet 1 to deplete as expected, but when 2 and 3 leave as a pair

of oppositely directed pulses, wave packet 1 is not fully depleted (Fig. XII-3b) and 2

and 3 begin to grow again and are emitted as two more pulses (Fig. XII-3c). As shown

in Fig. XII-3c, the pump is then sufficiently depleted and no longer able to generate any

more of pulses 2 and 3. The generation of pulses 2 and 3 is clearly tied to the ability

of 1 to build up 2 and 3 from small amplitudes, i. e. , to the initial normal mode buildup

r ---,THEORY

........ I2 a3  NUMERICAL

-0 15 5 15 0 10 20initially. = 6.4 2 = I is too small to

mula for the t23 t28.
-"I

IO 15 5 15 0 O 20
x x x

(a) (b) (C)

Fig. XII-3. Time development of a decay interaction with rectangular pulsesinitially. M1 = 6.4, M 2 = .003, M 3 -0. al(t=0 ) is too smallto

be visible in (a). Units arbitrary, except for t, which is normal-
ized to |K(a1 = 1) = i. In (c) the prediction of the two-soliton for-

mula for the asymptotic profiles of aI and a 3 is included.
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when 1 is essentially constant. The WKB criterion for having N normal modes in the

pump wave packet 1 is just

N -) 7 < M <(N + T, (4)

and this leads to the generation of N pairs of pulses (a 2 ,a 3 ).

In the inverse scattering formalism the initial and final conditions of this problem

correspond to approximately separated envelopes for which the scattering problem

reduces to the well-known Zakharov-Shabat (Z-S) problem. From the relations between

initial and final scattering data we can show that for p =P2 = 3 = +1 and (vZ-v 1 )( 1 -V 3 )> 0

the interaction is such that a 1 will give up its solitons to a 2 and a 3 . Thus the final enve-

lopes of wave packets 2 and 3 are determined by an N soliton formula. The number of

solitons N is determined by the number of bound states in the Z-S scattering potential

appropriate to a 1 , which is just the integrand of Eq. 2. Thus N is determined by the

same equation that determines the number of normal modes (a 2 , a 3 ) that can build up

within the pump al, i. e., Eq. 4.

The parameters of the N soliton formula are completely determined by the spatial

profile and growth rate of the eigenmodes. Our numerical solutions show that the

emitted pulses are always well separated. Thus each pulse of a 3 is approximately

described by 2-qi ' (V-V 3 ) (v-v 3 ) sech (2li(x+v3t-xo)). The inverse scattering eigen-

value qi is defined by 7i = pi/Z(v3-v 1 ), where pi is the growth rate of the 1 normal

mode. Thus when the initial profile of al is a rectangle of height al(t = 0), the heights

of the emitted pulses will be bounded by (v 3 -v 2 ) 1/2 al(t=0)/(v3-v ) 1 /2 and will

approach that limit as M 1 becomes large. When the initial profile of al is not rectan-

gular, a more general bound on the heights is provided by the WKB condition on p,

f00 (Ka(x,t=0)1 -pZ)/ dx = 0.

When the profile of a l is initially rectangular we can write closed-form time asymp-

totic solutions for a 2 and a 3 by solving the associated scattering problem at t = 0 and

then applying the relations between initial and final scattering data. Let a1 (x, t = 0) be

a rectangle of width L and height al(t= 0) with its left edge at x = 0. Let a 2 (x, t= 0)

be a small pulse centered at x = e , 0 fC L. Assume that a 3 is zero at t = 0. Then

KZ-1
a3 = D exp(-(- +r Q)x) ( +N2 jk (5)

j,k

with the sum taken over the growing eigenmodes of the linearized equations (bound states

of the associated scattering problem), where

exp(-(-j+qi)x)

N.. = D. (6)

PR No. 117 164



(XII. PLASMA DYNAMICS)

SA a j AJz(j, t= 0)
D = (-1) sin (qjfo) exp(-j(L+v3t)) (7)

2L(S+jL)

Aj = (Q2 L2 1/2, (8)

A
and a 2 is the Fourier transform of the initial profile of a2 . There is a similar formula

for a 2.

Collision of Wave Packets Containing Solitons (pl = P2 = 1)

Next, we consider collisions of pulses of a Z and a 3 with the same pi and the same

velocity ordering that we have just considered. Figure XII-4 shows numerical solutions

of such interactions. The interaction is weak at large velocities (or small initial ampli-

tudes) as shown in Fig. XII-4b. Some energy is transferred to a 1 , but not enough to

cause significant depletion of a2 and a 3 . The profile of a l in Fig. XII-4b could be deter-

mined to a good approximation by assuming that a 2 and a 3 are undepleted. The solution

is then a convolution of a 2 (t = 0) and a 3 (t = 0). At lower velocities (or larger initial ampli-

tudes) the interaction is stronger, and may lead to almost total depletion of a2 and a 3,
as shown in Fig. XII-4c. The time development is now truly nonlinear and leads to the

formation of a sharp spike in a 1. The determination of the subsequent behavior of a1
is just the same problem that we considered in discussing decay interactions with soli-

tons. In particular, note that the interaction leading to Fig. XII-4c has deposited a soli-

ton in al. This will result in the subsequent appearance of solitons in az and a 3 . The

normal mode buildup is already apparent in Fig. XII-4c.

An inverse scattering analysis allows us to determine roughly the heights and widths

,----1

I2 o

024 68 10

1 
101

0 : 011 3

S02a 2

0 2 4 610 0 2 4 8

(b) (c)

Fig. XII-4. Collision of pulses of a 2 and a 3 with al(x,t= 0) = 0 and pl = p2 = p 3 = 1.
v 3 = -v 2 . (a) Initial pulse profiles. (b) Final pulse profiles for a high-

velocity collision: M 2 = M = . 34 at t = 0. (c) Pulse profiles after col-

lision with lower velocities: M 2 = M = 2.0 initially.3
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of the pulses after collision. The procedure for doing so will be discussed elsewhere. 6

Equivalent Two-Dimensional Steady-State Interactions

There is a class of two-dimensional steady-state equations whose solution reduces

to that of Eqs. 1. The two-dimensional time-independent generalization of (1) is

(v 1 x ly ) al = P 1Ka 2 a 3

vx ax +V Zy Dy) a2  -p 2 K ala 3

v 3 x ax + v3y ay 3  - 3 K ala2

If vx, v 2x, and V3x are all positive, then if we let a =v 3x b , a= ' b , a =
lx 2x 3x 2x3x 1 2 lx3x 2 3

A

v /VlV b and v = v. /v. , the new variables obey (1). The solutions of the parametric
Ix 2x 3 i ly ix

interactions that we have discussed then translate to time-independent solutions for a

system with a beam of al of finite width propagating in from the edge of the medium.

ai

02 
a3

Fig. XII-5. Three-dimensional plot of the interaction shown in Fig. XII-3.

The correspondence between these two-dimensional steady-state equations and the

one-dimensional equations is clarified by Figs. XII-5 and XII-6. Figure XII-5 is a three-

dimensional plot of the solution shown in Fig. XII-3. Note that the t axis can equally

well correspond to another spatial dimension, y. The steady-state solution corresponds

to a nonlinear filamentation of the decay products of a parametric decay.

Figure XII-6 is a three-dimensional plot of an explosively unstable interac-

tion. Again the t axis could equally well correspond to another spatial dimension.
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oi 0

03 02a3 a2

X

(a) (b)

Fig. XII-6. Three-dimensional plot of an explosively unstable interaction, pl = -1,

PZ = P 3 = i. (a) Development of a Z and a 3 . (b) Development of al.

Figure XII-6a is a plot of a 2 and a 3 . We have omitted al from this plot to allow the

buildup of the normal mode to be visible. The development of al is plotted in Fig. XII-6b.

Note that a l is perturbed only slightly until a 2 and a 3 become comparable to it. It

then begins to grow explosively.
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2. NONLINEAR EVOLUTION OF STIMULATED BACKSCATTERING

National Science Foundation (Grant ENG75-06242)

David J. Kaup, Allan H. Reiman, Abraham Bers

The stimulated backscatter interaction in a homogeneous plasma is described by

( + v  al = KaZa3 (la)

+ v a = -K aa (lb)
at x 1 -Kala3

a + v3 a = 1 (1 c)
at 3 ax a 3  -K ala (I)

with v 1 > v 2 > v 3 and v 1-V 2  1v 2 -v 3 . Previous work by others has been concerned

with solutions that are dominated by the presence of a boundary, focusing in particular

on the steady-state solution. 1 - 3 We have investigated the fully nonlinear stimulated back-

scatter interaction of pulses.

Figures XII-7 and XII-8 show solutions of Eqs. 1 for two different sets of param-

eters. Graphs of the initial pulse profiles are shown in Figs. XII-7a and XII-8a. The

initial parameters corresponding to Fig. XII-7 are such that little interaction takes

place. The pulse profiles after interaction (Fig. XII-7b) show that the backscattered

pulse a 3 is small relative to the injected pulse a l . In Fig. XII-8 we decrease the veloc-

ities by a factor of 5 and find that the interaction is quite large. The pulse profiles after

interaction (Fig. XII-8b) show that much of the energy of the incoming pulse goes into

the backscattered pulse. Note also the striking spatial modulation of the final ampli-

tudes.

In our investigation of the stimulated backscatter interaction using the inverse scat-

tering method we have been particularly concerned with the calculation of the reflection

coefficient R. We define R as the ratio of backscattered-to-injected action.

f 0 a (x,t-00) 2 dx (2)
R-

oo a(x,t = 0) dx

W2
The ratio of backscattered-to-injected energy is - R. This is a particularly important

number in determining the feasibility of the laser-pellet fusion scheme.

In the inverse scattering formulation there is a Zakharov-Shabat (Z-S) scattering

problem associated with each initial pulse:4,

Vlx + iv 1 = qv 2 (3a)
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Fig. XII-7. Numerical solution of Eqs. 1 for v

are in the reference frame of a
after interaction.
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(a) Initial profiles.

= 1. Graphs

(b) Profile

a

a20

t=O

10 15
x

(0)

Fig. XII-8. Numerical solution of Eqs. 1 for v3 = -. 2, z = -. 1.

(a) Initial profiles. (b) Profile after interaction.
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V2 x - iv2 = rv. (3b)

The q for each pulse is

K eiv/3 aa

= (4a)
(v2 -V 1 )(v 3 -v 1

KI e -i v/3 a2

q = (4b)
'(v2- 1 )(v3-v2 )

K e3v/ (4c)
S (v 3-v)(v1-v 3 )

where K = K eiv . For pulses al and a2 , r = q, while for pulse a3, r = -q. Because

of the self-adjointness of the Z-S operator for r = q , pulses al and a 3 can contain no

solitons. Therefore there can be no soliton exchange. To understand the behavior of

the stimulated backscatter interaction, we must look more closely at the continuous part

of the spectrum of the Z-S operator.

Let (x) be a solution of Eqs. 3 such that (x) - 0 e as x - -co. We define

a(%) - lim l(x). (5a)
x-c

Similarly, let (x) be a solution of Eqs. 3 such that p(x) - _01 ei'x as x - -00. Then

a(X) =- lim c 2(x). (5b)
x-c

Define also

r(x) - [(X) a(X) ]+ (6)

for r = ±q . The action contained in each wave can be expressed directly in terms of F.

Equate the integral representation for a with the asymptotic expansion for a as IX -

in the upper half-plane. The coefficient of the first-order term in 1/X gives

f qlZ dx = 1fm dX In [1 + ()] (7)

when there are no solitons. This gives us a formula for the total backscattered action
if we can determine the time asymptotic value of r(3)(X).

To express the time asymptotic Z-S scattering data in terms of the initial Z-S scat-

tering data, we employ the factorized form of the scattering matrix for the Zakharov-

Manakov (Z-M) scattering problem. 5 ' 6 Initially we have
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S = S(1)S(2)
o o (8)

where S(1) and S ( are the matrices for scattering off pulses a l and a2 at t = 0. The

(1) (3)elements of S) and S(3) are determined by the solution of the corresponding Z-S scat-

tering problem at t = 0. As t - co the envelopes again separate to give

S= S (3)S(2)S(1)f f f (9)

The elements of these matrices are determined by the solution of the corresponding
Z-S scattering problem for t - o0. By equating the elements of expressions (8) and (9)
for S, we find the time asymptotic scattering data in terms of the initial scattering data.
In particular, we find

r(1)r (z )
(3) _ o o
f 1+ ( 2 )  (10)

In conjunction with Eqs. 7 and 2, this gives the exact expression for R:

S r(1))r(Z)
dX ln 1 + 0 0

1 + r(2)

R = (11)
7_ 1 2q dx

To calculate the backscattered energy, we need only calculate the Z-S scattering

data. This is particularly simple if initially we have square pulses. In that case the

Z-S equations have closed-form solutions that for the To yield

()(X) = A2G L 22-A2 (iZa)

r(3)(X) = A2G 4L2 A2 2) (12b)
o 3 3 A3

where

sin2 ((x) / z

G(x) = , (12c)x

L.i is the width of pulse a i , and Ai = qi Li..

Equations 12 may now be substituted in Eq. 11 to obtain the reflection coefficient for

the given initial parameters. In Fig. XII-9 we have plotted R against L 1 for several

values of L 2 . Note the threshold in R as a function of L 1 . We can obtain an expression
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for this threshold by solving for F (3) > 1 using Eqs. 10 and 12. Making the approxima-

tions q 3(t=0) << ql(t=0) and A 3 << 1 at t = 0, at threshold we obtain

A
3 (13)

A2 e =1. 
(13)

In particular, note that in the vicinity of the threshold pulse compression can have a

great effect on the reflection coefficient.

C\ j

R _ Fig. XII-9.

Q = R plotted as a function of L 1using Eqs. 11 and 12.

03 =0

.001
3 10 100

L
I

We may derive the reflection threshold in an alternative fashion if we ask for the

conditions under which the linear undepleted pump solution of Eqs. 1 becomes invalid.

The linear solution is a 2 (t) = a 2 (0) e y t , a 3 (t) = a 3 (0) e y t with y = Kal(t= 0) at the point

of maximum growth. The condition that depletion be important across the width of a 3 is
8a L1

L a . Substituting in Eq. la and assuming an interaction time of , we find
3 @x 1 AI 1  2

that the threshold amplitudes obey A 3 e - 2 This is approximately the same as Eq. 13.

We can obtain an approximate closed-form expression for the reflection coefficient

of square pulses when A 1 > 1 and A1A 3 << 1 at t = 0. An approximate evaluation of Eqs. 11

and 12 then gives

2 -1 B 2 B - 1 B 1/
R = 1 sin 13 3  A

2 1 + (I -B 2 /A)/
SAIn (14)

3 1/2
1- 1 -B2/A2)
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for B < A 3 and R 0 for B > A 3, where B is the solution of

sinh(B) 1

B A3A
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3. SPACE-TIME EVOLUTION OF THREE-WAVE INTERACTIONS

IN AN INHOMOGENEOUS PLASMA

National Science Foundation (Grant ENG75-06242)

Allan H. Reiman, Abraham Bers, David J. Kaup

We have extended the theory of three-wave nonlinear interactions described in Sec-

tion XII-A. 1 and XII-A. 2 to include the effects of linear inhomogeneity. The effect of

such an inhomogeneity on just the linear initial stage of parametric interaction has been

studied extensively. l Inhomogeneity effects are of particular importance in the laser-

pellet interaction where strong density gradients may be driven by the laser.2 These

effects can also influence the absorption of microwave energy by a Tokamak plasma.

We have found an exact transformation of the equations with a linear inhomogeneity

to the homogeneous equations. This allows us to apply inverse scattering techniques

developed for the homogeneous case. We do this in conjunction with numerical solution

of the inhomogeneous equations for initial conditions that we investigated previously for

the homogeneous interaction.

The x-t equations describing the time development of the three-wave parametric

interaction in a one-dimensional plasma with linear inhomogeneity are

+ v x a l =P 1 Ka 2 a 3 exp(ik'x2/2) (la)

+ v 2  a 2  -pK ala exp(-ik'x /2) (1b)
at z 9x 2 _P Z 1 3
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+v a \ e(-ik'x /2)
t +v 3 8x a 3 = -p al exp (Ic)

where k' is the spatial derivative of the wave number mismatch. To transform these

equations we define hatted amplitudes.

aj =aj exp i (x-v.t) k'0 /2 (2a)

V2V 31 - (2b)
(v2-v 1)(v3-v 1)

v1v3
2 (2c)

12
S3 (2d)

(v 3 - 1 )(v 3 -v 2)

We have simply multiplied the a by phase factors quadratic in x and t. We then sub-

stitute in Eqs. 1 to find that the hatted variables satisfy

+v 1 ix al = P 1 Ka 2 a 3  (3a)

a a A :,AA,:-
+ v2 ax a = -P2K ala3 (3b)

a a A
-

+ v ) a K ala 2 . (3c)

These are just the equations describing the three-wave interaction in a homogeneous

medium. Thus we see that the nonlinear three-wave interaction with a linear k mis-

match is equivalent to a homogeneous three-wave interaction of pulses that have been

chirped (that is, have a frequency modulation quadratic in t).

