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Abstract

Several distinct issues important in integral approximations of the three-dimensional boundary-layer
equations are addressed. One of these is the requirement, justified on the basis of the nature of the
full differential equations, for hyperbolicity of integral equation systems. It is generally not feasible
to analytically determine the mathematical character of these systems, except in very simple cases,
because of the empiricism necessary for closure. Furthermore, the use of general systems is inhibited
because there is no guarantee that they are hyperbolic. A novel method accommodating the role
of both equations and closure, so that systems are always hyperbolic with physically-consistent
characteristic directions, is proposed. Another issue considered is the calculation of bidirectional
crossflows for which a well-conditioned system, for use in Newton solvers, is devised. The validity of
this system is demonstrated by comparing results with a numerical solution of the full differential
boundary-layer equations for the case of an infinite-swept wing. Finally, a fully-simultaneous scheme
coupling inviscid flow, calculated using a simple Panel method, to general integral systems is devised
with the facility to use empirical closure parameters as system parameters. The coupling scheme is
demonstrated by computing the separated flow downstream of a smooth obstacle. For calculations,
the equations are posed in conservation form in local Cartesian coordinates and discretized using
the finite-element method. Unlike dissipation schemes used in previous methods, a Petrov-Galerkin
streamline upwinding weight function, adapted heuristically for the coupled equation system, is used
to control spurious oscillations.
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Chapter 1

Introduction

1.1 Context and general objectives

The ability to predict viscous flows in three dimensions quickly is essential for the modern designer.
To this end, against a background of progressively increasing computational resources, a hierarchy of
general approaches of varying sophistication have been proposed in the literature. Near the apex are
optimization codes that solve the complete Navier-Stokes equations. More economical, however, are
codes of less generality based on viscous-inviscid interaction techniques that use the boundary-layer
equations to solve the viscous flow physics. Such approaches can be very effectively applied to design

efforts [44, 55].

Boundary-layer solution methods are based on either the full differential equations or some integral
approximation of these equations. The economy of using the differential boundary-layer equations
compared to the Navier-Stokes equations is eroding with time. However, there are two major factors
that work in their favor that will keep them in the designer’s tool box for the foreseeable future.
The first is the remarkable success of the boundary-layer concept itself which has been convincingly
demonstrated by a large corpus of research in the literature. The second, which applies to turbulent
flows, is the necessity for an empirical turbulence model which masks the formal accuracy of retaining
the higher-order terms in the Navier-Stokes equations. Consequently, within a design framework,

there is an enduring justification not to resort to solving the full Navier-Stokes equations regardless
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of the diminishing relative economies of cost.

Much of the improved economy of the boundary-layer approximation results from the change in the
mathematical character of the equations which allows attached, and with special techniques even
separated, flows to be solved by marching algorithms. Furthermore, a large body of research has led
to substantial insight into the physical behavior of viscous flows as a function of distance in the wall-
normal direction. This naturally has driven the development of integral solution methods for the
boundary-layer equations resulting in significant computational savings. Very roughly, solving the
integral equations amounts to an N? effort compared to an N3 one for the differential boundary-layer
equations. Moreover, many comparative studies have shown that integral methods are, on average,

just as accurate as differential ones [63].

In going from the Navier-Stokes equations to the differential boundary-layer equations, the mathe-
matical character changes from one that is elliptic (boundary value problem) to one that is hyperbolic
(initial value problem). This metamorphosis is understood well and, furthermore, related problems
associated with separation have been mastered to an adequate degree with the development of
viscous-inviscid interaction schemes. On the other hand, the applicability of this change in charac-
ter to the integral equations has received scant mention in the literature. In view of the variety of
systems possible and of the pivotal importance of the character in devising numerical schemes, this
paucity represents an enormous gap in the theory and implementation of integral equation systems.
Much of the focus of this thesis is an attempt to fill this gap for direct-mode boundary-layer equation

systems.

There are two other objectives of this thesis. One is to develop and validate a general integral system
for predicting bidirectional crossflows suitable for Newton /implicit solution methods. The second is
to develop a method to simultaneously couple integral boundary-layer systems to an inviscid flow

without restricting the ability to use different assumed closure models within it.

1.2 General features of a three-dimensional boundary layer

A three-dimensional boundary layer is characterized by the existence of a cross-stream component of
velocity. It is customary to refer to the velocity component in the streamwise direction, namely the
component projected in the plane of the outer-edge streamline tangent, as streamwise flow and the

component in the cross-stream direction as crossflow. These two components are used as convenient
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Figure 1-1: Streamwise and cross-stream velocity components in a typical three-dimensional bound-
ary layer.

graphical representations for the wall-normal boundary-layer velocity-vector distribution as shown

in Figure 1.1.

The predominant physical mechanism for the generation of crossflow in an aeronautical context is a
cross-stream (or transverse) pressure gradient indicated in Figure 1.1 by the curvature of the outer-
edge streamline. The lower-momentum fluid near the wall responds more rapidly to the pressure
gradient than higher-momentum fluid nearer the edge thereby skewing the velocity vector across the

boundary layer.

The same mechanism can cause the velocity vector to skew is such a way so as to produce crossover
profiles. Figure 1.2 shows the skewing in the crossflow resulting from a change in the direction of
the cross-stream pressure gradient. In Figure 1.2, limiting streamlines are also indicated. These
correspond to surface oil-flow trace lines in visualization experiments and are tangent to the shear-
stress gradient vector at the wall shown in Figure 1.1. Crossflows can also be generated by shear

gradients.
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Figure 1-2: Unidirectional and bidirectional crossflows in a three-dimensional boundary layer.

1.3 Brief literature survey

A variety of integral solution methods for three-dimensional boundary layers have been devised
dating as far back as one by Prandtl. In the 1960’s, their number proliferated rapidly, most based
on a frequently-used three-equation system. More sophistication in both physical modeling and in

the use of additional equations for greater flexibility has since resulted.

Before presenting a representative survey of methods described in the literature, it will be important
to highlight the use of different coordinate systems. The equations solved in this thesis are all posed
in conservation form in simple Cartesian coordinate systems and solved using the finite-element
(or finite-volume) method. This approach was devised in the author’s Masters thesis [40, 41],
and was refined by Nishida [44]. It is significantly different from the approach invariably used
in the literature. This traditional approach is driven by finite-difference numerical schemes and
involves the use of equations posed in orthogonal or non-orthogonal curvilinear coordinates. The
resulting equations are analytically cumbersome and require the explicit numerical approximation
of coordinate metrics and curvatures and often also the careful prior consideration of streamline
orientation (which can place awkward limits on the computational scheme). Under the new approach,
the analytical approximation of grid stretching and curving is obviated, the need fulfilled conveniently

and simply at the numerical level through the finite-element method.

20



In the surveys that follow, references are made to equations and models of physical behavior that
are described in greater detail in the body of this thesis. The list is not meant to be exhaustive,
merely representative of methods presented in the literature. Salient features of some ‘conventional’

integral methods are summarized first followed by those of a few closely related ones.

1.3.1 Conventional integral methods

Hall (1959), Cooke (1961)

In one of the earliest methods devised for computing three-dimensional boundary layers, Hall [27]
used the two momentum equations in curvilinear streamline coordinates with a closure scheme that
was an extension of Thwaites’ method in two dimensions for laminar flow. A very similar method

was also described by Cooke [6].

Smith (1966, 1972), Cumpsty and Head (1967), Myring (1970)

Smith developed methods based on the two momentum equations and the entrainment equation on
curvilinear orthogonal [53], and later on non-orthogonal [54], curvilinear coordinates for turbulent
flow. Simple one-parameter streamwise profiles (power law) and cross-stream profiles (Mager, John-
ston) were used. Cumpsty and Head [12, 13] used the same system and closure scheme to compute
turbulent flows on a wing. Myring’s [42] method served as the prototype for Smith’s non-orthogonal
one. Myring’s paper is also notable in that it contains the first detailed study of the nature of the

resulting integral system, which was performed for both Mager’s and Johnston’s crossflow models.

Stock (1977)

Stock [56] augmented Myring’s method for turbulent flow with two additional equations, the first for
the streamwise variation of skin friction based on a two-parameter assumed velocity profile, and the
second for the source term in the entrainment equation. The second equation was a lag-type equation
to account for upstream history effects in the streamwise direction. For laminar flow, in order to
allow for bidirectional cross-stream velocities, crossflow profiles were constructed in a somewhat
ad-hoc manner to ensure symmetry and correct cross-over directions. The equation system used
for the laminar calculations were the two momentum equations (called the “x-pulse” and “y-pulse”
equations) and the two kinetic-energy component equations (called the “moment of momentum”

equations).

Cousteix and Houdeville (1981), Cousteix (1986)

In a series of papers [7, 8, 9, 10], the authors use Myring’s system, with their own closure relation-
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ships, to investigate the nature of singularities in the equations for turbulent flow. Furthermore,
with approximate one-parameter closure (neglecting Reynolds number dependence) for the stream-
wise flow and Johnston’s crossflow model, the system was demonstrated to be hyperbolic [10]. In
reality, the closure relationships in this characteristic analysis differ very slightly from those in
Myring’s original investigation. However, the authors further demonstrate an analogy between
steady three-dimensional flow and mildly unsteady two-dimensional flow to illustrate the difference

between separation lines and singularity lines.

Yoshihara and Wai (1984)

Yoshihara and Wai [72] solve for separated flow over a wing using a four-equation system comprising
the entrainment equation, the two momentum equations and Green’s lag entrainment equation [26].
A characteristic analysis reveals regimes of non-hyperbolic behavior and is used to restrict the
operating range to the hyperbolic regime. The solution is marched in direct mode using the method
of characteristics to ensure compliance with domain of dependence constraints. The difficulty posed
by the separation line, near which only a unique external pressure gradient is admitted by the
equations, is dealt with by explicitly modifying the source terms in the characteristic-basis ordinary
differential equations to comply with compatibility conditions. Downstream of the separation line, a

sign of the characteristic marching coordinate is reversed to satisfy flow of information constraints.

Swafford and Whitfield (1985)

Swafford and Whitfield [59] use time-dependent versions of the two momentum equations and the
total kinetic-energy equation in their system formulated for non-orthogonal curvilinear coordinates.
Steady-state solutions are computed by explicit time stepping using a Runge-Kutta scheme. Time-
dependent pressure gradient terms are neglected in the transient solution. Side boundary conditions
are not applied; the solution is simply extrapolated from the interior. Johnston’s model for the
crossflow is used, which, as demonstrated in this thesis with similar streamwise closure, yields a
hyperbolic system. Consequently, the authors are able to use backward (upstream) space differencing
in their discretization scheme obviating the need for explicit artificial smoothing. However, the CFL
condition for the size of time steps with this scheme is twice as restrictive compared to that for

central differencing.

Karimipanah and Olsson (1992)
Karimipanah and Olsson [31] use Myring’s system in curvilinear streamline coordinates to investigate
the effects of rotation and compressibility on rotor-blade boundary layers. Empirical closure is based

on formulae devised by Michel et. al. [24].
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Mention should also be made of several methods based on small-crossflow assumptions (where the
streamwise flow is computed first and then used to compute the crossflow) that have been used in

the literature [2, 50].

1.3.2 Related methods

It may be worthwhile to briefly mention three techniques described in the literature that are related

to conventional integral methods.

Caille and Schetz (1992)

Caille and Schetz [4] extend the two-dimensional strip integral method of Moses to turbulent bound-
ary layers in three dimensions. The usual integral-momentum equations, which extend from the wall
to the boundary layer edge, are supplemented by two additional integral equations for momentum
extending from the wall to an arbitrary point in the boundary layer. The latter two equations are
not used in conventional integral methods. The solution is space marched using a Runge-Kutta

scheme.

Degani and Walker (1992)

Degani and Walker [14, 15] replace the wall region in a conventional three-dimensional turbulent
solution method by analytical functions based on an asymptotic analysis of the region in the limit
of infinite Reynolds number [16, 17]. The outer region is calculated as in conventional differential
calculations and the wall boundary condition is replaced by a criterion for smooth transition from
the outer solution to the embedded analytical function. Corrections to leading order (in terms of
the pressure-gradient parameters) are made to account for non-collateral conditions near the wall.
The method appears to be accurate and is about twice as economical as conventional differential

solvers.

Holt (1984)

Holt [29] applies Dorodunytsin’s Method of Integral Relations to the three-dimensional boundary-
layer equations. The gradients of velocity in the wall-normal direction are expanded in a power
series of the velocity components (the whole series suitably scaled by the asymptotic behavior of
velocity in y) are used to evaluate the integrals in a number of moment-of-momentum equations. The
result is an equal number of lower-order differential equations for the velocity gradients at equally-
spaced locations across the boundary layer. The number of equations used is based on the number

of terms in the series expansion. Holt also makes a clever modification to the original moment-of-
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momentum method by replacing the usual set of weighting functions with its orthonormal version.
This effectively removes the need to invert a matrix because it decouples the unknowns, which are

the velocity-gradient values, from one another.

1.4 Overview of thesis

In Chapter 2, compact and systematic derivations of common integral equations are presented. These
are supplemented by the derivation of an unsteady ‘parent’ integral equation from which all the
individual equations used here fall out. Chapter 3 is devoted to the discussion of empirical models
used to close equation systems. In Chapter 4, the nature of the unsteady differential equations
is presented and used to motivate the requirements on the nature of integral systems which are
discussed in Chapter 5. The practical realization of these requirements for direct-mode integral
boundary-layer systems, which constitute the major contribution of this thesis, are discussed in
Chapter 6. A description of the finite-element method applied to the equations, in particular the
implementation of streamline upwinding, is presented in Chapter 7. The computation of bidirectional
crossflows is the subject of Chapter 8. In Chapter 9, separation-related singularities are briefly
discussed followed by the description of a viscous-inviscid interaction method to compute simple
separated flows. Finally, the original contributions of this work are summarized in Chapter 10 with

some recommendations for future work.

The thesis essentially has three main parts. The first, Chapters 2 and 3, deal with traditional issues.
The second, Chapters 4 to 6, are used to justify and construct a useful closure model for hyperbolicity.
However, this model is not actually implemented in the third part, Chapters 7 to 9, because in the
bidirectional flow examples it is not applicable, while in the separated flow example, the usual closure
model is used on the assumption that the system is hyperbolic (numerically verified). This work
does not rest on the development of one single method, rather it is concerned with several different

issues that share a common theme.

There may be instances of ambiguity in the meaning of some terms used in the text of the thesis.

It may be useful, at this juncture, to clearly draw attention to them:

1. The terms wall and surface are used interchangeably. Of course, the latter is not to be confused

with the mathematical notion of a characteristic surface.

2. The term order is used to refer both to the number of equations in a system as well as to the
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@ (b)

Figure 1-3: The distinction between (a) streamline-aligned Cartesian coordinates and (b) streamline
curvilinear coordinates.

degree of the highest derivative in an equation.

3. The “differential” equations refer only to the starting boundary-layer equations from which
integral equations are derived. The integral equations are, of course, also differential equations

but are generally not referred to as such.

