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Abstract

The presented work develops a set of machine learning and other computational
techniques to investigate and predict gene properties across a variety of biological
datasets. In particular, our main goal is the discovery of genetic interactions based
on sparse and incomplete information. In our development, we use gene data from
two model organisms, Caenorhabditis elegans and Saccharomyces cerevisiae.

Our first method, information flow, uses circuit theory to evaluate the importance
of a protein in an interactome. We find that proteins with high i-flow scores mediate
information exchange between functional modules. We also show that increasing in-
formation flow scores strongly correlate with the likelihood of observing lethality or
pleiotropy as well as observing genetic interactions. Our metric significantly outper-
forms other established network metrics such as degree or betweenness.

Next, we show how Bayesian sets can be applied to gain intuition as to which
datasets are the most relevant for predicting genetic interactions. In order to directly
apply this method to microarray data, we extend Bayesian sets to handle continuous
variables. Using Bayesian sets, we show that genetically interacting genes tend to
share phenotypes but are not necessarily co-localized. Additionally, they have similar
development and aging temporal expression profiles.

One of the major difficulties in dealing with biological data is the problem of
incomplete datasets. We describe a novel application of collaborative filtering (CF) in
order to predict missing values in the biological datasets. We adapt the factorization-
based and the neighborhood-aware CF [13] to deal with a mixture of continuous and
discrete entries. We use collaborative filtering to input missing values, assess how
much information relevant to genetic interactions is present, and, finally, to predict
genetic interactions. We also show how CF can reduce input dimensionality.

Our last development is the application of Support Vector Machines (SVM), an
adapted machine learning classification method, to predicting genetic interactions.
We find that SVM with nonlinear radial basis function (RBF) kernel has greater
predictive power over CF. Its performance, however, greatly benefits from using CF
to fill in missing entries in the input data. We show that SVM performance further
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improves if we constrain the group of genes to a specific functional category.
Throughout this thesis, we emphasize the features of the studied datasets and

explain our findings from a biological perspective. In this respect, we hope that this
work possesses an independent biological significance. The final step would be to
confirm our predictions experimentally. This would allow us to gain new insights
into C. elegans biology: specific genes orchestrating developmental and regulatory
pathways, response to stress, etc.

Thesis Supervisor: Tommi S. Jaakkola
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Hui Ge
Title: Research Fellow at the Whitehead Institute
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Chapter 1

Introduction

D. Vasilyev (when asked about 𝐻∞ norm): Girls, are you ready for a journey?

- 6.336 office hours, 2003, unpublished

1.1 Motivation & Objectives

Our research objective is the development of computational methods to predict prop-

erties of genes based on other types of biological data. Being able to predict gene

properties and experiment outcomes computationally can save large amounts of time

and money associated with performing laboratory work. We adapt and extend ex-

isting new machine learning algorithms, develop new network metrics, and apply

statistical techniques to extract biologically relevant features from various types of

high-throughput experimental data. We are particularly interested in identifying gene

pairs that genetically interact. Genetic interaction is a broad term referring to a re-

lationship between two genes where a simultaneous mutation in both results in an

observable joint effect on an organism. This effect is significantly more pronounced

or altogether different from individual mutations in either gene.

We focus our research on the genes and pathways involved in the organism’s de-

velopment and other core cellular processes. For example, kinases involved in MAPK

pathways regulate various cellular activities including gene expression, differentiation,

mitosis, cell survival and apoptosis. Mutations in developmental genes are known
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to be responsible for a large percentage of cancers, e.g. MAPK kinase cascade is

relevant to Hodgkins disease. There are several reasons why we expect genetic in-

teractions to occur more frequently within such processes. First, genes involved in

development and survival tend to be very important to viability of an organism yet

knockouts of a large portion of these genes do not result in observable phenotypes.

The event of lacking phenotypes in the face of a genetic mutation is called genetic

robustness. We speculate, based on known developmental pathways (e.g. vulval path-

way in Caenorhabditis elegans), that this might be due to the fact that biologically

important genes are buffered by other functionally overlapping genes or alternative

pathways. We hypothesize that such pairs or groups of genes act in a synergistic

manner during development (a category of genetic interactions, see Section 1.2) and

only deletion of both results in a detectable defect. By identifying pairs of genes

that genetically interact, we can provide new information about their function and

identify new components of developmental pathways or new pathways altogether.

Developmental pathways and genes tend to be more conserved than average, and we

can expect to find orthologous relationships in seemingly very different organisms.

Therefore, by discovering genetic interactions, we can get better functional maps of

various organisms. The majority of our computational analysis has been performed

on Caenorhabditis elegans since this model species is relatively well-covered by high-

throughput datasets.

1.2 What are genetic interactions?

Genetic interaction between two genes is present when two mutations have a combined

effect which is not exhibited by either mutation alone. It is a powerful method for

establishing which genes are functionally linked [66, 74, 30, 81]. Genetic interactions

are thought to underlie buffering and directly contribute to genetic robustness of an

organism [49, 44]. For example, perturbation of a single gene may be buffered by

functionally overlapping genes or alternative pathways, as shown in Figure 1-1. In

the first scenario, a mutation in both genes would cause lethality. Finding such pairs
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can be very useful for cancer research as targeting a gene that is synthetic lethal to a

cancer-relevant mutation should kill only cancer cells and spare normal cells [64]. In

the second scenario in Figure 1-1 two genes belong to the same pathway. A mutation

in one gene partially disables the pathway but does not exhibit a phenotype. Only

when both genes are missing, the effect is lethality. In an alternative scenario, one gene

may act as a suppressor of another. Knocking down the suppressor gene may result

in an observable phenotype, while knocking down both genes results in a wildtype

- an organism which seems unaffected phenotypically. An example of that is a pair

of genes daf-2 and daf-16 involved in C. elegans dauer formation. Mutation in daf-2

gene causes non-conditional arrest at the dauer stage. Additional mutation in daf-16

gene suppresses daf-2 mutants resulting in a wildtype phenotype [41].

In summary, there is more than one type of genetic interactions: synthetic-lethal

interactions in which mutations in two nonessential genes are lethal when combined;

suppressor interactions, in which one mutation is lethal but when combined with

a second, cell viability is restored; and other more subtle effects such as nonlethal

phenotype enhancement and epistasis.

Figure 1-1: Potential mechanisms behind synthetic lethal interaction (image from
[30]).
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1.3 Prior research on genetic interactions and bi-

ological networks

Knowledge of the network of genetic interactions could guide us in discovery of new

regulatory and transcriptional mechanisms. It can help us identify functions of pre-

viously uncharacterized genes. It can point us to the more subtle pathways. For

example, a synergistic effect of a pair of genes may indicate that they form two alter-

native branches of a pathway or act in parallel pathways.

The number of possible gene pair combinations to be tested for genetic interac-

tions is very large, in the order of 1.8∗108 (assuming approximately 19,000 genes in C.

elegans). Despite the progress in high-throughput techniques, it would be impossible

to systematically test all pairs of genetic interactions. Based on the current estimates,

genetic interactions are a very small fraction (less than half a percent [74]) of all pair-

wise combinations of genes. Thus, some attempts have been made to computationally

predict likely candidate pairs which may interact [127, 139, 66, 153, 98, 24, 70]. Com-

putational prediction relies on trying to infer how informative are different gene/pair

characteristics for in-silico detection of interactions.

1.3.1 Hypothesized properties of genetically interacting pairs

In an attempt to predict new genetic interactions, several papers in recent years have

analyzed properties of known interacting genes. Most of the hypotheses regarding

genetic interactions are based on statistical properties of gene data in three model

organisms: S. cerevisiae, C. elegans, and D. melanogaster, primarily because these

species are among the best studied with the largest amount of high-throughput data

available and the largest, albeit still relatively small, number of genetic interactions

discovered experimentally.

Lehner et al. [74] performed a statistical network analysis of C. elegans interac-

tome and concluded that genes acting as hubs (having many interacting partners) are

more likely to engage in genetic interactions. They coined the term ’modifier’ gene
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to describe a genetic hub and ’specifier’ gene for its less connected genetic partner.

By combining the protein-protein interaction data with phenotypic data, they found

that the ’modifier’ hub gene frequently enhances the phenotype of the ’specifier’ low

degree gene. Thus, they hypothesize that testing the hub genes and their interacting

partners can be more effective than selecting pairs of genes at random. Similarly,

Davierwala et al.’s [23] analysis of the essential genes in yeast showed that they are

more likely to be involved in genetic interactions than nonessential genes, especially

with genes which share similar Gene Ontology annotations. Ozier et al. [99] also

showed that pairs of physically linked genes, where one or both exhibit high degree of

physical interactions, are substantially more likely to genetically interact than a pair

of low physical-interaction degree genes.

Tong et al. [127] found that genetic interactors in yeast tend to share similar phe-

notypes, subcellular location, and are often part of the same protein complex. More-

over, they found that network motifs built of interactions can be used for predicting

new ones. Network analysis approach to discover patterns of genetic interactions has

also been pursued in yeast by Bader et al. [5], who found that genetically interacting

genes tend to be in a closer proximity in protein-protein network than a random pair

of genes, and that a combination of physically and genetically interconnected proteins

forms functional complexes.

It is interesting to note that there are claims of differences between yeast and

C. elegans genetic interaction networks. In yeast, Kelley and Ideker [66] found that

genetic interactions are significantly more enriched between genes belonging to dif-

ferent pathways (3.5 times more likely) rather than between those within the same

pathway. That is, they are more likely to belong to redundant or complementary pro-

cesses than to partake in the same process. In C. elegans Lehner et al. [73] claim the

opposite. They state that within-pathway interactions are twice as likely to happen

than between-pathway interactions. It is difficult to establish at this point whether

the difference is due to system-level biological differences between the organisms or

the methods that have been used to discover genetic interactions known to date.

Another question that naturally arises from studying backed-up genes, is whether
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homology studies of gene sequences could pinpoint genetic interactors. Several studies

have been done to identify such classes of duplicated genes [126, 132], and we now

know that only a small portion (less than 2%) of known synthetic lethal pairs encode

homologous proteins.

1.3.2 Current computational approaches to identify genetic

interactions

In the previous section we discussed several gene pair properties that have been linked

to genetic interactions. As of now, all of the above characteristics can be classified as

’weak’ predictors of genetic interactions. Current computational approaches attempt

to combine results from multiple ’weak’ indicators to predict genetic interactions.

They can be grouped into three broad categories:

1. Using local network properties in physical and genetic protein networks to pre-

dict new interactions.

2. Integrating different kinds of genomic datasets to predict new genetic interac-

tions.

3. Using interactions from various species to predict interactions in related species.

Predicting genetic interactions with network structures

To predict genetic interactions, Tong et al. [127] explored the ’small world’ property

of genetic interaction networks in yeast. They discovered that if two genes share

a genetic interaction with a common partner, they are likely to interact with one

another. In ∼ 20% of cases the neighbors of a query gene could also interact with

each other in comparison to less than 1% of random gene pairs.

As mentioned previously, Lehner et al. [74] concluded that high degree genes and

their partners are more likely candidates for genetic interactions than a randomly

selected pair. Subsequently, they used their finding to predict and test for more

interactions.
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Predicting genetic interactions by integrating different types of genomic

data

Different types of genomic data have been shown to be weak indicators of genetic

interactions (see Section 1.3.1) but their predictive power can increase if combined

together. Wong et al. [139] used decision trees to integrate protein localization, mRNA

expression, physical interaction, known function and network topology data in order

to predict synthetic lethal or sick interactions in yeast. Cross validation tests showed

that while using a single source of evidence resulted in a slight improvement in per-

formance over random, combining several evidence sources led to significantly better

specificity/sensitivity. They tested a subset of their predictions and found that 49

out of 318 could be verified as opposed to 2 they would expect by chance.

Bayesian integration has been another popular approach used to integrate different

types of functional data. Using this approach, genetic interactions have been predicted

for approximately 10% of C. elegans genes, using information on expression patterns,

phenotypes, functional annotations, microarray coexpression, and protein interactions

[58, 69, 129, 153, 121].

Predicting genetic interactions using orthology

Genetic interactions identified in one species can be experimentally tested in second

species if the genes participating are orthologues in both genomes. Tischler et al.

[126] took more than 1000 synthetic lethal interactions in yeast and tested their

orthologues in C. elegans. They found that only a very small subset (less than 1%) is

conserved. This is in contrast to mutations in single genes where more than 60% of

essential genes in yeast have essential orthologues in C. elegans [65]. It leads to the

following theory: for synthetic lethal interactions, it matters whether the organism

is unicellular or multicellular. However, even a weak indicator such as genetic pair

orthology can be useful in future studies, if combined with other features.

Despite the progress in computational methods tackling genetic interaction pre-

diction, the incompleteness and sparsity of available data along with a lack of decisive
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features, provide for a challenging problem.

1.4 Thesis summary

In this thesis, we present machine learning and other computational approaches we

developed and/or adapted to biological data with a goal of predicting genetic interac-

tions in C. elegans. In this Chapter, we described genetic interactions and the current

approaches aimed at predicting them computationally. The remainder of the thesis

is structured as follows:

� Chapter 2 describes the relevant biological background, starting with an overview

of the two model organisms studied: Caenorhabditis elegans and Saccharomyces

cerevisiae. Next, we describe the experimental datasets and features extracted

from these datasets, both of which are inputs to our learning algorithms in

the subsequent chapters. Finally, we conclude with an overview of a MAPK

pathway that we use in our computational work later.

� Chapter 3 introduces a graph-based metric of information flow, which we devel-

oped to analyze the importance of a protein in an interactome. We show that

the information flow metric is a strong predictor of essentiality and pleiotropy

and that it outperforms the established metrics such as betweenness and degree.

We further test the performance of the information flow metric in the presence

of noise in the data. We also show how information flow can detect important

genes in signaling networks with directionality or in networks constrained to

specific tissues.

� In Chapter 4, we adapt the Bayesian sets method [37] to biological data in

order to evaluate the relevance of experimental datasets to predicting genetic

interactions. We extend Bayesian sets to enable us to analyze continuous data.

Among other conclusions, we assess that while genetically interacting genes do

not seem to co-localize, they tend to share similar phenotypes and be up- or

down-regulated together during development or aging.
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� Chapter 5 describes novel use of collaborative filtering (CF) to predict genetic

interactions and other experimental data such as phenotypes or microarray

expression profiles. We adapt a global factorization-based CF approach and a

local neighborhood-based CF approach [13] to handle a mixture of discrete and

continuous entries. We use CF to fill in missing values, evaluate how relevant

given data is to genetic interactions and to predict genetic interactions.

� Our last contribution is predicting genetic interactions with Support Vector

Machines [130, 57] as described in Chapter 6. We show that SVM outperforms

CF at predicting genetic interactions, and discuss the role of the radial basis

function (RBF) kernel. We further show that the performance improves if we

narrow down genes to specific functional categories. Finally, we discuss the

importance of collaborative filtering which fills in the missing values in the input

feature matrix, a necessary condition for successful classification with SVM.

� We summarize and briefly discuss our contributions in Chapter 7.
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Chapter 2

Biology Background

Dad: I tell everyone at work that you work at the White House.

Patrycja: It’s not “White House” dad, it’s “Whitehead”!

Dad, absentmindedly: Right, right, I keep confusing this, sorry.

- Poland, 2007, unpublished

This Chapter introduces relevant biological concepts. First, the Chapter cov-

ers some of the biological properties of the organisms studied, more specifically

Caenorhabditis elegans and Saccharomyces cerevisiae, in order to elucidate what kinds

of data we can expect to have for analysis as well as what types of questions we can

explore. Next, we describe the individual datasets in more detail, and briefly discuss

the types of information we plan to extract from each of these datasets.

2.1 Caenorhabditis elegans as a model organism

Caenorhabditis elegans [53] is a small nematode (worm) that lives in the soil across

most of the temperate regions of the world. Since it requires only humid environment,

ambient temperature, oxygen, and bacteria as food, it is very cheap and easy to

maintain in the lab. C. elegans are grown on agar plates or in a liquid culture

with E. coli as a food source. The adults are on average 1mm long and require

a microscope for handling. C. elegans exhibit no smell and are transparent. The

worm life cycle, from an egg to an adult producing more eggs, takes 3.5 days at 20

degrees Celsius. There are two sexes, male and hermaphrodite which differ in both
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appearance and in frequency. A hermaphrodite produces both sperm and oocytes

and can reproduce by self-fertilization (see Figure 2-1). A male produces only sperm

thus it must mate to produce offspring (see Figure 2-2). X0 males arise spontaneously

in XX hermaphrodite populations by means of X chromosome nondisjunction at a

frequency of approximately 0.1%. Hermaphrodite lays about 300 eggs during its

reproductive life. If it mates with a male, it can produce as many as 1000 eggs with a

ratio of 1:1 of male and hermaphrodite cross progeny. Additionally, it would produce

hermaphrodites by selfing.

Figure 2-1: Anatomy of an adult hermaphrodite. A. DIC image of an adult
hermaphrodite, left lateral side. Scale bar 0.1 mm. B. Schematic drawing of anatom-
ical structures, left lateral side (image from [141])

The life cycle of C. elegans is comprised of the embryonic stage, four larval stages

(L1-L4) and adulthood, see Figure 2-3. After the larval stage is over, the worm be-

comes fertile in 4 days. Its total lifespan is approximately 2-3 weeks. The life cycle

of a worm starts when mature oocytes pass through the spermatheca and become

fertilized either by sperm from a hermaphrodite or a male. Within 30 minutes after

fertilization, the zygote develops a shell and a membrane making the embryo imper-

meable to most solutes and able to survive outside the uterus. The eggs are laid at

gastrulation, at about 3 hours after fertilization. Embryogenesis consists of 2 phases:

1) cell proliferation and organogenesis, and 2) morphogenesis. During the prolifera-
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Figure 2-2: Anatomy of an adult male. A. Anatomical structures, left lateral side.
B. DIC image of an adult, left lateral side. Scale bar 0.1 mm. C. The unilobed distal
gonad. D. The adult male tail, ventral view. Arrow points to cloaca, arrowhead marks
the fan. Rays 1-9 are labeled with asterisks on the left side. E. L3 tail, bottom, is
starting to bulge (image from [141])

tion phase the precise temporal and spatial pattern of organ formation is followed,

giving rise to a fixed number of cells with predetermined fates. This process is fully

invariant from one embryo to another. The next stage lasting approximately 7 hours

consists of the body changing its shape and neural connections being made. Next,

a cuticle is secreted. The L1 larva hatches at 14 hours after fertilization. Outside

the vulva, the larval development goes through L1-L4 stages punctuated by molts.

More cell division takes place, and with the exception of the germline, all cell lineages

follow an almost invariant temporal and spatial assignment. The four larval stages

are punctuated by molts when the new cuticle is formed under the old one and the

old one shed during a brief period called lethargus.

If the food supply is limited in early larval development, C. elegans can take an

alternative, a dauer pathway, at the L2/L3 molt to produce a dauer larva, an non-

eating alternative to L3 stage that can survive up to 3 months without continuing

development. When the food becomes available, the dauer goes into L4 and resumes
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normal development.

Figure 2-3: Life cycle of C. elegans at 22∘C. 0 min is fertilization. Numbers in blue
along the arrows indicate the length of time the animal spends at a certain stage.
First cleavage occurs at about 40 min. postfertilization. Eggs are laid outside at
about 150 min. postfertilization and during the gastrula stage. The length of the
animal at each stage is marked next to the stage name in micrometers (image from
[141]).

C. elegans is the first multicellular organism to have its genome sequenced (1998)[21].

It is a relatively simple organism, both anatomically and genetically. A complete cell

lineage of C. elegans has been mapped and we know that, on the cellular level, each

individual develops in an almost identical fashion. The adult hermaphrodite has 959

somatic cells and the adult male has 1031. The genome of C. elegans consists of

108 nucleotide pairs encoding for approximately 19, 000 genes. Genes are arranged

on six haploid chromosomes. The haploid set includes five autosomes (A) and a sex

chromosome (X), all roughly equal in size. Hermaphrodites are diploid for all six

chromosomes (XX), while males are diploid for the autosomes but have only one X

chromosome (XO) [140]. The C. elegans genome proves that many biological mech-

anisms are conserved across the animal kingdom, and as new vertebrate genes are

cloned, frequently one can find a direct C. elegans homologue.
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The basic anatomy of C. elegans includes a mouth, pharynx, intestine, gonad,

and collagenous cuticle. Males have a single-lobed gonad and a tail specialized for

mating. Hermaphrodites have two ovaries, oviducts, spermatheca, and a single uterus.

The body plan consists of two concentric tubes separated by a fluid-filled space, the

pseudocoelom. Extracellular collagenous cuticle, secreted by hypodermis, covers the

outer tube [140]. Body muscles responsible for movement are arranged in four stripes

along the length of the animal. The outer tube also consists of the nervous system,

gonad, coelomocytes, and excretory/secretory system. The inner tube is composed

of a pharynx, pharyngeal nervous and muscular systems and an intestine. Most of

the neurons are around the pharynx, along the ventral midline and in the tail. C.

elegans moves either forward or backward in a sinusoidal wave using its longitudal

body muscles.

Eating and reproduction are the primary focus of C. elegans life. The pharynx

grinds and pumps food into the intestine. The intestinal cells line the lumen which

connects to the anus positioned near the tail. The hermaphrodite reproductive system

consists of functionally independent anterior and posterior arms. Each arm consists of

an ovary, vulva, a more proximal oviduct, and a spermatheca connected to a common

uterus. The adult uterus contains fertilized eggs and embryos in the early stages of

development. To lay eggs, the hermaphrodite contracts its vulval muscles. The male

gonad is a single organ. Meiotic cells in progressively later stages of spermatogen-

esis are distributed along the gonad and the seminal vesicle. Male-specific neurons,

muscles, and hypodermal structures are required for mating.

C. elegans is a popular model organism for high-throughput studies due to its

advantages, in summary:

1. A fully sequenced genome.

2. Cell lineages have been fully mapped and shown to be invariant.

3. Easy of maintenance in the lab, requires only bacteria and ambient temperature

for growth.

4. Multicellular organism with a rapid life cycle of 2-3 weeks,
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5. Mutant strains can be stored for long periods of time at low temperatures.

6. Self-fertilizes or can be crossed with mutant males.

7. Transparent and odorless, thus easy to handle and spot mutations using the

microscope.

8. Receptive to many forms of mutagenesis using chemical mutagens; RNAi via

injection, feeding, or soaking is quite effective.

9. Many pathways and genes have orthologous in other species including humans.

2.2 Saccharomyces cerevisiae as a model organism

Saccharomyces cerevisiae is one of the most intensively studied eukaryotic model

organisms in molecular and cell biology. It is a species of budding yeast, reproducing

by a division process known as budding. S. cerevisiae cells are round to ovoid, 510

micrometers in diameter.

S. cerevisiae is popular for studying the cell cycle because it is easy to culture, but,

as a eukaryote, it shares the complex internal cell structure of plants and animals. S.

cerevisiae was the first eukaryotic genome to be completely sequenced. The genome

is composed of about 13 ∗ 106 base pairs and 6,275 genes, compactly organized on 16

chromosomes. It is estimated that yeast shares about 23% of its genome with that of

humans.

There are two forms in which yeast cells can survive and grow, haploid and diploid.

The haploid cells undergo a simple life cycle of mitosis and growth, and under con-

ditions of high stress will generally simply die. The diploid cells (the preferential

’form’ of yeast) similarly undergo a simple life cycle of mitosis and growth, but under

conditions of stress can undergo sporulation, entering meiosis and producing a variety

of haploid spores, which can go on to mate (conjugate), reforming the diploid. Yeast

has two mating types, 𝑎 and 𝛼, which show primitive aspects of sex differentiation,

and are hence of great interest.
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S. cerevisiae is a widely used model organism in science, and, is, therefore, one

of the most studied. S. cerevisiae has obtained this important position because of

its established use in industry (e.g. beer, bread and wine fermentation, ethanol

production). Additionally, yeasts are comparatively similar in structure to human

cells, both being eukaryotic, in contrast to the prokaryotes (bacteria and archaea).

Many proteins important in human biology were first discovered by studying their

homologs in yeast; these proteins include cell cycle proteins, signaling proteins, and

protein-processing enzymes. The highly annotated yeast genome [146] makes for an

important tool for developing basic knowledge about the function and organization of

eukaryotic cell genetics and physiology. S. cerevisiae is also covered by vast amounts

of other high-throughput data such as micro arrays, protein interaction networks,

signaling networks, knockout experiments etc, making it suitable as a source of addi-

tional data. We utilize S. cerevisiae data to confirm traits that link properties of genes

in interactive and phenotypes as well as provide more complete signaling networks

for analysis.

2.3 High-throughput datasets

C. elegans has been studied extensively since its introduction in 1974 by Sydney Bren-

ner [19]. Since the species are well-adapted and easy to handle in high-throughput

studies, multiple datasets are available covering large portions of or an entire worm

genome. Similarly, compared with other species, S. cerevisiae is covered by vast

amounts of high-throughput data. In the following sections, we list the categories of

experimental data available along with a brief description about each. Within each

category, we provide specific information about the datasets relevant to our compu-

tational work in the latter chapters.

2.3.1 DNA Microarrays

DNA microarrays are used to quantitatively measure levels of mRNA expression in a

collection of cells which can be specific tissues or an entire organism. Microarrays can
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be used to identify genes involved in embryogenesis or development by taking genome

expression level ’snapshots’ at different timepoints. Microarrays can be also used to

study mutations or diseases (e.g. cancer) by comparing gene levels in wildtype versus

mutant strains.

We are interested in the nature of gene interactions during the species’ life cycle

including embryogenesis, development, adult life and aging. We are also interested in

genes involved in the stress response or abnormal function e.g. cancer. Therefore we

use data on gene expression levels present across time in either wildtype or mutant

strains. This allows us to elucidate the functional relationships between gene pairs:

potential suppressors, enhancers etc. We use a compendium of microarray datasets

from the worm as listed below:

1. mRNA expression levels of 8890 genes in a wildtype C. elegans strain across 10

timepoints from the first to the fourth hour of embryonic development [9].

2. mRNA expression levels of 8890 genes in a mex-3 mutant C. elegans strain with

skn-3 (RNAi) across 10 timepoints from the first to the fourth hour of embryonic

development [9].

3. mRNA expression levels of 8890 genes in a pie-1 mutant C. elegans strain across

10 timepoints from the first to the fourth hour of embryonic development [9].

4. DNA microarray data covering 17,871 genes (94% of the C. elegans genome) in

a wildtype worm, representing relative levels of gene expression during devel-

opment, from eggs through adulthood, 7 timepoints [62].

5. DNA microarrays containing 11,917 genes in a wildtype population of worms.

The worms were synchronized in the L3 larval stage and then RNA was prepared

every 2 hours from the 32nd to the 44th hour after hatching for a total of 7

timepoints. This age range spans the entire time from the initial specification

of vulval fates to the completion of the vulval lineages (study of vulval cell

specification from [110]).

44



6. DNA microarrays containing 11,917 genes in a let-60 mutant population of

worms. The worms were synchronized in the L3 larval stage and then RNA was

prepared every 2 hours from the 32nd to the 44th hour after hatching resulting

in a total of 7 timepoints (study of vulval cell specification from [110]).

7. DNA microarrays containing 11,917 genes in a let-23 mutant population of

worms. The worms were synchronized in the L3 larval stage and then RNA

was prepared every 2 hours from the 32nd to the 44th hour after hatching for

a total of 7 timepoints (study of vulval cell specification from [110]).

8. In this study of aging and longevity in C. elegans, RNA was isolated from age-

synchronized cultures of 17,871 worms at 6 timepoints during their lifespan,

starting at the first day of adult life (3 days after fertilization) to an age of

16-19 days at which 90% of the population was dead [79].

9. mRNA expression levels of 18,455 C. elegans genes were measured at 7 time-

points during normal adult aging using synchronized populations at 0 hours

(young-age adult) to 144 hours (middle-age adult) [84].

10. mRNA expression levels of 18,455 C. elegans genes were measured at 7 time-

points in heatstress conditions using synchronized populations at 0 hours (young-

age adult) which were cultured at 25∘C, then switched to 30∘C and sampled

over a 12 hour time period [84].

11. DNA microarrays containing 11,990 C. elegans genes were hybridized across 29

total timepoints covering the developmental timecourse among 4 different worm

cultures. A mixed stage population of wildtype worms were grown at 20∘C, and

mutant worms were grown at 15∘C in liquid culture (glp-4) or on peptone plates

(fem-1 and fem-3) [107].

12. DNA microarrays containing probes for 17,817 C. elegans genes were hybridized

for synchronized populations of wildtype worms under normal conditions (3

timepoints) and under oxidative stress conditions (hypoxia) for synchronized

mutants hif-1 (3 timepoints) and vhl-1 (3 timepoints) [116].
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13. DNA microarrays containing probes for 17,088 C. elegans genes in synchronized

dauer stage worms were examined for gene changes during the transition from

dauer into normal development. The worms were fed at 0 hour and then ob-

served over a 12 hour period after feeding. They were harvested approximately

every 1 hour for a total of 11 timepoints [134].

14. DNA microarrays containing 17,088 C. elegans genes in synchronized starved

L1 stage. Worms were fed at timepoint 0 and subsequently harvested at approx-

imately 1 hour intervals for over 12 hours after feeding (11 timepoints) [134].

2.3.2 Spatial expression patterns

Spatial expression patterns describe where protein products of genes are localized

within an organism. This gives us information about the presence or enrichment of

proteins in specific types of cells or tissues, e.g. muscle, intestine, neuronal, pharynx.

The spatial datasets we use have been obtained using a variety of different methods:

1. Promoter GFP::fusion data - promoters targeting genes of interest are fused

with green fluorescent protein (GFP). GFP staining is used to visually localize

genes in specific tissues. The output from this method is generally qualitative as

it is done by visually screening the organism and indicating where fluorescence

is present. The GFP construct needs to be done separately for each individual

gene; thus the method’s throughput is low. To date, only a fraction of the C.

elegans genome has been screened. Relevant data we plan to use is a GFP::fusion

dataset which covers 1571 genes across 46 spatial locations in larval and adult

tissues [125].

2. Serial Analysis of Gene Expression (SAGE) data - SAGE is a technique used to

obtain a quantitative snapshot of the mRNA population in a sample of interest.

The traditional SAGE approach is based on a principle that a short sequence

tag (10-14 base pairs) contains sufficient information to uniquely identify a

transcript, provided that that the tag is obtained from a unique position within
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each transcript. First, mRNAs are isolated from a sample (e.g. specific tissue)

of interest. Then a short (10-14 base pairs) sequence chunk is extracted from

each mRNA and these chunks are all linked together to form a long chain.

Resulting chains are amplified via a polymerase chain reaction (PCR). Next,

they are sequenced and each tag is matched to its corresponding gene. The

quantity of tags observed provides information about the expression level of the

corresponding gene. We have SAGE data covering more than 14,000 C. elegans

genes across 12 specific tissues [86].

3. Spatial data from Wormbase is based on multiple data sources and covers 3394

genes in 38 spatial locations in adult tissues [145].