The effect of a linear inhomogeneity on the two-dimensional steady-state (x-y) equa-

tions can be somewhat more complicated. Now the gradient of the inhomogeneity can

have components in both x and y directions. Thus we now have a tensor k: the vector

derivative of the vector k mismatch. The equations are

V1y y+ lx ax b1 = P1 Kb 2 b 3 exp(ir * k r) (4 a)

v2y ay +2x ax b 2 = -p2K blb exp(-ir "k r) (4b)

a 8) b PK b b--

v3y b +v3x x b3 3K lb2 exp(-ir .k r), (4c)

where r is the position vector.
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The transformation to be applied to Eqs. 4 is correspondingly more compliceted than
that for Eqs. 1, although it still corresponds to multiplying by a phase factor quadratic
in x and y. Define

b. b. expi(v x-vjy x) 2 cj/2 (5a)

(k v +k' v ) v + (k' v +k' v vyy 2y xyV2x) 3y (k 2y xx2x) V3x
1 -  (5b)

(VlxV2y -VlyV2x)(VlxV3 y -VlyV3x)

(k v +k' v ) V3y + (k' v +k' v )vyy ly xyVx) y (kxyVly xxVlx) V3x
(5c)

(VlxVzy - VlyV2x)(VxV3y - VyV3x)

(k' v +k' v )v +(k' v +k'v ) vyy ly xy lx)V2y (kxy ly xxlx 2x
(Sd)

(VlxV3y- VlyV3x)(V2xV3y -V 2 yV3 x)

The hatted variables then satisfy

a a ) A A A

( ly y + v1 x ) b P1Kb2b3  (6a)

V2y - + v2  b 2  - 2Kb (6b)

( ) A -A :
(V3y 5y +v3x x b 3 = -p 3KbIb 2  (6c)

These are the equations describing the homogeneous steady-state interaction in two
dimensions. If all of the v. are positive, Eqs. 6 can be further transformed to Eqs. 3.ly

What we must solve, of course, is not just the equations themselves but the equations
subject to initial and boundary conditions. We must see how these initial and boundary
conditions are modified by the transformations that we have employed.

As x - ±O, we require that a.(x,t) - 0, b.(x, y) - 0. We are looking at interactions
of pulses. This condition remains unchanged for the hatted variables: as x - +co,
A _ A
a(x, t) - 0, b.(x, y) - 0.

For the x-t equations we impose an initial condition at t = 0. The corresponding
A

initial condition for a. is
J

a(xt= 0)= expik.x a.(x,t= 0).

Similarly, since we assume v. > 0 in Eqs. 4, we impose a boundary condition at y = 0
JY A

for these equations. The corresponding boundary condition for b. is
a
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bj(x,y = 0) = exp iv .x /2 b (x,y= 0).

Once the initial conditions are imposed, the time development of a (spatial develop-

ment of b.) is determined completely by the homogeneous equations. To find a (x,t) or

b.(x,y) we use Eqs. 2 or 5. Thus the three-wave interactions of pulses in a plasma with

linear inhomogeneity is exactly equivalent to the homogeneous three-wave interaction

of pulses with chirped initial conditions. This result is of particular interest because

the interaction of chirped pulses has been the subject of much research.

In Fig. XII-10 we illustrate the transformation of an initial square pulse of constant

phase. We have plotted the real parts of aj and aj at t = 0.

Rk(oj) Rk(Oj) --- I

t=O

Fig. XII-10. Transformation of the initial condition for amplitudes.

Simulated Scatter

In Fig. XII-lla we have plotted initial and final pulse profiles obtained from a

numerical solution of the homogeneous three-wave interaction with v 1 > v 2 ,v 3 . In

the context of the x-t equations (1) this interaction corresponds to stimulated

backscatter. The interaction has an alternative interpretation in the context of

the two-dimensional steady-state equations (4) as sidescatter off an obliquely inci-

dent beam. We assumed the latter interpretation in inserting the linear inhomo-

geneity to obtain the numerical solutions shown in Fig. XII-llb and XII-11c. Note

that the scattered energy has been reduced in Fig. XII-llb. In Fig. XII-llc the

inhomogeneity has been increased still further, and the scatter is almost com-

pletely suppressed.

In Fig. XII-12 we have indicated schematically the dependence of the reflection coef-

ficient R on the length of pulse al and on the inhomogeneity. For the homogeneous

interaction with L 1 small, R is approximately zero. As L 1 is increased we reach a

threshold, enter a nonlinear regime, and then see a saturation as R approaches 1. By

allowing k' to increase at constant L 1, R decreases and again enters a nonlinear region,

and finally approaches zero.
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RFig. XII-12.

Schematic dependence of the reflection
coefficient on the length of a l , L 1 and on

I / the inhomogeneity parameter k'.

We have found an exact expression for R which includes the effects of the inhomo-
(3)

geneity. The scattered action N 3  defined by

-00
fN1 3)m a 3 (x,t- ) dx

can be expressed directly in terms of the time asymptotic scattering data

N 3 ) _ (2 -v 3 )(v-V 3 ) 0 dx In 1 + F F 3)()fIK 7T E0 1 f

The formula that we used in the homogeneous case to express Ff in terms of the initial

scattering data is still applicable.

F(1)F(Z)
r (3) o o

f
1 + r (2 )

0

From the solution of the scattering problem for the Z-S equations we obtain the Fo
4 lx + ikX1 = q 2

6 2x - iXk 2 = r-1

with q and r determined by the initial pulse profiles and r = ±q . In the homogeneous

case, if we take the a. to be square pulses of constant phase, then q and r are also

square pulses of constant phase. The Z-S scattering problem is then exactly soluble

in terms of trigonometric functions. In the inhomogeneous case, if we take the a. to
A J

be square pulses, then a. and q are modulated square pulses. The Z-S scattering prob-

lem is still exactly soluble, but now in terms of parabolic cylinder functions rather than

trigonometric functions.

Parametric Decay to Solitons

In Fig. XII-13a we show a three-dimensional plot of a homogeneous parametric decay

of wave 1. In the context of the two-dimensional steady-state equations this corresponds
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to the steady-state decay of a beam incident from the top of Fig. XII-13a, with nonlinear
filamentation of the decay products. Note that by the time the interaction has gone to
completion there is little energy left in the pump. In Fig. XII-13b we see the same inter-
action with the linear inhomogeneity present. The low-frequency waves now take longer
to build up. The resulting filaments are more closely spaced, narrower, and have
smaller amplitude. Even after the interaction has gone to completion much of the initial
energy remains in the pump.

03 a2 03

(a)

Fig. XII-13. (a) Homogeneous

IKa (y = 0) L 1

2 3

parametric decay: -v3x =Vx= 1.

= L = 12. 8.1

(b) Same interaction as (a) except for the inhomogeneity

Kal(Y 0)
inserted. 4if L = 9.05. K = 2.

k'vV 2

As in the homogeneous case, we may express the asymptotic profiles of the filaments

in terms of an n-soliton formula. The Z-S equations for a l are again equivalent to the

linearized three-wave equations for large al and small a 2, a 3 . In the x-t interaction

these are the familiar equations for parametric decay in the presence of a linear inhomo-

geneity.

at +v 2 x) a 2 -P2 K a l a 3 exp(-ik'x /2) (7a)

at 3 x a3-P 3K ala2 exp(-ik'x /2).'at v 3-w- ax 3 =- 3 a1 a 2 (7b)
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The number of solitons in the inverse scattering formulation, and hence the number of

filaments formed, is just equal to the number of growing normal modes of the linear

equations (7). The soliton eigenvalues, and hence the heights and widths of the filaments,

are proportional to the growth rates of the corresponding modes. The soliton phase,

and hence the position of the corresponding filament, may be determined from the eigen-

function of the corresponding eigenmode.

The growing normal modes of Eqs. 7, of course, have been thoroughly investigated

numerically, by the WKB method and through the exact solution for la l (x,t =0)I square.

In Fig. XII-14 we show the numerical solution of Dubois, Forslund, and Williams for

the growth rates in a square pump vs the width of the pump. The inhomogeneity is the

same as in Fig. XII-13b. We have indicated by an arrow the corresponding width of our

pump. Note that this graph predicts the existence of 5 growing normal modes for a pump

of that width (two pairs of which have degenerate growth rates). We do indeed see the

formation of 5 filaments in Fig. XII-13b.

Fig. XII-14.
.8 Dispersion graph of Dubois, Forslund, and

.6 Williams 3 for a square pump with inhomo-

R(p) Kal(t= 0) 2

geneity parameters K k= - 2.
.2k'V 1V2

Arrow indicates that L= 12.8, corre-

0 10 20 30 sponding to T L = 9. 05, the pump width
used to obtain Fig. XII-13b.

Conclusion

We have found an exact transformation of the inhomogeneous nonlinear problem to

the homogeneous nonlinear problem. The homogeneous nonlinear problem can be solved

by using the complementary techniques of a numerical integration of the equations, the

inverse scattering method, and the theory of the linear mode buildup.
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B. Plasma Research Related to Fusion

Research - Theoretical

1. NONLINEAR SATURATION OF THE DISSIPATIVE TRAPPED

ION INSTABILITY

U. S. Energy Research and Development Administration (Contract E(1 -1)-3070)

David A. Ehst, Thomas H. Dupree

Introduction

Recently, it has been predicted by linear theory that several low-frequency instabil-

ities jeopardize plasma confinement in Tokamaks. We consider one of these, the dis-
_ i e T T but issipative trapped ion mode, which occurs in the banana regime (~, , T but is

VB V i e\characterized by a negligible magnetic drift frequency B << « , . Our interest

centers on flutelike modes which have small linear Landau damping, w < w and Wr/K <
-Vth but r

Vth but K11 < (Rq) . Our goal is to understand the mechanism driving the linear insta-

bility and to evaluate various nonlinear phenomena to determine the saturated amplitude

of the fluctuations and their influence on particle transport.

The original work on this model utilized the fluid equations to analyze wave motion.

For the trapped species (those particles which, in the absence of collisions, are

restricted by the B field modulation to localized regions along B) the continuity equa-

tion may be written

Tan+ a [nT V ]  (n n (1)
at ar EE 0 ).

Substituting V from the momentum equation, we see that the trapped fluids have linear

wave perturbations

NZE iw, j ejc

n. - n . (2)
j -i + vj / Tj o

Circulating particles are adiabatic with

~C ej
n - - n . (3)

Invoking quasi neutrality, we find the dispersion relation for T = T.:
e 1

. 2
v. iw v. v

1 r i e
2 , :,e i + < < e (4)S e E E E r E
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Our model points out that collisionally induced transitions of particles from trapped

to circulating and vice versa allow a "current" of trapped particles along B. These

transitions occur at random; hence, if a (wave) density perturbation exists, trapped par-

ticles appear to diffuse from high- to low-density regions. This is the meaning of the

collision term in Eq. 1. This erratic motion (diffusion) of trapped particles along B

means that the trapped particles do not stay in phase with the potential fluctuations, which

is reflected by their nonadiabatic response to (Eq. 2). We shall see that there is a

random change of a particle's kinetic energy ' associated with this trapping-detrapping

process; this particle energy is exchanged with the wave energy to drive the instability.

Kinetic Theory

Some nonlinear effects (enhanced detrapping) are best studied by following individual

particle behavior via the kinetic theory. Circulating particles are assumed to have

C
Vl = constant V

r = constant

so their linear collisionless orbits are represented by

C i[K l(s-V t) +K 1 1go (-t) = e

This orbit function is a solution to the linearized, collisionless drift equation, as

required: 0 = + VI~s go (-t).

By virtue of the magnetic field modulation, the trapped particles have V =

VII(6,0, r), and their parallel orbits are approximated by a sinusoidal function S(t) =

s + Rq80 [sin{a +" Tt)- sin a ]. The magnetic drift is responsible for the radial

orbit fluctuation, which gives these orbits their characteristic shape: R(t) = r +

p cos (a - 0-Tt). Thus the linear collisionless orbit is

T i[KIIS(-t) + KrR(-t) ]
o (-t) e (5)

We are aware that the (nonlinear) effect of 4 is to destroy the constants of the linear

motion. One such constant is the banana center ro; a Lagrangian analysis shows

-cE

r (6)
o B (6)

p
-cE

The trapped particles move across a flux surface with b - B and their kinetic energy

changes as
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= eV 11E . (7)

In terms of the variables (t, s, r , b, 6, ) the drift equation is

C(f) +s +r +  a a
s o ar _ b 8

a= + V + eV E I f. (8)at II 8s B 8r B -8b + 11 11 a ()

This equation can also be derived from Hazeltine's drift equation 2 by a suitable change
of variables. By direct substitution we can show that g (Eq. 5) is a solution to the lin-
ear collisionless version of Eq. 8.

In the presence of collisions or wave turbulence trapped particles will be stochas-

tically perturbed away from their linear collisionless orbits and gT(-t), which repre-

sents wave-particle correlation, will diminish with time:

T T -dtS (-t) go (-t) e , (9)
whr -l

where d-1 is the time required for a particle's position to randomize relative to the wave

motion. In the case of the trapped electrons, their orbits certainly have a random com-

ponent, since their dynamics is dominated by collisions (wr  v /E ) . Moreover, the ion

orbits are also probably randomized because of the presence of a broad wave spectrum.

Experiments have consistently shown a.wide bandwidth in plasmas containing a colli-
3

sionless species. We shall show how to replace the collision operator and the nonlinear

(wave turbulence) terms in Eq. 8 by constants representing the rate at which various

effects act to randomize the linear orbits:

0 = + V + d f. (10)

We note that this generalized decorrelation frequency d stresses the similar roles of

collisions and turbulence, since it is a sum of terms representing these different effects.

Direct substitution shows the perturbed orbit function, Eq. 9, to be a solution to the col-

lisional, nonlinear kinetic equation, Eq. 10.

By following standard methods, the drift equation is solved for the perturbed dis-

tribution in terms of an integral over these perturbed orbits.

-e ) ej .

CT Mj + i(w,.-cW)- dT ei[w(T-t) +61 gCT(T) f

i K J

We find the dispersion relation
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2 { - + i- e  - (R(di., d).
w + id. W + id i e

1 8
(11)

The "nonresonant" frequencies d within the braces are different from those in C which

serve to broaden the Landau resonances; this emphasizes the fact that the various d

must be carefully constructed in light of the many ways in which the linear collisionless

orbits can be perturbed.

Quasi-linear Theory

Our first goal is to derive the collisional terms dc that determine the linear growth

rate yL . In the process of examining the linear mechanism we also formulate a quasi-

linear theory of the dissipative trapped-particle instabilities. By using linear orbits,

Eq. 7 is integrated as we follow a particle's history. If the particle is initially circu-

lating with Vth >> w/K II it moves quickly through an almost stationary potential wave so

&(t) = &o - e4'(t), where c' is the potential along the particle orbit and do is the (con-

stant) average kinetic energy. Once a collision increases the magnetic moment 4 suf-

ficiently to trap the particle, its parallel velocity becomes V 1  0. Consequently Eq. 7

shows &(t) z constant for the period during which it is trapped. Meanwhile the potential

at the trapped particle's position is fluctuating at the wave frequency w , so if another

~(t) 27r (97wr K11V,,

.900\-

I-\ E I +
A'

C. P
t .P

Fig. XII-15. Kinetic energy of particle undergoing trapping and detrapping
900

when-- << .E r
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fI.r lILL U Lnnh -> fiT)nn ~

5 U

C.P TP C.P TP

Fig. XII-16.

C.P TP C.P TP C.P

Kinetic energy of particle alternately trapped and circulating
900

when >> .
E r

collision reduces kt sufficiently to allow further circulation along B with e (t)e= 6 1 - e'(t),

we find that the initial condition has changed so that 691 - = 4, the change in potential

while the particle is trapped. Note that in this model the collisions change 4 but not 0.

The energy history of typical particles is displayed in Figs. XII-15 and XII-16 for

different limits of the detrapping frequency v/E. We find a particle going from circu-

lating to trapped to circulating suffers a secular change in average energy:

A" 0 e, r

e --r

V/E

V-<<

E

S<--.
r €

(12)

In a similar fashion the linear orbits

Figs. XII-17 and XII-18). We find

cK,4

Ar
o Be

p r

BpC r v/E

can be used to integrate Eq. 6 for ro(t) (see

V <r W
E r

r <r E
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Fig. XII-17.
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Radial position of particle undergoing trapping and detrapping
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v
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Fig. XII-18. Radial position of particles
90

when > .
E r

alternately trapped and circulating
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From these formulas we write the quasi-linear diffusion coefficients:

(Ao 1 2 v vD - A (e K -' r- (14)

K

2
1 2 r V

K v/E r E

(Ar ) 2 cK K

D 0 1 v v0

K pr

K K o2
1 r v

Sr E

These describe a global process of diffusion in that the average energy and radius (90o
and r ) are diffusing because of the involved trapping-detrapping procedure.

As a check on the physics, we shall find the linear growth rate from the quasi-linear

diffusion equation by equating the initial wave-energy gain with the particle kinetic-

energy loss.

a8 d3 vf (16)

aE j

The dissipative trapped ion mode is a positive energy wave with K22 . The

right-hand side of Eq. 16 is evaluated with

af = C + D + 2D + D f
at - 2 fr 8r r o

The equilibrium satisfies Cf = 0. Then, by changing variables from o, r to 9, L.,
o J

,, 
r

where L.= r + -- , the diffusion equation reduces to
j Wr T

af 82f
o o

at -D 2.