4. There is a distinction between derivative-term Jacobian matrices and the residual-vector Ja-

cobian matrix (which includes source-term dependence).

5. In this thesis, streamline coordinates will always mean Cartesian coordinates aligned with the

Ow,
? Os

outer-edge streamline at some point (w. = 0 # 0). In the literature, streamline coordi-
nates usually mean curvilinear orthogonal coordinates embedded in the external streamline

field (w, = 0, 2

We
Js

= 0). The difference is illustrated in Figure 1.4.
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Chapter 2

Derivation of Integral Equations

This chapter contains compact derivations of integral equations used in this thesis and also commonly
used in the literature. The starting equations are the differential boundary-layer equations. The
algebra involved, which can become quite tedious, is facilitated by the use of special notation used

only in this chapter.

Steady forms of each of the individual equations are derived first. The process is then generalized
so that all of the individual equations can be written in a single common form called the parent
integral equation. This equation is also extended to include unsteady forms of the equations and
clearly shows the sequential nature of the individual equations as part of an infinite series of moment-
of-momentum equations. It can also be used to illustrate the differences in the quality of information
contained in the individual equations. The chapter ends with a discussion on the construction of

practical systems of integral equations.

It has already been mentioned that, in this thesis, advantage is taken of the finite-element method to
allow the use of simple Cartesian coordinates for the equations. Hence, only Cartesian coordinates
are considered here. For the interested reader, a brief derivation of the unsteady forms of the
momentum and total kinetic energy-equations, in non-orthogonal curvilinear coordinates, is provided

by Swafford and Whitfield [59].
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2.1 Differential equations

The first-order (6/rmin < 1) differential boundary-layer equations for compressible flow expressed

in Cartesian coordinates are

ap _
5 TV (p) =0
ou dp 0ry B B_u —
Pa; Tra V“+ax_ By e T Ry, TP
ow op Ot _ ow ——
P tra Vw+az— By T Mg, AU

For turbulent flow, the equations are ensemble averaged after the addition of a small fluctuating
component to meanflow quantities. The shear-stress terms contain the usual wall-parallel Reynolds
stresses. In the continuity equation, the assumptions p'u’ < pi and p'w’ < piw have been made,
consistent with boundary-layer theory. The third fluctuating component p'v’ = O(pv) cannot be
neglected, however. The problem is conveniently skirted by the introduction in both the continuity

equation and the momentum equations of a mass-weighted velocity in the wall-normal direction [1]
o= (po+p'v') /p.

Therefore, for turbulent flow in the equations above, the velocity vector q = ut + ﬁj + wlAc, where
the overbar notation for meanflow quantities has been dropped (and will be dropped henceforth) for
brevity. The wall-normal pressure gradient is only first order in /7, and is normally neglected
in first-order boundary-layer theory. In turbulent flow, this pressure gradient can also result from
the wall-normal gradient of a component of the Reynold’s stress tensor pv’v’. This mechanism is

ignored here but may not be negligible in supersonic flows with adverse pressure gradients [68].

In this thesis, the objective is the solution of steady-state flows. The unsteady terms are included to
aid discussion of the eigenvalue problem in later chapters. Furthermore, only adiabatic conditions
are of interest. Therefore, the enthalpy equation can be replaced by the algebraic Crocco-Busemann
relation (for temperature in terms of velocity), which when combined with the equation of state
relates density directly to the velocity and outer-edge Mach number. The velocity used here is the

total magnitude but it may be approximated by the streamwise component

2

—1
P _ Y—1.. q
p_e = (1+T‘TM6(].— —2)> .

€
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The recovery factor r has different values in laminar and turbulent flows. The Crocco-Busemann
relation is an excellent approximation to the enthalpy equation for adiabatic, near-unity Prandtl

number laminar and turbulent flows, even with pressure gradients [49, 68].

2.1.1 Boundary conditions

The wall and outer-edge boundary conditions for the differential equations are
a=0, p=py ify=0,
u=ue(z,2), w=wz,z), p=plz,2), . =0, ., =0 if y =4.

for a direct-mode calculation. The subscripts w and e are adopted to denote wall and outer-edge
conditions. Note that at the edge, prescription of the two wall-parallel velocities and the density

automatically fixes v, through the equations. Furthermore, the fluctuating component [p'v'], = 0 =

e = v, [42].

Of more relevance to the derivations that follow is the following consequence of first-order boundary-

layer theory at the outer edge:

Oou, 0 ow,

oy Oy

Furthermore, since the Reynolds stresses also vanish at the edge in turbulent flow

0T,

= 2.1
e =0, (2.)
OTe
— = 2.2
=0 (22
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2.2 Derivation of steady integral equations

2.2.1 Preliminaries

Integral equations are derived by integrating special combinations of the differential equations along
the y-axis, from the wall to the boundary-layer outer edge. The process of integration aims to reduce
the equations from three space dimensions to two. The integration algebra is facilitated by defining

some notation and mathematical rules.

Notation

Define the total and wall-parallel gradient operators respectively as

0

a_.’EL

o, 0. = 0. O0:

V= ox 0z

and the corresponding total velocity and wall-parallel velocities as

The overbar notation in used only in this chapter; in other chapters, it is dropped for clarity. It
should also not be confused with the usual notation for meanflow quantities in turbulent flow (which
are implied here). In other chapters, both the gradient operator and velocity vector are assumed
meant in the wall-parallel sense. Define also the wall-parallel edge velocity magnitude g, = |Qe|-

Note that the normal velocity component is mass-weighted.

Algebraic identities

The following three identities will be helpful in facilitating the integration algebra. In the derivations

that follow, their use will be indicated by Roman numerals at the end of the step.

For a vector function ¢(z,y, z)q where
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the following identity holds

s s
I: /V-¢qdyE/V-¢qdy.
0 0

Furthermore, if ¢ also vanishes for y > J, Leibnitz’s rule states that (by allowing the integration to

tend to oo)

s s
II: V/ ¢qdyz/ V- éqdy.
0 0

The final identity is a consequence of first-order boundary-layer theory because at the outer edge,

the wall-normal gradient of q. is neglected. Therefore

IIT: Vu,=Vu., Vw.=VYw,.

Pressure-gradient terms

The pressure-gradient terms can be expressed in terms of inviscid velocities and density by evaluating

the momentum equations at the outer edge

Jdp _

= = —p.q, e = —Peqe e (III

5 = Pede - Vu peQe - Vue (111)
o _

(9_12) = —peQe - VWe = —peQe + VWe (III)

For irrotational external flows V x q = 0. This simplifies for first-order boundary layers to

= _ Owe _ Oue > 0% o o 09qe

Vx| = 0 5 = 5, = V=g Ve = (2.3)
ove
5o = 0 (2.4)
ove
5, = 0 (2.5)

of which the first can be used to simplify the external velocity-gradient terms in some of the derived

integral equations.
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2.2.2 Entrainment equation

A form of the integral entrainment equation can be derived by integrating the continuity equation

in defect form:

J
/ V'(PeQe—PQ)dyZO
0

5 5 5
= _ _ Opeve apv
V- (peQe — pa) dy = — —dy+/ ——dy
/0 % ra) o Oy o Oy

) )
= _ _ Opetle  Opewe
. e — — Pelle oo (I1
\% /O(pq pQ) dy /0(833 +=5; >dy+p’v (11)

9
= _ _ Opette  Opewe
- e{Qe — dy =94 eUe
V/O(pq pq) dy (Bw + az)+pv

where
. s
Pede0* = / (peQe — pq) dy (displacement-thickness vector)
0

Rewriting

V- (pe(je(s_;k) =0V Pele + Peve
In the literature, this equation is more frequently written as

V- Pe(Qed — ‘766:;) = PeQe - Vo — peve = F

where F'is the dimensional rate of change of mass flow in the boundary layer (entrainment coeffi-

cient). Note that the fluctuating normal component at the outer edge [p'v'] = 0 as indicated before

is neglected.

2.2.3 Momentum equations

There are two momentum equation components governing the flux of momentum-deficit in the two

coordinate directions « and z.

31



X-momentum

An equation of the Kadrmdn type governing the flux of momentum deficit in the x direction is derived

from:
/6(u—u)[V-( )]+ -Vu—i—@—ai]d =0
/év-( (u—u.)) — pq - V(u—ue) + | -vu+@—6”]d =0
s _ op Or,
/V-(pfl(u—ue))—pq-VU+pq-Vue+[pq-W+a—p— (;]dy:o ()
0 Z )

)
_ 3 _ o -
| ¥ et u) + pa - pea) Vu - Gy =0 (i)
0

s s
V- / p(](ue - u) dy + Vue ) / (pe(]e - p(]) dy — Toyw = 0 (II)
0 0
where
o = g
peq>0, = / pa(ue —u)dy (x-direction momentum-thickness vector)
0

Tz, (x-direction wall shear stress)

Rewriting

V- (Pque_’w) + vue : (pe‘jeé_:‘) = Tg,,

zZ-momentum

Similarly for the z direction, consider:

Jp 3 or.

é
| w=wol¥ - ) + - v+ 5 - Sy

dp B 0T,

)
/o V‘(P‘l(w_we))—PQ'V(w—we)-q-[pq.Vw_,_& T

Jdy =0
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B 0 ot
-(pqw—we))—pq-Vw+pq-Vwe+[pq~Vw+a—Z—%]dy=0 ()

_ 0T,
(patw = w)) + (pa = p.a) - Vo = 5= dy =0 (11D

6 —
IARC
0
6 —
IARC
0
~ s ~ s
V- / pa(we — w) dy + Vw, - / (peQe —pa)dy — 7., =0 (L)
0 0
where
o = 3
0G0, = / pa(w, —w)dy (z-direction momentum-thickness vector)
0
T., (z-direction wall shear stress)
Rewriting
V- (/)quez) + vwe : (pe(jeé*) = Tz
In streamline-aligned coordinates, the momentum thickness components satisfy the identity
012 = 021 — (5; .

Note that no assumption of external-flow irrotationality has been made here.

2.2.4 Kinetic-energy equation components

Two equations for kinetic-energy deficit, each associated with the flux of an energy ‘component’; are
derived individually. When considered separately, the value of each equation as a statement of a
fundamental physical law is questionable since some mechanics of kinetic-energy exchange between

the two are lost. Individually, therefore, each is considered merely a mathematical condition.

The component equations are derived individually first and summed next to provide the complete

kinetic-energy /dissipation balance.
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x-kinetic energy

Integrating the following provides the relation for the component in the x-direction:

5
Jdp Or.
2 _ .2 . _ . — z =
| =) o) = 2ulpa- o+ 52— Ty =0
/JV-( (u? —u?)) — pq - V(u?2 —u?) — 2u[ -Vu+a—p—aTz]d =0
) palu; pa : pa 9r oy W=
’ < _ 2 2 2 07y
/ V- (pa(u; —u ))—pq-Vue+2qu-Vu—2u[pq-Vu—peqe-Vue—@]dy
[0]

s
/ V- (pq(u2 —u?)) — pq - Vu? + 2up.q. - Vue + 2uaa—7:—; dy=0 (III)
0
’ 2 2 =, 2 c o7y
/ V- (pa(u; —u?)) = (pe@e — pQ) - Vug + peQe(ue — u) - Vue + 2Ua_y dy =0
0

) ) )
V-/ pa( ﬁ—uz)derVU?/ (pec’le—pQ)dy—me-Vuepe/ (ue — u)dy
0 0 0

9
= / 2r, M ay (11)
o v

where the last integral has been integrated by parts. Here

s
P B, = / pq(u? —u?)dy (x-direction kinetic-energy thickness vector)
0
s
Gy = / (ue —u)dy (x-direction kinematic-displacement thickness)
0

s

0

D, = / T a—u dy (x-component of the dissipation integral)
0 Y

Rewriting

V- (Pquéw) + vug : (pe(jeé_:‘) - (2qc - vU«f)(Pe(ZfﬁuW) =2D,
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For an irrotational external velocity field, 2q, - Vu, can be replaced by 9¢?/0z.

The equation is simplified when considered in streamline-aligned coordinates (without the irrota-

tional assumption)

Oue

vs : (pe(ng_’l) + vsug : (pe(je(s_:k) — 2u, Ds

(pe(jeﬂl) =2D;.

z-Kinetic energy

Similarly for the z direction:

s
Jdp Ot
2 _ 2 . _2 . — id =
|t =0t - o) - 2ufpa- Vo 5 - Ty = 0
s
. . . . Op Or,
/V-(pq(wj—’wz))—pq-V(wj—wz)—Qw[pq-Vw+—p— 7-]dy:O
0 Jdz Oy
’ — 02 2 2 or:
V- (pa(w; —w?)) — pq - Vw: + 2wpq - Vw — 2w[pq - Vw — peq, - Vw, — ay]dy:O (1)
0
- _ 2 2 = .2 P v or
V- (pa(w; —w?)) — pq - Vw; + 2wp.q, - Vw, + 2w By dy=0 (III)
0
- 2 2 _ _ = 2 _ = or.
V- lpa(we = 7)) = (pede = p@) - Ve + pede(we —w) - Voo + 205 = dy =0
0
e ~ s ~ s
V-/ pq(wf—w2)dy+wa-/ (peqe—pq)dy—Qqe-Vwepef (we —w) dy
0 0 0

)
ow
= 2r,—dy (II)
/0 "y
where the last integral also has been integrated by parts. Here

5
peCE, = / pq(w? —w?)dy (z-direction kinetic-energy thickness vector)
0

s
qev, = / (we — w)dy (z-direction kinematic-displacement thickness)
0
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s

0

D, = / Tza—w dy (z-component of the dissipation integral)
0 Y

Rewriting
V- (peQSEz) + vw? : (/76565_;) - (2‘_16 : vu’t?)(ﬂeée'&z) =2D,

For an irrotational external velocity field, 2q. - Vw, can be replaced by 93%/0z. The equation is

substantially simplified when considered in streamline-aligned coordinates

= = awe _
V- (pe(1§E2) - 2“6%(/76(]6192) =2D,.

Of course 88“;6, which in fact is a measure of the curvature of the streamline, may be replaced by

%’j{ for an irrotational external velocity field.

2.2.5 Total kinetic-energy equation

The total kinetic-energy deficit equation is obtained by summing the z-direction and z-direction

kinetic-energy equations. Defining the vector of thicknesses
and a total dissipation integral
D=D,+D,,
the total kinetic energy equation can written as
— - 6 — — —
V- (pe@20*) + / (2pe@e - (uVue +wVwe) — pa-Va:)dy — 2D = 0.
0

The assumption of an irrotational external velocity field greatly simplifies the pressure-gradient

terms

20eqe - (uVue + wVwe) = peq - ?(ﬁ .
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Then, the total kinetic-energy equation simplifies to

V- (Pque*) + v(ﬁ “(peqe0™) —2D =0,
where the density thicknesses are defined by the vector

- 4 - —
Peded™™ = / A(pe — p)dy = peGed™ — peqeV. (density-thickness vector)
0

The pressure-gradient terms are seen to vanish completely for incompressible flows. Note that each
of the three terms in the equation is rotationally invariant.