2.3.3 Phenotypes

A phenotype consists of an organism’s observable properties such as its morphology,

development, or behavior. Phenotypic differences between wildtype and mutant ani-

mals can be used to link genes to their function in an organism. Various mutagenic

treatments have been shown to effectively induce gene mutations in C. elegans. If a

single gene knockout is successful and the species viable, the resulting mutant strains

are preserved using hermaphrodite libraries. However, keeping mutant strains is te-

dious and expensive, and another method to knock down genes has become popular:

RNA interference (RNAi).

RNAi is a process of post-transcriptional gene silencing by which double stranded

RNA (dsRNA) causes sequence-specific degradation of homogolous mRNA sequences.

dsRNA of a desired knock-out gene is introduced into a cell in an attempt to suppress

the expression of that gene.

Double mutants created by genetic crossing of different strains are very hard to

obtain. Single gene mutant strains are expensive, difficult to control for experimen-

tally, and they are primarily hermaphrodites. Males are needed for double mutant

crosses. Double RNAi is not nearly as robust as single RNAi and frequently unde-

sired off-target effects occur. The most successful approach for double mutant is to
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use RNAi to knock down one gene on a mutant animal that is already missing the

other gene and then to repeat the procedure swapping the gene mutant and the RNAi

knockout gene to check for phenotype consistency.

The process of phenotypic screening is still far from being considered high-throughput,

as a majority of phenotypes have to be assessed on a case by case basis. Some at-

tempts have been made to use computers for automatic tracking and extraction of

features [36]. This approach should not only speed up the process but also make it

less subjective.

Below, we list a number of phenotypic datasets relevant to our thesis work:

1. Gathered data for 2217 C. elegans genes whose knockout results in lethality

along with a collection of 2236 genes based on genome-wide RNAi screens whose

knockdown results in one or more observable nonlethal phenotypes among the

30 listed [65, 118].

2. Merged phenotypic data for C. elegans fromWormbase [144], which incorporates

observations from multiple genome-wide RNAi experiments. There are a total

of 25 unique phenotypes among 4895 genes.

3. This dataset includes 655 genes, which express one or more of 44 early embryonic

phenotypes. The screening for phenotypes was done during the first two rounds

of cell division only and double stranded RNA was designed for 19,075 C. elegans

genes. Most of the genes expressing phenotypes at this stage result in the

embryonic lethal phenotype later on [120].

4. RNA interference was performed on 98% of 766 C. elegans genes enriched in the

ovary and 47 phenotypes were identified [101], mostly focusing on reproductive

viability and function, e.g. sterile, vulvaless etc.

5. cDNAs corresponding to approximately 10,000 genes (representing half of the

predicted genes) were used for systematic RNAi analysis, resulting in phenotypic

profiles for 2168 C. elegans genes across 30 categories [80].
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6. Yeast phenotypic data from Dudley et al. [28] consists of 4622 S. cerevisiae

genes monitored for defects under 21 stress conditions.

2.3.4 Protein interaction networks

Protein interactions are a basis of many biological processes within an organism. Sig-

nal transduction, protein complexes, chaperoning and protein modification all involve

protein interactions. Many methods, both in vivo and in vitro, have been attempted

to determine whether a pair of proteins interact. While the low throughput methods

are less prone to false outcomes, they are highly inefficient. The high-throughput

methods tend to be the opposite. Despite the shortcomings, such data allows us to

link properties of network components. For example, we can link protein nodes in a

network to their biological significance, identify subnetworks of nodes that may act

together etc.

We analyze both C. elegans [143] and S. cerevisiae interactomes [34]. Yeast protein

network data cannot be directly used to infer C. elegans genetic interactions, but we

use it to corroborate relationships between properties of genes in an interactome and

their phenotypes in Chapter 3. Far more interactions have been discovered in the

yeast interactome. Therefore, it offers us a better global picture of a protein network.

The majority of the interaction data comes from yeast two-hybrid (Y2H) or Tandem

Affinity Purification (TAP) experiments coupled with mass spectroscopy [133].

The currently available interactome data is as follows:

1. C. elegans interactome (WI7) has 3849 proteins involved in 6352 interactions

[143] (this interactome was subsequently replaced by WI8).

2. C. elegans interactome (WI8) has 4607 proteins involved in 7850 interactions

[143].

3. The yeast interactome has 1516 proteins, which are involved in more than 39,000

interactions weighted with “socio-affinity scores” [34] based on how likely they

are to associate with one another.
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Furthermore, we use these protein networks to extract additional features that

characterize pairs of genes using existing and newly developed network metrics. There

are 11 additional features that describe genes or gene pairs based on the following

metrics: degree, betweenness, mutual clustering coefficient, clustering coefficient, in-

formation flow, shortest distance in interactome (see Appendix A.3 and Chapter 3 for

detailed description of these features), as well as a metric related to motif discovery

in interactomes [78].

2.3.5 microRNAs

microRNAs (miRNA) are small single-stranded RNA molecules of 21-23 nucleotides

each that regulate gene expression. miRNAs are called non-coding RNAs because

they are not translated into proteins. The genes encoding miRNAs are much longer

than the processed mature miRNA molecule. miRNAs are first transcribed from DNA

as long primary transcripts with a cap and a poly-A tail. Next, they are processed in

the nucleus to shorter 70-nucleotide stem-loop structures known as pre-miRNA. These

pre-miRNAs are then processed to mature miRNAs in the cytoplasm by interaction

with the endonuclease Dicer, which also initiates the formation of the RNA-induced

silencing complex (RISC). This complex is responsible for the gene silencing observed

due to miRNA expression and RNA interference. Mature miRNA molecules are

partially complementary to one or more messenger RNA (mRNA) molecules.

The main function of miRNA is to downregulate gene expression [3, 4, 94]. miR-

NAs are known to be involved in control of gene expression during many diverse

events including development, metabolism, cell fate and cell death. miRNAs have

first been discovered in C. elegans in 1993 [71]. Since then, miRNA-like mechanisms

have been found in both plants and animals. Even bacteria have genes whose ef-

fects bear similarity to miRNAs because of base pairing silencing. In plants, similar

RNA species are termed short-interfering RNAs (siRNAs) and are used to prevent

the transcription of viral RNA [47].

As of now, approximately 110 miRNAs have been discovered in C. elegans. Many

of them target key developmental regulators for repression. Approximately one third
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of the C. elegans miRNAs are differentially expressed during development indicating

a major role for miRNAs in C. elegans development [131].

Due to its short sequence and transient function, miRNA presence is difficult to

discover and study. Experts predict the total number of miRNAs in C. elegans to be

several hundred [131], a large number of which remains to be found. Since miRNA

can target multiple genes for suppression, we use known miRNAs to extract potential

gene targets. We subsequently use the target genes as a feature in predicting genetic

interactions. We hope to find functional links between genes which share similar

miRNA suppressor profiles. Our dataset has been obtained via TargetScan software

[76, 75, 42] version 4.1. The dataset includes 59 miRNAs conserved across multiple

species and their 3108 predicted target genes. Another 11 miRNAs have not been

found to be conserved; however, they are also functional and their addition to the

miRNA pool increases the number of potential target genes to 9045.

2.3.6 Kinase families

A protein kinase is a kinase enzyme that modifies other proteins by chemically adding

phosphate groups to them via a process called phosphorylation. Phosphorylation

usually results in a functional change of the target protein by changing its enzyme

activity, cellular location, or association with other proteins. The worm genome

contains over 500 protein kinase genes, thus they constitute approximately 2.5% of

all the genes. Up to 30% of all proteins may be modified by kinase activity, as

kinases regulate the majority of cellular pathways, especially those involved in signal

transduction.

There are multiple types of kinases, including:

� Serine/threonine protein kinases (STK) which phosphorylate the OH group of

serine or threonine. Their activity can be regulated by specific events (e.g. DNA

damage) as well as numerous chemical signals. One very important group of

protein kinases are the MAP kinases described in more detail in Section 2.4.

Among the important MAPK subgroups are the kinases of the ERK subfamily,
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typically activated by mitogenic signals, and the stress-activated protein kinases

JNK and p38. Two major factors influence activity of MAP kinases: a) signals

that activate transmembrane receptors (either natural ligands, or crosslinking

agents) and proteins associated with them (mutations that simulate the active

state), b) signals that inactivate the phosphatases that restrict a given MAP

kinase. It is not surprising then, that STK expression is altered in many types

of cancer and the inhibition of STK kinases is the target of new anti-metastatic

cancer drugs [138].

� Tyrosine-specific protein kinases phosphorylate tyrosine amino acid residues,

and like serine/threonine-specific kinases are used in signal transduction. They

act primarily as growth factor receptors and in downstream signaling from

growth factors [52], for example:

– platelet-derived growth factor receptor,

– epidermal growth factor receptor (EGFR),

– insulin receptor and insulin-like growth factor 1 receptor,

– stem cell factor (SCF) receptor.

We hypothesize that kinases play an important role in the regulation of many

proteins and, therefore, are good candidates for genetic interactors. We have collected

518 kinase genes with additional annotations classifying them as part of one of 19

kinase groups and 102 kinase families [102, 17, 82, 83]. We use this information as

features for our prediction algorithms.

2.3.7 Phosphatase families

A phosphatase is an enzyme that removes a phosphate group from its substrate.

This action is directly opposite to that of a kinase. The removal of a phosphate

group may activate or de-activate an enzyme (e.g. kinase signaling pathways) or

enable a protein-protein interaction to occur. Therefore, phosphatases are integral

to many signal transduction pathways. It should be noted that phosphate addition
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and removal do not necessarily correspond to enzyme activation or inhibition, and

that several enzymes have separate phosphorylation sites for activating or inhibiting

functional regulation. Phosphates are important in signal transduction because they

regulate the proteins to which they are attached. To reverse the regulatory effect,

the phosphate is removed. This occurs on its own by hydrolysis, or is mediated by

protein phosphatases.

Similarly to kinases, phosphatases are implicated in many signaling pathways

which leads us to believe that genes belonging to the same phosphatase families or

groups may be functionally linked. We use data for 207 phosphatases along with the

data relevant to their membership in specific phosphatase groups (out of 7) or families

(out of 41), as features for our genetic interaction predictions algorithms [102, 17, 82,

83].

2.3.8 Known genetic interactions

A small portion of genetic interactions has been found via classical experiments.

Also, Lehner et al. [74] attempted a more high-throughput approach by systematically

testing approximately 65,000 gene pairs in a synthetic phenotype screen. Regardless,

this number represents only a tiny fraction of possible combinations. They found

that fewer than 0.5% of tested gene pairs fall into a category of genetic interactors.

It would be desirable to increase the experimental yield by focusing the search on the

genes that are likely candidates for genetic interactors. Although the available genetic

interaction data contains only a few thousand identified interactions, we plan to use

the set of genetic interactions as our positive training set and mine it for potential

individual or pairwise features to help us identify new candidates.

Our C. elegans dataset consists of 2018 unique pairs of genetically interacting genes

mined from Wormbase [142]. Wormbase’s source consists of high confidence pairs

cured from literature focused studies as well as those found via higher throughput

experiments.

Another genetic interactions dataset for C. elegans comes from Peter Roy’s lab

[20]. This dataset covers interactions between 11 query mutants in conserved signal
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transduction pathways and several hundred target genes which have been compro-

mised by RNA interference (RNAi). Despite the possibility of false positives and true

negatives, the systematic approach allows to to have an almost complete matrix of

interactions among the 11 query genes and 695 other target genes.

2.4 Mitogen-activated protein kinase pathway, MAPK

The mitogen-activated protein kinase (MAPK/ERK) pathway is a signal transduction

pathway that couples intracellular responses to the binding of growth factors to cell

surface receptors. This complex pathway includes many protein components [97, 137].

A general feature of MAPK pathways is the three-tiered kinase canonical cascade

consisting of a MAPK, a MAPK kinase (MAP2K, MAPKK, MKK or MEK) and

a MAPK kinase kinase (MAP3K or MAPKKK). The existence of this tier is likely

essential for the amplification and tight regulation of the transmitted signal. For

receptor tyrosine kinases (RTKs) and G-protein coupled receptors (GPCRs), MAPK

cascade activation is initiated by small GTP-binding proteins, STE20-like kinases or

by adaptor proteins that transmit the signal to MAP3Ks. MAP3Ks then transfer the

signal to MAP2Ks to induce MAPK activation. Thus, MAP3Ks have some stimulus

specificity, creating independent signalling modules that may function in parallel,

whereas the MAPKs carry out the effector functions of each cascade, either through

direct phosphorylation of effector proteins, such as transcription factors, or activation

of subordinate kinases, known as MAPK-activated protein kinases (MAPKAPKs).

Multiple dual-specificity phosphatases (DUSPs) dephosphorylate the threonine and

tyrosine residues on MAPKs, rendering them inactive either in the cytoplasm or

nucleus. DUSPs also assist in shuttling or anchoring MAPKs to control their activity.

Figure 2-4 shows three of the six currently known arms of the MAPK pathway. The

MAP kinase cascade has been evolutionarily conserved from yeast to mammals.

The MAPK pathway is initiated when activated Ras activates the protein kinase

activity of RAF kinase. RAF kinase phosphorylates and activates MEK. MEK phos-

phorylates and activates a mitogen-activated protein kinase (MAPK). The series of
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kinases from RAF to MEK to MAPK is an example of a protein kinase cascade. RAF,

MEK and MAPK are all serine/threonine-selective protein kinases that respond to

extracellular stimuli (mitogens) and regulate various cellular activities such as gene

expression, mitosis, differentiation, proliferation, and cell survival/apoptosis [100].

Such series of kinases provide for feedback regulation and signal amplification.

It is important to note that MAPKs are involved in the action of most nonnuclear

oncogenes. The kinase cascade is relevant to many cancers [56, 85, 152], for example

Hodgkin’s disease. MAPKs are involved in cell response to growth factors such as

BDNF or nerve growth factor.

To date, six distinct groups of MAPKs have been characterized:

1. Extracellular signal-regulated kinases (ERK1, ERK2). The ERK1/2 (also known

as classical MAP kinases) signaling pathway is preferentially activated in re-

sponse to growth factors and tumor promoters such as phorbol ester. This

pathway regulates cell proliferation and cell differentiation.

2. C-Jun N-terminal kinases (JNKs), (MAPK8-10) also known as stress-activated

protein kinases (SAPKs).

3. p38 isoforms. (MAPK11-14) Both JNK and p38 signaling pathways are re-

sponsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock,

osmotic shock, and are involved in cell differentiation and apoptosis.

4. ERK5 (MAPK7). This kinase has been recently discovered, is activated both

by growth factors and by stress stimuli, and participates in cell proliferation.

5. ERK3/4. ERK3 (MAPK6) and ERK4 (MAPK4) are structurally related atyp-

ical MAPKs possessing SEG motifs in the activation loop and displaying major

differences only in the C-terminal extension. ERK3 and ERK4 are primarily

cytoplasmic proteins which bind, translocate and activate MK5 (PRAK, MAP-

KAP5). ERK3 is unstable, unlike ERK4 which is relatively stable.

6. ERK7/8 (MAPK15) This is the newest member of MAPKs and behaves like

typical MAPKs. It possesses a long C terminus similar to ERK3/4.
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Figure 2-4: The three main arms of the mitogen-activated protein kinase (MAPK)
pathway, ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase)
and p38 are shown. They mediate immune cell functional responses to stimuli through
multiple receptors such as chemoattractant receptors, Toll-like receptors and cytokine
receptors. The three-tiered kinase dynamic cascade leads to activated MAPKs enter-
ing the nucleus and triggering immediate early gene and transcription factor activa-
tion for cellular responses such as cytokine production, apoptosis and migration. Red
arrows indicate feedback or crosstalk within the MAPK pathway (image from [59]).
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Chapter 3

Information flow method

And she went to all these countries, like China, Mexico and Hanukkah.

- Andrew, 5yo, unpublished

3.1 Motivation

In the last decade, several high-throughput experimental techniques have allowed

systematic mapping of protein-protein interaction networks, or interactome networks,

for model organisms [38, 34, 77, 68] and human [113, 123]. Interactome networks

provide us with a global view of complex biological processes within an organism,

and some attempts have been made to associate network properties with functional

relevance.

Work on global topology of interactome networks has led to a conclusion that these

networks are small-world with power-law degree distributions [7, 40, 60, 148]. This

translates to having a few hub nodes and a majority of nodes with a few partners. This

property of interactome networks is very different from random networks where the

degree is uniformly distributed. Given that interactomes evolved into this topology,

analyzing topological properties of biological networks should provide system-level

insights on key players of biological processes.

In an interactome network, the central proteins, which topologically connect many

different neighborhoods of the network, are likely to mediate crucial biological func-
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tions. It has been shown that genes acting as hubs (having many partners) are more

likely to engage in genetic interactions (Lehner et al. [74]). This suggests that testing

the pairwise mutation of a hub gene with the remaining genes in the genome should

allow us to find more genetic interactions than if we were to proceed at random. A

“hub” is the most straightforward way of quantifying the centrality of a protein in

a network. It is done simply by examining the proteins degree (described in more

detail in Section 3.2.1), e.g. the number of binding partners. Perturbations of high-

degree proteins (hubs) are more likely to result in lethality than mutations in other

proteins [46, 60]. On the same note, Davierwala et al. [23] analyzed essential genes in

yeast and showed that they are more likely to be involved in genetic interactions than

nonessential genes, especially if they share Gene Ontology annotations. Ozier et al.

[99] also showed that pairs of physically linked genes, where one or both exhibit high

degree of physical interactions, are substantially more likely to genetically interact

than a pair of low physical-interaction degree genes.

However, degree only measures a proteins local connectivity and does not con-

sider the proteins position relative to other proteins except for the direct binding

partners of the given protein. A metric to estimate global centrality is betweenness

as described in Section 3.2.2. Betweenness determines the centrality of a protein in

an interactome network based on the total number of shortest paths going through

the given protein [33, 39]. A node partaking in a large fraction of all shortest paths

has high betweenness. Such nodes have been termed bottlenecks [149] as they are

not necessarily high degree (as are the hub nodes), yet they have a large amount

of information traffic. The bottlenecks, like the hubs, are more likely to be essential

than randomly sampled proteins in interactomes [46, 63]. Recent evidence shows that

high betweenness is correlated with pleiotropy [154], and bottlenecks tend to mediate

crosstalks between functional modules [149]. Although to our knowledge, no studies

have been done to link betweenness with genetic interactions, we hypothesize that

proteins of high betweenness would have a higher tendency to be involved in genetic

interactions than random. Thus we could use both of these metrics as features in

predicting potential genetic interactions.
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Both degree and betweenness are graph metrics that are not specifically tailored

to describe biological networks. Degree measures a proteins local connectivity and

does not consider the proteins position in the network globally. Betweenness is a

better measure for centrality in that it takes into account paths through the whole

network, but it still has the disadvantage of only considering the shortest paths and

ignoring alternative pathways of protein interactions. More importantly, interactome

networks can be error-prone and some interactions in the same network are not as

reliable as others. Many studies have been conducted to categorize interaction data

into different confidence levels [5, 34, 87]. Neither degree nor betweenness takes the

confidence levels of interactions into consideration. To provide a better solution for

identifying central proteins, we developed an information flow model of interactome

networks that we describe in more detail in Section 3.3. We took the approach of

modeling networks as electrical circuits, which had been presented in previous net-

work analyses [27, 93, 124]. Construing the propagation of biological signals as flow

of electrical current, our method identified proteins central to the transmission of in-

formation throughout the network. Unlike the previous methods which characterized

only the topological features of proteins, our approach incorporated the confidence

scores of protein-protein interactions and automatically considers all possible paths

in a network when evaluating the importance of proteins. We compared the infor-

mation flow score to betweenness, and found that the information flow score in the

entire interactome network is a stronger predictor of loss-of-function lethality and

pleiotropy, and better tolerates the addition of large amounts of error-prone data.

We hypothesize that information flow can serve as a useful feature for predicting

genetic interactions.

For a multi-cellular organism, not all interactions have the same propensity to

occur in every tissue. However, the current network metrics usually treat interactome

networks as a whole, disregarding the possibility that some interactions may not occur

at all in certain types of tissues. To address this, we developed a framework for

studying tissue-specific networks using the information flow model. We constructed

an interactome network for muscle enriched genes in C. elegans, and showed that
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genes of high information flow in the muscle interactome network but not in the

entire interactome network are likely to play important roles in muscle function.

In the next section, we describe in more detail the metrics of degree and between-

ness. Next, we introduce the information flow model and the relevant details of the

algorithm. We analyze and compare the information flow to the other metrics used

to assess centrality of a node in a network. Finally, we show how information flow

is closely linked with phenotypic properties such as essentiality and pleiotropy, and

combined with other network metrics can further reveal properties of genes.

3.2 Relevant network algorithms and metrics

3.2.1 Degree

Degree of a node (or a vertex) in a network describes the number of edges directly

connecting the node with its immediate neighbors. The degree is a positive integer

with a minimum value of 0 if the node is not connected to anything. In recent years, as

more high-throughput data became available, protein networks have been analyzed

with respect to their degree distribution [60]. Their findings indicate that, much

like the social networks, protein interaction networks are characterized by scale-free

distribution. Scale-free refers to the fact that the majority of nodes have a very few

neighbors (interacting proteins) and there are only a few nodes with a high degree of

connectivity (hubs). As a result of this finding, Watts and Strogatz [136] were able

to describe interactomes as being small-world where the networks are highly clustered

thus the average path length is relatively short.

Degree as a property of a protein node describes its local interaction map with

the neighbors as shown in Figure 3-1. In this setting, high degree has been associated

with the likelihood that a given gene is essential [60]. In this chapter, we use degree

as one of the features of a single gene to predict phenotypes. In the later chapters,

we use degree as a feature for a gene to predict whether it genetically interacts. We

also expand on that and use degree to describe a pair of genes via linear combination
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of the sum of the degrees and the difference between their degrees.

v

Figure 3-1: Node 𝑣 can represent a protein in a protein network. In this example,
degree of node 𝑣 is 4 since it’s connected to 4 other proteins.

3.2.2 Betweenness

Betweenness is a centrality measure of a node in a network graph. The betweenness

of a particular node is determined by how often it appears on the shortest paths

between the pairs of remaining nodes. For a graph with 𝑁 nodes, the betweenness

𝐶𝐵(𝑣) for node 𝑣 is:

𝐶𝐵(𝑣) =
∑

𝑠 ∕=𝑣 ∕=𝑡∈𝑉

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
(3.1)

where 𝜎𝑠𝑡 represents the number of shortest paths from node 𝑠 to node 𝑡, and 𝜎𝑠𝑡(𝑣)

represents the number of shortest paths from node 𝑠 to node 𝑡 that pass through node

𝑣. To compute shortest path, we used Dijkstra algorithm [25]. Dijkstra algorithm,

described in Appendix A.3.1, is a greedy search algorithm that solves the single-

source shortest path problem for a directed graph with non negative edge weights.

We modified it to handle a nondirected graph.

In biological networks, high betweenness nodes have been found to be more likely

essential. Yet the method has its shortcomings and in the following section, we

introduce a method we developed called information flow, which we believe is a better

alternative for determining the importance of a node than betweenness.
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Figure 3-2: Example of betweenness computation between nodes 𝑖 and 𝑗. Different
nodes on the path between 𝑖 and 𝑗 score different amounts depending on the number
of shortest paths passing through them. Here, node 𝑎 has a betweenness score of 1

3

since it is on 1 of the 3 shortest paths, while node 𝑏 scores 2
3
since it is on 2 out of 3

paths.

3.3 The information flow model

We model an interactome network as a resistor network, where proteins are repre-

sented as nodes and interactions are represented as resistors. The conductance of each

resistor is directly proportional to the confidence score of the corresponding interac-

tion. In cases where the confidence levels of interactions are not known, we assume

that all resistors have unit conductance.

3.3.1 The Iflow algorithm

In order to estimate the importance of node 𝑘 in conducting electrical current in a

network of 𝑁 nodes, we connect node 𝑖 to a unit current source and node 𝑗 to the

ground, and we compute how much current flows through node 𝑘 using Kirchhoff’s

laws (see Figure 3-3). We define the information flow score of node k as the sum

of current through node k among all pair-wise combinations of source and ground

nodes. Since exchanging the source node and the ground node does not lead to

different current distributions, we perform the calculation of information flow scores

only for cases where 𝑖 > 𝑗. The total number of pairwise combinations of nodes (𝑖, 𝑗),

such that 𝑖 ∕= 𝑘, 𝑗 ∕= 𝑘 and 𝑖 > 𝑗 is (𝑁 − 1)(𝑁 − 2)/2. The information flow through

node 𝑘 is
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𝐼𝑘 =
1

(𝑁 − 1)(𝑁 − 2)

∑
𝑖>𝑗

(
∑
𝑚

∣𝐼 𝑖𝑗𝑘𝑚∣) (3.2)

where 𝐼 𝑖𝑗𝑘𝑚 is the current between the nodes 𝑘 and 𝑚 for a sink-source node com-

bination (𝑖, 𝑗), and
∑

𝑚 ∣𝐼 𝑖𝑗𝑘𝑚∣ is the sum over all resistors connected to node 𝑘.

Is
i

j

k

Rki

I1I3

I2
p

The unit current source, Is, is connected to the 
node i, the ground node is j, and the node of 
interest is k.
The currents through the node k are I1, I2, and 
I3. Due to the conservation of the current, the 
total sum of the node currents is zero:

I1 + I2 + I3 =0
By the total flow through the node k, we denote
the sum of all positive currents into the node. 
Due to the conservation of the current it is 
exactly half of the absolute sum of all currents:

Itotal
k = (|I1| + |I2| + |I3|)/2

Figure 3-3: Kirchhoff’s current law

For a given pair of source node and ground node, the standard way of computing

resistor currents of a circuit is using nodal analysis and solving the resulting system

of (𝑁 − 1) linear equations for node voltages. For each node 𝑚 that is not a ground

node, we have the following equation:

∑
𝑙

𝑣𝑙 − 𝑣𝑚
𝑅𝑚𝑙

+ 𝐼𝑚 = 0 (3.3)

where 𝑣𝑙 is a voltage at node 𝑙, and the sum is over all nodes directly connected to

node 𝑚. When node 𝑚 is a source node, 𝐼𝑚 in Equation 3.3 equals 𝐼𝑠. Node voltages

can be computed by solving the following linear system of equations:

Gv = J (3.4)

where G is a symmetric (𝑁 − 1) by (𝑁 − 1) conductance matrix, v is a vector of

unknown node voltages and J is a vector of currents to every node. The matrix G

can be calculated using the following algorithms.

Algorithm 1: Assembly of the nodal matrix
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1. Initialize an 𝑁 by 𝑁 matrix G∗ to zero.

2. For every resistor in the circuit:

a Insert the off-diagonal element 𝑔𝑖𝑗 = 𝑔𝑗𝑖 =
−1
𝑅𝑖𝑗

, where 𝑖 and 𝑗 are the end

terminals of the resistor;

b Add the value 1
𝑅𝑖𝑗

to both diagonal values 𝑔𝑖𝑖 and 𝑔𝑗𝑗.

3. Remove the row and column of G∗ corresponding to the ground node (since its

voltage is zero).

The right-hand-side of Equation 3.4 is a vector of currents, which is zero except for

the source node 𝑖 which has a unit value. The most time consuming part of solving

Equation 3.4 is LU decomposition of matrix G. Since G remains the same if the

ground node is fixed, we can reuse matrices L and U while iterating over all source

nodes. Therefore, we need only 𝑁 LU decompositions of G.

Below we outline the resulting algorithm for calculating information flow of a given

circuit.

Algorithm 2: Calculation of information flow

1. Assemble the 𝑁 by 𝑁 matrix G∗ by following steps 1 and 2 of Algorithm 1.

2. Initialize the absolute sum of currents for each node to be the zero vector 𝐼∑.

3. Iterate over the ground node 𝑗 = 1 . . . 𝑁 :

a Get matrix G by removing the row and column 𝑗 of G∗ (Step 3 of Algo-

rithm 1);

b Compute the LU decomposition of matrix G:

G = LU, (3.5)

where L is lower-diagonal matrix and U is upper-diagonal;

c Iterate over the source node 𝑖 = (𝑗 + 1) . . .𝑁 :
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1) Set the right-hand-side vector J to have all zeros except the unit 𝑖𝑡ℎ

entry;

2) Solve for node voltages v using matrices L and U:

v = U−1(L−1J) (3.6)

3) Compute the absolute sum of all currents for each node and add them

to the entries of I∑.

4. Using Equation 3.3, compute the information flow for each node.

The Matlab implementation of the information flow algorithm, along with the

information flow scores for proteins in the yeast interactome network and proteins

in the worm interactome network, can be downloaded at http://jura.wi.mit.edu/

ge/information_flow_plos/ [88].

3.3.2 Partition of interactome into modules algorithm

Our information flow model identifies central proteins in interactome networks. The

proteins of high information flow scores are likely to act as connecting points of func-

tional modules. To test this hypothesis, we designed an algorithm to recursively

remove the highest flow proteins and extract smaller subnetworks from a large inter-

actome network component. In the algorithm described below, a core module refers

to a subnetwork composed of 15 to 50 proteins.

Algorithm 3: Recursive node removal

1. Initialize:

∙ G to the set of all proteins sorted from highest to lowest information flow

score;

∙ C, the protein connectivity matrix, with a 1 for each protein-protein in-

teraction and 0s for no interaction,
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∙ core module size limits, 𝑠𝑚𝑖𝑛 = 15 and 𝑠𝑚𝑎𝑥 = 50,

∙ nodes to be removed from G at a given iteration,Gremove to an empty set,

∙ core module set, M, to an empty set.

2. Iterate while G is not empty:

∙ Given G and C, extract a list of protein modules, S.

∙ Iterate over the set of modules S, 𝑖 = 1 . . . 𝑠𝑖𝑧𝑒(S):

∘ If number of genes in S(𝑖), 𝑠𝑖𝑧𝑒(S(𝑖)) <= 𝑠𝑚𝑎𝑥

If 𝑠𝑖𝑧𝑒(S(𝑖)) ≥ 𝑠𝑚𝑖𝑛, (modules smaller than 𝑠𝑚𝑖𝑛 are ignored)

Append S(𝑖) to M

Add genes in S(𝑖) to Gremove

∙ Remove nodes present in Gremove from G.

∙ Reset Gremove to an empty set.

∙ Remove next highest flow protein(s) from G.

3. Output is the set of core modules, M.

3.4 Experimental results and conclusions

3.4.1 Information flow model considers interaction confidence

scores and all possible paths in protein networks

We model an interactome network as an electrical circuit, where interactions are

represented as resistors and proteins as interconnecting nodes (Figure 3-4). In the

circuit, the value of resistance for each resistor is inversely proportional to the con-

fidence score of the interaction. According to Kirchhoff’s circuit laws, the current

entering any node is equal to the current leaving that node. By applying a current

source to one node and grounding another, we determined the exact amount of cur-

rent flowing through each node in the network (see Section 3.5). We iterated over
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all pairwise combinations of source and ground nodes in the network and summed

up the absolute values of current through the node of interest from all iterations.

