
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-040 August 26, 2010

The Abstract MAC Layer
Fabian Kuhn, Nancy Lynch, and Calvin Newport

The Abstract MAC Layer

Fabian Kuhn∗ Nancy Lynch† Calvin Newport‡

August 26, 2010

Abstract

A diversity of possible communication assumptions complicates the study of algorithms and
lower bounds for radio networks. We address this problem by defining an abstract MAC layer.
This service provides reliable local broadcast communication, with timing guarantees stated in
terms of a collection of abstract delay functions applied to the relevant contention. Algorithm
designers can analyze their algorithms in terms of these functions, independently of specific chan-
nel behavior. Concrete implementations of the abstract MAC Layer over basic radio network
models generate concrete definitions for these delay functions, automatically adapting bounds
proven for the abstract service to bounds for the specific radio network under consideration. To
illustrate this approach, we use the abstract MAC Layer to study the new problem of Multi-
Message Broadcast, a generalization of standard single-message broadcast in which multiple
messages can originate at different times and locations in the network. We present and analyze
two algorithms for Multi-Message Broadcast in static networks: a simple greedy algorithm and
one that uses regional leaders. We then indicate how these results can be extended to mobile
networks.

∗U. Lugano (USI), fabian.kuhn@usi.ch
†MIT CSAIL, lynch@csail.mit.edu
‡MIT CSAIL, cnewport@csail.mit.edu

1 Introduction

The study of bounds for mobile ad hoc networks is complicated by the large number of possible
communication assumptions: Do devices operate in slots or asynchronously? Do simultaneous
transmissions cause collisions? Can collisions be detected? Is message reception determined by
geographical distances or by more complex criteria such as signal-to-noise ratio? And so on. This
situation causes problems. Results for one set of communication assumptions might prove invalid for
a slightly different set of assumptions. In addition, these low-level assumptions require algorithm
designers to grapple with low-level problems such as contention management, again and again,
making it difficult to highlight interesting high-level algorithmic issues. This paper proposes a
possible solution to these concerns.

The Abstract MAC Layer. In the standard ISO network model, the MAC layer is responsible
for managing local communication, attempting to provide the higher layers with a reliable local
communication service. In this paper, we introduce a simple abstract MAC layer service for mobile
ad hoc networks (MANETs). We intend this service to be implemented over real MANETs, with
very high probability. (In Section 8, we discuss recent work that explores a variant of the layer
defined with explicit probabilities for its properties.) At the same time, we intend it to be simple
enough to serve as a good basis for theoretical work on high-level algorithms in this setting. The
use of this service is to allow algorithm designers to avoid tackling issues as contention management
and collision detection. They can instead summarize their effects with abstract delay bounds.

The abstract MAC layer service delivers messages reliably within its local neighborhood, and
provides feedback to the sender of a message in the form of an acknowledgement that the message
has been successfully delivered to all nearby receivers. The service does not provide the sender with
any feedback about particular recipients of the message. The service provides guaranteed upper
bounds on the worst-case amount of time for a message to be delivered to all its recipients, and
on the total amount of time until the sender receives its acknowledgement. It also may provide a
(presumably smaller) bound on the amount of time for a receiver to receive some message among
those currently being transmitted by neighboring senders. These time guarantees are expressed
using delay functions applied to the current amount of contention among senders that are in the
neighborhoods of the receivers and the sender.

To implement our abstract MAC layer over a physical network one could use popular contention-
management mechanisms such as carrier sensing and backoff [1], or receiver-side collision detection
with negative acknowledgments [8]. A completely different kind of implementation might involve
network coding methods, such as the ZigZag Decoding method of Gollakota and Katabi [14]. (As
detailed in Section 8, a coding-based implementation is currently in progress.) Our MAC layer
encapsulates the details of these mechanisms within the service implementation, presenting the
algorithm designer with a simple abstract model that involves just message delivery guarantees
and time bounds.1

We believe that this MAC layer service provides a simple yet realistic basis for theoretical work
on high-level algorithms and lower bounds for MANETs. For instance, one might use it to study
problems of communication (such as network-wide broadcast or point-to-point message routing);
problems of establishing and maintaining basic structures (clusters, leaders, or spanning trees);
problems of implementing higher-level services (group membership, resource management, data
management, or consensus); or application-inspired problems (such as robot or vehicle control).

1Note that MAC layer implementations are usually probabilistic, both because assumptions about the physical
layer are usually regarded as probabilistic, and because many MAC layer implementations involve random choices.
Thus, these implementations implement our MAC layer with very high probability, not absolute certainty.

1

More fundamentally, since our MAC layer does not provide senders with feedback about who
received their messages, some basic problems must also be studied, such as local unicast with
acknowledgement and neighbor discovery. In this sense, our layer exists at a lower level than
existing practical layers, such as 802.11, which implement local unicast as a primary primitive. We
treat such primitives as higher-level problems to be solved using our basic layer. (Note: throughout
the paper, when referencing the transmission of messages on the physical layer, we use the term
transmit. To disambiguate the reliable local broadcast of the MAC layer from global broadcast, we
often use the term send when referring to the former. For global broadcast we stick with the term
broadcast.)

Multi-Message Broadcast and Regional Leader Election. In this paper, we validate our
formalism by studying two problems: Multi-Message Broadcast (MMB) and Regional Leader Elec-
tion (RLE). The MMB problem is a generalization of single-message broadcast; c.f., [2, 3, 4, 5, 7,
6, 9, 11, 23, 21, 22, 24, 25]. In the MMB problem, an arbitrary number of messages originate at
arbitrary processes in the network, at arbitrary times; the problem is to deliver all messages to all
processes. We present and analyze two MMB algorithms in static networks, and indicate how the
second of these can be extended to mobile networks.

Our first MMB algorithm is a simple greedy algorithm, inspired by the strategy of the single-
message broadcast algorithm of Bar-Yehuda et al. [4]. We analyze this algorithm using the abstract
MAC layer delay functions. We obtain an upper bound on the time for delivery of each message
that depends in an interesting way on the progress bound—the small bound on the time for a
receiver to receive some message. Specifically, the bound for MMB to broadcast a given message
m, is of the form O ((D + k)Fprog + (k − 1)Fack), where D is the network diameter, k is a bound on
the number of messages whose broadcast overlaps m, and Fack and Fprog are the acknowledgement
and progress bounds, respectively. Note that a dependency on a progress bound was implicit in
the analysis of the single-message broadcast algorithm in [4]. (Their proof analyzes, for each step
along a path to a given destination, the time required for some copy of the message to reach the
next node in the path.) Our use of the abstract MAC layer allows us to make this dependency
explicit.

Our second MMB algorithm achieves better time complexity by exploiting geographical informa-
tion; in particular, it uses a solution to the RLE problem as a sub-protocol. In the RLE problem,
the geographical area in which the network resides is partitioned statically into regions; the problem
is to elect and maintain a leader in each occupied region. Regional leaders could be used to form
a backbone network that could, in turn, be used to solve many kinds of communication and coor-
dination problems. We give an RLE algorithm whose complexity is approximately bFprog, where b
is the number of bits required to represent process ids.

Using the RLE algorithm, our second MMB algorithm works as follows: After establishing
regional leaders, the MMB algorithm runs a version of the basic greedy MMB algorithm, but using
just the leaders. In order to transfer messages that arrive at non-leader processes to leaders, all the
processes run a collect sub-protocol in parallel with the main broadcast algorithm. The complexity
of the resulting MMB algorithm reduces to O (D + k + bFprog + Fack), a significant improvement
over MMB without the use of leaders. The improvement results from the fact that the contention
among leaders is less than the contention among all processes.

Finally, we extend our second MMB algorithm to the mobile case. We then prove a preliminary
theorem that says that the MMB problem is solved given certain restrictions on mobility and
message arrival rates.

2

Figure 1: The MANET system.

Contributions. The contributions of this paper are: (a) the definition of the abstract MAC layer,
and the suggestions for using it as an abstract layer for writing mobile network algorithms, and
(b) new algorithms for Multi-Message Broadcast and Regional Leader Election, and their analysis
using the abstract MAC Layer.

2 Model

We model a Mobile Ad Hoc Network (MANET) using the Timed I/O Automata (TIOA) formalism.
Our model captures n user processes, which we label with {1, ..., n}, in a mobile wireless network
with only local broadcast communication.

2.1 System Components

A MANET system consists of three main components: the network automaton, the abstract MAC
layer automaton, and the user automaton, connected as shown in Figure 1. We briefly describe
each component:

The Network Automaton. The network automaton models the relevant properties of the real
world: time, location, and physical layer behavior. We assume this automaton provides a physical
layer interface that captures the low-level communication on the radio channel. It might also output
user location and time. We do not assume an external interface for controlling motion. That is,
we model mobility as entirely encapsulated within the network automaton, and independent of
the behavior of other system components. In this paper, we assume that the location and time is
accurate. It might be more practical to guarantee only an approximation of this information. For
the protocols we consider, however, such a change would not generate significant modifications.

For every network automaton we assume there exists a pair of functions fG and fG′ that map
from states to directed node interaction graphs (V,E) where V = {1, ..., n} and E ⊆ V ×V . We call
the graph G = fG(s), for some network state s, the communication graph. It captures the processes
that are within communication range in that state. We call G′ = fG′(s) the interference graph.

3

It captures the processes within interference range. Though many radio network models assume a
single communication graph—c.f., [4, 13, 30, 32, 18]—we separate communication from interference
because in real networks the interference range often exceeds the reliable communication range.2

The algorithms we consider in this paper assume the common special case where fG(s) = fG′(s),
for all s. We introduce both graphs in our definitions, however, because we believe the examination
of the general case, where the two graphs can differ, to be interesting future work. When we refer to
the edge set E at a given point in an execution of a MANET system, we refer to the edge set from
the graph fG(s) where s is the network state at that point. The same holds for E′ with respect
to fG′ . Throughout the paper, we use the term network as a shorthand to refer to the Network
Automaton.

The Abstract MAC Layer Automaton. The abstract MAC layer automaton mediates the
communication of messages between the user processes and the network. Each user process i
interacts with the MAC layer via inputs bcast(m)i and abort(m)i and MAC layer outputs rcv(m)i
and ack(m)i, where m is a message from some fixed alphabet. The abort is used in cases where
the sender is satisfied that “enough” neighbors have already received the message, and so is willing
to terminate efforts by the MAC layer to complete its local broadcast. Though real world MAC
layers do not usually include an abort functionality, it seems both useful and feasible to implement,
so we include it in our interface. As mentioned, the abstract MAC layer automaton connects to
the network through the physical layer interface. It might also receive the network’s location and
time outputs. We avoid specifying a fixed network layer interface as this can vary widely due to
different physical layer assumptions. In Section 2.2, we describe the properties an abstract MAC
layer automaton composed with a network automaton must satisfy to be considered an abstract
MAC layer service.

The User Automaton. The user automaton models n user processes with unique labels from
{1, ..., n}. Each process i connects to a MAC layer through the bcast, abort, rcv, and ack interface
described above. It might also receive the network location and time outputs, depending on what
is needed by the protocol being modeled.