2.2.6 Mixed-component kinetic-energy equation

An equation governing the flux of the mixed-component kinetic-energy deficit is derived by consid-

ering:
/6(uw —uww)[V-(pq)] — w| -Vu+a—p—aTz]
g eWe rqa ra o A
Jdp Ot B
- u[pq-Vwﬂ—&—ay] dy=0
/JV-( (uewe —uw)) — pq - V(uew, —uw) — w| -Vu+a—p—a7—w]
) PA(UeWe ra eWe ra 9z dy
0 0T,
- u[pq-Vw-i—a—Z— ay] dy=0
6_
/V-(m(uewe—uw)) — pa- V(uewe) + pg - V(uw)
0
- w[ﬂq -Vu — Pele - V’U/e - 667;]
0T,
— ufpq- Vw — peqc - Vwe — ay] dy=0 (I)

5
/ V- (pquew, —uw)) — pq - V(uewe) + peQe - (wVue +uVw,)
0

0Tz or.
= 117
+ (way +uay>dy 0 (III)
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For an irrotational external flow, the pressure-gradient terms may be written in terms of the density

thicknesses

5
/pe(ie'(wvue+uvwe)dy - p(i'v(uewe)
0
_1fog [° og: [°
= 3 6_2'/0 (pe — pludy + aw/O(pe—p)wdy

. ow, B Ou,
0z ox

Integrating the dissipation terms by parts, the equation becomes

a. x (pe2.5")] .

B ~2

) =2
1/0 B
V-/ pa(ucwe —uw)dy + —( I o G0t + q‘fpeqeé:*)
0

2\ 0z ox
ow, B Oou, ow ou
0z ox

J
Qe eie_’* = T o 2 11
q><(pq5)| /OTay+Taydy( )

where

s
pedeEm = / pq(uew. — uw) dy (mixed-component kinetic-energy thickness)
0

° w Ou
D,, = / Ta g + 7 0 dy (mixed-component dissipation integral)
0 Y Y

Rewriting

-

Qe X (pe(je(s*) =Dy,

v _3 1 aqﬁ ko 5(75 — Ckck awe aue
V- pe(JSEm + 5 <El)eQe5z + %pe(hdz + 2 - o

Care should be taken in using this equation because it is directionally dependent. Also, in streamline-

aligned coordinates
E3 = E;» + 943,
and

E32 = E21 .
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2.2.7 Summary of individual equations

Entrainment

Vo (peed®) = 6V - pe@e + peve

Momentum components
v . (pe(jgex) + vue . (pe(Ye(S*) = Tz,

—

V- (/)e(ﬁé;) + vwe “(peded*) = Tz,

Kinetic energy components
V- (Pquﬁw) + ?Ug : (pe(je(s_:‘) - (2(_16 : ?ue)(Pe(je'ﬂw) =2D,

—

V- (PquEz) + vwg “(peded*) — (2qc 'vwe)(Pe(jeﬂz) =2D.

Total kinetic energy

(Irrotational external flow)
Vo (ped®0*) + V@ - (peqed™) = 2D

Mixed-component kinetic energy

(Irrotational external flow)

_ - 1
V- pe‘ngm + 5

0z
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(—peqeéz +a—wpeqe<52 '\ % "2z ) | X (peded”)
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2.3 Derivation of an unsteady parent integral equation

The derivation of integral equations considered here can be viewed as integrating velocity moments of
the differential boundary-layer equations. The process can be generalized such that velocity moment

is considered a hierarchical weight function ¢ defined as
¢(kua kw;u, w) = ukuwkw’ ky,kw >0,

where the exponents are considered to be positive integers. Particular ¢’s will later yield easily

recognizable equations. Further define the lower-order (in velocity) weight functions

0
¢(u) = % = ku¢(ku - ]-; kw) 3

0
¢(w) = % = kw¢(ku; ky — 1)7

and note that
W =0ifk, =0 and
) =0if ky=0.

Leibnitz’s rule also applies to the time-derivative term in the same manner as it applies to the

space-gradient terms as in Identity I/. The pressure-gradient terms are now time dependent

O _ _ e oo,
or peat Pele R

@__ ow,
9z~ o

- pe(].e ) vu)e .

The continuity equation is multiplied by the weight function in defect form, the momentum equa-
tions are multiplied by the lower-order weight functions and the sum integrated. This particular

combination will yield thicknesses directly in deficit form

° dp () Ou dp Om
/0(¢8_¢)[E+V'(pq)] - ¢ [p5+pq-VU+£—%]

Jw Jdp Ot
— w22 . = =
¢ [pat+pq Vw + =~ ay]dy

40



The steady continuity equation contribution can be written as
s o
/ (¢e = )V - (pa)l dy = / V- (pa(de — ¢)) — pa- Ve +pa-Vody (I).
0 0
The last term above may be further expanded
pa- Vo = ¢ pq - Vu+ ¢ pq - Vw

and is recognized to exactly cancel the momentum convective terms. The second to last term is

combined with the steady, pressure-gradient terms

~pa- Voo~ o 2

Jp
_ Hlw) 22
¢ 0z |

st

= _¢<(3U)pq . vue — ky f}—ep‘_l . vwe + ¢(u)pe(ie . v'U/e + ¢(w)pe(ie . vwe (III)

= (¢((3u)@ue + ¢gw)vwe) ' (pe(_k - ﬂ(_l) - ((¢((gu) - ¢(u))@ue + (¢((3w) - ¢(w))@w6) * PeQe -

The unsteady continuity equation contribution can be written as

’ opy . [° dp. 09
| e—oGha= [ G- T+ 05

The last term exactly cancels the unsteady convective terms in the momentum equations

@

|||
o

_ ¢(u ¢(w

The second to last term is combined with the unsteady pressure-gradient contribution
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Finally, the shear-stress gradient terms are integrated by parts
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where the outer-edge boundary conditions on the shear terms 2.1 and 2.2 have been used.

/ pw Iz 3Tz +¢(w a;z — (¢, + ¢ 7,)
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For clarity, define the differentiated weight-function vector
¢ =¢Wi4 ¢k

and the shear-stress vector
T=T,0+ TZ];‘ .

Collecting terms, and defining k = k, + k,, the equation becomes:

0 o - 0q, o 0q. 0 o Y]
E/O(p(¢€_¢))dy+¢e' at/O(pe—p)dy—pe T -/0(¢e—¢)dy

) )
S ald. (u) € (W) ) . a& _ oa
+V /O (pa(ge ¢))dy+(¢e Vue + ¢, Vwe) /0 (peQe — pa) dy
) )
—pod, - Y, ) _ 6@ dy — poq. - Vo, () g ¢
ped u/0<<z> o) dy — peq w/0<¢ ) dy

5 -
- o'

=¢-7 + [ 7y I
¢ 7-|y:0 /; T ay dy ( )

Rewriting

a _ a0 9.
Z 0@ C+V - (pegt 0 + 4, S pety — aoi

- . =15
T e 5 (Peqe ~ @)

+ <¢gu)vue + (pgw)vwe) : (peqeg*) — Q- v'U/e(pquil(ﬁzlc) — Qe v'11}<2(p<2qf71q},z)
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Equation ku | kuw
X-momentum 1 0
z-momentum 0 1
x-kinetic energy 2 0
z-kinetic energy 0 2
mixed-kinetic energy | 1 1
entrainment oo | o0

Table 2.1: The value of exponents in the parent integral equation corresponding to individual equa-
tions.

=¢-7| +D, (2.13)

The first two terms are flux derivatives, the remaining terms on the left-hand-side are related to the
external flow pressure gradient and the terms on the right-hand-side are the wall-shear or dissipation-
integral-like sources. Also, note that no assumption of irrotationality of the external flow has been
made. This is a convenient general equation from which specific useful equations fall out for different

integer values of the exponents k, and k, as shown in Table 2.3.

In order to easily connect the notation used in this chapter and that used in subsequent ones, note
that any set of individual equations obtained from Equation 2.13 (i = 1,..., N) can be written with

the flux-derivative terms balancing the remaining terms
9 ~k y —kit+1p
gilede GtV (peae ™ 0) = oo+ oo+ 2 =h,

where u is a flux vector of length N and is not to be confused with the u component of velocity.

2.4 Information content of the equations

From a purely mathematical point of view, the exponents k, and k,, in Equation 2.13 may assume any
arbitrary numerical value. It has also already been indicated that setting either exponent equal to
one yields the momentum equations. Higher values yield other equations; in the limit, k,, k, — oo,
the parent equation simply degenerates into the entrainment equation, which contains no direct

information about the viscous details of the boundary layer. This suggests that higher values of the
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Figure 2-1: Variation of the weight function with increasing values of k, (k, = 0) for a Blasius
boundary layer.

exponents yields equations with less information content than lower values. Walz [66] made similar

comments for a steady two-dimensional version of Equation 2.13 derived by Geropp [25].

A more rigorous argument can be made by examining the dependence of the weight function ¢ on the
value of the exponents k, and k, . With no loss of generality, consider ¢ for the two-dimensional
Blasius velocity profile which is plotted in Figure 2.4 as a function of k,. As k, increases, the
resulting derived equation contains progressively less information about the boundary layer near the
wall. Significantly, ¢ has a non-zero gradient at the wall only for &k, = 1 (which manifests itself in
wall-shear stress terms in the momentum equations). At the other extreme, for k, — oo, the parent
equation devolves into simply the displacement effect of the boundary layer on the outer inviscid

flow.

The fact that lowest integer values of the exponents yield the momentum and kinetic-energy equa-
tions is independent of the intrinsic physical value of these equations. These equations are set apart
from others because it is possible to derive them directly by considering force/momentum and ki-
netic energy/dissipation balances on a suitable control volume in the boundary layer. In any integral

solution scheme, it is highly desirable to satisfy them on their physical merit alone and to consider
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the other equations as satisfying auxiliary mathematical conditions.

Again from a mathematical point of view, it is also possible to consider positive non-integer values
for the exponents. Then, it may be argued that for 0 < k,, ky, < 1, Equation 2.13 has even more
information about the boundary layer near the wall than the momentum equations. It also motivates
the question of what, if any, system of equations obtained from Equation 2.13 (that is to say what
series of velocity-moments) converges to the exact solution as the size of the system tends to infinity.

These questions, though very interesting, are beyond the scope of this work.

2.5 Constructing practical equation systems

An endless number of systems can be constructed from the variety of equations available. As
indicated in the literature survey in § 1.3, a natural paradigm has emerged: the two momentum
equations augmented with one additional equation, either the entrainment or total kinetic-energy, as
a ‘compatibility’ equation. Accumulated practical experience validates the utility of this basic system
(which is not to say that other possible systems are not useful). The streamwise momentum equation
augmented by the compatibility equation successfully emulates Goldstein’s singularity (direct-mode
calculations), while the crossflow is essentially governed by a cross-stream momentum balance. The
major shortcoming of this third-order system is its inability to calculate general cross-over profiles.

Additional equations need to be added to the system to calculate such flows.

For turbulent flows, other equations with independent physical meaning can be derived. These solve
for the transport of turbulent kinetic energy is some form. As indicated in § 1.3, a few researchers
have used such an equation for the entrainment coefficient in the streamwise direction to capture
the large lag effects found in turbulent boundary layers through . Others have used some form of
Reynold’s stress evolution equations, again in a streamwise (or a chordwise on wings) direction; for

example, Drela [19] and Nishida [44] use an equation governing the maximum Reynold’s stress value.

The equations have been derived for general orientations in the (z, z) plane for use in a finite-element
solver. It is important to recognize that this rotational invariance must be maintained in any credible
solution scheme. This precludes, for example, the use of one of the momentum equations in isolation.
A necessary exception exists, however, for equations that are intrinsically directional such as the
mixed kinetic-energy equation. Systems containing this equation can only be used if identified with

a unique or special direction (streamline-aligned, for example).
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Chapter 3

Assumptions in Closure of

Integral Equations

The fundamental idea behind integral methods for boundary-layer equations is to reduce the prob-
lem from one that is three-dimensional to one that is two-dimensional. This is predicated on the
good assumption that the physical behavior of the flow is well understood in the direction of inte-
gration (normal to the wall). The three-dimensional differential problem is closed and no additional
information is necessary to solve it aside from a turbulence model. In integral methods, the number
of unknowns introduced into the problem exceeds the number of equations available; the problem is
closed by assuming parametric functional forms (profile families) for the two wall-parallel velocity

components and density in the wall-normal direction

u=u(p;n), w=w(p;n), p=pP;n),

where u and w in this chapter are assumed normalized by g, p is a vector of N profile parameters
and n = y/4. For turbulent flow, the Reynolds stresses will need to be modeled in a similar manner
through a turbulence model. Ounly velocity profiles are considered here, the density follows from the

Crocco-Busemann relation p = p(M,;q).

Of the elements of p, N — 2 are shape parameters. It should be emphasized that these shape

parameters do not have to have the same meaning for different profile-family definitions (such as
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the usual shape factor H = 07 /611). This facility is useful because it allows the general postulation
of profile families in terms of intrinsic, empirical parameters. Of the remaining two parameters, one
is automatically the boundary layer thickness 6. Another is assumed to be the crossflow magnitude
¢ (or ¢ and ¢;, the magnitude for each mode where the crossflow has two independent modes).
These two parameters are applicable to all profile families equally and, in the separated flow method
described later in this thesis, provide a convenient means to relate (linearly in this case) the mass-

defect variables to boundary-layer shape parameters.

In some integral methods, the profile families are substituted into unknown integrals a priori and
their parametric variation modeled through devised empirical curve fits (see, for example, [19, 59]).
In this thesis, the unknown integrals are computed by numerical quadrature on the fly. This is a more
flexible approach which allows the substitution of different profile families easily into a computational

scheme.

Virtually all models of closure used in the past assume that the streamwise velocity profile u in a
three-dimensional flow behaves like the profile in a two-dimensional boundary layer. This is generally
a good assumption but is obviously most valid when the crossflow is small [43]. One fortunate
consequence is that the accumulated body of research on two-dimensional boundary layers carries
over to three-dimensional boundary layers. The crossflow velocity profile w is invariably defined in
terms of the streamwise one. There are some notable exceptions to the streamwise-oriented modeling

approach for the case of turbulent flow which are also briefly mentioned.

The modeling of Reynolds stresses is an important issue. Briefly, this includes upstream history
effects for non-equilibrium boundary layers captured in some studies by using integral versions of
the turbulent kinetic energy equation (see, for example Drela [19] for a two-dimensional method).
Furthermore, in three-dimensional boundary layers, the Reynolds-stress vector is also known to
lag behind the velocity-gradient vector [3]. Cousteix [9] has modeled this by modifying the usual

mixing-length turbulence model.

Before proceeding to a discussion of profile families, it will be of use to briefly review some exact

boundary-layer velocity behavior at the wall-normal edges.
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3.1 Wall-normal boundary-layer behavior at edges

Boundary conditions used in the solution of the differential equations were listed in Chapter 2. Using
these conditions, information about the behavior of the velocity components near the wall and the

outer-edge can be gleaned from the equations themselves.