By using a Maxwellian equilibrium with a density gradient, the integral in Eq. 16 is

readily performed and we find
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-w
ne2 1

-- r r
K

For simplicity we assume Te = Ti. Thus

2
L 3 Vi 3 r

Y- +4 6 4 ve/C

Except for the coefficient 3/4 this result is the same as Eq. 4, and it demonstrates that

the frequency scaling of ion and electron contributions to yL differs because opposite

limits of Eq. 14 apply for the two species.

We have qualitatively extended the quasi-linear theory to situations in which VT # 0.

The wave constrains particles to move along phase space paths with slopes (from Eqs. 12
cK -w

and 13) = - - . These paths are plotted for the ion mode with d In T
and B e.- w T di nn

prj r
n = -1 in Fig. XII-19. Note when T = T0 exp(-r1/rn) t constant the equal density con-

tours are curved, so high- and low-energy particles may shift in different directions

as they diffuse "downhill." To find the net change in the energy moment of a distribution

we must account for the energy dependence of v in the diffusion coefficients which

weights different regions of phase space. Thus the- << w limit of Eq. 14 is appropriate
-3/2 EC r

for ions and, since v(6) cc f , De is largest for low 9 ions. For electrons the

5f =-constant
15-

NP TP

C P

Le

Bm
TO

BM

TO

Fig. XII-19. Typical f=noNo exp - 1 r - en with 1 <0, showing ion
n o 1

r -1 2
and electron diffusion paths. Dashed curve: -- = In

rn 1 - d,/T
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wr << v/E limit is correct, and it is seen that Dg is largest for high 6d electrons. In

Fig. XII-19 the low-energy ions and high-energy electrons both gain kinetic energy as

they diffuse along their paths, so we conclude that for sufficiently negative -r the insta-

bility will not grow.

Figure XII-20 is typical of a moderate positive T with the ions damping and the elec-

trons driving wave growth. When r is sufficiently large and positive the dominant low-

energy ions will lose energy as they diffuse along their phase space paths. This situa-

tion, depicted in Fig. XII-21, is due to the increased distortion of the constant f contours

and shows that both species will drive wave growth. 4

1.5
NP

Ifconstant C.IP

1.0-

-

Fig. XII-20. Typical f = n 0 0 exp

Th

NP
3-

2-
f C

Fig. XII-21.

r/rn}
r - e when 0 < < Z/3.
n 0o

TP

.onstant Z Le

[ 3  -r g-r/rn when< .Typical f = n N 0 exp Tw] e Twn3

We have seen that a trapped particle remains correlated with the wave until it

lisionally detrapped. The secular energy change that it picks up is a function
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length of time it remained trapped and is independent of particle motion after the trapped

portion of the orbit. Thus d c is the frequency for collisional detrapping:

D
d z 4 - Vd2

c (&/Bm-&/BM)2 E

where we used an approximation of C to account for collisionally induced particle dif-

fusion in 4, i. e. , C D 82 /2 with D = mV 2 v/B. Use of this d in Eq. 11 yields

Eq. 4. We recognize that particles near the trapped-circulating boundary are likely to

escape trapped space rather quickly, i. e. , with a frequency dc(6, ) D /(-/BM )2 .

With this "improved" version of d we find that the linear ion collisional damping is
c

slightly increased (cf. Rosenbluth et al. ).

Nonlinear Theory

One evident nonlinear effect is the change of trapped particle energy from the wave's

influence. Again we solve Eq. 7 for trapped particles but allow collisional changes in p

while they remain trapped. Then we find I6 has small secular changes and we can con-

struct a coefficient D () that describes local energy diffusion of particles within trapped
T 2

space. Consequently there is a frequency D ( )/( B M - Bm ) 2 at which particles are

detrapped (in energy!) by a combination of wave turbulence and collisions. Since the

trapping-detrapping sequence is associated with the global process of wave-particle

energy exchange, we identify this nonlinear detrapping frequency as a (parallel) decor-
T

relation frequency d11(). As a check on the Fokker-Planck derivation of D& we iterated
T

Eq. 8 in the conventional quasi-linear fashion to obtain DT in terms of an integral over

the collisional orbits of particles that remain trapped. The two derivations yield similar

results.

Substituting d = dc + d1 (4) in Eq. 11, we observe that the nonlinear growth rate van-

ishes once

ec 2t 22 (17)(RqK I)

It is doubtful, however, that 6 could ever reach such a large amplitude with e4 >

ET ~ O[4B M - Bm]. This indicates a wave height greater than the magnetic well depth,

and "trapped particles" would no longer exist as such.

Along the same lines of enhanced detrapping we analyzed the collisionless mecha-

nism proposed by Jablon 5 to saturate our mode. It is found that the collisions plus tur-

bulence rate dll far exceeds Jablon's collisionless turbulent detrapping rate. In fact,

collisionless nonlinear detrapping is also insignificant compared with the linear purely

collisional frequency dc(, 4). We conclude that nonlinear detrapping is not the dominant

saturation mechanism.
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Next we consider the cross-field diffusion from E X B drifts. The two perpendicular
coefficients were first derived by a Fokker-Planck treatment in which the bounce
averaged radial velocity is a generalized Ware drift. 6 We point out that the same results
are obtainable by iterating Eq. 8:

2

cK K 2

dD + i (18)

Db K cK 4 2  wr + (dy)

B

At saturation y - 0, and this expression is readily evaluated for electrons with d ed >e ce
wr. On the other hand, ions are collisionless; their dynamics is strongly controlled

by the nonlinear cross-field diffusion with dci << d1 . Since two-dimensional collisionless

diffusion theory is not yet well understood, we cannot evaluate Eq. 18 for ions directly.

D D
ri re

Instead we set b i from quasi-neutrality considerations. We also note that

collisionless, two-dimensional E X B diffusion does not lead to wave-particle energy

exchange, since e (E IX B E ) = 0. The perpendicular diffusion is linked to a compli-

cated mode-coupling process which damps mode growth nonlinearly by shuffling wave

energy to spectral regions where various linear mechanisms remove wave energy. We

surmise that the damping decrement may be simply related to spatial diffusion with d

KIDI . Supporting evidence of this relationship is obtained by renormalizing the fluid

equations.

When dl(c) is put in Eq. 11 we find that saturation occurs at

egsateT (19)
T K r

r n

and the radial transport coefficient is

-L

D K (20)r - 2
2K

r

Comparison with Eq. 17 shows that this mechanism saturates wave growth long before

parallel decorrelation can become effective. The shortcoming of the theory is that our

ignorance of spectral shape prevents a precise evaluation of Eqs. 19 and 20. (Bars over
L

Kr and y K mean averages over the nonlinear spectrum.) If, as Kadomtsev and
Pogutse suggest, 7  L

Pogutse suggest, the spectrum has K b K , then D is nearly independent of K if y
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from Eq. 4 is used in Eq. 20. Note, however, y L 2 o, /(V/E) cc K if large K

Ve
modes are significant in the spectrum; in this case the v 2 w limit of Eqs. 11

and 18 applies. A detailed spectral analysis probably requires consideration of phase

space clump formation.

Several authors 9 have done one-dimensional mode-coupling calculations (neglecting

radial mode numbers) for these modes. While mode coupling appears to be the impor-

tant saturation mechanism, we question the applicability of such calculations to a truly

two-dimensional nonlinear problem.

Another possibility that we dismiss is turbulent broadening of the circulating and

trapped-particle Landau resonances contained in the (R term of Eq. 11. As long as

(wr/wT) 3 << I we find that no amount of broadening can ever saturate wave growth.

A time-scale analysis shows that collisions prevent a quasi-linear plateau from

forming in energy. Consequently, quasi-linear diffusion is also not a dominant influence

on saturation.

We conclude that cross-field diffusion is the principal nonlinear saturation mecha-

nism. Eqs. 19 and 20 describe that saturated state, but we cannot predict details of

the spectrum.

Our methods were applied to the dissipative trapped electron mode with similar

results:

T
I + - b. -L

D r T -2
e 2K1+-- r

T.

T 1/2

e sat T i 1
T Te+ Te Kr n

1 + rn
T.

In the preceding discussion the following coordinates are used:

r-b-s r-6-C

Orthogonal field line coordinates Orthogonal toroidal coordinates

RI- t B
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2. NONLINEAR ORBIT PERTURBATION AND ION HEATING

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Charles F. F. Karney, Abraham Bers

Introduction

In proposed Tokamak RF heating schemes using waves near the lower hybrid fre-

quency, fields with large kla i can be generated, either directly by linear conversion

into lower hybrid waves or by the parametric decay into lower hybrid waves and ion

Bernstein waves. The fields can significantly perturb the motion of an ion, and hence

can nonlinearly heat the ions. In this report we present the results of a numerical solu-

tion of the orbit equation and give an approximate formula for the ion energy gain.

Basic Equations
A

We consider an ion in a uniform magnetic field Boz and perpendicularly traveling

electrostatic wave

E(r, t) = yE ° cos(ky - wt+ ).

The Lorentz force equation for this particle is

d7 = [vX B+ E(r, t)]

q
=-m [X B z+ yE0 cos(ky- t+ )].
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If we normalize time to 1/2 (2 = qBo/m), length to 1/k, and velocity to 2/k, then (2)

becomes

dv - A
dt vX z + ay cos(y- vt+ ), (3)

qE k
where a - k and v = w/Q. The x-component of (3) ism 2

" y (4)

and the y-component of (3) is

+ = a cos(y- vt+). (5)

We choose initial conditions such that the guiding center is initially at x = y = 0, i. e.,

at t = 0:

x = r cos O y = r sin 0

x = -r sin 0 y = r cos 0

Then (4) can be integrated to give

x= y (6)

and (5) may then be written

y + y = a cos(y- vt+ P). (7)

Solution of Equations

We solve (6) and (7) with a predictor-corrector method, which we start with the

Taylor' s series solution. In Fig. XII-22 we present the result for v = 30, a = 30 with

two different initial velocities. Note that in case (a) with the initial velocity = 22 S2/k,

the orbits are closed. The energy gain by the ion in this case is very nearly zero. If we

increase the initial velocity to 24 2/k, we see a very different behavior. When the par-

ticle is traveling in the y direction, it is trapped momentarily by the wave with which

it exchanges a significant amount of energy, which causes the ion orbit to open. Remem-

bering that without a magnetic field the trapping condition for a particle is

y- < vtr, (8)

where vtr is the trapping width (qE/mk) 1/ 2 . We guess from Fig. XII-22 that the con-

dition for trapping in the presence of a magnetic field is that at some point during the

cyclotron orbit (8) is satisfied. We can then write the trapping condition as
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v >- -v =_vo k tr thresh'

where v is the initial perpendicular velocity of the ion. With the parameters of
o

Fig. XII-22, Eq. 9 predicts a threshold of 24. 4 2/k for Vthresh, which is close to the

threshold observed in Fig. XII-22.

Vy = w/k

4 Vy

Vy =~w/k

VX x
4y

Fig. XII-22. Ion orbits with w =
(a) v = 22 Q/k.

(b) v0 = 24 Q/k.

30 2 and a = 30.

a. Energy Gained by the Ions

Equation 9 is the condition under which the particle exchanges some energy with the

wave. We have yet to determine how much it gains. By solving the differential equa-

tions with constant w and E but different values of v0 and C (the electric field phase)

we can generate a plot of (Ad), the phase average energy gain per particle per cyclo-

tron period, against v o . Such a plot is shown in Fig. XII-23. We notice a sharp thresh-

old to the energy gain close to vthresh. The curve peaks close to the threshold and

drops off at higher velocities. Since the maximum occurs close to the threshold it

suggests that the value of the maximum is given by
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(
af) max =

2

vtr) Vtr)]

(10)= 2 m k tr

This just says that a particle that is just trapped will bounce once in the potential well of

the field and come out with velocity (w/k+ vtr). Using (10), we find (Af)max= 330 m /k2

t<AF>max (from Eq. O)

300 m

k2

Vtr

J voVthresh

(from Eq 9)

Fig. XII-23. Plot of average energy gain per ion per cyclotron
period vs ion velocity for o = 30 2 and a = 30.

for the parameters of Fig. XII-23. This agrees well with the observed value of approx-

imately 300 m2 /k 2

We wish to find the energy gain by a perpendicular distribution function f(v) of ions.

We integrate (Ad) over the distribution functions thus

(A =)tot = no 0o Z72vf(v) (A) dv. (11)

We substitute a Maxwellian for f, so that

f 2 exp -v 2 /2v ). (12)

27vT

Since in (11) we integrate over an exponential function, the main contribution to the

integral comes from near v = vthresh. Thus we approximate the function (Af) by a

function that is zero for v < Vthresh and equals (Ae)max for v > vthresh (shown as a

dashed line in Fig. XII-23). Performing the integral in (11), we obtain

(A)tot = no(A) exp --v /2v)toto maxex thresh T) (13)
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Naturally, the strongest dependence in (13) appears in the exponential, so we predict a

large (Af)tot if Vthresh ~ vT' or from (9)

k ai (E )'/ " (14)
11 Q m Q2

As an example of the strength of this interaction consider a large-amplitude
4 /014/cm3, T=

Bernstein decay wave with E = 10 V/cm, w = 10 Q, k a = 10 and n = 10 /cm , Ti

1 keV and B = 50 kG. Evaluating (13), we find that (Af)t o t/noT = 0. 25, whereas
1 2 -4- E E /n T. = 10 . Clearly the wave is very strongly nonlinearly damped.
4 00 01

3. THREE-DIMENSIONAL EFFECTS IN THE NONLINEAR

FILAMENTATION OF LOWER HYBRID CONES

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

George L. Johnston, Charles F. F. Karney, Flora Y. F. Chu, Abraham Bers

Introduction

In a recent experiment in which large-amplitude lower hybrid oscillations were

excited in a plasma Gekelman and Stenzell observed that intense localized electric

fields and associated density cavities were formed along the resonance cones in regions

of the plasma far from the lower hybrid layer. Morales and Lee2 have developed a

theoretical model of the nonlinear self-distortion of the propagation of large-amplitude

lower hybrid waves to explain this experiment. They assume that the electric field in

the plasma has components in the direction of the magnetic field and in a single direction

transverse to it. This two-dimensional assumption excludes other ponderomotive force

effects that are generally considered to be dominant in parametric instabilities near

the lower hybrid frequency. 3

We have begun to develop a three-dimensional model of the nonlinear filamentation

of lower hybrid cones in order to understand the significance of these additional pondero-

motive force effects. We shall not limit our investigation to self-modulation of the

externally driven field, but shall include possible coupling to waves in the plasma that

have frequencies very close to that of the externally driven field. We have determined

the dominant elements of the ponderomotive force density in a cold-fluid model under

the assumption that the frequency of the externally excited wave satisfies the conditions

2 <<< Q and w ;z p., and under two sets of assumptions regarding the relative magni-
i e pi

tudes of different components of the electric field in the plasma. In Case 1, which cor-

responds to self-distortion of a wave launched by a single or split waveguide, we
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assume that F z (M 21/2assume that E E (me/mi)/ E. In Case 2, which corresponds to self-

distortion of a wave launched by an array of waveguides extended in the 0 direction or

to the interaction of a wave launched by a single or split waveguide with lower hybrid

waves in the plasma, we assume that IEx - Ey (mi/m e ) 1/2 E z . We have also

obtained the low-frequency particle density modulation induced by the ponderomotive

force density in a warm-fluid model under the assumptions of quasi-neutrality and

extremely low frequency.

Ponderomotive Force Density

The ponderomotive force density of species a is

F =-n m ( "Vu ). (1)
-aL o a -a -a

Here u is the linear fluid velocity perturbation of species a driven by the high--a

frequency electric field. The unperturbed species number density is n o , the mass of

species a is m a , and subscript L denotes the low-frequency component of the bilinear

combination. We introduce the complex representation

u = U (r, t) exp(-iwt) + c. c., (2)

where the time-harmonic composition of a (r, t) is very small compared with w. The

complex amplitude u (r, t) is expressed in terms of the cold-fluid susceptibility by

ua(r, t) = 4 no ai (r, t). (3)

The susceptibility is evaluated at frequency w. We express the electric field in terms

of the electrostatic potential

#(_r, t) = c(r, t) exp(-iwt) + c. c. (4)

The bilinear combination of fluid velocity perturbations which we retain to determine

the low-frequency component is

(u Vu ) = u Vu + c. c., (5)

(a -aL -a -a

where

S*= 4Xi Xx +Xxa ) x + ( Xx +Xa ) 8y + (Xa 8) 8_ a (6)-a 4n ai xx x xyy yx yy zz

and

u-a 4Tnq[ xxx / xy yxx yyy Y kX a z z . (7)
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The approximate forms of the nonvanishing elements of the susceptibility tensor in
the case 02. << w <<0 e and their orders under the additional assumption that o = .p are

2

e e pe ( I 2xx = Xyy 2 pe e
e

2

Xe pe i / 2

2Xxy -Xy x  -i -e = 0 (m i/me)
e pe

Xzz - 0 (mi/m e)

i i W p
×xx = X =  - O (1)xx y

2

zz 2 (1)

We note that for the conditions of interest values of the quantity W P /Qe lie between 0.5

and unity and values of the quantity Wp/Q, lie between 20 and 40.i i p p1

We order the partial derivatives as follows:

Case 1. a = 0 (1); a = a = O (m e/m)1/2

Case 2- a = = O ( 1) ; = (m /m)1/2

The basis for these orderings is the following. In a uniform plasma, the y- and z-com-

ponents of the spatial-harmonic composition of the linear propagation are determined

by the launching structure. If its dimensions in the y and z directions are comparable,PR No. 117 199We note that for the conditions of interest values of the quantity oara lie between 0.5and unity and values of the quantity opi/2 lie between 20 and 40.

properties of the plasma determine the ratio of E z to E l .