2.2 Guarantees for the Abstract MAC Layer Service

Here we provide a set of properties that constrain the behavior of the abstract MAC layer automaton
composed with a network automaton. An abstract MAC layer service is a composition that satisfies
the constraints below. For simplicity we use the shorthand MAC layer to refer to this service
throughout the paper. In these properties, and in the rest of the paper, we assume all executions
are infinite.

Well-Formedness Properties. To define meaningful properties for an abstract MAC layer we
must first assume some well-formedness conditions for the user automaton interacting with the
layer. These are constraints on the behavior of the user automaton.

Fix an execution α of a MANET system. We say α is user-well-formed if and only if the following
hold: (a) Every abort(m)i is preceded by a bcast(m)i with no intervening bcasti, acki, or aborti
events. (b) Every two bcasti events have an intervening acki or aborti event.

2To capture some physical layer models, notably a Signal to Interference-plus-Noise Ratio model, we might need
to extend our definition of G′ to allow weights on the edges; that is, capture not just who might interfere but also
how much interference they contribute. We do not make this extension here but leave it as future work.

4

Let α be a user-well-formed execution. We continue with what properties the abstract MAC
layer automaton must satisfy in this execution to be considered an abstract MAC layer service:

The Cause Function. We assume there exists a “cause” function that maps every rcv(m)j
event to a preceding bcast(m)i event, where i 6= j, and that maps each ack(m)i and abort(m)i to
a preceding bcast(m)i.

Constraints on Message Behavior. We now define two safety conditions and one liveness
condition regarding the relationships captured by the cause function:

1. Receive correctness: Suppose that bcast(m)i event π causes rcv(m)j event π′ in α. Then:

(a) Proximity: At some point between events π and π′, (i, j) ∈ E′ (the edge set of the
interference graph).

(b) No duplicate receives: No other rcv(m)j event caused by π precedes π′.

(c) No receives after acknowledgements: No ack(m)i event caused by π precedes π′.

2. Acknowledgment correctness: Suppose that bcast(m)i event π causes ack(m)i event π′

in α. Then:

(a) Guaranteed communication: If for every point between events π and π′, (i, j) ∈ E
(the edge set of the communication graph), then a rcv(m)j event caused by π precedes
π′.

(b) No duplicate acknowledgements: No other ack(m)i event caused by π precedes π′.

(c) No acknowledgements after aborts: No abort(m)i caused by π precedes π′.

3. Termination: Every bcast(m)i causes either an ack(m)i or an abort(m)i.

Notice, in the proximity and guaranteed communication bounds above, we use the interference
graph G′ to describe the processes that might be able to communicate and the communication
graph G to describe the processes that are guaranteed to communicate. In practice, the former
includes more processes than the latter.

Time Bounds. We now impose upper bounds on the time from a bcast(m)i event to its cor-
responding ack(m)i and rcv(m)j events. These bounds are expressed in terms of the contention
involving i and j during the interval of the local broadcast. To help define these bounds, we provide
a few auxiliary definitions:

Let frcv, fack, and fprog be functions from natural numbers to nonnegative real numbers.
We will use these to bound delays for a specific message being received, an acknowledgement being

received, and some message from among many being received, respectively, with respect to a given
amount of contention. We call these the delay functions. Notice, in many MAC implementation
we expect fprog to yield smaller values than fack, as the time to receive some message among many
is typically better than the time to receive a specific message.

We assume that frcv, fack, and fprog are monotonically non-decreasing. That is, as the contention
increases, so does the time to receive a specific message, an acknowledgement, and some message
from among many, respectively.

Let ǫa be a non-negative constant. We use this constant to bound the amount of time beyond an
abort when a message from the originating bcast can still be received. We intend ǫa to cover messages

5

that are already on the channel, or in the hardware send or receive buffers—thus unreachable by
higher layers. We assume this constant to be small.

We use the term “message instance” to refer to a pair of bcasti and acki, or bcasti and aborti
events matched by the cause function. Let α be an execution, α′ be a closed execution fragment
within α,3 and j be a process. We then define contend(α,α′, j) as follows. This function returns
the set of message instances in α that overlap with fragment α′, such that (i, j) ∈ E′ at some point
in this overlap, where i is the sender from the instance in question. These are the message instances
that might reach j during α′. Similarly, we define connect(α,α′, j) as follows. This function returns
the set of message instances in α such that α′ is contained between the corresponding bcasti and
acki or bcasti and aborti events, and (i, j) ∈ E for the duration of α′, where i is the sender. These
are the messages instances that must reach j if α′ is sufficiently long. Notice that connect(α,α′, j)
is a subset of contend(α,α′, j).

Given an execution α and two events π and π′ in α, the notation α[π, π′] to describe the execution
fragment within α that spans from π to π′.4 We continue with the time bounds:

4. Receive: Suppose that a bcast(m)i event π causes a rcv(m)j event π′ in α. Then the time
between π and π′ is at most frcv(c), where c is the number of distinct senders of message
instances in contend(α,α[π, π′], j). In other words, the bound for when m must be received at
j grows with the number of other nearby processes (e.g., connected in G′) that have message
instances overlapping with the instance in question. (In this bound, as in those that follow,
we count senders, not message instances, because the senders’ process the messages one by
one.) Furthermore, if there exists an abort(m)i event π′′ such that π causes π′′, then π′ cannot
occur more than ǫa time after π′′. The ǫa constant requires that that an abort actually aborts
the corresponding message within a bounded amount of time.

5. Acknowledgement: Suppose that a bcast(m)i event π causes an ack(m)i event π′ in α.
Let ackcon be the set containing i and every process j such that there exists a rcv(m)j with
cause π. Then the time between π and π′ is at most fack(c), where c is the number of dis-
tinct senders of message instances in

⋃

j∈ackcon contend(α,α[π, π′], j). The acknowledgement
bound is defined similarly to the receive bound, with the exception that we now include the
contention at the sender and every receiver. This captures the intuition that an acknowledge-
ment requires the receivers to somehow communicate their receipt of the message back to the
sender.

6. Progress: For every closed fragment α′ within α, for every process j, and for every integer
c ≥ 1, it is not the case that all three of the following conditions hold:

(a) The total time described by α′ is strictly greater than fprog(c).

(b) The number of distinct senders of message instances in contend(α,α′, j) is at most c,
and connect(α,α′, j) is non-empty.

(c) No rcv(m)j event from a message instance in contend(α,α′, j) occurs by the end of α′.

In other words, the bound on when j should receive some message (when there is a least one
message being sent by a neighbor in G), grows with the total number of processes that are

3Formally, that means that there exist fragments α′′ and α′′′ such that α = α′′α′α′′′, and moreover, the first state
of α′ is the last state of α′′. Notice, this allows α′ to begin and/or end in the middle of a trajectory.

4Formally, by the definition of a fragment this must span from the point trajectory immediately preceding π to
the point trajectory immediately following π′. A trajectory describes the state evolution between two discrete events;
formally it is a mapping from time to states. See [19] for more details.

6

in interference range. As mentioned in the introduction, this style of progress property was
implicitly used in previous work—e.g., [4]—to derive bounds that are tighter than could be
generated from a basic acknowledgement bound alone.

A stronger version of (c) could require that the received message is sent by a neighbor with
an edge to j in G, rather than just G′, at some point during α′. This stronger property, if
needed, might be implemented on top of a MAC layer guaranteeing the weaker property from
above. The details would depend on the radio network model.

2.3 Implementing an Abstract MAC Layer

It is beyond the scope of this paper to offer a detailed implementation of an abstract MAC layer
automaton, using, for example, one of the popular radio network models from the existing theo-
retical literature (e.g. [4, 13, 15, 16, 33]). Here we discuss, only informally, some basic ideas for
implementations with the aim of providing some intuition regarding the type of concrete definitions
our delay functions might adopt in practice. For simplicity, in this example we assume G and G′

are fixed (e.g., the network is static) and undirected. (In Section 8, we describe recent research
efforts to define abstract MAC layer definitions for a variety of physical layer assumptions. We
refer the reader interested in more detail to these citations.)

A common radio network model is the slotted model of [4, 13, 30, 32, 18]. This model assumes that
the communication graph G and the interference graph G′ are identical, that there is no collision
detection (i.e., a collision cannot be distinguished from silence), and that a message from a sender
i is correctly received by a neighbor j in a particular time slot if and only if i is the only neighbor
of j transmitting during this time slot. If we assume synchronized clocks, allowing for synchronized
slots, a simple strategy derived from the decay function in [4] can be used to implement our abstract
MAC layer service. In this approach, time is divided into synchronized epochs of Θ(log ∆) time
slots, where ∆ is the maximum node degree in G (this assumes processes know ∆.). A process
that has a message to send, starts transmitting at the beginning of the next epoch. During an
epoch, the probability of transmitting is exponentially decreased from 1 to 1/∆. It is guaranteed
that every process that has at least one neighbor sending a message during an epoch receives at
least one message with constant probability. We therefore get a progress delay function fprog that
is in O(log ∆) for all contention parameters, with probability 1 − ǫ. Similarly, our receive and
acknowledgement delay functions, frcv and fack, are both O(∆ log ∆) for all contention parameters.
Notice, this simple scheme requires time proportional only to the worst-case contention. More
sophisticated MAC layer implementations, we expect, would include the contention parameter c in
the delay function definitions.

If time is not synchronized, a technique similar to the one used in the context of the wake-up
problem in single-hop networks [13, 18] and multi-hop networks [30, 32] can be used to synchronize
the start of decay phases. At a high-level, the strategy works as follows: starting at a small
probability, processes exponentially increase their transmission probability until they either hear
a message from a neighbor or decide to transmit. Let us assume that there are two physical
communication channels (which simplifies the analysis, but is not strictly necessary5). When a
process transmits, it starts the decay routine on the second communication channel. If we assume
that the communication graph is a unit disk graph (or more generally a bounded growth graph as
defined in [29]) and if the parameters are chosen correctly, it can be shown that with reasonable
probability, the number of different start times of the decay routine is bounded in the neighborhood
of every process. This approximates the synchronized time case from above (where all processes

5In [30], it is described how to simulate different communication channels at the cost of a polylogarithmic factor.

7

Figure 2: The MANET system with m abstract MAC layers.

start decay together). The cost of the approximation is that we must use a modified decay function
that replaces the log(∆) factor with polylog(∆) in the progress, receive, and acknowledgement
bounds. For more details on this strategy, see [30, 32].

For the case where G 6= G′, similar techniques can provide a good starting point. Recent
work, however, indicates that care must be taken and new strategies and/or assumptions might by
required [26, 9, 28]. This remains an interesting direction for future work.

For simplicity, in this paper we assume that the abstract MAC Layer properties hold “with high
probability,” but do not expose the specific probabilities as parameters of the implementation. As
indicated by our example implementations from above, these probabilities, though high, can be
non-trivially distinct from 1. For some analyses it might prove useful to make use of the specific
probabilities. As mentioned in Section 8, there is ongoing work that considers this generalization
of the model, and uses it to obtain more precise probabilistic bounds on the broadcast problem.