For both turbulent and laminar boundary layers, evaluating the differential momentum equations at

the wall leads to expressions for the velocity component curvatures in terms of the pressure gradients

8%u 10p

z - i 1
0y |,—g VvOs’ (3:-1)
ou _1ap o)
O ,—y von’ '

From the definitions of the shear stress components, evaluated at the wall, and using L’Hopital’s
rule, the tangent of the angle subtended by the wall limiting streamline to the outer-edge streamline
is

w

tan B, = —
U

_ Ow

limy—0 ou

_ Ow/dy
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Combining this with Equations 3.1 and 3.2, the wall curvature of the hodograph curve is obtained

Pw| [ L0 (0w/Oy\]  _ p (Op 7w Op (3.3)
out|,_o  |ou/oydy \ou/dy )], _, 72, \On T4, 0s)’ ‘
which shows that the flow is collateral ( gz%’ =0 = w ~ u) near the wall only if the pressure
y=0

gradient is parallel to the limiting streamline, which, of course, is not true in the general case.

For incompressible two-dimensional boundary layers, a series of gradient conditions at the wall can

be derived by differentiating the momentum equation (see for example, Rosenhead [47])

0*u
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(3.4)

)
y=0 y=0 y=0

These conditions are useful in so far as two-dimensional behavior is assumed for the streamwise

direction because they are not strictly valid for three-dimensional boundary layers.
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At the boundary-layer edge 4, in constructing velocity profile families, as many of the following
derivative conditions, which strictly apply only at y = oo, as are warranted by the particular

functional form chosen, should be used

o
oyn

o"w

oyn

=0, n— . (3.5)

b

y=4 y=4

This is a consequence of first-order boundary-layer theory. Taking the y-derivative of the continuity

equation further dictates that

These set of conditions can serve as guidelines in the postulation of velocity profiles. For integral
methods, strict compliance is clearly not necessary because the resultant error is unlikely to be larger

than from other sources.

3.2 Streamwise velocity profiles

3.2.1 Laminar flow

Beginning with the venerable Pohlhausen method (1921), many profile families have been proposed

in the literature. A comprehensive account of early attempts can be found in Rosenhead [47].

The Falkner-Skan profile family for a class of similar flows has been shown to be a very good one-
parameter approximation to attached, non-similar flows [19]. A general empirical curve fit to the
solution of the Falkner-Skan equation is

w(@n) =1— 1 =1+ an+an?) . (3.6)

Satistying boundary conditions (Equation 3.4) at the wall
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where A = j—;% is the Pohlhausen parameter, relates the coefficients to the parameters

A ()

A
C?’ 02((:’/\): 6 5

2
a(GN) =31+ -1+
The largest integer less than the exponent ( is also the number of zero outer-edge gradient conditions
that are satisfied (Equation 3.5). Fair agreement with the Falkner-Skan profiles is given by

C(A) = —%A+5.

so that A now becomes the free parameter. A more sophisticated, and more accurate, two-parameter
approximation obtained by including another polynomial term in the second factor of Equation 3.6

was proposed by Wieghart and can be obtained from Rosenhead.

While the Falkner-Skan family is a good approximation for attached profiles, it tends to overpredict
the negative velocities in separated regions [21]. An early approach for attached boundary layers
developed by Karmén and Millikan [32] and Stratford [57], based on various pseudo-physical as-
sumptions, was to join inner and outer profiles in the neighborhood of the inflexion point. The outer
profiles were displaced outwards in decelerating flows, implicitly defining a profile family. This idea
is extended here to the complete profile family which is obtained by sliding the origin (correspond-
ing to the wall) along a suitable fixed function (that resembles the wake function in turbulent flow)
and scaling the result. Here, the profiles are derived from the fixed function (with 7y as the free

parameter)

w(osn) = 1 — efo=I ), (3.7)

f(0) if mo>0
Fm) = (m(ne —no) +no)® + m tanh(kn(ne — o) +C), fo =

mtanh C  if 1 <0
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and the empirical constants are set to:

m = —0.03 (approximate maximum reversed velocity)
Ne = 2.5
k= 4.0
¢ = 00

This profile exhibits the experimentally observed lift-off in separated regions and is a good approx-
imation to Falkner-Skan profiles in attached regions. It does not work as well as the Falkner-Skan

profiles for very strong accelerating flows but is used nevertheless as the better overall profile family.

One-parameter profile families are sufficiently accurate for most purposes. In principle, however, at
least one other free parameter ¢ is available as an additional degree of freedom. This parameter can

be used, if desired, to model the effect of crossflow magnitude on the streamwise profile shape.

3.2.2 Turbulent flow

A crude approximation for the turbulent streamwise profile used in several early methods was a

one-parameter profile family,

L=

u(Cm) = 1<,

with ¢ = 7 in flat-plate boundary layers. It still finds use in more recent methods (see, for example,

Tai (1987) [61, 60]).

The two-dimensional turbulent velocity profile is actually two-layered and may be written as the

sum of universal inner and outer profiles [5]:

w(Ur,Ugin) = w(Urin) +uo(Us;n)
uI(UT; 77) = U-,—’U,+ (y+)
uo(Ugsm) = Upf*(n)
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Both profiles are well substantiated by experiment in two-dimensional flow [43, 68]. The inner profile
is multiplied by the normalized friction velocity
|Tuw, |

Ur = ) = si wiy ) 3.8
s poui? s = sign(7y, ) (3.8)

while the outer profile is multiplied by the normalized defect velocity Ug, which can be conveniently
taken to be a free parameter. The choice of the other free parameter, in fact, will depend on how
the inner profile is defined and doesn’t necessarily have to be U,. The use of s allows applicability

to separated flow profiles.

Outer profile

The outer profile is the wake function. It does not contribute to the velocity gradients at either the

wall or the outer edge. Coles approximated it by the expression

R

which has found wide use. A variety of other empirical formulae have been proposed, some in an

attempt to approximate non-equilibrium conditions (see for example [11, 36, 39]).

Le Balleur [35] has proposed an expression for the outer profile that is a better approximation for
separated flows than Coles’ wake function. Here, the wake layer is assumed to lift-off (“disassociate”
from the wall) by a distance approximately linearly proportional to 07 /¢ in the separated range
(07 /6 >~ 0.45). The region closer to the wall is assumed to be of constant (in 1) velocity, with the

maximum reverse velocity (= 0.2¢.) occurring at around 47/ = 0.60.

Inner profile

The inner profile is expressed in terms of the inner coordinate

U,
yt =50 = U, Rey,
which at the boundary layer edge has the value

yl =U,Re; = u . (3.9)
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The following identity then ensures that the u(1) = 1:
Uruf +Ug =1 (3.10)

If in the law of the wall, the small regions adjacent to the wall, the sublayer and the transition zone,

are ignored, the inner profile can be expressed explicitly as

ut = %ln(y"') +B, (3.11)
where x and B are numerical constants with values 0.4 and 5.5, respectively [43]. Following Coles,
many methods have used this expression to generate closure relationships. Theoretically, the near-
wall regions can be ignored in the evaluation of most integral thicknesses (with the notable exception
of the dissipation integrals). This expression is explicit but not well suited to numerical quadrature
in practice, however, because of the singular behavior of the log term at the wall (note that here the

natural choice for the other free parameter would be y).

A more robust approach is to use the Spalding expression for the inner profile. The velocity is

defined implicitly

+)2 +13
yT=ut e "B (e”“+ —1—kut — (m; S _ (nu6 ) ) . (3.12)

Here, it is more natural to use ul as the inner profile parameter which, in turn, fixes Res through
Equations 3.12 and 3.9. The implicit definition of velocity is actually advantageous from the point of
view of the accuracy of numerical quadrature of integral thicknesses. The y-coordinate grid spacing
is automatically stretched so that points are clustered near the wall where the velocity gradients are

largest. This same stretching would also be used for the outer profile.

In both Equations 3.11 and 3.12, it should be noted that for small values of Res (near laminar flow),
undesirably large velocity gradients are possible at the outer edge. Pfeil and Amberg [45] propose
a modified form for the inner law, that includes the viscous sublayer and transition zone, with a

corrective term to ensure that the edge gradient is zero.
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A complete profile

Swafford [58] proposed a complete explicit analytical expression for attached and mildly separated

flows where the profile family is expressed in terms of transcendental functions

S

- sm
0.09a7 tan1(0.09y™) + (1 — m) \/tanh (an®) . (3.13)

Here, the free parameters are a, b and the skin friction (through u). Note that the actual meaning

of the first two parameters is different from those in Swafford’s paper because there the y coordinate
is scaled by the momentum thickness and not J. The third parameter can be related to the other
two by assuming an empirical function for skin friction. Using such a function, Swafford describes a
procedure to compute the profile with the inputs being the shape factor H and momentum Reynolds
number Rey instead of a and b based on matching the output of Equation 3.13 for two points in the

boundary layer to empirical curve fits. This, of course, is not necessary here.

3.3 Cross-stream velocity profiles

For turbulent flows, the crossflow velocity is expressed in terms of the streamwise velocity (or, equiv-
alently, in terms of a hodograph curve) [30]. The prototypical one-parameter form was suggested by

Prandtl (1946) [43]

(tan Bu;n) = g"(n) tan B, ¢°(0) =1, ¢"(1) =0, (3.14)

w
u

where ¢g* was postulated to be a universal function.

Some representative and popular empirical models for laminar and turbulent boundary layers in the
literature are presented below. For simplicity, only additional parameters arising out of the crossflow
model are indicated and those parameters due to the crossflow velocity-profile dependence on the

streamwise velocity are implied.
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3.3.1 Laminar flow

An early profile family set for infinite swept flow due to Wild (1949) is given by Schetz [48]. It is

based on different wall-normal scaling for the chordwise and spanwise directions
uc(A;n) = F(n) + AG(n), we(a;n) = F(an)
where
2, .3 1 3
E@m) =n@ =20 +°), Gn) = en(l-n)

In the chordwise direction, the profile is identical to Pohlhausen’s. The spanwise profile is indepen-
dent of the shape of the chordwise one (appropriate assumption for infinite-span conditions). The

cross-stream free parameter is the scale-multiplier a.

For more general calculations, the cross-stream profile, as in turbulent flow is assumed to have a

streamwise flow dependence. A simple two-parameter model is

w(e,ei;n) = (1 = u)(n +&1n?)) = (1 = u)(en + arp’)) .
This expression admits bidirectional profiles. For unidirectional crossflow calculations, ¢; is set to

Zero.

3.3.2 Turbulent flow

Some of the more commonly-used models in the literature are briefly described below.

Johnston

Based on experimental observations, Johnston [30] proposed a two-layer, two-parameter triangular

profile

*

tan B,u ifn<n
w(e, Buw;n) = (3.15)
(1l —u) ifn>n*
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where the apex of the triangle is experimentally found to lie very close to the wall [43, 54]. Therefore,
the model for inner-layer which assumes collateral flow in violation of Equation 3.3, is tolerated. In
practice, in the boundary-layer thickness’ integrations (except the dissipation integrals), the wall
region contribution is negligible. For dissipation integrals, both wall and wake regions have to

considered, where the kink in the profile represents a problem.

The two parameters are interdependent because the velocity at the edges of the two layers must
match at the triangle apex. Experimentally, this has been proposed to lie at q(1*)/U, ~ 10v/2.
Then, the two parameters can be related [54], in compressible flow (density at the wall given by the

Crocco-Busemann relation), through

\/ch cos By (1 + 1251 M2)

0.10 — y /ey, cos Bu(1 + 125 M2)

C(ﬂw) = tan /Bw

The obvious choice for the free parameter is 3.

Mager

Mager [37] suggested that a simple parabolic polynomial be Prandtl’s universal crossflow function

so that

w(esn) = (1 - ).

This model, like Johnston’s, has been widely used in the literature.

Eichelbrenner and Peube

The authors [23] have proposed a crossflow model, amongst others, which is a fifth-order polynomial

of the hodograph function w = w(u). The polynomial coefficients are reduced from five to two by

assuming
ow?
ow?
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and applying the boundary condition

w(ue) =0.

Note that the wall boundary condition is automatically satisfied. The resulting crossflow model is

w(c, Bu;n) = tan By, (v — 6u® + 8u — 3u®) — c(4u® — Tu* + 3u®).

where the remaining coefficients have the same meaning as in Johnston’s crossflow model

w
tanfB, = — ,
U 1im n—0
w
c =
l-u limn—1

This two-parameter model admits bidirectional crossflows. It also removes the sharp kink in John-
ston’s model. The authors propose an equation for ¢ in terms of the curvature of the outer-edge
streamlines, based on inviscid arguments for unidirectional flow, as suggested by Johnston (see, for
example, Schetz [48]). This, of course, reduces the model to just one free parameter (which is how it
was used in a computational method of Smith [53]). For bidirectional crossflows, the two-parameter

version can be retained.

Assumption 3.16 assumes that the near wall flow is collateral contradicting Equation 3.3 under

general conditions. If this assumption is removed, a three-parameter model results

w(c, Bu, tan’ By;n) = tan By (u — 6u® + 8u* — 3u®) — c(4u® — Tu* + 3u®)

N tan’ B,

5 (u? = 3u® + 3u* — ),

where the wall curvature parameter can be directly related to the external flow pressure gradients [43]

8w

tan' /B’LU = —F
ou? |,

= (14 tan? B,) (tanﬂw? + @> .

- s On
Shanebrook and Sumner

Shanebrook and Sumner [51] propose a crossflow profile family of arbitrary generality based on

Taylor series expansions of the hodograph profile about v = 0 and v = 1 and then requiring one
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or more consecutive derivative terms of the expansions at each edge to be zero. They find good

agreement with compressible-flow experimental data with this approach including crossover profiles.

3.4 Models for the complete profile

The models presented so far have been based on separate definitions for the streamwise and cross-
stream velocity profiles. Attempts have also been made to model the complete profile in an integrated

manner for turbulent flow. Two are briefly mentioned here.

Tai [60, 61] proposed that instead of using the two-dimensional velocity profile in the streamwise
direction, the streamwise and cross-stream velocity profiles be defined such that two-dimensional
velocity profile is the magnitude of the total velocity vector in three dimensions. The crossflow
velocity profiles may be modeled as before. In large crossflows, this approach avoids the physically

unrealistic swelling of the total velocity magnitude near the wall.

Coles [5] suggested that the inner and outer layers be added vectorially, instead of as scalars only in

the streamwise direction:

AU, Us;n) = a(Ursn) + ao(Us; )
QI(UT§77) = U.rﬁ"'(y_")
ao(Usin) = Usf*(n)

Here, @ T (yT) is in the direction of the wall shear-stress vector and U, is proportional to the square
root of the magnitude of this vector. The normalized defect-velocity components are related to each

other by the identity

qEUTﬁj-f—Uﬁ.

