Table of Contents

The Research Laboratory of Electronics

PART I SOLID STATE PHYSICS, ELECTRONICS, AND OPTICS

Section 1 Materials and Fabrication

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compound Semiconductor Materials and Devices</td>
</tr>
</tbody>
</table>

Professor Clifton G. Fonstad, Jr.

<table>
<thead>
<tr>
<th>1.1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Epitaxy-on-Electronics Integration Technology</td>
</tr>
<tr>
<td>1.3</td>
<td>InGaAsP/GaAs Light Emitting Diodes Monolithically Integrated on GaAs VLSI Electronics</td>
</tr>
<tr>
<td>1.4</td>
<td>The OPTOCHIP Project</td>
</tr>
<tr>
<td>1.5</td>
<td>Low-Temperature Growth of Aluminum-Free InGaP/GaAs/InGaAs LED and Laser Diode Heterostructures by Solid Source MBE using a GaP Cell</td>
</tr>
<tr>
<td>1.6</td>
<td>Dry-Etch Technology for Aluminum-free InGaP/GaAs/InGaAs Laser Diode Facets and Deflectors</td>
</tr>
<tr>
<td>1.7</td>
<td>Monolithic Integration of Vertical-Cavity Surface-Emitting Laser Diodes on GaAs VLSI Electronics</td>
</tr>
</tbody>
</table>

1.8	Hyperthermal Molecular Beam Dry Etching of III-V Compound Semiconductors
1.9	Microwave Characterization of Optoelectronic Devices
1.10	Monolithic Integration of 1550 nm Photodetectors on GaAs Transimpedance Amplifier Chips
1.11	Design and Analysis of VCSEL-Based Resonant Cavity Enhanced Photodetectors
1.12	Si-on-GaAs: Monolithic Heterogeneous Integration of Si CMOS with GaAs Optoelectronic Devices using EoE, SOI, and MEMS Techniques
1.13	Aligned, Selective-Area Wafer-Scale Bonding of Optoelectronic Devices on GaAs Integrated Circuits
1.14	Normal-Incidence Quantum Well Intersubband Photodetectors (QWIPs) for Monolithic Integration
1.15	Publications

Chapter 2 Physics of InAlAs/InGaAs Heterostructure Field-Effect Transistors

Professor Jesús A. del Alamo

<table>
<thead>
<tr>
<th>2.1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>A New Measurement Technique for On-State Breakdown Voltage</td>
</tr>
<tr>
<td>2.3</td>
<td>On-State Breakdown Physics</td>
</tr>
<tr>
<td>2.4</td>
<td>A New Model for On-state Breakdown Voltage</td>
</tr>
<tr>
<td>2.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td>2.6</td>
<td>Publications</td>
</tr>
</tbody>
</table>

* Sponsored by the Joint Services Electronics Program
Table of Contents

Chapter 3 Epitaxial Growth and Processing of Compound Semiconductors

Professor Leslie A. Kolodziejski, Dr. Gale S. Petrich

3.1 Introduction .. 29
3.2 Development of Semiconductor Optical Devices for All-Optical Communication Networks 29
3.3 Photonic Bandgap Structures 33
3.4 Growth of Bandgap-Engineered Distributed Bragg Reflectors .. 35

Section 2 Quantum-Effect Devices. .. 37

Chapter 2 Theory of Electron Transmission Through a Quantum Dot: Coulomb Blockade and the Kondo Effect

Professor Patrick A. Lee

2.1 Project Description ... 43

Chapter 3 Superconducting and Quantum-Effect Electronics

Professor Terry P. Orlando

3.1 Engineering Josephson Oscillators 45
3.2 Triangular Arrays of Josephson Junctions 46
3.3 Nonlinear Dynamics Of Discrete Josephson Arrays 47
3.4 Coupled Rings of Josephson Junctions: Interactions of Topological Kinks 48
3.5 Meissner-like States in Josephson Arrays 50
3.6 Self-Field Effects on Flux Flow in Josephson Arrays 51
3.7 Quantum Device Simulations 52