We defined the information flow score of a protein as the sum of absolute values of

current through the corresponding node. A node that actively participates in the

transmission of current for other nodes ends up with a high sum of absolute values

of current, and the corresponding protein receives a high information flow score.

Interactome network

R1

R2

Circuit representation

g1

g2

Legend:
protein
protein-protein interaction
interaction confidence scoregn

Rn resistance

Figure 3-4: Circuit representation of an interactome network. We model an interac-
tome network as an electrical circuit, where a node represents a protein and a resistor
represents an interaction. The resistance value of a resistor is inversely proportional
to the confidence score of the corresponding interaction.

Unlike degree that only considers direct interactions or betweenness that only

scores proteins along the shortest paths interpreted as the dominant paths, the infor-

mation flow model weighs proteins along all the possible paths. Therefore, the infor-

mation flow model is able to rank runner-up proteins participating in many paths of

information transmission, instead of only the seemingly prominent ones. This aspect

of the information flow model reflects the property of biological pathways more faith-

fully: there have been plenty of observations for multiple pathways acting in parallel

to achieve a specific biological function [32, 49, 55, 74, 127], and the active pathways

may not always be the shortest ones.
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We applied the information flow model to two publicly available interactome net-

works: a S. cerevisiae interactome consisting of 1516 proteins involved in 39, 099

interactions [34] and a C. elegans interactome consisting of 4607 proteins involved

in 7850 interactions [45, 77, 119] (see Section 3.5). Every interaction in the yeast

interactome is accompanied by a socio-affinity index, which quantifies the tendency

for a pair of proteins to identify each other when one of the pair is tagged and to co-

purify when a third protein is tagged [34]. A high socio-affinity index indicates a high

confidence level for an interaction. We used all the interactions with socio-affinity

indices of 2 or higher. The worm interactome does not have numerical scores for the

interactions, so we regarded all of the interactions for worms equally. Using these two

interactomes, we were able to evaluate the information flow model under situations

where interactions are treated equally or interactions have different confidence scores.

Similarly to degree and betweenness, information flow scores of proteins in the yeast

or worm interactome network did not follow a Gaussian distribution, so we converted

information flow scores into ranks and percentiles to reflect their relative values in an

interactome network.

Although the information flow score is a very different network metric from be-

tweenness or degree, there might be relationships between the information flow score

and these two topological metrics. We obtained scatter plots for the ranks of in-

formation flow scores versus the ranks of betweenness or degree for both the yeast

interactome and the worm interactome (Figure 3-5). Although the information flow

score and betweenness are correlated, a given betweenness rank usually corresponds

to a wide range of information flow ranks, and vice versa (Figure 3-5A and 3-5C).

The information flow score and degree are less correlated (Figure 3-5B and 3-5D).

Low degree does not necessarily imply low information flow score, although very high

degree often implies high information flow score.
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Figure 3-5: Scatter plots of ranks of information flow versus betweenness (Panel
A) or degree (Panel B) in a S. cerevisiae interactome network and in a C. elegans
interactome network (Panel C and Panel D). Overall, ranks of information flow and
betweenness are correlated, but a given betweenness usually corresponds to a wide
range of information flow scores. Ranks of information flow and degree are less
correlated. Low degree can correspond to low, medium or high information flow,
but high degree usually corresponds to high information flow.

3.4.2 Information flow is a strong predictor of essentiality

and pleiotropy

We propose that the information flow model is able to identify proteins central to

the transmission of biological information in an interactome network. If this model

works, eliminating the proteins of high information flow scores should be deleterious.

The perturbation of information flow and the disintegration of functional modules are

likely to result in lethality or multiple phenotypes (pleiotropy). To test our hypothesis,

we performed a correlation analysis between the percentages of essential proteins or

pleiotropic proteins and the percentiles of information flow scores (see Section 3.5).
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For each bin containing proteins within a certain range of information flow scores (in

percentiles), we calculated the percentage of proteins whose loss-of-function strains

exhibit lethality and the percentage of proteins whose loss-of-function strains exhibit

two or more phenotypes. We observed a strong increasing trend for the percentage

of essential proteins and the percentage of pleiotropic proteins when information

flow scores increase (Figure 3-6). For S. cerevisiae, the Pearson correlation coefficient

(PCC) between the percentages of essential proteins and the percentiles of information

flow scores is 0.84, and the PCC between the percentages of pleiotropic proteins and

the percentiles of information flow scores is 0.60. For C. elegans, the PCC between

the percentages of essential proteins and the percentiles of information flow scores is

0.95, and the PCC between the percentages of pleiotropic proteins and the percentiles

of information flow scores is 0.85 as well.

In contrast, betweenness is a poorer predictor for both essentiality and pleiotropy.

For S. cerevisiae, the PCC between the percentages of essential proteins and the per-

centiles of betweenness is −0.02, and the PCC between the percentages of pleiotropic

proteins and the percentiles of betweenness is −0.31. For C. elegans, the PCC be-

tween the percentages of essential proteins and the percentiles of betweenness is 0.67,

and the PCC between the percentages of pleiotropic proteins and the percentiles of

betweenness is 0.49.

To determine the statistical significance of the correlation, we generated random-

ized datasets by shuffling genes among the percentile ranges while keeping the num-

ber of genes in each range fixed. Next we obtained the percentage of essential or

pleiotropic genes for each range and performed correlation analysis for each random-

ized dataset. We found that the correlation between essentiality or pleiotropy and

information flow scores is generally stronger in the actual datasets than in the random-

ized datasets (𝑃−𝑣𝑎𝑙𝑢𝑒 = 0.0059 and 𝑃−𝑣𝑎𝑙𝑢𝑒 = 0.055 for essentiality and pleiotropy

in S. cerevisiae, respectively; 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.00054 and 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.0047 for es-

sentiality and pleiotropy in C. elegans, respectively), while the correlation between

essentiality or pleiotropy and betweenness is not significant (𝑃−𝑣𝑎𝑙𝑢𝑒 > 0.05). Infor-

mation flow outperforms degree in terms of correlation with essentiality or pleiotropy
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Figure 3-6: Correlation between information flow scores and loss-of-function pheno-
types. The higher a proteins information flow score is, the higher the probability
of observing lethality (Panel A) or pleiotropy (Panel B) when the protein is deleted
from S. cerevisiae. This trend is observed for C. elegans as well (Panel C and Panel
D). The correlation is not as strong for betweenness and loss-of function phenotypes.
The PCCs for information flow scores and phenotypes are 0.84, 0.60, 0.95, and 0.85
in Panels A-D, respectively. In contrast, the PCCs for betweenness and phenotypes
are −0.02, −0.31, 0.67, and 0.49 in Panels A-D, respectively.

in S. cerevisiae (Figure 3-7). In the C. elegans interactome where the interactions

are unweighted, degree is still a strong indicator of essentiality and pleiotropy (see

Figure 3-7).

3.4.3 Proteins of high information flow and low betweenness

show a high likelihood for being essential or pleiotropic

Proteins with similar betweenness in an interactome can differ significantly in terms

of information flow scores (Figure 3-5). We investigated whether the information

flow score is well correlated with essentiality and pleiotropy among proteins that
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Figure 3-7: Correlation between degree and loss-of-function phenotypes. The higher
a proteins degree is, the higher the probability of observing lethality (Panel C) or
pleiotropy (Panel D) when the protein is deleted from C. elegans. However, this
trend is not observed for S. cerevisiae (Panel A and Panel B). The PCCs for degrees
and phenotypes are 0.31, −0.53, 0.96, and 0.97 in Panels A-D, respectively.

rank low in terms of betweenness. We identified 449 proteins that rank the lowest

30% in the yeast interactome and 672 proteins that rank the lowest 30% in the

worm interactome. We found that the correlation between the information flow score

and essentiality or pleiotropy holds for these two groups of proteins (Figure 3-8).

For example, we found ten yeast proteins that are among the highest 30% of all

proteins in terms of information flow but are among the lowest 30% of all proteins

in terms of betweenness. Out of these 10 proteins, 8 correspond to lethal phenotypes

when deleted, and the other 2 correspond to multiple other phenotypes when deleted

(Table 3.4.3)). In contrast, we found three yeast proteins that are among the highest

30% of all proteins in terms of betweenness but are among the lowest 30% of all

proteins in terms of information flow, and none of them are essential or pleiotropic.

Similarly, we found that the information flow model is predictive of essentiality or

pleiotropy among medium- or low-degree proteins as well (Figure 3-9).
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Table 3.1: Genes in the S. cerevisiae interactome that rank the highest 30% by
information flow and rank the lowest 30% by betweenness.

Gene Name Lethality Number of phenotypes other than lethality
SRP68 Yes
RPB5 Yes
PAP2 No 2
RPB8 Yes
RRP4 Yes
LSM2 Yes
MRPL4 No 13
PRP31 Yes
NOP14 Yes
NOP7 Yes

What properties make some proteins low in betweenness but high in information

flow scores? From the information flow model, we can expect two typical situations:

one situation is that a protein lies on alternative paths that are slightly longer than

the shortest path(s); the other situation is that a protein has a limited number of

high-confidence interactions. Betweenness does not take any alternative, longer paths

into consideration in the first situation, and betweenness does not give extra credit

to high-confidence interactions in the second situation. We illustrated the above

two situations with example toy networks, and analyzed how the information flow

model scores nodes that may be important but not recovered by betweenness (Ap-

pendix B.1). A closer look at the individual proteins from the interactome networks

confirms the existence of both situations in biological networks.

Every interaction in the yeast interactome has a socio-affinity index that measures

the likelihood of a true interaction [34]. A hub that has many low-confidence interac-

tions may not be rated as high as a protein with a limited number of high-confidence

interactions by the information flow model. We defined an average interaction score

for a protein as the average of socio-affinity indices for all interactions involving the

given protein. For example, SRP68, a core component of the signal recognition par-

ticle ribonucleioprotein complex, has a high average interaction score which ranks
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Figure 3-8: Correlation between information flow scores and loss-of-function pheno-
types among proteins of low betweenness. Even among those proteins that rank in
the lower 30% in terms of betweenness, a proteins information flow score is still a good
indicator for the probability of observing lethality (Panel A) or pleiotropy (Panel B)
when the protein is deleted from S. cerevisiae. This trend is observed for C. elegans
as well (Panel C and Panel D). The PCCs for information flow scores and phenotypes
are 0.89, 0.79, 0.69, and 0.65 in Panels A-D, respectively.

among the highest 30% in the yeast interactome. SRP68 ranks among the lowest

30% in terms of betweenness but the highest 30% in terms of information flow score.

The deletion of this gene results in lethality of the yeast strain. The same situation

applies to RPB5, an RNA polymerase subunit. The high average interaction scores

are not taken into account in the calculation of betweenness. In the information flow

model, we give more credit to the proteins with high-confidence interactions.

The C. elegans interactome does not have numerical scores associated with the

interactions, so all the interactions are treated equally in our information flow model.

Therefore, the discrepancy of information flow scores and betweenness is likely to

result from topological features of the network. For example, KLC-1, which has

been found to interact with UNC-116/kinesin, KCA-1/kinesin cargo adaptor, and

the ARX-2/Arp2/3 complex component by yeast two-hybrid (Y2H) screens [2], is

involved in intracellular transport and is required for embryonic viability. KLC-1 is on

74



<50% 50−70%70−80%80−90%90−95% >95%
0

10

20

30

40

50

% Ranges of centrality scores

%
 L

et
h

al
it

y

(A) S. cerevisiae

Information flow
Betweenness

<50% 50−70%70−80%80−90%90−95% >95%
0

5

10

15

20

% Ranges of centrality scores

%
 P

le
io

tr
o

p
y

(B) S. cerevisiae

Information flow
Betweenness

<50% 50−70%70−80%80−90%90−95% >95%
0

10

20

30

40

50

% Ranges of centrality scores

%
 L

et
h

al
it

y

(C) C. elegans

Information flow
Betweenness

<50% 50−70%70−80%80−90%90−95% >95%
0

10

20

30

40

50

% Ranges of centrality scores

%
 P

le
io

tr
o

p
y

(D) C. elegans

Information flow
Betweenness

Figure 3-9: Correlation between information flow scores and loss-of-function pheno-
types among proteins of low or medium degrees. Even among proteins of low or
medium degrees, a proteins information flow score is still a good indicator for the
probability of observing lethality (Panel A) or pleiotropy (Panel B) when the protein
is deleted from S. cerevisiae. This trend is observed for C. elegans as well (Panel C
and Panel D). The correlation is not as strong for betweenness and loss-of function
phenotypes. The PCCs for information flow scores and phenotypes are 0.80, 0.86,
0.84, and 0.80 in Panels A-D, respectively. In contrast, the PCCs for betweenness
and phenotypes among low- or medium-degree proteins are 0.61, 0.037, 0.32, and 0.49
in Panels A-D, respectively.

a topologically central position (Figure 3-10A) but scores low in terms of betweenness.

Another example is TAG-246, an ortholog of mammalian SWI/SNF-related matrix-

associated actin-dependent regulator of chromatin subfamily D (SMARCD). TAG-

246 is required for LIN-3/EGF signaling in C. elegans vulva development. Just like

KLC-1, TAG-246 only has 4 interactions. The loss-of-function of TAG-246 results

in lethality as well as several post-embryonic phenotypes, such as protruding vulva

and sterile progeny. Figure 3-10B shows that there are many parallel paths around

TAG-246, so TAG-246 does not always lie on the shortest path, thus scoring low

in betweenness. Although KLC-1 and TAG-246 are neither high-degree nor high-

betweenness, the information flow model ranks them in the top 37% and top 26%,

respectively, because it considers all possible paths in the network.
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A

B

Figure 3-10: Examples of proteins showing high information flow but low betweenness
in the C. elegans interactome network. The interactions in the C. elegans interactome
do not have numerical confidence scores, and the discrepancy between information
flow scores and betweenness is likely to be due to topological features such as the
existence of alternative paths. KLC-1 (Panel A) and TAG-246 (Panel B) are two
worm proteins that have only 4 interactions, and neither of them scores high in
betweenness. However, KLC-1 rank the highest 37% and TAG-246 rank in the highest
26% in terms of the information flow scores. The two proteins both correspond to
lethal phenotypes upon loss-of-function.
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Taken together, the information flow model is effective in identifying proteins

that are central in interactome networks. Even in cases where betweenness ranks

are relatively low, the information score serves as a strong predictor for essential or

pleiotropic proteins.

3.4.4 The ranks of information flow scores are more consis-

tent than betweenness when a large amount of low-

confidence data is added

As more high-throughput datasets become available, new interactions are added into

the networks. High-throughput experiments are error-prone and false positives can

be problematic [87]. To address the data-quality issue, there have been many studies

attempting to estimate the probability of a true interaction between a pair of proteins

instead of weighing all interactions equally [5]. However, previous network metrics

such as betweenness do not take the likelihood of interactions into account. By

incorporating the confidence scores of interactions into resistor values, the information

flow model is able to more accurately simulate information propagation throughout

the network.

In order to analyze how well the information flow model tolerates the addition

of a large amount of noisy data, we simulated a growing yeast interactome network

by adding low-confidence interactions. Higher socio-affinity indices indicate higher

confidence of interactions. In total, there are 9, 290 interactions with socio-affinity

indices of 4.5 or higher, or 17, 159 interactions with socio-affinity indices of 3.5 or

higher, or 39, 099 interactions with socio-affinity indices of 2 or higher. We rank

both information flow scores and betweenness for all the proteins in each of the

three versions of the interactome. We showed that ranks of information flow scores

were more consistent than that of betweenness when low-confidence interactions were

added to the interactome (Figure 3-11). The consistency of information flow ranks

suggests that the information flow model is not only effective but also robust in the

case of noise in the data.
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Figure 3-11: Scatter plots for ranks of information flow scores in different versions of
yeast interactome networks (Panel A and C) and for ranks of betweenness in different
versions of yeast interactome networks (Panel B and D). The Y-axis represents the
rank of information flow scores (Panel A and C) or the rank of betweenness (Panel B
and D) in a yeast interactome that includes high-confidence interactions only (socio-
affinity scores of 4.5 or higher). In Panel A and Panel B, the X-axis represents the
rank of information flow scores or the rank of betweenness in a yeast interactome
that includes interactions at lower confidence levels (socio-affinity scores of 3.5 or
higher). The PCCs for the ranks of information flow scores (Panel A) and the ranks
of betweenness (Panel B) are 0.83 and 0.71, respectively. In Panel C and Panel D,
the X-axis represents the rank of information flow scores or the rank of betweenness
in a yeast interactome that includes interactions at still lower confidence levels (socio-
affinity scores of 2.5 or higher). The PCCs for the ranks of information flow scores
(Panel C) and the ranks of betweenness (Panel D) are 0.54 and 0.38, respectively.
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3.4.5 Information flow analysis of a muscle interactome net-

work reveals genes important for muscle function in C.

elegans

In multi-cellular organisms such as C. elegans, a pair of proteins may only interact

in certain tissues or cell types. Therefore, the architecture of interactome networks

may vary according to tissue or cell types [29]. We hypothesize that proteins of high

information flow in a given tissue play crucial roles for the normal function of that

tissue.

We tested our hypothesis in an interactome network for muscle-enriched genes.

From a SAGE (Serial Analysis of Gene Expression) dataset of 12 C. elegans tissues

[86], we identified muscle-enriched genes using a semi-supervised learning method

[105]. The semi-supervised learning analysis combines the benefits of unsupervised

clustering and supervised classification. In other words, both the distribution of data

points and prior biological knowledge can be utilized to identify genes enriched in

a particular tissue. We manually curated the biomedical literature and found 25

genes known to show enriched expression in muscle cells and 165 genes known not to

be expressed in muscle cells (Appendix B.3- Table S2). These two groups of genes

served as positive and negative training data, respectively. For each gene expressed in

muscle, the semi-supervised learning procedure gave a probability score (𝑃𝑖(𝑚𝑢𝑠𝑐𝑙𝑒))

ranging from 0 to 1 to indicate the genes expression enrichment in muscle as compared

to other tissues (Appendix B.3 - Table S3). We defined genes scoring 0.5 or higher

(𝑃𝑖 > 0.5) as muscle-enriched genes and identified 310 such genes (Figure 3-12).

Among the muscle-enriched genes identified by us, promoter::GFP reporter strains

are available for 52 of them, and 31 of them (60%) show clear expression patterns

in body wall muscle (Appendix B.3 - Table S4), not including those that might be

expressed in other types of muscle. In addition, 260 (84%) of muscle-enriched genes

contain cis-regulatory modules that indicate expression in muscle in their promoter

sequences [151] (Appendix B.3 - Table S5).

From the interactome dataset, we identified direct interacting partners of the
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Figure 3-12: Muscle-enriched genes identified by semi-supervised analysis. Each row
represents a gene and each column represents a tissue or cell type. The normalized
values of gene expression are represented in a color scale. Genes are sorted by prob-
ability scores (𝑃𝑖) which indicate expression enrichment in muscle as compared to
other tissues. Altogether 310 muscle enriched genes (𝑃𝑖 ≥ 0.5) were identified. In
this plot, the 310 muscle enriched genes, 155 randomly selected genes, and 155 genes
with the lowest 𝑃𝑖 are shown. The list of genes can be found in Appendix B.3 - Table
S9
.

muscle-enriched genes. We discarded the interacting genes that, according to the

SAGE data, are not expressed in muscle cells. The muscle-enriched genes and their

interacting partners which are expressed in muscle form a network of 332 genes and

638 interactions. We defined the weight of an interaction (𝑔12) in the muscle interac-

tome network as the product of the probability scores for the two interacting genes

(𝑔12 = 𝑃1𝑃2). In other words, the more enriched a given genes expression is in muscle,

the higher its propensity is to interact with other enriched genes in muscle cells.

We applied the information flow model to the muscle interactome network, taking

the weights of interactions into account. We ranked all the genes in the muscle inter-

actome network by their information flow scores in the muscle interactome network

and by their information flow scores in the entire interactome network, respectively.

We found that genes of high information flow in the muscle interactome network and
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genes of high information flow in the entire network did not completely overlap (Fig-

ure 3-13). In other words, some genes rank high in both the muscle network and the

entire network, while others rank high in the muscle network but not in the entire

network. We first examined genes ranking high in both networks. We identified the

top 35 genes based on the sum of their ranks from both networks and found that 40%

of them correspond to loss-of-function lethality, which implies that they are essential

for the organism development. We then hypothesized that the genes ranking high in

the muscle network but not in the entire network play crucial roles in muscle function,

though they may not be essential for the whole organism.

Figure 3-13: An interactome network for muscle-enriched genes. We identified direct
interacting partners for the muscle-enriched genes from the C. elegans interactome
dataset. We required that an interacting partner must be expressed in muscle cells
according to the SAGE dataset. The muscle-enriched genes and their interacting
partners form a network. The blue nodes represent the top 20 genes with the highest
information flow scores given that the information flow score is calculated just in the
muscle network and that the weight of an interaction is defined as the product of the
probability scores of the two interacting genes. The green nodes represent the top
20 genes in the muscle network with the highest information flow scores given that
the information flow score is calculated in the entire C. elegans interactome network
and that the interactions are unweighted. Some genes (red nodes) rank in the top 20
under both conditions.

We obtained the percentiles of genes in terms of information flow scores in the
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muscle network and the percentiles of genes in the entire network, calculated the

differences between these two percentiles, and ranked the genes by the differences.

A C. elegans homolog of human paxillin, tag-327, shows the largest percentile differ-

ence (Table 3.4.5). This gene is suspected to be part of the worm muscle attachment

complex [135]. A homozygous gene knockout of tag-327 resulted in uncoordinated an-

imals arrested at the L1 developmental stage, displaying mild disorganization of the

myofilament lattice in their muscle cells [135]. The gene showing the second largest

percentile difference is dys-1, which ranks top 15% in terms of information flow scores

in the muscle network and 71% in the entire network. dys-1 encodes an orthologue of

the human DMD [34], which when mutated leads to Duchenne muscular dystrophy,

a severe recessive x-linked form of muscular dystrophy that is characterized by rapid

progression of muscle degeneration. The gene showing the third largest percentile

difference is lev-11, which ranks in the top 21% in terms of information flow scores in

the muscle network and 78% in the entire network. lev-11 encodes an orthologue of

the human TROPOMYOSIN 1 [89] (http://www.wormbook.org), which when mu-

tated leads to familial hypertrophic cardiomyopathy, a genetic disorder caused by the

thickening of heart muscle. The gene showing the fourth largest percentile difference

is deb-1, which encodes a muscle attachment protein found in dense bodies, and is

required for attaching actin thin filaments to the basal sarcolemma [89]. Out of the

top 35 genes that show the largest differences, RNAi feeding strains are available for

25 genes from a library [112]. We performed feeding RNAi experiments using the rrf-3

strain, an RNAi-sensitive strain, and found that the perturbation of 6 genes (24%)

cause motility defect (Table 3.4.5). In contrast, RNAi experiments of only 1 out of 16

genes (6%) that rank the lowest in terms of percentile differences revealed any motil-

ity defect (Table 3.4.5). As a general reference, in a genome-wide RNAi screen using

the rrf-3 strain [118], RNAi experiments of 4.1% of all tested genes showed paralyzed

or uncoordinated phenotypes. Even among the muscle-enriched genes identified by

the semi-supervised learning method, only 9% of the genes correspond to a paralyzed

or uncoordinated phenotype. The analysis result supports our hypothesis that genes

of high information flow specifically in the muscle network play important roles in
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normal muscle function.

It is plausible that the genes showing higher information flow scores in the muscle

network than the entire network can also be distinguished by conventional methods

such as betweenness. To clarify this, we obtained the percentiles of genes in terms of

betweenness in the muscle network and that of genes in the entire network, and ranked

the genes by the differences between the two percentiles (Appendix B.3 - Table S6).

The top genes identified by differences in information flow do not necessarily rank high

by the differences in betweenness (Table 3.4.5 and Table S6 in Appendix B.3). For

example, tag-327, dys-1, lev-11, and deb-1, the top four genes identified by differences

in information flow, only rank No. 20, 23, 58, and 59 by differences in betweenness,

respectively. This is due to the fact that the information flow model considers the

confidence of interactions derived from co-expression while betweenness does not.

Similarly, if we rank genes by the probability of expression in muscle, 𝑃𝑖(𝑚𝑢𝑠𝑐𝑙𝑒), as

derived from the semi-supervised learning method, tag-327, dys-1, lev-11, and deb-1

rank only at No. 149, 269, 97, and 124, respectively. The relevance in muscle function

of these genes has been reported in the literature [89, 128, 135], suggesting that the

information flow method does identify biologically relevant candidate genes that can

be distinguished using neither the gene expression data nor a graph metric such as

betweenness.

3.4.6 Information flow discovers crucial proteins in signaling

networks

To evaluate the performance of information flow in signaling networks, we applied

information flow model to yeast signaling network. We combined a phosphorylation

dataset for S. cerevisiae which contained kinases and their target proteins [103] with

various sources of Y2H data [122]. Specifically, we searched for Y2H interactions

between the target proteins in the phosphorylation dataset. As a result, we obtained

a set of 77 kinases involved in 1008 phosphorylation events with 312 target proteins

interconnected by 503 Y2H interactions. Each kinase phosphorylates one or more
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Table 3.2: Genes showing significant difference of information flow in the muscle
interactome network and in the entire interactome network. The normal motility of
the rrf-3 strain is 99± 8 thrashes per minute. Genes with * show significantly lower
motility rates upon RNAi treatment compared to the rrf-3 strain

Gene name % in the entire 
interactome 
network

% in the muscle 
interactome 
network

%
difference

Motility rate of RNAi-treated worms 
(thrashes per minute) (mean s.d.)

tag-327 73 14 59 Maternal sterility, unable to score 
dys-1 72 14 58 103 19
lev-11 77 21 56 20 14*
deb-1 69 14 55 Maternal sterility, unable to score 
F37B4.7 72 21 51 95 30
dsh-1 64 13 51 104 22
F41C3.5 66 17 49 105 18
tag-163 58 9 49 108 10
tol-1 68 25 43 93 26
D2063.1 52 10 42 104 22
Y11D7A.12 45 6 39 113 9
bath-40 67 29 38 100 11
cey-1 68 32 36 106 13
lec-2 59 25 34 111 19
Y62E10A.13 77 45 32 93 10
unc-87 34 3 31 16 18*
unc-15 35 4 31 12 8*
Y39A1A.3 42 11 31 99 14
gpd-3 36 5 31 65 26*
gly-4 70 40 30 102 5
tag-208 48 18 30 103 11
uvt-5 63 33 30 39 30*
unc-51 74 45 29 4 9*
tag-210 78 49 29 98 10
R07G3.8 73 45 28 93 12
sec-23 51 100 -49 102 11
klc-2 11 63 -52 48 47*
pqn-28 47 100 -53 110 9
M05D6.2 11 63 -52 105 13
hpl-2 45 100 -55 110 8
F14E5.2 44 100 -56 Maternal sterility, unable to score 
unc-84 43 100 -57 104 11
lap-1 40 100 -60 104 6
F11D5.1 39 100 -61 111 12
ttm-1 36 100 -64 105 13
emb-30 30 100 -70 100 12
F31E3.2 30 100 -70 115 8
tag-205 16 100 -84 97 15
T18D3.7 15 100 -85 111 7
lrx-1 12 100 -88 114 12
sta-1 12 100 -88 114 9

84



of the 312 proteins in the Y2H network. In order to retain the directionality of

phosphorylation in the information flow model, we compute the information flow

separately for each kinase. First, we use directed edges to link the kinase to its

phosphorylation targets in Y2H network. Next, we set the kinase to be a source and

sequentially set the remaining 312 proteins to be sinks as we compute the information

flow. Before we move on to the next kinase, we remove the previous kinase along with

its phosphorylation edges. The total information flow score for each of the 312 proteins

in the Y2H network is obtained by summing the absolute values of information flow

from 77 kinase-specific networks.

We examined the top 30% versus the bottom 30% of genes ranked by the infor-

mation flow score. We found a significant increase in the percentage of pleiotropic

genes in the former group (17.0%) as compared to the latter (5.3%) (Appendix B.3 -

Table S8) (𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.01), though the percentages of essential genes are similar

for the two groups. This analysis suggests that the information flow model is useful

for discovering crucial proteins in signaling networks, as well as in networks of protein

complexes.

3.5 Materials

3.5.1 Data sources

All of the data used in our study comes from openly available databases and published

high-throughput datasets. We obtained a list of essential genes for S. cerevisiae from

the Saccharomyces Genome Database (http://www.yeastgenome.org) and a list of

essential genes for C. elegans embryos from the WormBase (http://www.wormbase.

org). We downloaded phenotypic data of S. cerevisiae deletion strains under various

conditions [28] and C. elegans post-embryonic phenotypes from genome-wide RNAi

screens [65, 118]. We also downloaded interaction datasets for S. cerevisiae [34, 103,

122] and C. elegans [45, 74, 77].
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3.5.2 RNA interference

We performed RNA interference (RNAi) experiments by feeding L4 worms, following

protocols from the WormBook [1] (http://www.wormbook.org). The bacteria strains

for feeding RNAi experiments were from an RNAi library [112] that is commercially

available.

3.6 Discussion

Information flow algorithm simulates interactome networks as large electrical cir-

cuits of interconnecting junctions (proteins) and resistors (interactions). Our model

identifies candidate proteins that make significant contributions to the transfer of

biological information between various modules. Compared to degree and between-

ness, our model has two major advantages: first, it incorporates the confidence scores

of protein-protein interactions; second, it considers all possible paths of information

transfer. When a protein that mediates information exchange between modules is

knocked down, the disintegration of multiple modules is very likely to result in lethal-

ity. Even if the organism is still viable, pleiotropy may be observed because multiple

phenotypes imply the breakdown of multiple modules. In support of our model, we

find that the information flow score of a protein is well correlated with the likelihood

of observing lethality or pleiotropy when the protein is eliminated. Even among pro-

teins of low or medium betweenness, the information flow model is predictive of a

proteins essentiality or pleiotropy. Compared to betweenness, the information flow

model is not only more effective but also more robust in face of a large amount of

low-confidence data.

The information flow model identifies central proteins in interactome networks,

and these proteins are likely to connect different functional modules. We developed

an algorithm that decomposes interactome networks into subnetworks by removing

proteins of high information flow in a recursive manner (Figure 3-14) (see Section 3.5).

Starting from the largest network component, we removed the protein with the high-

est information flow score. If the proteins remained connected in a single network, we
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removed the protein with the next highest information flow score one-at-a-time, until

the network fell into multiple pieces upon the protein removal. We then counted the

number of proteins in each of the subnetworks. If a subnetwork contained between

15 and 50 proteins, we examined whether any Gene Ontology (GO) term was en-

riched among proteins in the subnetwork [10, 16]. If a subnetwork contained over 50

proteins, we repeated the procedure of removing high information flow proteins from

the subnetwork. Overall, we obtained 37 subnetworks, and all but two of them were

enriched with proteins from certain GO categories (Appendix B.3 - Table S7). We

investigated the effects of varying the minimum and maximum size of subnetworks

(Appendix B.2). The selected range of 15 to 50 proteins was based on the number of

recovered subnetworks as well as the overall GO enrichment scores. If we increased

the minimum subnetwork size to 20 proteins, the number of subnetworks shrank to

24, all of which were functionally enriched. However, in order to recover the addi-

tional 11 GO enriched subnetworks for a total of 35, we decided to keep the lower

threshold at 15 proteins. The fact that the majority of subnetworks are functionally

enriched provides additional evidence that proteins with high information flow score

interconnect different modules.

