Project Staff and Subject Index
Project Staff and Subject Index

A

Abnet, C. Cameron 411, 413
Ackerson, Jerome J. 267, 272–273
Acoustic speech signals 375
Acoustics of speech sounds 354–357
Actuators 346
Advanced microwave sounding unit 280
Ahadian, Joseph F. 7–9, 11, 15–16
Airoldi, August 248
Akinwande, Akintunde I. 84
Alcator C-Mod 254–255
Alcator machines 249–264
Aldridge, Mary C. 97
Aliberti, Giovanni 319
Alkhairy, Ashraf 353
Allen, Jonathan 287–288, 353
All-optical communication networks 29
Aluminum content 159
Aluru, Narayana R. 301–302
Amirtharajah, Rajeevan 319, 331
Andrews, Michael R. 207, 220
Antoniadis, Dimitri A. 67–68, 307
Ao, Chi O. 267, 271–272
Apostolopoulos, John G. 333–334
Approximate signal processing 324
Aranyosi, Alexander J. 341, 411, 413
Arnold, Olga M. 7, 29, 45
Ashoori, Raymond C. 70, 89
Astrophysical x-ray spectroscopy 79
AT&T Bell Laboratories 152, 333
Atmospheric attenuation model 269
Atom interferometry 215
Atom lasers 220
Atom-beam spectroscopy 83
Atomic masses 218
Atomic physics 189–205, 207–225
Auditory cortex 356
Auditory midbrain 418
Auditory system 411–421
Automatic cueing system 378
Automatic speech recognition 377
Automatic target detection and recognition 140

B

Bae, Jungmok M. 65
Baek, Judy Y.-K. 425
Baggeroer, Arthur B. 319, 322, 328
Bal, Igor 268, 304
Balzer, Janice L. 341, 411
Barahona, Mauricio 45, 47
Barrett, John W. 279–280
Barron, Richard J. 319–320
Basdogan, Cagatay 371, 383, 407
Baylon, David M. 333–334
Beheshti, Soosan 319–320
Belevtsev, Vitali 229, 248
Benisti, Didier 229, 232
Berman, David B. 55, 70
Bernshteyn, Alex 55–56
Bernstein, Alex 189
Bers, Abraham 229–248
Bers-Briggs pinch point analysis 245
Bertino, Giuseppe 229, 248
Besok, Ali 301–302
Bickley, Corine A. 353
Bilinsky, Igor P. 29, 97, 113
Bilaeu, Bryan C. 411, 413
Binaural hearing 382
Biomedical optics 118–128
Birch, Amanda S. 371, 400
Birgineau, Robert J. 169
Blackwell, William J. 279–280
Blindness 288
Bock, Michael 189
Bombarda, Francesca 229, 248
Boning, Duane S. 307, 312–313, 315
Bonney, Robert 137
Boppart, Stephen A. 97, 118
Bora, Madhurjya 229, 248
Bose-Einstein condensates 220–225
Bouma, Brett E. 97, 113, 118
 Bounds, Jeffrey K. 137
Bowers, Jeffrey A. 189
Bowring, Kristine 179
Boyce, Suzanne E. 353
Bozler, Carl 84
Braddock, David 10–11
Bradley, Michael P. 207, 217
Brady, Felicia G. 279
Bragg reflectors 157
Braida, Louis D. 371–379
Brantley, Merry A. 371, 382
Braunisch, Henning 267, 271
Brezinski, Mark E. 97, 118
Broadband mode estimation 328
Broadband mode estimation 328
Brooks, Andrew G. 371, 398
Brothers, L. Reginald 137, 142
Brughera, Andrew R. 371, 379, 382, 393, 398
Brungart, Douglas S. 371, 399
Buchmann, Bjarne 301

C

Cabrera, Carlos R. 279–280
California Institute of Technology 10
Canizares, Claude R. 79–80, 82
Cao, Ronald 279, 281
Caputo, P. 46
Carpignano, Franco 248
Carter, David J. 45, 55, 57
Carter, James M. 55, 60, 63, 65
Cazares, Shelley M. 411, 413
Cesar, C.L. 113
Chafe, Susan E. 287, 301
Chamon, Claudio 92
Chan, Albert 319, 321
Chan, Vanessa 55
Chandrasekaran, Anantha P. 287, 307, 315, 319, 331–332, 469
Chang, Hwa-Ping 362
Channel dropping filters 110
Channel equalization 321
Chaos in plasmas 229
Chaotic systems 327
Chemical beam epitaxy 29–36
Chen, Brian 319, 321
Chen, Fred W. 279–280
Chen, Helen 363
Chen, Jianyao 155, 161–162, 164, 467
Cheng, Haigian 287
Cheng, Po-Hsiu 97, 112
Chery, Yonald 307
Cheyne, Harold A. 353
Chi-Hao Ho 407
Chikkatur, Ananth P. 207, 220
Cho, Doo Jin 55
Cho, Kyeongjae 171
Cho, Seong-Ho 97, 113
Choi, Jeung-Yoon 353
Chomsky, Noam A. 425
Choquette, Kent D. 164
Chou, Michael 304
Chou, Patrick C. 97, 109
Choy, Henry K. 7, 12, 15
Chuang, Erika 353
Chung, James 68