If the launching structure is composed of an array of waveguides extended in the
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o direction, the range of the k0 and the range of the kr may become comparable to each

other within some region of the plasma. There it would be appropriate in a resolution

of the field into a local Cartesian coordinate system to assume that IEx = IEy. Alter-

natively, if we wish to consider the nonlinear interaction of the externally excited wave

with lower hybrid waves in the plasma, we do not want to be restricted by the ordering

of Case 1. In the absence of more specific information about the relative magnitudes

of different components of the electric field in the plasma, it is appropriate to assume

that the two components transverse to the magnetic field are of comparable magnitude.

In either of these cases, we realize the ordering of Case 2.

To obtain the dominant terms in the ponderomotive force density, we determine the

bilinear combination of dominant terms in the operator _u V and the vector u , noting-a -a
that ordering is not possible among different components of the vector ua Vua'

We shall show that in the limit of very low frequencies the z-component of the pondero-

motive force density is dominant in determining the low-frequency particle density mod-

ulation. Accordingly, the z-component of the ponderomotive force density is of particular

interest.

We consider first the electron ponderomotive force density. Its z-component is

given by

1 2
FeLz 4 Z e ez c..) (8)

pe

where

~ ,e 7 (9)
e

and Sez is the z-component of the vector

z e ~
S = (10)

-e

Table XII-1 exhibits the results of the ordering for Case 1. Part (a) contains all

information necessary to determine the order of F eLz' Part (b) contains the results

of the ordering of S . The principal result in Case 1 is that the terms of D containing-e e
e e

X and Xyx , which are absent from the two-dimensional treatment, are of the same
xy yx

order as the largest terms in the two-dimensional treatment.

In similar fashion, Table XII-2 exhibits the results of the ordering for Case 2. Here

the principal result is that the terms of D that contain X x and x are between one
e xy yx

and two orders of magnitude larger than the largest terms in the two-dimensional

treatment.

The z-component of electron ponderomotive force density, including these terms,

is
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2 2 2
1 peLz 4Z e pe Z2 pe ,

Fez _ z  [y ([z+ +i - [(a4)( )-( )(x )eLz zx yq2 z + [ x y x

(11)
The last two terms are the significant additional terms introduced by the three-

dimensional treatment. We note that these terms are very different physically from

those arising from a two-dimensional treatment. They have their origin in an E X B

force, which is generally considered dominant in parametric instabilities near the lower
hybrid frequency. The ordering of Case I diminishes their importance, with the result

that they are reduced to the same order as the terms appearing in the two-dimensional

treatment. The ordering of Case 2 maintains them in a dominant role.

The sum of the first two terms in Eq. 11 is of order ( e/2) 2 (me/m)1/2. Ihe
1/2 pthird term is of order (m /m.) . In Case 1 the last two terms are of order ((0 / e)

1/2 ei1 pe e
(m /mi.)/Z In Case Z they are of order (w pe/2e).

A further matter must be considered with regard to these terms. In order to obtain

an analytic formulation of the filamentation problem, Morales and Lee treat pondero-

motive and thermal effects as small corrections to linear propagation. They assume

that the complex amplitude of the linearized potential is a function of (x-cz). If a three-

dimensional generalization of such a linearized potential,

(r, t) = 4(gx+ 3 y- cz) exp(-iwt) + c. c., (12)

is substituted in the three-dimensional version of FeLz (Eq. 11), the sum of the signifi-

cant additional terms introduced by the-three-dimensional treatment vanishes.

The assumption of a linearized potential of the form of Eq. 12 is inconsistent with

propagation from a localized source. In a plane x = constant, the existence of contours

of constant c on the straight lines ry - cz = constant is inconsistent with the intersec-

tion of the plane by a finite propagation cone.

In determining the ion ponderomotive force density we may assume that the ions are

effectively unmagnetized. The order of the ion ponderomotive force density may be

obtained directly from the expression

2

In Cases 1 and Z FiL z is of order (me/m i )

Low-Frequency Particle Density Modulation

The particle density modulation in the plasma which is induced by the ponderomotive

force density is determined from the low-frequency component of the warm-fluid
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equations. We make the usual assumption of quasi-neutrality and assume further that

the time-harmonic spectral composition of the low-frequency response is very small

compared with the electron and ion gyro frequencies.

From the low-frequency component of the Fourier transforms in time of the linear-

ized species continuity equations and equations of motion we obtain the relation

2 ̂  iLn o  8 ^ ^ 8 ^ .^ ^2A iA)Ln [ a ) + a aA

LnaL-L ()x LaaLx aaaaLy) + -  ay (Ea 2 aaaLx+ LaLy) 0 a+ n aLz =0

(14)

in which

A qa a a A

a E n -(ua "7u) . (15)
-aL m -L nm aL (Ua'U -aL

a o a

In these equations wL is the Fourier transform variable, the hatted quantities denote

Fourier transforms, and Ea is the sign of q a. To lowest order in the small parameters

wL a , only the last term of Eq. 15 is present. We invert the Fourier transforms, intro-

duce the assumption of quasi-neutrality, neL = niL = n L , multiply the resulting equation

for each species by noma, and sum over species. We obtain thereby the differential

equation for nL in terms of the species ponderomotive force densities:

anL
(y T e+ .T.) L = F + FiLz (16)

e e 1 1 3 z - eLz iLz

As we see from Eqs. 11 and 13, the z-component of the species ponderomotive force

densities can be expressed as partial derivatives with respect to z of functions of

spatial variables. Therefore an explicit expression for the low-frequency particle

density modulation can be obtained by integration.

We are now continuing to investigate the role of three-dimensional effects in the

self-distortion of the externally driven field and in its possible coupling to waves in the

plasma which have frequencies very close to it.
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4. SOLUTION TO BOUNDARY VALUE PROBLEM FOR PROPAGATION
OF LOWER HYBRID WAVES

U. S. Energy Research and Development Administration (Contract E(ll-1)-3070)

Charles F. F. Karney, Flora Y. F. Chu, George L. Johnston, Abraham Bers

Recently Morales and Leel derived the modified Korteweg-de Vries (mKdV) equation
as describing the two-dimensional steady-state propagation of lower hybrid waves in a
homogeneous plasma without considering the boundary-value problem of exciting such
waves. In addition, in order to obtain the mKdV equation it was necessary to make the
restrictive assumption that the coefficient of the amplitude of the time-harmonic com-
ponent of the potential at frequency w is real. This invalidates the applicability of the
mKdV equation to the problem of lower hybrid wave energy flow from an external source.

Further consideration of the mKdV equation may nevertheless provide some addi-

tional insight into the problem of excitation by a source. Accordingly, we present a solu-

tion of a boundary-value problem of the mKdV equation. We find that if the source field

has no k = 0 component the solitons of the mKdV equation always occur in interacting

pairs called breathers.

Derivation of the Modified Korteweg-de Vries Equation

We shall now give the main steps of this derivation. We consider lower hybrid

fields given by the potential Re [ (x, z) e-it ], where w satisfies Q. << w << Qe and z is the1 e

direction of B 0 We shall later introduce the assumption that c(x, z) is real. We assume

that the plasma is homogeneous and that the magnetic field is uniform. We write the lin-

ear dispersion relation for these waves, including thermal effects to lowest order,

8 8 8 8 84  84  84
xK Kll a + a 4 + b 2 + c - = (1)ax 8x2az az

where
2 2 2 2

w W. .. C.0
pe pl pl pe

K =1+ K =1- (2)K1 + 2 -2 11 2 2 ()
e

and

2 2
W 2 cW. 2

1 pe vTe p Ti
a- + 2 (3a)

4Q2 2 o 2
e e

2 2c 2 w. 2
1 pe vTe p1 vTi(b - 2 22 + 2 2 (3b)32 2 2 2

e
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2
) 2
pe VTe

c Z ZW 2
(A. (A.

2
c . 2

pl vTi

2 2
(3c)

v =3Ts/m .
Ts s s

The coefficients a, b, and c are found by expanding the Harris dispersion relation.

Morales and Lee derived these coefficients with the use of the fluid equations and thereby

missed the (84/8x283z ) term. As we shall see, the form of the final equation is

unchanged by the inclusion of this term. Note that we have commuted the derivative

operators with a, b, and c. This is admissible because we are considering a homoge-

neous plasma, so the variations in a, b, and c can only be due to nonlinear effects.

These variations can be ignored because we are treating the thermal terms as correc-

tions to the cold terms.

We proceed by calculating the ponderomotive force density at zero frequency arising

from fields at o. We calculate from that the density fluctuations at zero frequency.

These density fluctuations are then inserted in (1) via wpe and wpi in KII and KL to give

us our nonlinear equation. The nonlinear interaction described here is the same as the

nonoscillatory instability.

The pondermotive force density for species s is F = -ns my * v . Since the ions
s s s 5

and electrons may be

z-components of F s .
assuming Q. << o << 2 ,

1 e

E
Fe (x, z) - 4ez 4

taken as infinitely magnetized at zero frequency, we need only the

Evaluating these components using the cold-fluid equations and

we obtain

8 pe 8 pe

8z 2 8X 2 z
e

(4a)

Eo 8
Fiz. (X, z) = 4 -

1z 4 az

2 22 2
pi 4 pPi 8
2 ax 2 z

The z-components of the momentum equations at zero frequency are

an
T s

s - q n E + F
az s s z

Assuming quasi-neutrality, i.e., ne = n. = n,
e 1

and ions to obtain

22
8n 1 1 o 8 pe 8
8z Te + T. (Fez +Fiz T 4 8z 2 x

L e

we can sum the equations for the electrons

2 2
A. 2 m . 2
pe D pi 4
2 8z 2 ax(A. CA.

2A .

pl

2
o
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where T = Te + T.. We can simplify the term in square brackets by noting that since
a4 8a E

there is only one high-frequency mode in our problem, the ratio - = - x tan 0 isax az Ez
constant to lowest order, since lower hybrid modes are cold and electrostatic. 0 satis-
fies the cold lower hybrid dispersion relation:

2 2 2
pl 2 pe 2 pe

1 - cos 2 + sin 0-- 0. (7)

e

Hence the term in square brackets becomes V 12 and can be written

an o 8 1 2 (8)
az 4T az

Integrating, we obtain

n = n 1 V 2/(noT). (9)

We substitute this in the K 1 and KII appearing in (1) to obtain

2  2  4  4  4
K 8 +K +a 4 +b a +c 4

io 2  iloz 2  o x4  o x2z2 o z4
ax az ax ax az az

S a P 0, (10)
4 o ax nT ax 4 o z nT z

where zero subscript means that we and p .are evaluated with n =n andpe pl o

2 2 2 2
pe pl pe pl

a - + o = (11)
o 2 2 o 2

e

An approximation to the solution is obtained by setting to zero the sum of the first two
1)/2terms of (11). The solution then is $= $(x-dz) where d= (-Klo/K I 1 , which is the well-

known result that lower hybrid waves propagate without dispersing. The full solution

is obtained by allowing 4 to have a weak explicit dependence on x. Thus 4 = 4(y,t),

where y = x- dz, t = x and a8/at = 0(E). We assume that the coefficients a , b , c0 , a

and Po are all of order E, that 4 is real, and that V4 a 8 /8x , since d << 1. To

order E (10) becomes

P d 2 6u 2 u
a + pd2' 6U(y

2KlUt + (ao +bod 2 +c d4 ) + o o y - 0, (12)
yyy 4n T/Eo
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where u = 84/8y z a /ax. If we let

E
u x

(4noT/E 0o)1/ (4noT/E 0 )1/Z

2 -1/2

0= y

Z+aob od2+c d4

TO ,
r ~4 /2

Lao +b od +c dj 2K 1 o

then (12) becomes

v + 6vZv + v 0,

which is the standard form of the modified Korteweg-de

E normalized to the plasma energy and g and 7 are x
x

mately A De"

(13a)

(13b)

(13c)

(14)

Vries equation. Note that v is

- dz and x in units of approxi-

Solution of the Modified KdV Equation Using the Inverse Scattering Method

We shall outline the method of solution of Eq. 14, using the inverse scattering

transform method, so-named because it may be considered a nonlinear generalization

of the Fourier transform method for solving linear problems. Following the discussion

by Lax,2 we can state the requirements on a general nonlinear wave equation

N(v) = 0 (15)

as follows. If (i) there have been found a linear operator L that acts on a wave func-

tion 4, with eigenvalue X,

L = kX, (16)

(ii) a linear operator B that gives the (time) evolution of 4 as

4T = B4, (17)

and (iii) L and B satisfy the operator equation

L = BL- LB
T

(18)

when 4 satisfies (14), then the eigenvalues of L remain constant as 4 evolves according

PR No. 117 208



(XII. PLASMA DYNAMICS)

to (15), and the inverse scattering transform method of solution may be carried through.
The method proceeds in three steps.

1. Direct problem. Given the initial data, v(0), consider it as a "scattering poten-
tial" for the operator L. The scattering parameters [(i. e., the eigenvalues and eigen-
functions of (16)] are calculated at T = 0.

2. Time evolution of the scattering data. Since the eigenvalues k remain constant
with time, time evolution of the eigenfunctions can be calculated by using (17) at large
values of g where v is equal to some asymptotic values.

3. Inverse problem. From a knowledge of the scattering data at large values of 5
and as a function of T, v(g, T) is constructed by using the techniques of inverse scattering

theory. For the modified KdV equation, Ablowitz et al. have shown 3 that the conditions
of (16) through (18) can be satisfied in the following way. Take - to be the two-
dimensional vector

1 1

and L and B the matrix operators

L = i (19)

-4i 3 + 2ivX v 4 vX2 + 2ivX - 2v - v  (0)

-4vX 2 + 2ivX + 2v 3 + 4iX 3 - 2iv2X

then (16) becomes the scattering problem

ie + ix?1 2= v 2  (21a)

2 - iXQ2 = -v 1." (21b)

We apply this method to the following boundary-value problem. We assume that at

7 = 0 (x = 0) the normalized potential v is given by

v = -v o for - < < 0

v= v for 0 < a < (22)

v = 0 for I > f

(see Fig. XII-24). In solving (21) for 4, given the potential v in (22), we choose the
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transmitted wave at ( - -Co to be 0 ' and define the incident wave at o -- o to be

a e-ik' and the reflected wave to be b . Substituting (22) in (21) and

matching boundary conditions at = 0, + , we obtain

2ikX
a(X, 0) = e 2 [(l-A 2 )s_2 -ZikAsc +k Zc 2 ]  (23' . 2

2iAs'"
b(X, 0) - . , (24)

where A = /v , k = (1+A2)1/2, s = sin (kA), c = cos (kA), and A is the area of the

pulse, v . At zeros of a(X, 0) for which Re [iX] < 0, it is clear from Fig. XII-24 that we
o

have bound states characterized by an exponential decay of the reflected wave to the right

and of the transmitted wave to the left. These bound states are of primary concern

TRANSMITTED NAVE

Vc I

INCIDENF WAVE

EECTED WVE
REFLECTED WAVE

Fig. XII-24. Boundary conditions imposed by two oppositely
phased waveguides and boundary conditions on
for the scattering problem (Eq. 22).

because, as we shall see, they correspond to solitons that have been introduced into the

solution by the initial conditions. From (21), a(k,0) = 0 implies that

[(1-A)s - ike ] [(1+A)s +ikc ] = 0 (25)

gives the values of X where bound states occur. It is interesting to note that the bound-

state eigenvalues always come in pairs

S= -+
3 3±1~i j = 1, 3... (26)

These pairs of eigenvalues give rise to coupled pairs of solitons, usually known as
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"breathers." It is found that if f-0 v(g,0) di = 0, then (26) is always true and only

breather solutions occur.

In order to calculate the T dependence of a and b, we note that v - 0 as - 0o
(where a and b are as defined). Thus Eq. 20 for B can be simplified and Eq. 17 can

easily be solved. Choosing the same normalization as before (i.e., - e-iX as

x - -00), we find

a(X, T) = a(X, 0) (27a)

38iX 7
b(k, 7) = b(X, 0) e . (27b)

This completes the second step of the inverse scattering transform method.

The third step involves the reconstruction of v( , 7) from the asymptotic information

contained in (27). This inverse scattering calculation is accomplished 2 ' 3 by solving the

(Marchenko) integral equation

K(x, y) = B (x, y) - B (y+z) B(k+z) K(x,k) dzdk (28)
x x

for K(x,y), where

N
A 1 0 b(X) ikx 

j .x
B(x) = - e dX - i c . (29)

-00 a(X) j=
j=1

The sum is over the N discrete eigenvalues, and c. is the residue of the reflection coef-
J

ficient b/a at the pole X = X.. From K(x,y) the potential can be calculated as
J

v = -2K(g, g) (30)

(T enters implicitly into (30) through b, see Eq. 27b). The first term on the right-hand

side of (29) introduces the radiative part of the solution which exists as a background

to the soliton part. The second term (the sum) introduces the soliton part of the solution.