It was previously observed in a yeast interactome network that date hubs, which

connect different modules, are more likely to participate in genetic interactions than

randomly sampled proteins, because elimination of date hubs may make the organism

more sensitive to any further genetic perturbations [48]. We tested whether proteins

of high information flow and proteins of high betweenness show the same property

in the C. elegans interactome. We found that genes that rank the highest 30% in

terms of information flow or betweenness are more likely to participate in genetic

interactions than randomly selected genes (𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 1.16𝑥10−10 and 𝑃 − 𝑣𝑎𝑙𝑢𝑒 =
1.16𝑥10−10, respectively). This is not particularly surprising because many proteins

of high information flow or high betweenness are hubs in the network.

Another possible feature of between-module proteins is related to the expression

dynamics of these proteins and their interacting partners. In general, interacting

proteins are likely to share similar expression profiles [35]. Date hubs in yeast inter-
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Figure 3-14: An interactome network can be partitioned into subnetworks by re-
cursively removing proteins of high information flow scores. Panel (A) shows our
procedure for network partition, and Panel (B) shows a toy example.

actome networks have been found to be less correlated with their binding partners

in terms of expression dynamics than party hubs which function within a functional

module [48]. Proteins of high betweenness in yeast interactome networks have also

been reported to show the lack of expression correlation with their binding partners

[149]. On the other hand, it has been argued in another study that the lack of cor-

relation is dependent on the datasets examined [8]. We investigated the correlation

of expression profiles [9, 67] for proteins of high information flow or proteins of high

betweenness with their interacting partners in the C. elegans interactome. We did

not find proteins of high information flow or proteins of high betweenness behaving

differently from other proteins in terms of expression correlation with their interact-

ing partners (data not shown). Thus the expression correlation between topologically

central proteins and their binding partners may be worth further investigations.

The transmission of biological signals is directional while at present interactome

networks often reflect the formation of protein complexes [34] and do not contain

directionality. We explored whether the information flow model is also applicable
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to signaling networks with directionality. We generated a signaling network for S.

cerevisiae by integrating phosphorylation events [103] and Y2H interactions (see Sec-

tion 3.4.6). In this directional signaling network, we found a significant increase in

the percentage of pleiotropic genes among the top 30% ranked by information flow

versus the bottom 30% although the fraction of essential genes was similar. The

lack of correlation with lethality may reflect the fact that fewer proteins in signaling

networks participate in housekeeping functions, which are often mediated by multi-

protein molecular machines.

In the future, with more information integrated into interactome networks, we

should be able to improve on the performance of information flow model. In addition,

we may be able to build different interactome networks depending on the time in

specie’s development or the spatial location. We still have very limited understanding

of how biological information flows through cellular networks and, most likely, it does

not flow exactly as the electrical current flow does. As more knowledge is accumulated,

we should be able to modify the information flow model according to the design

principles of cellular network and highlight the dynamic nature of cellular networks.

We hypothesize that genes scoring high in information flow perform diverse func-

tions and participate in numerous pathways. These genes are likely candidates for

genetic interactors. In Chapter 6 we use information flow as a feature for predicting

genetic interactions along with other network metrics described in Section 3.2 and

Appendix A.3 including degree, betweenness, shortest path, etc.
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Chapter 4

Finding groupings among genes

with Bayesian Sets

Dmitry: I know a lot more about pop-culture now,

for example, yesterday I read an article about Tyler Wood.

Patrycja: Who?

Dmitry:Tyler Wood, you know, the famous golfer.

- D. Vasilyev, physicist, unpublished

The presence of a genetic interaction between two genes signifies possible func-

tional linkage between them. The nature of this link is often unknown as the as-

sessment comes from an observed knockdown phenotype. If the phenotype, when

two genes are disrupted, is greater or different from phenotypes due to individual

knockdowns, two genes are hypothesized to be involved in the same or redundant

processes. We would like to determine whether there are any other similarities shared

by genetically interacting genes and subsequently, use this information to predict new

genetic interactions.

To assess similarities, we can look at the properties of these genes in different types

of biological data such as phenotypes, spatial localization, protein binding properties

etc. Some of this data may contain information while some may not. We could merge

all the data together and rely on the computational method to extract any relevant

relationships, however, it would not give us much biological insight, as to what kinds

of mechanisms are present or when. Therefore, we first try to evaluate whether a
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given data for a gene contains any information that matters for predicting genetic

interactions.

In this chapter, we present a method of Bayesian sets originally introduced by

Ghahramani and Heller ([37, 117]). We use Bayesian sets to determine whether genes

which all interact with the same genetic partner (although not necessarily with each

other) share other similarities e. g. phenotypes, spatial location, microarray profiles

etc. In the first section, we present the background including the general method

of Bayesian sets followed by derivation of the Bayesian score for binary data [37].

Next, we follow with Bayesian sets analysis performed on a set of known genetic

interactors for a given gene using phenotypic or spatial features to describe them.

Our objective is to determine how many of these genetically interacting genes can

be recovered if a subset is given as a “cluster seed.” We subsequently extend the

Bayesian sets method to handle continuous data. We derive score equations for two

different continuous data models and show results of using either for datasets such as

temporal and conditional microarray gene expression profiles. Finally, we summarize

our findings and conclude as to which datasets are the most relevant and useful for

genetic interaction prediction.

4.1 Introduction to Bayesian sets

Bayesian sets method as introduced by Ghahramani and Heller [37] is a method of

statistical inference of how likely items belong to a certain cluster defined by a few

given cluster members. The query set consists of a few items assumed to form a

cluster seed. The algorithm uses a model based concept of a cluster and ranks other

items using a score computed with a Bayesian inference approach. The score in the

Bayesian sets algorithm is a statistical test of parameter independence. It indicates

whether the query set distribution is described by the same parameters as a given

item or not. A score for a given item is a ratio of probability that the item belongs

to the cluster containing the query items versus the probability that the item belongs

to the background distribution. If the data can be represented with an exponential
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family model with conjugate priors, the marginal probability is a function of sufficient

statistics.

One way to look at this problem is that the query items are assumed to form a

single cluster. The Bayesian sets algorithm ranks the remaining items as to how likely

they belong to that cluster. Because of the fact that the seed elements of the cluster

are known, the method is not completely unsupervised as it may be in a classical

clustering problem. Bayesian sets method depends on getting hints or constraints

based on what the initial membership of the cluster is to determine which other

members could join the cluster. Secondly, Bayesian sets allows us to test whether there

is really any useful information shared among the cluster members. This is exactly

what we would like to determine - whether a subset of genetically interacting genes

with features derived from a given dataset enables us to retrieve other genetically

interacting genes.

4.1.1 Method description

Let 𝐷 define a set of items (genes), where each gene is represented as a feature vector

x ∈ 𝐷. Among the items in 𝐷, we are also given a subset 𝐷𝑐 of genes which form

a cluster. Our goal is to rank every element of 𝐷 based on how likely each element

would fit into a set which is defined by 𝐷𝑐. In the Bayesian sets method we use a cost

function, which is proportional to the conditional probability 𝑝(x∣𝐷𝑐) of observing

𝑥 given parameters inferred from 𝐷𝑐. However, since the presence of some items is

naturally more probable than others due to the background distribution of items in

𝐷, the conditional probability is scaled by 𝑝(x), the probability of observing x at

random.

Intuitively, the Bayesian score compares two hypotheses. One hypothesis is that

the data was generated from the distribution of the entire world, the second hypothesis

is that the data was generated from the distribution of the query set, as shown in

Figure 4-1. 𝑃 (𝑥𝑖) and 𝑃 (𝑥𝑖∣𝐷) represent the background and query set distributions

for a given feature, i. e. experimental condition, respectively. The Bayesian score

estimate of how likely a given item x belongs to 𝐷𝑐 is written as:
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Figure 4-1: The Bayesian score compares the hypotheses that the data was gener-
ated by one of two distributions. x is a vector of features (a row in a gene table)
representing a given item e.g. gene.

𝑠𝑐𝑜𝑟𝑒(x) =
𝑝(x∣𝐷𝑐)

𝑝(x)
(4.1)

In order to proceed with evaluation of the score, an underlying distributions for

features should be hypothesized. In their 2005 paper, Ghahramani and Heller [37] de-

rived the exact formulas to apply Bayesian sets for binary data, assuming a Bernoulli

distribution. The first step to computing the score using Bayes’ rule is to re-write

Equation 4.1 using Bayes’ rule as follows:

𝑠𝑐𝑜𝑟𝑒(x) =
𝑝(x, 𝐷𝑐)

𝑝(x)𝑝(𝐷𝑐)
(4.2)

In the following section we describe the binary data model [37], then show some re-

sults based on our implementation. We used the binary data model to analyze group-

ings among genetically interacting genes described by their phenotypic and spatial

profiles.
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4.1.2 Binary data model

For binary data, we assume that each item (gene) x𝑖 ∈ 𝐷𝑐 is a binary vector x𝑖 =

(𝑥𝑖1, ⋅ ⋅ ⋅ , 𝑥𝑖𝑗) where 𝑥𝑖𝑗 ∈ {0, 1}, and each element of x𝑖 is described by an independent

Bernoulli distribution, resulting in the following probability model:

𝑝(xi∣𝜃) =
𝐽∏

𝑗=1

𝜃
𝑥𝑖𝑗

𝑗 (1− 𝜃𝑗)1−𝑥𝑖𝑗 , (4.3)

where 𝜃𝑗 is an unknown distribution parameter of the j-th feature. The conjugate

prior is the term to describe the probability distribution of the parameters of the

data distribution. In the case of Bernoulli distribution, the conjugate prior is the

Beta distribution:

𝑝(𝜃∣𝛼, 𝛽) =
𝐽∏

𝑗=1

Γ(𝛼𝑗 + 𝛽𝑗)

Γ(𝛼𝑗)Γ(𝛽𝑗)
𝜃
𝛼𝑗−1
𝑗 (1− 𝜃𝑗)𝛽𝑗−1, (4.4)

where 𝛼 and 𝛽 are hyperparameters. It can be shown [37] that for a query 𝐷𝑐 = x𝑖

consisting of 𝑁 vectors:

𝑝(𝐷𝑐∣𝛼, 𝛽) =
∏
𝑗

Γ(𝛼𝑗 + 𝛽𝑗)

Γ(𝛼𝑗)Γ(𝛽𝑗)

Γ(𝛼̃𝑗)Γ(𝛽𝑗)

Γ(𝛼̃𝑗 + 𝛽𝑗)
(4.5)

where 𝛼̃𝑗 = 𝛼𝑗+
∑𝑁

𝑖=1 𝑥𝑖𝑗 and 𝛽𝑗 = 𝛽𝑗+𝑁−
∑𝑁

𝑖=1 𝑥𝑖𝑗 . For an item x = (𝑥⋅1 . . . 𝑥⋅𝐽),

the score can be simplified as follows:

𝑠𝑐𝑜𝑟𝑒(x) =
𝑝(x∣𝐷𝑐, 𝛼, 𝛽)

𝑝(x∣𝛼, 𝛽) =
∏
𝑗

𝛼𝑗 + 𝛽𝑗
𝛼𝑗 + 𝛽𝑗 +𝑁

( 𝛼̃𝑗

𝛼𝑗

)𝑥𝑗̇
(𝛽𝑗
𝛽𝑗

)1−𝑥𝑗̇

(4.6)

The log of the score is a linear function of features of x:

log(𝑠𝑐𝑜𝑟𝑒(x)) = 𝑐+
∑
𝑗

𝑞𝑗𝑥𝑗̇ (4.7)

where 𝑐 =
∑

𝑗 log(𝛼𝑗 + 𝛽𝑗)− log(𝛼𝑗 + 𝛽𝑗 +𝑁) + log 𝛽𝑗 − log 𝛽𝑗 and 𝑞𝑗 = log 𝛼̃𝑗 −
log𝛼𝑗 − log 𝛽𝑗

If the entire dataset𝐷 is represented by matrixX with 𝐽 columns, we can compute
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the vector s of log scores for all points using a single matrix vector multiplication

s = 𝑐+Xq (4.8)

We have tried the above algorithm on a phenotypic and spatial localization data,

which satisfy the model requirements of being binary. We used our implementation

to determine whether genes characterized by either of these datasets and genetically

interacting with the same partner, cluster together. We describe the setup below.

4.1.3 Using binary Bayesian sets to group genes based on

their localization and phenotypes

Materials

� Binary datasets

The binary data model described above applies to datasets that contain binary

features. We used a spatial dataset from Wormbase [145] which merged results

from multiple GFP::fusion experiments as described in more detail in 2.3.2.

The spatial dataset describes which genes localize to which tissues.

RNAi or mutant phenotypes in C. elegans also tend to be binary data, as de-

scribed in 2.3.3. We used a merged collection of phenotypes from Wormbase

[144] which incorporates observations from multiple genome-wide RNAi exper-

iments, including these from Kamath or Simmer labs [65, 118]. Both lethal and

nonlethal phenotypes are included.

� Set of genetic interactors for a given gene

We used the genetic interaction matrix for 11 gene mutants, mutant set, and

their interacting partners from Dr Peter Roy’s laboratory [20] as described in

2.3.8. Ten of these genes belong to one of six signaling pathways specific to

metazoans, including the insulin, epidermal growth factor (EGF), fibroblast

growth factor (FGF), Wingless (Wnt), Notch, and transforming growth factor
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beta (TGF-𝛽) pathways. The 11th gene, clk-2, is a member of DNA-damage

response (DDR) pathway and is claimed not to be involved in the signal trans-

duction.

Results for spatial and phenotype data

The goal of our study is to determine whether genes that genetically interact with the

same partner group together as a Bayesian set. To test this hypothesis, we formed a

query set out of several genes that genetically interact with the same partner gene.

Partner gene is one of 11 genes used as a mutant background in Byrne study [20].

We described each gene by a feature vector based on its spatial or phenotypic profile

(Section 4.1.3). We ranked the remaining genes based on their resulting Bayesian

sets scores, and then checked whether the genes with high scores tend to be genetic

interactors. The resulting receiver operating characteristic (ROC) curve gives us an

idea as to how much information a given dataset holds that might be relevant to

predicting a genetic interaction.

Figure 4-2 shows the result of running the Bayesian sets algorithm to find group-

ings among genes that genetically interact with the same partner. Each ROC curve

corresponds to a set of genetic interactors for a given partner gene and their similarity

to each other with respect to which tissues they localize. The positive set are the

genes that have been experimentally found to genetically interact with one of the mu-

tant genes, the negative set are those annotated as non-interacting in the same study.

The ROC curves presented in this Chapter are obtained in the following way. First,

we randomly select a quarter subset of genetic interactors of a given gene and form a

seed set. The remaining genes are scored based on their similarity with the seed set

and ranked based on their Bayesian scores. The process is repeated with a new ran-

dom seed set. The displayed ROC is the average across 25 iterations. The area under

the ROC curve varies between 0.64 for C07H6.6 (clk-2) to 0.74 for C54D1.6 (bar-1).

The number of positives ranges from 27 to 80 (median 52) and negatives from 143 to

282 (median 238). As described in Section 4.1.3, the genes in the mutant set belong

to various signaling pathways (with the exception of clk-2 gene which is a part of the
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Figure 4-2: ROC curves showing the similarity among spatial localization of genes
genetically interacting with the same partner. 11 graphs correspond to 10 signaling
and 1 DNA-damage response genes used as a background for determining their genetic
partners. A fraction of genetic partners were used as a seed for a cluster and the
remaining genes were scored on how similar they are to the genes in the cluster and
then checked whether they genetically interact with the same partner gene. The
number of positives ranges from 27 to 80 (median 52) and negatives from 143 to 282
(median 238).
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DNA-damage response pathway). We have looked at the spatial patterns of bar-1

and its genetically interacting partner genes and found that they are more likely to

be expressed in vulva, oocyte and gonad versus the genes that were not genetically

interacting (1.5 to 5 times more likely). Scores based on the presence in these partic-

ular tissues heavily contribute to the overall Bayesian score for bar-1 genetic partner

genes. The knockdown phenotype data of bar-1 supports this finding with ’egg laying

defective’,’protruding vulva’, ’exploded through vulva’ listed in Wormbase [144] and

supported by multiple experiments.

Figure 4-3 shows the same type of analysis performed, however this time pheno-

typic profile is used as gene’s feature vector. The area under the ROC curve is larger

than in the case of spatial profiles, varying from 0.71 to 0.84. Here, the number of

positives ranges from 45 to 174 (median 97) and negatives from 186 to 467 (median

374). More detailed analysis of the enrichment of partners of one of the genes, sma-6

(C32D5.2), shows that they share phenotypic traits with sma-6. sma-6 encodes a pro-

tein kinase orthologous to type I TGF-𝛽 receptors and is required for regulating body

length and for proper development of the male tail. Phenotypes resulting from RNAi

of sma-6 are ’small’, ’dumpy’ and ’reduced growth.’ The genetic partners of sma-6

also share traits such as ’dumpy’ and ’thin’. In addition, their individual knockdown

frequently leads to adult or embryonic lethality. The above phenotypes turn out to

significantly contribute to the overall score obtained by the Bayesian sets analysis.

If we further constrain the genetic partners of sma-6 to only kinases, the ROC

curve improves even further to 100% true positives (the data consists of 7 positive

samples and 35 negative samples). This improvement is true for most of the 11 genes

considered in the genetic study, with an average area under the ROC curve of 0.84.

This makes sense, as 10 of 11 genes analyzed are involved in 1 of 6 signaling pathways

specific to metazoans. Protein kinases are heavily implicated in signaling pathways,

where they transmit signals and control various complex processes. Among the pro-

tein kinases found to interact with sma-6 are let-502 and mpk-1. Let-502 encodes

a Rho-binding Serine/Threonine-specific kinase and is required for early embryonic

cleavages as well as body elongation. RNAi phenotypes for let-502 include ’slow
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Figure 4-3: ROC curves showing the similarity among phenotypes resulting from
knocking down genes genetically interacting with the same partner. 11 graphs cor-
respond to 10 signaling and 1 DNA-damage response genes used as a background
for determining their genetic partners. A fraction of genetic partners were used as
a seed for a cluster and the remaining genes were scored on how similar they are to
the genes in the cluster and then checked whether they genetically interact with the
same partner gene. The number of positives ranges from 45 to 174 (median 97) and
negatives from 186 to 467 (median 374).
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growth’, ’dumpy’ and ’arrested development’ - similarly to sma-6. Mpk-1 encodes a

mitogen-activated protein (MAP) kinase that acts in the vulval precursor cells as well

as affects morphology of the male spicules. We mentioned previously that sma-6 is

also required for the proper development of the male tail.

Limiting the interactors to only kinases did not improve the results of the spatial

analysis. We tried several other functional annotation groupings on the genetically

interacting genes as well with no success, often due to the resulting data sparsity.

In summary, both spatial and phenotypic ROC rise above 0.5 threshold; thus we

can conclude that information relevant to genetic interactions is present within both

datasets. The phenotypes contain more information than the spatial data about

possible genetic partners of a given gene. Moreover, if additional constraints are

added to characterize the interacting genes better, the results can improve further

e.g. limit the genetic partners to kinases.

4.2 Extensions to Bayesian sets for continuous data

Ghahramani and Heller [37] derived the score based on the binary data assumption.

However, the Bayesian sets algorithm can be generalized to include other probability

distributions. Below we extended this algorithm to be able to handle continuous

data, such as the data from microarray experiments. We tried two different models

to characterize the data, shown as hidden Markov dependencies graphs in Figure 4-4.

4.2.1 Bayesian sets model for continuous data - variant 1

Let’s model the distribution of each experiment (feature values) as a Gaussian with

mean 𝜇 and variance 𝜎2 as in Figure 4-4 (a), while assuming that individual experi-

ments (features) are independent of each other. Thus the model for the distribution

of a given column in expression matrix can be written as 𝑁(x;𝜇, 𝜎2).

The prior for the parameters Θ = {𝜇, 𝜎2} of the Gaussian profile model is the

conjugate normal inverse scaled gamma distribution:
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Figure 4-4: Two alternative hierarchical probability models proposed for model-
ing continuous data. (a) Each experimental condition is modeled by a Gaussian:
𝑁(𝑥;𝜇, 𝜎2) with the conjugate normal-scaled-inverse-gamma prior on 𝜇 and 𝜎2 (joint
distribution) (b) Each experimental condition is modeled by a Gaussian: 𝑁(𝑥;𝜇, 𝜎2)
with the conjugate normal-inverse-gamma prior on 𝜎2, and Gaussian distribution for
𝜇

𝐼𝐺(𝜇, 𝜎2∣𝛼, 𝛽, 𝜆, 𝜈) =
√
𝜇

𝜎
√
2𝜋

𝛽𝛼

Γ(𝛼)

( 1

𝜎2

)𝛼+1

𝑒−
2𝛽+𝜈(𝜇−𝜆)2

2𝜎2 (4.9)

We derive the expression for a single experiment below. Given our independence

assumption, the expression for score based on multiple experiments is a product

of the individual scores from each experiment. Given the vector of gene values x

corresponding to set of genes under a single experimental condition, we can write

𝑝(x) as

𝑝(x) =

∫
𝑝(𝑥∣𝜃)𝑝(𝜃)𝑑𝜃 (4.10)

where

𝑝(𝜃) = 𝐼𝐺(𝜇, 𝜎2;𝛼, 𝛽, 𝜆, 𝜈) (4.11)

and

𝑝(𝑥∣𝜃) = 𝑁(𝑥;𝜇, 𝜎2) (4.12)

The expression for 𝑝(x) can be written as follows:
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𝑝(x) =

∫
1

𝜎
√
2𝜋
𝑒−

(𝑥−𝜇)2

2𝜎2

√
𝜈

𝜎
√
2𝜋

𝛽𝛼

Γ(𝛼)

( 1

𝜎2

)𝛼+1

𝑒−
2𝛽+𝜈(𝜇−𝜆)2

2𝜎2 𝑑𝜎2𝑑𝜇 (4.13)

Collecting the terms, we can rewrite this expression as follows:

𝑝(x) =

√
𝜈𝛽𝛼

Γ(𝛼)

1

2𝜋

∫
1

𝜎

( 1

𝜎2

)𝛼+1+1/2

𝑒−
(𝑥−𝜇)2+2𝛽+𝜈(𝜇−𝜆)2

2𝜎2 𝑑𝜎2𝑑𝜇 (4.14)

The resulting expression for 𝑝(x) is:

𝑝(x) =

√
𝜈𝛽𝛼

Γ(𝛼)

1√
2𝜋

𝛾(𝛼̃)

𝛽𝛼̃
√
𝜈
, (4.15)

where 𝛼̃ = 𝛼 + 1,𝛽 = 𝛽 + 𝜈(𝑥−𝜆)2

2(𝜈+1)
.

Since our score is essentially a relative measure, we can disregard constant factors

which do not depend on x:

𝑝(x) ∝ 1

𝛽𝛼̃
(4.16)

Using the same marginalization rule, we compute 𝑝(x∣𝐷𝑐):

𝑝(x∣𝐷𝑐) =

∫
𝑝(x∣𝜃)𝑝(𝜃∣𝐷𝑐)𝑑𝜃 =

∫
𝑝(x∣𝜃)𝑝(𝐷𝑐∣𝜃)𝑝(𝜃)

𝑝(𝐷𝑐)
𝑑𝜃 (4.17)

We can take the 𝑝(𝐷𝑐) term out of the integral since it does not depend on 𝜃.

Moreover, since it is not dependent on x we can omit it as it will not change the

relative score rankings of x. We rewrite the expression as:

𝑝(x∣𝐷𝑐) ∝
∫
𝑝(x∣𝜃)

𝑁∏
𝑖=1

𝑝(𝑥𝑖∣𝜃)𝑝(𝜃)𝑑𝜃 (4.18)

𝑝(x∣𝐷𝑐) ∝
∫
𝑒−

(𝑥−𝜇)2

2𝜎2

𝜎
√
2𝜋

𝑁∏
𝑖=1

1

𝜎
√
2𝜋
𝑒−

(𝑥𝑖−𝜇)2

2𝜎2

√
𝜈

𝜎
√
2𝜋

𝛽𝛼

Γ(𝛼)

( 1

𝜎2

)𝛼+1

𝑒−
2𝛽+𝜈(𝜇−𝜆)2

2𝜎2 𝑑𝜎2𝑑𝜇

(4.19)
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𝑝(x∣𝐷𝑐) ∝ 1

(2𝜋)
𝑁+1

2

√
𝜈𝛽𝛼

Γ(𝛼)

∫
1√
2𝜋

1

𝜎

( 1

𝜎2

)𝛼+1+𝑁+1
2

. . .

𝑒−
(1+𝜈+𝑁)𝜇2+(2𝑥+2𝜈𝑥+2

∑𝑁
𝑖=1 𝑥𝑖)𝜇+𝑥2+𝜈𝜆2+

∑𝑁
𝑖=1 𝑥2𝑖 +2𝛽

2𝜎2 𝑑𝜎2𝑑𝜇

We omit other terms not dependent on x and are left with:

𝑝(x∣𝐷𝑐) ∝
∫

1√
2𝜋

1

𝜎

( 1

𝜎2

)𝛼+1+𝑁+1
2
𝑒−

(1+𝜈+𝑁)𝜇2+

(
2𝑥+2𝜈𝑥+2

∑𝑁
𝑖=1 𝑥𝑖

)
𝜇+𝑥2+𝜈𝜆2+

∑𝑁
𝑖=1 𝑥2𝑖 +2𝛽

2𝜎2 𝑑𝜎2𝑑𝜇

(4.20)

The resulting expression for 𝑝(x∣𝐷𝑐) can be simplified as follows:

𝑝(x∣𝐷𝑐) ∝ 1

𝛽𝛼̃
, (4.21)

where 𝛼̃ = 𝛼 + 𝑁+1
2

,𝛽 =
𝑥2+𝜈𝜆2+

∑𝑁
𝑖=1 𝑥

2
𝑖+2𝛽

2
− (𝑥+𝜈𝜆+

∑𝑁
𝑖=1 𝑥𝑖)

2

2(𝜈+𝑁+1)
.

The log score is:

log 𝑠𝑐𝑜𝑟𝑒(x) = log(𝑝(x∣𝐷𝑐))− log(𝑝(x)) (4.22)

and substituting in the terms, we get

log(𝑠𝑐𝑜𝑟𝑒(x)) = 𝐶 + (𝛼+
1

2
) log

(
𝛽 +

𝜈(𝑥− 𝜆)2
2(1 + 𝜈)

)
+ . . .

−
(
𝛼+

𝑁 + 1

2

)
log

(𝑥2 + 𝜈𝜆2 +∑𝑁
𝑖=1 𝑥

2
𝑖 + 2𝛽

2
− (𝑥+ 𝜈𝜆+

∑𝑁
𝑖=1 𝑥𝑖)

2

2(𝜈 +𝑁 + 1)

)

where 𝐶 stands for the constant terms. In the following sections we show the

results of the performance of this scoring model for continuous data in order to de-

termine whether genetically interacting described by a given dataset genes group

together.
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Figure 4-5: Distribution of Bayesian set scores depends on the model. (a) Model
variant 1: Distribution of scores based on a query set consisting of two samples (blue)
shows the maximum score shifted away from the mean of the two query points;
however, it is also away from the mean of the background distribution. (b) Model
variant 2: Mean and variance are not coupled together, allowing the Bayesian score
to maximize at the mean of the query set distribution.

Model deficiency of variant 1 - synthetic example

If we test the performance of the algorithm on a synthetic data with a query set

𝐷𝑐 consisting of 2 points, we can see that the maximum value of the score is not

at the mean between the two points but rather past it, away from the mean of the

background distribution (see Figure 4-5(a)). This is because the “tail” values of

the effective Gaussian defined by 𝐷𝑐 are bigger than the “tail” of the background

distribution. The intuition behind the score not having a maximum right at the

mean of 𝐷𝑐 is that if the datapoints we score are probabilistically closer to the mean

of the query distribution than the mean of the background distribution, they are more

likely to belong to the query distribution. In this model, the cluster is defined as a

deviation from the overall mean, the further the better. In an alternative model we

present next, we isolate a particular range of values per feature since the distribution

of experimental data result may “cluster” around that feature. The resulting score

maximizes right at the mean of the query input points, 𝐷𝑐. We achieve this by

decoupling the mean and variance in their probability model as shown in Figure 4-

5(b). The following section presents the alternative model.
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4.2.2 Bayesian sets model for continuous data - variant 2

The basic setup for variant 2 of Bayesian sets model is identical to variant 1. Again,

we assume that each experiment can be modeled by a Gaussian with mean 𝜇 and

variance 𝜎2 as in Figure 4-4 (b), and the individual experiments are independent

of each other. 𝑁(x;𝜇, 𝜎2) models the distribution of x, which is a vector of values

corresponding to outcomes of a given experiment for a set of genes.

Unlike in variant 1, in variant 2 we decouple the mean and variance in order

for our resulting score to center around the mean of the distribution of the values

in the query set. The mean, 𝜇, has Gaussian distribution 𝑁(𝜇; 0, 𝜎𝑜) with mean 0

and variance 𝜎𝑜, which is assumed to be a large number effectively spreading the

distribution uniformly across. The conjugate prior for the variance, 𝜎2, is an inverse-

gamma distribution with parameters 𝛼, 𝛽:

𝐼𝐺(𝜎2;𝛼, 𝛽) =
𝛽𝛼

𝛾(𝛼)

( 1

𝜎

)𝛼+1

𝑒
−𝛽
𝜎 (4.23)

For simplicity, as we did before, we focus on a single experiment (feature) at a

time. Given our independence assumption, the total score based on multiple exper-

iments is a product of the individual scores from each experiment. Given all values

corresponding to set of genes under a single experimental condition, we can express

probability of any such value x as

𝑝(x) =

∫
𝑝(x∣𝜃)𝑝(𝜃)𝑑𝜃 (4.24)

where 𝜃 is a vector with components (𝜇, 𝜎2), and integration limits are (−∞,∞) by

𝜇 and (0,∞) by 𝜎2.