Clear speech 373
Cochlear implants 378
Cochlear mechanisms 413–414
Code-division multiple-access systems 320
Cognitive processes 371
Collective excitations 221
Colorado State University 10
Columbia University 81
Communication networks 29, 77
Compound semiconductors 7–19, 29–36
Computer haptics 387
Computer microvision 341–347
Computer-aided design 307–316
Computer-based speech recognition 354
Consonant voicing for postvocalic consonants 354
Cooling and trapping neutral atoms 220
Coppi, Bruno 229–248
Coronary atherosclerosis 122
Costa, Carol A. 207
Cottrell, Jared D. 341, 346
Coulomb blockade 43
Crankshaw, Donald S. 7, 17
Cronin-Golomb, M. 189
Custom-integrated circuits 287–299
Cutro, Janet A. 45
Cysyk, Joshua P. 371, 400

D

Dalal, Ravindra V. 97, 155, 162, 164
Daley, James M. 55, 57, 60
Damek, Jay N. 29, 55, 75, 77, 97, 110
Danneker, Donald G. 301
Darken, Rudy 398
Data transmission and storage 321
Daughton, William S. 229, 248
David Sarnoff Research Center 333
Davis, C. Quentin 341, 411, 413
Dawson, Steven L. 407
de Lange, Gerhard 145–146
De, Suvaran 371, 400
deBroglie waves 215
Decision feedback equalizer 322
Dehmelt, Hans 219
del Alamo, Jesús A. 21–27, 469
Delgutte, Benard 411–421
Delhorne, Lorraine A. 371, 375, 379, 383, 469
DeLos, John B. 211
Desloge, Joseph G. 371, 381
Devadas, Srinivas 287, 295–299
DeVries, Joel C. 207
DFB lasers 161
Dhirani, Al-Amin 207, 215
DiFranco, David E. 371, 383
Digital signal processing 319–332
Digital television system 333–337
Dilley, Laura C. 353
Ding, Kung Hau 267–275
Diodes 10
Discrete-time signals 326
Distributed process control architecture 313
Distributed signal processing 323
Djohmehri, Ihsan 55, 59
Donnelly, Joseph P. 112
Donoghue, John 189
Dougherty, David J. 97
Doughty, Francis M. 307, 341
Dousis, Nasos D. 411, 413
Draper (Charles S.) Laboratory 289
Draper, Stark 319, 321
Dual-channel signal processing 320
Ducas, Theodore W. 207
Duchnowski, Paul 371, 375
Duerr, Erik K. 145–146
Durfee, Dallin S. 207, 220
Durlach, Nathaniel I. 371–399
Duwel, Amy E. 45–48

E

Ears 411–421
 Cochlear mechanisms 413–418
 External ear 411–412
 Middle ear 411–412
 Tectorial membrane 413–416
Earth observing system 280
Eggen, Trym H. 319, 322
Electromagnetic interaction with ships 271
Electromagnetic wave theory 267–275
Electromechanical analysis 204
Electromigration reliability for network interconnect 307
Electron Bernstein waves 229
Elvin, Niell G. 189, 204
Em, Makkalon 267, 272
Embedded system design 295
Engels, Daniel W. 287, 295
Environmental-sound reception 379
Epitaxial growth of III-V compound semiconductors 29–36
Epitaxy-on-electronics 7–19
Ernst, Alexander N. 21
Ernst, Darin R. 229, 248
Ernstmeyer, James 267, 271–272

F

Fallah, Farzan 287, 297
Fan, Shan-Hui 110
Fan, Shanhui 33, 72, 171
Fang, Yajun 287, 292
Farhan, Rana 55
Farhoud, Maya 63, 65
Farina, Leandro 301
Fault-tolerant computation 322
Feedback communication problems 325
Felice, G. 248
Ferrera, Juan 55–66, 63–64, 72, 77
Fiberoptic communications 35, 77, 162
Fiberoptic damage detection 204
Fiberoptic sensors 204
Field-effect transistors 21
Fini, John M. 97, 129–130
Fleming, Robert C. 55, 63, 79–80, 82
Focia, Ronald J. 229, 242
Fonstad, Clifton G., Jr. 7–19
Foresi, James S. 55, 72
Fractals 329
Franke, Andrea E. 55, 80
Freeman, Dennis M. 341–346, 411–421, 467, 470
Friedman, Yuli 189
Frisbie, Joseph A. 371, 375
Fuchs, Vladimir 229
Fujimoto, James G. 29, 97, 113–128
Fusion burning plasmas 248
Fusion ignition 261

G

Galarza, Ruben E. 333, 335
Gale, Donna L. 97
Gao, J. 211
Garnett, Rebecca L. 371, 393, 398
Gas source molecular beam epitaxy 29–36
General Instrument Corporation 333
Geophysics 319
George Mason University 10
Geosynchronous Microwave Sounder Working group
Project Staff and Subject Index