Chapter 4 Nanostructures Technology, Research, and Applications

Professor Henry I. Smith

4.1 NanoStructures Laboratory 55
4.2 Scanning-Electron-Beam Lithography 55
4.3 Spatial-Phase-Locked Electron-Beam Lithography 56
4.4 X-Ray Nanolithography .. 57
4.5 Zone-Plate Based X-Ray and Deep-UV Projection Lithography 59
4.6 Improved Mask Technology for X-Ray Lithography 60
4.7 Robust, High-Precision Mask Alignment and X-ray Exposure System .. 61
4.8 Interferometric Lithography 63
4.9 Sub-100 nm Metrology Using Interferometrically Produced Fiducial Grids 64
4.10 Arrays of Nanomagnets for High-Density Information Storage 65
4.11 Design and Fabrication of Single-Mask 50 nm MOSFETs 67
4.12 CMOS Technology for 25 nm Channel Length 68
4.13 Fabrication of T-gate Devices Using X-ray Lithography 69
4.14 Single-Electron Transistor Research 70
4.15 One-Dimensional Photonic-Band-Gap Devices in SOI Waveguides 72
Table of Contents

4.16 Three-dimensional Photonic Bandgap Structures ... 74
4.17 Design and Fabrication of an Integrated Channel-Dropping Filter in InP 75
4.18 Fabrication of an Integrated Optical Grating-Based Matched Filter for
Fiber-Optic Communications ... 77
4.19 High-Dispersion, High-Efficiency Transmission Gratings for Astrophysical
X-ray Spectroscopy ... 79
4.20 Super-smooth X-ray Reflection Gratings .. 80
4.21 Transmission Gratings as UV-blocking Filters for Neutral Atom Imaging 82

- 4.22 Submicrometer-Period Transmission Gratings for X-ray and Atom-Beam
Spectroscopy and Interferometry .. 83
- 4.23 Field-Emitter-Array Flat-Panel Displays for Head-Mounted Applications 84
- 4.24 Development of High-Speed Distributed Feedback (DFB) and Distributed-Bragg
Semiconductor Lasers .. 85
- 4.25 Publications .. 86

Chapter 5

Subsurface Charge Accumulation Imaging .. 89
Professor Raymond C. Ashoori

- 5.1 Introduction ... 89
- 5.2 Publications ... 93

Section 3

Optics and Devices .. 95

*Professor Hermann A. Haus, Professor Erich P. Ippen, Professor James G. Fujimoto,
Professor Peter L. Hagelstein, Dr. Brett E. Bouma, Dr. Jay N. Damask*

1.1 Modelocked Lasers using Erbium-doped Glass Waveguide Amplifiers 97
1.2 Publications ... 98
- 1.3 Environmentally-Stable Stretched-Pulse Fiber Laser ... 99
- 1.4 High-Repetition Rate Laser Sources ... 100
- 1.5 Asynchronous Phase-Modulated Optical Fiber Buffer ... 101
- 1.6 Optical Pulse Filtering with Dispersion-Imbalanced Loop Mirrors 102
- 1.7 Stretched-Pulse Propagation ... 106
- 1.8 Direct Measurement of Self-Phase Shift due to Fiber Nonlinearity 107
- 1.9 Wavelength Stabilized Modelocked Laser Source Gyro Applications 109
- 1.10 Optical Measurements of Photonic Bandgap Resonators in the Near Infrared 109
- 1.11 Optical Resonant Structures ... 110
- 1.12 Ultrafast Gain-index Coupling in InGaAsP Diode Lasers 112
- 1.13 Femtosecond Studies of THz Acoustic Phonons in PbTe Quantum Dots 113
- 1.14 Ultrashort Pulse Generation and Ultrafast Phenomena ... 113
- 1.15 Laser Medicine and Medical Imaging .. 118
- 1.16 Analytical Confirmation of Stochastic Soliton Formulation 129
- 1.17 Long-Time Evolution of Soliton Position and Phase in the Second-Quantized Model ... 130
- 1.18 Local Consequences of Strong Phonon Excitation in a Lattice 132
- 1.19 Steady State Hydrodynamic Ablation .. 134

* Sponsored by the Joint Services Electronics Program
Table of Contents

Chapter 2 Optical Propagation and Communication

Professor Jeffrey H. Shapiro, Dr. Ngai C. Wong

2.1 Introduction .. 137
2.2 Nonlinear and Quantum Optics 137
2.3 Object Detection and Recognition 140
2.4 Optical Frequency Metrology 142