The component probability distributions can be written as:

𝑝(𝜃) = 𝑁(𝜇; 0, 𝜎2𝑜)𝐼𝐺(𝜎
2;𝛼, 𝛽) (4.25)

and

𝑝(x∣𝜃) = 𝑁(x;𝜇, 𝜎2) (4.26)
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The expression for 𝑝(x) can be written as follows:

𝑝(x) =

∫
1

𝜎
√
2𝜋
𝑒−

(𝑥−𝜇)2

2𝜎2
1

𝜎𝑜
√
2𝜋
𝑒
− 𝜇2

2𝜎2
𝑜
𝛽𝛼

Γ(𝛼)

( 1

𝜎2

)𝛼+1

𝑒−
𝛽

𝜎2 𝑑𝜎2𝑑𝜇 (4.27)

If we assume that the variance of the mean, 𝜎2𝑜 , is large, 𝜎2𝑜 → ∞, then we can

approximate the term containing 𝜎𝑜, 𝑒
− 𝜇2

2𝜎2
𝑜 as 1, which simplifies the equation to:

𝑝(x) =

∫
1

𝜎
√
2𝜋
𝑒−

(𝑥−𝜇)2

2𝜎2
1

𝜎𝑜
√
2𝜋

𝛽𝛼

Γ(𝛼)

( 1

𝜎2

)𝛼+1

𝑒−
𝛽

𝜎2 𝑑𝜎2𝑑𝜇 (4.28)

Next, we can rewrite it as:

𝑝(x) =
1

𝜎𝑜
√
2𝜋

∫
1

𝜎
√
2𝜋
𝑒−

2𝛽+(𝑥−𝜇)2

2𝜎2
𝛽𝛼

Γ(𝛼)
(
1

𝜎2
)𝛼+1𝑑𝜎2𝑑𝜇 (4.29)

and match individual terms with 𝛼, 𝛽, 𝜆, 𝜈 variables in the probability density

function for inverse gamma distribution as shown in 4.30.

𝑓(𝜇, 𝜎2∣𝛼, 𝛽, 𝜆, 𝜈) =
√
𝜈

𝜎
√
2𝜋

𝛽𝛼

Γ(𝛼)

( 1

𝜎2

)𝛼+1

𝑒−
2𝛽+𝜈(𝜇−𝜆)2

2𝜎2 (4.30)

For 𝜆̃ = 𝑥, 𝛼̃ = 𝛼, 𝛽 = 𝛽, 𝜈 = 1, the integral integrates to 1 and we get:

𝑝(x) =
1

𝜎𝑜
√
2𝜋

(4.31)

We note that the above expression for 𝑝(x) is not dependent on x thus it will not

play a role in the final score rankings. We can therefore omit the denominator in the

final score expression.

Next, we evaluate 𝑝(x∣𝐷𝑐):

𝑝(x∣𝐷𝑐) =

∫
𝑝(x∣𝜃)𝑝(𝜃∣𝐷𝑐)𝑑𝜃 =

∫
𝑝(x∣𝜃)𝑝(𝐷𝑐∣𝜃)𝑝(𝜃)

𝑝(𝐷𝑐)
𝑑𝜃 (4.32)

As before, we can take the 𝑝(𝐷𝑐) term out of the integral since it does not depend

on 𝜃. We compute it separately. We treat all 𝑁 points in our example set 𝐷𝑐 as

independent, therefore:
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𝑝(x∣𝐷𝑐) =
1

𝑝(𝐷𝑐)

∫
𝑝(x∣𝜃)

( 𝑁∏
𝑖=1

𝑝(𝑥𝑖∣𝜃)
)
𝑝(𝜃)𝑑𝜃 (4.33)

which is

𝑝(x∣𝐷𝑐) =
1

𝑝(𝐷𝑐)

1

(2𝜋)𝑁/2+1

𝛽𝛼

Γ(𝛼)𝜎𝑜

∫ ∫
1

𝜎𝑁+1

( 1

𝜎2

)𝛼+1

𝑒−
(𝑥−𝜇)2+

∑
𝑖(𝑥𝑖−𝜇)2+2𝛽

2𝜎2 𝑑𝜎2𝑑𝜇

(4.34)

Defining 𝛼̃ = 𝛼 + 𝑁
2
, 𝜈 = 𝑁 + 1, 𝜆̃ =

𝑥+
∑𝑁

𝑖=1 𝑥𝑖

𝑁+1
, 𝛽 = − (𝑥+

∑
𝑖 𝑥𝑖)2

2(𝑁+1)
+ 𝛽 +

𝑥2+
∑

𝑖 𝑥
2
𝑖

2
,

the resulting expression for 𝑝(x∣𝐷𝑐) is:

𝑝(x∣𝐷𝑐) =
1

𝑝(𝐷𝑐)

1

(2𝜋)𝑁/2+1

𝛽𝛼

Γ(𝛼)𝜎𝑜

√
2𝜋√

𝑁 + 1

Γ(𝛼+𝑁/2)(
𝛽 +

𝑥2+
∑

𝑖 𝑥
2
𝑖

2
− (𝑥+

∑
𝑖 𝑥𝑖)2

2(𝑁+1)

)𝛼+𝑁/2
(4.35)

Finally, we evaluate 𝑝(𝐷𝑐):

𝑝(𝐷𝑐) =

∫ 𝑁∏
𝑖=1

𝑝(𝑥𝑖∣𝜃)𝑝(𝜃)𝑑𝜃 (4.36)

𝑝(𝐷𝑐) =

∫ 𝑁∏
𝑖=1

1

𝜎
√
2𝜋
𝑒−

(𝑥𝑖−𝜇)2

2𝜎2
1

𝜎𝑜
√
2𝜋
𝑒
− 𝜇2

2𝜎2
𝑜
𝛽𝛼

Γ(𝛼)

( 1

𝜎2

)𝛼+1

𝑒−
𝛽

𝜎2 𝑑𝜎2𝑑𝜇 (4.37)

𝑝(𝐷𝑐) =
1

(2𝜋)𝑁/2

𝛽𝛼

Γ(𝛼)𝜎𝑜

∫
1

𝜎𝑁
√
2𝜋

( 1

𝜎2

)𝛼+1+(𝑁−1)/2

𝑒−
∑

𝑖(𝑥𝑖−𝜇)2+2𝛽

2𝜎2 𝑑𝜎2𝑑𝜇 (4.38)

Again, we can use the inverse gamma probability distribution in 4.30 with the

following parameters:

𝛼̃ = 𝛼 + 𝑁−1
2

, 𝜈 = 𝑁 , 𝜆̃ =
∑𝑁

𝑖=1 𝑥𝑖

𝑁
, 𝛽 = − (

∑
𝑖 𝑥𝑖)

2

2𝑁
+ 𝛽 +

∑
𝑖 𝑥

2
𝑖

2

𝑝(𝐷𝑐) =
1

(2𝜋)𝑁/2

𝛽𝛼

Γ(𝛼)𝜎𝑜

1√
𝑁

Γ(𝛼 + (𝑁 − 1)/2)(
𝛽 +

∑
𝑖 𝑥

2
𝑖

2
− (

∑
𝑖 𝑥𝑖)2

2𝑁

)𝛼+(𝑁−1)/2
(4.39)
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As we have already discussed, we can omit any constant multipliers in the score,

which do not depend on x, which includes 𝑃 (𝐷𝑐), as we can see from Equation 4.39.

The final log score expression can be separated into items dependent on x and 𝐶

which represents items not dependent on x:

log(𝑠𝑐𝑜𝑟𝑒) = 𝐶 −
(
𝛼 +

𝑁

2

)
log

(
𝛽 +

𝑥2 +
∑

𝑖 𝑥
2
𝑖

2
− (𝑥+

∑
𝑖 𝑥𝑖)

2

2(𝑁 + 1)

)
+ . . .

+
(
𝛼 +

𝑁 − 1

2

)
log

(
𝛽 +

∑
𝑖 𝑥

2
𝑖

2
− (

∑
𝑖 𝑥𝑖)

2

2𝑁

)

We illustrate the distribution of the score for variant 2 on a synthetic data de-

scribed in Section 4.2.1, with a query set consisting of 2 points. The maximum value

of the score falls right at the mean between the query points (see Figure 4-5)(b). As

we have discussed before, variant 2 is better suited for situations when we need to

isolate a particular range of values per feature.

In the following sections we show the results of using one or both of the above

scoring models for continuous data, such as data coming from microarray experiments

measuring RNA expression across time or at various experimental conditions.

4.2.3 Experiments using continuous data models

Grouping genes based on their microarray profiles

With two alternative models allowing us to group genes described by continuous

data, we applied Bayesian sets to features from microarray experiments (microarray

experiments are described in Section 2.3.1). We investigated 10 different datasets,

ranging from a time course of a wildtype C. elegans strain under normal conditions [9,

62, 110, 134] to experimental data focusing on genes under different stress conditions

(hypoxia, heatstress) [84, 116], genes involved in development of specific lineages of

tissues e. g. germline [107] or genes believed to play a role in specific pathways (e.

g. aging, longevity [79, 84]).

As in Section 4.1.3, we used genetic interaction data from Byrne et al. [20], and
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Figure 4-6: ROC curves showing the similarity of microarray profiles of germline
genes that genetically interacting with the same partner (using Bayesian sets variant
2 algorithm from Section 4.2.2). 11 graphs correspond to 10 signaling and 1 DNA-
damage response genes used as a background for determining their genetic partners.
A fraction of genetic partners were used as the input query and the remaining genes
were scored on how similar they are to query genes and then checked whether they
genetically interact with the same partner gene as the query genes. The number of
positives ranged from 20 to 64 (median 31) and negatives from 81 to 226 (median
185).
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tested whether genes that share the same interacting partner, group together. We

first compared genes based on their timecourse profiles alone and found the ROC

performance quite poor indicating little shared information. For the 10 datasets

considered, the area under the ROC varied from 0.54 to 0.59 for the Bayesian sets

method variant 1 and from 0.55 to 0.61 for the Bayesian sets method variant 2.

Overall, variant 2 did slightly better than variant 1, which leads us to believe that the

distribution of a feature from microarray experiments tends to occupy a particular

range of values. Figure 4-6 shows one example of ROC curves obtained directly

from the data using Bayesian sets variant 2 (variant 1 performance was worse with

𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.58 vs 0.61 for variant 2 for this dataset). The microarray data used is

from a paper focused on finding germline genes from Prof. Stuart Kim’s laboratory

at Stanford [107]. The microarray experiments cover 11, 917 C. elegans genes during

early embryonic and larval stages in both Wildtype worm and several mutants for

genes known to be essential for germline expression. After comparing the performance

of variant 1 and 2, we chose variant 2 for almost all subsequent analyses of similarity

among genes based on microarray data features.

The ROC curves obtained did show that there is some information that is shared

among the genetic partners. Our hypothesis was that if we further elucidate on the

characteristics of genes that are to belong to a single set, we would find more similari-

ties. We decided to use the additional annotations as discovered by Valerie Reinke et

al. [107] to further classify genes studied as either sperm-enriched, oocyte-enriched,

or germline-intrinsic. The sperm-enriched group contains an unusually large num-

ber of protein kinases and phosphatases known to be important in many signaling

pathways. The oocyte-enriched group includes components of embryonic signaling

pathways. We hypothesized that these features would improve the clustering perfor-

mance since the genetic interaction dataset focuses on genes participating in signaling

pathways as well. Finally, the germline-intrinsic group are the genes expressed in cell

lineages making only sperm or only oocytes. Germline-intrinsic group contains a

family of piwi-related genes that are important for stem cell proliferation. Narrowing

the Bayesian sets grouping to only consider genes within germline-intrinsic category
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turned out to improve the predictive performance.

We limited the group of genetic interactors of each of the 11 genes in the mutant

set from Byrne et al. [20] to only those which belong to one or more of the categories of

germline genes: oocyte, sperm, and germline-intrinsic. Our motivation was that the

11 genes considered by Byrne et al. [20] have all but one been implicated in signaling

and developmental pathways. We found that the resulting ROCs have drastically

improved for several of the mutant genes,bar-1 being among them.

Case study 1: bar-1

bar-1 encodes a 𝛽-catenin ortholog that transduces a Wingless signal [31]. bar-1 reg-

ulates fat production or storage and metabolism. During C. elegans development,

BAR-1 functions as a transcriptional coactivator whose activity is required for Q-

neuroblast migration, P12 cell fate specification, and P3.p through P8.p vulval cell

fate specification at two different stages of development. In specifying vulval cell fates,

bar-1 interacts with Wnt and MAPK signaling pathways to regulate proper expression

of the LIN-39 homeodomain transcription factor. bar-1 mutant phenotypes include

various vulval defects, egg laying defects, slow growth etc. The initial Bayesian group-

ing of genetic interactors of bar-1 based on their microarray profiles from embryonic

and larval stages, resulted in ROC with a mean area of 0.62 as shown in Figure 4-

7(a). When we considered only these genes which were found to be germline-intrinsic,

the number of genes considered decreased to 19, and the area under ROC increased

to 0.78 (Figure 4-7(b)). Finally, when we considered genes that were either sperm

or oocyte enriched, the performance improved further to 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.93 (Figure 4-

7(c)). It is important to note that some of the experimental false positives for genetic

interactors may not be false after all, which could further improve the ROC curve.

Table 4.2.3 lists some of these genetic interactors of bar-1 that are also enriched in

sperm and oocyte and which were grouped together with Bayesian sets method. We

can see that the genes share much similarity both in terms of phenotypic profiles

which are related to germline and the pace of development (source: Wormbase.org

[144]).

112



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
p

o
si

ti
ve

s

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
p

o
si

ti
ve

s
(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
p

o
si

ti
ve

s

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
p

o
si

ti
ve

s

(d)

Figure 4-7: (a) ROC based on microarray timecourse during embryonic and larval
stages for genetic interactors of bar-1, 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.62, sample count:50(+), 201(−).
(b) Genetic interactors of bar-1 constrained to those which are germline-intrinsic,
𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.78, sample count:6(+), 13(−). (c) Genetic interactors of bar-1 con-
strained to those which are enriched in sperm or oocyte, 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.93, , sample
count:5(+), 20(−). (a)-(c) used Bayesian sets variant 2. (d) Genetic interactors of
bar-1 constrained to those which are enriched in sperm or oocyte using variant 2,
𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.82, sample count:5(+), 20(−).
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Table 4.1: Genes in C. elegans enriched in sperm and oocyte grouped based on
microarray profiles and that genetically interact with bar-1 (all 5 listed)

Gene Name Relevant Phenotypes/Pathways Description
C27F2.4 slow growth, sterility protein carboxyl methylase
hda-1 sterility, multivulva, rays missing histone deacetylase 1,

required for gonadogenesis
and vulval development

snfc-5 sterile, protruding vulva, chromatin remodeling,
egg-laying variant asymmetric cell division of the T-cells

dpy-27 sterile, egg laying variant, represses X-linked gene expression during
X-linked expression enhanced hermaphrodite dosage compensation

ZK546.14 receptor mediated endocytosis, uncharacterized conserved protein
defective, slow growth

We could not further constraint the groupings to only sperm or only oocyte as the

number of resulting genes within the set was too small (fewer than 4 positives). The

above results were obtained using variant 2 of Bayesian Sets (Section 4.2.2) performs

better than variant 1 for this dataset. Figure 4-7(d) shows ROC resulting from using

Bayesian sets variant 1 to evaluate similarity among genetically interacting genes with

bar-1, that are sperm- and oocyte-enriched, where 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.82. This suggests

that the distribution of features in this microarray dataset clusters within a specific

range of values per feature as modeled with variant 2 and simply scoring based on a

distance from overall mean is not optimal (variant 1).

Case study 2: glp-1

glp-1 is among signaling genes from Byrne et al. [20] we selected to investigate fur-

ther because of its apparent function in germline cell fate specification. glp-1 stands

for abnormal germline proliferation which led us to believe that constraining its ge-

netic interactors to germline genes would enable us to find groupings of genes sharing

similar microarray profile features. Moreover, glp-1 encodes an N-glycosylated trans-

membrane protein that is one of two C. elegans Notch receptors participating in the

Notch pathway. GLP-1 activity is required for cell fate specification in germline and
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Table 4.2: glp-1 interacting germline-intrinsic genes in C. elegans successfully group
by their aging and heatstress microarray profiles, 4 of 8 shown.

Gene Name Relevant Phenotypes/Pathways Description
mex-6 slow growth, locomotion, zinc finger protein, affects embryonic viability,

dumpy, exploded through vulva establishment soma germline asymmetry in
embryos

cgh-1 slow growth, sterility, RNA helicase, required for sperm function,
vulval defects oocyte fertilization, meiotic germ cells

gld-1 slow growth, sterility, required for meiotic cell cycle
vulval defects during oogenesis, affects spermatogenesis

oma-2 slow growth zinc finger protein, required for oocyte
maturation

somatic tissues. Mutations in the glp-1 gene results in phenotypes relevant to sterility,

body formation defects, as well as lifespan. Given the widespread phenotypic profile

of glp-1 we expected a highly pleiotropic and varied collection of genetic interactors

and that turned out to be the case. The ROC curves based on similarities in early

embryonic, larval, as well as aging profiles showed little information (see Figure 4-8(a)

showing ROC curve based on genetic interactors microarray aging profiles from Lund

et al. [79]). Given that all longevity mutants that have been tested so far show to

be relevant to stress resistance [91], we compared similarity in genetic interactors

based on their merged aging and heatstress microarray profiles and observed a minor

improvement in the Bayesian score (see Figure 4-8(b)). Next, we narrowed down the

candidate set of genetic interactors of glp-1 to consider only those which are sperm

or oocyte enriched, improving our ROC further (Figure 4-8(c)). The most coher-

ent grouping was obtained by considering microarray stress and aging profiles for

genes labeled as germline intrinsic (expressed solely in sperm or oocyte [107]), with

𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.9 as shown in Figure 4-8(d). We list several of the germline-intrinsic

genes which genetically interact with glp-1 in Table 4.2.3. It is relevant to note that

variant 1 of Bayesian sets algorithm fared slightly better than variant 2 suggesting

that the deviation from the background mean does relatively well to characterize the

distribution of aging and heatstress microarray data.
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Figure 4-8: Bayesian sets algorithm variant 1 applied to group genetic interac-
tors of glp-1 based on their (a) microarray aging data, 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.67, sample
count:66(+), 208(−), (b) microarray aging and heatstress data, 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.70,
sample count:51(+), 169(−), (c) microarray aging and heatstress datasets, considering
only sperm- or oocyte-enriched genes, 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.75, sample count:15(+), 38(−),
(d) microarray aging/heatstress datasets considering only germline-intrinsic genes,
𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.90, sample count:8(+), 13(−).
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Furthermore, using Bayesian sets with microarrays measuring RNA levels during

oxygen deprivation (hypoxia) [116], we were able to discover another grouping of

genetic interactors of glp-1. By only selecting for oocyte-enriched genes we were able

to improve our ROC curve from 53% to 100% accuracy (see Figure 4-9). For a list of

genes, see Table 4.2.3.
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Figure 4-9: (a) glp-1 genetic interactors grouped by their hypoxia microarray response,
𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.53, sample count:63(+), 218(−), (b) with additional constraint of being
an oocyte-enriched genes, 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 1, sample count:6(+), 4(−).

Case study 3: let-23

let-23 encodes an epidermal growth function receptor (EGFR) family transmembrane

tyrosine kinase. Knockdown of let-23 affects viability, development of the vulva, male

spicule formation, posterior development of the epidermis, ovulation etc. let-23 is

genetically upstream of the let-60/RAS pathway with respect to viability and vulval

development. Phenotypic defects found via RNAi include lethality, hermaphrodites

with multiple vulvas or lack of them, defects in egg laying, faulty or less effective

male spicules and reduced mating efficiency. Since let-23 is very important for proper

germline development, we expected Bayesian sets grouping of its genetic interactors

to improve when we narrow them to germline-intrinsic genes. When we used hypoxia

response microarray data [116] to describe genetic interactors of let-23, we saw ef-

fectively no similarities among them (see Figure 4-10(a)). However, once the genetic

interactors were limited to only those that are germline-intrinsic, the ROC improved

117



Table 4.3: glp-1 interacting oocyte genes in C. elegans successfully group by their
microarray profiles monitoring their response to oxydative stress (hypoxia), all 6
shown.

Gene Name Relevant Phenotypes/Pathways Description
rme-2 slow growth, sterile, oocyte and low-density lipoprotein (LDL) receptor,

spermatheca morphology variant required during oogenesis
dsh-2 lethal, sterile, slow growth, required for embryonic viability, functions

vulval defects in Wnt pathway signaling
hda-1 lethal, sterile, slow growth, required for embryonic viability, required

vulval defects, rays missing for gonadogenesis and vulval development
sup-17 lethal, sterile, slow growth required for embryonic development, involved

in LIN-12/Notch-mediated cell signaling
during vulval development, required for
normal body morphology and male tail
development

mom-2 lethal, sterile, slow growth, signaling glycoprotein in the Wnt family
variant intestinal development required for gut tissue formation

hmp-2 lethal, variant intestinal alpha-catenin, required for proper enclosure
development, body morphology and elongation of the embryo
variant
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significantly (see Figure 4-10). Further look at the genes within this set, shows that

their functional and phenotypic profiles are very similar to one another, and they are

temporally and spatially co-localized.
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Figure 4-10: (a)ROC showing the results of running Bayesian sets variant 2 on genetic
interactors of let-23 described by their microarray profiles during oxidative stress
(hypoxia), 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.6, sample count:82(+), 500(−) (b) Constraining the genes
in (a) to only those that are annotated as germline-intrinsic, 𝐴𝑟𝑒𝑎𝑅𝑂𝐶 = 0.8, sample
count:8(+), 29(−).

4.3 Discussion

In this Chapter, we used Bayesian sets method to determine whether different types

of data contain information relevant to genetic interactions. From the biological

perspective - we have found that phenotypic profiles of genetic partners of a given gene

tend to group together. However, there is little evidence that genetic partners are co-

localized. Similarly, without additional characteristics such as cell lineage, microarray

profiles of genetically interacting genes have very little in common. However, when

additional functional information was used to constrain the list of genes, microarray

profiles allowed groupings of genes based on a shared genetic partner gene.

The analysis we performed was limited to properties of individual genes. It is

natural to try to expand the similarity analysis to pairwise properties since genetic

interaction is a pairwise property. Therefore, we tried to find groupings of genes based

on their pairwise properties from merged protein interactome network for C. elegans,
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WI8, as described in 2.3.4. It is possible that some of the pairwise properties, e.g.

direct physical interaction link, shared neighbors, would corroborate the fact that two

genes genetically interact. However, the data was too sparse to perform the Bayesian

sets analysis.

In our analysis, we focused on a single dataset at a time, in an effort to determine

which datasets are useful for predicting genetic interactions. However, the Bayesian

sets setup can easily handle mixing different types of features, e. g. binary and

continuous features such as phenotypes and microarray data. Since the Bayesian

log-score is a sum of individual contributions from each experiment, the continuous

and binary data scores can be combined as a sum, subject to their relative scaling

parameters.

The Bayesian sets algorithm used in this thesis is based on the work by Ghahra-

mani and Heller [37]. They derived a general framework, followed by exact formu-

lation that can be used to group binary data. We implemented their binary model

and applied it to find sets among genes described by experimental data consisting of

1s and 0s such as phenotypic and spatial profiles. Next, we derived two alternative

models intended for continuous data. During data analysis, we used ROC to assess

performance and selected either one of the two variants to analyze different datasets.

If the underlying feature can be simply described as a deviation from the overall

mean, Bayesian sets variant 1 performs better. However, this was not the case for

most microarray datasets we considered, and variant 2 generally did better. Using

the Bayesian sets algorithm, we were able to rank datasets based on how effective

they are in predicting genetic interactions.

Bayesian sets algorithm’s strength is the fact that it is based on a solid statistical

model derived from the underlying data distribution. However, this may also be a

drawback, since an appropriate model for the data distribution needs to be selected.

Thus the algorithm is sensitive to the choice of prior distribution. Moreover, it does

not take into account relationships among features. On the positive side, it allows us

to determine exactly which features contribute more or less to the final score, giving

us information as to which biological experiments are the most relevant. Finally, the
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algorithm has certainly shortcomings in the way it deals with missing data. If a given

gene is missing a value for an experiment, the resulting contribution to the overall

log score is 0, since Bayesian sets simply omits the experiment. The contribution

from genes that do have data present for that experiment is by default nonzero,

even if they are not part of the cluster, and it is assumed that the contribution for

genes that partake in the cluster is simply larger. Thus, lack of data can adversely

(and not necessarily correctly) affect the relative ranking of a given gene. This is an

important drawback, especially if we are dealing with sparse data where features are

often missing. In the following Chapter we address this problem with an approach

called collaborative filtering. While collaborative filtering is a method of choice for

dealing with sparse datasets when making product recommendations (e. g. movie,

books), we believe that this is the first time it is applied to biological data.
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Chapter 5

Collaborative Filtering approach to

predict genetic interactions and

other biological data

Watching Max and Rubie, a cartoon about sibling rabbits.

Andrew: Max is not listening to his mommie.

Mommie: She’s not his mommie; Rubie is Max’s sister!

Andrew: No, you know how I know she’s his mommie?

Mommie: How?

Andrew: She has a long skirt! Sisters wear short skirts.

- Missiuro family, Andrew - 5yo, unpublished

5.1 Motivation

In the previous Chapter, we have shown how Bayesian sets can be used to assess

how much information a given dataset contains. Moreover, using Bayesian scores

to compare vectors of genes in a “seed” set versus the background, we could rank

genes based on how likely they belong to the given “seed” set. This approach works

quite well as long as the data is not sparse (i.e. has a lot of missing values) which

is frequently the case with biological data. In the latter case, the relative ranking

of genes may no longer be accurate (see Section 4.3 for a more detailed discussion).

In this Chapter, we present the method of collaborative filtering (CF). We use CF
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to evaluate how much information different datasets contain, and to represent the

large input datasets matrix by a much smaller matrix estimate. Furthermore, we use

collaborative filtering to remedy the problem of missing data. Collaborative filtering

is a relatively new family of learning algorithms designed to deal with sparse datasets.

It has been widely used as a method to provide product (e.g. movie) recommendations

to users. To our knowledge, it has never been applied to biological problems.

We begin this chapter with an introduction to collaborative filtering method along

with its typical applications. Next, we describe a factorization-based approach to

collaborative filtering that we will use. Subsequently, we describe the weighting and

neighborhood-based adaptations of the method to improve prediction accuracy.

Working with biological data presents some unique challenges that were not present

in any previous applications of CF. We address these by appropriately normalizing

and scaling the data. We also adapt the method to deal with a mixture of continuous

and discrete data. We demonstrate how we use collaborative filtering to fill in miss-

ing entries in microarray datasets, phenotypic profiles, as well as to predict genetic

interactions.

5.2 Introduction to collaborative filtering

Originally, collaborative filtering algorithms were developed for recommender systems

in e-commerce. The idea is to use known preferences of many users to predict what

other products or topics a given user may like. The prediction is based on his/her

similarity to others in known preferences [109, 115, 18, 50]. The original goal was to

automate the process of ”word-of-mouth” by which people recommend products or

services to one another. With a large number of options, e.g. titles of movies, it is

practically not feasible to provide sufficient number of experts that advise about movie

options. By switching from an individual to a group method of recommendations, the

problem becomes manageable. The objective of collaborative filtering is to determine

an average opinion for the group of users most similar to the one seeking advice.

A collaborative filtering (CF) problem generally includes the following:
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Problem : Large number of users’ opinions (preferences) on a given set of topics (e.g.

movies) is being represented as a large sparse matrix of user-topic rankings.

Method :

1. Using certain similarity measures, a subgroup of people is selected who are

the most similar to the person seeking advice.

2. A weighted average of the preferences is computed. Note that there are

many ways to determine weights - for example, it can be based on how

many topics have been found to be similarly ranked with the user seeking

advice.

3. The result is used to recommend options on which the user looking for

advice has no opinion yet.

One of the features of collaborative filtering is the fact that one does not need

to know what a given feature represents in order for it to compare items to one

another. Of course, nothing prevents the recommender system from using the content

information if that is available e.g. user’s particular affinity for a certain genre of

movies, a particular actor or a director. The latter can formally be added as another

feature (column) in the ranking matrix and treated similarly to other features.

Among typical similarity metrics are Pearson correlation coefficient (see Appendix

A.1.1), vector distance or dot products. If the similarity metric has found people

with similar preferences, chances are that the popular items within this group will be

appreciated by the user seeking advice. It is not surprising that collaborative filtering

is now a method of choice for recommending books, music, movies, services or just

about any products.

Remarkably, the similarity can be assessed both for users as well as items in order

to improve prediction power. That is, certain items may be similar to others with

respect to their rankings among the same users e.g. users who score “Star Wars” high

might also give “Star Trek” a high score.

In addition, collaborative filtering can handle a matrix of values for prediction

that is very sparse (missing a lot of values). This makes it a very powerful and
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flexible technique compared to other prediction methods (e.g. Bayesian, decision

trees). However, its accuracy is dependent on existence of some preference data. To

be reliable, the recommendation system needs each user to fill out at least some of

his/her preferences. The system is only effective when there is a ’reasonable’ amount

of data collected, thus users which have no preference recorded cannot expect effective

recommendations. In 2006, a company called Netflix announced “Netflix Challenge,”

and provided one of the most diverse and complete datasets for collaborative filtering

up to date [92]. As a result, many new collaborative filtering approaches have been

suggested, vastly expanding this research direction.

In Section 5.3, we present collaborative filtering method developed by Bell et al.

[13], which consists of two parts:

1. Factorization-based approach based on using expectation maximization (EM)

for Principal Component Analysis (PCA) but designed to handle sparse matri-

ces.

2. Neighborhood-aware (neighborhood-based) factorization which introduces neigh-

borhood awareness to the factorization-based approach.

We use this method to fill in missing biological data, including predicting genetic

interactions among genes. Since biological data is a mixture of binary and contin-

uous non-negative features, we have to adapt the method to integrate all of these

features together. We will describe other modifications to the CF method including

introduction of weights, varying similarity metrics, shrinkage parameters and exper-

imenting with residuals. Finally, we discuss some normalization steps we applied to

the biological datasets in order to increase the effectiveness of our prediction methods.

5.3 Factorization-based approach to collaborative

filtering

In this Section, we assume that a (sparse) data matrix 𝐷 of size 𝑚× 𝑛 is given. The

rows in 𝐷 correspond to genes, the columns correspond to experiments. Similarly to

126



[13], we reserve the special indexing letters to distinguish between genes and exper-

iments: for genes we use 𝑔, 𝑢, for experiments 𝑖, 𝑗. All known entries (𝑔, 𝑖) of 𝐷 are

denoted by the set 𝒦 = {(𝑔, 𝑖)∣𝑑𝑔,𝑖 is known }.
Factorization-based approach is described on a high level by Roweis et al. [111]

as an EM approach to PCA. This method can be applied directly to the sparse set

(’sparse’ meaning containing a small set of known values and a large set of unknown

values) of known experimental results for genes. The usual way to compute PCA

of a matrix 𝐷 is based on its associated covariance matrix. However, [111] instead

computes rank-𝑓 matrices 𝑃 and 𝑄 as to minimize the Frobenius norm of (𝐷−𝑃𝑄𝑇 ),

where 𝑃𝑄𝑇 is the factorization-derived estimate of 𝐷. The process happens in two

repeated steps in which either 𝑃 or 𝑄 is being treated as fixed, while the other is

determined as the least squares solution minimizing the residual error, ∣∣𝐷−𝑃𝑄𝑇 ∣∣𝐹 ,
that is, we iterate over the following two steps until convergence:

𝑃 = 𝐷𝑄(𝑄𝑇𝑄)−1 (5.1)

𝑄𝑇 = (𝑃 𝑇𝑃 )−1𝑃 𝑇𝐷. (5.2)

The process of recomputing the residual is repeated until the solution no longer

improves (the minimum is obtained).