2.4 Multiple Abstract MAC Layer Automata

To simplify the analysis of multiple user protocols running on the same network it proves useful
to allow for multiple independent abstract MAC automata in the same system (see Figure 2). In
this scheme, each protocol (or perhaps even sub-protocol) connects with its own MAC automaton.
These automata all connect to the same single network automaton. Each MAC automaton satisfies
the specifications of the abstract MAC layer service with respect to the network.

Such an approach certainly simplifies analysis, but we also argue that it matches reality. Indeed,
there exist a variety of practical realizations of multiple MAC automata. For example, most radio-
equipped computing devices have access to many communication frequencies. If a device has several
transmitters, it can execute several simultaneous MAC protocols on independent frequencies. If the
device has a single transceiver and/or access to only a single frequency, it can use a TDM scheme
to partition use of the frequency among the different logical MAC layers.

In other words, by allowing multiple independent abstract MAC automata in our model we
remove the need for the protocol designer to tackle the issue of contention between protocols
and focus instead on proving properties about their individual behavior. The complexity of this

8

contention will be captured by the concrete implementation of the multiple layers using a single
network.

2.5 Upper Bounds on Message Delivery Times

We describe upper bounds on the message delivery time bounds of Section 2.2. We use these for
algorithm development and analysis. We begin, however, with some graph notation used by these
upper bounds and elsewhere in the paper.

Graph Notation. For any graph G, we use D(G) to describe the diameter of G, that is the
maximum d(u, v), over all vertex pairs (u, v), where d(u, v) describes the length of the shortest
directed path between u and v.

Upper Bounds. We describe three constants that prove useful when describing message delivery
times in our later analysis and definition of algorithms. For the following definitions, fix α to be a
user-well-formed execution of a MAC layer and let ∆α equal the maximum ∆(G′) over all G′ that
appear in a state of α.

1. We define Fprog with respect to α to be fprog(∆α +1). This is an upper bound on the amount
of time until a process receives some message, starting from a point in the execution at which:
(a) there is at least one message it should eventually receive (i.e., the message is sent by a
process that is and will remain a neighbor in G); and (b) the message instances for previously
received messages have completed. (The addition of 1 to ∆α, in this definition and the two
below, captures the possibility that the receiver is also sending a message, which would be
counted in the contend set.)

2. We define Frcv with respect to α to be frcv(∆α + 1). This is an upper bound on the amount
of time until a process receives a message sent by a neighbor in G.

3. We define Fack with respect to α to be fack((∆α+1)2). This is an upper bound on the amount
of time until a process receives an acknowledgement for a message it sent. (The square is
necessary to bound the worst-case value of the union calculated in the acknowledgement bound
definition—a union that includes the contention at the sender and at all of its neighbors in
G.)

Sometimes we need to define constants over all possible executions of a MAC layer (e.g., if we
want to use them as upper bounds in a protocol definition). With this in mind we define F+

prog,

F+
rcv, and F+

ack to be the maximum values of Fprog, Frcv, and Fack, respectively, over all executions
of the MAC layer under consideration.

3 The Multi-Message Broadcast Problem

The Multi-Message Broadcast (MMB) problem assumes that the environment submits messages
to the user processes at arbitrary times during an execution. The goal is to propagate every such
message to all of the users in the network.

9

3.1 Preliminaries

In this section we assume a static network; i.e., for any given execution, the location of each node,
and the G and G′ graphs never change. Furthermore, we assume that G = G′, and the graphs are
undirected; i.e., all communication links are bidirectional. We note that the algorithm and proof
below would work for the general case, where G 6= G′, if one could guarantee the slightly stronger
progress property that requires that the message received is from a neighbor in G.

We assume a message set M of possible broadcast messages. A user automaton is considered
to be an MMB protocol only if its external interface includes an arrive(m)i input and deliver(m)i
output for each user process i and message m ∈M.

We say an execution of an MMB protocol is MMB-well-formed if and only if it contains at most
one arrive(m)i event for each m ∈ M. (That is, each broadcast message is unique). We say an
MMB protocol solves the MMB problem if and only if for every MMB-well-formed execution of the
MMB protocol composed with a MAC layer, the following hold: (a) For every arrive(m)i event
and every process j, there exists a deliver(m)j event. (b) For every m ∈ M and process j, there
exists at most one deliver(m)j event and it comes after an arrive(m)i event for some i.

3.2 The Basic Multi-Message Broadcast Protocol

We describe a simple MMB protocol that nonetheless achieves efficient runtime.

The Basic Multi-Message Broadcast (BMMB) Protocol
Every process i maintains a FIFO queue named bcastq and a set named rcvd. Both are initially
empty. If process i is not currently sending a message (i.e., not waiting for an ack from the
MAC layer) and bcastq is not empty, it sends the message at the head of the queue. If i receives
an arrive(m)i event it immediately performs a deliver(m)i output and adds m to the back of
bcastq. It also adds m to rcvd. If i receives a message m from the MAC layer it first checks
rcvd. If m ∈ rcvd it discards it. Else, i immediately performs a deliver(m)i event, and adds m
to the back of bcastq and to the rcvd set.

Theorem 3.1. The BMMB protocol solves the MMB problem.

Proof. Let α be an MMB-well-formed execution of the BMMB protocol composed with a MAC
layer. We first note that α is user-well-formed, as the definition of the protocol has each process
wait for an ack before submitting its next bcast. There are no aborts. It follows that the abstract
MAC layer properties are satisfied by the MAC layer.

Let arrive(m)i be an event in α. At the point when this event occurs, the size of the BMMB
queue at process i is of some finite size. Let us call this q. After at most (q + 1)Fack time after this
point, i will have succeeded in sending all q elements ahead of m in its queue, and then m itself, to
its neighbors. We can reapply this argument D times for each message, to show that it eventually
arrives (and is delivered) at all processes.

We continue with a collection of definitions used by our complexity proof. In the following, let α
be some MMB-well-formed execution of the BMMB protocol composed with a MAC layer.

The get Event. We define a get(m)i event with respect to α, for some arbitrary message m and
process i, to be one in which process i first learns about message m. Specifically, get(m)i is the
first arrive(m)i event in case message m arrives at process i, otherwise, get(m)i is the first rcv(m)i
event.

10

The clear Event. Let m ∈ M be a message for which an arrive(m)i event occurs in α. We
define clear(m) to describe the final ack(m)j event in α for any process j.6

The Set K(m). Let m ∈M be a message such that arrive(m)i occurs in α for some i. We define
K(m) = {m′ ∈M : an arrive(m′) event precedes the last deliver(m) event and the clear(m′) event
follows the arrive(m)i event}. That is, K(m) is the set of messages whose processing overlaps the
interval between the arrive(m)i event and the last deliver(m) event.

The obvious complexity bound would guarantee the delivery of a given message m in O(D(G)kFack)
time, for k = |K(m)|, as there can be no more than k messages ahead of m at each hop, and each
message is guaranteed to be sent, received, and acknowledged within Fack time. The complexity
theorem below, by contrast, does better. It separates kFack from the diameter, D(G), instead mul-
tiplying this term only by the smaller progress bound, Fprog. This captures an implicit pipelining
effect that says some message always makes progress in Fprog time.

Theorem 3.2. Let k be a positive integer and α be an MMB-well-formed execution of the BMMB
protocol composed with a MAC layer. Assume that an arrive(m)i event occurs in α. If |K(m)| ≤ k
then the time between the arrive(m)i and the last deliver(m)j is at most: (D(G) + 2k− 2)Fprog +
(k − 1)Fack.

Theorem 3.2 is a direct consequence of the following lemma.

Lemma 3.3. Let α be an MMB-well-formed execution of the BMMB protocol composed with a
MAC layer. Assume that at time t0, arrive(m)i0 occurs in α for some message m ∈M and some
process i0. Let j be a process at distance d = dG(i0, j) from the process i0. Further, let M′ ⊆ M
be the set of messages m′ for which arrive(m)i0 precedes clear(m′). For integers ℓ ≥ 1, we define

td,ℓ := t0 + (d + 2ℓ− 2) · Fprog + (ℓ− 1) · Fack.

For all integers ℓ ≥ 1, at least one of the following two statements is true:

(1) The get(m)j event occurs by time td,ℓ and ack(m)j occurs by time td,ℓ + Fack.

(2) There exists a set M′′ ⊆ M′, |M′′| = ℓ, such that, for every m′ ∈ M′′, get(m′)j occurs by
time td,ℓ, and ack(m′)j occurs by time td,ℓ + Fack.

Proof. The proof uses a double induction: first on the number ℓ of messages, and then on the
distance d to the destination j. For the base where ℓ = 1, the key insight is that when a message
arrives at a node on a length d path to j, either that message, or some other message ahead of
it in the queue, will be received by the next hop within Fprog time. For the inductive step where
ℓ > 1, we know by the hypothesis that a set M′

j of at least ℓ−1 messages have been received, sent,
and cleared from the queue by all the neighbors of j, before time td,ℓ. The interesting case is when
|M′

j | = ℓ− 1. Here we use the hypothesis again, this time ℓ, d − 1, and a neighbor j′ of j that is
its direct predecessor on the path from the source. This establishes that j′ has received a message
m′′ /∈ M′

j by time td−1,ℓ. It follows that either this message, or some other message not in M′
j, is

received by j by time td−1,ℓ +Fprog ≤ td,ℓ. To show that ℓ messages have been acknowledged at j in
time, we apply the hypothesis for ℓ− 1 and j to show that ℓ− 1 were acknowledged by td,ℓ−1. This
leaves time for the new message, or some other message not among these ℓ−1, to be acknowledged.

6Notice, by the definition of BMMB if an arrive(m)i occurs then i eventually sends m, so ack(m)i occurs.
Furthermore, by the definition of BMMB, there can be at most one ack(m)j event for every process j. Therefore,
clear(m) is well-defined.

11

We first define sets Gi(t) ⊆ M′ and Ci(t) ⊆ M′ of messages for every process i and time t ≥ 0
in execution α of the BMMB protocol. Gi(t) is the set of messages m′ ∈ M′ for which a get(m′)i
event occurs by time t. Ci(t) ⊆ Gi(t) is the set of messages m′ ∈M′ for which the ack(m′)i event
occurs by time t. Hence, Gi(t) is the set of messages that have been received by process i and
Ci(t) is the set of messages that process i has finished processing by time t. From the MAC layer
properties and the definition of the BMMB protocol, we obtain the following three statements:

a) Consider a process i. If Gi(t) ∩ (Gi′(t) \ Ci′(t)) = ∅ for every neighbor process i′ of i, and
there is a neighbor i′ for which Gi′(t) \ Ci′(t) 6= ∅, then a get(m′)i event occurs after time t
and by time t + Fprog, for some m′ ∈M′. In other words, if the neighbors of i only have new
messages in their queue, then i will receive something new in Fprog time.

b) For every process i and message m′ ∈ Ci(t), a get(m′)i′ event occurs at all neighbors i′ of i
by time t.

c) Assume that a message m′ is in the queue of a process i at time t and let Q, |Q| = q, be the
set of messages in i’s queue ahead of m′ at time t. For k ≤ q, by time t + k · Fack, there are
ack(m′′)i events for k messages m′′ ∈ Q and by time t+(q+1)Fack, an ack(m′)i event occurs.