Each term in the sum gives rise to an individual soliton in the final computation of (30).

The radiative part of the solution spreads out over the axis and becomes negligible

as T - oo. Thus for our purposes it is reasonable to neglect the radiative part and con-

centrate on the soliton dynamics.

If we set b(X) = 0 in (29), then (28), (29), and (30) can be solved to give

v = -2PH (31)

where

-iX x
P =e (32)j
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S J (34)
M jl = i4 P j (34)

G j exp(35)
jk jk

b(N., 7)

4 (36)

Here P is a 1 X N row matrix, M and H are N X 1 column matrices, and G is an N X N

matrix.

One- and Two-Breather Solutions

From (25) we can derive the condition for roots such that Im (X) > 0 and so find the

threshold for breathers. With increasing A the complex roots of (25) move from the

lower half-plane, so the threshold for a new root to appear with Im (X) > 0 is Im (k) = 0.

If X and hence A are real, then k is real and greater than 1. Hence s and c are real,

and setting the imaginary part of the first factor to zero, we find that c = 0. This implies

that s = 1 and setting to zero the real part of the first factor of (25), we have A = 1 (the

other factor gives A = -1), and k = N-Z. Thus the condition for there to be n breathers

is just

(n+ 7 >A> n- 1 7 A =v v. (37)
21 2 2'- o

Note that the number of breathers is dependent only on the area of the pulse, although

for a given area the eigenvalue X of each breather is proportional to the height, v o , of

the pulse.

If 7T/2Nf2 < A < 31T/2\ , then the initial pulse contains just one breather. By writing

the eigenvalues 1 = -k 2 = Xr + iki with Xr > 0, Eqs. 31-36 can be reduced to

4X.i Xr cosh 01 sin 02 +k sinh 1 cos 02v(, 7) 1 2 (38)
r 2 2

cosh1 0 +- cos2 2

r

where

01 = 2. - r T- log r
1 1 r 21. I )
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Table XII-3. Eigenvalues and group velocity.

Initial Pulse

One Breather Two Breathers

A 7r/1- 2ZF-

S107T/-- 107T/rNi

v 1/10 1/5

X 0.038 + i0.046 0.011 + i0.158 0.105 +i 0.039

v -0. 009 0. 098 -0. 126
g

Fig. XII-25.

One-breather solution.
Boundary condition giving (a).

v = 1/10, f = 107/h,-.

F(b)

T= 500

Fig. XII-26. Two-breather solution at T = 500 for the boundary condition

at T = 0 of vo = 1/10 and f = 107/,N-' (dotted line).
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02 z= Zx + Wi - i log c

c = 4 1 (T= 0)

W + i. = 8ik 3
r 1

Interpreting 01 in (38) as the envelope phase and 02 as the carrier phase, we find that

the group velocity of the pulse is

vg = r/2Xi. (39)

If we transform back to coordinates x, z, this means that the breather travels along a

path dz = (1-v )x. For a given area of the pulse X is proportional to vo; hence, the2

deviation of the breather from the linear characteristic direction is proportional to v .o
In Fig. XII-25 we plot v(, T) for A = 7/NZ, v = 1/10 (i.e., the electric field

energy is 1/100th of the plasma energy), and f = 107/N). (For a plasma with Te = 1 keV,

n = 1014 cm -3, and w = K w , this corresponds to a source width of 2 cm and an
o LH

electric field amplitude inside the plasma of 8 x 10 V.) The eigenvalues and group veloc-

ity for this case are given in Table XII-3. We also plot in Fig. XII-25 the boundary con-

ditions at x = 0 (the difference between the boundary conditions at the breather solution

at x = 0 is the radiative part of the solution). If we now consider the case v = 1/5 and

2 = 107r/K2- so that A = 27/N--, then two breathers are present in the solutions. Far from

the source the two breathers separate and we can then use (38) to find vg for each

breather (see Table XII-3). Using these values, we calculate the separation of the

breathers at, say, 7= 500 (x= 1 cm), to be around 10 cm (see Fig. XII-26).

Conclusion

We have shown how the boundary value problem for the modified KdV equation may

be solved using the inverse scattering method. In order to derive the modified KdV equa-

tion it was necessary to assume that the field amplitude is real. This implies that energy

is propagating both away from and toward the source. The relevant problem for lower

hybrid wave excitation in a Tokamak must consider a formulation in which energy prop-

agates away from the source. This means that we must use complex field amplitudes

which leads to a different nonlinearity in Eq. 14. We are now working on the solution

of this problem.

References

1. G. J. Morales and Y. C. Lee, Phys. Rev. Letters 35, 930 (1975).

2. P. D. Lax, Communs. Pure Appl. Math. 21, 467 (1968).

3. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. 53,
249 (1974).

PR No. 117 214



(XII. PLASMA DYNAMICS)

5. MODEL FOR ANOMALOUS ION HEATING IN THE LOW-DENSITY

DISCHARGE OF ALCATOR

U. S. Energy Research and Development Administration (Contract E( 11-1)-3070)

Miloslav S. Tekula, Abraham Bers

Introduction

The Alcator Tokamak when operated in a low-density (1013/cc), high drift velocity
regime (( V VTe) = (J/enVTe) > 0. 4 in hydrogen) exhibits anomalous radiation and

ion heating. In this regime it was observed from soft and hard x-ray spectra that the
electron distribution function had a high-energy tail containing approximately 30% of the

particles. Furthermore, RF emissions, peaked at wpi and extending to (5-10) wcpi
were observed. The high-frequency emissions were correlated with the onset of hard

x rays and always appeared before the wpi emissions. Finally, strong ion heating

(0. 2-1) keV was observed when the wpi emissions appeared.

To explain these observations, we shall assume that the instabilities that are neces-

sary to drive the observed phenomena are generated in the core of the device where the

plasma can be assumed homogeneous and trapped particles are negligible. In Progress

Report No. 116 (pp. 128-138) we discussed some of the possible model distribution func-

tions. We have settled on an anisotropic distribution function driven by the dc electric

field, which has a Maxwellian bulk with a high-energy tail that is also Maxwellian in vi

but is flat in vl as shown in Fig. XII-27. Such a distribution function may form in the

initial stages of the discharge when E E . The quasi steady state E E crit is

eventually reached, since the applied electric field is a decreasing function of time. The

additional runaway electrons that are now generated are not important because they are

so few. 3

With this distribution function we find the following: (a) Trivelpiece-Gould (T-G)

waves with w = pe cos 0 are driven unstable. These inhibit the high-energy runaway

fOT

w- e  - VTe W Vmin  _+_ e  Vmax
ki II ki

Fig. XII-27. Parallel electron distribution function.
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tail and thus account for the observed decrease in hard x rays. (b) The T-G waves in

turn downconvert parametrically to lower hybrid (LH) waves directly and also by cas-

cading, to account for the observed peak in the RF emission at Wpi. (c) Finally, the

LH waves heat the ions by nonlinear orbit perturbation. We shall show that the rates

and fields that are necessary for these processes to proceed are easily met. We have

found that the tail and unstable T-G waves are stabilized by the combined effects of

quasi-linear scattering and parametric downconversion.

Linear Theory

The tail will be required to carry all the current. We can relate the current to the

streaming parameter (VD/VTe) and so we find that

nT - 2 D S 2(ac V , (1)

no Te max

where S1, 2 are profile integrals, a c is the experimentally estimated current channel,

and Vmax is the maximum parallel speed of the electron distribution function. In the

case of Alcator we have S /S 1 = 0. 5, ac 8 cm. Taking (VD/VTe) = 0.45 and

Vmax/VTe = 20, we find that in order to have 30% of the electrons in the tail we need

to take a/a c = 0. 3, where a is the effective radius of the tail current.

The dispersion relation for electrostatic waves in a homogeneous magnetoplasma

can be obtained from the usual Harris dispersion relation4

2
E(w, k) ps 00 a_ F a F

1 + 2 7 1 dv i (ka k + 2nQos2 = 0 (2a)
o dv I n n s )ns v 11  sv

with

S 2  k1  p 2 8F

(') = - w - - k- Q 0  a da J 2(a) + aF
2kl s k 0 i av /k

2
2ps 000 o 

s

Co k j n da J2 (a) Fos(aZV)-F (a

s k n= 1
( s n b)

(2b)
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2 2
where =- ns - k v, ps e n /ms o eBo/msk k are the parallel and

perpendicular wave numbers, w, y are the frequency and damping rate, s specifies the
species, and Jn is the usual Bessel function a = kvL/s, where V T s = T /ms and V =
(w ±nos)/k 1 . In Eq. 2b the first term is the usual Landau resonance contribution. The

second term is due to Doppler-shifted Landau resonances. The third term gives the

cyclotron effects. We have an instability if y > 0.

Let us now look for waves that have w/k > VTe' kDe << 1i, klae << 1. Using a dis-

tribution function such as that in Fig. XII-27, we find oscillations at c = co cos 0. Exam-
pe

ining Eq. 2b, for the distribution function in Fig. XII-27 we see that if aF /0avl ol/kll = 0,

and 8Fo/avII n = 0, but Fo(V 1 ) > Fo(V 1 ), these waves are destabilized. The growth

rate is given approximately by

w 2
Y Tr nT pe kl k 0 +e e

o 16 n 2 l k 3 oT
pe o e k k L IIe II

where n T , no is the number of particles in the tail and bulk, respectively, and the dis-

tribution function is evaluated (w+Qe)/kil. A tail that extends up to energies of 200 keV

can destabilize T-G waves with phase velocities between (3-5) VTe* They are driven

unstable by the particles with energies between (100-200) keV. The lower bound on the

phase velocities is imposed by bulk electron Landau damping. We have found that the

100

k, 03IX e

De

De

S.1 .2 3

k±VTe/Wpe

Fig. XII-28.

Linear growth rates. G =

7 nT pe

16 n 2
e

pe efoT kI 

k 1 k-

k (k2 +k2

( 1
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most unstable T-G waves have ki = N k11 (see Fig. XII-28). The maximum growth rate

0.4. The spectrum extends from k 11 De = . -. 4

it is clear that LH waves cannot be excited directly.

as shown in Fig. XII-29.

m /me

kL= 7 kil

LH h

/

0 .1 .2 .4
kll VTe /WPe

Fig. XII-29. Spectrum of unstable waves.

Quasi-linear Theory

To see how this instability affects the distribution function we study the system of

quasi-linear equations: 5

kl1

pe k

a2 2
at k = 2yk

2

nok 0

X 6 

SS00

2(a) I
J 1

dv
11

+ - k iv

k 11v i

( 4 a)

(4b)

(4c)

e2
t (f T = 87T2 e 28at <oT= 8 2m e

d 3k 2kk La
o - kllV l a-

klJ i Ivj

x J(a) 6[(+Qe -k v I + il I- foT).
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This set cannot be solved in closed form. But we can examine the time asymptotic state

of the system. To do this we multiply Eq. 4d by (foT) and integrate over all velocities

to get a quasi H-theorem:

t A(oT d3v -8 d3 k d 3v k2l 2(a)
m

e

2

X 8[W+Qekv ]  + L u kllII av (foT (5a)
e 5vIl k vi 5 oT

after an integration by parts of the right-hand side. Thus we have found that the time

rate of change of a purely positive-definite quantity is negative. This leads us to look

for quasi-stationary solutions where the right-hand side of Eq. 5a vanishes. Since we

wish to have a steady state with a nonzero spectral energy density, we find that we

require

+ aV (foT) =  0. (5b)
v8 k vi 1 OT

This implies that time asymptotically (foT) has to be constant along the following tra-

jectories:

Av k iiv ii
(5c)

AvI - k l II

In the case of k 1 > kll (for the most unstable waves) the dispersion relation is given by

w = pek /kl . From the resonance condition we have k11 = (w+2e)/vll. Combining all

this in Eq. 5c, we get

Av -v
(5d)

1v c~pe
II k

which gives circles centered at pe/ki. Thus, as shown in Fig. XII-30, under the

influence of the unstable T-G spectrum, particles in the tail are scattered along the tra-

jectories given by Eq. 5d. That these are indeed the scattering paths can be verified

by examining the equations of conservation of energy and parallel momentum between

the T-G waves and the resonant particles. Thus a typical resonant particle gets scat-

tered to a lower energy surface and hence gives up its energy to the wave. Particles

with energies greater than 200 keV would diffuse along ellipses centered at the origin,

but the ellipticity of these diffusion paths is of the order of pi/ e , and thus these
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Fig. XII-30. Diffusion paths in velocity space.

particles are not effectively scattered and hence are lost. An order-of-magnitude scaling

of the diffusion equation (Eq. 4d) gives for the relaxation rate

relax 10-4 E (E )/4n T , (6)

pe

where (E Z ) is the saturated spectrum of T-G waves, and n T is the electron plasma

energy.

From the given spectrum we can also estimate the correlation time of the most

unstable waves, and we find this given by

Y VTe
Yac 300 -p kFXDe Av (7)

pe II

where Av 1i is the width of the resonant region. Hence we find yTac << 1. We also find

from Eq. 6 that if we pick reasonable saturated spectra, vrelaxTac << 1. Under the

influence of only quasi-linear scattering the saturated spectrum would achieve a value

of the order of

E E2 n (V -Vmin ) 2  peEo(E) n T (Vmax mm _ _

4n T n V 2  (8)
o o max kVTe

where Vmi n is the edge of the resonant region (1 4 VTe). For the spectrum shown we

find that this gives E E2/4n T- 1. Hence the instability cannot saturate under the

influence of only quasi-linear scattering. The additional stabilization is provided by

parametric downconversion.
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Parametric Downconversion

The coupling of T-G and LH waves is very easy to achieve. We study the coupling
between waves that have k ai < 1 and also kla i >) i. In both cases we need

1 = 2 + W3 (9a)

k 1 = k2 + k3' (9b)

where 1 is the pump, 2 the idler, and 3 the lower hybrid waves. There are three pro-
cesses whereby the energy from the T-G waves gets into LH waves. First, some of the
energy comes from T-G waves which have a frequency near wpi and hence a very steep

angle of propagation. In Fig. XII-31a, for example, l = 3 ., w2 = 2pi, 3 = pi.
pi 2 p 3 pl

Second, as shown in Fig. XII-31b, we could have w = w cos O , 2 = w cos 02 , and

W3 = pi In this case we find that 1 2. Finally, the idler itself can decay into a

lower frequency T-G wave and a LH wave (Fig. XII-31b). This final process of cas-

cading accounts for the observed peak in the radiation at wpi. With k a. < 1 the first two

processes have comparable growth rates given by

NL -3 e41k1l
10 (10)

pe e pe pi

These waves propagate out of the plasma by the inverse of the process used for lower

hybrid heating experiments [see Progress Report No. 116 (pp. 128-138) and Quarterly

Progress Report No. 102 (pp. 97-111)]. We have also studied the coupling to lower

hybrid waves with klai >- 1, since these are the waves that account for the ion heating.

In Fig. XII-31a the coupling is now between three kinetic modes and hence it is difficult

to calculate the coupling coefficient; however, in Fig. XII-31b the coupling is between

two fluid modes (the T-G waves) and a kinetic mode (the LH wave), and so we can

W T-G
T 8increase

]Wpe cos 8

LH2 T- G 3

kai kai

(a) (b)

Fig. XII-31. Coupling between Triveliece-Gould and lower hybrid waves.

(a) I- /2/ (me/mi)l . (b) 0-7/2 >> (m /mi)l/.
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calculate the coupling coefficient between the two fluid modes because of the symmetry

relations that the coupling coefficients obey for three-wave interactions. But when we

compute the growth rate of the LH wave we have to take into account properly the mode

energy for kIa i > 1. Thus we find that the nonlinear growth rate of the LH wave for

k Ia >i 1 is given by

2
YNL -3 elkl (

m10 (11)
pe e pe pi

Nonlinear Orbit Breaking and Ion Heating
-1

Electrostatic waves propagating nearly across Bo and having k > ai (the inverse

ion-cyclotron radius) may trap the ion (during part of its orbit) and give to it sufficient

energy to make a strong change in its unperturbed closed path. This may happen for the

perpendicular trapping condition

A/ eEl

tri m.k k (12

where Vio is the unperturbed ion velocity. The details of this process are given in

Part II, Section XII-B.4. The maximum energy transfer occurs very near this

threshold and is given approximately by

2 2
-V /VTi

A) 2mi Vtr n o e (13)

Letting V o1 ~ VTio (corresponding to the initial ion temperature Tio )' and using klai  5

for the parametrically excited lower hybrid wave at w ~ wp. - 10 Q2., we find from Eqs. 12Z

and 13 that the maximum energy given to the ions per cyclotron period is approximately
-3

(~A) ~ n Tio at an E-field energy (W ) L H  8 10 3 nT e.