The standard approach by Roweis et al. [111] uses imputation of values into 𝐷 as

part of the iterative process. In [14], the approach is modified to avoid imputation

of values. The rationale for avoiding imputation is two-fold: first, since the matrices

are very sparse, the added data will inevitably compromise (overwhelm) the known

data; secondly, in large datasets filling in the values might not be feasible because of

memory constraints.

The optimal value for 𝑓 (approximation order), the rank of matrices 𝑃 and 𝑄,

needs to be estimated as well. If we avoid imputation, the number of known entries

is small, and overfitting becomes an issue. To alleviate the overfitting problem, [13]

introduces shrinkage to gradually decrease the magnitude of subsequently computed

factors. Before each new factor (new column in 𝑃 and 𝑄) is computed, the residual
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entries are multiplied by shrinkage parameters, which are determined empirically. By

applying shrinkage, each additional factor has a much lesser effect on the residual

than the previous factors. In [13] this multiplier is constructed to depend on two

parameters: 𝑓 , which is the number of computed factors up to this point, and 𝑛𝑔𝑖,

which is the minimum between the number of experiments with results for gene 𝑔

and the number of genes having information in experiment 𝑖. In our implementation,

we add weights to further adapt the shrinkage parameter. For example, when we

predict binary data, there may be many more 0s than 1s (category imbalance). As a

remedy, we weight the predictions of 1s more heavily than 0s by shrinking the residual

corresponding to 0.

5.3.1 Baseline framework for factorization-based CF

We continue assuming that the data matrix 𝐷 of size 𝑚× 𝑛 is given, along with the

set 𝒦 of known values 𝑑𝑔𝑖, (𝑔, 𝑖) ∈ 𝒦.
The factorization-based framework is trying to find matrices 𝑃,𝑄 of size 𝑚 × 𝑓

and 𝑓 × 𝑛, where 𝑓 ≪ 𝑚,𝑛, such that the error

∑
(𝑔,𝑖)∈𝒦

(𝑑𝑔𝑖 −
𝑓∑

𝑗=1

𝑝𝑔𝑗𝑞𝑖𝑗)
2 (5.3)

is minimized, where we denote 𝑓 as rank of factorization. We note that the expression

in Equation 5.3 is similar to Frobenius norm of the residual matrix

𝑅 = 𝐷 − 𝑃𝑄𝑇 , (5.4)

restricted to the known values of𝐷. Since 𝑓 is generally a relatively small number, the

product 𝑃𝑄𝑇 can be treated as the most compact (“simple”) rank-𝑓 approximation

of known observations in 𝐷.

One can view columns of the matrix 𝑄 as “experimental data of typical genes”,

and this way each gene is approximated by a linear combination of these “typical

genes.”
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The above described least-squares problem is nonlinear, because both entries in 𝑃

and 𝑄 are unknown. However, if one treats either 𝑃 or 𝑄 as fixed, this problem rep-

resents a linear least-squares estimation. This way, the simplest iterative algorithm,

which can approximate 𝑃 and 𝑄 is to iteratively solve for one of them (for example,

𝑄), then use the obtained approximation to update 𝑃 , then repeat until convergence.

We use the above described iterative approach in an incremental setting by the

rank 𝑓 . This is done partially because of the need to estimate an adequate value of 𝑓

after which the approximation error no longer decreases. In addition, we use special

measures to avoid overfitting by using shrinkage, a multiplier which depends on 𝑓 ,

to ensure that higher-order updates are always less in magnitude than lower-order

updates. This way, we represent the approximation of 𝐷 as:

𝐷 ≈ 𝑃𝑄𝑇 = 𝑝1𝑞
𝑇
1 + 𝑝2𝑞

𝑇
2 + 𝑝3𝑞

𝑇
3 ..., (5.5)

where each subsequent rank-1 update represents a smaller correction to the previous

approximation.

Let’s now consider the problem of updating the rank-1 estimate 𝑝𝑓 (𝑓 -th column

of the matrix 𝑃 ) assuming fixed value of 𝑞𝑓 . From Equation 5.3 and assuming rank-

(𝑓 − 1) residual 𝑅 in Equation 5.4, we have:

minimize
∑

(𝑔,𝑖)∈𝒦
(𝑟𝑔𝑖 − 𝑝𝑔𝑓𝑞𝑖𝑓 )2. (5.6)

This linear least squares problem can be solved by each column of the residual result-

ing in the following update of the values of 𝑃 :

𝑝𝑔𝑓 =

∑
𝑖:(𝑔,𝑖)∈𝒦 𝑟𝑔𝑖𝑞𝑖𝑓∑
𝑖:(𝑔,𝑖)∈𝒦 𝑞

2
𝑖𝑓

. (5.7)

The update of the 𝑓 -th column 𝑞𝑓 , given 𝑝𝑓 is analogous.

As it can be seen from Equation 5.7, the update is a linear function of the residual.

In the proposed algorithm we scale (shrink) the residual entries depending how much is

known about the corresponding experiments and genes, and depending on the value
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of 𝑓 . The resulting algorithm for computing the next rank-1 update is presented

below. It is called iteratively for 𝑓 = 1, 2, . . . until the needed accuracy is reached.

Algorithm compute next factor

Inputs: Data matrix 𝐷, matrix 𝑀 (mask) which contains “1” where there are

known values and “0” otherwise, rank-(𝑓 − 1) factors 𝑃 and 𝑄.

Outputs: rank-𝑓 factors 𝑃 and 𝑄 with added columns 𝑝𝑓 and 𝑞𝑓 .

Function steps:

1. Compute the residual matrix 𝑅𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐷 − 𝑃𝑄𝑇 .

2. Compute shrinkage matrix 𝑆, 𝑚×𝑛 which is used to shrink the residual 𝑅𝑎𝑐𝑡𝑢𝑎𝑙.

An entry in the 𝑆 matrix corresponding to gene 𝑔 experiment 𝑖, is computed as

𝑠𝑔𝑖 =
𝑛𝑔𝑖

𝑛𝑔𝑖+𝛼𝑓
, where 𝑛𝑔𝑖 corresponds to the minimum support for entry 𝑔𝑖 in 𝐷,

that is the minimum between the number of known items in row 𝑔 and column

𝑖, and 𝛼 = 25.

3. Compute shrunk residual, 𝑅 = 𝑅𝑎𝑐𝑡𝑢𝑎𝑙 ⋅ 𝑆.

4. Initialize error 𝑒𝑎𝑓𝑡𝑒𝑟 as the absolute mean squared error between the data matrix

𝐷 and its 𝑃𝑄𝑇 estimate.

5. Iterate over the values of columns 𝑝𝑓 and 𝑞𝑓 , until no further improvement in

the error, i.e
𝑒𝑎𝑓𝑡𝑒𝑟
𝑒𝑏𝑒𝑓𝑜𝑟𝑒

> 1− 𝜖

� 𝑒𝑏𝑒𝑓𝑜𝑟𝑒 ← 𝑒𝑎𝑓𝑡𝑒𝑟.

� Update the values of the column 𝑝𝑓 :

𝑝𝑓 = ((𝑅 ⋅𝑀)𝑞𝑓 )÷ (𝑀(𝑞𝑓 ⋅ 𝑞𝑓 )) (5.8)

� Update the values of the column 𝑞𝑓 :

𝑞𝑓 = (𝑝𝑇𝑓 (𝑅 ⋅𝑀))÷ ((𝑝𝑇𝑓 ⋅ 𝑝𝑇𝑓 )𝑀) (5.9)

� Compute the 𝑒𝑎𝑓𝑡𝑒𝑟 = ∥𝑀 ⋅ (𝑅𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑓𝑞𝑇𝑓 )∥𝐹 .
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6. Once the loop is exited, a new column 𝑝𝑓 and 𝑞𝑓 are added to the corresponding

factor matrices.

In the above algorithm, ⋅ refers to the element-by-element (Hadamard) matrix

multiplication, and ÷ refers to the element-by-element matrix division. One can see

that the update in Equation 5.8 is a vectorized form of Equation 5.7.

The heuristic associated with the shrinkage parameters is properly described in

[13].

5.3.2 Weighting of the residual

We have already pointed out that the entries of the residual can be weighted in the

updated formulas of Equation 5.7. Importantly, any extra information about the

measurement errors associated with the data in 𝐷 can be incorporated in (5.8, 5.9)

by introducing a matrix of weights 𝑊 where for every entry (𝑔, 𝑖) ∈ 𝒦 a nonnegative

value 𝑤𝑔𝑖 reflects the confidence level in the corresponding value 𝑑𝑔𝑖. In this case the

objective function of our least-squares minimization problem becomes

∑
(𝑔,𝑖)∈𝒦

𝑤𝑔𝑖(𝑑𝑔𝑖 −
𝑓∑

𝑗=1

𝑝𝑔𝑗𝑞𝑖𝑗)
2. (5.10)

In this case the rank-1 update at each iteration of the algorithm can be computed from

the weighted linear least squares associated with the single column (for 𝑝𝑓 updates)

or row (for 𝑞𝑓 updates) of the residual:

𝑝𝑔𝑓 =

∑
𝑖:(𝑔,𝑖)∈𝒦 𝑤𝑔𝑖𝑟𝑔𝑖𝑞𝑖𝑓∑
𝑖:(𝑔,𝑖)∈𝒦 𝑤𝑔𝑖𝑞2𝑖𝑓

. (5.11)

5.3.3 Neighborhood-aware factorization

We recall from Section 5.3.1 that factorization-based approach predicts all the values

for a given gene 𝑔 by multiplying 𝑝𝑔 by the matrix 𝑄𝑇 . Its objective is to minimize,

up to shrinkage, the squared error associated with gene 𝑔:
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∑
(𝑔,𝑖)∈𝒦

(𝑑𝑔𝑗 − 𝑝𝑇𝑔 𝑞𝑗)2 (5.12)

Unlike the factorization-based approach that describes gene 𝑔 as a fixed linear

combination of the 𝑓 “typical” factors, neighborhood-aware factorization attempts to

be more flexible. Rather than predicting all the entries (features from experiments)

for all the genes together, it focuses on any additional information which may be

specific to a particular experiment - whether we can further adapt 𝑝𝑔 to a given

experiment 𝑖, 𝑝𝑖𝑔. Our estimation quality may improve with a more selective linear

combination that would change as a function of the experiment 𝑖 for a given gene 𝑔.

In this approach, we try to weight the squared error to consider these experiments

that are more similar to 𝑖, as shown in the error function [13]:

∑
(𝑔,𝑖)∈𝒦

𝑠𝑖𝑗(𝑑𝑔𝑗 − 𝑝𝑇𝑔 𝑞𝑗)2 (5.13)

Therefore the main difference between the global factorization and the neighborhood-

adapted factorization is the incorporation of similarity matrix into the residual, which

emphasizes experiments which are the most similar to experiment 𝑖, since these may

most accurately predict 𝑖. We consider different similarity metrics in Section 5.4.1.

The neighborhood-aware factorization approach assumes that the matrix 𝑄 has

already been obtained, for example by running the baseline factorization algorithm.

This way, in order to estimate the value 𝑑𝑔𝑖, as we did before, we incrementally con-

struct the entries 𝑝𝑔1, 𝑝𝑔2, . . . , 𝑝𝑔𝑓 where each subsequent term has smaller magnitude

by using a shrunk residual. The resulting update on the 𝑙-th step is the following [13]:

𝑝𝑔𝑙 =

∑
(𝑔,𝑗)∈𝒦 𝑠𝑖𝑗𝑟𝑔𝑗𝑞𝑗𝑙∑
(𝑔,𝑗)∈𝒦 𝑠𝑖𝑗𝑞

2
𝑗𝑙

, (5.14)

where 𝑟𝑔𝑗 is a shrunk residual entry 𝑑𝑔𝑗−
∑𝑙−1

𝑘=1 𝑝𝑔𝑘𝑞𝑗𝑘. We obtain significant improve-

ment by using the neighborhood-aware algorithm compared to the baseline factoriza-

tion algorithm.

As one may suggest, there is a possibility to use similarity measure not only
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between experiments, but also between genes, which leads to similar derivations with

respect to the corresponding single row in the matrix 𝑄 and assuming the matrix 𝑃

being fixed. In our experience, this led to only marginal, if any, improvements in the

predictive power of the method.

5.4 Investigating the effects of various parameters

5.4.1 Similarity metrics

The success of collaborative filtering prediction is heavily dependent on finding genes

or experiments that can be matched closely to the gene or experiment we would like

to predict values for. In order to determine which genes/experiments are the most

similar, one needs to select an appropriate similarity metric. We investigated multiple

similarity metrics including Pearson correlation, cosine similarity, inverse Euclidean

distance etc. In Figure 5-1, we show how cosine similarity metric relates to Pear-

son correlation metric when comparing different types of experiments to one another

across genes that are present in each experiment. The x-axis represents correlation

between a pair of experiments, vi and vj, profiled across genes. The y-axis shows

the cosine similarity value for the same pair of experiments. In our comparison of

profiles, we only considered positive values of similarity (greater than 0). In Figure 5-

1(a) we compare 25 phenotypic experiments to themselves, 11 genetic interactions

experiments, 38 spatial localization experiments, and 135 microarray experiments

(for detailed description of these datasets, see Section 2.3), while in Figure 5-1(b)

we compare 11 genetic interaction experiments to themselves, phenotypic, spatial,

and microarray experiments. In the cases when the resulting points are on the diag-

onal, the two metrics perform similarly. We investigated the wider range of cosine

similarity scores for pairwise comparisons of phenotypes vs microarray data (red ’*’

Figure 5-1(a)). We found that cosine similarity is sensitive to relative offset of data

from the mean and the horizontal bands in (a) correspond to such offsets. These un-

desirable effects are also visible in Figure 5-1(b). One way to remove these effects is
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to recenter the data at 0. We have tested the performance of the neighborhood-based

algorithm using either of the two metrics and the correlation metric tends to perform

slightly better and more consistently than cosine similarity. The neighborhood-based

collaborative filtering algorithm uses similarity to assess which genes or experiments

belong to the “neighborhood” of a given gene or experiment, respectively. In the

subsequent experimental results sections, we use distance metric based on Pearson

correlation to assess similarity.
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Figure 5-1: Plots of cosine similarity scores versus Pearson correlation scores for pairs
of experiments (each experiment is profiled across genes) of the following types: (a)
25 phenotypes are compared to themselves, 11 genetic interaction experiments, 38
localization, 135 microarray; (b) 11 genetic interaction experiments are compared to
themselves, phenotypes, spatial localization, and microarray.

We also experimented with scaling the similarity metric in a variety of ways. As

we mentioned previously, Pearson correlation ranges from −1 to 1. Used as a distance

metric, it needs to be positive. Adding a constant 1 would result in all positive values,

however, if correlation was originally 0, it would result in falsely associating unrelated

“items” (genes/experiments). Therefore, instead of adding a constant, we threshold

and set all the negative values to 0. Next, we experimented with narrowing the list of

potential candidate similar items by raising the similarity metric to a higher power e.g.

𝑐𝑜𝑟𝑟(𝑣𝑖, 𝑣𝑗)
2, . . . , 𝑐𝑜𝑟𝑟(𝑣𝑗, 𝑣𝑗)

5. This manipulation did not improve the performance of

the neighborhood-based method consistently and we decided to keep the correlation

metric in the first order.

134



In the next section, we describe shrinkage parameters that we subsequently use

together with similarity to compute how similar any two experiments (or genes) are

to one another.

Shrinkage when computing similarities

When predicting an unknown data in the matrix which pertains to a particular gene/-

experiment combination, we need to select the most similar genes/experiments in

order to make a prediction. Let’s consider the case when we are trying to assess

similarity among experiments (columns). Given that some of the data is missing and

the number of known entries we can compare may vary, we need to scale the simi-

larity measure by the “support” of a given element, which we denote by 𝑚𝑖𝑗 . The

support in our case is the number of genes that have results in both columns 𝑖 and

𝑗. The actual scaling factor is
𝑚𝑖𝑗

𝑚𝑖𝑗+𝛽
where 𝛽 is a fixed hyperparameter which we

tune based on cross validation. Below we summarize steps for computing similarity

between experiments. We have implemented a similar setup for genes.

Function shrink similarity matrix cols:

� Input: Data matrix 𝐷; 𝑖𝑐𝑜𝑙 - indexes of columns (experiments) that corre-

spond to value(s) to be predicted (can be more than 1 if doing it for multiple

experiments at once).

� Output: Shrunk similarity matrix, 𝑆, which is square and describes the

similarity among the experiments. Columns corresponding to indexes of exper-

iments, 𝑖𝑐𝑜𝑙, contain similarity measures between the given experiment and the

remaining experiments. Currently similarity is measured via Pearson correlation

coefficient. Similarity measure has been modified to observe the effects of vary-

ing the distance metric e.g. tried inverse euclidean distance, (1+ 𝑝𝑐𝑐)2, . . . , (1+

𝑝𝑐𝑐)5, etc. Entries in 𝑆 are presently computed as following:

� Function steps:
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1. Compute Pearson correlation between column 𝑖 from 𝑖𝑐𝑜𝑙 and 𝑗 in 𝐷, and

set it to 𝑆𝑖𝑗.

2. Do not let the similarity take on negative values, so if 𝑆𝑖𝑗 < 0, 𝑆𝑖𝑗 = 0.

3. Scale it by the support, 𝑚𝑖𝑗 , that counts how many genes have known val-

ues in both the particular 𝑖 and experiment 𝑗, to obtain 𝑆𝑖𝑗 =
𝑚𝑖𝑗𝑚𝑎𝑥(𝑐𝑜𝑟𝑟𝑖𝑗 ,0)

𝑚𝑖𝑗+𝛽
,

where 𝛽 = 25 and 𝑐𝑜𝑟𝑟𝑖𝑗 is the Pearson correlation between columns 𝑖 and

𝑗.

5.4.2 Shrinkage

In the previous section we discussed using shrinkage when comparing how similar are

two columns (experiments) to one another. Sometimes the amount of data available

varies widely, perhaps by orders of magnitude depending on the experiments/genes

considered. The idea behind “shrinkage” is to impose a penalty for those parameters

that have less data associated with them. In this section, we describe “shrinkage” as

it is used to reduce the magnitude of the residual as we compute subsequent factors

during factorization. The shrinkage applied to the residual reduces its magnitude

according to two elements. The first element is the number of already computed

factors, 𝑓 . As we compute more factors, the objective is to explain smaller variations

of the data. In other words, their effect on the magnitude of the residual should

decrease. The second element of shrinkage is the “support” behind the entry we

would like to predict which we denote by 𝑛𝑖𝑗 . The support is the minimum between

the number of experiments gene 𝑖 participated in and the number of genes that were

covered in a given experiment 𝑗. As the support grows and more data is available,

we have more information regarding the involved gene and experiment, and we can

use more factors to explain them. The shrinkage of the residual can be summarized

algorithmically as follows:

𝑟𝑒𝑠𝑖𝑗 ← 𝑛𝑖𝑗𝑟𝑒𝑠𝑖𝑗
𝑛𝑖𝑗 + 𝛼𝑓

(5.15)

where 𝑟𝑒𝑠𝑖𝑗 indicates the residual for entry (𝑖, 𝑗), 𝑛𝑖𝑗 is the support, and 𝑓 is the
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number of already computed factors.

We compared the performance of standard regularization approach which does not

employ shrinkage parameters to our factorization-based approach which uses shrink-

age. We find that the algorithm using shrinkage has more predictive power.

5.4.3 Evaluating residual for binary data

The residual relates to how we linearize the loss function at the current estimate. For

example, in the case of a squared loss the residual is the difference between the actual

and predicted value. In previous applications of the factorization method (described

in Section 5.3), the entries were movie ratings, integers ranging from 0 to 𝑁 . The

residual was computed by taking the difference between the actual value and the

current estimate. In our setup, the entries to be predicted are either continuous or

binary data. To compute the residual for continuous data, such as microarray profiles,

we can subtract the predicted value from the actual value to determine how far off we

are and pass it on to the next factor, as in the original setup. However, the majority of

the predictions concern binary data such as phenotypes, spatial expression patterns,

presence/lack of interaction. While the residual should estimate how close we are

to predicting either 1 or 0, we need to address subtle differences. For example, let’s

suppose that the actual value of a given entry is 1. At a given factorization step

we predict the value to be 0.7 - while it is neither 0 nor 1, it is certainly closer to

1 than 0. We could decide that there is no need to improve on this prediction thus

set the residual to 0. Alternatively, we would like to further improve it and set the

residual equal to the difference between the actual and predicted value, 𝑟𝑒𝑠 = 0.3.

However, taking the difference may not always be the right approach. Suppose that

our prediction is 2, thus we are pretty confident it is closer to 1 rather than 0. The

difference between the two entities is 1, yet intuitively it would not make sense to

“improve” the answer by bringing it closer to 1 as 2 indicates we are already very

confident in this answer. Thus we may want to set the residual to 0. An alternative

approach is that once the value has been predicted correctly, we can altogether ignore

its residual from that point onward when calculating subsequent factors. In summary,
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the formula for the residual is not necessarily a simple difference between the actual

and the predicted value. Below, we list several variants of residuals we experimented

with for binary data:

� Variant 1 - the residual is set to 0 if either: the estimate is greater than 1 when

the actual value is 1, or the estimate is less than 0 when the actual value is

0. As we proceed with subsequent factors, we further regularize the residual

towards 0.

� Variant 2 - the residual is set to 0 if either: the estimate is greater than 0.5

when the actual value is 1, or the estimate is less than 0.5 when the actual

value is 0. In this variant, the residual is regularized towards 0 as soon as the

“decision boundary” of 0.5 is passed.

� Variant 3 - the residual for a given entry is no longer considered when computing

subsequent factors if either: the estimate is greater than 1 when the actual value

is 1, or the estimate is less than 0 when the actual value is 0. This variant’s

conditions are similar to 1, however, by removing the correctly predicted entries

from the subsequent computation of the residual, this variant avoids overfitting

and favors simpler models.

We have experimented with predicting phenotypes sourced from Wormbase based

on the remaining datasets including over 130 microarray experiments, approximately

90 spatial localization experiments, as well as other features based on protein in-

teraction experiments, miRNA binding data etc (data is described in detail in Sec-

tion 2.3). Figure 5-2 shows 2 examples of ROC curves obtained for 2 out of 25

phenotypes. We used the factorization-based collaborative filtering approach along

with the neighborhood-aware factorization focusing on similarity among the experi-

ments (columns). For each phenotype and residual variant, we selected 15 positive

and 15 negative samples which we withheld from the data and subsequently cross val-

idated using the ROC curves. We have found that the residual variant had minimal

impact on the result, with variants 1 and 3 performing equally well, and variant 2
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Figure 5-2: Examples of ROC curves for predicting phenotypes using residual variants
1,2,3. (a) ROC curve for predicting “dumpy” phenotype based on the remaining
datasets results in areas under ROC of 0.83, 0.80, and 0.83, for residual variants 1-3,
respectively. (b) ROC curve for predicting “sterile progeny” phenotype based on all
the other datasets results in areas under ROC of 0.87, 0.81, and 0.86, for residual
variants 1-3, respectively.

performing slightly worse. The average areas under ROC for predicting phenotypes

using variants 1,2,3 were 0.70, 0.68, and 0.71, respectively. We decided to use variant

3 for all computational analyses.

5.4.4 Weighting parameters and thresholding

When predicting binary data obtained from biological experiments, one needs to take

into account two important factors. First, we need to be aware what 0s and 1s

represent. In the case of phenotypic experiments in C. elegans, a value of 1 represents

the fact that a given phenotype was observed as a result of a gene knockout or other

stress condition. In the case of spatial localization data in C. elegans, 1 indicates that

a particular gene was detected as present in a given tissue. On another hand, a value

of 0 does not give us the same clarity of interpretation. While its presence indicates

that likely a given phenotype was not observed or a gene product not present, it

does not exclude it altogether. The second important factor when predicting binary

profiles of genes or experiments is to consider the relative numbers of 1s and 0s. We

examined the profiles and 0s vastly outnumber 1s in the majority of experiments,

which is not surprising given the nature of data we are analyzing. Not addressing
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this issue may lead to a seemingly good predictor which in fact only predicts 0s for

all entries.

To address the issues of both confidence and relative frequency, we decided to

introduce weights to the computation of our error and residual. The effect of weights

is incorporated into the least squares factorization equation which minimizes the

residual error between the factor-based estimate of the data and the actual value (see

Equation 5.16). In the error measure, each element of the residual error matrix 𝑅 is

multiplied by the corresponding weight in 𝑊 , the matrix of weights. This way, the

resulting weighted least squares error is:

𝐸𝑟𝑟𝑜𝑟(𝑃,𝑄) =
∑

(𝑔,𝑖)∈𝒦
(𝑤𝑔𝑖(𝑟𝑔𝑖 − 𝑝𝑇𝑔 𝑞𝑖))2 → min (5.16)

where 𝑃 and 𝑄 are unknown rank-𝑓 matrices whose product is the (weighted)

best rank-𝑓 estimate to 𝑅. After incorporating weights into the equation, the update

equations corresponding to individual entries in 𝑃 and 𝑄 are:

𝑃𝑔𝑓 ←
∑

𝑖:(𝑔,𝑖)∈𝒦 𝑤𝑔𝑖𝑟𝑒𝑠𝑔𝑖𝑄𝑖𝑓∑
𝑖:(𝑔,𝑖)∈𝐾 𝑤𝑔𝑖𝑄2

𝑖𝑓

(5.17)

𝑄𝑖𝑓 ←
∑

𝑔:(𝑔,𝑖)∈𝒦 𝑤𝑔𝑖𝑟𝑒𝑠𝑔𝑖𝑃𝑔𝑓∑
𝑔:(𝑔,𝑖)∈𝐾 𝑤𝑔𝑖𝑃

2
𝑔𝑓

(5.18)

where 𝑓 is the index of the current factor being solved, 𝑤𝑔𝑖 corresponds to in-

dividual entry in 𝑊 . We weight each 0 and 1 based on their relative ratios to one

another in each experiment (a column in the original data matrix). Our motivation

for selecting a given experiment rather than a dataset, is because each experiment

represents a unique condition. An experiment is independent of others as its control

conditions are different. We have analyzed the resulting predictions for 1s and 0s as

a result of introducing weights. As expected, the number of correctly predicted 1s

increases at a cost of making errors on 0s.

Another relevant variable when evaluating the performance of this method is the

selection of an appropriate threshold when classifying entries as either 1 or 0. Thresh-

olding effect is automatically handled by the ROC curve which ranks genes relative
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to one another. The optimal threshold corresponds to the point on the ROC which is

closest to its top-left corner (100% true positives, 0% false positives). This threshold

is not necessarily 0.5 for binary data and is affected by the introduction of additional

parameters such as weights. However, the ROC automatically takes that into account

as it simply reflects how adequate is the relative ranking.

5.5 Applying collaborative filtering to gene data

In this section, we describe the application of collaborative filtering to gene data. More

specifically, we use both global factorization and neighborhood-aware factorization to

fill in missing values in microarray data, phenotypic profiles, and spatial expression

pattern data based on shared information among both the genes and the experiments.

Finally we try to predict genetic interactions using the features from all available

datasets.

5.5.1 Predicting continuous and discrete values with CF

We test the performance of collaborative filtering algorithm when applied to both

continuous and discrete binary biological data. We apply both the factorization-

based algorithm for CF along with the neighborhood-aware CF approach based on

similarity among experiments.

Predicting microarray data

For continuous data such as microarray expression profiles, we withhold 30 random

values per experiment and then predict them one experiment at a time. There are

a total of 135 microarray experiments based on 10 different studies focused on C.

elegans development, aging, heatstress, hypoxia responses etc (datasets are described

in Section 2.3). For input data, we first use all of the available experimental data (see

Section 2.3) and then compare it with results of using only microarray data as input

to see how much information is contained within the microarray data versus other

datasets such as spatial or phenotypic data.
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Figure 5-3: Plots of predicted versus actual microarray values based on all other
datasets using collaborative filtering; 7 randomly selected experiments out of 135
are shown (color corresponds to values for a single experiment) with 30 genes pre-
dicted per experiment. The legend shows the resulting correlation between the actual
and predicted values (a) Results from running factorization-based method of CF (b)
Neighborhood-based CF results for the same set of 7 experiments (same color reserved
for each experiment).

Figure 5-3 shows results from running (a) factorization-based CF and (b) neighborhood-

based CF algorithm to predict microarray data when the input matrix consists of all

available datasets. The resulting predicted values are plotted against the actual val-

ues for randomly selected 7 experiments out of 135. The legend shows the correlation

for each experiment between the actual and predicted values. The average correla-

tion between the actual and predicted values is 0.82 for factorization-based approach

with a median value of 0.91 and 0.65 for neighborhood-based approach with a me-

dian value of 0.78. We can see from the discrepancy of the mean/median scores

that the distribution of correlation scores is shifted towards one. On average, the

factorization-based CF does better than neighborhood-based approach, however, the

neighborhood-based has wider spread with higher maximum value of correlation at

0.99 and lowest of −0.38 compared to 0.98 and 0.16. From that, we can deduce that

while some microarray experiments have other experiments which results are similar,

others do not. If, for the high-scoring microarray experiments from neighborhood-

based algorithm, we further narrow down the number of similar candidates by using
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a different similarity metric (e.g. ∝ 𝑒−𝑑2), we could possibly increase the performance

further.

We further investigated whether the performance varies depending which studies

the experiments originate from and found that the performance was closely mirrored

among the experiments which came from the same lab even if they covered related

periods of C. elegans life-cycle. For example, while 6 experiments from Lund et al.

[79] study of C. elegans aging had been predicted with high accuracy (average of

Pearson correlation equals 0.74), another study of aging from McCarroll et al. [84]

consisting of 7 experiments had been predicted rather poorly (average correlation is

0.50). In addition, 5 different studies covering the life-cycle of C. elegans did better

(average correlation 0.83) than 2 studies which covered stress response to heat or

oxygen deprivation (𝑝𝑐𝑐 = 0.60).
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Figure 5-4: Plots of predicted versus actual microarray values based on other mi-
croarray datasets using collaborative filtering; 7 randomly selected experiments out
of 135 are shown (color corresponds to values for a single experiment) with 30 genes
predicted per experiment. The legend shows the resulting correlation between the
actual and predicted values (a) Results from running factorization-based method of
CF (b) Neighborhood-based CF results for the same set of 7 experiments (same color
reserved for each experiment).