279
Giziewicz, Wojciech P. 7
Glicofridis, Paul 89
Glottal characteristics of female and male speakers 354
Goeres, Joern 39
Gold, Bernard 319
Goldman, Susan L. 371, 375
Golubovic, Boris 97, 113
Goodberlet, James G. 55–56
Goodhue, William D. 8, 11
Goorsky, Mark S. 29
Gordon, Michael J. 341
Govindarajan, Krishna K. 353
Gow, David 353
Gower, Aaron C. 307, 313
Graef, Dieter 155, 158
Graf, Isaac J. 371
Grand Alliance digital television system 333
Grant, Kenneth W. 371, 375
Green, Thomas J., Jr. 140
Greenberg, Jules E. 371, 381–382
Grein, Matthew E. 97, 100
Greven, Martin 169
Grimsom, W. Eric L. 140
Grove, Timothy T. 189
Gromet, Andrew E. 287–288
Guenther, Frank 353

H

Hadjicostis, Christoforos N. 319, 322
Hadjiyiannis, George I. 287, 295
Hagelstein, Peter L. 97, 129–135
Hagen, Astrid 353
Haggerty, M. 211
Hall effect 89
Hall, Dorrie 371, 393
Hall, Katherine L. 29, 97, 101, 112
Hall, Seth M. 353, 371, 379
Halle, Morris 353, 425
Ham, Byoung S. 189
Hammond, Troy D. 207
Hanna, Emily J. 353
Hanono, Silvina Z. 287, 295
Hansen, Per P. 102
Hanson, Helen M. 353
Haptic enhancement of memory 385
Haptic interfaces 383
Haptic psychophysics 390
Haptic rendering techniques 387
Haptic-auditory interactions 390
Haptic-visual interactions 391
Hardware-software co-design 295
Harms, Michael P. 353
Harrell, Daniel 353
Harvard University 219
Hasegawa-Johnson, Mark 353
Haus, Hermann A. 29, 75, 97–135, 467
HDTV migration 336
Head-mounted displays 84
Heard Island experiment 319
Hearing 411–421
Spatial hearing 420
Hearing aid research 371–383
Hearing Rehabilitation Foundation 380
Hearing-impaired individuals 371–383, 411–421
Hee, Michael R. 97, 118
Heij, Pieter 45, 48
Held, Richard M. 371, 399
Helkey, Roger 162, 164
Hemenway, Roe B., Jr. 14
Hemmer, Philip R. 189
Henrion, Michelle 189
Herndon, Terry 288, 290
Herrmann, Jürgen 97, 118
Heterostructures 21
High-definition television systems 333–337
High-electron mobility transistors 21
Hillman, Robert E. 353
Hindi 356
Hinds, Raynard O. 333, 335
Ho, Chi-Hao 371, 383
Holley, Jeffrey R. 207
Hong, Stanley S. 341
Horn, Berthold K.P. 287, 292
Hoshino, Isako 7, 13
Hou, Alexandra I. 371, 383
House, Jody L. 29
Howard, James 288, 290
Hsiung, Darren 189
Huang, Caroline 353
Huang, Gregory T. 411
Huang, Richard Y. 341
Hull, Robert J. 137, 140
Human-machine interfaces 371, 399
Humphrey Instruments 124
Hurwitz, Stefan H. 353
Hwang, M. 65
Hybrid lattice description 132
Hybrid vision systems 292
Hynes, Ann 289
Hynes, Brodie J. 301

478 RLE Progress Report Number 140
I

Ignitor experiment 249, 251–252
ILS automatic landing systems 268
Induced stochasticity 229
Inertial confinement fusion 242
Infrared devices 145
Inouye, Shin 207, 220
Instruction set description language 296
Integrated circuits 7–19, 287–299, 301–306
Computer-aided design 295–299, 307, 312–316
Interactive learning environments 287–288
Manufacturing systems 307–316
Intelligent transportation systems 292
Internet 335
Ippen, Erich P. 29, 33, 72, 97–135, 468
Isabelle, Steven H. 319
Ishutkina, Mariya A. 353
Itoh, Akira 267
Ivanov, Dmitri 43

J

Jackson, Keith M. 55, 67
Jackson, Lekisha 353
Jensen, Jesper K. 45, 50
Jensen, Ralph 288
Jergovic, Ilija 229
Joannopoulos, John D. 33, 72, 74, 109, 171–177
Johnson, Laura K. 341
Jones, David J. 29, 97, 99, 101
Jordan, Arthur K. 267, 271
Josephson junctions 45–53

K

Kahn, Jalal 55
Kalluri, Sridhar 411, 418
Kamon, Mattan 304
Kao, Yin-Chun (Andrew) 271–272
Karu, Zoher Z. 341, 411, 413
Kassem, Salim F. 371, 399
Kastner, Marc A. 39–41, 43, 92, 468
Kelly, Shawn G. 287–288
Kennedy, M. Carlos 333
Kerr lens modelocking lasers 114–118
Ketterle, Wolfgang 207, 220–225, 467, 470
Keyser, Samuel J. 353
Khan, Mohammed J. 29, 75, 97
Khatri, Farzana I. 97
Kierstead, John D. 189
Kim, Young-June 169
Kimerling, Lionel C. 72, 109
Kincy, Brian D. 371, 393
Kjolaas, Kari Anne H. 371, 383
Kleppner, Daniel 207–225, 468
Knoedl, Thomas 7, 15
Koh, Glenn 371, 398
Kokorowski, David A. 215
Koksal, Asuman 137, 140
Kolodziejski, Leslie A. 7–9, 29–36, 75, 86, 109–110, 157, 160
Kondo effect ii, 39, 43
Kondratovich, V. 211
Kong, Jin Au 267–275
Konistis, Kostantinos 145–146
Koontz, Elisabeth M. 29, 75
Kopf, Cynthia Y. 97
Korsmeyer, F. Thomas 301, 303
Krause, Jean C. 371
Kring, David C. 467
Kschischang, Frank 319
Kuang, Ming-Hui 248
Kuklewicz, Christopher E. 207, 220
Kuo, Hong-Kwang J. 353
Kwong, Katherine W. 353