The inner and outer profiles in this formulation do not necessarily have be those used for two-
dimensional boundary layers. Note that with the two-dimensional profiles, the model is limited to
just three free parameters. Furthermore, note that the inner profile assumes that the law of the wall
applies in the wall shear-stress direction which, as shown by Degani and Walker [17], is only true in

the limit of infinite Res.
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3.5 Skin friction

The skin friction and hence shear-stress components can be derived directly from the profile def-
initions. Alternatively, empirical formulae based on experimental data can be used. Examples of
such formulae for the streamwise component in the literature are Ludwig-Tilmann [43], Swafford

et. al. [58] and Drela [19, 21, 44].
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Chapter 4

Nature of the Unsteady

Differential Equation System

An analysis of the nature of the steady incompressible boundary layer equations was first performed
by Raetz [46]. A subsequent study was performed by Wang [67] who analyzed the nature of the
steady incompressible Navier-Stokes equations and studied changes that occur in the boundary-
layer approximation. An analysis which also included the energy equation (with temperature as
variable) by Krause [33] found that the mechanics of information flow were identical to those for the
incompressible case. The analysis presented here is an extension of Wang’s analysis to the unsteady

compressible case, but with the Crocco-Busemann relation replacing the energy equation.

4.1 Characteristic analysis

The pressure gradients are considered known because they are a function only of the prescribed
external flow. The unknowns are the velocity components. Based on the Crocco-Busemann relation,

density is assumed to have the functional form

p=plu,w),
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where it is important to note the lack of dependence on the wall-normal component of velocity

(consistent with the first-order boundary-layer approximation v < vu? + w?).

The equations, for the purposes here, are best written as:

Op Ou ap, du dp du Op Ou
aaat TP )9 T auay T Youas
ov dpow  opow  dpow . op 0w
oy T oo T owar Caway TP w5z

ou ou ou dp 0 ou
+p TP F W = o+ u%—pu’v’

Pt TP TPy 8z 0z oy

P AL L A PV
Par TP TPy TP, T T "oy Py P

Under the adiabatic-wall assumption, the viscosity p is considered a function only of outer-edge
conditions and, therefore, taken to be prescribed. For a turbulent flow, in theory the effects of the
Reynolds stresses can be related to the mean-flow velocity components through some turbulence
model. Then these stresses would have a bearing on the nature of the equations to some degree
determined by the particular turbulence model used. However, in the integral equations in this
thesis, the Reynolds stresses appear only in the shear-stress gradient integrals which are source
terms and, consequently, do not play a role in the determination of the characteristic nature. On

these grounds, they will be neglected in the following analysis.

To determine the characteristics, the highest-order terms in each of the differential equations are

considered. These terms can be written in operator form for the unknown variables u,v and w as:

9 o o 9p o
s tay-V P7y s tay-V
Iy 0 0
0 0 [

Here, for brevity, the space Jacobian terms for 4 and w in the continuity equation have been lumped

together in a, and a,,, respectively.
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Determination of the characteristic structure requires the characteristic determinant corresponding

to the operator matrix to be set to zero, as described in the appendix to this chapter. Here, it is

d00R 4 5 .V p% 9009 4 o VO

Ou Ot ow Ot
Qe = N(%)z 0 0 =0,
0 0 u(%)z

) -

The determinant is the product of two factors, the first being a contribution from the continuity
equation, and the second resulting from the diffusion terms in the momentum equations. There
are five real and equal roots: the equations are parabolic. These roots indicate that all surfaces
Q(x, z,t) = 0 normal to the wall are characteristic surfaces. There is no other direct information
available from the determinant. In particular, nothing is revealed about the characteristic behavior

in the wall-parallel planes.

This result is identical to the one for incompressible equations found by Wang because here the
density is not considered a function of v. This outcome is fortuitous because only then do the
equations capture the basic nature of the complete compressible system, which includes the full
energy equation . It is interesting to note the potentially drastic change in the character that could
result from admitting even a minor dependence of p on v. This is exactly analogous to the complete
change in going from the Navier-Stokes equations to the boundary-layer equations. Van Dyke [65]
makes a related observation about dramatic changes in character in going from a governing partial

differential equation to a perturbation form.

There are two physical inferences that can be made here. First, one of the factors in the characteristic
determinant is due to the continuity equation. The resulting parabolic property, as Wang points out,
is not due to any real or apparent incompressibility despite the fact the pressure is constant in the
wall-normal direction. This is because compressibility is defined as the ratio of changes in pressure
and density; here the pressure terms do not appear in the characteristic determinant. Second, and

more importantly, the other factor in the determinant is due to the diffusion terms. This alone and

1The enthalpy and momentum convection-derivative operators are identical. Furthermore, for unity Prandtl num-
bers, the diffusion operators are identical as well. In this case, the mathematical character is preserved for both the
characteristic and subcharacteristic analyses.

62



not the continuity equation, based on well-known properties of well-posedness of elliptic/parabolic
problems, provides the physical mechanism for the infinite speed of information propagation in the

wall-normal direction.

Finally, note that the time derivatives in the continuity equation play no role in the characteristic
structure. Note particularly, that this is because the density is not a function of v. The results of

the characteristic analysis are therefore identical for both the unsteady and the steady equations.

4.2 Subcharacteristic analysis

Wang first applied the concept of “subcharacteristics” to the boundary layer equations. These refer
to the characteristics of a sub-structure of the flow. A subcharacteristic analysis is useful here
because the characteristic analysis does not reveal anything about the behavior of the equations in

the wall-parallel plane.

The subcharacteristics of the boundary layer equations are obtained by performing the usual char-
acteristic analysis while neglecting the viscous terms. Then, the convective terms play a role. The
resulting system is identical to the Euler equations except, of course, for the critical difference in
the treatment of density (here an algebraic formula, as opposed to solving the enthalpy equation).

The operator matrix for the resulting system is

9p 8 . 9  Op 9 .
guor Tau-V Poy  owor T aw Vv

L 0 0

where
0
L= Poy +pq-V

is the material (or total) derivative operator.
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Figure 4-1: A characteristic surface defined by the family of subcharacteristics through a wall-normal
line. In steady flow, the subcharacteristics are streamlines; in unsteady flow, they are pathlines.

The corresponding characteristic determinant is

9299 4 4,V p% 9099 4 g, -VQ

Ou Ot ow Ot
Qs = Ar 0 0 =0
0 0 A
0N onN
(=) (A2=0. A, = — -VQ ).
= (p6y>( c) , Ag p(6t+q V)

The first factor in the characteristic determinant is identical to that in the full characteristic analysis
and has the same physical interpretation here as well. The second factor is due to the convective
terms in the momentum equations and cannot formally be classified mathematically as either hy-

perbolic or parabolic in the usual sense because the roots are neither distinct nor equal to zero.

There is a clear geometric interpretation for the second factor, however. Consider first the steady



equations. Here, A, simplifies to
AL =q- vQ = 0,

or that the streamlines are everywhere perpendicular to the normal of the characteristic surfaces (2.
Alternatively stated, the streamlines are everywhere tangent to these surfaces as shown in Figure 4-1.

The subcharacteristic lines are defined parametrically in terms of s by ordinary differential equations

dx

— =q(x(s)), x(0) =x0,

= = a(x(s), x(0) =x0

where x = (z,5,2)”. Note that the determinant only implies a condition on the orientation of the
subcharacteristics but makes no direct statement about the speed of information propagation; the
notion of speed is implied by the physical interpretation of the direction components as velocity com-
ponents. This implication acquires significance when contrasted to the infinite speed of information

propagation in the wall-normal direction, as deduced earlier.
For the unsteady equations, the second factor is

o0

Agza

+q-VQ=0,

which leads to the definition of unsteady subcharacteristics, defined parametrically in ¢ by the

ordinary differential equations

&~ ax(0),0), x(0) =0

These subcharacteristics are tangent to characteristic surfaces (x(¢),t). As proof, the rate of change

of  along a subcharacteristic is

d o0  00dx
%Q(X(t)yt) = B + % di
oN
= E +q-VQ
= 0.

From the definition of the material derivative, the subcharacteristics for the unsteady problem are

recognized to be particle trajectories or pathlines. Furthermore, the parameter ¢ is the true time and
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Figure 4-2: Characteristic nature of the steady differential equations, (a) a streamline (subcharac-
teristic) on the wall-normal, (b) the characteristic surface tangent to the streamline, (c) influence
and dependence zones defined by normal surfaces containing the outer-most streamlines on the wall
normal.

directly defines the velocity of information propagation as equal to the physical velocity components
(unlike the steady problem where it is interpreted). These equal the characteristic surface slopes in

the x — ¢ planes. As is well known, in the steady limit, pathlines and streamlines become identical.

4.3 Influence and dependence zones

The characteristic and subcharacteristic analyses can be used to construct a useful physical picture of
information flow implied by the differential boundary-layer equations. Specifically, zones of influence

and dependence can be defined.

Consider first the steady equations. A disturbance at a point xg in the flow is carried by the
subcharacteristic which is the streamline through the point. The disturbance is also immediately
communicated, by the diffusion mechanism, to all other subcharacteristics along the wall-normal.
The disturbance is felt along all these subcharacteristics as well and, therefore, a range of influence
can be defined by two wall-normal surfaces containing the most angularly-oriented subcharacteristics.

A domain of dependence is defined as containing all those points whose range of influence touches
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Figure 4-3: The surface swept by the (xg, to) streakline in the time interval 4At.

or contains the wall normal at (zg,y, z0). Both zones are semi-infinite in extent and are shown in

Figure 4-2.

It is considerably more difficult to define the zones of influence and dependence for unsteady flow.

The definitions provided here are limited to a qualitative description of these zones.

It is important to make a distinction between disturbances described by a Dirac delta function at
t = to, and those described by a step function at ¢ = tg. Clearly, the range of influence and domain
of dependence of the former will be a subset of those for the latter. The following definitions which

assume the latter case will, therefore, also cover the former one.

The introduction of time means that the zones have a finite volume which increases with time
as disturbances are convected along the subcharacteristics, which is this case are pathlines. The
disturbance at a point (xg, to), after a time interval At is felt by all fluid particles that have passed
through it. Alternatively stated, this is the unique surface swept by the streakline originating at the
same point through the same interval At, as shown in Figure 4-3. Such a surface is stationary in
space but increases in downstream extent with time; it is a function of the location of the disturbance

point in x — ¢ and is denoted S(xo, to, t).

The wall normal diffusivity, as in the steady case, dictates that information be communicated in-
stantly along the wall normal. A cylindrical volume of influence for each wall normal at yg, fixed
in space but increasing in downstream extent with time Vj(zo, 20, t0,¢) can then be defined as con-
taining within it, and at most, all surfaces S(xo, to,t). Clearly this volume, depicted in Figure 4-4,

is at least a subset of the range of influence. The range of influence is, however, potentially greater
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Figure 4-4: Characteristic nature of the unsteady differential equations, (a) a pathline (subcharacter-
istic) and streakline (¢t —tp) on the wall-normal, (b) characteristic surface tangent to the pathline, (c)
influence and dependence volumes Vj defined by normal surfaces containing the outer-most streak-
lines and pathlines. Here, the length of the pathline is given by I(t) = ftto qe(z(t"),z(t"),t")dt'. These
volumes are an estimate of the range of influence and domain of dependence for (¢t —ty)/Trer < 1.

in downstream extent because for time ¢; where t; < t; < t, each wall-normal in the volume
V(xo, 20, to, t) itself has associated with it a volume of influence V; (xo, 20, to, t) over the smaller time
interval t —t;. This is a direct consequence of velocity gradients existing in the wall-normal direction
(so that, by virtue of the infinite wall-normal information speed, the disturbance is communicated
from the slower moving fluid near the wall to faster moving fluid near the boundary layer edge that
is possibly outside Vy(zo, 20,%0,¢)). On this basis, another volume of influence can be defined Vi
to contain all those corresponding to the wall-normals in V3. The process is now repeated for V,
so that n — oco. The range of influence for the disturbance point (xg,%7) can now be defined as
containing within it, and at most, V;, and all cylindrical volumes Vn(t) in the limit n — oco. The
domain of dependence is also a function of time and is the volume containing all those points whose

range of influence touches or contains the wall-normal at (xo,y, 20, to)-

An approzimate estimate of the range of influence is given simply by the volume V; as defined above,

under the condition that

At
Tref

<1,
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where T'..; is an appropriate reference time scale in the boundary-layer flow.

The influence and dependence zones for the steady equations can be recovered from those for the
unsteady equations in the limit ¢ — #;. Then, the infinitesimally-short pathlines and streaklines
converge to the local streamlines and the range of influence is the semi-infinite volume traced by

streamlines through the wall normal at (zo, z0,%o) as defined above for the steady equations.

Mathematically defining these zones precisely is a formidable task and outside the purview of this
work. The relevant conclusion needed in the next chapter is simply the physical picture of finite-

velocity information convection in the boundary layer.
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4.4 Appendix: Determination of characteristic surfaces

Let Q(x,y, z,t) = wo define a characteristic surface for the equations, where wy is a constant, and let
the vector p = (u,v,w)” denote the unknowns in the equations. For systems with just first-order
derivative terms, the characteristic analysis can be viewed as seeking wave-like solutions of the form
~ iQ
p(z,y,2,t) =pe (@y,2.1)
to the homogeneous form of the equations (since the source terms do not affect the characteristic
analysis). Here ) can clearly be interpreted as a phase angle [28]. Some second-order equations
can be written as a mini-system of first order equations but this is not always possible. Introducing
this test solution into the homogeneous equation system leads to the condition on the characteristic

determinant. For convenience, indicial notation i = z,y, z,¢ is introduced for the four Jacobian

matrices and the corresponding gradient-operator components. Then
Ji-Vip=(J;-ViQ)p=0.

For non-trivial solutions (p # 0), a condition on the determinant
|J; - Vi =0

exists. Equivalently, the boundary or initial conditions cannot be prescribed on the characteristic

surface because the solution on it is determined by the equations.

A more fundamental view of characteristic surfaces (2 as wavefronts is that discontinuities can
propagate along them (see, for example, Whitham [69]). For first-order systems, a determinant
condition can be derived by allowing discontinuities in g—g but not necessarily in p (C° continuous
in p, for example p = |?]). The equation system (retaining source terms) is written in terms of local

characteristic surface Cartesian coordinates (the coordinate transverse to this surface is (2)

The system is evaluated at either side of the surface {2 = 0 and the difference between the two limits

is

Op

op
(Ji - Vif2) <6_Q

(Ji- Vi) Az =0

o]

Il

T

S~
I

Q=0+ onN
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Then, for a discontinuity to exist in the parameter-vector first derivative across the characteristic

surface A%g # 0, implying that
|J; - Vi =0. (4.1)

This is the sought-after determinant condition.