Next, we repeated the experiment of predicting microarray data, keeping every-

thing the same except using only microarray datasets as input to collaborative fil-

tering algorithms. We withheld the same set of datapoints per experiment and the
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ROC curves in Figure 5-4 show same 7 experiments predicted with factorization-

based and neighborhood-based CF algorithms. For factorization-based approach, the

mean correlation among 135 experiments is 0.80 (median equals 0.88) and for the

neighborhood-based approach the mean is 0.70 (median is 0.88). The top scorers

for the neighborhood-based algorithm are experiments covering the early develop-

ment and aging [79] in C. elegans. The performance of global factorization-based

approach degrades when only microarray data is used, while the neighborhood based

approach fares better in many, however not all cases (compare Figures 5-3(b) and

5-4(b)). In conclusion, while microarray data is the primary source of information for

other microarray studies, other datasets can provide additional information for some

of the genes.

Predicting phenotypes

To evaluate the performance of the factorization-based and neighborhood-based CF

approaches when dealing with binary data, we ran the algorithms to predict 25 differ-

ent experimental phenotypes from Wormbase (see Section 2.3 for data description)

based on a combined matrix of other gene features. Figure 5-5 shows ROC plots for 12

randomly selected phenotypes. For each phenotype, we picked 15 positive and 15 neg-

ative samples to withhold. The factorization-based algorithm did better on average

with mean ROC area 0.72 versus 0.66 for neighborhood-based CF (neighborhood-

based approach compared similar experiments). However, the neighborhood-based

algorithm performed better at predicting some phenotypes e.g. “dumpy” and “ster-

ile progeny” in Figure 5-5 suggesting that there is a set of experiments with similar

profiles.

5.5.2 Predicting genetic interactions with CF

In the previous sections we applied collaborative filtering to predict microarray profile

values and phenotypes. We follow the same approach to predict genetic interactions.

We use the genetic interaction matrix for 11 gene mutants, mutant set, and their in-
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Figure 5-5: ROC curves illustrate the performance of collaborative filtering for pre-
dicting phenotypes based on combined array of other datasets. We selected 12 pheno-
types out of 25 at random. For cross validation, 15 positive and 15 negative samples
were withheld and predicted based on the remaining data. The results shown here
are using factorization-based and neighborhood-based CF. The areas under the ROC
varies from 0.55 to 0.90 for factorization-based estimate (mean 0.72) and from 0.35
to 0.98 for neighborhood based estimate (mean 0.66).
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teracting partners from Dr Peter Roy’s laboratory [20] as described in Section 2.3.8;

this dataset has been analyzed with Bayesian sets in Chapter 4. By using an in-

teraction matrix we have enough information to assess our performance via cross

validation. For cross validation, we iterate over genetic interactors of each of the 11

gene mutants one at a time: we withhold 15 positive and 15 negative samples per

column corresponding to a given mutant gene’s genetic interactions with its genetic

partners. We then predict the withheld data using global factorization-based as well

as the neighborhood based collaborative filtering.

Figure 5-6 shows the results of using factorization-based collaborative filtering for

predicting genetic interactors of a given gene. The input is comprised of all datasets

including microarray, spatial, phenotypes, miRNA interactors etc. We find that the

factorization-based CF method generally performed better than the neighborhood-

based CF (neighborhood being similar experiments); mean area under the ROC for

factorization-based CF is 0.81 versus 0.67 for neighborhood-based CF. Next, we re-

peated the process of predicting genetic interactors but with only phenotypic data

consisting of 25 experiments as inputs to the CF algorithms. Since in Chapter 4

we found that phenotypes have information relevant to genetic interactors, we would

expect them to be able to predict some genetic interactions. Indeed, we find that the

factorization-based and neighborhood-based CF estimates based solely on phenotypes

result in the average area under ROC of 0.73 and 0.70, respectively (see Figure 5-7).

This confirms that phenotypes contain substantial amounts of information relevant

to genetic interactions.

5.5.3 Reducing data to relevant factors based on the ROC

cross validation results

The collaborative filtering method presented here estimates the matrix of gene values

using a product of factor matrices 𝑃 and 𝑄. The number of factors used can be

decided based on the overall prediction performance, for example evaluating ROC

curves. Therefore gene data can be approximated by factor matrices of order sub-
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Figure 5-6: ROC curves illustrate the performance of collaborative filtering for pre-
dicting genetic interactions based on combined array of other datasets. Each of the
11 graphs shows the results of predicting genetic partners for one of the mutant genes
used as a background. For cross validation, 15 positive and 15 negative samples were
withheld and predicted based on the remaining data. The results shown here are
using the global factorization-based estimate. The area under the ROC varies from
0.65 for let-23 to 0.96 for let-756 with a mean area under the ROC of 0.81.
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Figure 5-7: ROC curves illustrate the performance of collaborative filtering for pre-
dicting genetic interactions based only on the phenotypic data consisting of 25 ex-
periments. Each of the 11 graphs shows the results of predicting genetic partners for
one of the mutant genes used as a background. For cross validation, 15 positive and
15 negative samples were withheld and predicted based on the remaining data. The
results shown here were obtained with factorization-based CF. The area under the
ROC varies from 0.56 for sem-5 to 0.94 for let-756 with a mean area under the ROC
of 0.73.
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stantially smaller than the original data, thus reducing complexity. We ran the

factorization-based and neighborhood-based CF estimates for predicting genetic in-

teractors of 11 C. elegans mutant genes [20] and looked at the average area under

their ROC curves for each order of factorization, 𝑓 , up until 𝑓 = 29. At each iter-

ation, we selected at random 15 genes that genetically interact with a given mutant

gene and 15 that do not. Figure 5-8 shows average area under the ROC curve for

predicting genetic interactors of each of 11 mutant genes using all available data as

input. As we can see from the plot, the factorization-based CF method performs

substantially better than the neighborhood-based CF (area under ROC reaches 0.81

when 𝑓 = 29 versus 0.68, respectively). The lack of improvement in performance of

the neighborhood-based method may be due to the fact that many experiments are

at approximately the same level of similarity. The neighborhood-based method is

unable to distinguish these, even with additional factors.
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Figure 5-8: The average area under the ROC curve for predicting genetic interactors
of 11 mutant genes versus factorization order. The dashed lines correspond to a choice
of factor order that would be sufficient to describe the data. For factorization-based
CF, 𝑓 = 14 with average area under ROC of 0.77. For neighborhood-based CF, 𝑓 = 6
with average area under ROC of 0.68.
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Figure 5-8 can be used to decide which factor order is sufficient to describe the

input datasets. We can reduce our input data describing individual genes to a matrix

𝑃 which will described genes as a combination of 𝑓 “typical genes”. We will use

this more compact representation of the individual gene features to merge them with

pairwise features in the next chapter.

5.6 Discussion

In this Chapter, we introduced a novel approach of collaborative filtering for gene

data that allows us to predict missing values as well as reduce data dimensionality

to the more relevant features. Unlike Bayesian sets method covered in Chapter 4,

collaborative filtering deals with missing values by estimating them rather than ig-

noring their impact altogether. This is highly desirable as ignoring missing values can

adversely affect the results as we discussed in Section 4.3. One of the weaker points of

the CF approach is that it relies on ad-hoc shrinkage and tuning parameters. The CF

approach used here does not have a solid statistical model backing it. Moreover, es-

pecially in the case of global factorization method, it is rather difficult to extrapolate

which datasets have been the most relevant to the data we are predicting.

We tried two variants of collaborative filtering: a global factorization-based method

and a local neighborhood-based method. We applied these to continuous and discrete

data to predict entries in microarray, phenotype and genetic interactions datasets.

Our cross-validation results indicate support of our hypothesis that different datasets

are linked together. We were able to predict both continuous microarray and discrete

phenotype and genetic interaction data with relatively high accuracy.

Moreover, we showed how we can use collaborative filtering to assess how much

relevant information to queried entries is contained within different types of data (see

Figure 5-9). Subsequently we used CF to significantly reduce data dimensionality.

This is particularly useful since it enables us to shrink large quantity of data to a

much smaller set of relevant gene features. This lower dimensionality data describing

individual genes can be easily merged with pairwise features. The results from Sec-

150



Dataset 1
eg. phenotypes

Dataset 2
eg. spatial 
patterns

Dataset n

Dataset d
eg. genetic
interactions

Figure 5-9: Conceptual image of how CF can assess how useful a given dataset 𝑛 is
for predicting dataset 𝑑 by running the CF prediction for entries in 𝑑 with one input
dataset 𝑛 at a time.

tion 5.5.3 are used as one of the inputs to Support Vector Machines (SVM) algorithm

which predicts genetic interactions in Chapter 6.
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Chapter 6

Predicting genetic interactions

with SVM

Patrycja: I just don’t understand why you need 10 hours of sleep per night vs 7 like I do.

Dmitry: Well... a more complex mind needs more time to rebuild and refuel.

- from unpublished

6.1 Motivation

Presence of a genetic interaction between two genes indicates a possible functional

linkage between them. Given that the incidence of genetic interactions has been

estimated at less than half a percent [74], our objective all along has been to compu-

tationally predict potential candidate pairs in order to increase the odds of detecting

them experimentally. In Chapter 4, we have shown that genetic interactions are

linked to phenotypic, spatial and other features of genes, and in Chapter 5, we used

collaborative filtering to predict genetic interactions based on feature similarity among

individual genes. While collaborative filtering allows us to work with sparse data with

missing values, it has limitations as to what kinds of relationships it can detect among

genes. More specifically, it is limited to detecting only linear types of feature similar-

ity. In this chapter, we expand beyond linear functions to detect genetic interactions

and use Support Vector Machines (SVM) [130, 57] to predict genetic interactions.
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Unlike collaborative filtering, however, SVM cannot deal with missing values. We use

CF to fill in the missing entries in the input data matrix for SVM. In addition, we use

CF to approximate the input matrix and compare the performance of SVM on these

two input variants. Individual gene features or CF-reduced form of gene features

are merged with pairwise gene features and used as an input to SVM. We show the

results of using different kernels including linear, polynomial of degrees two through

five, and a radial basis function (RBF). By using a nonlinear kernel function such as

a radial basis kernel, we are able to predict genetic interactions without restricting

ourselves to only linear classification functions.

In the next section, we briefly describe the general framework of Support Vector

Machines (SVMs). Next, we elucidate in more detail our experimental setup, includ-

ing preprocessing the input data and how we merge individual and pairwise features

together. Finally, we show results of running SVMs to predict genetic interactions in

C. elegans both on a global scale as well as focusing on kinase families of genes from

MAPK pathway.

6.2 Overview of Support Vector Machines

This Chapter is mostly concerned with the kernel-based Support Vector Machines for

classification. Below we briefly describe this method, however the reader is referred

to [114, 57] for an in-depth assessment.

6.2.1 Optimal separating hyperplane

Let’s consider the problem of separating the set of training vectors belonging to two

separate classes:

𝒟 = {(𝑥𝑖, 𝑦𝑖)∣𝑥𝑖 ∈ ℝ
𝑛, 𝑦𝑖 ∈ {−1, 1}}, 𝑖 = 1, . . . , 𝑙. (6.1)
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Each point 𝑥𝑖 is given a label 𝑦𝑖 depending on which class the point 𝑥𝑖 belongs to.

We’ll try to separate the two sets of points by a hyperplane

𝜃𝑇𝑥+ 𝜃0 = 0, 𝜃 ∈ ℝ
𝑛, 𝜃0 ∈ ℝ. (6.2)

A successful classifier would satisfy the following inequality:

𝑦𝑖(𝜃
𝑇𝑥𝑖 + 𝜃0) > 0, ∀𝑖 = 1, . . . , 𝑙. (6.3)

We consider different case scenarios. In some cases the set is not separable. In the

majority of separable cases the plane in Equation 6.3 is not unique. In addition,

parameters in Equation 6.3 for a given hyperplane are defined up to multiplication

by an arbitrary positive constant.

θ̂

x

x

x

x

x

θ̂T x + θ̂0 = 0
decision boundary

γgeom

x

Figure 6-1: Maximum margin linear classifier with an offset parameter along with the
support vectors (circled); image from [57].

Let’s assume that the problem is separable. Among all possible hyperplanes which

classify set 𝒟 we are interested in the unique hyperplane which maximizes the geomet-

ric margin, i.e. the distance between the hyperplane (Equation 6.2) and the closest

points in 𝒟. This hyperplane can be found by solving the following optimization
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problem [57]:

minimize
1

2
∥𝜃∥2, subject to 𝑦𝑖(𝜃

𝑇𝑥𝑖 + 𝜃0) ≥ 1, ∀𝑖 = 1, . . . , 𝑙. (6.4)

The optimization problem in Equation 6.4 is known as a quadratic programming

problem, and the solution to Equation 6.4, if exists, is unique. A remarkable property

of this problem is that the number of active inequality constraints is usually less than

𝑙. This way the solution is fully determined by the corresponding set of 𝑥𝑖 which

are termed support vectors. These vectors lie on the margin which equals to ∥𝜃∥ (see
Figure 6-1).

In a more general case, which allows the set 𝒟 to be non-separable, the following

quadratic optimization problem is being solved:

minimize 1
2
∥𝜃∥2 + 𝐶∑𝑙

𝑖=1 𝜉𝑖,

subject to 𝑦𝑖(𝜃
𝑇𝑥𝑖 + 𝜃0) ≥ 1− 𝜉𝑖 and 𝜉𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑙.

. (6.5)

Here, the slack variables 𝜉𝑖 are zero if the margin is not violated for the corre-

sponding 𝑥𝑖. The parameter 𝐶 governs the trade-off between the maximization of

the margin and margin violations by training points. As a result, the description

(Equation 6.5) for finite 𝐶 can lead to margin violations (training points which lie

inside the margin) even in the separable case, at an expense of maximizing the margin

itself. Bigger 𝐶 will lead to penalizing such margin violations.

6.2.2 Kernel-based SVM

The above described linear classification algorithm by itself has limited applicability.

A more powerful algorithm, which is appropriate where linear boundary is inadequate

for classification, utilizes a nonlinear mapping of the points in the set 𝒟 into a certain

high-dimensional feature space. In this feature space, the optimization equivalent to

Equation 6.5 is being solved, which is then being mapped back to the original space.

The whole computation and classifier evaluation is being done in the original space

by operating with kernels.
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By the kernel function we assume an inner product in the feature space via a

certain nonlinear map Φ:

𝐾(𝑧, 𝑧) = (Φ(𝑧),Φ(𝑧)). (6.6)

The choice of the kernel determines the nonlinear mapping. For example, the family

of polynomial kernels

𝐾(𝑧, 𝑧) = (1 + 𝑧𝑇 𝑧)𝑝 (6.7)

corresponds to the nonlinear mapping

Φ(𝑧) = [𝑧1, . . . , 𝑧𝑛, 𝑧
2
1 , 𝑧1𝑧2, 𝑧1𝑧3, . . . , 𝑧

2
𝑛, . . . 𝑧

𝑝
𝑛]

𝑇 (6.8)

and a standard dot product in this Euclidean space. Another popular kernel is a

radial basis kernel

𝐾(𝑧, 𝑧) = 𝑒𝑥𝑝
(
− ∥𝑧 − 𝑧∥

2

2𝜎2

)
. (6.9)

The feature space corresponding to this kernel is a certain infinite-dimensional family

of continuous functions. There are numerous types of other kernels which can be used

as well [43].

In order to derive the resulting optimization problem using kernels, let’s derive

the dual optimization problem for the feature space. The Lagrangian function of

Equation 6.5 is

𝐿(𝜃, 𝜃0, 𝛼, 𝜉, 𝛽) =
1

2
∥𝜃∥2 + 𝐶

𝑙∑
𝑖=1

𝜉𝑖 −
𝑙∑

𝑖=1

𝛼𝑖(𝑦𝑖(𝜃
𝑇𝑥𝑖 + 𝜃0)− 1 + 𝜉𝑖)−

𝑙∑
𝑖=1

𝛽𝑖𝜉𝑖. (6.10)

Here the variables 𝛼𝑖 ≥ 0 and 𝛽𝑖 ≥ 0 are Lagrange multipliers. The corresponding

dual problem can be obtained by minimizing the Lagrangian (Equation 6.10) with

respect to original (primal) variables 𝜃, 𝜃0, 𝜉, then performing a maximization of the

Lagrangian with respect to 𝛼, 𝛽 subject to 𝛼𝑖 ≥ 0, 𝛽𝑖 ≥ 0, ∀𝑖 = 1 . . . 𝑙. This way, the
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dual problem is

maximize − 1
2

∑𝑙
𝑖,𝑗=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖, 𝑥𝑗) +

∑𝑙
𝑘=1 𝛼𝑘,

subject to 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, . . . , 𝑙, and
∑𝑙

𝑗=1 𝛼𝑗𝑦𝑗 = 0
. (6.11)

Similarly to the primal problem, the dual also represents a quadratic problem. We

are searching for a linear classifier in the feature space defined by the kernel function.

Remarkably, in order to solve the dual problem one needs only values of the inner

products (𝑥𝑖, 𝑥𝑗) which are the values of the kernel function 𝐾(𝑧𝑖, 𝑧𝑗). It can be shown

that the classifier function can also be evaluated only by calculating kernels:

𝑓(𝑧) = sign
( ∑

𝑖∈𝑆𝑉
𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝜃0

)
, (6.12)

where the offset parameter 𝜃0 can be obtained by taking any support vector 𝑘 for

which the margin is not violated (i.e. training sample for which 0 < 𝛼𝑘 < 𝐶), for

which the following holds:

𝑦𝑘(

𝑙∑
𝑖=1

𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥𝑗) + 𝜃0)− 1 = 0, (6.13)

and therefore

𝜃0 = 𝑦𝑘 −
𝑙∑

𝑖=1

𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥𝑗). (6.14)

6.2.3 Properties of the SVM algorithm

As a machine learning algorithm, the SVM has the following advantages:

� Can exploit nonlinear dependencies between different gene features.

� Is fairly robust with respect to the noise in the dataset (values of vectors 𝑥𝑖 but

not the labels 𝑦𝑖).

The drawbacks of the SVM method are:

� Cannot handle missing values.
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� Relatively sensitive to mislabeling of the training dataset (wrong labels 𝑦𝑖).

� Requires solving a quadratic programming optimization problem which can be

costly for data with high dimensionality.

6.3 Classifying genetically interacting pairs with

SVM

We use SVM classifier to learn from the features of known genetically interacting

pairs in order to predict which other pairs genetically interact. Our training data

consists of two sets of feature vectors, each set labeled as either positive or negative

corresponding to a presence or a lack of genetic interaction, respectively. Each feature

vector characterizes a pair of genes rather than a single gene. The features are mapped

into a highly-dimensional space and SVM during training constructs a separating

hyperplane that maximizes the margin between the features of genetically interacting

and non-genetically interacting pairs. When using a linear kernel, SVM finds a linear

maximum margin classifier given the training data. However, if we select a polynomial

or a radial basis function kernel, we are no longer constrained to linear classification.

While the separating hyperplane is linear in the high-dimensional space, it is no longer

a linear function in the original space.

6.3.1 Filling missing values with CF

By employing SVM, we can expand our classification to nonlinear functions of the

data. The drawback of SVM is that it requires complete data and that it can be

relatively costly to run, given that it solves a quadratic optimization function. Here,

collaborative filtering can remedy the former issue that frequently arises when dealing

with classifying biological data. We show in Chapter 5 that we can fill in the missing

data thus eliminating the problem of missing entries. In Section 5.5.3 we assess the

performance of the collaborative filtering at predicting genetic interactions and show

the resulting average area under the ROC curve as factorization order, 𝑓 , increases
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from 1 to 30. From Figure 5-8, we deduce that for factorization-based collaborative

filtering method, additional factors past 𝑓 = 14 have only marginal effects on the

overall performance at a cost of higher complexity. Therefore, to fill in the missing

entries in 𝐷, we evaluate 𝑃𝑄𝑇 , each of order 𝑓 = 14 and obtain an estimate matrix

which is the same size as 𝐷. We use the corresponding entries in the estimate matrix

to fill in the missing values in 𝐷 remedying the issue of missing values.

We also experiment with an alternative to 𝐷 that results in a much smaller input

matrix. One can recall that 𝑃 represents genes in the 𝑃𝑄𝑇 approximation of the input

feature matrix 𝐷. Each row in either 𝐷 or 𝑃 characterizes a single gene. A gene in

matrix 𝑃 is described by its membership in “typical gene profiles” from 𝑄. While

the original data input matrix 𝐷 is large and sparse (348 experiments) with many

features that may be irrelevant to classifying genetic interactions, 𝑃 is significantly

smaller. In the subsequent sections, we compare the prediction performance when

𝑃 is used to describe genes instead of 𝐷. Based on the ROC performance of global

factorization-based method at factor order, 𝑓 = 14, each individual gene in 𝑃𝑓=14 is

described via a vector 𝑥⃗ consisting of 14 features.

In addition to data characterizing individual genes, we have a set of 13 features

characterizing gene pairs. Unlike the majority of features obtained from biological

experiments, most pairwise features are derived from computational analyses of pairs

in either protein interactome or functional groupings e.g. kinase and phosphatase

families. These pairwise features include shortest hop distance between two genes

in protein interactome, mutual clustering coefficient, presence of a direct physical

interaction, sharing 1, 2 or more neighbors in interactome, participation in network

motifs, belonging to the same family of kinases or phosphatases etc (see Section 2.3

and Appendix A.3 for a more detailed description of some of these metrics). CF

predictions of genetic interactions are not included as features. Each pairwise feature

vector characterizing genes 𝑖 and 𝑗, can be written as 𝜙⃗𝑖𝑗 where 𝜙⃗𝑖𝑗 ≡ 𝜙⃗𝑗𝑖.
Similarly to the individual gene features, in order to use the pairwise features as

an input to SVM, there cannot be any missing values. Theoretically, the missing

entries can be imputed via CF. Instead of inferring properties of single genes, we
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would infer properties of gene pairs. In practice, the matrix listing pairwise features

is too sparse to extract sufficient information to perform CF factorization on it. As

more data becomes available, this should change. As a workaround, we replaced the

missing entries with zeros, rationalizing that a zero effectively passes no information

to the classifier.

6.3.2 Combining single and pairwise features

A feature vector, 𝑣𝑖𝑗 describing a pair of genes, (𝑥⃗𝑖, 𝑥⃗𝑗) consists of merged individual

and pairwise features of both 𝑖 and 𝑗. For each pair of genes, two feature vectors, 𝑣𝑖𝑗

and 𝑣𝑗𝑖, are assembled to reflect symmetry. This condition on input tells the SVM

classification function to consider genetic interaction between gene 𝑖 and 𝑗 equivalently

to 𝑗 and 𝑖, (𝑥⃗𝑖, 𝑥⃗𝑗) ≡ (𝑥⃗𝑗 , 𝑥⃗𝑖)
1. The assembled feature vectors for gene pair 𝑖, 𝑗 for

training and testing with SVM are

𝑣⃗𝑖𝑗 = [𝑥⃗𝑖 𝑥⃗𝑗 𝜙⃗𝑖𝑗 ] (6.15)

𝑣⃗𝑗𝑖 = [𝑥⃗𝑗 𝑥⃗𝑖 𝜙⃗𝑖𝑗]. (6.16)

6.3.3 Training data

The label data characterizes each pair of genes as either genetically interacting or

not. The positive training data consists of known 2018 unique pairs of genetically

interacting genes in C. elegans obtained from Wormbase [143] and described in more

detail in Section 2.3.8. These include high confidence pairs extracted from literature

and based on low-throughput experiments as well as those found via repeated high-

throughput experiments [74]. Since the negative training data was unavailable, we

1Despite this symmetry in the input to the SVM classification algorithm, the resulting clas-
sifier may not be symmetric. For the latter to be the case, the corresponding unknowns 𝛼𝑖 in
the quadratic problem (6.11) should be enforced to be equal, i.e. an extra set of equality con-
straints should be added to the optimization. In addition, the kernel should be invariant with
respect to permutations of vector components, (i.e 𝐾([𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁 ]

𝑇 , [𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑁 ]
𝑇 ) ≡

𝐾([𝑥2, 𝑥1, 𝑥3, . . . , 𝑥𝑁 ]
𝑇 , [𝑦2, 𝑦1, 𝑦3, . . . , 𝑦𝑁 ]

𝑇 ) and any other possible permutations). The last require-
ment is satisfied for both RBF and polynomial kernels.
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have randomly selected unlabeled gene pairs to serve as negative examples. While

this approach is not optimal, our justification lies in the fact that the frequency of

genetic interactions is very rare and has been estimated at less than half a percent

[74]. Thus, although it is likely that some of our negative training data is mislabeled,

it should be a small fraction of the total (fewer than 1 in 200 pairs). We curated

multiple sets of random negative examples to be used for training and testing with

SVM.

6.4 Results

We tested the performance of the SVM algorithm at predicting genetic interactions

using SVM Toolbox for Matlab [43]. We experimented with three kernel types: linear,

polynomial and radial basis function (RBF). We found that the RBF kernel performs

better overall than the linear or polynomial kernels based on the cross validation

results. We compared the kernel variants as follows. For each kernel type, we selected

250 random positive and 250 random negative training samples resulting in a total of

1000 feature vectors; note that each sample corresponds to a single gene pair and each

gene pair is described by two vectors (see Section 6.3.2). Next, we filled in the missing

values in the training set: for the single-gene features we have used CF algorithm as

described in Section 6.3.1. We experimented with two variants on the input: using

matrix 𝐷 to represent genes or matrix 𝑃 estimate of genes, where 𝑓 = 14. For the

pairwise features, we did not employ CF but rather filled all unknown entries with

zeros (see Section 6.3.1). Next, we trained the SVM classifier using the training set

while finding the optimal set of hyperparameters for a given kernel, e.g. optimal

order for the polynomial kernel or optimal width for the RBF kernel. We tested each

classifier using a random set of 400 positive and 400 negative samples (gene pairs)

that were not included in the training set (this way, they did not participate neither

in CF step or in the SVM classification step). We repeated the process 10 times. The

average cross validation performance when using 𝐷 for gene features is summarized in

Table 6.4. We can see that the RBF kernel fared better than the polynomial kernels
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Table 6.1: Comparing cross validation performance with different SVM kernels (using
full input matrix 𝐷 with missing entries estimated by 𝑃𝑓=14𝑄

𝑇
𝑓=14).

Kernel Kernel parameter Fraction correct±𝜎𝑓 𝐴𝑣𝑔𝑎𝑟𝑒𝑎𝑢𝑛𝑑𝑒𝑟𝑅𝑂𝐶 ± 𝜎𝑎
Linear N/A 0.82± 0.017 0.89± 0.012
Polynomial Order, 𝑝 = 2 0.80± 0.020 0.87± 0.013
Polynomial Order, 𝑝 = 3 0.77± 0.022 0.83± 0.021
Polynomial Order, 𝑝 = 4 0.78± 0.020 0.83± 0.017
Polynomial Order, 𝑝 = 5 0.76± 0.021 0.81± 0.024
RBF 𝜎𝑘𝑒𝑟𝑛𝑒𝑙 = 0.11 0.85± 0.020 0.92± 0.023

Table 6.2: Comparing cross validation performance with different SVM kernels (using
𝑃𝑓=14 as input feature matrix describing genes).

Kernel Kernel parameter Fraction correct±𝜎𝑓 𝐴𝑣𝑔𝑎𝑟𝑒𝑎𝑢𝑛𝑑𝑒𝑟𝑅𝑂𝐶 ± 𝜎𝑎
Linear N/A 0.76± 0.017 0.81± 0.015
Polynomial Order, 𝑝 = 2 0.76± 0.016 0.83± 0.014
Polynomial Order, 𝑝 = 3 0.77± 0.020 0.83± 0.015
Polynomial Order, 𝑝 = 4 0.78± 0.018 0.83± 0.017
Polynomial Order, 𝑝 = 5 0.78± 0.019 0.83± 0.016
RBF 𝜎𝑘𝑒𝑟𝑛𝑒𝑙 = 0.3 0.80± 0.018 0.86± 0.019

with the correct classification rate of 85%. The polynomial kernels’ performance

degraded with order, suggesting a problem with overfitting the data.

We repeated the same experiment, this time replacing 𝐷 feature matrix with

𝑃𝑓=14. This input matrix is significantly smaller, since instead of 348 columns we

have 14. The overall dimensionality of the problem decreases, but since the size of

the kernel matrix is based on the number of genes, the computational time is not

significantly reduced. However, if sufficient memory is not available, the reduced size

of the matrix is beneficial. Each feature vector for a gene pair consists of twice the

number of individual features plus pairwise feature therefore we reduce the number

of columns from 348 ∗ 2 + 13 = 709 to 41.

The results of running SVM on 𝑃𝑓=14 input variant are shown in Table 6.4. We

can see that the overall performance somewhat degrades, particularly for the linear

kernel. This is expected, since 𝑃 contains a limited number of the most pronounced
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gene features. Furthermore, by using 𝑃𝑄 factorization we are effectively picking

dominant subspaces where most genes align thus forcing them into specific regions of

the space thus limiting the scope of their representation. The polynomial kernels fare

similarly in either case, suggesting that by reducing the number of features, we have

prevented overfitting. Again, the RBF kernel performs best with a classification rate

or 0.80.

In Chapter 3 we determined that phenotypes contained information relevant to

genetic interactions (an average area under the ROC was 0.73, see Section 5.5.2). To

evaluate how much phenotypic data contributes to the correct classification rate with

SVM, we used phenotypes alone as gene feature. The missing entries were filled in

via CF, and SVM with an RBF kernel was used to classify pairs as either genetically

interacting or not. The process was repeated 10 times and the results averaged. The

average classification performance was 77% correct with a mean area under the ROC

of 82%, suggesting that while phenotypes are contibuting significantly to the score,

other data is also relevant.

Due to the sparsity of the pairwise data, we were unable to directly evaluate the

contribution of the pairwise features. Instead, we ran the prediction algorithm with

only individual gene features as inputs. The resulting performance was only slightly

worse than the performance with pairwise features in place; on average, 84.2% of

genetic interactions were classified correctly versus 85.0% when the pairwise data was

included (see Table 6.4), suggesting that the pairwise features contribution is rather

minimal. Given the sparsity of the data, this is not surprising.

6.4.1 Predicting genetic interactions

As we discussed in the previous section, the optimal performance in predicting genetic

interactions was obtained with the RBF kernel. In Figure 6-2, we show the resulting

ROC curves for either variant on the input describing individual genes, 𝐷 and 𝑃𝑓=14.

As mentioned previously, we used cross validation to test our performance. At each

run, we selected 250 random positive and 250 negative training points corresponding

to genetically interacting and non-interacting gene pairs, respectively. This resulted
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in 1000 feature vectors (2 per gene pair). We trained the SVM classifier with an

optimal RBF kernel width, 𝜎𝑘𝑒𝑟𝑛𝑒𝑙 = 0.1 for input 𝐷 and 𝜎𝑘𝑒𝑟𝑛𝑒𝑙 = 0.3 for input

𝑃𝑓=14, and cross validated using 400 random genetically interacting and 400 random

non-interacting gene pairs. We repeated this process 10 times. The average area

under the ROC is 0.92 and 0.86, for 𝐷 and 𝑃𝑓=14, respectively. The average error for

𝐷 is 15% with 85% of pairs correctly classified; for 𝑃𝑓=14 the error is 20% with 80%

of pairs correctly classified.