L

Labnet software project 312
Lada, Genevieve R. 353
Lai, Kit-wah 267
Lai, Teresa K. 353
LaMotte, Robert H. 400
Lane, Harlan 353
Laneman, Nicholas J. 319, 323
Langlois, Patrick 113
Languages 425
Laser-plasma interactions 229
Lasers 15, 35, 85, 97–135
Cavity design 114
Diodes 7, 10, 112
Medicine 118–128
Radar 141
Soliton position and phase 130
Ultrashort pulse generation 113
Lattice-induced recoil 134
Laveder, Dmitri 248
Lawrence Berkeley National Laboratory 81
Laznicka, Oldrich M. 109
LeBlanc, Cindy 333
LeBlanc, Danielle 288
Lee, Brian 307, 313, 315
Lee, Chango-Ho 301
Project Staff and Subject Index

Lee, Hae-Seung 287, 292
Lee, Jawoong 55, 61
Lee, Junehee 279, 281
Lee, Li 319, 323
Lee, Patrick A. 43
Lee, Zachary 67, 307, 341
Leung, Christopher K.Y. 189
Leung, Kenric S. 411, 413
Levitov, Leonid 93
Lewis, Cynthia A. 55
Lexical representation 364–366
Li, Cindy 267
Li, Jing-Rebecca 301, 303
Liberman, M. Charles 468
Lichtenberger, Arthur 146
Lichtenstein, Bradley J. 287–288
Light emitting diodes 10
Light microscopy 346
Lim, Beng-Teck 189
Lim, Jae S. 333–337
Lim, Kuo-Yi 29, 33
Lim, Michael H. 29, 55, 57, 60, 75, 77, 86, 160
Lin, N.C.H. 46
Linear grasper 390
Linguistics 425
A-movement 425
Inflectional system 427
Interpretation of indefinites 426
Jingulu grammar, dictionary, and texts 426
Metrical theory and English verse 426
Specificity and agreement in Armenian 428
Wh-movement 427
Litovsky, Ruth Y. 411, 420
Little, Brent E. 109–110
Lochtefeld, Anthony 55, 68
Loewenstein, John 288–289
Lohman, Thomas J. 307, 312
London, Joanna 7, 16
Long-distance communications 106
Longhi, Stefano 97
Lopez, Michael J. 319, 324
Los Alamos National Laboratory 82
Love, Nicole S. 287, 292
Low-complexity communication 325
Lucent Technologies 103
Ludwig, Jeffrey T. 319, 324
Lum, David S. 371, 375
Lumma, Dirk 179
Luongo, Eleanora M. 371, 379
Lyubomirsky, Ilya 145, 150

M

Machine description language 296
Machine vision 346
Macular degeneration 288
Madden, Samuel R. 371, 398
Maggiora, Riccardo 248
Magnetic trapping 220
Magnetically confined plasmas 248–264
Mahalu, Diana 39
Makhoul, John I. 353
Manolatou, Christina 97, 110
Manowitz, David H. 371, 393
Mansour, Sharief A. 371, 375
Manual cued speech system 375
Manuel, Sharon Y. 353
Manufacturing systems 307–316
Margalit, Mordehai 97, 100, 102, 107
Marley, Elisabeth 86, 160
Martin, Debra L. 169
Martin, Debra L. 197
Martinez, Angel R. 267, 272
Masaki, Ichiro 287, 292–295
Mason, Elliott J. 137
Mass spectrometry of ions 217
Massachusetts Eye and Ear Infirmary 411–421
Human Studies Committee 290
Voice Laboratory 360
Massachusetts General Hospital 407
Massoud, Yehia 304
Matney, K.M. 29
Matsumoto, Masayuki 97, 106
Matthies, Melanie 353
Max-Planck Institute 84
Mazo, Juan 45
McGill University 10
McGowan, Richard 353
McIlrath, Michael B. 307, 312–315, 341, 346
McKay, David 426
 McKinney, Martin F. 411, 418
Medical imaging 118–128
Medium Energy Neutral Atom instrument 82
Meinhold, Mitchell W. 55, 69
Mekis, Attila 171
Melloch, Michael R. 149–151
Memory 385
MEMS 341–347
Merzelstein, Michael S. 341
Mesoscopic quantum magnetic conductors 169
Meteorological satellite instruments 279
Mickunas, Angela R. 7, 29, 45
Microelectromechanical systems 341–347
Test studies 346
Micromachined device design 301
Micromachining 145
Microwave sounders 279–280
Middle ear ??–412
Miesner, Hans-Joachim 220
Migliuolo, Stefano 229, 248
Mikhailov, Victor P. 97, 113
Mikkelsen, James M. 8
Milikow, Jeremy M. 29
Millimeter-wave devices 145
Mirbt, Susanne 171
Missaggia, Leo J. 97, 113
MIT Artificial Intelligence Laboratory 140, 387
MIT Center for Space Research 79
MIT Committee on the Use of Humans as Experimental Subjects 290
MIT Computer-Aided Fabrication Environment 315
MIT Intelligent Vehicle Research Program 292
MIT Laboratory for Information and Decision Systems 140
MIT Laboratory of Human and Machine Haptics 383–408
MIT Leaders for Manufacturing Program 281
MIT Lincoln Laboratory 12, 123, 279, 320
MIT Lincoln Laboratory, Group 86 146
MIT Media Laboratory 363
MIT Microsystems Technology Laboratory 10, 79, 313
MIT Microwave Temperature Sounder 280
MIT NanoStructures Laboratory 55–87
MIT Space Microstructures Laboratory 80
Mochrie, Simon G.J. 179
Modeling of speech sounds 354–357
Molecular beam epitaxy 29–36
Molnar, Lajos 371, 383
Mondol, Mark K. 55–56, 60
Moon, Euclid E. 55, 57, 61
Morzinski, Jacob A. 189
Moss, Joshua D. 287–288
Moyne, William P. 307, 314, 341
Mull, Daniel E. 11
Multidisciplinary University Research Initiative 140
Multimicrophone hearing aids 381
Murphy, Edward R. 55, 60
Murphy, Thomas E. 29, 55, 75, 77
Mwanyoha, Sadiki P. 371

