Table of Contents

1. **Molecule Microscopy** 1
 1.1 Research Objectives 1
 1.2 Design of Nanometer SDMM 2
 1.3 Scanning Micropipette Molecule Microscopy (SMMM) 3
 1.4 Electrical Neutrality of Molecules 4

2. **Semiconductor Surface Studies** 5
 2.1 Excitations at Surfaces and Interfaces of Solids 5

3. **Atomic Resonance and Scattering** 7
 3.1 Rydberg Atoms in a Magnetic Field 7
 3.2 Multiphoton Ionization 9
 3.3 Atoms in "Circular" States 10
 3.4 Laser Induced Fluorescence Study of NaAr 14
 3.5 Vibrationally Inelastic Collisions 15
 3.6 Diffraction of Sodium Atoms by a Standing Wave Laser Field 15
 3.7 A Search for Radiative Transitions in Atom–Molecule Systems 17
 3.8 Rotationally Inelastic Collisions 18

4. **Reaction Dynamics at Semiconductor Surfaces** 19

5. **X-Ray Diffuse Scattering** 21
 5.1 Intercalation Compound Structures and Transitions 21
 5.2 Smectic Liquid Crystals 22

6. **Phase Transitions in Chemisorbed Systems** 25
 6.1 Oxygen on Nickel and other Chemisorption Phase Diagrams 25
 6.2 Commensurate–Incommensurate Phase Transitions, Domain Walls, and Helicity in Two-Dimensional Systems 26
 6.3 Multicritical Phenomena in Cubic Symmetry Systems 26
 6.4 Crossover to Equivalent-Neighbor Multicritical Behavior 27
 6.5 Hydrogen–Bonding and Helix–Coil Transformations 27
 6.6 Improved Renormalization-Group Transformations 28

7. **Optics and Quantum Electronics** 31
 A. Nonlinear Phenomena 31
 7.1 Picosecond Optical Signal–Sampling Device 31
 7.2 Devices for High–Rate Optical Communications 32
 7.3 Picosecond Optics 35
 7.4 Ultrashort Pulse Formation 37
 7.5 Femtosecond Laser System 37
 7.6 Parametric Scattering with Femtosecond Pulses 38
 7.7 Near-IR Diagnostics 38
 7.8 Quaternary (InGaAsP) Diagnostics 39
 B. Grating Structures 40
 7.9 Surface Acoustic Wave Gratings 40

8. **Photonics** 43
 8.1 Ultrahigh–Resolution Spectroscopy and Frequency Standards in the Microwave and MM Wave Regions Using Optical Lasers 43

RLE P.R. No. 125
8.2 Resonant Light Diffraction by an Atomic Beam
8.3 Precision Atomic Beam Studies of Atom-Field Interactions
8.4 Measurement of Natural Predissociation Effects in Iodine Molecules
8.5 Passive Ring Resonator Method for Sensitive Inertial Rotation Measurements in Geophysics and Relativity
8.6 Closed Loop, Low Noise Fiberoptic Rotation Sensor
8.7 Fiberoptic Ring Resonator Gyroscope

9. Optical Spectroscopy of Disordered Materials and X-Ray Scattering from Surfaces

10. Infrared Nonlinear Optics
10.1 Infrared Nonlinear Processes in Semiconductors

11. Quantum Optics and Electronics
11.1 Nonlinear Optical Interactions in Semiconductors
11.2 Picosecond Dye Laser Optics
11.3 Nonlinear Spectroscopy of Atoms and Molecules

12. Microwave and Millimeter Wave Techniques
12.1 Cooled FET Amplifiers at 8 and 15 GHz

13. Microwave and Quantum Magnetics
13.1 Millimeter Wave Magnetics
13.2 New Techniques to Guide and Control Magnetostatic Waves
13.3 Optical and Inductive Probing of Magnetostatic Resonances
13.4 Magnetostatic Wave Dispersion Theory
13.5 Magnetoelastic Waves and Devices
13.6 Microwave Hyperthermia Group
13.7 Design of Planar Arrays

14. Radio Astronomy
14.1 Microwave Spectroscopy of the Interstellar Medium
14.2 Galactic and Extragalactic Radio Astronomy
14.3 Interacting Galaxies
14.4 The 6 cm Radio Survey
14.5 Morphology and Optical Identifications
14.6 Interstellar Masers
14.7 VLBI Studies
14.8 Planned Program, 1983–84
14.9 Jovian Decametric Radiation
14.10 Long-Baseline Astrometric Interferometer
14.11 Tiros-N Satellite Microwave Sounder
14.12 Improved Microwave Retrieval Techniques
14.13 Scanning Multi-Channel Microwave Radiometer (SMMR)
14.14 Video-Bandwidth Compression Techniques
14.15 Communications Satellites
14.16 Electrostatically–Figured Membrane Reflector