Chapter 3 Millimeter-wave, Terahertz, and Infrared Devices

Professor Qing Hu

3.1 Introduction .. 145
3.2 Micromachined SIS Millimeter-wave Focal-plane Arrays .. 146
3.3 Intersubband-transitions Lasers 148
3.4 Publications 152

Chapter 4 Semiconductor Lasers: Physics and Applications

Professor Rajeev J. Ram

4.1 Introduction .. 155
4.2 Band Structure and Optical Gain in Strained Layer Quantum Wells 155
4.3 Band Gap Engineering of Distributed Bragg Reflectors .. 157
4.4 Thermal Oxide for Ridge-Waveguide Semiconductor Lasers .. 158
4.5 High-Speed Semiconductor Laser Development .. 160
4.6 Nonlinear Response of DFB Lasers 161
4.7 High-Fidelity, High-Dynamic Range Fiber Communications .. 162
4.8 Device Level Modeling of Communication Systems .. 164
4.9 Analog Signal Transmission Using Surface Emitting Lasers .. 164

Section 4 Surfaces and Interfaces

Chapter 1 Mesoscopic Quantum Magnetic Conductors

Professor Robert J. Birgeneau

- 1.1 Order Driven by Disorder .. 169

Chapter 2 Semiconductor Surface Studies

Professor John D. Joannopoulos

- 2.1 Introduction .. 171
- 2.2 Adatom Vacancies on the Si(111)–(7×7) Surface .. 171
- 2.3 Unified Approach for Calculation of Force-Constants and Accelerated Convergence of Atomic Coordinates .. 174
- 2.4 Publications 177

Chapter 3 Step Structures and Epitaxy on Semiconductor Surfaces

Professor Simon G.J. Mochrie

- 3.1 Anisotropic Coarsening of Self-Assembling Periodic Grooves .. 179
- 3.2 Publications 183
PART II APPLIED PHYSICS
Section 1 Atomic, Molecular, and Optical Physics

Chapter 1 Quantum Optics and Photonics

Professor Shaoul Ezekiel, Dr. Selim M. Shahriar, Dr. Stephen P. Smith

1.1 Polarization Selective Motional Holeburning for High-Efficiency, Degenerate Optical Phase Conjugation in Rubidium

1.2 Demonstration of a Phase Conjugate Resonator using Degenerate Four-Wave Mixing via Coherent Population Trapping in Rubidium

1.3 Intracavity High-speed Turbulence Abberation Correction in a Sodium Phase Conjugate Resonator.

1.4 Frequency-selective Time-domain Optical Data Storage by Electromagnetically Induced Transparency in a Rare-earth Doped Solid

1.5 Spin Coherence Excitation and Rephasing with Optically Shelved Atoms

1.6 Long-Term Optical Data Storage in Thick Holograms

1.7 Atomic Interferometry for Nanolithography and Nonlinear Atom Optics

1.8 Multi-atom Quantum Bits and Cavity Dark States for Quantum Computing in Spectral Holeburning Media

1.9 Fiberoptic Damage Detection

Chapter 2 Basic Atomic Physics

Professor Daniel Kleppner, Professor David E. Pritchard, Professor Wolfgang Ketterle

2.1 Determination of the Rydberg Frequency

2.2 Recurrence Spectroscopy of Rydberg Atoms in an Oscillating Field

2.3 Atom Interferometry.

2.4 Precision Mass Spectrometry of Ions

2.5 Cooling and Trapping Neutral Atoms

Section 2 Plasma Physics

Chapter 1 Plasma Dynamics

Professor Abraham Bers, Professor Bruno Coppi, Dr. Didier Benisti, Dr. Stephano Migliuolo, Dr. Abhay K. Ram, Dr. Linda E. Sugiyama, Ronald J. Focia, Steven D. Schultz

1.1 Plasma Wave Interactions—RF Heating and Current Generation

1.2 Physics of Thermonuclear Plasmas

Section 3 Electromagnetics

Chapter 1 Electromagnetic Wave Theory and Applications

Professor Jin Au Kong, Dr. Kung Hau Ding, Dr. Robert T. Shin, Dr. Y.-C. Eric Yang