We prove the lemma by induction on ℓ.

• Base case: ℓ = 1.
For this fixed value of ℓ we prove that the lemma holds for all d by induction on d.

– Base Case: d = 0.
If d = 0 then j = i0. Let m′ be the first message in i0’s queue immediately after the
arrive(m)i0 event. By definition, m′ ∈ M′ and get(m′)i0 occurs by time t0 = t0,1. We
apply statement c) for i0, t0, and q = 0, to determine that an ack(m′)i0 event occurs
by time t0 + Fack. If m′ = m we satisfy statement (1) of the lemma, else we satisfy
statement (2) for M′′ = {m′}.

– Inductive Step: d > 0.
Assume the lemma for ℓ = 1 and all smaller values of d. Write the shortest path from
i0 to j as i0, i1, ..., id = j. We consider two cases for the set Gid(td−1,1):

∗ Case 1: Gid(td−1,1) 6= ∅.
Move backwards in time, starting from td−1,1, until id’s queue becomes non-empty.
Label this time t. Let m′ be the message at the front of id’s queue at t. By our
assumption that Gid(td−1,1) 6= ∅, it follows that t0 ≤ t and m′ ∈ M′. We apply
property c) to determine that by t + Fack < td,1 + Fack, an ack(m′)id event occurs.
If m′ = m we satisfy statement (1) of the lemma, else we satisfy statement (2) for
M′′ = {m′}.

∗ Case 2: Gid(td−1,1) = ∅.
By our inductive hypothesis, we know a get(m′)id−1

event occurs, for some m′ ∈
M′, by time td−1,1. (Both statements (1) and (2) of the lemma guarantee this
property.) By our assumption on Gid , and property b), an ack(m′)id−1

event has
not yet occurred. It follows that m′ is still in the queue of id−1 at this time. We
can therefore apply property a) for i = id to derive that a get(m′′)id event, for some
m′′ ∈ M′, occurs by time td−1,1 + Fprog = td,1. We can now apply property c) to
determine that an ack occurs at id for some message in M′ by time td,1 + Fack. If
this message is m we satisfy statement (1) of the lemma, else we satisfy statement
(2).

12

• Inductive step: ℓ > 1.
Assume the lemma holds for smaller ℓ. We perform induction on d.

– Base Case: d = 0.
If d = 0 then j = i0. Suppose there are exactly ℓ0 messages in i’s queue immediately
after the arrive(m)i0 occurs at time t0. Note that the arrive(m)i0 event is also the
get(m)i0 event. For all of these ℓ0 messages, their get events occur by time t0 ≤ t0,ℓ,
and they are in M′. If ℓ < ℓ0 then by property c) there is an ack(m)i0 event by time
t0 + ℓ0Fack ≤ t0 + ℓFack ≤ t0,ℓ + Fack, which implies that lemma statement (1) is true.
On the other hand, if ℓ ≥ ℓ0, then ack(m′)i0 events occur, for the first ℓ messages on the
queue, by time t0 + ℓFack ≤ t0,ℓ + Fack, which implies that lemma statement (2) is true.

– Inductive Step: d > 0.
By our inductive hypothesis, all neighbors of j satisfy the lemma for ℓ− 1. We consider
two cases regarding which condition of the lemma they satisfy.

∗ Case 1: There exists a neighbor j′ of j, that satisfies lemma statement (1) for ℓ− 1.
By applying property b) it follows that a get(m)j event occurs by time:

td+1,ℓ−1 + Fack = (d + 1 + 2(ℓ− 1)− 2)Fprog + (ℓ− 2)Fack + Fack

< (d + 2ℓ− 2)Fprog + (ℓ− 1)Fack

= td,ℓ.

(Notice, we use distance d + 1 for j′ because j is at distance d, and j′’s distance is
therefore somewhere in the range d − 1 to d + 1, the latter being the worst case in
terms of time complexity.)
We can now argue what happens at j once this get event has occurred. By our
inductive hypothesis, j has to satisfy one of the two lemma statements for ℓ− 1. If
it satisfies statement (1), then we are done. If it satisfies statement (2), then there
exists a set of ℓ− 1 messages, from M′ \ {m}, such that for each m′ in this set an
ack(m′)j event has occurred by time td,ℓ−1 + Fack < td,ℓ. There are two additional
cases to now consider:
If m gets to the front of j’s queue by td,ℓ, then by property c) an ack(m)j event
occurs by time td,ℓ + Fack, satisfying lemma statement (1).
If m does not get to the front of j’s queue by this time, then some other message
must be at the front. Furthermore, this message cannot be among the ℓ− 1 already
acknowledged, as we established that these messages cleared the queue before td,ℓ.
In this case, we again apply property c) to determine that ℓ total message are
acknowledged at j by td,ℓ + Fack, satisfying lemma statement (2).

∗ Case 2: Every neighbor j′ of j satisfies only lemma statement (2) for ℓ− 1.
It follows that by time td+1,ℓ−1 + Fack < td,ℓ, each neighbor j′ of j has had ℓ− 1 ack
events for messages in M′. Let M′

j be the union of the ℓ−1 messages acknowledged
at each neighbor of j. By property b), a get(m′)j event occurs, for each m′ ∈ M′

j ,
by time td+1,ℓ−1 + Fack. We now consider two cases regarding the size of M′

j.
If |M′

j | ≥ ℓ, then ℓ get events have occurred at j before time td,ℓ. We can now apply
our inductive hypothesis to j and ℓ− 1. If j satisfies lemma statement (1) for ℓ− 1,
then we are done. Assuming, therefore, that it satisfies statement (2), we know that
by time td,ℓ−1, an ack(m′)j event has occurred for ℓ − 1 messages in M′. Because

13

we established that at least ℓ messages from M′ arrive at j before td,ℓ, property c)
tells us that an additional message from M′ will be acknowledged at j by td,ℓ +Fack,
satisfying lemma statement (2).
On the other hand, if |M′

j | < ℓ, then all neighbors of j must have acknowledged
the exact same set of ℓ − 1 messages by time td+1,ℓ−1 + Fack. For simplicity, call
this time t. If at t, there is a message not in M′

j in j’s queue, then by the same
argument used above we will satisfy the lemma.
If not, if follows that Gj(t) ∩ (Gj′(t) \ Cj′(t)) = ∅, for every neighbor j′ of j. Fix a
neighbor j′ at distance d− 1 from j. By our inductive hypothesis on d, a get(m′′)j′

event occurrs by time td−1,ℓ for a message m′′ /∈ M′
j . Basic algebra confirms that

td−1,ℓ = t. We can now apply property a) for time t to establish that a get event
occurs at j for a message not in M′

j by t + Fprog ≤ td,ℓ. At this point, we apply the
same argument used in the |M′

j | ≥ ℓ case to prove that we satisfy lemma statement
(2).

Proof of Theorem 3.2. Let t0 be the time when the arrive(m)i event occurs. Assume that |K(m)| ≤
k. We show that the last deliver(m) event occurs by time t1 = t0+(D(G)+2k−2)Fprog+(k−1)Fack .

Let M′ ⊆M be the set of messages m′ for which arrive(m)i precedes clear(m′). By Lemma 3.3
for all processes j by time t1, one of the following two cases holds: (1) a get(m)j event occurs; or
(2) there exists a set M′′ ⊆ M′ of size |M′′| = k such that get(m′)j events occur for all messages
m′ ∈M′′.

We consider both cases. For case 1, because the deliver(m)j event occurs at the same real time
as the get(m)j event, we have satisfied the Theorem bound for this process.

For case 2, there is a set M′′ ⊆ M′ of size k such that for all messages m′ ∈ M′′, a get(m′)j
event happens by time t1. We will use this fact to prove that deliver(m)j occurs by time t1. To
do so, assume for contradiction that deliver(m)j occurs after t1. By the definition of K(m) and
M′, we have that K(m) ⊆ M′. By our assumption on deliver(m)j , and the definition of K(m),
we have m′ ∈ K(m) for every message m′ ∈ M′ for which a get(m′) event occurs by time t1. As
a consequence, M′′ ⊆ K(m). Because |M′′| = k and |K(m)| ≤ k, this implies that M′′ = K(m).
Because m ∈ K(m), there is a get(m)j event and thus a deliver(m)j by time t1, contradicting our
assumption. We have therefore shown, for all j, that a deliver(m)j occurs by time t1, as needed.

4 Regionalized Networks

Recall that our model requires the network automaton to encode and report the location of every
node at all times. It does not, however, place any constraints on the geography in which these
locations reside or their relation to G and G′. In this section we define such general constraints,
which we use in Section 6 to improve the complexity of our MMB solutions.

Preliminaries. Let L be a set of locations. (For example, this could describe points in the 2D
plane.) Let R be a set of region ids. Let region mapping reg be a mapping reg : L → R. And
let NR be a neighbor relation among regions in R. Consider the graph Gregion = (R,NR). We
call Gregion a region communication graph if and only if it is connected. Let N ′

R be some neighbor
relation such that NR ⊆ N ′

R. We call the graph G′
region = (R,N ′

R) the region interference graph.

14

Regionalized Network. Fix a network N . Let L describe the set of locations used by N . Given
any state s of N , and node i, we use the notation loc(i) to refer to the location of node i encoded
by N in s. Let R be a set of region ids, reg be a region mapping from L to R, and NR and N ′

R be
neighbor relations for R such that NR ⊆ N ′

R. Assume Gregion = (R,NR) is a region communication
graph and G′

region = (R,N ′
R) is a region interference graph.

We say network N is regionalized with respect to L, R, reg, NR, and N ′
R, if and only if for every

execution of N , and every point in the execution:

1. For every pair of nodes i and j such that reg(loc(i)) = reg(loc(j)) or (reg(loc(i)), reg(loc(j))) ∈
NR: (i, j) ∈ E.

2. For every pair of nodes i and j such that (i, j) ∈ E′, either: reg(loc(i)) = reg(loc(j)) or
(reg(loc(i)), reg(loc(j))) ∈ N ′

R.

That is, if two nodes are in the same region or neighboring regions in the region communication
graph, then they must be connected in G, and if two nodes are connected in G′ (i.e., can interfere
with each other) then they are in the same region or in regions that are neighbors in the region
interference graph. It follows that the region communication graph captures which regions are
always in communication range while the region interference graph captures which regions could
be in interference range. For example, a simple grid topology where we set the length of the grid
square diagonal to be half the reliable communication range, and classifying grid squares sharing
an edge as neighbors, might be used to define a regionalization that matches these constraints.

Fixing a Regionalized Network. For Sections 5 and 6 we fix a static network N that is
regionalized with respect to some parameters L, R, reg, NR, and N ′

R. As in Section 3 we assume
that G = G′ and the graphs are undirected. We also assume that the network occupies every region
in every execution, and that ∆(G′

region) = O(1), where G′
region = (R,N ′

R). For many physical layer
models, including the unit disc graph model, this property is easy to obtain; c.f., the tiling of discs
used in [30, 32]. When we refer to MAC layers in these sections, we implicitly mean MAC layers
that include N . When we refer to any region r, we implicitly assume that r ∈ R. In Section 7 we
fix the same network modified so that it is no longer static.