15. Electromagnetic Wave Theory and Remote Sensing
15.1 Electromagnetic Waves
15.2 Remote Sensing with Electromagnetic Waves
21.1 Introduction
21.2 Parabolic Wave Equation Modeling for Underwater Acoustics
21.3 Adaptive Image Restoration
21.4 Signal Reconstruction from Partial Fourier Domain Information
21.5 Knowledge-Based Pitch Detection
21.6 Multi-Dimensional High-Resolution Spectral Analysis and Improved Maximum Likelihood Method
21.7 Processing and Inversion of Arctic Refraction Data
21.8 Signal Estimation from Modified Short-Time Fourier Transform
21.9 Speech Enhancement Using Adaptive Noise Cancelling Algorithms
21.10 Overspecified Normal Equations for Autoregressive Spectral Estimation
21.11 Spectral Analysis Methods for Non-Stationary Time Series
21.12 Speech Coding Using the Phase of the Long-Time LPC Residual Signal
21.13 The Numerical Synthesis and Inversion of Acoustic Fields Using the Hankel Transform with Application to the Estimation of the Plane Wave Reflection Coefficient of the Ocean Bottom
21.14 Optimal Signal Reconstruction and ARMA Model Identification Given Noisy and Incomplete Observation Data
21.15 The Use of Speech Knowledge in Speech Enhancement
21.16 Estimation of the Degree of Coronary Stenosis Using Digital Image Processing Techniques
21.17 Automatic Target Detection in Aerial Reconnaissance Photographs
21.18 Enhancement of Helium-Degraded Speech
21.19 Facial Parameterization for Low Bit Rate Video Conferencing
21.20 Bottom Profile Determination in a Shallow Ocean

22. Speech Communication
22.1 Speech Recognition
 22.1.1 Phonological Properties of Large Lexicons
 22.1.2 Lexical Access
 22.1.3 Acoustic Cues for Word Boundaries
 22.1.4 Speaker-Independent, Continuous Digit Recognition
 22.1.5 LAFS Recognition Model
 22.1.6 Interactive Speech Research Facilities
22.2 Auditory Models and Analysis Techniques
22.3 Speech Synthesis
22.4 Physiology of Speech Production
22.5 Acoustics of Speech Production
22.6 Speech Production Planning
22.7 Studies of Acoustics and Perception of Speech Sounds
22.8 Speech Processing in Children and Older Subjects

23. Linguistics

24. Cognitive Information Processing
24.1 Picture Coding
24.2 Digital Wirephoto System
24.3 Graphic Arts Applications

26 Trademark of the A.P.
List of Figures

Figure 3-1: Two-Photon Resonance in Lithium 8

Figure 3-2: The cross section for 4 photon ionization of atomic hydrogen as calculated by Reinhardt for a single frequency laser. To facilitate comparison, the cross section has been divided by I^3. As the intensity increases, the peaks shift to the blue and become broader. 10

Figure 3-3: Ionization profiles produced by laser intensity I^6 and at five times that intensity $5I^6$. As the laser intensity is increased, the ionization profile becomes broad and asymmetric and is shifted to the blue of threshold. 11

Figure 3-4: Schematic diagram of the excitation process, illustrated with hydrogen, $n = 4$. a) (above) Energy levels in an electric field, neglecting the second order Stark effect. The bold arrows show the excitation path used to populate the circular state, $|m| = 3$; the light arrows show an alternative excitation route; the dashed arrows show "leakage" transitions which must be avoided. b) (below) The progression of $n_1 = 0$ levels in a decreasing field, with the second order Stark effect exaggerated for clarity. An adiabatic rapid transition can occur whenever the energy level separation passes through resonance with the microwave frequency ν. Because of the second order Stark effect these transitions occur successively, "stepping" the population along the route shown in a), above. 12

Figure 3-5: Distribution of population in lithium for various values of $|m|$ as revealed by selective field ionization. States are $n = 19, n_1 = 0$. The ionization field increases with time. The ionization thresholds occur in increasing fields as $|m|$ increases. a) $|m| = 2$ states initially populated by laser excitation in a field of 830 Vcm$^{-1}$. The signal is clipped due to saturation of the detector. The small peak to the left is due to $|m| = 0$ atoms. The small peak to the right is due to $|m| = 2$ atoms which ionize hydrogenically. The $|m| = 2$ peak occurs at approximately 4.5kVcm$^{-1}$. b) Same as a), but with the adiabatic rapid passage field ramp on for a time $\tau_{rp} = 4 \mu s$. The $|m| = 2$ population has been transferred predominantly to $|m| = 17$. c) τ_{rp} increased: ionization signals for $|m| = 17$ and 18 are both visible. d) $\tau_{rp} > 4.5 \mu s$. The $|m| = 18$ circular states is populated. No further change in the ionization signal occurs with increasing τ_{rp}. The ionizing field is approximately 5.9 kVcm$^{-1}$. 13

Figure 3-6: Figure 116

Figure 3-7: Figure 36

Figure 7-1: Figure 16

Figure 19-1: Soft x-ray spectra of
(a) ohmic discharge before RF pulse
(b) during injection of 45 kW of lower-hybrid power

Figure 19-2: Temporal evolution of signals during the LHCD density increase:
(a) plasma current, (b) loop voltage, (c) density, (d) central chord brightness of H$_\alpha$, 4661A, (e) central chord brightness of CV 2271A $P_{RF} = 10 k\omega, \Delta \varphi = +60^\circ$

Figure 19-3: Temporal evolution of signals during LHCD density increase
(a) plasma current, (b) loop voltage, (c) density, (d) density fluctuation level from 2 mm microwave scattering, $f_0 = 325$ kHz, (e) hard x-ray signal, (f) edge density from Langmuir probe, (g) central chord brightness of H$_\beta$

Figure 19-4: Frequency spectrum of RF bursts with/without LHCD from RF probe in limiter shadow 118

RLE P.R. No. 125