N

Namiki, Shu 97, 102
Nanofabrication 55–87
Nanolithography 203

Nanometer fabrication technology 55–87
NASA Magnetospheric Imaging Medium-Class Explorer mission 82
Nastov, Ognen J. 301–302
National Aeronautics and Space Administration
Advanced X-ray Astrophysics Facility 79
National Oceanic and Atmospheric Administration 279
National Polar-orbiting Operational Environmental Satellite System 280
National Spherical Torus Experiment 229
Nawab, Hamid S. 319, 324, 326
Nee, Phillip T. 137
Nelson, Lynn E. 97, 99
Newman, J. Nicholas 301
Nguyen, Roland N. 207, 217
Nici, Kathleen A. 21
Nielsen, Torben N. 102
Noise 77, 335
Noise cancellation 319
Noise corrupted speech 327
Nonlinear atomic optics 203
Nonlinear optics 137, 189–205
Nonlinear waves in plasmas 229
Nonspeech stimuli 418
NPOESS 280

O

O'Connell, Michael P. 371, 381
O'Donnell, Christopher R. 333
O'Meara, Margaret E. 43, 171
O'Neill, Kevin 267, 271
Object detection 140
Observability-based code coverage metric 298
OEICs 7
Offshore structure analysis 301
Onofrio, Roberto 207, 220
Ooi, James M. 319, 325
Oppenheim, Alan V. 319–332
Optical amplifiers 112
Optical coherence tomography 118–128
Optical communications 7–19, 77, 129, 137–143, 155
Optical data storage 197, 201
Optical fibers 12, 101, 130
Optical frequency metrology 142
Optical parametric amplifiers 137
Optical phase conjugation 189
Optical pulse filtering 102
Optical solitons 129
Optical trapping 220
Optics 97–135
OPTOCHIP Project 9
Optoelectronic integrated circuits 8
Orlando, Terry P. 45–53
Osterman, David 146
Ouyang, Peter P. 229, 248

P

Pan, Janet L. 7, 17
Papadopoulos, Haralabos C. 319, 325
Park, Ickjun 171
Pasquali, Elisa C. 137, 142
 Passive microwave sensor 279
Patire, Anthony D. 411, 413
Patterson, Steven G. 7–9, 29, 35, 155, 157–158
Payton, Karen L. 371
Peake, William T. 411–421, 470
Pedersen, Erik J. 341, 346
Pegoraro, Francesco 248
Penn, Gregory E. 229, 248
Pensalfini, Robert J. 426
Perception of speech sounds 354–357
Percus, Orin J. 426
Perez, Adrian D. 353
Perez, Manuel 307, 313
Perkell, Joseph S. 353–367
Pertner, Dawn 353
Peter, Dominique S. 97
Petrich, Gale S. 8–9, 29–36
Pflug, David 55, 84
PHANTOM 387, 390, 408
Philips Laboratories 333
Phillips, Joel R. 304
Pimsamarn, Kulapant 267, 272
Pitrakis, Constantinos 97, 118
Plante, Geoffrey L. 371, 379
Plasma ignition 248
Plasma physics 229–264
Polar ice cap 319
Polarimetric passive remote sensing 270
Polarization additive pulse modelocking 99
Poort, Kelly L. 353
Portable self-powered systems 331
Porter, Jeannie M. 79–80, 82–83
Porto, James V. 207, 217
Postico, P. Aitor 7–11
Power, Matthew H. 371, 375
Prahler, Adrienne 353
Prasad, Sheila 7, 13
Prasankumar, Rohit 97, 113
Preisig, James C. 319
Prentiss, Jane D. 79–80, 82
Prentiss, Mara G. 189
Pritchard, David E. 84, 207–225
Puliafito, Carmen 97, 118
Puria, Sunil 411