5 The Leader Election Problem

Notice that the BMMB protocol did not make use of location information or synchronized clocks.
This begs an obvious question: can we do better if the processes know this information? To
answer this question, we first study the problem of local leader election in a single region of our
fixed regionalized network, then use this protocol to elect a leader in every region. Our solutions
rely on synchronized clocks, running at the same fixed rate, to coordinate the beginning and
end of the relevant phases among the different processes. The resulting leader backbone forms
a connected dominating set (CDS). The use of a CDS in radio networks is a common strategy;
c.f.,[35, 31, 30, 38, 12]. Unlike this existing work, however, our task is simplified by both the
availability of location information and the lack of need to deal explicitly with contention on the
channel.

5.1 Solving the RLE Problem

We say a user automaton is a RLE protocol if and only if it has a leader(r)i and notleader(r)i
output for every process i and every region r. We say a RLE protocol solves the RLE problem for

15

region r by time t if and only if for every execution α of the protocol composed with a MAC layer
the following hold:

1. By time t in α exactly one process i such that reg(loc(i))) = r outputs leader(r)i and every
process j 6= i such that reg(loc(j)) = r, outputs notleader(r)j.

2. For every process i such that reg(loc(i)) = r, there exists at most one event π in α such that
π = leader(r′)i or π = notleader(r′)i for some region r′.

We continue with some RLE protocol definitions. Throughout the definitions that follow, we assume
a fixed positive constant ǫb, which we will use in multiple protocols to add an extra buffer to the
end of intervals calculated to match the length of the message receive time bounds. (The use of
this extra buffer is a technicality required by the fact that the TIOA model allows multiple events
to occur at the same time; the ǫb is used to make sure a check of received messages happens after
every relevant message receive event has occurred.) We also assume that processes know the value
of F+

ack and F+
prog in advance, as these are upper bounds on the delay for all possible executions of

the network, and can therefore be seen as modeling system constants.

5.2 The Basic RLE Protocol

The Basic Regional Leader Election (BRLE) protocol is described below:

The r-Basic Regional Leader Election (BRLE) Protocol
In the r-BRLE protocol for some region r, each process i in r behaves as follows. At time 0,
i sends its own id. At time F+

ack + ǫb, i processes its set of received messages. If i is greater
than every id described in a received message, then i triggers a leader(r)i output. Else it
triggers notleader(r)i. The output happens instantaneously at time F+

ack + ǫb (i.e., we assume
a processing time of 0).

Theorem 5.1. For any region r, the r-BRLE protocol solves the RLE problem for region r by time
F+

ack + ǫb.

Proof. We begin by noting that the protocol preserves user-well-formedness, so we can assume the
abstract MAC layer properties hold.

Fix some pair of processes i and j in r. We first prove that i and j receive each other’s messages.
Both processes send at time 0. According to the termination property of the MAC layer, each send
is the cause of either an abort or ack. Because neither aborts, each must eventually cause an ack.

By the definition of a regionalized network, we know (i, j) ∈ E. Therefore, by the acknowledge-
ment correctness property, i receives j’s message and j receives i’s message, both before their ack
events.

By the acknowledgement time bound, these receive events and the subsequent acks, must occur
by time F+

ack. It follows that at time F+

ack + ǫb > F+

ack, the messages have been received. Apply
this argument to all pairs in the region to show that all processes in r receive all messages in r,
therefore they make a common leader decision.

5.3 The Fast Regional Leader Election Protocol

As mentioned, we assume that in many MAC layer implementations, fprog will be much smaller
than fack. To accommodate this possibility we describe a Fast Regional Leader Election (FRLE)
protocol that relies only on fprog and the size of the id space, For the following, let b be the

16

number of bits needed to describe the id space. (A common assumption is that b = ⌈lg n⌉, but this
might not always hold.) As in [8, 3], we will use the bits in the processes’ ids to break symmetry.
This protocol will outperform BRLE in the case where Fack is more than that b times larger than
Fprog. In the sample implementations from Section 2.3, to name an example, this holds when the
maximum degree in the graph is larger than b.

The r-Fast Regional Leader Election (FRLE) Protocol
In the r-FRLE protocol for some region r , each process i in r behaves as follows. Let ǫ′

a = ǫa+ǫb.
(Recall, ǫa is the maximum time after an abort that a message might still be received.) Divide
the time interval from 0 to b(F+

prog + ǫ′

a) into b phases each of length Fprog + ǫ′

a. We associate
phase p with bit p of the id space. At the beginning of phase 1, process i sends the phase number
and its id if it has a 1 bit in location 1 of its id. Otherwise it does not send. After F+

prog time
has elapsed in the phase, if i has sent and has not yet received an ack, it submits an abort. At
the end of the phase (i.e., ǫ′

a time after the potential abort), i processes its received messages.
If i did not send in this phase, yet received at least one message, it outputs notleader(r)i and
terminates the protocol. Otherwise, it continues with the next phase, which proceeds the same
as before with respect to bit position 2. This continues until i terminates with a notleader(r)i

output or finishes the last phase without terminating. In the latter case, i submits a leader(r)i

output.

Theorem 5.2. For any region r, the r-FRLE protocol solves the RLE problem for region r by time
b(F+

prog + ǫa + ǫb).

Proof. We begin by noting that the protocol preserves user-well-formedness, so we can assume the
abstract MAC layer properties hold.

We prove the following: if any process sends at the beginning of phase p, then every process that
does not send receives at least one phase p message by the end of the phase.

Fix a phase p. Let Π be the set of bcast events that occur at the beginning of p. These are
the only messages that intersect with the interval defined by phase p (remember: all sends from
previous stages were aborted by the end of those phases).

Fix a process i that does not send in this phase. The definition of a static regionalized network
provides that all processes in r are neighbors of i in G for this entire interval. So far we have
satisfied conditions (a) and (b) of the progress time bound.

It follows that condition (c) cannot also be satisfied. Therefore, a rcv(m)i caused by some bcast
in Π must occur for i in this interval, which satisfies our claim.

We are left to prove that the search logic produces a single leader. This follows from two
observations. First, it is impossible for all processes that are non-terminated at the beginning of
some phase to submit notleader(r) outputs at the end of the phase. Assume for contradiction
that this occurs at the end of some phase p. To terminate, a process must receive a message in a
phase in which it does not send. It follows that some non-terminated process sends during phase
p. (Recall: from our above argument that the only message intervals that intersect a given phase
p are those that contain phase p messages.) By definition, a process that sends in a given phase
cannot be terminated in that phase. A contradiction.

Second, we show that two or more processes cannot both survive all b phases to become leader.
Assume for contradiction that both i and j become leader. Because their ids are unique, there
must be one bit position in which they differ. Without loss of generality assume it is position k
and that i has a 1 in this position while j has a 0. It follows that in phase k, i sends and j does
not. By our claim at the beginning of the proof, j will receive some message in this phase—leading
it to terminate. Another contradiction.

It follows that the protocol elects one and only one leader as required.

17

5.4 The Complete Regional Leader Election Protocol

The RLE solutions described above work for a single region. It proves useful, however, to elect
such a leader in every region in a regionalized network. Below we describe a protocol that elects
a leader in every region. As with FRLE, let b be the minimum number of bits needed to describe
the id space. This protocol uses a minimal-sized region Time Division Multiple Access (TDMA)
schedule T defined with respect to the region interference graph for the regionalized network. That
is, T describes minimally-sized sequence of sets of region ids such that: (a) every region id shows up
in exactly one set; (b) no set contains two region ids that are neighbors in the region interference
graph.

The Complete Regional Leader Election (CRLE) Protocol
In the CRLE protocol each process i behaves as follows. We dedicate b(F+

prog + ǫ′

a) time to each
set in T . Process i does nothing until the start of the time dedicated to the single set in T that
contains i. Process i runs the reg(loc(i))-FRLE protocol during the time interval dedicated to
this set, adding a fixed offset to the time input used by FRLE such that the transformed time
at the beginning of the interval evaluates to 0.

Theorem 5.3. The CRLE protocol solves RLE problem for every region by time Θ
(

b · (F+
prog + ǫa)

)

Proof. Using standard techniques we can construct a minimal TDMA schedule T to contain
∆(G′

region) = O(1) sets [34]. By the definition of T , each process runs FRLE exactly once, during
the time allocated to the slot containing its region. No two regions running the protocol concur-
rently are within interference range, and all outstanding messages were aborted before the protocol
begins (by definition of FRLE, every process aborts any non-ack’d messages by the end of each
slot), so from the perspective of the processes running FRLE it is as if their region is running it
alone starting at time 0. The correctness of their outputs follows from Theorem 5.2.

6 Regional Multi-Message Broadcast

We combine the CRLE protocol from the previous section with the BMMB protocol to generate a
new protocol we call Regional Multi-Message Broadcast (RMMB). The resulting protocol improves
the performance of BMMB by confining the propagation of messages to the low-degree backbone of
leaders elected by CRLE. In more detail, the protocol first runs CRLE, which elects a leader in each
region in our fixed regionalized network. When an arrive(m)i event occurs at a non-leader process
i in region r, i sends m to the leader in r. The leaders run BMMB using the messages received from
non-leaders in their region as well as messages that came with an arrive input. This ensures that
every message that arrives in the network eventually gets sent to every leader in the network. The
leaders, in turn, propagate the message to the non-leaders in their region. (It is sufficient for each
leader to broadcast the message once, as by definition a leader is within communication range of
all of the processes in its region.) Because our regionalized network is defined such that contention
among leaders is constant (e.g., each leader is within range of only a constant number of other
leaders), the BMMB protocol run by the leaders has an improved time complexity as compared to
BMMB run by all processes.

The Regional Multi-Message Broadcast (RMMB) Protocol
To simplify analysis, the RMMB protocol makes use of three independent MAC automata (see
Section 2.4 for more on the use of multiple MAC automata). We label the automata collect,
leader election, and broadcast. At a high-level, we use the leader election MAC automaton to

18

elect a leader in each region using CRLE. We use the broadcast automaton to run BMMB on
this leader backbone once CRLE terminates. And we use the collect automaton to transfer
messages from arrive events at non-leaders to the leader in the region. This collect protocol
runs concurrently with the CRLE and BMMB protocols. Before CRLE completes, all processes
running collect will queue the messages in case they are elected leader.

State. Each process i maintains a broadcast queue and an arrive queue. Both are initially empty.
It also maintains a leader flag which is initially false, and two sets, delivered and rcvd, both
initially empty.

Leader Election. Each process i in region r behaves as follows with the leader election MAC
automaton. Starting at time 0, i executes the CRLE leader election protocol. At the end of the
protocol (i.e., after the time dedicated to the last set in the TDMA schedule has transpired),
i sets its leader flag to true if and only if it triggered a leader(r)i output during the CRLE
protocol.