A similar condition can be derived for equations with second-order derivatives. Surfaces are sought

. . .. . 02 . 0 . .
normal to which discontinuities in 8912) are possible but where a_g and p are continuous (C’1 contin-

uous in p, for example p = |Q2|Q2). Without loss of generality, consider the system in one dimension

only

2
)P L qmp _

(2
J O0x? Ox

Writing the second-order terms in terms of local characteristic surface Cartesian coordinates

Op _ 0 [090p] _*Qdp  (99)" &’p
8z2 ~ Ox |0z AN| ~ 8x2 9N oxr ) 002’

so that the complete system is

oo _

o [220p (091" Op
Or Oz

o200  \oz) a0z

This system is evaluated at either side of the surface {2 = 0 and the difference between the two limits

is
Jo | (9) @p|  _ (90\* & _ o) (0) (@ _
oz ) 90?2 oz ) 02 - oz ) "oz

2
A necessary condition for the discontinuity in the second derivative A%)g # 0 is then

90\ 2
(%) =0

which is the corresponding characteristic determinant condition. This result is intuitive in that

Q=0+ Q=0—

for the simple one-dimensional system considered here, the characteristic surface must be aligned
with the = coordinate. The generalization to more dimensions is not needed here but is actually

straightforward.
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Chapter 5

Nature of Integral Equation

Systems

This chapter contains an analysis of the mathematical properties of direct-mode integral boundary-
layer equation systems. The flow of information implied by the differential boundary-layer equations
is used to justify the requirement for the hyperbolicity of integral systems. The behavior of simple
integral systems using traditional closure methods is shown to vary with the closure assumptions.
It is shown that traditional closure methods are not sufficient to ensure hyperbolicity; for that,

additional conditions, their exact form being the subject of the next chapter, have to imposed.

5.1 Justification of integral-system hyperbolicity

The formal analysis of the nature of the differential system, augmented with the physical picture of
the flow of information in a boundary layer, provides a qualitative justification for the hyperbolicity

of integral systems.

The three differential boundary-layer equations are quasi-linear partial differential equations in time

and three space dimensions. The N integral boundary-layer equations derived from these is a system
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of quasi-linear partial differential equations in time and two space dimensions:

)
o = 3
Ju Of Og Jp Jp op
bl T Tk = S S i L _of
ot Tor T, Vo Tlegy t1ip, TR Jo = p
4]
([ J- = &

In going from the differential to the integral form, any direct connection in the nature of the equations
is confined to the dependence, through Jacobian matrices, of the flux vectors u, f and g on the vector

of system parameters p.

The elements of the Jacobian matrices contain integrals of quantities that depend exclusively on the
convective terms in the differential momentum equations and on the continuity equation. There is
no dependence on the viscous diffusion terms. It has already been deduced, on physical grounds,
that the infinite propagation speed of information in the wall-normal direction is not connected to
the continuity equation, only to the viscous diffusion terms. Therefore, the convective terms which
mathematically provide the subcharacteristic transport nature of the differential system should also

provide a similar directional-transport nature to the integral equations.

A stronger argument can be made from the physical picture described by the zones of influence
and dependence. In the integration, these zones collapse in the wall-normal direction. Clearly, the
notions of domain of dependence and range of influence should carry over to the integral system.
Thus, the mechanics of information propagation in the wall-normal direction are lost and what
should remain is simply the convective transport of information in surfaces parallel to the wall. This

directional transport of information can only result if the integral system is hyperbolic.

5.2 The eigenvalues of integral systems

The infinite number of subcharacteristics of the differential system should manifest themselves as a
finite number (equal to the order of the system N) of characteristics of the integral system. The
full angular range of the zones of influence and dependence in space, and in time for the unsteady
equations, do not necessarily have to be captured by the integral equations, but it is clear that the
characteristic directions must correspond, in some weighted-average sense, to the subcharacteristic-

orientation distribution in the boundary layer. This is illustrated in Figure 5-1 (a) for a third-order
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Figure 5-1: (a) Characteristic directions for a steady third order integral system for unidirectional
and bidirectional crossflows. (b) Characteristic lines in (x, ) emanating from a point (xo, 2o, to) and
the characteristic velocity implied by their slope.

integral system for both unidirectional and bidirectional crossflows.

The characteristics for the steady equations describe orientations in space. The characteristics for
the unsteady equations describe both orientation in space and in time; the slope of the characteristics
in the x — t planes defines a velocity of information propagation as shown in Figure 5-1 (b) for a
characteristic. Then each of the characteristic lines in Figure 5-1 (a) could be given a different length

to denote the corresponding velocity.

For both steady and unsteady integral systems, characteristic lines in the relevant plane are sufficient
to describe the flow of information; the notion of characteristic surfaces is unnecessary and discarded.
Furthermore, instead of describing the orientation of these lines by the two remaining gradient
components, it is more convenient to simply use a single angle. In the steady equations for example,
if B is the angle (in the z — z plane) that a line subtends to the z direction, then

o0
oz’

cos B =
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For the steady integral system, the characteristic determinant condition in Equation 4.1 can now

simply be written as

|Jpcosf—J,sinf| =0.

For a hyperbolic system, this characteristic equation must have N real roots. Equivalently, the

system is hyperbolic if there exists the eigendecomposition

J.IP=XAX!, AXER,

with a set of IV linearly independent eigenvectors X defining a set of characteristic variables Ovy =
X~1J,.0p, where the eigenvalues are A = tan 3;. If the eigenvalues are also distinct, the system is
said to be totally hyperbolic [69]. If the eigenvalues are both real and complex, the system is of
mixed character and may exhibit hyperbolic, parabolic or elliptic behavior depending on the physical

problem [1].

Note that the coordinate axes can be rotated through rotational transform matrices. For example,

in space, the space derivatives are related by:

) : fi)
33 cosf sin@ 5a
fi) : fi)
53 —sinf cosf B3

The transform also rotates the eigenvalues, if real, by a corresponding amount

A=A —tanfl.

There also exists a common non-singular transform matrix that allows the flux vectors u, f and g
to be expressed in different coordinate systems, which when applied in conjunction with the axes
rotation allows the system to be expressed in any direction. Therefore, without loss of generality,
the following discussion can be confined to a streamline-aligned coordinate system in space (unless

otherwise stated).
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In order to cast the full unsteady system into characteristic form, it is convenient to first transform
the space derivatives and then use the corresponding eigenvector matrix in the time-derivate trans-
formation. It will be useful to reiterate that the Jacobian matrices are basis dependent. A change

of basis from one vector of system parameters p to another v is possible through a transformation

Since this is a similarity transformation in the eigendecomposition above, it will not affect the system

eigenvalues. The new eigenvector matrix is related to old one through this transform.

The basis of the unsteady system is changed to the space characteristic variables dv; = X;1J,0p:

_ ap ap ap _
1 op op 9P\ _ 1
X, (Jt 5. iz T ) =X, 'h

) L0 e e D _
Xleta—I;+X81J56—5+X31(JHJ81)JS£=Xslh

1. Op 1. Op B _ _
X 1) —= +X 1), = + X ' (XAX DI, = =X'h
s tat + X s + X, ( s ) an s
op
E_i_
ovy  0Ovyg ovy

ar T as T M

(Xgle)a—p +A(X; 1) =— =X, 'h
n

(X1 X) (X ) Bs

(X 133,1X,)

=X,'h

by employing the eigendecomposition
J. I, =X AX

An analogous eigendecomposition with time one coordinate is
XTI X = XA X

where the eigenvector matrix for the space variables is included for convenience. Therefore, the

equations can be said to be hyperbolic in time if
Ay, X eR,

or if |J4 cos By — Jysin ;| has N real roots, and hyperbolic in space if
Ay, X, e R,
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or if |J, cos B — Jysin B¢ has N real roots. Here, (3, is the angle in space of the characteristic line
relative to the streamline direction, and J; is the angle the characteristic makes in space-time to the
space streamline direction. The order of magnitude of these angles is related to the ratio of fluxes

in the equation. In most cases,

gs ~ cfy =tanf; = O(c),

u -~ lfs :tanﬂtz(’)(l).

e e

It can be shown that the eigenvalues, as expected intuitively, are independent of the boundary layer
thickness scale § (provided that in turbulent flow, Res is held fixed). In some steady computational
methods, a lag equation is used in the streamwise direction only (see for example [44, 72]). Clearly,
this equation contributes an eigenvalue of 3; = 0 to the system, and does not influence the eigenvalues
of the remaining equations. Finally, note that for infinite-span type calculations, the spanwise
derivative terms vanishes in all the equations (in, of course, chordwise-aligned coordinates). Then,
the notion of space eigenvalues is not applicable, and attendant restrictions, to be discussed in the

next chapter, are removed.

5.2.1 The problem and its possible solution

The eigenvalues of an integral system closed through empirical relationships (such as assumed veloc-
ity and density profiles across the boundary layer discussed in Chapter 3) are not necessarily real.
Then the integral system behavior is non-hyperbolic, and as discussed in § 5.1, non-physical. The
fundamental problem can be formulated in terms of the connection between the two elements that
determine the eigenvalues: the equations chosen for the system and physical assumptions necessary
to close the system. The essential, and novel, idea is that these two elements cannot be considered in
isolation in formulating the solution to the problem; changes in either, while holding the other fized,
affect the eigenvalues. While the two elements are not chosen arbitrarily in traditional methods (for
example, the facility to capture separation must be reflected in both), the connection between the
two needs to be devised more carefully to specifically account for the eigenvalues. This idea is made

more concrete in the next chapter.
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5.2.2 Literature review

In the large number of different integral systems that have been proposed in the past, many have
been claimed to be hyperbolic on the basis of a proto-system analyzed by Myring (1971) [42].
In some cases, this claim is not strictly justifiable because the differences with Myring’s equation
system are ‘too great’. Including Myring’s analysis, only a few original studies in the literature
were found that were concerned with the characteristic problem and the explicit determination of
eigenvalues in investigating it. Hence, the list that follows is fairly complete. All of these employ
simple equation systems and closure relations that result in relatively simple Jacobian matrices.
This usually permits the eigenvalues in the steady case to be expressed as crossflow-scaled functions

of only a single streamwise parameter (for example, the shape factor)
Bs;=ctn(H), i=1,...,N,

the functional relationship being determined by the streamwise momentum equation and an auxiliary

equation.

Myring’s study for the commonly-used system for steady incompressible turbulent flow consisted of
the two momentum equations and the entrainment equation. For streamwise profiles, the simple

one-parameter power law (no Reynolds number dependence, as indicated in Chapter 3) was used

SO

and for crossflow profiles, both Johnston’s and Mager’s models were used. The eigenvalues for this
system were shown to be real for both crossflow models. Furthermore, they were shown to be

physically sensible in that they corresponded to the general flow direction.

Cousteix and Houdeville (1981) [10] studied both steady and unsteady equations. For steady incom-
pressible turbulent flow they used Myring’s system with a slightly different closure relationship for
the streamwise flow (but still neglecting any Reynolds number dependence), so that the entrainment

shape factor was given by

§—0f 063lH?+H
011 H-1

The Johnston model was used for the crossflow. The eigenvalues were shown to be real and were

actually numerically close to Myring’s results. The analytical formula for the largest eigenvalue was
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identified to be very similar to that for the limiting streamline for large Clauser numbers. Eigenvalues
for unsteady turbulent flow in two dimensions was studied using the momentum and entrainment
equations employing the same closure relationship as the steady problem and, not surprisingly,
a close analogy between the two was made (the time behavior being qualitatively similar to the

neglected space axis).

Van der Wees and Muijden (1990) [64] studied unsteady equations for compressible turbulent flow
with a quasi-simultaneous viscous-inviscid method. The unsteady form of Myring’s system was used
with a very simple interaction law and Cousteix and Houdeville’s closure for both streamwise and
cross-stream directions. The eigenvalues were computed in the s—t plane for quasi-three-dimensional
flow so that the cross-stream derivatives vanish, with (computed numerically) and without (com-
puted analytically) the interaction law. These were generally found to agree with previous results;

however, in some cases with the interaction law, they do report that complex eigenvalues were found.

In two related papers, Wigton and Yoshihara (1983) [70] and Wai and Yoshihara (1984) [72] de-
scribe a method employing a four-equation system consisting of the entrainment equation, the two
momentum equations and Green’s lag equation in the streamwise direction only, for steady turbu-
lent flow. In the streamwise closure, the entrainment shape factor correlation is taken from Green’s
lag-entrainment method [26], and Mager’s velocity profile is used for the cross-stream closure. As
indicated earlier, the lag equation decouples from the eigenvalue problem for the rest of the system.
In both direct mode (where the boundary layer parameters are free variables and external velocity
components are imposed) and inverse mode (where the shape factor is imposed and, in this case,
the external velocity magnitude is a free variable) calculations, they report that only real system
eigenvalues were found. However, for other combinations of the available variables in the parameter
vector, complex eigenvalues were found. Consequently, they were forced to limit their solutions to
parameter choices where the system was hyperbolic. Furthermore, they also report that none of
the inverse-mode characteristics were identifiable with the limiting streamline, namely that their

directions did not correspond well to the general flow direction.

Hall (1959) [27] solves the simple system consisting of just the two momentum equations with simple
closure relationships for laminar flow that are an extension of Thwaites’ method. The system is shown
to be hyperbolic for reasonable ranges of the boundary-layer parameters and the characteristics are

shown to lie between the external flow streamline and an assumed limiting streamline.

Caille and Schetz (1992) [4] solve a four-equation system, based on full/partial (in boundary-layer

wall-normal extent) momentum/shear-stress balances. Two of these are the usual momentum equa-

79



tions for quantities integrated from the wall to the outer-edge and two are for a region extending
from the wall to an arbitrary point in the boundary layer (see literature survey in Chapter 1). The
resulting system is, evidently erroneously, claimed to be hyperbolic on the strength of an earlier
study by Cousteix and Michel which applied to a different system. All their results are unusually
wavy but this waviness probably cannot be ascribed to any non-real eigenvalue behavior, however,
because it exists in results for an infinite-span calculation. Nevertheless, the hyperbolicity of the

system is not convincingly demonstrated.

5.3 Analysis of some integral systems

Before discussing methods for ensuring hyperbolicity of the equations, a characteristic analysis is
performed for two example systems. These analyses will serve to highlight issues already discussed.
A simple steady second-order system (Hall’s system) will be used to demonstrate that non-hyperbolic
behavior can result for plausible closure schemes. A compressible analysis of a steady third-order

system with realistic closure relationships is also presented.

5.3.1 A second-order system

The system is simply the two momentum equations. The number of unknowns in the derivative
terms is reduced from four to two by assuming that the streamwise profile shape is constant, that

the crossflow shape is constant but its the magnitude is allowed to vary. The character of this system

can be shown to depend on a single derived parameter.

The primary parameters are chosen to be the streamwise scale of the boundary layer, measured by

¥, and the crosswise scale, measured by 85 so that p = (67,035)?. Then the four unknowns are:
f : 911'\/(5;, 921'\4(5;

g 912"\/(5;, 922"’((5;)2/(5;:
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With this closure, the system can be written as

011 0 o In (5f 0 912 o In (5ik
_ + —_ =h' ,
ds on
0 921 In (5; —922 2 922 In (5;

where h’ includes the external velocity and density derivatives in the flux vectors as well as the

source terms.