Q

Qi, Minghao 55, 74
Quantum device simulations 52
Quantum dot 43
Quantum Hall effect 89
Quantum magnetic conductors 169
Quantum optics 137
Quantum statistics 220
Quantum studies 89
Quantum wells 155
Quantum-effect electronics 45–53, 97–135
Quasi-optical communications 137

R

Rabinowitz, William M. 371, 379, 381–382
Radar 140
Radar image simulation 269
Rahman, Arifur 145–146
Rainville, Simon 207, 217
Raju, Balasundar I. 371, 400
Ram, Abhay K. 229–230, 232, 236, 240, 242
Ram, Rajeef J. 12, 35, 86, 155, 164–165, 468
Raman, Chandra S. 207, 220, 467
Ramaswamy, Deepak 301–302
Ramsey, Norman 219
Rana, Farhan 86, 155, 160
Randolph Learning Center 380
Rankovic, Christine M. 371
Rapid analytical modeling 315
Ravicz, Michael E. 411
Real-time video 335
Recombination 14
Reed, Charlotte M. 371, 375, 379–381
Reed, Eric C. 333, 335
Reich, Benjamin D. 341
Reich, Evan H. 229, 248
Remote microscope 313
Remote sensing 267–275, 279–282, 393
Remotely operated vehicles 393
Retargetable code generation 296
Retinal implant project 288–292
Retinitis pigmentosa 288
RF circuits 302
RF heating and current drive in tokamak plasmas
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saberi, Kourosh</td>
<td>371, 382</td>
</tr>
<tr>
<td>Saha, Debashis</td>
<td>307, 315</td>
</tr>
<tr>
<td>Said, Maya R.</td>
<td>319, 326</td>
</tr>
<tr>
<td>Salcedo, Ante</td>
<td>229</td>
</tr>
<tr>
<td>Salisbury, J. Kenneth</td>
<td>371, 383, 387</td>
</tr>
<tr>
<td>Satellite remote sensing of sea ice</td>
<td>268</td>
</tr>
<tr>
<td>Savas, Timothy A.</td>
<td>55, 59, 63, 83</td>
</tr>
<tr>
<td>Sawtooth oscillations</td>
<td>254</td>
</tr>
<tr>
<td>Schattenburg, Mark L.</td>
<td>55, 63–64, 79–80, 82–83</td>
</tr>
<tr>
<td>Schloerb, David W.</td>
<td>371, 383, 393</td>
</tr>
<tr>
<td>Schlueter, Steven J.</td>
<td>371</td>
</tr>
<tr>
<td>Schmidt, Martin A.</td>
<td>301–302</td>
</tr>
<tr>
<td>Schoellkopf, Wieland</td>
<td>84</td>
</tr>
<tr>
<td>Schultz, Steven D.</td>
<td>229–230, 240</td>
</tr>
<tr>
<td>Schuman, Joel</td>
<td>97, 118</td>
</tr>
<tr>
<td>Schwartz, Michael J.</td>
<td>279–280, 467</td>
</tr>
<tr>
<td>Schweizer, Mark R.</td>
<td>45, 55, 57</td>
</tr>
<tr>
<td>Scutze, Carson T.R.</td>
<td>427</td>
</tr>
<tr>
<td>Sea ice parameters</td>
<td>267</td>
</tr>
<tr>
<td>Secor, Matthew J.</td>
<td>319, 326</td>
</tr>
<tr>
<td>Seefeldt, Alan J.</td>
<td>319, 327</td>
</tr>
<tr>
<td>Sekiyama, Kaoru</td>
<td>371, 375</td>
</tr>
<tr>
<td>Self-powered signal processing</td>
<td>331</td>
</tr>
<tr>
<td>Sensimetrics Corporation</td>
<td>382</td>
</tr>
<tr>
<td>Sensory communication</td>
<td>371–408</td>
</tr>
<tr>
<td>Senturia, Stephen D.</td>
<td>301–302</td>
</tr>
<tr>
<td>Serrafini, Pablo A.</td>
<td>287, 292</td>
</tr>
<tr>
<td>Sestok, Charles K.</td>
<td>319, 327</td>
</tr>
<tr>
<td>Severe hearing impairments</td>
<td>375</td>
</tr>
<tr>
<td>Sexton, Matthew G.</td>
<td>371, 375</td>
</tr>
<tr>
<td>Shahin, Mohamed</td>
<td>288</td>
</tr>
<tr>
<td>Shahriar, Selim M.</td>
<td>189–205</td>
</tr>
<tr>
<td>Shapiro, Jeffrey H.</td>
<td>137–143</td>
</tr>
<tr>
<td>Shattuck-Hufnagel, Stefanie</td>
<td>353–367</td>
</tr>
<tr>
<td>Sherrill, Delsey M.</td>
<td>353</td>
</tr>
<tr>
<td>Shih, Shih-En</td>
<td>267, 269, 271–272</td>
</tr>
<tr>
<td>Shin, Robert T.</td>
<td>267–275</td>
</tr>
<tr>
<td>Shinn-Cunningham, Barbara G.</td>
<td>371, 399</td>
</tr>