Collect. Each process i in region r behaves as follows with the collect MAC automaton. When
an arrive(m)i or rcv((m, r))i event occurs,7 i places the message (m or (m, r)) on the back of
its arrive queue. As soon as i’s arrive queue becomes non-empty it does the following. If the
element at the head of the queue is a single message m′, it removes m′ from the arrive queue,
performs a deliver(m′)i output, adds m′ to the delivered set, places m′ on the back of the
broadcast queue, and then propagates m′ before moving on to the next element in the arrive
queue (if any). The propagate step depends on the status of the leader flag. If leader = true,
then propagate is a noop and takes up 0 time. If leader = false then i sends (m′, r) and then
waits for the corresponding ack((m′, r))i.

If the element at the head of the arrive queue is an (m′, r) message, then i removes (m′, r) from
the queue, performs a deliver(m′)i output, adds m′ to the delivered set, places m′ on the back
of the broadcast queue. (There is no propagate step for this case.)

Broadcast. Each process i in region r behaves as follows with the broadcast MAC automaton.
Process i waits the fixed amount of time required for the CRLE protocol executed on the leader
election MAC automaton to complete. If i has leader = true at this point, then it executes the
BMMB protocol using the broadcast queue maintained by the protocol running on the collect
MAC automaton, and using its delivered set in addition to the list rcvd used by BMMB to
determine when to pass along a message. If i is not a leader, then for each m received from the
broadcast MAC automata, if m is not in the delivered set it performs a deliver(m)i output and
then adds m to the delivered set.

We continue with the relevant theorems.

Theorem 6.1. The RMMB protocol solves the MMB problem.

Proof. Let α be an MMB-well-formed execution of the RMMB protocol composed with the specified
MAC automata and our fixed regionalized network. We note that α is user-well-formed, so it follows
that the abstract MAC layer service properties are satisfied for each MAC automaton.

Let arrive(m)i be an event in α. At the point when this event occurs, the size of the arrive
queue at process i is of some finite size. (The collect protocol ensures that a given message is added
to a given process’s arrive queue—and therefore, also its broadcast queue—at most once. To see
why, note that a message enters the arrive queue at process i only following an arrive(m)i event,
which happens only once, or a rcv((m, r))i event, which also happens only once, as only the single
process that received m through an arrive(m) event will propagate it.) Let us call this queue size
q. After at most (q +1)Fack time after this point, i’s collect protocol will have succeeded in sending
all q elements ahead of m in its queue, and then m itself, to its neighbors in G, a set which includes

7The rcv((m, r))i inputs describes a message (m, r) arriving from the MAC layer at i

19

all processes in its same region. All processes in its region add these messages to their arrive queue
and therefore eventually their broadcast queue, in the order they arrive. This includes the single
process j that eventually has its leader election protocol set its leader flag to true in this region.

There exists a point in α, therefore, where j both has leader = true and m in its broadcast queue.
At this point, we can apply the argument from the correctness theorem for BMMB (Theorem 3.1)
to the broadcast protocol to argue that this message eventually gets to a leader in every region,
and from there, to every process in every region, in finite time.

We now turn our attention to the time complexity of RMMB. The key observation is that
RMMB executes on a backbone of leaders. The contention on the broadcast MAC automaton is
at most ∆(G′

region) = O(1); therefore the relevant delay functions, fack and fprog, both evaluate to
constants.

For the following theorem, we assume a bound on the rate of of arrive events at individual
processes. Specifically, we bound the rate to prevent any process from having more than a constant
number of messages in its arrive queue at any one point. (This bound will be in O(1/Fack).)

The bound presented below improves the BMMB by removing the Fack and Fprog as multiplicative
factors on k and D(G), respectively.

We note that our restriction on arrival rates would not change the bound for the original BMMB
protocol (increased message arrivals is captured by K(m)). In the regionalized setting, however,
without this restriction we would have to complicate our analysis to take into account the possible
sizes of the arrive queues of non-leader processes. For faster arrival rates these queue sizes would
increase our time bound, perhaps toward infinity as the execution continues and queues continue
to grow faster then they can be emptied. Even with no arrival rate bound, we can still show
that with a simple improvement (the leader acknowledging collect messages using a separate MAC
automaton), some messages will arrive at the leader every Fprog time if there are any messages to
be sent. This style of analysis might lead to a theorem that captures a bound on throughput, not
the fate of a specific message. It remains interesting future work to formalize such bounds.

Finally, as before, we use b to describe the number of bits required to describe the id space.

Theorem 6.2. Let k be a positive integer and α be an MMB-well-formed execution of the RMMB
protocol composed with three MAC automata and a network. Assume that an arrive(m)i event oc-
curs in α. If |K(m)| ≤ k then the length of the interval between arrive(m)i and the last deliver(m)j
is O

(

max{b(F+
prog + ǫa), Fack}+ D(G) + k

)

.

Proof. We apply Theorem 3.2 to BMMB running on the leaders to get a bound on the interval
from when m arrives at a leader until the final deliver(m) at a leader. We then modify this bound
to take into account the time required for m to move between non-leaders and leaders.

Let j be the process that is elected leader in i’s region. Let π be the later of the following two
events: m being received (or arriving in the case i = j) or CRLE completes. By Theorem 3.2, the
interval between π and the last deliver(m) event at a leader is at most (D(G)+2k−2)Fprog +(k−
1)Fack. We can improve this further by observing that on the broadcast MAC automaton only the
leaders send. This constraint improves the parameters passed to fprog and fack to be no larger than
∆(G′

L), where G′
L is the subgraph of G′ including only leaders. By the definition of a regionalized

network, ∆(G′
L) = O(1), therefore we replace Fprog and Fack with two O(1) terms yielding a bound

that is O (D(G) + k).
We now increase the bound to include the time that might elapse between arrive(m)i and π.

There are two cases. If π describes m being received by j, then by our arrival rate assumption
when the arrive(m)i occurs, the size of the arrive queue at i is O(1). We apply the same argument

20

as for claim (c) from the proof of Lemma 3.3 to establish that m arrives at the leader in i’s region
within O(Fack) time.

If on the other hand π describes CRLE completing then by Theorem 5.3 this requires O
(

b · (F+
prog + ǫa)

)

time. In either case the time is at most max{b(F+
prog + ǫa), Fack}.

We increase the bound further to include the time that might elapse between the last deliver(m)
event at a leader and the last deliver(m) at any process. Consider the deliver(m)l event for any
leader l. At this point in the execution l has at most k messages ahead of m in its broadcast queue.
(Notice, this follows directly from our assumption that |K(m)| < k.) Because the contention on
the broadcast MAC automata is constant l will send m and receive an ack in O(k) time. (Notice,
it follows that non-leader processes receive the broadcast messages automatically simply by being
in the same region as a leader that sends.) This does not change the asymptotics of our bound,
leaving us with a result that matches the theorem statement.

7 Adapting RMMB for Mobile Networks

Our previous results assumed static networks. Here we adjust RMMB to tolerate (bounded) mo-
bility. The original RMMB protocol was comprised of three sub-protocols: leader election, collect,
and broadcast. Our mobile RMMB protocol uses the same structure, with these sub-protocols
modified as needed to accommodate mobility. As before, we make use of leader election, collect,
and broadcast MAC automata. We now include a fourth MAC automaton called leader-ack used
by the collect sub-protocol in addition to the collect automaton.

7.1 The Region Exit Bound

We assume each process maintains a region exit bound state variable which in all execution states
contains a time value no later than the time when the process will next exit the current region.
We assume that while a process remains within a region, this value does not change. In some
settings, enough information might be available to calculate a non-trivial bound (e.g., as a function
of velocity and position); in other cases, such information might not be available. However, even
without any information on process mobility, the constraints of the bound can be trivially satisfied
by setting the variable equal to the current time upon first entering a region.

We continue by describing each of the sub-protocols used by our mobile RMMB protocol.

7.2 Mobile leader election

In the following, let tCF = tCRLE + tFRLE, where tCRLE describes the time required to complete
an instance of CRLE and tFRLE describes the time required to complete an instance of FRLE. Our
mobile leader election sub-protocol is parameterized by a time bound t. For any t ≥ tCF , and any
execution α, the sub-protocol should satisfy the following three properties for every region r:

1. at every point in α, there is at most one leader in r;

2. if at every point in α, there is some process in r whose region exit bound is at least t greater
than the current time, then at all times greater than or equal to t, there is a leader in r; and

3. for every process j that transforms from leader to not leader while in r, the exit bound of j
in r is less than t beyond the current time when the transformation occurs.

Below we describe the modified leader election sub-protocol of RMMB.

21

The t-Mobile Leader Election Sub-Protocol.
In the t-mobile leader election sub-protocol, for some time bound t, each process i runs the leader
election sub-protocol from RMMB with the following mobility-inspired modifications. Process
i now runs CRLE continuously, launching a new instance immediately following the global
completion of the previous. (Recall that an instance of CRLE requires a fixed amount of time,
so all processes are trivially synchronized.) At the beginning of each TDMA slot s in a given
instance of CRLE, i executes the reg(loc(i))-FRLE sub-protocol, if and only if reg(loc(i)) ∈ s.
It does not join ongoing instances of FRLE when entering a new region in the middle of a slot.
In addition, instead of using its own id in the sub-protocol, i calculates and uses a leader id (lid)
which is a triple (ℓ, x, i), where ℓ is a boolean flag. The flag ℓ is set to 1 if and only if: (a) i is
currently the leader in the region; and (b) its exit bound is at least t beyond the current time.
The value x encodes the region exit bound for i at this point. Process i calculates its lid at the
beginning of a slot and uses that same lid throughout the FRLE instance.

We now show that the mobile leader election protocol satisfies our desired three properties for
t ≥ tCF .

Property 1 follows from the safety of FRLE and the restriction that processes execute FRLE
only if they are in the region at the beginning of the corresponding slot.

To see why property 2 is satisfied, consider any region r, and the first TDMA slot for r. Assume
the property precondition holds. It follows that at least one process knows it will be around for at
least t ≥ tCF more time. Because the lid encodes this dwell time, and FRLE favors higher ids, the
leader elected will remain in the region for at least tCLRE additional time (tCF = tCRLE + tFRLE ,
and tFRLE was used by the slot)—enough to make it to the end of the next slot for this region. At
the beginning of this next slot, there will be at least one process remaining with an exit bound at
least tCF in the future. If the leader also has at least this much dwell time, it will remain leader
and remain in the region until the next election, otherwise, a new process will be elected leader
that will remain in the region until the next election. The argument can be extended to all slots.

Property 3 follows by the definition of lid. If the current leader has a region exit bound at least t
beyond the current time at the beginning of an FRLE slot for its region, it will be the only process
in the region with its ℓ bit set to 1. Because ℓ is the high-order bit in lid, the current leader will
win the election.

7.3 Mobile Collect

Let function fcol : N → R be defined such that fcol(q) = Fack(q + 1), for q ∈ N. Our mobile collect
sub-protocol should satisfy the following property in any given execution: if an arrive(m)i event
occurs for some process i in region r with leader j, such that i’s arrive queue is of size q at this
point, and both i and j remain in r for at least fcol(q) time after the event, and j remains a leader
during this time, then within this interval m is removed from i’s arrive queue and added to j’s
broadcast queue.