Knowing now the field that is necessary for orbit breaking and ion heating, we can

work back and find what the field energy in the T-G waves has to be. For example, for

growing T-G waves at w ~ 10 pi the Manley-Rowe relations in the absence of cascading

would require approximately ten times the energy in the LH waves. Thus we may
2 -2

assume that the energy in these fields is oETG/4nT ~ 10 , which is a rather modest

level. We can now use these fields in Eq. 6 and Eq. 10 to get Vrelax ~ 10-5 pe' NL
.04 wpi' respectively. The cascading rate from 10 wpi would be approximately yNL
.004 w ..

pi

Conclusion

An electron distribution function with a high-energy tail is used to explain certain

features of the Alcator experiment for low-density discharges when the effective drift
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velocity is high. The high-energy tail excites T-G waves, and this corresponds to the
observed high-frequency oscillations up to 20wp ; these T-G waves also account for the
quasi-linear pitch angle scattering of the high-energy tail which accounts for the observed
decrease in the hard x rays when the high-frequency (T-G) oscillations appear. This
process alone cannot stabilize the T-G waves. Additional stabilization is provided by
the parametric downconversions of the T-G waves to LH waves. This occurs in two
distinct processes, that is, direct downconversion and cascading. Both processes
account for the observed peak in the RF emission at opi WLH" Once the LH waves have
reached large enough amplitude for ion orbit breaking, we find that the ions are heated.
Once this process is established, the electric fields never decrease below this threshold
value because the downconversion rate is so fast, and hence a steady state is achieved.
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6. LOWER HYBRID WAVE GROUP VELOCITY TRAJECTORIES

IN TOROIDAL GEOMETRY

U. S. Energy Research and Development Administration (Contract E(11-l)-3070)

John L. Kulp, George L. Johnston, Abraham Bers

Introduction

An aspect of our investigation of RF heating of Tokamaks is the penetration of
RF fields into an inhomogeneous plasma. The study of the propagation of lower hybrid
waves excited by a localized source into a linear density gradient has been pursued by
Briggs and Parker, l Simonutti,2 Golant, 3 Bers, Karney, and Theilhaber, 4' 5 and

6-8
others. In this report we describe a first step toward extending these previous
results to a plasma model that includes three-dimensional effects such as toroidal mag-

netic field goemetry, temperature, current density and particle density profiles, and

two-dimensional excitation structures. The questions that we address are: How is the

wave propagation modified as compared with the two-dimensional models? and What is
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the spatial distribution of RF fields through the volume of the torus? The determination

of the width of the region containing substantial RF fields is critical to the evaluation

of various nonlinear heating schemes employing wave-wave interactions such as para-

metric downconversion to electrostatic ion cyclotron waves 9 or wave-particle effects

(see Part II, Sec. XII-B. 2).

The simplest approach to these questions lies in the investigation of the trajectory

of the group velocity of a wave excited by a source at the edge of the plasma. The two-

dimensional theory predicts that the electric field produced by a waveguide structure

with appropriate orientation will become focused along rays described by the group

velocity vector. We expect this result to remain true also in the three-dimensional

plasma, since the local behavior of the wave is adequately described at any point by a

two-dimensional model, as will be shown. Thus by observing the spatial separation of

group velocity rays with wave numbers maximally separated in the accessible excited

spectrum, we obtain an estimate of the spreading of the field structure. Spatial disper-

sion attributable to thermal effects still remains to be investigated.

Local Approximation

The approximation we invoke is that there exists a distance which, on the one hand,

is small enough that plasma inhomogeneities can be neglected, yet is long compared with

Lo y

xAVn

,R r t.... B
B 1

z

(a) (b) (c)

Fig. XII-32. (a) Local Cartesian coordinates.
(b) Toroidal coordinates.
(c) Two-dimensional coordinate transformation.

the distance over which the RF excitation oscillates. A linear homogeneous model of

wave propagation is then applied within such a region. To be consistent, a necessary

condition of this local approximation is that the wavelengths in the field spectrum be

smaller than the typical scale length of the plasma inhomogeneities.

For a toroidal plasma, the magnetic field and plasma density inhomogeneities are
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most conveniently expressed in the toroidal coordinates r, 0, c (Fig. XII-32). The local
wave propagation, however, is easiest to describe in a coordinate system with one coor-
dinate (z) in the local direction of the magnetic field, B . To facilitate transformations

A O
between these coordinate systems, x in the local system is chosen in the local direction
of Vn and y = A X .

To examine the validity of the local approximation we must perform the following
steps:

i. Find the scale length of the inhomogeneities in the toroidal coordinate system.

2. Relate the toroidal scale lengths to scale lengths in the local coordinate system.
3. Compare the constraints on the wavelengths of the excitation due to linear wave

propagation theory (accessibility, cutoff) and the source shape, with the condition

that the wavelength must be shorter than the inhomogeneity scale length. For any

plasma parameter f (e. g. , density or magnetic field), we use the estimate

1 8f Af fmax - min 1
f 8x. f Ax. 1 Ax. (1)

1 ave i -(f +f .) i2 max min

and assume the scale length to be ~ af .-1

Constraints on kx. In the direction of Vn, the magnetic field variation is of orderx 1_ dn)-I
B6/B so we neglect it and assume the scale length is (1- a where a is the minor

A A
radius of the torus. Since x = -r, the scale length in the local coordinate system is

A
also a. Thus the scale length in the x direction imposes the condition X << a. Now con-x
sider restrictions arising from the linear dispersion relation. Near the outside of the

plasma there will be a cutoff layer where kx is imaginary. Thus the local description

of the wave propagation can only be applied at some radius less than the cutoff layer.

To see that the required distance beyond cutoff is small, note that near cutoff

S/m.Z
x 1 2x
x m a (Z)
z e

where w - wpi max and a parabolic density profile have been assumed. If Xk/a is not
m

large (see below), x /a will become small in a distance e a.x m.
A ,1 A

Constraints on Xy. Neglecting B 0 /B , y is essentially in the 0 direction. The
(1 aB \-l 7inhomogeneity scale length in the 0 direction isB r a - E which imposes the

7r a
condition y << a-2 E, E = . The spectrum excited by a rectangular waveguide provides

o
another loose constraint on X , since most of the power in the spectrum is found where

Xy > Ly/2. Ly is the dimension of the waveguide in the y direction. Since Ly/2 << a-z E,
y y yy 2
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there is always a large range of the k spectrum satisfying the scale-length constraint.
y

Constraint on k . The scale length of the magnetic field variation along the direc-
z

tion of the magnetic field line is found by multiplying the result for the y direction by
B

the ratio q, giving z << a q . This restriction must be compared to the

3
accessibility condition for penetration to the center of the plasma,

z < z(3)
z 2

pe
1+ 2

ce r=0

For most Tokamak experiments and reactor designs,

ir c/w 7r 2
2 <a qE (4)

pe
1+ 2

ce r=0

so that accessibility is the more stringent condition.

The problem of describing the modification of the transverse (y , kz) spectrum of

the RF excitation as it penetrates from the waveguide source to a point beyond cutoff

is now being investigated. Since we are starting our description of RF penetration

beyond cutoff, we will assume that only the modification is due to the accessibility
5

"filtering" described by Bers, Karney, and Theilhaber.

Group Velocity Trajectories

The trajectory of the group velocity in three dimensions, S(w, k, s), is found by inte-

grating from some initial position S o along a path L for a distance s,

S(w, k, s) - So = fL ds, (5)

where L is specified by v g(, k, r) X ds = 0. We are at liberty to specify the trajectory

along a given orthogonal coordinate, since v X ds = 0 provides only two independent con-
g

straints. Consider a straight line trajectory for the z-coordinate in a Cartesian coor-

dinate system and S = 0. Then Eq. 5 becomes

S c G, k, s)L Y z dz, Z z dz, z - zo (6)cta
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ax ay
The derivatives az-' az are specified from v X ds = 0,

aDaD
ax gx ak a v ak

Dx g x gy
az v aD ' az v aD " (7)

gz ak gz akz z

In toroidal coordinates, we pick the path along the # coordinate,

- - D ar ( aO
S T( k, s) d , , - . (8)

Since it is not convenient to compute v in toroidal coordinates, we use the transfor-

mations

ar ar ax az ae ae ay az ae az
S - .(9)a ax az -a ay az a az a

These derivatives are computed shortly.

A convenient method is required for computing the spatial dependence of k(w, r) with-

out solving D(c, k, r) = 0. By assuming steady-state penetration of the wave, the con-
10

straint D(w, k, r) = 0 can be used to show

(O, k, r)
A a ar
v -k = -p D -(10)

g DrV r - (w, k, r)
ak

DD A
where p is the sign of and v is the unit vector in the direction of the group velocity.

Then k is found from

k(w, s) - ko() ds - k. (11)
L as

Propagation of Lower Hybrid Waves: Cold-Plasma Model

For investigating the penetration of electrostatic waves in the regime ci << W << e ,

we apply the general group velocity ray formulas to an electrostatic cold-plasma model.
5  c.

Using Theilhaber's results,5 we find the electrostatic assumption valid for i <<
W WLH

_ < 1. 255 and n > 1 - 1.35 or ce > 1.255 and n > 1. 35 - 1.82,
WLH max z WLH WLH max z
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k c
zn Z For n not satisfying these constraints, either the wave will be reflected, or

electromagnetic corrections to the dispersion relation will be required.

The electrostatic dispersion relation appropriate to the cold-plasma model is

D(w,k) = k k K+kYKIk2Ki =) 0, (12)

where K 1 is the perpendicular component of the dielectric tensor, and KII is the parallel

component. By using this dispersion function, the derivatives describing the group veloc-

ity trajectory in the local coordinate system become

y y K1  x __ K y

8z k K 8z K K k2 (13)
z

The dielectric tensor components for ci . w << wce are

2 2
pl pe

K= 1 2 2 (14)
u u

ce

2
pe

KI = 1- 2 (15)

It is useful to note that ay/az and ax/az depend only on wave number through k /k z , since

K and K are independent of k. For a warm-plasma model we would also expect a

dependence on kzkDe. Electromagnetic corrections would introduce a kzc/w dependence.

The variation of k along the ray will be computed in the sequel.

Magnetic Field Geometry

While the local coordinate system is the most convenient one for computing D(w, k)

and its derivatives, it is most useful to plot the group velocity trajectory in the coordi-

nate system of a Tokamak device. Furthermore, the magnetic field amplitude and

plasma density are easiest to compute in toroidal coordinates. This coordinate system

is shown in Fig. XII-32b. The toroidal magnetic field B (r , 0) is assumed to be uniform

in c,

R 0 Bo

0B (r, 6) = B o (16)1 +- cos 8
o
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Neglecting displacement of the plasma from the center of flux surfaces, we compute the
poloidal magnetic field as

4oI(r)

0 27rB =(r) - 2ir

I(r) = 27 f1 J (r) r'dr'. (17)

SI(a)
Let B0  (a , thenOo 27Ta

B r/a
Br (r) = -B a fJ(x) x dx. (18)

We shall consider a current profile typical of the high-density operation of Alcator 1

35 3/2 af(x) = (1-xac 3/2, a - (19)c c a
c

This profile is obtained by assuming J T3/2 and using experimental electron tempera-
ture data. We define the safety factor

B (r, 9) r 2 r

q(r, 0) = 0  a

Sf (r)a +- cos 0

B a R 0

o B 0oR a a0o o

B 
((r)0)

0

Coordinate Transformations

We shall now present the coordinate transformations required to relate the displace-

ments along the direction of the group velocity that is computed in the local Cartesian

coordinate system to toroidal coordinates of the plasma. These transformations are also

used to relate successive local coordinate systems whose orientations change with the

curving of magnetic field lines. By assuming that the density gradient is in the direction

of the minor radius and flux surfaces are normal to the density gradient, the coordinate
A A

transformation becomes two-dimensional because r = -x (see Fig. XII-32c). In the plane

perpendicular to r, unit vectors e = [e , e, ] [e , e e] transform as follows:
xyz ie,
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e 1 1 fb(r, 0) e60

e z+fr, )1 /2  -fb(r, ) 1 e
I +f ((rr, )

Bf(r) () a (r,)

fb(r, O) = q aR  . (21)
B (r,0) o aRo

The coordinate transformation equations above can be used to compute the derivatives

describing the change of variables in the integrations defining S(w, k, s).

(1 +fb(r, 6))
/ 2

S b y R(r, O)

S 1 + fb(r, 0) 8z

ay
- - fb(r, ) R(r, )

D = b y r

I + fb(r, ) z

Dr (22)
ax

The use of these formulas in computing the rays will be discussed in the sequel. We

shall return to these expressions to explain the observed behavior of the rays.

Another transformation between two local coordinate systems at adjacent points

on the ray is required. With such a transformation, k y/kz at r', ' can be found

from

r Y R
k' - fb(r ) + fb(r' 0 ') b(r,0) k + 1 R'

z k k

z z

Variation of k along the Group Velocity Ray

The variation of k along the ray for an electrostatic cold-plasma model is found by

applying Eq. 10 with p = 1. Thus

PR No. 117 230



(XII. PLASMA DYNAMICS)

3D - 2c2 K 1/2
D (w, k) Zcz k K 1 + I . (24)87k = -2 z K 1  -K

ak - I

3D -Using an expression for - (w, k) derived for a cold plasma, we can show that
ar

• V--k
1 ak g z

k as kz z

2
k pe -f 1

kz e 2 K 3/2 1/2 R

and

ak
y

as 1
k -fb" (25)

z b
as

Equations 23 and 25 are sufficient for describing the evolution of k y/kz from point to
point along the ray.

Computation and Display of the Group Velocity Trajectories

The computational scheme for obtaining the group velocity trajectories has the fol-
lowing part s:

Boundary conditions - starting the ray

Recursion formulas for stepping along the ray

Singular points - resonance, cutoff, r = 0

Implementation and display of the trajectory.

a. Boundary Conditions

At the edge of the plasma a waveguide excites a plasma response with a ko, kt spec-

trum determined by the dimensions of the waveguide. We assume a rectangular wave-

guide with dimensions L , L . Then the spectrum is roughly bounded from above by k~
7T 7T

k L We have mentioned how this response couples through to the cutoff layerL 6

where w = pe local' For our purposes, we assume that the spectrum reaches the cutoff

layer essentially unmodified except for the restrictions of the accessibility conditions.

This assumption is reasonable, since the distance to the cutoff layer is small,
1/2

~a(me/mi) The conclusive solution to this question rests on the calculation of
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the RF coupling problem. 1 2 Any error introduced here will not strongly affect our

results, since the correction is small and the dependence of the group velocity on ky/k z

is weak except near r = 0, as we shall show.

Our initial values of k6 and k at the cutoff layer are transformed into the local coor-

dinate system at that point to provide an initial ky and kz. Subsequently, we need only

compute k y/kz in each successive local coordinate system. The starting point of the

group velocity ray is given by rcutoff' 0o , where 60 and o are chosen to correspond

to a point at the edge of the exciting structure from which we wish to trace the group

velocity of the wave. For finite k y/kz, the cutoff distance is found by solving

22  k
x 2 - 0, (26)

k 2  k 2  K
z z

which yields

rcutoff = 1 2 + (27)
a 2 k

pe max z

k
y m.

where the loose restriction < has been assumed.

b. Recursion Formula

Suppose k y/kz for a wave of interest is known at a point r, 0, . Assume that we are

tracing out the trajectory by stepping around the torus in increments of A#. Then Eqs. 22

tell us how to compute Az, Ay, and Ax, and finally AO and Ar. To do this we must first

compute fb(r, O) (Eq. 21) and -KI/KI (Eqs. 14,15). These require in turn computing fn(r)
and f0 (r). Once these are computed, we move to a new point on the ray by r' - r + Ar,

0' - 0 + AO, 4' - + A4. But before we can continue at this point, we must find k' /k'z
This is accomplished by computing Akz/k z at r, 0, c with the use of Eq. 25, and then com-

puting k y/kz at r', 0', ' in the coordinate system of r, 0, 4. Finally, k /kz is expressed

in the new local coordinate system at r', 0', 4' with the use of Eq. 23.

c. Singular Points
k2

-K ky
Several singularities occur in this calculation. First, when the quantity K -

KI k
z

becomes negative imaginary terms are produced in Eqs. 13 and 22. This happens at the

cutoff layer. This problem can be circumvented at the beginning of the ray by a judicious
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choice of starting point. As the ray eventually continues through the center of the plasma

and comes out toward the edge, however, the cutoff layer will again be encountered.

Exactly what happens there is not known, but we make the assumption that because the

layer is small most of the energy of the wave tunnels out to the wall and an unimportant

amount is reflected back into the plasma. Thus we simply terminate the calculation of

the ray at this point.

Another singularity occurs when K1 = 0. This is the point in the plasma where w =

WLH(r, 8) (Fig. XII-33). Here the group velocity is 0 and Akz is infinite. This reso-

nance is a result of our cold-plasma assumption. A treatment including thermal effects

would predict a turning of the wave at a density less than that where w = WLH. We hope

.......... n=/ no o( 2 1-.r/o.-z.-I . nn , J J 0 I-r/o, )3/=

0.0
-I 0

r/o

Fig. XII-33. Profile of the local value of the lower hybrid frequency.

to pursue this in future work, but at present we must stop the calculation at this point

because the cold-plasma model is insufficient for describing further development of the

group velocity ray.

The "singularity" at r = 0 is not a real but rather a computational singularity. Since

the magnetic field and density are smoothly varying at r = 0, the ray is also expected

to behave undramatically there. Equation 22 shows, however, that at r - 0, rAO

remains finite which implies AO - 00. But r A - A so that by defining A~ to vary with r

we can keep AO arbitrarily small (this can be shown to be convergent). Some problems

may enter in computing I(r) near r = 0 because of its 1/r dependence. Fortunately, this

dependence is often canceled analytically by the r dependence of f 0 (r).
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d. Implementation

The contol structure (order of computation) of the ray calculation is rather complex.