<tr>
<td>Shire, Douglas</td>
<td>288</td>
</tr>
<tr>
<td>Shklofsky, I.</td>
<td>240</td>
</tr>
<tr>
<td>Shoucri, M.</td>
<td>240</td>
</tr>
<tr>
<td>Shtrikman, Hadas</td>
<td>39</td>
</tr>
<tr>
<td>Sigler, Michele</td>
<td>428</td>
</tr>
<tr>
<td>Signal enhancement</td>
<td>319</td>
</tr>
<tr>
<td>Signal processing</td>
<td>319–337</td>
</tr>
<tr>
<td>Signal transmission in the auditory system</td>
<td>411–421</td>
</tr>
<tr>
<td>Signal-to-noise improvement</td>
<td>381</td>
</tr>
<tr>
<td>Singer, Jürgen K.</td>
<td>301, 303</td>
</tr>
<tr>
<td>Single-electron electronics</td>
<td>39</td>
</tr>
<tr>
<td>Single-electron spectroscopy</td>
<td>89</td>
</tr>
<tr>
<td>Sinusoidal analysis synthesis</td>
<td>327</td>
</tr>
<tr>
<td>Sisson, Robert D.</td>
<td>79–80</td>
</tr>
<tr>
<td>Skin biomechanics</td>
<td>399–407</td>
</tr>
<tr>
<td>Slaughter, Adrienne H.</td>
<td>371, 383</td>
</tr>
<tr>
<td>Slifka, Janet L.</td>
<td>353</td>
</tr>
<tr>
<td>Small, Stephen D.</td>
<td>407</td>
</tr>
<tr>
<td>Smith, Edward T.</td>
<td>207, 215</td>
</tr>
<tr>
<td>Smith, Henry I.</td>
<td>29, 33, 55–87, 109, 160, 216, 469</td>
</tr>
<tr>
<td>Smith, Jason L.</td>
<td>353</td>
</tr>
<tr>
<td>Smith, Stephen P.</td>
<td>189</td>
</tr>
<tr>
<td>Socha, Michael</td>
<td>288, 290</td>
</tr>
<tr>
<td>Sodini, Charles G.</td>
<td>287, 292</td>
</tr>
<tr>
<td>Sokolinski, Ilia</td>
<td>68</td>
</tr>
<tr>
<td>Solitons 129–135</td>
<td>146</td>
</tr>
<tr>
<td>Sollner, Gerry</td>
<td>146</td>
</tr>
<tr>
<td>Somerville, Mark H.</td>
<td>21</td>
</tr>
<tr>
<td>Sound propagation</td>
<td>221</td>
</tr>
<tr>
<td>Space and astrophysical plasma dynamics</td>
<td>229</td>
</tr>
</tbody>
</table>
Spaceborne synthetic aperture radar 273
Spaeth, Mark G. 287, 292
Spatial hearing 420
Spatial knowledge acquisition 398
Speaker recognition 354
Speech
 Speech stimuli 418
Speech clarity 357–359
Speech communication research 353–367
 Normal speech production 357–360
 Special populations 360–363
Speech enhancement 327, 335
Speech intelligibility 373–375, 381
Speech processing 418–420
Speech reception 371–375
Speech synthesis 354
Speechreading 375, 380
Spellmeyer, Neal W. 207, 211
Spin ladders 169
Spread-signature CDMA signals 320
Squeezed light 129
Srinivasan, Mandayam A. 371, 379, 383–393, 400–408
Sroka, Jason J. 371
Stachowiak, Maciej 371, 398
Staelin, David H. 279–282
Stamper-Kurn, Dan M. 207, 220
Stanford University 218, 296
Steady-state hydrodynamic ablation 134
Steffens, David A. 411
Stegmographic communication 321
Steinmeyer, Günter 29, 33, 72, 97, 109, 112–113
Stenger, Jörn 207, 220
Step structures 179
Stevens, Kenneth N. 353–367, 469
Stimulated Brillouin scattering 242
Stimulated raman scattering 242
Stochastic soliton formulation 129
Strand, Erik 353
Stretched-pulse fiber lasers 99, 106
Strogatz, Stephen H. 45, 47–48
Strong phonon excitation 133
Structural acoustics 319
Subsurface charge accumulation imaging 89
Sudarshanam, Venkatapuram S. 189
Sugiyama, Linda E. 229, 248
Sujono, Susan 97, 134
Sunshine, Lon E. 333, 336
Superauditory localization 399
Superconducting devices 45–53
Superconducting heterodyne receivers 146
Surface studies 171–177
Surfaces of solids 171
Svolos, George M. 229, 248
Swanson, Eric A. 97, 118
Synthesis of Hindi 356
Synthesis of speech sounds 354–357
Synthetic aperture radar 140
Systems exhibiting stochastic resonance 325