Below we describe the modified collect sub-protocol of RMMB.

The Mobile Collect Sub-Protocol.
In the mobile collect sub-protocol each process i runs the collect sub-protocol from RMMB with
the following mobility-inspired modifications. For every arrive(m)i event occurring at some time
t, we label m with a timestamp (t, k, i), where k describes the number of arrive events that
occurred at i at time t before this event. We add the labelled message to the arrive queue which
we now maintain sorted lexicographically on the timestamps. In addition, we now require each
leader to send an acknowledgement message for each message received from a non-leader. The
leader can use the leader-ack MAC automaton for these acknowledgements. (By our assumption
from Section 4, the contention among leaders is constant, therefore these acknowledgements can

22

be sent and received fast.) A non-leader receiving an acknowledgement message from a leader
removes the message from its arrive queue. It also aborts this message if it has not already
received a corresponding MAC ack. A non-leader continually resends the message at the head
of its queue (waiting for a MAC ack before sending again) until it receives an acknowledgement
from a leader.

It follows directly from the definition of the sub-protocol that our property is satisfied for the
given definition of fcol. Notice, that if only process i is sending on the collect automaton, this
function can be improved to O(Fprog · (q + 1)), as the leader’s acknowledgements arrive in O(1)
time on the leader-ack MAC automaton.

7.4 Mobile Broadcast

Our mobile broadcast sub-protocol should satisfy the following property in any given execution:
There exists a function fbcast : N → R, where fbcast(q) = Θ(q), such that if m is added to a
broadcast queue of length q at leader process i in region r, and this process, as well as the leaders
of all regions neighboring r at this point, remain leaders for fbcast(q) time, then by the end of
this interval m has been removed from i’s broadcast queue and has been present in the broadcast
queue of some leader in each region neighboring r at some time by the interval’s end. (Notice, this
property is satisfied even if a former leader in a neighboring region had m in its broadcast queue
a long time before i added m to its queue. Informally, it says that for each neighboring region
r′, either i gets m to the current leader of r′, or this leader, or a former leader in r′, has already
received m.)

Below we describe the modified broadcast sub-protocol of RMMB.

The Mobile Broadcast Sub-Protocol.
In the mobile broadcast sub-protocol each process i behaves the same as in the broadcast
sub-protocol of RMMB with the following mobility-inspired modifications. Process i keeps the
broadcast queue sorted on the timestamps added to each message by mobile collect. If i is a
leader then becomes a non-leader, it empties the contents of its broadcast queue into the arrive
queue used by its collect sub-protocol. If i is a non-leader and then becomes a leader, it empties
its arrive into its broadcast. In both cases it sorts the resulting non-empty queue as usual.
Process i can deliver any broadcast message it receives that it has not yet delivered.

Our property is satisfied as each message on a broadcast queue requires only a constant amount
of time to be sent from a leader to its neighboring leaders.

7.5 The Mobile RMMB Protocol

We combine the sub-protocols described above to generate the mobile RMMB protocol. Below we
prove a preliminary theorem that proves RMMB solves the MMB problem under a certain set of
constraints on the rate of arrive events and the mobility of nodes.

In the following, we say a network is T -stable, for some nonnegative real T , if and only if every
process calculates an exit bound at least T past the current time upon entering a new region, and
for all regions and for all times there exists at least one process with an exit bound at least T past
the current time. We also reference the tCF time bound defined in our discussion of the mobile
leader election sub-protocol. In the following, we use the constant D to refer to the maximum
diameter over all G and all executions of the network.

We begin with a key lemma which we use to prove the more general theorem that follows.

23

Lemma 7.1. Let k′ be a positive integer and X be a nonnegative real. Let α be a MMB-well-formed
execution of the mobile RMMB protocol, composed with four MAC automata and a regionalized
(2X + max{X, tCF })-stable network, with X + tCF passed as the parameter to the mobile leader
election sub-protocol.
Assume an arrive(m)i event occurs in α at time t, there are at most k′ messages with timestamps
smaller than m in process arrive and broadcast queues over all states labelled with time t, and
X ≥ k′Fack. It follows that a deliver(m)j event occurs for all j by time t + (D + 1)2X + X.

Proof. We first establish the following three claims:

1. At all points in α, there exist no more than k′ messages ahead of m in any broadcast or arrive
queue.

2. At all points in α, and every region r, there is a leader in r that has at least X time left in
the region.

3. If a message m arrives at a leader in region r at time t′, then for every neighboring region r′,
at some time t′′ ≤ t′ + 2X a leader in r′ receives m.

Claim 1 follows from our theorem assumption which states that at most k′ messages with smaller
timestamps than m are in process queues in any state labelled with time t. Any messages that
arrive after time t will have a later timestamp, and because the queues are sorted by timestamps,
they will be placed behind m.

To prove the first part of claim 2—that there is always a leader—we defer to property (b) of
the leader election sub-protocol. To prove the second part—that this leader has at least X time
left—fix some leader i in some region r at some point in α. Consider the last leader election TDMA
slot for r. Let t′ be the time this election began. We know i won this election. There are two cases
for i’s victory.

In the first case, i had its high order lid bit set to 1. By the definition of the leader election
protocol, and the parameter specified in the theorem statement, i keeps this bit at 1 only if it had
an exit bound value of at least t′ + tCF + X at the beginning of the slot.

In the second case, no process executed FRLE with the high order bit set to 1. Here, FRLE
favors the process with the highest exit bound at the beginning of the slot. By assumption, at least
one process has a bound of t′ + (2X + max{X, tCF }) > t′ + tCF + X, at this point. Therefore, if i
won, its bound was at least this large. In both cases, because no more than tCF time has elapsed
since the beginning of the last election, process i has at least X time left in the region.

To prove claim 3, consider a leader i that receives m in r for the first time at time t′. If i remains
leader for the next X time, this is sufficient for i to clear its broadcast queue and successfully send
m. (Recall: X = k′Fack, and by our first claim, at most k′ messages can get ahead of m in the
queue.) By our second claim, there is always a leader in every neighboring region, so there will be
some leader process in each region to receive m when the send occurs.

On the other hand, if i loses its leadership at some time t′′ ≥ t′, before sending m, its broadcast
queue transforms into an arrive queue. The new leader in the region, which we label j, has an exit
bound of at least t′′ + (2X + max{X, tCF }). By our second claim, we know i will remain in this
region for at least X more time after losing its leadership—enough to finish clearing its queue and
get m to j. Leader j still has more than X time as leader at this point, enough time to clear its
broadcast queue and send m. The total time for i to get m to j is X, and the total time for j to
send m is also bounded by X, providing the needed 2X.

With our claims established, we can now finish the proof. Consider the arrive(m)i event from
the lemma statement. Within X time the message m arrives at a leader’s broadcast queue. We

24

then repeatedly apply the third claim from above to show that the message arrives at, and is
subsequently sent by, a leader in every region within (D + 1)2X additional time.

Now consider some arbitrary process j and the interval of length less than or equal to X +
(D + 1)2X between the arrive(m) event and the message being received and sent by every leader.
During every point of this interval, label each region r as done if and only if m has been received
by a leader in r either from a neighboring leader or a process in r. Consider the first point at which
j inhabits a region labelled done. There are two cases. The first case is that j is in a region r that
transforms from not done to done. Here, m is coming from a neighbor or a process in r, meaning
that j will also receive (and subsequently deliver) message m. The second case is that j moves from
a region r′ that is not done into a region r that is done. At this point, the leader in r has not yet
sent m (if it had, we would be in the first case with respect to r′). By our stability assumption, j
remains in r for longer than the 2X upper bound on the time required for the leader in r to send.
When this send occurs, j will receive (and subsequently) deliver message m.

We conclude with a theorem capturing a particular restriction on arrive-rates that ensures mobile
RMMB solves the MMB problem:

Theorem 7.2. Let k be a positive integer, Fmax
ack and tmax

CF be nonnegative reals, and T = (D +
1)2kFmax

ack + kFmax
ack . If we restrict the rate of arrive events such that no more than k such events

happen in any interval of length T , and consider only regionalized (2kFmax
ack + max{kFmax

ack , tmax
CF })-

stable networks with Fack ≤ Fmax
ack , and tCF ≤ tmax

CF , then the mobile RMMB protocol, executed with
kFmax

ack + tmax
CF passed as the parameter to the mobile leader election sub-protocol, solves the MMB

problem.

Proof. This theorem identifies an arrival rate for which our mobile RMMB protocol solves the MMB
problem. Specifically, it restricts arrive events such that no more than k occur in any interval of
length T = (D + 1)2kFmax

ack + kFmax
ack . Put another way, each message requires enough time to

propagate through the network before too many new messages can arrive—preventing queue pile-
ups. The theorem also restricts process mobility by requiring that the execution is T ′-stable, for
T ′ = (2kFmax

ack + max{kFmax
ack , tmax

CF }). This allows leaders enough time to make progress clearing
out their broadcast queues before potentially losing their leadership. Below, we formalize our proof
with an argument by induction.

We can show by induction on message arrival events that for each arrive(m) we satisfy the queue
size constraint needed by Lemma 7.1—thus ensuring the delivery of m to all processes.

In more detail, order the arrive events by their timestamps. We can describe them as an ordered
sequence e1, e2, For each ei, let m(ei) be the message associated with the ith arrive event in this
order, let t(ei) be the time at which this arrive occurred, and let q(ei) be the number of messages
with smaller timestamps than m(ei) in queues in any state labelled with time t(ei).

Our inductive hypothesis for a given i > 0 states that for all j, 1 ≤ j ≤ i, q(ej) ≤ k. (Notice, this
tells us that each satisfies the constraints of Lemma 7.1 for k′ = k and will therefore be delivered
to all processes, and thus cleared out of all queues, in T time.)

To prove the inductive step for i + 1, given the hypothesis holds for i, we first note that there
are no more than k − 1 events ej such that j ≤ i and t(ej) ≥ t(ei+1)− T . If k such events existed
we violate the theorem assumption (this would be an interval of size T with k + 1 arrive events.)
However, for events that took place more than T time before ei+1 by our hypothesis and Lemma 7.1
they would have delivered and cleared out of the system before ei+1 (i.e., not exist in any queue).
It follows that q(ei+1) ≤ k, as needed.

Finally, we note that the base case is trivial for i ≤ k.

25

8 Conclusions

The large number of possible communication assumptions complicates the study of algorithms and
lower bounds for radio networks. Results proved for one set of assumptions, for example, might be
invalid using a slightly different set of assumptions, and algorithm designers are forced to tackle the
low-level issue of contention management again and again. In this paper, we addressed this problem
by introducing the abstract MAC layer—a service that provides reliable local broadcast with timing
guarantees stated in terms of abstract delay functions applied to the relevant contention. Inspired
by real network link layers, this abstraction splits the task of designing radio network algorithms
into two pieces: implementing the abstract MAC layer using a specific set of network assumptions,
and designing and analyzing algorithms that use the abstract MAC layer. We then validated our
approach by using the formalism to study the problem of multi-message broadcast (MMB). We
presented and analyzed solutions to this problem in static networks with and without location
information, and then extended the latter solution to the mobile setting.