1.1 Inversion of Sea Ice Parameters

1.2 Study of the Effects of Radio Interference on ILS

1.3 Development of Atmospheric Attentuation Model

1.4 SIR-C Polarimetric Radar Image Simulation and Interpretation

1.5 Polarimetric Passive Remote Sensing

1.6 Analytic and Monte Carlo Studies on Electromagnetic Interactions with Nonspherical Dense Media

1.7 Analysis of Electromagnetic Interaction with Ships on the Ocean

1.8 Electromagnetic Waves in Complex Media

* Sponsored by the Joint Services Electronics Program
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>Research on SAR Simulation Model</td>
<td>272</td>
</tr>
<tr>
<td>1.10</td>
<td>Research on SAR Interferometry</td>
<td>273</td>
</tr>
<tr>
<td>1.11</td>
<td>Publications</td>
<td>273</td>
</tr>
<tr>
<td>Section 4</td>
<td>Radio Astronomy</td>
<td>277</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Remote Sensing and Estimation</td>
<td>279</td>
</tr>
<tr>
<td>Professor David H. Staelin, Dr. Philip W. Rosenkranz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Geostationary Microwave Sounder Study</td>
<td>279</td>
</tr>
<tr>
<td>1.2</td>
<td>Algorithms for Operational Meteorological Satellite Instruments</td>
<td>279</td>
</tr>
<tr>
<td>1.3</td>
<td>Development and Operation of an NPOESS Aircraft Sounder Testbed Passive Microwave Sensor</td>
<td>279</td>
</tr>
<tr>
<td>1.4</td>
<td>Earth Observing System: Advanced Microwave Sounding Unit</td>
<td>280</td>
</tr>
<tr>
<td>1.5</td>
<td>High-Resolution Passive Microwave Imaging of Atmospheric Structure</td>
<td>280</td>
</tr>
<tr>
<td>1.6</td>
<td>Reduction of Variation</td>
<td>281</td>
</tr>
<tr>
<td>PART III</td>
<td>SYSTEMS AND SIGNALS</td>
<td></td>
</tr>
<tr>
<td>Section 1</td>
<td>Computer-Aided Design</td>
<td>285</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Custom-Integrated Circuits</td>
<td>287</td>
</tr>
<tr>
<td>Professor Jonathan Allen, Professor Srinivas Devadas, Professor John L. Wyatt, Jr., Professor Berthold K.P. Horn, Professor Hae-Seung Lee, Professor Charles G. Sodini, Dr. Ichiro Masaki, Dr. Joseph F. Rizzo III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Interactive Learning Environment for Integrated Circuit Design</td>
<td>287</td>
</tr>
<tr>
<td>1.2</td>
<td>Vision Project</td>
<td>288</td>
</tr>
<tr>
<td>1.3</td>
<td>Cost-Effective Hybrid Vision Systems for Intelligent Highway Applications</td>
<td>292</td>
</tr>
<tr>
<td>1.4</td>
<td>Computer-Aided Design Techniques for Embedded System Design</td>
<td>295</td>
</tr>
<tr>
<td>1.5</td>
<td>Functional Verification of VLSI Systems</td>
<td>297</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Computational Prototyping Tools and Techniques</td>
<td>301</td>
</tr>
<tr>
<td>Professor Jacob K. White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Free-Surface Hydrodynamics for Offshore Structure Analysis</td>
<td>301</td>
</tr>
<tr>
<td>2.2</td>
<td>Simulation Tools for Micromachined Device Design</td>
<td>301</td>
</tr>
<tr>
<td>2.3</td>
<td>Simulation Algorithms for RF Circuits</td>
<td>302</td>
</tr>
<tr>
<td>2.4</td>
<td>Numerical Techniques for Integral Equations</td>
<td>303</td>
</tr>
<tr>
<td>2.5</td>
<td>Efficient Three-Dimensional Interconnect Analysis</td>
<td>304</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Computer-Assisted Prototyping of Advanced Microsystems</td>
<td>307</td>
</tr>
<tr>
<td>Professor Donald E. Troxel, Michael B. McIlrath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Advanced Modeling and Computational Prototyping</td>
<td>307</td>
</tr>
<tr>
<td>3.2</td>
<td>Distributed Collaborative Design and Prototyping Infrastructure</td>
<td>312</td>
</tr>
<tr>
<td>3.3</td>
<td>Scheduling Language for Manufacturing Systems</td>
<td>316</td>
</tr>
</tbody>
</table>
Table of Contents