The eigenvalues of this system are

b2

622
=201 /1 =r), = .
tan 3; o 921( VIl =rm)), T 911009

They are real if and only if r,, < 1. This parameter is a measure of the cross-direction flux of
momentum, but so far no physical meaning has been deduced for the hyperbolicity condition. For
both constant-defect u(y) and w(y) profiles, as well as Johnston’s simple outer-layer crossflow model,

rm = 1. Slight deviations in the profiles in both cases can make the system non-hyperbolic.

Of course, the eigenvalues of the system would be different if the closure paradigm were changed or

if, for example, the total energy equation were used instead of one of the momentum equations.

5.3.2 A third-order system with Johnston’s crossflow model

For general systems of three equations or more, the analytical (so that functional dependencies can be
explicitly identified) determination of eigenvalues becomes virtually intractable. In the literature,
simplifications in closure relationships were found to be necessary for the analysis to be feasible.
Fortunately, for Johnston’s crossflow model, the closure leads to simple relationships making it
feasible to retain a two-parameter streamwise dependence for steady compressible turbulent flow.
Eigenvalues for a system consisting of the two momentum equations and the total kinetic-energy

equation can then be determined.

As discussed in Chapter 3, Johnston’s model for turbulent flow relates the crossflow velocity linearly

to the streamwise velocity with the crossflow parameter ¢
w=c(l—u)
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over the outer part of the turbulent boundary layer. The wall-layer contribution to relevant thick-
nesses is negligible. With the primary parameter vector chosen to be p = (611, H, )7, the necessary

analytical relationships are:

peqzbin Peqzbi1
=1 pec?6n | = —cpeqztn
P peqs (H* +¢*(H* —2))011
Peq:tiz —cpeq?(H —1)011
8= | peqib | = —c2peq?(H — 1)81
peq; 03 ped((e(H +1— H*) = *(H* =3+ H))611)

The effects of compressibility are introduced through the modified shape factor while the streamwise
kinetic-energy shape factor is a function of the modified shape factor and the momentum-thickness

Reynolds number

H=H-H,(H,M,), H* = H*(H,Rey,,) -

The eigenvalues of the resulting system are

tanfBy, = c(H-1),

tanBo3 = (=& £ V(& —46))/2,
where

G =Q-H)+(H -1+,

& =(1—H)+(H —2+r)

and r = Reg,, [H*] Re,,, contains the dependence on Reynolds number. Subscripted brackets denote

partial derivatives.
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Figure 5-2: The kinetic-energy shape factor (H*) variation and resulting normalized characteristic
directions for Johnston’s crossflow model.

The linearity of Johnston’s velocity hodograph model manifests itself in the simple cross-flow scaled
dependence of tan 8; on only the shape factor, due only to the momentum equations without any
kinetic-energy equation dependence. Furthermore, all the eigenvalues are of the form tan3; =
ctan B,(H, Rey,,), or in other words, are related linearly to the crossflow magnitude. This in an
unexpected (because the energy thicknesses cannot be expressed in this simple form) but remarkable
simplification; the condition on hyperbolicity, as in systems with the entrainment equation, depends

solely on the definition of H*.

The eigenvalues are computed for a realistic kinetic-energy/shape-factor correlation used in the
numerical method of Drela [21]. This correlation is plotted in Figure 5-2 for various representative
Reynolds numbers at a Mach number of 0.7. The three eigenvalues are real and are plotted in
Figure 5-2 for a single value of the Reynolds number. Furthermore, all eigenvalues lie between
the outer-edge streamline and an assumed (depending on the cross-stream skin-friction closure)
wall-limiting streamline. Note that the outermost characteristic is discontinuous at H = 3.5 which

corresponds to the singular point [H*]g = 0 (more on this in Chapter 9).

These results are similar to those found by Myring, Cousteix et. al. and van der Wees et. al. who
used the entrainment equation instead of the total kinetic-energy equation. This is not surprising

because the energy and entrainment shape-factor correlation functions are very similar.
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5.4 Summary

Traditional closure methods generally yield systems which are hyperbolic, especially those that are
minor variants of the basic three-equation momentum/total kinetic-energy ones. However, there
is no formal assurance that these systems (under all realistic closure schemes, or systems that are
substantially different) are hyperbolic. Additional conditions, coupling the system, in some manner,
to the usual closure assumptions have to be applied to ensure hyperbolicity coupled, in some manner,

to the usual closure assumptions. This is not a trivial task and is considered in the next chapter.
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Chapter 6

Synthesis of Hyperbolic Integral

Systems

In Chapter 5, the possibility of complex system eigenvalues leading to non-hyperbolic behavior was
raised. It was indicated that additional conditions on the closure scheme for a system have to be im-
posed in order to ensure hyperbolic behavior. It is a well-known fact that the eigenvalues of a matrix
are non-linearly related to its elemental values. For general, non-symmetric Jacobian matrices, this
fact makes the problem of controlling the eigenvalues of a matrix through imposing conditions on its
elements, over some region in parameter space, a formidable one. The inability to physically connect
the nature of the differential equations and its derived integral approximations is unfortunate. In
particular, the necessity for empiricism in integral closure introduces an arbitrary dimension to the
problem, and suggests purely mathematical attempts at solution. These mathematical conditions,
however, should be indirectly informed by the physical picture of information flow implied by the

differential boundary-layer equations.

The objective of this chapter is to examine ways in which hyperbolicity can be enforced. The greater
part of the chapter is devoted to the description of a novel closure scheme that successfully achieves
that for general integral systems of arbitrary order. It is restricted by its nature, however, to the
linearized form of the system because it operates on the Jacobian matrices. Within the context of
most practical solution methods, this is not a major issue because the equations have to linearized

in any case.
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Before that method is presented, two other ideas for ensuring hyperbolicity, one based on sym-
metrizing the Jacobian matrices and the other on assembling a system by an induction approach,

are outlined for illustrative purposes. Their value is mostly theoretical.

6.1 Symmetric Jacobian-matrices?

The requirement for the hyperbolicity of an integral system is physically connected to the nature
of the differential set of equations. This motivates the question: is it possible to pose a closure
scheme in such a way such that the system automatically has real eigenvalues, so that additional

mathematical constraints do not have to be imposed?

To this end, two immediate possibilities suggest themselves. Consider the steady case only. The first
is to choose a parameter basis and a closure scheme so that the combination results in symmetric
Jx and Jz. Then the eigenvalues will be real if at least one of the two matrices is non-negative
definite. The second is to choose a closure scheme so that the coefficient matrix

og

ﬁ - Jszil

is symmetric, and hence automatically has real eigenvalues.

It may be possible in some special situations to exploit a physical symmetry by expressing the
equations in one of the two forms above. None have been identified, however, and in general this

approach does not seem to be practical.

6.2 System/closure construction by induction

Consider only the steady system. Instead of tackling the problem for all eigenvalues simultaneously,
the induction method seeks to build the system one equation at a time. Assuming that a system of
order N is hyperbolic, the objective is to find conditions on the closure implied by the addition of
an equation to the system so that the eigenvalues of the resulting N + 1 system coefficient matrix
JzJx " are real. Beginning with a scalar equation (eigenvalue is trivially real), it is then possible

to construct a hyperbolic system spanning any number of equations.
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Consider the roots of the characteristic equation of the N +1 order system in the characteristic basis

of the lower-order system. For example, for N = 2 the resulting characteristic equation is

AL u1

/\2 Us — M| = (U — )\)()\1 - /\)(/\2 — /\) — ul’U](/\Q - /\) —’UQ’UQ(/\l - )\) = O,

U1 ()] g

where A1, A2 are the eigenvalues of the second-order system. This basis is chosen because it yields
a conveniently simple characteristic equation. Elements associated with the new equation appear
as the addition of a rank-two matrix: the vector u contains the partial derivatives of the original
equations with respect to the new system parameter, the vector v contains the partial derivatives of
the new equation with respect to the characteristic-basis parameters of the smaller system and o is
the partial derivative of the new equation with respect to the new parameter. For a general N + 1

system, the characteristic equation can be written

N N N
CEPV | [SYEPVESIRTN || NEYERE
i=1 j=1 ii#]

Dividing through by Hi\r(/\z — ) and rearranging

a 1

j=1

The equation in this form is simply the sum of translated 1/\ constituent functions. A sufficient
set of conditions to ensure N + 1 real roots is to require all coefficients to have the same sign,
ujv; > 0 Vjor ujv; <0 Vj. In one case, all NV eigenvalues of the resulting system will be be
greater than the corresponding A; and in the other case, all will be less. The remaining eigenvalue

will necessarily be real.

The induction process is illustrated for the extension from a two-equation system to a three-equation
one in Figure 6-1. The two new eigenvalues are determined, if real, by the intersection of the right-
hand side of Equation 6.1, plotted as the thick line, with o, plotted as the dashed horizontal line.

The eigenvalues of the original system are also indicated.

The conditions for real eigenvalues exist on the new elements of the coefficient matrix and effectively

place constraints on closure assumptions. While the conditions have a simple form, they are likely
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Figure 6-1: Characteristic equations of the original and augmented coefficient matrices for N=2,
(a) real eigenvalues with sufficient conditions wjv; > 0 Vj, as shown, or u;v; < 0 Vj, indicated
by the intersection of the thick lines with the constant o line, (b) complex eigenvalue pair if the
hyperbolicity conditions are not met.

to place an unnecessarily excessive constraint. Furthermore, implementing these constraints in
any practical closure scheme is a difficult task for a number of reasons, in particular, the need
to satisfy them over the entire parameter space, and for all subsequent equations in the system.
The fundamental idea also suffers from fact that these are mathematical limitations which require a

hierarchical treatment of the equations, with no apparent appeal to the physical basis of the problem.

Nevertheless, it could be of value when used in conjunction with the third-order system of § 5.3.2,
which was demonstrated to be hyperbolic, to construct a fourth-order system which could accommo-
date bidirectional crossflow profiles. This larger system would, of course, be limited by the smaller
system’s closure. Therefore, this idea is not pursued further and other avenues of more general

applicability sought.

6.3 Eigenvalue-based hyperbolic systems

The novel method presented in this section is based on the manipulation of the linearized equation
system (which is what determines the eigenvalues) instead of the complete non-linear system. Instead
of determining the eigenvalues given a set of closure assumptions, the eigenvalues are prescribed a
priori and a suitably larger parametric set of closure assumptions used to absorb the conditions
imposed by these prescriptions. This method works for arbitrarily large systems, which is a major

strength, and is not limited by a hierarchical treatment of the equations.
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The steady equations are considered first, for which only one additional mode is required in the
conventional set of closure assumptions. This will keep the presentation simple. Then, the method
is extended to include the time derivative terms in the equations for which two additional modes in

the profile-family closure scheme are required.

6.3.1 Steady equations

The Jacobian matrices resulting from the usual physical-closure assumptions (laissez-faire) are writ-
ten, as before, as J. The objective is to modify these matrices so that the resultant system eigenvalues

are real. The modified matrices will be written as K.

The steady system is

of | 98 _

Jp Jp
=J,— +J.— = h.

ox * 0z * O Tl 0z

The essential idea is to introduce an additional degree of freedom into the closure model through
a parameter a and have the resulting system possess imposed eigenvalues. The process will yield

conditions of the type

Ja

= =b,

op
which fixes the first-derivative variation of the additional mode with respect to the original parameter

vector. This auxiliary mode is introduced in the velocity and density profile families (with mode

shapes 1, ¢, ():

u = ulp,ay) & P, o
w = wp,ay) & b, do k=1,....N
p = pe;ay) & G o

Here p is the order NV vector of system parameters and « is the parameter associated with the
auxiliary modes denoted by the subscript 0. The modes associated with p correspond to any profile
family in the conventional sense. For the present, there is no distinction between the auxiliary mode
and the regular profile modes and indeed their role is interchangeable in the following derivation;

this, however, will be qualified later for practical application.
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The modes are sensitivities of the velocity and density profiles and are computed by taking the profile

partial derivatives with respect to the corresponding parameter. These modes provide a convenient

way to express the profile sensitivities in another basis vector v (a similarity transform),

au o aa au apk au B N
5oy ~ vy e Z ot LR DL
ow  da 8w p aw N
k = .

5, ~ 0, 00" Z G @) = )+ kit
ap Ja ap dp ap N

_ k _ '
Bu; ~ Oo; 3 Z e @ = )+ L nG)

where

Ja
oo, —

and the partial derivatives are replaced by symbols for expediency.

By substituting these expressions into the flux vectors, the Jacobian matrices with respect to v are

obtained. The columns of the matrices corresponding to each v; can be expressed as

of

dv;

Jg

dv;

= rs+Jsza

I'n +Jnxj s

where the matrices Js and J,, contain the elements in the summation terms associated with p and

the vectors ry and r,, contain those associated with «, the additional degree of freedom. Exact

formulae for the expanded flux derivatives are provided in the appendix to this chapter.

The v; will be the characteristic variables, with 3; the associated eigenvalues, if the following con-

ditions relating the columns of the Jacobian matrices are satisfied:

. of 0
sin 3; 0. cos B3 %
j j

Rearranging to determine the unique expansion coefficients x; that yield the prescribed system

eigenvalue tan j3;,

x;(8;)) = —(Jssinf; — I, cos ﬂj)_l (rssin B; — 1y, cos B5) (6.2)
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= =J1B) x(B)), (6.3)

provided the matrix inverse exists (more on this later). Assembling for all eigenvalues

JX+r,whHA =3, X +r,wl), A=tanp,,
j

where the vector w of length N is (1, ...)%.
The matrix X with columns x; is also the new eigenvector matrix (in the p basis, K;X in the f

basis) and implicitly defines the new Jacobian matrices

KX = JX+r,w?l
K;lKn =XAX 1.

K, X = J,X+r,wTl

The basis can be reverted back to the primary parameter space from the characteristic one by

post-multiplying by X!

— T
K, = J,+r,b o

b=—=X"Tw.
ap w

K, J, +r,bt

The vector b can be used to define a ‘total’ partial derivative

D _o 0
Dp; — 9p; oa’

associated with the new sought-after Jacobian matrices. Reiterating:

0

a. A4 Js; Jn
3pj

D
- K,, K,
Dpj

This new derivative succinctly shows how much of the new mode needs to be added to the each
of the original modes to produce the sought-after eigenvalue behavior. In essence, the eigenvalues
acquire the dominant influence on the closure scheme through the equation system as opposed to

the primary parameters. This is a more integrated approach.
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6.3.2 Some practical issues

Eigenvalue-prescription paradigms

For the eigenvalue-based closure technique described here, the eigenvalues need to be specified as
an input. One general paradigm, based on the physical picture of information propagation in the
boundary layer as presented in Chapter 4, is to make the eigenvalues realistic functions of the

primitive parameters

ﬂj = ﬂj(paa)7

and similarly in space-time for the unsteady problem

By = Boj(r00,0 1), i = iy (pra0,01)

described later. The spatial eigenvalues are specified to approximate the angular range of the velocity

vector across the boundary layer while the temporal eigenvalues are specified to be of O(ge)-

A different paradigm is based on the eigenvalues of the laissez-faire system (which, of course, then
have to be computed) which if complex, are replaced by eigenvalues approximately equal to their
real part. If real, they are not replaced. Therefore, if A; ;11 = Ar £ ¢A;, these are replaced by
Ajj+1 = AR £ Asep, the new eigenvalue pair suitably separated by a ‘small’ value Asep (to ensure
diagonalizability). This paradigm, as indicated by Relation 6.4 (given later), yields Jacobian matrices

nearest to the laissez-faire ones in the complex plane.