The abstract MAC layer definition is general and meant to accommodate a wide variety of
underlying network models. The details of its definition, however, are open to modification. Indeed,
we concede that the layer definition that ultimately finds the widest use will likely differ from the
definition presented here. Perhaps, for example, the guarantees will be stated in probabilistic
terms (i.e., as in this recent extension [20]), or the communication and interference graphs will
be replaced with a more flexible construction; related suggestions along these lines have included
the addition of edge weights and the replacement of one interference graph with multiple graphs—
each corresponding to different strengths of interference. Such tinkering is both inevitable and
encouraged: this study provides the foundation for what will hopefully become a large body of
work.

Recent Extensions Our basic work on abstract MAC layers has been extended in several ways
since the original conference publication [27]. In [10], Cornejo et al. show how to build a version
of the dynamic graph model of Walter et al. [37] over our abstract MAC layer. The dynamic graph
model has already been used to develop and analyze many high-level radio network algorithms [37,
36, 17]; building this model over the abstract MAC layer allows this analysis to be extended to
new network models. In [20], Khabbazian et al. generalize the definition of the layer to replace the
deterministic delay functions with probability distributions, allowing for more advanced analysis of
probabilistic algorithms. They then use this variant of the layer to study efficient solutions to both
broadcast and multi-message broadcast. Finally, work in progress by Khabbazian et al. studies
coding-based implementations of the layer, looking in particular at Zig-Zag coding [14].

Open Questions In addition to studying basic primitives such as neighbor discovery or unicast
communication, it remains open to explore solutions to more advanced problems—perhaps building
structures such as trees or dominating sets over the networks. It would also be interesting to study
additional questions and extensions to the MMB problem, such as the formulation of general
throughput bounds or calculating the costs of adding sender acknowledgements.

Improvements to the formalism itself provide another important area of study. An interesting
direction to investigate is adding edge weights to the communication and interference graphs,
allowing for more subtle distinctions in the definition of interference. Such improvements will likely
prove necessary for the successful modeling of basic radio network models such as those that make
use of signal to interference-plus-noise ratios (SINR).

It is also important to study definitions of the abstract MAC layer that allow some properties
to fail. For example, consider a natural variant of the model that sometimes generates acknowl-

26

edgements even though some neighbor(s) did not receive the message. Can we design protocols
that degrade gracefully under such failures—perhaps always maintaining safety and relying on the
correct acknowledgements only for liveness?

In addition, this new model introduces new questions concerning fundamental limitations: what
can and cannot be solved using an abstract MAC layer, and under what conditions? Such bounds
can concern both global problems such as network-wide broadcast, and local problems such as
breaking symmetry among neighbors. A key feature of the abstract MAC layer definition is the
modeling of communication by two graphs: one describing reliable communication and one de-
scribing unreliable communication. Recent work [26, 28] highlights the surprising impact of having
unreliable communication edges, showing, for example, that there exists small diameter graphs in
which randomized broadcast requires Ω(n) rounds. Further investigation into techniques for dealing
with this uncertainty is warranted.

Finally, it will prove useful to analyze specific MAC layer strategies for specific radio network
models, providing concrete definitions for the delay functions. This work can span from the formal-
ization of existing strategies, like the decay approach described in Section 2.3, to novel strategies
such as those based on network coding.

Acknowledgements We thank those who contributed comments and suggestions towards this
project. In particular, we acknowledge Jennifer Welch and Seth Gilbert for their careful readings
and helpful suggestions, and thank Alex Cornejo, Majid Khabbazian, Darek Kowalski, Rotem
Oshman, Andrea Richa, and Saira Viqar for their helpful discussions and comments. We also
thank the anonymous reviewers of both the conference and journal versions of this work—we are
grateful for their detailed notes and insightful questions.

References

[1] I. 802.11. Wireless LAN MAC and Physical Layer Specifications, June 1999.

[2] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. On the Complexity of Radio Communication.
In The Proceedings of the Symposium on Theory of Computing, 1989.

[3] R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient Emulation of Single-Hop Radio Network
with Collision Detection on Multi-Hop Radio Network with no Collision Detection. Distributed
Computing, 5:67–71, 1991.

[4] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time-Complexity of Broadcast in Multi-Hop
Radio Networks: An Exponential Gap Between Determinism and Randomization. Journal of
Computer and System Sciences, 45(1):104–126, 1992.

[5] I. Chlamtac and S. Kutten. On Broadcasting in Radio Networks: Problem Analysis and
Protocol Design. IEEE Transactions on Communications, 33(12):1240–1246, 1985.

[6] B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic Broadcasting
in Unknown Radio Networks. In The Proceedings of the Symposium on Discrete Algorithms,
2000.

[7] B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic Broadcasting
in Ad Hoc Radio Networks. Distributed Computing, 15(1):27–38, 2002.

27

[8] G. Chockler, M. Demirbas, S. Gilbert, N. Lynch, C. Newport, and T. Nolte. Consensus and
Collision Detectors in Radio Networks. Distributed Computing, 21:55–84, 2008.

[9] A. Clementi, A. Monti, and R. Silvestri. Round Robin is Optimal for Fault-Tolerant Broad-
casting on Wireless Networks. Journal of Parallel and Distributed Computing, 64(1):89–96,
2004.

[10] A. Cornejo, N. Lynch, S. Viqar, and J. Welch. A Neighbor Discovery Service Using an Abstract
MAC Layer. In The Proceedings of the Allerton Conference on Communication, Control and
Computing, 2009.

[11] A. Czumaj and W. Rytter. Broadcasting Algorithms in Radio Networks with Unknown Topol-
ogy. In The Proceedings of the Symposium on Foundations of Computer Science, 2003.

[12] B. Das and V. Bharghavan. Routing in Ad-Hoc Networks Using Minimum Connected Domi-
nating Sets. In The International Conference on Computer Communication, 1997.

[13] L. Gasieniec, A. Pelc, and D. Peleg. The Wakeup Problem in Synchronous Broadcast Systems.
SIAM Journal of Discrete Mathematics, 14(2):207–222, 2001.

[14] S. Gollakota and D. Katabi. ZigZag Decoding: Combating Hidden Terminals in Wireless
Networks. In The Proceedings of the ACM SIGCOMM Conference, 2008.

[15] O. Goussevskaia, T. Moscibroda, and R. Wattenhofer. Local Broadcasting in the Physical
Interference Model. In Joint Workshop on Foundations of Mobile Computing, 2008.

[16] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE Transactions on
Information Theory, IT-46(2):388–404, 2000.

[17] R. Ingram, T. Radeva, P. Shields, J. Walter, and J. Welch. An Asynchronous Leader Election
Algorithm for Dynamic Networks without Perfect Clocks. In The Proceedings of the Interna-
tional Symposium on Parallel and Distributed Processing, 2009.

[18] T. Jurdzinski and G. Stachowiak. Probabilistic Algorithms for the Wakeup Problem in Single-
Hop Radio Networks. In Proceedings of the International Symposium on Algorithms and Com-
putation, 2002.

[19] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O Automata.
Synthesis Lectures on Computer Science. Morgan Claypool Publishers, 2006. Also MIT-LCS-
TR-917a.

[20] M. Khabbazian, D. Kowalski, F. Kuhn, and N. Lynch. The Cost of Global Broadcast using
Abstract MAC Layers. Technical report, MIT Computer Science and Artificial Intelligence
Laboratory, 2010.

[21] D. Kowalski and A. Pelc. Broadcasting in Undirected Ad Hoc Radio Networks. In The
Proceedings of the International Symposium on Principles of Distributed Computing, 2003.

[22] D. Kowalski and A. Pelc. Time of Radio Broadcasting: Adaptiveness vs. Obliviousness and
Randomization vs. Determinism. In Proceedings of the Colloquium on Structural Information
and Communication Complexity, 2003.

[23] D. Kowalski and A. Pelc. Time of Deterministic Broadcasting in Radio Networks with Local
Knowledge. SIAM Journal on Computing, 33(4):870–891, 2004.

28

[24] D. R. Kowalski and A. Pelc. Deterministic Broadcasting Time in Radio Networks of Unknown
Topology. In The Proceedings of the Symposium on Foundations of Computer Science, 2002.

[25] E. Kranakis, D. Krizanc, and A. Pelc. Fault-tolerant Broadcasting in Radio Networks. Journal
of Algorithms, 39(1):47–67, 2001.

[26] F. Kuhn, N. Lynch, and C. Newport. Brief Announcement: Hardness of Broadcasting in
Wireless Networks with Unreliable Communication. In The Proceedings of the International
Symposium on Principles of Distributed Computing, 2009.

[27] F. Kuhn, N. Lynch, and C. Newport. The Abstract MAC Layer. In The Proceedings of the
International Symposium on Distributed Computing, 2009.

[28] F. Kuhn, N. Lynch, C. Newport, R. Oshman, and A. Richa. Broadcasting in Radio Networks
with Unreliable Communication. Manuscript, 2010.

[29] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Fast Deterministic Distributed
Maximal Independent Set Computation on Growth-Bounded Graphs. In The Proceedings of
the International Symposium on Distributed Computing, 2005.

[30] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing Newly Deployed Ad Hoc and
Sensor Networks. In The Proceedings of the International Conference on Mobile Computing
and Networking, 2004.

[31] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Fault-Tolerant Clustering in Ad Hoc and Sensor
Networks. In The IEEE International Conference on Distributed Computing Systems, 2006.

[32] T. Moscibroda and R. Wattenhofer. Maximal Independent Sets in Radio Networks. In The
Proceedings of the International Symposium on Principles of Distributed Computing, 2005.

[33] T. Moscibroda and R. Wattenhofer. The Complexity of Connectivity in Wireless Networks.
In The Proceedings of Conference on Computer Communications, 2006.

[34] R. Nelson and L. Kleinrock. Spatial TDMA: A Collision-Free Multihop Channel Access Pro-
tocol. IEEE Transactions on Communications, 33(9):934–944, 1985.

[35] C. Scheideler, A. Richa, and P. Santi. An O(log n) Dominating Set Protocol for Wireless Ad-
Hoc Networks Under the Physical Interference Model. In The ACM International Symposium
on Mobile Ad Hoc Networking and Computing, 2008.

[36] J. Walter, G. Cao, and M. Mohanty. A k-Mutual Exclusion Algorithm for Wireless Ad Hoc
Networks. In The Proceedings of the Workshop on Principles of Mobile Computing, 2001.

[37] J. Walter, J. Welch, and N. Vaidya. A Mutual Exclusion Algorithm for Ad Hoc Mobile
Networks. Wireless Networks, 7(6):585–600, 2001.

[38] P.-J. Wan, K. Alzoubi, and O. Frieder. Distributed Construction of Connected Dominating
Set in Wireless Ad Hoc Networks. Mobile Networks and Applications, 9(2):141–149, 2004.

29