Section 2 Digital Signal Processing

Chapter 1 Digital Signal Processing Research Program

Professor Alan V. Oppenheim, Professor Arthur B. Baggeroer, Professor Anantha P. Chandrakasan, Professor Gregory W. Wornell

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>319</td>
</tr>
<tr>
<td>1.2</td>
<td>Dual-Channel Signal Processing</td>
<td>320</td>
</tr>
<tr>
<td>1.3</td>
<td>Multipass Receivers for Spread-Signature CDMA Systems</td>
<td>320</td>
</tr>
<tr>
<td>1.4</td>
<td>Channel Equalization</td>
<td>321</td>
</tr>
<tr>
<td>1.5</td>
<td>Steganographic Communication</td>
<td>321</td>
</tr>
<tr>
<td>1.6</td>
<td>Data Transmission and Storage under Dynamic Bandwidth Constraints</td>
<td>321</td>
</tr>
<tr>
<td>1.7</td>
<td>Underwater Acoustic Communication over Doppler Spread Channels</td>
<td>322</td>
</tr>
<tr>
<td>1.8</td>
<td>Algebraic and Probabilistic Structure in Fault-Tolerant Computation</td>
<td>322</td>
</tr>
<tr>
<td>1.9</td>
<td>Estimation and Equalization of Wireless Fading Channels</td>
<td>323</td>
</tr>
<tr>
<td>1.10</td>
<td>Distributed Signal Processing</td>
<td>323</td>
</tr>
<tr>
<td>1.11</td>
<td>Transmit Antenna Arrays for Multiple-User Wireless Communication</td>
<td>324</td>
</tr>
<tr>
<td>1.12</td>
<td>Approximate Signal Processing</td>
<td>324</td>
</tr>
<tr>
<td>1.13</td>
<td>A Framework for Low-Complexity Communication Over Channels with Feedback</td>
<td>325</td>
</tr>
<tr>
<td>1.14</td>
<td>Analysis and Applications of Systems Exhibiting Stochastic Resonance</td>
<td>325</td>
</tr>
<tr>
<td>1.15</td>
<td>Linear Models for Randomized Sampling of Discrete-Time Signals</td>
<td>326</td>
</tr>
<tr>
<td>1.16</td>
<td>Modeling and Design of Approximate Digital Signal Processors and Approximate DSP Networks</td>
<td>326</td>
</tr>
<tr>
<td>1.17</td>
<td>Sinusoidal Analysis Synthesis</td>
<td>327</td>
</tr>
<tr>
<td>1.18</td>
<td>Speech Enhancement with Side Information</td>
<td>327</td>
</tr>
<tr>
<td>1.19</td>
<td>Communications Using Chaotic Systems</td>
<td>327</td>
</tr>
<tr>
<td>1.20</td>
<td>Parameter Estimation for Autoregressive Gaussian-Mixture Processes</td>
<td>328</td>
</tr>
<tr>
<td>1.21</td>
<td>Array Processing Techniques for Broadband Mode Estimation</td>
<td>328</td>
</tr>
<tr>
<td>1.22</td>
<td>Multiscale State-Space Algorithms for Processing 1/f Signals</td>
<td>329</td>
</tr>
<tr>
<td>1.23</td>
<td>Publications</td>
<td>329</td>
</tr>
<tr>
<td>1.24</td>
<td>Self-Powered Signal Processing</td>
<td>331</td>
</tr>
</tbody>
</table>

Chapter 2 Advanced Telecommunications and Signal Processing Program

Professor Jae S. Lim

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>2.2</td>
<td>Signal Processing for Signals with Arbitrarily Shaped Regions of Support</td>
<td>334</td>
</tr>
<tr>
<td>2.3</td>
<td>Source Multiplexing for Variable Bit Rate Video with Partial or Complete Information</td>
<td>334</td>
</tr>
<tr>
<td>2.4</td>
<td>Speech Enhancement</td>
<td>335</td>
</tr>
<tr>
<td>2.5</td>
<td>Real-Time Video on the Internet</td>
<td>335</td>
</tr>
<tr>
<td>2.6</td>
<td>Digital Processing of Underwater Images</td>
<td>335</td>
</tr>
<tr>
<td>2.7</td>
<td>HDTV Transmission Format Conversion and the HDTV Migration Path</td>
<td>336</td>
</tr>
<tr>
<td>2.8</td>
<td>Study on Migration to a Higher Resolution Digital Television System</td>
<td>336</td>
</tr>
</tbody>
</table>