It is worthy of note that a remarkably simple method of specifying and executing this cal-
13

culation was made possible by using the MACSYMA system. The mechanism is called

the associated array function. The details of the implementation of this calculation will

be provided in a forthcoming M. I. T. Plasma Research Report. We note that kx was not

explicitly calculated in this scheme. To compare the variation of kx , as the ray moves

through the density gradient between two- and three-dimensional models, we use the

n no(I -r
2
/o

2
) , J=Jo(I-r/o )

3 / 2

...... n=no ,J= Jo(I-r/o c)
3 / 2

Sn=no(I-r
2
/0

2
) .J=O

n= no ,J=O

r/a r/o

Fig. XII-34. (a) Azimuthal wave number vs radius.
(b) Wave number in the direction of the

density gradient vs radius.

computed values of k 2 /k 2 (Fig. XII-34a) and -K /K to find k 2 /k 2 from (k 2 +k 2 ) K 1 +
2 v s/ X + x y

kzK = 0 (Fig. XII-34b).

The group velocity trajectory is displayed by plotting two projections (Figs. XII-35

through XII-37). A projection into a minor cross-section plane is obtained by plotting

r cos 0, r sin 0 along the ray. This is displayed in the center of the figures. The outer

ring is a top view of the torus, plotting R cos 4, R sin 4 along the ray.

Interpretation of the Computed Rays

The parameters required to specify a group velocity ray in a cold toroidal plasma

are the following.
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Magnetic Field Geometry

a - aspect ratio R /a

B (Ro) a

qo - safety factor
B0 (a) R o

Plasma Profiles

n(r)
f (r) - particle density

n(4)

f0 (r) - integrated current density
B 0 (r)

B (a)

Plasma Parameter

- cold-plasma parameter. Essentially normalizes fn(r) and f0 (r).

Source Spectrum

_____- normalized frequency
WLH max

m- - ratio of toroidal mode numbersn

k

k r=a

m/a L

n/(Ro+a) L0

m L /(R +a) a k
mn L R a k

n L 0/a Ro + ak

We have not exhaustively explored this parameter space. The most interesting

changes in the properties of the ray are seen by varying profiles and source frequency.

In Fig. XII-35, we use parameters that are typical of t

Alcator and vary the frequency from less than wLH
max

he high-density regime of

to several times it. Next,

Fig. XII-36 shows the effect of varying current and density profiles with W= 1. 1 WLH
max

The effect of finite source width is shown in Fig. XII-37 where two rays are plotted from

the edges of the waveguide source.
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(a) (b)

(d) (e)

Fig. XII-35. Group velocity ray
2

Parameters: ce2
pe

(a) = . 99
"LH max

(d) = 1.8
WLH max

trajectories for varying source frequencies.

R
2.5, o= 5. 68,

a q = 4.19

(b) = 0. 995
( LH max

(e) = 2. 5
LH max

(c) L = 1. 2
LH max

(f) w = 4. O0
( LH max

The group velocity ray trajectory can be characterized by the relative rates of dis-

placement in the radial (r), azimuthal (0), and toroidal ( ) directions as a function of dis-

tance along the ray (s). For a given plasma model, these rates are easily computed in

the local coordinate system (Eq. 13). Thus

ar 8x 8z
as 8z as

8ae 8 8z +8 ay 8z
8s 8z 8s ay 8z 8s

8 8D az a ay az- + (28)as as ay az as
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(c) (d)

Fig. XII-36. Group velocity ray trajectories varying current and

density profiles. = 1. 1.

(a) n= (1 2 '
a /

(b) n = constant,

(c) n = -

(d) n = constant,

'LH max

J ~ (1

J (1

3/2

rc
3/2

-
ac

a =8.0
c

J=0

J=0

Fig. XII-37.

Group velocity ray trajectories from
spatially separated starting points.
(a) Azimuthal (0) separation. AO = .15.
(b) Toroidal (c) separation. Ac= .08.

(a) (b)
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By using (13) and (22), it is now straightforward to make relative comparisons of displace-

ment rates. Several qualitative observations can be explained with the use of these rela-

tions.

1. The radial rate of ray penetration depends strongly on the source frequency W.

2. With a monotonically decreasing current profile and source frequencies near

W LH max' the rates of penetration can be ordered:

R- r > aras as as

3. The presence of a density gradient causes more rapid penetration.

4. The ray trajectory depends weakly on the shape of the waveguide, as reflected

in the ratio (k /kz). This ratio does not attain values much greater than 1.

5. Rays originating at spatially separated points become focused (Fig. XII-37).

6. The 0 dependence of the ray is directly related to the shape of the current density

profile, as is manifest through B 0 (r).

To apply Eq. 13 to Eq. 28, approximate expressions for K11 and KI are needed.
2

f C 2
m. n(r) p n(r) pe

Beyond cutoff, -Ki m 2 , where fn(r) , f= , and C = 1 +
e f o LH max ce

Similarly, KI can be written ce max

2
f (r) C W
n p pe f(r)

K 1 z + 2n 2 (29)
f cem fB(r, )

ce Bmax

where fB(r, 0) = and C is typically between 1 and 2. If we assume fB 1 by
ce max

expanding to lowest order in B /B, we find

KI me 1 f2 pe 2e 1 + pe f2 - C (30)
-K11  m. C 2 p

1 pn ce max

y m . /2
When we let -- << , which is consistent with our observations, and consider the

Whe2 C 1/2
pe p m

regime + 2 << , (28) becomes
n( r )  ce max e

ar m e 1 1/2 i/Z az
a r ) 1 + C 1 - (31)
as mp asn(r)
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_ Y f 2 me 1 f b ( r , 0 ) azk
as r kz mi Cp f (r) f2 r as

a 1 z

as as Z 
(33)R(r, 0) as

These expressions show us that to lowest order in fb
1. The radial penetration rate is essentially two-dimensional in that it is independent

of the azimuthal coordinate 0.

2. The three-dimensional effects enter primarily because of the magnetic field

geometry; that is, the dominant fb/r dependence in ao/as and the 1/R dependence of

a/as. A corollary to this is that the ratio of toroidal-to-azimuthal displacement is

given by the local value of q(r, 0).

Our previous observations can now be explained by using (31)-(33).

1. For f (r) ~ 1 (near the center of the plasma) and f > 1, m e az This

1
is the result of Briggs and Parker. Note the relatively strong dependence of ar/as on f

as compared with the f dependence of aO/as or ac/as.

2. The orderings are evident for f ~ 1:

a az
R- as as

ao
r as -fb

m 1/2
_r e
as m.iCp

(p

3. The radial and azimuthal penetration rates are significantly enhanced when

fn(r) << 1.
n me1/2

4. k /k enters weighted only by m , so if ky/kz is not large, its effect ony z z

the ray will be small. The variations of k y/kz along the ray can be seen from (25). This

variation can only be strong for f < 1 and KI z 0, i. e. , near lower hybrid resonance.

This can occur at several points along the ray, as shown in Fig. XII-38. As we have

mentioned, the cold plasma model breaks down at these points and thermal corrections

are necessary to describe the ray behavior accurately.
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2.0
n no(I-r 2/0) JJo(l-r/o )3/2
n no , J-Jo(I-r/ac)

. n= no (i-r
2
/a

2
) , J O

- - - no , JO

Fig. XII-38. Group velocity ray trajectories projected into the
x-z plane of the local coordinate system.

To summarize, the relative toroidal vs radial penetration rate is approximately

ar
as

R
8s

m
e

m.
1

while the relative azimuthal vs radial rate is

ar
as mb e

fbmi

and

ae
as z q(r, e).

as

Conclusion

The new results obtained in our investigation thus far include:

i. A computational scheme for group velocity ray tracing in three dimensions has

been developed for Tokamak plasmas.

2. The penetration of the ray depends strongly on the frequency of the source but
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1/2

1C
p

(34)

1/2
1

C (35)

(36)

240



(XII. PLASMA DYNAMICS)

weakly on the shape. Rays starting from displaced positions at the outside of the plasma
tend to be focused.

3. The azimuthal dependence of the ray is determined primarily by the poloidal mag-
netic field, and thus the distribution of the ray through the volume of the torus is affected
by the current profile.

We plan to include the effect of finite temperature and temperature profiles in future
work. The purpose of this extension is to determine the modification of the ray by
spatial dispersion and to clarify the effect of the wave-number spectrum of the source
as the ray reaches the linear mode conversion turning point. 2 Recent results also indi-
cate that electromagnetic corrections may also be important.
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Research - Experimental

7. PRELIMINARY RESULTS ON THE VERSATOR TOKAMAK

U. S. Energy Research and Development Administration (Contract E(1-1)-3070)

David S. Stone, Alan S. Fisher, Burton Richards

The Versator Tokamak, designed originally by Robert J. Taylor and constructed

under his close supervision, was moved, in July 1974, from the Francis Bitter National

Magnet Laboratory to the Research Laboratory of Electronics. A photograph of Versator

in its new surroundings is shown in Fig. XII-39.

Fig. XII- 39. Versator Tokamak in new location.

Construction of Electrical Systems

At the time of the move most of Versator's power systems and peripherals were pre-

empted by the Rector Tokamak project at the Francis Bitter National Magnet Laboratory.

During the summer of 1974, magnetic field coils were rewound on Versator and con-

struction of new power supplies and electronics apparatus began. Capacitor banks for

toroidal field [low- and high-voltage ohmic heating (OH)] and for vertical field were
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assembled. A 30-kHz preionization oscillator was built. Appropriate sequencing and

triggering electronics equipment was also prepared. After some testing, the OH

capacitor banks were enlarged and their triggering electronics was improved. All of

this work was completed by July 1975.

Capacitor Switching and Dumping

The timing of the discharging of various capacitor banks during each "shot" is con-

trolled by a sequencing board as shown schematically in Fig. XII-40. For typical dis-

charge conditions the main field bank and 30-kHz preionization oscillator are triggered

at time t = 0. As the main field bank discharges, current is driven through the main

field and horizontal field coils. While the toroidal magnetic field builds up, the oscil-

lator breaks down the hydrogen in the machine to approximately . 1% ionization. At time

t = 5 ms the high-voltage OH pulse is applied to the OH transformer. This completes

the ionization and starts up the plasma current. When the high-voltage pulse level falls

below the voltage on the low-voltage OH bank (after ~1 ms), the latter is triggered auto-

matically. The energy in the low-voltage bank is then discharged into the OH coils,

VERTICAL

SYSTEM IGNITRON

SWITCH FIELD
COILS

SEQUENCER
MAIN
FIELD MAI INDUCTIVE

FIELD DIVIDER
COILS NETWORK

HORIZONTAL
FIELD

I GNITRON
CROWBAR

SWITCH

OH PLASMA PLASMA
HIGTH I NDUCTANCE RESISTANCE

HIGH- LOW- COILS
VOLTAE VOLTAGE

3Ok OH SYSTEM OH SYSTEM

AIR CORE TRANSFORMER

Fig. XII-40. Versator electrical systems.

and the plasma current rises gradually, accompanied by rapid collisional plasma

heating. The plasma current finally subsides as the energy stored in the low-voltage

OH bank is exhausted. A small vertical field is also needed during the plasma current

pulse to prevent radial expansion of the plasma current loop. The vertical field capac-

itor bank is normally sequenced to be discharged into the vertical field coils concur-

rently with the discharge of the OH banks, as the vertical field must be roughly

proportional to the plasma current.

Rudimentary measurements have permitted us to compose a preliminary list of

parameters.
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Table XII-4. Versator parameters.

Operating Parameters

Major radius

Minor radius

54 cm

14 cm

High-voltage OH bank

Low-voltage OH bank

Main field bank

Maximum main field

7 kV, 188 4F, 4. 6 kJ

825 V, 40,000 4F, 13. 6 kJ

4 kV, 5,000 rF, 40 kJ

5.9 kG

Preliminary Plasma Parameters

Density

Electron temperature

12 13 -3
10 -10 cm

up to ~120 eV

Plasma current

Current pulse length

Energy confinement time

Beta poloidal

up to 5 kA

8-11 ms

0. 4-1. 6 ms

approximately 1. 0

Electron temperature averaged over the plasma current cross section derived
from the Spitzer conductivity, under the assumption Z = 3.

Diagnostics

On Versator, at present, the following diagnostics are operational:

1. Hard x-ray detector

2. Visible spectrometer

3. Double Langmuir probe

4. 8-mm microwave interferometer

5. Inductive diagnostics

Further diagnostics that will be added are as follows:

6. Soft x-ray bremsstrahlung diagnostics (January 1976)

7. Laser Thomson scattering (February 1976)

8. UV vacuum spectrometer (July 1976)

9. Charge exchange cell (Middle of 1976)
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Discussion of Preliminary Results

During September and October 1975 we concentrated on improving the length of the
Versator discharge current pulse. A typical current pulse obtained shortly after the
electrical systems were completed in July 1975, is shown in Fig. XII-41. Note that the
length of the pulse is ~1. 5 ms. This current oscillogram indicates that a strong
quenching of the discharge was occurring even before the low-voltage ohmic heating (OH)
pulse was applied to the plasma column. We used two approaches to improve the length
of the discharge current pulse.

Fig. XII-41.

Typical early plasma currents and loop volt-
ages vs time. Rapid quenching of plasma
current is caused by excessive impurity levels
and toroidal field errors. Upper traces: typi-
cal loop voltages 20 V/div. Lower traces:
typical plasma currents 5 kA/div. Horizontal
axis: time 500 ps/div.

a. Discharge Cleaning

We began by discharge cleaning the machine with a 30-kHz cw oscillator tied in to
the OH coils for 15-35 hours per week. This technique continually keeps the gas "0. 1%
ionized with the aid of a small dc toroidal magnetic field. Bombardment of the bhamber
walls by the weakly ionized gas then gradually drives off unwanted impurities. The
vacuum chamber had been open to the air for several months during the spring of 1975
and it was likely that large quantities of water vapor had been adsorbed on the chamber
walls. These "impurities" were at least partly responsible for the rapid quenching of
the plasma current that we observed.

b. Correction of Toroidal Field Errors

Small errors in the toroidal magnetic field were also responsible for Versator's
poor operating performance. It is well known that in Tokamak plasmas error fields of
the order of a few gauss may upset the stability of the plasma loop enough to drive it
into the walls in the early stages of the discharge and may hinder the development of

1-3a current channel. Versator is equipped with horizontal and vertical field correction
coils, as well as diagnostics for sensing the up/down or radially in/out motion of the
plasma loop. The horizontal field was adjusted until the up/down motion of the plasma
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loop appeared to be stabilized. The vertical field is not only required for cancellation

of vertical field errors but also for preventing radial expansion of the plasma loop during

the current pulse. The in/out inductive diagnostics aided us in properly adjusting the

strength of the vertical field.

c. Unstable Operating Conditions

Near the end of October 1975, by discharge cleaning and magnetic field corrections,

we achieved great improvements. The current pulse was lengthened to 8-12 ms, with

maximum currents of ~5 kA. Plasma current and loop-voltage oscillograms that are

typical of these discharges are shown in Fig. XII-42. We found these conditions to be

strongly dependent on the strength of the high-voltage OH pulse. A high-voltage OH pulse

of 2. 2 kV achieved the desired results, while higher voltages caused rapid quenching

of the discharge. It was also necessary to use high low-voltage OH pulses of at least

700 V (the maximum voltage available on the low-voltage OH is 825 V) to maintain the

plasma current pulse for at least 8 ms.

Fig. XHI-42.

Typical unstable operating conditions. Hard
x-ray emission, loop voltage, and plasma cur-
rent vs time. The current has reached the
Kruskal-Shafranov limit. Upper trace: hard
x-ray detector 10 mV/div. Middle trace: loop
voltage 10 V/div. Lower trace: plasma cur-
rent 5 kA/div. Horizontal axis: time 2 ms/div.

d. Presence of Instabilities

It was evident that this discharge had some MHD instabilities associated with it. The

spikes in both the loop voltage and the plasma current indicated the presence of insta-

bilities and that rapid cooling of the plasma was associated with them. The other diag-

nostics confirmed the presence of unstable conditions during these spikes. The visible

spectrometer showed maxima in visible light emitted from the plasma during these

unstable conditions, while the Langmuir probe indicated local density variations by a

factor of two in the plasma column. Large bursts of hard x rays were also emitted from

the chamber during these unstable events. These emissions occurred as runaway elec-

trons, created near the beginning of the current pulse, were dumped into the walls of the

vacuum chamber by large amplitude oscillations of the plasma loop. An x-ray dosimeter

placed next to the torus registered - 5 1irad/shot. Energies ranged up to 400 keV. This
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last fact indicates that the runaway electrons, by which the x rays are created, are gen-
erated near the beginning of the current pulse.

e. Stable Conditions

In order to stabilize the plasma loop, it was necessary to use higher toroidal fields
and much lower low-voltage OH voltages. Typical stable discharge current and loop-

voltage pulses are shown in Fig. XII-43. The current pulse, which lasts approximately

8 ms, is not as long-lived as in the previous unstable discharges. The smoothness of

these oscillograms suggests the absence of extreme MHD instability. The other diag-

nostics qualitatively confirms this hypothesis. Although we have just recently begun to

explore this stable regime of discharges, it appears that the strength of the toroidal

magnetic field is a critical factor in maintaining stability. Thus far we have been unable

to create stable discharges repeatably for a toroidal field of less than (~5) kG. The maxi-

mum field available on Versator at the present time is (5. 9) kG. (We expect that this

will be increased to (13. 2) kG by April 1976.)