We examined whether imputing in the values with CF helped in classifying genetic

interactions. We filled in the missing values with zeros and with means. The means

were obtained by taking the average value of known entries in each column. The

results show that the performance of SVM suffered. The area under the ROC is 0.84

and 0.83 for filling in the missing entries with zeros and means, respectively. The

average error when entries are filled with 0s and subsequently classified with SVM is

26% and when entries are filled in with means it is 27% (see Figure 6-2).
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Figure 6-2: ROC curve for predicting genetic interactions using SVM with RBF kernel
of width 0.3. The average area under the ROC curve is 0.92 for 𝐷, 0.86 for 𝑃𝑓=14,
0.83 for entries filled in with zeros and 0.82 for entries filled with means. The fraction
of correctly classified pairs is 0.85, 0.80, 0.74, and 0.73, respectively
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6.4.2 Predicting genetic interactions for kinases in MAPK

pathway

In the previous section, we predicted genetic interactions among genes in C. elegans

based on their microarray profiles, spatial, phenotypic etc features. It would be

desirable to try to predict genetic interactions among genes that are known to closely

relate, for example, belong to the same pathway or perform similar function in related

pathways. Unfortunately, the sparseness of known genetic interaction data makes it

difficult to find enough training examples for many smaller pathways. We decided

to try to predict genetic interactions involving kinases in mitogen-activated protein

kinase (MAPK) pathway, given the large number of genes currently implicated in this

pathway (see Section 2.4 for a more detailed description of MAPK pathway).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
po

si
tiv

es

 

 

Using D for gene features
Using P

f=14
 for gene features

Figure 6-3: ROC curve for predicting genetic interactions involving kinases in MAPK
pathway using SVM. The fraction of correctly classified pairs for 𝐷 and 𝑃𝑓=14 is 0.93
and 0.90, respectively

As an input matrix to SVM with RBF kernel, we used both variants on the input

individual gene features: the full matrix 𝐷 or 𝑃𝑓=14 to represent kinases in question.

We had a total of 399 genetic interactions involving kinases, of which 200 were used

as positive training samples. As previously, our negative training set of 100 samples

was generated randomly among gene pairs that have not been annotated as genetic
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interactors. Our testing set consisted of the remaining interactions (199) for positives

and the same number for negatives. We ran the experiment 4 times. The performance

noticeably increased since we considered genes in the same pathway/functional cate-

gory. The percentage of correctly classified genetically interacting pairs was 93% for

𝐷 input and 90% for 𝑃𝑓=14 input. The results are shown in Figure 6-3.

6.5 Analysis of performance with increasingly sparse

data

We analyzed how the sparsity of the data affects the relative performance of collabo-

rative filtering. We varied the fraction of missing values by removing them randomly

from the input data matrix until we achieved the desired level of sparsity. The initial

input data had 40% of its entries missing. We randomly removed entries to achieve

50%, 70%, 90%, 95%, 98% sparsity. Next, we either used CF to fill in the missing

values or filled them in with zeros or means. To test whether the inputed data has

an effect on the classification results, we predicted genetic interactions using SVM

with RBF kernel of width 0.3 performing cross validation 5 times for each variant.

We repeated the process of randomly removing entries in the input matrix 12 times

and followed that by classification of genetic interactions using SVM. The average

classification results when varying sparsity levels and imputing method are shown in

Figure 6-4. We were unable to obtain results for CF when the sparsity increased to

above 0.9 (90% data missing) as SVM failed to converge.

From Figure 6-4, we see that CF performance is decreasing with increasing spar-

sity, and it does so more rapidly than the performance of filling in the missing entries

with zeros. We hypothesize that the increased data sparsity removes relevant trends

in the data that CF explores. In the case of 90% of missing data, most genes are

characterized by a single entry and similarly, most experiments are characterized by a

single entry. CF attempts to fill in the data but has insufficient amount of signal and

effectively inputs random entries into the matrix. It is not surprising that inputting
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Figure 6-4: The plots compare how well SVM performs when data is increasingly
sparse (from 40% of data missing to 98% of data missing). Prior to classification, the
missing values are filled with either collaborative filtering, zeros, or means.

zeros fares better when the data is very sparse. Since a large number of datasets are

actually binary values (e.g. phenotypes, spatial expression), an input of zero takes

advantage of the inherent bias in the data which is dominated by zeros.

6.6 Discussion

In this chapter, we predicted genetic interactions using SVM. SVM cannot handle

data with missing values and we resolved this issue by filling in the matrix using

collaborative filtering. Alternatively, we also approximated the data matrix with

𝑃 which reduced input dimensionality. Moreover, we compared CF to its simpler

alternatives. We filled in the missing values with zeros or means. As shown in the

previous sections, the performance is best when using the full data matrix. Filling in

the data with zeros and means does not exploit the inherent patterns in the data that

CF discovers. We also found that approximating the input matrix 𝐷 with 𝑃 could

come in handy if the memory of the system is a limiting factor, however, as expected,
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it does not fare as well as the full input matrix.

We experimented with removing additional entries from the input data matrix to

make it increasingly sparse. We found that CF performance decreases with increasing

data sparsity. When examining the data, we found that when 98% of entries are miss-

ing, most genes are described by a mere 1 or 2 entries. Same is true for experiments.

This makes it difficult to extract “typical genes” or “typical experiments.” This, we

hypothesize, makes it likely that collaborative filtering fails to find any similar trends

in the data and instead averages the signal. It treats a single entry as sufficient to

assess similarity. As a result, we observe degrading performance (Figure 6-4). As

we mentioned before, inputing zeros when sparsity is high fares better, since it takes

advantage of the bias toward having zeros in the binary data. One way to address

this issue could be to introduce weighting when making predictions. The effect of CF

can be scaled by the “support” for a given gene, that is the number of known entries

available. Next, it would be combined with the alternative method of inputting zeros.

In our case, we are operating in the region of 40% sparsity in which using CF instead

of inputting zeros results in a substantially better classification performance.

Overall, the performance of SVM at predicting interactions is better than collab-

orative filtering (see Section 5.5.2). We hypothesize that this is due to the fact that

SVM can classify based on nonlinear functions using rigorous margin maximization

unlike the collaborative filtering approach we used. However, there are margin-based

CF approaches which could be investigated further [108]. Using an RBF kernel re-

sulted in the best performance, better than when we used a linear kernel. Moreover,

we showed that the performance improves when we narrow the group of tested genes

to those which belong to the same pathway and functional group e.g. kinases in

MAPK. As more biological data becomes available, we can hopefully leverage this to

predict with more accuracy for specific pathways.

Our results are merely computational and the true test of predictive accuracy still

needs to be performed in a biology laboratory. Moreover, the genes we considered

constituted for approximately 50% of the genome as the remainder had insufficient

data to perform similarity analysis with CF and missing value imputation. We are
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confident, however, that as more data becomes available, the prediction accuracy can

only improve.
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Chapter 7

Conclusions

Be good!

- Ray Paradis, Classical High School math teacher

In this thesis, we have presented computational approaches to predicting outcomes

of biological experiments including genetic interactions. By assembling biological

experimental data as features to describe genes, we were able to associate features

from very different and seemingly unrelated biological datasets.

We developed a novel metric of information flow, which simulates protein in-

teractome as an electrical circuit where proteins are represented as interconnecting

junctions and interactions between them as resistors. We used electrical current to

model the communication exchange between the proteins in this network in order to

quantify the importance of each protein on a system level of an entire interactome. We

found that proteins of high information flow mediate information exchange between

biologically functional modules. In support of our model, recursive decomposition of

the network based on removal proteins with highest information flow scores resulted

in functionally enriched subnetworks of genes. Additionally, we found that the infor-

mation flow score of a protein in both C. elegans and S. cerevisiae is well correlated

with the likelihood of observing lethality or pleiotropy when the protein is knocked

down. Up until now, the most frequently used metrics to assess the importance of

proteins in a network have been betweenness and degree. Both have shown to corre-

late significantly worse, if at all, with either lethality or pleiotropy. Degree is a local
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metric of connectivity based on the number of immediate partners. Betweenness is

dependent on finding only the shortest paths when evaluating the score of a protein

node, and its score can change drastically when edges are added or removed. More-

over, it relies on all graph edges being equally weighted. Information flow proved to

be more consistent than betweenness when large amounts of noise were present in the

interactome. We also investigated how well information flow performs in the presence

of directional edges characteristic to signaling networks. We found that high infor-

mation flow genes (top 30%) tend to be pleiotropic, yet not necessarily lethal. We

hypothesized that fewer proteins in signaling networks tend to participate in house-

keeping functions, which are often mediated by multi-protein molecular machines.

Finally, we found that the high scoring information flow proteins are more likely to

participate in genetic interactions that those randomly sampled. Consequently, we

used information flow as a feature characterizing genes in our predictions of genetic

interactions.

Using Bayesian sets method we assessed how much information relevant to genetic

interactions is present in a given dataset. This allowed us to gain some intuition with

respect to possible mechanisms, their timing and location, that may be the most

informative for discovering interactions. We grouped genes using Bayesian sets based

on their binary features from phenotype or spatial localization datasets and found

that while genetic partners of a given gene tend to share phenotypes, there is little

evidence that they are co-localized. Since the Bayesian sets method was derived for

binary data only [37], in order to assess how useful is microarray data, we extended

it to handle continuous data. We derived score equations for two alternative data

models to handle biological data.

The strength of the Bayesian sets algorithm is that it is based on a solid statistical

model based on the underlying data distribution. However, it is also a drawback since

it depends on selecting an appropriate model and is sensitive to one’s choice of prior

distributions. Bayesian sets allows us to know exactly which features are the most

useful since each feature contributes individually to the overall score. However, its

big shortcoming is the fact that it is not applicable to datasets with missing values.
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To address the issue of missing data, we employed collaborative filtering [13].

As far as we know, our application of collaborative filtering to biological data es-

timation is novel. We applied both global factorization-based method and a local

neighborhood-based method from [13] and were able to predict entries in microar-

rays, phenotypes, as well as genetic interactions with relatively high accuracy. Ad-

ditionally, we used collaborative filtering to assess how much information relevant to

queried entries is contained within different datasets.

As a powerful nonlinear classification method, we explored Support Vector Ma-

chines (SVM). As an input to the SVM classifier we combined individual and pairwise

gene features. Since SVM requires that the input matrix is not sparse, the missing

data was filled in via collaborative filtering. Moreover, as an alternative represen-

tation of individual gene features, we used CF factor matrix 𝑃 to describe genes,

achieving significant reduction in input dimensionality. Using the original feature

matrix versus the factorized estimate of genes, 𝑃 , to represent genes resulted in bet-

ter performance, as expected. Overall, our cross validation results suggest that SVM

with an RBF kernel is more effective at predicting genetic interactions than CF.

The predictive accuracy increases further as we narrow down the genes to a specific

functional category, e.g. kinases.

Scientists can hopefully benefit from this work, provided that the “in-silico” pre-

dictions are validated in a biology lab. Being able to computationally predict genetic

interactions before undertaking laboratory experiments would save enormous time for

scientists and further speed up the scientific discovery process. Once experimentally

confirmed, our predictions of genetic interactions would allow us to gain new insights

into C. elegans biology. We hope to find new genes participating in developmental

and other regulatory pathways, system-level insights into genetic abnormalities, how

genes collaborate in orchestrating stress response, etc. For example, we expect to find

synergistic relationships among genes involved in development. Since these genes tend

to be linked to various forms of cancer, we can propose directions in medical research

to test combinations of drugs, each targeting a specific protein. We may discover

interesting suppression relationships between genes. Genetic suppression is useful for
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investigation into gene therapy, where a harmful mutation in one gene can be allevi-

ated by an additional mutation. A single genetic interaction can link seemingly very

different processes, and on the biological system level, it is more informative than

knowing that two genes physically interact. Once we have a more complete set of

genetic and physical interactions, we may be able to take a system-level approach for

predicting how genes affect an organism.
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Appendix A

Miscellaneous concepts

Andrew, listening to The Little Prince: Mommie, this book is science fiction.

An elephant can’t fit inside a boa constrictor!

- Andrew, 5yo, unpublished

A.1 Statistics

A.1.1 Pearson correlation coefficient

Pearson correlation is a number between −1 and 1 that measures the degree of asso-

ciation between two random variables, 𝑋 and 𝑌 . A positive value for the correlation

implies a positive association, high values 𝑋 are associated with high values in 𝑌 and

similarly for the low values. A negative value for the correlation implies an inverse

association where high value of one variable implies low value of another. The formula

for correlation coefficient 𝜌𝑋,𝑌 between two random variables 𝑋 and 𝑌 with means

𝜇𝑋 and 𝜇𝑌 and standard deviations 𝜎𝑋 and 𝜎𝑌 is defined as:

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌 )

𝜎𝑋𝜎𝑌
=
𝐸((𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌 ))

𝜎𝑋𝜎𝑌
(A.1)

Several useful properties can be deduced from the above formula. Since the values

are normalized by the standard deviation, Pearson correlation is scale independent.

It is also independent of the relative ordering of values. That is, if 𝑋 and 𝑌 are
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timecourse representation, Pearson correlation is the same regardless whether we

process timepoint 𝑡1 before or after 𝑡2.

In biology, Pearson correlation coefficient is often used to analyze relationships

between genes based on their expression profiles. These profiles can come from many

different sources e.g. microarray timecourse data which represents the concentration

of mRNA of specific genes at a given time. They can also come from comparing genes

present in specific tissues at various conditions (e.g. presence of cancer versus not).

Similarly, we can compare the conditions to one another across genes, e.g. cancer of

one type to another type of cancer to see where they are associated with the same

genes.

A.2 Probability

A.2.1 Bernoulli distribution and its conjugate prior

Bernoulli distribution is a discrete probability distribution, with only 2 possible out-

comes, 0 or 1. Value 1 happens with success probability 𝜃 and value 0 with failure

probability (1− 𝜃). So if 𝑥 is a random variable with this distribution, we have:

𝑓(𝑥; 𝜃) = 𝜃𝑥(1− 𝜃)1−𝑥 (A.2)

The conjugate prior of the Bernoulli distribution is the Beta distribution:

𝑝(𝑝∣𝛼, 𝛽) = Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝜃𝛼−1(1− 𝜃)𝛽−1 (A.3)

A.2.2 Normal distribution and its conjugate prior

Normal distribution (Gaussian distribution) is a continuous probability distribution

that describes data which tends to cluster around some average value.
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The probability density function for a normal distribution is given by the formula

𝑝(𝑥) =
1

𝜎
√
2𝜋
𝑒−

(𝑥−𝜇)2

2𝜎2 , (A.4)

The conjugate prior of a normal distribution with parameters 𝜇, 𝜎2 is a normal-

scaled inverse gamma distribution. The prior hyperparameters for this distribution

are 𝜆, 𝜈, 𝛼, 𝛽 with their posterior values 𝑛𝑥̄+𝜈𝜆
𝑛+𝜈

, 𝜈 + 𝑛, 𝛼 + 𝑛
2
, 𝛽 + 1

2

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)2 +

𝑛𝜈
𝑛+𝜈

(𝑥̄−𝜆)2

2
, respectively. Here, 𝑥̄ is the sample mean.

The probability density function for normal-scaled inverse gamma is:

𝑓(𝜇, 𝜎2∣𝜆, 𝜈, 𝛼, 𝛽) =
√
𝜈

𝜎
√
2𝜋

𝛽𝛼

Γ(𝛼)

(
1

𝜎2

)𝛼+1

exp

(
−2𝛽 + 𝜈(𝜇− 𝜆)2

2𝜎2

)
(A.5)

A.3 Network algorithms and metrics

With more high throughput biological data available, many biological processes can

now be modeled as networks, such as protein interaction, gene expression, and tran-

scriptional regulation [147, 60, 72, 54, 106]. Networks have long been used as a

universal framework to model many complex systems including social interactions,

the web, etc. Individual networks can be characterized by a variety of characteristics,

capturing both the global and the local properties of its members. We use protein

interaction networks as a ground to describe its protein members (i. e. genes). In

Chapter 3 we described characteristics such as degree, betweenness and information

flow. We introduce several other metrics that can be used to describe genes including

shortest path length, clustering coefficient, etc. We use these metrics as features for

predicting genetic interactions. Although there are other features that could be used

to describe genes [60, 2, 136], our selection is not arbitrary. For example, we find

that two genetically interacting genes tend to be significantly closer to one another

in the protein-protein network than a random gene pair(data not shown).

177



A.3.1 Shortest path

In a given network, a shortest path between two nodes (or vertices), 𝑣1 and 𝑣2 is one

such that the sum of the weights of its constituent edges is minimized. Intuitively,

it is the quickest way to get from node 𝑣1 to 𝑣2, and if the graph is undirected, vice

versa. Although there is a number of algorithms aimed at solving this problem, given

the particular characteristics of biological networks we studied, namely the protein

interactome networks, we used Dijkstra algorithm [25]. Our choice was due to the

fact that our network edges were all positive, moreover, we did not have a good

heuristic to approximate how far the two nodes are that would be required for 𝐴∗
search algorithm.

Here is a summary of the Dijkstra algorithm:

It should be noted that distance between nodes can also be referred to as weight.

1. Create a distance list, a previous vertex list, a visited list, and a current vertex.

2. All the values in the distance list are set to infinity except the starting vertex

which is set to zero.

3. All values in visited list are set to false.

4. All values in the previous vertex list are set to a special value signifying that

they are undefined, such as null.

5. Current vertex is set as the starting vertex.

6. Mark the current vertex as visited.

7. Update distance (from starting vertex) and previous lists based on those vertices

which can be immediately reached from the current vertex.

8. Update the current vertex to the unvisited vertex that can be reached by the

shortest path from the starting vertex.

9. Repeat (from step 6) until all nodes are visited.
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The shortest distance is a useful metric for computational analysis of biological

networks for several reasons. It can be used as a feature for prediction of genetic

interaction, as we find that the proteins that genetically interact are closer together

than a random pair of proteins in interactome. Secondly, it is used as an intermediate

step in computation of other metrics such as betweenness which depends on knowing

all the shortest paths on its score.

A.3.2 Clustering coefficient

Clustering coefficient is a property of a node in a network. Duncan J. Watts and

Steven Strogatz introduced the measure in 1998 [136] to determine whether a graph

is a small-world network. Clustering coefficient is an indication of how well the

neighborhood of the particular node is connected to one another, that is how close it

is to be a clique (a complete graph). The neighborhood of a node is all the nodes that

are immediately connected to it not including the node itself. If the neighborhood is

fully connected, the clustering coefficient is 1; if it is close to 0, there are hardly any

connections in the neighborhood.

The clustering coefficient 𝐶𝑖 for a node (vertex) 𝑣𝑖 is the ratio of number of connec-

tions in the neighborhood of 𝑣𝑖 and the number of connections if that neighborhood

was fully connected. It is important to note that the clustering coefficient for di-

rected versus undirected graphs differs by a factor of 2, where the undirected graph

of 𝑛 nodes has 𝑛(𝑛− 1)2 possible connections while the directed graph has 𝑛(𝑛− 1)

connections. Thus, the clustering coefficient for a directed graph is:

𝐶𝑖 =
∣{𝑒𝑗𝑘}∣
𝑘𝑖(𝑘𝑖 − 1)

, (A.6)

Similarly, the clustering coefficient for an undirected graph is:

𝐶𝑖 =
2∣𝑒𝑗𝑘∣

𝑘𝑖(𝑘𝑖 − 1)
(A.7)
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A.3.3 Mutual clustering coefficient

Biological networks are “small-world” networks which are scale-free with power-law

distribution of degree of network nodes [61]. “Small-world” indicates that there are a

few nodes with high number of connections to other nodes and many nodes that have

very few connections. The high clustering coefficients in a “small-world” network

indicate that neighbors of a given vertex are more likely to have edges between them

than would be expected in a random graph. Such edges between neighbors of a vertex

form triangles cornered at that vertex. The preponderance of triangles in a small-

world network means that an edge is likely to be a side of more triangles than would

be expected in a random graph. Therefore, for an edge vw between vertices 𝑣 and

𝑤, a neighbor of vertex 𝑣 is more likely to have an edge to 𝑤 if the edge is from a

small-world graph than if it is from a random graph. Such “mutual neighbors” of the

two endpoints serve to corroborate the edge.

v

w

Figure A-1: MCC coefficient for nodes 𝑣 and 𝑤 weights in on the number of the
mutual neighbors between these two nodes.

Goldberg and Roth [40] defined mutual clustering coefficient, 𝐶𝑣𝑤, for a pair of

vertices 𝑣 and 𝑤 to give a measure of such corroboration. The measure is indepen-

dent of the existence of an edge between 𝑣 and 𝑤, so experimental evidence about

an interaction between two proteins does not influence the assessment of the neigh-

borhood of the two proteins. This measure can be applied not only to edges (where

vertex pairs are connected) but also to any pair of vertices. The coefficient is based
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on the hypergeometric distribution among the neighbors of a pair 𝑣𝑤 (as shown in

Figure A-1) and the formulation is as follows,

𝐶𝑣𝑤 = − log

𝑚𝑖𝑛(∣𝑁(𝑣)∣,∣𝑁(𝑤)∣)∑
𝑘=∣𝑁(𝑣)∩𝑁(𝑤)∣

(∣𝑁(𝑣)∣
𝑘

)(
𝑇𝑜𝑡𝑎𝑙−∣𝑁(𝑣)∣
∣𝑁(𝑤)∣−𝑘

)
(
𝑇𝑜𝑡𝑎𝑙
∣𝑁(𝑤)∣

) (A.8)

where 𝑁(𝑥) represents the neighborhood of a vertex 𝑥, and Total represents the

total number of proteins in the organism. The summation in the hypergeometric

coefficient can be interpreted as a 𝑝-value, the probability of obtaining a number

of mutual neighbors between vertices 𝑣 and 𝑤 at or above the observed number by

chance, under the null hypothesis that the neighborhoods are independent, and given

both the neighborhood sizes of the two vertices and the total number of proteins in

the organism. The hypergeometric coefficient is then defined to be the negative log

of this 𝑝-value.

A.4 Machine learning

Naive Bayes

A naive Bayes classifier is used to describe a simple probabilistic classifier which

uses Bayes’ theorem. In the naive Bayesian setting the assumption is that all the

attributes used to classify a given example are independent given the example class.

This means that the presence or the absence of a particular attribute is unrelated to

the presence or absence of any other attribute. This assumption is often somewhat

violated in practice, however, despite that naive Bayesian learning is remarkably

effective in practice [26, 150]. One advantage of the naive Bayes classifier is that it

requires a small amount of the training data to estimate the parameters necessary for

classification - only means and variances of the variables need to be estimated. As

a consequence, because of the independence assumption, only the variance variables

for each class need to be computed.

We formulate naive Bayes probabilistic model as a problem of predicting a discrete

class C from attributes with discrete values 𝐴1 through 𝐴𝑘. Given an example with
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observed attribute values 𝑎1 through 𝑎𝑘, the optimal prediction is class value 𝑐 such

that 𝑃𝑟(𝐶 = 𝑐∣𝐴1 = 𝑎1 ∧ . . . ∧ 𝐴𝑘 = 𝑎𝑘) is maximal. By Bayes rule this probability

equals:

𝑃𝑟(𝐴1 = 𝑎1 ∧ . . . ∧ 𝐴𝑘 = 𝑎𝑘∣𝐶 = 𝑐)

𝑃𝑟(𝐴1 = 𝑎1 ∧ . . . ∧ 𝐴𝑘 = 𝑎𝑘)
𝑃𝑟(𝐶 = 𝑐) (A.9)

The background probability 𝑃𝑟(𝐶 = 𝑐) can be estimated from training data easily.

The example probability 𝑃𝑟(𝐴1 = 𝑎1∧ . . .∧𝐴𝑘 = 𝑎𝑘) is irrelevant for decision-making

since it is the same for each class value 𝑐. Learning is therefore reduced to the problem

of estimating 𝑃𝑟(𝐴1 = 𝑎1∧ . . .∧𝐴𝑘 = 𝑎𝑘∣𝐶 = 𝑐) from training examples. Using Bayes

rule again, this class-conditional probability can be written as

𝑃𝑟(𝐴1 = 𝑎1∣𝐴2 = 𝑎2 ∧ . . . ∧ 𝐴𝑘 = 𝑎𝑘, 𝐶 = 𝑐) ⋅ 𝑃𝑟(𝐴2 = 𝑎2 ∧ . . . ∧ 𝐴𝑘 = 𝑎𝑘∣𝐶 = 𝑐).

(A.10)

The second factor can be written similarly and so on. If we assume that each 𝐴𝑖

is independent of each 𝐴𝑗 , given C, we can write

𝑃𝑟(𝐴1 = 𝑎1∣𝐴2 = 𝑎2 ∧ . . . ∧𝐴𝑘 = 𝑎𝑘, 𝐶 = 𝑐) = 𝑃𝑟(𝐴1 = 𝑎1∣𝐶 = 𝑐) (A.11)

and similarly for 𝐴2 through 𝐴𝑘. Then

𝑃𝑟(𝐴1 = 𝑎1∣𝐴2 = 𝑎2 ∧ . . . ∧ 𝐴𝑘 = 𝑎𝑘, 𝐶 = 𝑐) =

𝑃𝑟(𝐴1 = 𝑎1∣𝐶 = 𝑐)𝑃𝑟(𝐴2 = 𝑎2∣𝐶 = 𝑐) . . . 𝑃 𝑟(𝐴𝑘 = 𝑎𝑘∣𝐶 = 𝑐).

In this form, each factor can be estimated from simple counts of the training data:

𝑃𝑟(𝐴𝑗 = 𝑎𝑗∣𝐶 = 𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝐴𝑗 = 𝑎𝑗 ∧ 𝐶 = 𝑐)

𝑐𝑜𝑢𝑛𝑡(𝐶 = 𝑐)
. (A.12)

Equation A.12 gives “maximum likelihood” estimate which are the parameter

values that maximize the probability of the training examples. Not surprisingly,

parameter estimation for naive Bayes models is often done by the method of “maxi-
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mum likelihood.” In other words, one can work with the naive Bayes model without

believing in Bayesian probability or using any Bayesian methods.
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Appendix B

Information Flow - Supplementary

Materials

Sasha: What’s a boyfriend?

Andrew: It’s a man who loves you, but not your Daddy.

- Sasha, 4yo, Andrew, 5yo, unpublished

B.1 Showing differences between information flow

and betweenness with toy networks

In order to better illustrate the properties of information flow which are not exhibited

by betweenness, we analyze two toy examples of possible network topologies using

either of the two methods.

Toy Network 1: In Toy Network 1 in Figure B-1 all edges (interactions) connecting

nodes (proteins) are equally weighted. There are 4 possible pathways between nodes

A and B, the shortest one running through node I, the longest through nodes I-F-

G-H. Therefore nodes A and B can communicate through multiple pathways. If we

use betweenness to find nodes important for A and B to communicate, we can only

recover node I, as it is along the shortest path between A and B, A-I-B. All the

remaining nodes - C, D, E, F, G, H score 0 in betweenness.
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Figure B-1: From left: Toy Network 1, Toy Network 2.

Unlike betweenness, information flow method considers all possible communica-

tion routes between nodes A and B and recovers all participating nodes scoring their

importance relative to the length (confidence level) of a given pathway:

𝐶 = 0.24

𝐷 = 0.16

𝐸 = 0.16

𝐹 = 0.12

𝐺 = 0.12

𝐻 = 0.12

𝐼 = 1

Note that, since node I participates in all the possible pathways between A and

B, it receives a score of 1.

Toy Network 2: Toy Network 2 in Figure B-1 consists of two alternative pathways

differing by the confidence levels of interactions between the participating nodes. The
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thicker edges between nodes C, D and D, E indicate higher interaction confidence,

𝑤1, lets assume it to be 2 times the confidence of the remaining edges, 𝑤2, therefore

𝑤1 = 2𝑤2.

If we use betweenness to find participating nodes in the paths between A and B

and weight the edges, we find that we can only recover the shortest path through D

(we can assume that the distance measure is inversely proportional to the confidence

score w). Node F receives a betweenness score of 0. Alternatively, if we decide to

weight all the paths equally in order for betweenness to recover the path through F,

we are not accounting for the confidence scores and both pathways are treated as

equally likely.

If we use information flow, we can recover both pathways between A and B and

weight the nodes along them proportionally to the overall path confidence:

𝐶 = 1

𝐷 =
2

3

𝐸 = 1

𝐹 =
1

3

In summary, the above examples illustrate how information flow can find proteins

participating in all alternative pathways interconnecting a protein pair. It does so by

taking into consideration both the number of proteins along these paths as well as

the confidence scores. Such properties are not exhibited by betweenness.

B.2 Discovering protein modules

We executed the module extraction routines while varying the maximum and the

minimum number of proteins allowed in a single subnetwork in order to determine

the best size range. We varied the maximum size to be 25, 50, 75, 100 proteins and the

minimum size to be 10, 15, 20, 25 proteins. Next, we evaluated GO enrichment among
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the subnetworks within each size limit combination for a total of 15 combinations (we

omitted < 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 25, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 25 > combination). Figure B-2 shows the

fraction of subnetworks found to be enriched with GO annotations for each minimum

and maximum size of subnetworks.
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Figure B-2: Graph showing the fraction of subnetworks that we found are enriched
with GO annotations given specific minimum and maximum subnetwork size thresh-
olds.

Each line corresponds to a specific maximum subnetwork size (25, 50, 75, 100).

The minimum size criteria are satisfied by retaining only the subnetworks whose size

is larger or equal to a specific minimum threshold (10, 15, 20, 25).

We can see from the plot that varying the maximum size (corresponding to a single

line on the plot) has little effect on the enrichment score. However, as we increase the

minimum size requirement, many of the smaller subnetworks are excluded, and the

larger remaining subnetworks are more likely to contain groups of proteins sharing

functional categories. The majority of the individual subnetworks obtained by varying

the upper and lower thresholds are very similar with respect to the genes they contain

and therefore GO enrichment.

Each entry in Table B.2 lists the number of subnetworks enriched with GO anno-

tations divided by the total number of subnetworks within each Min-Max threshold

combination. Each column in the table corresponds to a line in the above plot. For ex-

ample, the selected threshold combination, 15-50, results in 37 subnetworks of which
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Table B.1: Fraction of modules enriched in GO annotations for a given pair of min/-
max thresholds.

Maximum # proteins in a subnetwork
25 50 75 100

Min. # proteins in a subnetwork

10 48/63 45/56 44/54 42/52
15 34/37 35/37 34/35 32/33
20 14/14 24/24 22/22 21/21
25 N/A 15/15 15/15 14/14

35 are enriched in GO categories.

We selected the 15-50 range for a more detailed analysis as described in the main

text because we wanted to keep the overall GO enrichment high while still retaining

most of the GO enriched subnetworks. Alternatively, we could have increased the

minimum size of the network to be 20 proteins, which would have resulted in all of 24

subnetworks being enriched with GO. However, we would have lost 11 GO enriched

modules as compared to 15-50 range.

B.3 Supplementary tables information

Due to their large size Tables S1-S9 which are relevant to information flow have

been omitted and are instead available online at: http://jura.wi.mit.edu/ge/

information_flow_plos/.
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