T

Tactaid 7 380
Tactile communication 379–381
Tactual communication devices 379
Takeuchi, Annie H. 371, 375
Talib, Zubair 287, 292
Tambe, Prasanna B. 371, 375
Tan, Hong Z. 379
Tan, Ying 189
Tanaka, Motohiko 248
Tang, Xudong 371, 398
Tausch, Johannes 303–304
Tearney, Guillermo J. 97, 118
Tectorial membrane 413–418
Teja, Joseph 137
Telecommunications 100, 112
Teleoperated mini-submarines 393
Television systems 333–337
Temporal force control–spatial force discrimination hypothesis 390
Terahertz devices 145
Terman, Christopher J. 287
Tessmer, Stuart 89
Texas Christian University 10
Theilhaber, Joachim 229
Thermal oxide 158
Thermonuclear plasmas 248–264
Therrien, Charles 319
Thoem, Erik R. 29, 72, 97, 109, 112
Thomassier, Vincent 267, 269–271
Thompson, Carl V. 307
Thompson, James R. 207, 217
Thomson Consumer Electronics 333
Three-dimensional interconnect analysis 304
Tian, Lin 45
Tickle Talker device 380
Titus, Vivian E. 137, 140
Toennies, Peter 84
Tokamak plasmas 258
Tokyo University, Research Institute for Logopedics and Phoniatrics 354
Tomsio, Nayon 267
Torres, Wade P. 319, 327
Touch 379, 383–408
Townsend, Christopher G. 207, 220
Tran, Dinh Yen 371
Transmit antenna arrays 324
TRANSoM project 393
Trias, Enrique 45, 47–48, 50–51
Troxel, Donald E. 307–316, 341, 346
Tsuk, Michael 267
Tudury, Gaston 97
Turk, Alice 353
Two-dimensional electron gas 89
Two-wave coupling dispersion relation 245
Tziligakis, Constantine 97

U

U.S. digital television standard 333
U.S. Navy
 Naval Postgraduate School 398
 Naval Research Laboratory 58
U'Ren, Greg D. 29
Ultra-high speed telecommunications systems 100
Underwater acoustic communication 322
Underwater acoustics 328
Underwater images 335
Underwater robots 393
University of California, San Francisco 356
University of Delaware 356
University of Maryland 356
University of Melbourne 380
University of Southern California 10, 82
University of Washington 10, 219
University of West Virginia 82
University of Wisconsin 279, 359
Ustinov, A. 46

V

van Beek, Joost 55, 79–80, 82
van der Zant, Herre S. J. 47–48, 51
VCSELs 35
Verbout, Shawn M. 319, 328
Vergheese, George C. 322
Vergheese, Matthew J. 326
Verma, Rajesh 353
Verminski, Matthew D. 307, 314
Vertical-cavity surface-emitting lasers 15
Very long instruction word 296
Very-large-scale-integration technology 333
Viadyanathan, Praveen T. 7–9, 13
Vick, Jennell C. 353
Video compression algorithms 334
Video imaging 346
Villeneuve, Pierre R. 33, 72, 171
Virtual environment technology for training 383–399
Virtual reality 383–399, 407
Vision project 288–292
VLSI design 287, 295, 297, 333
VLSI electronics 7–19
Vocal-tract anatomy 359
Vogelmann, Jeremy Y. 353
Vogels, Johnny M. 207, 220
von Bosau, Laura M. 229
Voss, Kimberly J. 371, 400
Voss, Susan E. 411
Vowel processing in auditory cortex 356

W

Wage, Kathleen E. 319, 328
Walpole, James N. 97, 113
Wan, Wade 333, 336
Wang, Alex Che-Wei 319, 329
Wang, Ching-Chun 287, 292
Wang, Haifeng 14
Wang, Junfeng 301–302
Wang, Li-Fang 267, 269–270, 272
Wang, Tairan 171
Wang, Yakov 7
Warnick, Sean C. 29
Washington University 140–141
Watanabe, Shinya 45, 47
Waveguide semiconductor lasers 158
Wearable tactile aids 380
Wei, Jesse L. 411, 413
Weinstein, Ehud 319
Weiss, Thomas F. 411–421
Wen, Xiao-Gang 92
Whan, Chagarn B. 45, 52
White, Jacob K. 301–306, 470
Wiegand, Thomas E. v. 371, 383, 393, 398
Wies, Evan F. 371, 383
Wilde, Lorin 353
Wilhelms-Tricarico, Reiner 353
Williams, Benjamin S. 145, 151
Willsky, Alan S. 140
Wnt, Arlene E. 353
Wireless communications 323–324
Wong, Lily 189
Wong, Ngai C. 137–143
Wong, William S. 97, 102
Woods Hole Oceanographic Institution 320
Wornell, Gregory W. 319–332
Wozniak, Jane 353
Writer-rider distinction 354
Project Staff and Subject Index

Wu, Baeian 267, 271, 273
Wu, Chao-Min 359
Wu, Kenneth C. 229
Wu, Wan-Chen 371, 383
Wyatt, John L., Jr. 288–295

X

Xia, Xiao-Wei 189
X-ray nanolithography 57
X-ray optics 55
X-ray spectroscopy 83
Xu, Bin 145

Y

Yale University School of Medicine 400
Yang, Y. Eric 267–275
Yao, Huan 207, 215
Yeang, Chen-Pang 137, 140, 267–270
Yeddanapudi, Neelima 287–288
Yoon, Mirang 179
Yousef-Toumi, Kamal 65
Yu, Charles 97, 107
Yuan, Hanfeng 371, 383
Yuditskaya, Sophia C. 353
Yukon, S. 46

Z

Zalesky, Jonathan L. 371, 393
Zamdmer, Noah D. 145
Zandipour, Majid 353
Zenith Electronics Corporation 333
Zhang, Yan 267–270
Zhang, Yong 353
Zurek, Patrick M. 371, 381–382