Fig. XII-43.

Typical stable operating conditions. Hard
x-ray emission, loop voltage, and plasma
current vs time. Upper trace: hard x-ray
detector 500 mV/div. Middle trace: loop
voltage 5 V/div. Lower trace: plasma
current 5 kA/div. Horizontal axis: time
1 ms/div.

f. Comparison of Stable and Unstable Conditions

Preliminary measurements show that the maximum current during stable discharges

is roughly proportional to Btoroidal. Unstable discharges reach comparable maximum

currents but have decidedly lower temperatures. Computer modeling of the Versator

plasma 4 has shown that plasma electron temperature T . derived from the Spitzer con-

ductivity 5 obeys the expression

T (in eV) ~ 1.0 (I/V)2/3,

where I is the plasma current in amperes and V is the loop voltage in volts. Using this

expression for T , in Fig. XII-44 we plot the maximum plasma temperature against

Btoroidal for an early run of both stable and unstable discharges. In the regime where
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it is possible to obtain stable discharge conditions the maximum temperature is approx-

imately twice that obtained during unstable conditions. The highest temperature attained

thus far is at least 120 eV, with a main field of (5. 8) kG. The plasma energy confine-

ment time T E is given by

22
27T a RnT

TE IV

where a is the radius of the plasma column, R is the major radius of the torus, n is

the average number density, T is the temperature in energy units, I is the plasma cur-

rent, and V is the loop voltage. For a temperature of 120 eV and an assumed density
13 -3

of 1013 cm , this discharge has an energy confinement time of from 0. 4 to 1. 6 ms for

a plasma radius of 5-10 cm, respectively.

120 A

0- STABLE
DISCHARGES /

3~ 90/ Fig. XII-44.

*0 z Electron temperature derived from Spitzer
0/ conductivity vs toroidal magnetic field for a

/ typical early run on Versator.

50 UNSTABLE
DISCHARGES

40 ,""

35 40 45 50 55 60

B
o (kG)

g. Reasons for Unstable Conditions - Kruskal-Shafranov Limit

The unstable discharges described by Fig. XII-42 were obtained by raising the low-

voltage OH pulse to a much higher value than that for stable conditions. By overdriving

the plasma current in this way, we exceeded the Kruskal-Shafranov limit for MHD

stability of the plasma column,6, 7 thereby driving the plasma unstable. The criterion

for the onset of this instability is q r 3, where

Btoroidal a
q = B l 1Bpoloidal

Using appropriate values of these parameters for Versator, we have

B 2
Btoroidal a

S= 9.200, I 100'
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where I, the plasma current, is in kA, Btoroidal is in kG, and a is in cm.

h. Implication of the Presence of a Narrow Current Channel

If we assume q 5 3 during all unstable discharges, then a is found to be roughly con-

stant and equal to 5. O0 cm for unstable discharges with 2. 5-5. O0 kA currents and main

fields of 4. O0 to 5. 8 kG, respectively. This implies that the stable plasma loop also

has a minor radius of 5.0 cm and, by overdriving the current, the Kruskal-Shafranov

limit is exceeded and the plasma becomes unstable.

The minor radius of the vacuum chamber is 14 cm, and hence we should obtain ide-

ally a current density profile with a radius ~10 cm. We suspect that the presence of

impurities is responsible for the current profile being much narrower than expected.

These impurities come off the chamber walls during the discharge, and so greatly

enhance plasma resistivity near the walls that the current is forced to flow in a narrow

central channel.
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8. THERMIONIC CATHODE, LOW-PRESSURE DISCHARGE

U.S. Energy Research and Development Administration (Contract E(11-1)-3070)

Leslie Bromberg, Louis D. Smullin

Introduction

The theory of glow discharges has been limited mainly to cylindrical positive col-

umns. For high pressure the ambipolar theory of SchottkyI is used, and for low pres-

sures the free-fall theory of Tonks and Langmuir is appropriate. The purpose of these

theories, however, is to explain the gradients (axial and radial) and the general
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characteristics of the discharge with an assumed creation rate.

The problem of obtaining I-V curves in low-pressure discharges has not been

addressed in published works. In the high-pressure discharges it has been accomplished

when V is the voltage across the positive column but not the entire anode-cathode volt-

age.

This report describes an attempt to obtain theoretical I-V curves for a source, the

multifilament arc (nMFA), designed and built at the Lawrence Livermore Laboratory.

These sources, which have been described elsewhere,3 provide a quiescent plasma that

has been used to form neutral beams of excellent quality.

Particle Conservation

In the steady state the ion conservation equation reduces to

A 3  3
n.v ' n da = drn d vfo.v, (1)
1- - O -1

S V

where n.v is the ion flux, n the normal to the surface of the walls, f the electron dis-

tribution function, and no the neutral gas pressure. A similar equation applies to the

electrons. Under the assumption that the primaries remain distinct from the bulk of

the electrons, Eq. 1 can be expanded. Thus

A I -e 1 3 3
n.v n da = + dr n dv f , (2)

1- e o - e
S 1+- V

by plasma
electronsionization by primaries

where fe is the cold-electron distribution, I the primary current, the average ( ) is over

the possible particle trajectories, and f. and k,, refer to ionization and excitation mean-1

free paths. In Eq. 2 it is assumed that the primaries can only either ionize or excite

once. This is a good assumption, realizing that once they lose the ionizing or exciting

energy, the mean-free path for ionizing or exciting of the slower primaries increases

because the cross sections are smaller.

When ambipolarity is written so that

A Ada f v n da= n.v * n da (3)
e- 1-

escape
electrons

the cold-electron population automatically satisfies its conservation equation. In general
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Eq. 3 requires the potential between the wall and the plasma to make ion and electron

losses equal (floating potential).

The ion loss has been given by Carusso4 as

n.v n da = 0. 345 ni (0) (2kT A , (4)

where ni(0) is the maximum ion density, and T is the electron temperature. This equa-1 e
tion is based on a Maxwellian distribution for the electrons. Note that Eq. 4 is indepen-

dent of wall potential. The absence of gradients (except near the wall) allows us to

identify Aw as the wall area of the source. The influence of a hot-electron component

(in this case, the primaries), has been analyzed by using the theory of Demirkhanov. 5

In this case, however, it changes the result less than 6%.

In the case when fe is not a Maxwellian, this equation yields an "average" energy

which will be identified as T e
When the temperature is low, or a non-Maxwellian distribution with a depleted tail

exists, ionization will only be due to the primaries and Eq. 4 becomes

(1 +
2_i e  I 1- e 1

0. 345 n.kT A e (5)

The proper average in Eq. 5 has been done, by using a Monte Carlo simulation.

Cathode Equation

F. W. Crawford 6 has analyzed the case wherein a plane cathode adjacent to a plasma

is emitting under space-charge-limited conditions. He finds that the electric field is

only large within a few Debye lengths of the emitting surface. In the MFA the Debye

length is smaller than the radius of the cathode wire, and hence the plane-wave theory

should be applicable.

The result is simply an application

2.0 of space-charge-limited conditions at the

1.5 plasma edge and at the cathode surfaces,

1.0 and use of the Bohm criteria. The equa-

0.5 tion for the cathode current is

2 4 6 8 10 kT 1/2 eV
I= eAkn e 2rm e e (6)

Fig. XII-45. J (x) vs x. (From Crawford

and Cannara.6 ) where Ak is the cathode area, and ne is
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the plasma electron density. The function Jo(x) is shown in Fig. XII-45.

Equation 6 is also based on the assumption of a Maxwellian electron distribution. Its

validity is not seriously affected by the absence of the tail, as long as the bulk is Max-

wellian. This consideration is not true for the plasma ionization term in Eq. 2 or the

excitation term in Eq. 7 because these processes depend on the high-energy tail.

We used Eq. 6 to generate I-V curves from published densities of the Berkeley

source3 and compared them with the experimental curves that also were published by

Baker and his co-workers. 3 The agreement is better than 30%C. One probable reason

for the discrepancy is that the temperature is not well known experimentally.

Energy Equation

If it is possible to ignore plasma heating arising from beam-plasma oscillations, then

the only heat input to the plasma is through Coulomb friction. We are not ignoring the

possibility of a beam-plasma interaction, but we are testing the assumption that a model

based on Coulomb friction alone can predict experimental results.

In this case, the conservation of power for the plasma is

A 3 ( 1  2 A
Pinput = (wi) n.v * n da + da d v my - eVf f n

S S

+ d3 r no d3 v f v( -iTi + E,,), (7)

V

where Vf is the potential difference between the wall and the plasma, and the last terms

represent the power lost because of ionization and excitation. As in Eq. 2, we assume
that the electron distribution is depleted of high-energy electrons, and hence both ioni-

zation and excitation by the plasma electrons can be neglected.

For the case wherein the walls are floating, the electron contribution to Eq. 7 is

small. This can be understood by noting that most of the electron energy has been given
up to the retarding field of the sheath. (w.) is the average energy of an ion as it is col-
lected by the walls. For a hydrogen plasma this energy is between 2 and 4 times the

electron temperature.

The power input, rate of energy transfer by Coulomb friction, is given by

4

3 In A me pe
input 47 2 nu e

p

where the mean-free path for energy exchange is assumed large compared with the length

of the system. The average in Eq. 8 is over the possible primary trajectories and has
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also been calculated by using a Monte Carlo simulation. In the case of low pressure,

when the exponential term in Eq. 5 can be replaced by the first two terms of the Taylor

expansion,

( s)Energy = ( S)Ionization
Exchange

The power conservation equation is

4 -s( +m (1
31nA e pe A I 1-e

4 2 I(S)E = (wi) n.v n da = (wi) - (9)
u n 1

pe 1+

In the calculations, we set (w i ) = 2. 9 T e , which would be the case if the plasma were

Maxwellian.

Discussion

If we set n = n. (the primary density is an order of magnitude lower than n ), then
e 1 e

Eqs. 5, 6, and 9 are a closed set for T , I, and n . The ion saturation current is given
e e

as

ZkT \1/2
j = 0. 345 n. Me

Solutions for hydrogen and deuterium are given in Figs. XII-46 and XII-47. The neu-

tral gas pressure (n ), which was only estimated by Baker,3 was varied until the value

of the current at V = 45 V became 1000 A. Once this is set, no more parameters are

varied. Figure XII-47 was drawn for the same gas pressure as in Fig. XII-46 and the

only published point agrees with the theoretically predicted curve.

Two things should be pointed out. First, in the calculations we took into account the

possibility of multiple passes of the primary electrons. This occurs when the primaries

bounce from a floating wall at an angle. Second, the calculated values of Te were large

enough (in some cases, at least) that had the Maxwellian assumption for the electron dis-

tribution been kept, the plasma creation in Eq. 2 would have been very large and no

stable solution could have been found for the temperature.

Heating Rate

If we assume, then, that heating is due to friction between primaries and cold elec-

trons, then it is of interest to calculate the heating rate. If the electron collision times

and the electron heating times are large compared with the excitation rate, the high-

energy tail of f will be depleted.e
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(a) Arc current for a hydrogen discharge. The neutral
gas pressure was adjusted until the experimental
and theoretical curves agree at 45 V.

(b) Ion saturation current for a hydrogen discharge.
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Fig. XII-47. (a) Arc current for a deuterium discharge. The cross is
an experimental point.

(b) Ion saturation current for a deuterium discharge. The
cross is an experimental point.
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Simple calculations show that Tee 1 :Is and T, 0. 15 4s for a 20 eV electron.

Clearly, self-collisions will not be able to sustain the tail, since it takes a few collision
times to fill it. 8

The heating rate can be calculated by setting the energy lost by fast electrons equal
to the energy input to cold electrons. That is,

4

d 3 nkT) 3 In A me p e

t 2 nkTe 4 2 n S)E (10)
u e

p

The heating rate calculated from Eq. 10 is substantial, but not enough to keep a long
tail.

To see the effect on the distribution function, we solved the Boltzmann equation
approximately. Because of the long thermalization time, we neglected it. In the tail
the most important processes are frictional heating and energy loss caused by excitation.
Under the assumption of a cross section that is a constant for energies larger than the
threshold (not a bad approximation for the Lyman-alpha line), the Boltzmann equation
for energies larger than the excitation reduces to

af
e-a n f (v) v , = 0, (11)av oe

where

47Te 4 In A I 1 me
a = -n u

p 2 u u 2kTm e u

Here 4 is the error function and u is the speed of the primaries. In deriving Eq. 11

we supposed that the electron distribution decreases rapidly with energy.

Solving Eq. 11, we find that the tail of the distribution function is approximately

Gaussian, with a "temperature" (different from the temperature of the bulk) given by

m a
kT - e

e n -,

This temperature is so low that, as a consequence, the tail will not exist.

Conclusion

The predicted curves agree reasonably well with experimental data. The assumption

of no tail to f is shown to be self-consistent.e
The basic assumption of Coulomb heating as the power input to the plasma was the
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only available alternative for solving the problem. The nonlinear theory of beam-plasma

discharges is still at the stage where definite answers to the efficiency of the coupling

cannot be given.

We tried to use the results of Shapiro, 9 based on the quasi-linear theory. Here the

power input is independent of the plasma parameters, and the system of equations cannot

be solved for I or ne (all of the equations contain the ratio I/ne).
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9. NEUTRAL BEAM INJECTION SYSTEMS

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Peter T. Kenyon, Louis D. Smullin

Since the report in Progress Report No. 116 (pp. 78-85), we have extended the range

of our measurements in arc power and have studied the effect of varying cathode geom-

etry. We have studied two geometries: a tapered cathode, and 4 "magnetron" (cylin-

drical) cathodes. Figure XII-48 gives the dimensions of these structures. All cathodes

are unipotential, oxide-coated, and are run in the space-charge-limited regime.

The extracted ion current density is plotted in Fig. XII-49 as a function of input arc

power for several of these geometries. We have excluded the cathode with the largest

diameter (Df = 2. 2 cm), since it performed poorly with respect to plasma density, and

hence we took very little data. We do not yet understand why it behaves so poorly and

we shall report on it later. The poor performance of this cathode led us to construct

a long slender cathode which has proved to be the best performer in terms of ion cur-

rent density vs arc power, as is shown in Fig. XII-49.

We have observed that the plasma expands from the cathode in a bottle-shaped
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Cathode geometry and dimensions: (a) magnetron
cathode, (b) tapered cathode.
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Ion probe current density vs input power for three magnetron
cathodes (L++ = 5. 5 cm, L_ = 1. 3 cm, L+ = 2. 5 cm), and the

tapered cathode.

configuration (roughly along the diverging solenoidal field lines). This is shown in

Fig. XII-50, which gives a comparison of on- and off-axis measurements of ion currents.

The "magnetron" cathode offers the advantage of relatively high impedance. Fig-

ure XII-51 shows the I K vs VK characteristics with variations in solenoidal fields. These

curves indicate the possibility of injecting high beam power at relatively high voltages

and lower currents. This permits the use of smaller and simpler cathodes. In the multi-

filament arc experiment, 1 the discharge voltage = 50-60 V and requires 200-2000 A cur-

rents; if operation of 250 V were equally power efficient, the cathode size (and hence

heater power) could be reduced by approximately 5.
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Fig. XII-51. I K vs V K characteristics for a magnetron cathode (L = 2. 5 cm).
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All measurements have been made with single-electrode Langmuir probes. Fig-
ure XII-52 shows the electron energy distribution near a floating grid that terminates
the discharge, for various distances of the grid from the cathode plane. It can be seen
that the distribution has at least two temperatures and that both temperatures decrease
at greater distances from the cathode. We believe that there may be a substantial drift
component of velocity because of the V B 2 "forces ". The existence of such a drift can
be determined by utilizing either a velocity analyzer or a two-electrode Langmuir probe.
This measurement is now being prepared for our experiment.
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Fig. XII-52. Ion current vs probe voltage for a magnetron cathode (L_ = 1. 3 cm).

When the tapered cathode was used, we observed RF output up to 3-4 GHz, corre-

sponding to f for the observed density. The oscillations cover a very wide band and
p

have the noisy structure typical of beam-plasma oscillations. The oscillations were

observed with a wide range of solenoid field strength. In contrast, the cylindrical (mag-

netron) cathode exhibited such oscillations only for B < 100 G, and nothing above this.
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We believe that the low-field oscillations resulted from a radial beam-plasma oscillation,

but at higher fields the tighter orbits of the primaries are not consistent with fp oscil-

lations.

The electron "temperature" (Fig. XII-52) has been measured also for the tapered

cathode and is essentially indistinguishable from that of the magnetron cathode. Thus

it appears that in both systems the primary beam is "thermalized" in a region close

to the cathode where a fairly warm secondary plasma is also produced. If the important

mechanism for the tapered cathode is f beam-plasma oscillations, we have no corre-

sponding mechanism for the cylindrical cathode except a long dwell time for primaries

circling the cathode before drifting into the plasma chamber.
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