* Sponsored by the Joint Services Electronics Program
Table of Contents

<table>
<thead>
<tr>
<th>Section 3</th>
<th>Microelectromechanical Systems</th>
<th>339</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Computer Microvision for Microelectromechanical Systems</td>
<td>341</td>
</tr>
</tbody>
</table>

Professor Dennis M. Freeman, Professor Donald E. Troxel, Michael B. McIlrath

1.1 Computer Microvision for Microelectromechanical Systems | 341
1.2 Calibration of Fatigue Test Structures | 341
1.3 Modal Analysis of the Draper Gyroscope | 343
1.4 Speckle Heterodyne Microscopy | 345
1.5 Test Studies for Microelectromechanical Systems | 346

PART IV LANGUAGE, SPEECH, AND HEARING

Section 1 Speech Communication | 351

Chapter 1 Speech Communication | 353

Professor Kenneth N. Stevens, Dr. Joseph S. Perkell, Dr. Stefanie Shattuck-Hufnagel

1.1 Studies of the Acoustics, Perception, Synthesis, and Modeling of Speech Sounds | 354
1.2 Studies of Normal Speech Production | 357
1.3 Speech Research Relating to Special Populations | 360
1.4 Speech Production Planning and Prosody | 363
1.5 Models of Lexical Representation and Lexical Access | 364
1.6 Laboratory Facilities for Speech Analysis and Experimentation | 366
1.7 Publications | 366

Section 2 Sensory Communication | 369

Chapter 1 Sensory Communication | 371

Professor Louis D. Braida, Nathaniel I. Durlach, Dr. Cagatay Basdogan, Dr. Julie E. Greenberg, Dr. William M. Rabinowitz, Dr. Charlotte M. Reed, Dr. Mandayam A. Srinivasan, Dr. Thomas E.v. Wiegand, Dr. Patrick M. Zurek

1.1 Introduction | 371
1.2 Hearing Aid Research | 371
1.3 Enhanced Communication for Speechreaders | 375
1.4 Tactile Communication of Speech | 379
1.5 Multimicrophone Hearing Aids | 381
1.6 Hearing-Aid Device Development | 382
1.7 Binaural Hearing | 382
1.8 Virtual Environment Technology for Training | 383
1.9 Training for Remote Sensing and Manipulation | 393
1.10 Training Spatial Knowledge Acquisition Using Virtual Environments | 398
1.11 Further Research on Superauditory Localization for Improved Human-Machine Interfaces | 399
1.12 Role of Skin Biomechanics in Mechanoreceptor Response | 399
Table of Contents

Section 3
Auditory Physiology .. 409

Chapter 1
Signal Transmission in the Auditory System 411

Professor Dennis M. Freeman, Professor William T. Peake, Professor Thomas F. Weiss, Dr. Bertrand Delgutte, Dr. John J. Rosowski
1.1 Middle and External Ear ... 411
1.2 Cochlear Mechanisms .. 413
1.3 Auditory Neural Coding of Speech 418
1.4 Neural Mechanisms of Spatial Hearing 420

Section 4
Linguistics ... 423

Chapter 1
Linguistics ... 425

Professor Morris Halle, Professor Noam A. Chomsky
1.1 Introduction ... 425
1.2 Abstracts of Doctoral Dissertations 425

APPENDICES

Appendix A
RLE Publications and Papers Presented 431
A.1 Meeting Papers ... 431
A.2 Journal Articles .. 443
A.3 Books/Chapters in Books ... 457
A.4 RLE Publications .. 458
A.5 RLE Theses ... 459

Appendix B
Current RLE Personnel .. 463

Appendix C
Milestones ... 467
C.1 New Faculty and Research Staff 467
C.2 Honors and Awards .. 467
C.3 Promotions ... 469
C.4 Retirement ... 470

Appendix D
RLE Research Support Index .. 471

Project Staff and Subject Index .. 475

* Sponsored by the Joint Services Electronics Program