Co-incident prescribed eigenvalues

If for some j in the first paradigm, the prescribed §; coincides with one or more (if repeated)
eigenvalues of the J, and J, system, then J in Equation 6.3 will be singular to the corresponding
degree. In such a situation, the requisite number of eigenvectors can be obtained by replacing
appropriate equations with conditions on the eigenvector norms (as is done customarily in eigenvector

determination) and inverting the resulting system.
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Choice of auxiliary mode in profile families

As was indicated in Chapter 3, one of the primary parameters is chosen to be the scale of the
boundary layer . A formula for the sensitivity of the velocity and density profiles with respect to

§ can be derived from a Taylor expansion in y

w(é) 8u _ 3u
Olns Oy

~ Olné  Olny

o - 9 _ O
Olnd Olny

Then scale sensitivity is assigned to one mode in the expansion: the corresponding columns in J4, J,

are simply the flux vectors f and g.

Thus far, the role of the a mode has been indistinguishable from the usual laissez-faire p modes.
In practice, it is really only necessary to have an auxiliary mode for one velocity component (the
natural choice in a streamline-based empirical framework being w) to provide the necessary space to
project the original Jacobian matrices (= ¥y = 0). However, in the limit of vanishing crossflow, it
then becomes necessary to have a non-singular J;, in addition to requiring that b; smoothly vanish
for all j as w — 0 for consistency. Then, for a typical system of integral equations, a singular J, in
these conditions is avoided by choosing the scale as a laissez-faire parameter (€ p) and associating

a with the auxiliary mode (r,; and r,,).

The use of the additional mode means that profiles of greater variety are possible that in the laissez-
faire method because the eigenvalue conditions effectively play the role of an additional equation.

In particular, bidirectional crossflows are possible with simply a three-equation system.

Increased computational work

The new method entails increased computational work over the laissez-faire one. Under the first
eigenvalue-prescription paradigm, N matrices of order NV have to be inverted in Equation 6.3, one for
each eigenvalue. Under the second paradigm, only as many matrices as there are complex eigenvalues
of the laissez-faire system will have to be inverted; however, the eigenvalues of the original system
have to be computed. For most practical situations involving systems consisting of three or four

equations this, in fact, not an excessive computational cost.
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An estimate of the change in the coefficient matrix

To the extent that it is useful, an estimate of the minimum change in the coefficient matrix J,J;*
can be obtained from the Bauer-Fike theorem (see, for example, Wilkinson [71]): if p € C is an
eigenvalue of J,,J; 1 and Z is its eigenvector matrix,

min |p — tan G|

| K K= 3,37 1> ;o w=[lZ Iz (6.4)

K
where the norm can be any of the p-norms and k is the condition number of Z. The minimum
change in the coefficient matrix is directly proportional to the distance in the complex plane of a
prescribed eigenvalue and the nearest eigenvalue of the matrix. Furthermore, the minimum change

also varies inversely with the departure of the coefficient matrix from normalcy .

6.3.3 A note on steady non-linear application

As has already been indicated, the procedure developed here is applied in a linear sense at some
point in parameter space. It provides information on the first-derivative sensitivity of the velocity
components and density. It does not provide enough information to uniquely determine a profile
family over the entire parameter space which also satisfies the hyperbolicity constraints. A non-
linear function can be linearized at a point, but in general it is impossible to reconstruct a non-
linear variation from an available linearized approximation. In theory, however, a functional relation

F(p) = a can be postulated which satisfies the following gradient conditions:

oF  _
6pj q'j
OF

30 - 1

An N + 1 order, non-linear system (the original system augmented with the gradient of F' in some

direction Z) can be posed

of og
oz B2 h
+ = ;
oF
o 0 0

1Normal matrices possess orthogonal eigenvectors (for example, symmetric matrices).
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which possesses the prescribed eigenvalues.

In non-conservation form, with & angularly inclined to x by the angle -, the system can be expressed

Ja Iy o 1Y J. Ty o 1Y h

oz * oz =

—qTcosy cosvy a —qTsiny sinvy a 0

The additional equation allows « to be determined directly. When applied with a uniform boundary
condition on « in a well-posed hyperbolic case, this new equation will fix a to the uniform value in
the entire domain. In particular, if « is set to zero, the role of the auxiliary mode and equation is
restricted to ensuring that the system eigenvalues are equal to the prescribed values; the velocity
and density profiles receive no contribution from the assumed mode. This system above can be

verified to possess the correct eigenvalues through a simple similarity transform.

6.3.4 Unsteady equations

For the unsteady equations, the objective is to simultaneously ensure that two coefficient matrices,

K, K ! and K;K !, possess real eigenvalues. The system is

Ou Of Og a_p a_p 6_p_

Here, two additional modes are introduced into the velocity and density profiles:

u = u(p7a07a71;y) A4 wka ,(/}07 ,‘/}71
w = w(p7a07a71;y) A4 ¢k7 ¢07 ¢71 k= 17" ’N
p = pp,a0,a-159) < G, Go, Co1

There are two eigenvector matrices X, and X; corresponding to each of the two coefficient matrices
K,K;! and K;K!. Carefully following the argument for the steady equations, the hyperbolicity
conditions for the eigenvalues A\; and A\; can be written as

(Tsds — Tn)xs; + (N —rO)by x5 + (7N — )b x4, =0,
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(Js)\t — Jt)th + (I'go))\t — r§0))ngtj + (rg_l))\t — r(_l))bzlxtj =0.

In the steady equations, the length of the eigenvector was set by the condition

Oa

— =blx,; =1
6’0]' XJ ’

and the vector b was then computed after the complete eigenvector matrix was determined. In the

unsteady case, the length of the eigenvectors in each of the conditions can be set by one of the two

modes
8040 T _
avsj :boxsj:].,
60471 T
=b =1,
vy 1%

Defining a matrix whose columns each correspond to a prescribed eigenvalue such that

TO = (Jhs; — T) 7 @O, — £l0),

smj —
and diagonal matrices with the j** elements
B,; = bl x,;,
B; ji= ngt js
the hyperbolicity conditions define the new eigenvector matrices implicitly
X, =-T{ - T{;VB,,

X; = ~Ty'B; T

The eigenvectors together with the length definitions above determine the sought after coefficients

bo and b_;. Then

D 0 0 7]

Dp, ~ ap, T i) gey )5

are the new sensitivities associated with the new Jacobian matrices.
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Figure 6-2: Inward-pointed characteristic line indicating the necessity to impose a Dirichlet-type
boundary condition.

6.4 Boundary Conditions

For a scalar hyperbolic equation, a boundary condition of the Dirichlet type is necessary along the
section of the boundary where the characteristic points into the domain (see for example, Kreiss [34]).

No condition is necessary if the characteristic is pointed outward. In streamline-aligned coordinates

g_f_)\%_

Os an_h7

a boundary condition is necessary if
ép-€x <1,

where é; is the inward normal to the boundary as shown in Figure 6-2.

The principle can easily be extended to systems of equations by applying boundary conditions
through fixing the characteristic variables in situations where the corresponding characteristic line
meets the criterion above. It is considerably more convenient, however, to pose the boundary con-
dition in terms of primary parameters, or recognizable physical quantities, instead of characteristic

variables. For a system, this is well-posed if the transform matrix between the imposed characteristic
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Figure 6-3: A space-marching solution algorithm for the eigenvalue-based method applied to the
steady equations under the paradigm where the eigenvalue is replaced only if complex in the laissez-
faire system.

variables and the imposed boundary layer parameters is non-singular. Then, the number of indepen-
dent boundary layer parameters imposed must simply equal the number of incoming characteristics,

and can be freely chosen depending on the relevant local physical requirements.

6.5 Solution strategies

There are several general strategies that can be employed to solve the equation system. These
include steady space marching, unsteady time-stepping and non-linear Newton solution. The Newton
method applies only to the non-linear laissez-faire (b = 0) system. For the purposes of this section,

it is assumed to be hyperbolic.

98



6.5.1 Steady flow solution by space marching

The steady equations can be solved by a marching procedure in the streamwise direction. This
requires that the residual be distributed exclusively to nodes in the marching direction. Furthermore,
marching can only be used for flow regions where all characteristic lines are oriented generally in
the marching direction (namely only for attached flows). In residual form, with x the marching

direction, the system is

op og
Kz%—h (‘32 —I'(p,Oé),
where
Ja
~“ _b
op

and where only one additional mode, as explained earlier, is required to ensure hyperbolicity in
the eigenvalue-based method. The solution can be advanced in x by any explicit marching scheme
(Euler, Runge-Kutta, etc.) with the usual CFL restrictions on the size of Az. For example, for

explicit Euler

A
Explicit Euler: A_P =K, 'r + O(Ax)
T

Aa =bTAp + O(Az)?

Implicit marching techniques can be used with significantly larger steps (allowing the CFL constraint

on stability to be replaced by considerations of accuracy). The residual expanded as a Taylor series

in pis
B or Or o 9
r(p + Ap,a) =r(p,a) + [ap + aab ] Ap + O(Ap)~.
Then, implicit Euler is
o ) K, Oor Or _
Implicit Euler: (Aw [ap + aab }) Ap =r + O(Ax)

Aa =bTAp + O(Ax)?

The conventional residual Jacobian matrix is modified by the addition of a unit-rank matrix corre-

sponding to the additional mode. More sophisticated schemes for both explicit and implicit marching
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can be devised along these lines.

6.5.2 Unsteady flow solution by time stepping

The unsteady equations can be solved by integrating in time. The system written in residual form
is
ap of Og
Ki—=h—-— - = =r(p,ag,a_1).
t a1 or 02 (p,ao, 1)
Following the space-marching procedure, the solution can be computed at the unknown time level
n + 1 using a variety of explicit schemes. For example, for explicit Euler

pn+1 _ pn

- K;'r + O(At)

Explicit Euler:
aftt = aff + b Ap + O(At)?

a™ =a", +bT Ap + O(At)?

For an implicit method, again following space marching, the residual is expanded as a Taylor series
inp

or Or o Or

Jp + dag ° + Jda_q

£(p + Ap,ag,a_1) = r(p, a0, a_1) + [ le] Ap + O(Ap)’.

Then, implicit Euler is

Implicit Euler: (Kt [ar Or pr Or

il el — b —bT n+l _ _n — A
At |op T 9a0 ™ T e, —1} >(p pY) =r+ 041
aftt = af + bl Ap + O(At)?

a"tt=a" + bzlAp + O(A)?

More sophisticated schemes for both explicit and implicit marching in time can be devised along

these lines.
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If the objective is to compute steady flow, then implicit time stepping can be used in a slightly

simpler form

R I, _ el A n+l _ _n —
At |op T Bag O+8a_1b_1] >(p pY) =r+ 041

I
Lumped implicit Euler: ( [81‘ Or bl or
aftt = aff + b Ap + O(At)?
a™t =a™, +bT Ap + O(At)?

The solution is iterated in time until the residual drops below a specified tolerance value

e 1< 7t0r -

6.5.3 Steady flow solution using Newton’s method

The Newton method is invaluable in the solution of non-linear systems. As noted before, the
eigenvalue-based hyperbolic systems are fundamentally linear in that instead of specifying a as an

explicit function of p, it specifies only the sensitivity

0

ga _ b.

op
Therefore the Newton method is inapplicable to eigenvalue-based hyperbolic systems. However, in

their laissez-faire form (b = 0), equation systems can be solved using Newton’s method either over

the whole domain or in a space marching mode.

The Newton method can be derived, in the context of whole-domain solutions, from implicit Euler

time stepping by letting At — oco. At iteration level n
a n
Newton: [—r] Ap = —-r",
op
giving
p'"t=p"+Ap.
The iterations are repeated until the residual drops below a tolerance value

e 1< 7e0r -
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6.6 Appendix: Formulae for flux derivatives

For the usual boundary layer integral equations (momentum, energy and higher order in velocity),

the fluxes can be functionally expressed as

/nz’(p, u,w) dy

u; =
fi = /nz’(p,u,w)udy
g9 = /ni(p,u,w)wdy

where 7;(p,u,w) is a polynomial in u, w and p. In the notation of the parent integral equation,
Equation 2.13, the integrands are 7; = p(¢. — ). Substituting the assumed profile-family derivatives,

the resulting Jacobian matrices are

Ouy;
Kt = 9 L = /(Hut'(/)() +K’wt¢0 + Hptgo) dy
vj
(
o
Ruy = 8131
b Sy [t + et ) dy oy = 2
k
_ om
L li/’t - 9117
a .
K, = afz = /(Kuz¢0 + Kw, $o + Kp, o) dy
v
(
Fu, = uBE+u;
b Sy [t ran .G dy o, = ulz
k
— Oni
| Foe = UG
afi
Ko=gnt = [ (kuto b ko 0. Go) dy
J
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(
_ Oni
Fu, = W5y
) oni
+ ;wkj /(“uﬂ/’k + Kw, O + Ky, C) dy Kw, = w% +n;
_ oni
[ fe: = W,

Similar formulae can be derived for entrainment, general moments of momentum and other integral

quantities.
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Chapter 7

Spatial Numerical Method

The boundary-layer equations are discretized using the finite-element method based on an effective
and flexible set of numerical procedures devised by Nishida [44]. The scheme used in this thesis
differs from that of Nishida in an important way, however, namely the use of streamline upwinding.

This chapter contains a description of the discretization scheme and the application of upwinding.

7.1 Curvilinear and Cartesian coordinate systems
Before describing the numerical discretization of the equations it will be useful to very briefly place
the use of Cartesian coordinates in context.

The boundary-layer equations derived in Chapter 2 assume that the boundary-layer thickness
0 K Tmin (71)

where 7,4, is the minimum principle radius of curvature of the surface. This permits the surface-
normal axis to be unstretched consistent with the first-order assumption, and further permits the

use of simple Cartesian coordinates.

Traditionally, the equations, driven by finite-difference discretization methods, have been expressed

in curvilinear coordinates which include coordinate stretching metrics and curvature terms for the
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axes embedded in the surface. The surface-normal axis as noted does not need to be stretched even
in curvilinear coordinates for the small curvature assumption. For non-orthogonal surface coordinate
axes, the resulting equations are considerably more cumbersome than those using Cartesian coordi-
nates. The use of orthogonal coordinate axes (typically corresponding to the outer-edge streamlines
and streamline-normals) makes the equations a little simpler but introduces other restrictions. Most

authors also assume that the surfaces are developable for which the Gaussian curvature

1

0,
TminTmaz
which allows at least one of the curvature terms to be identically zero at any point over the extent

of the surface. The remaining grid-dependent terms still have to be computed explicitly.

The development of finite-volume and finite-element methods, in conjunction with the recognition
that the integral equations can be written in conservation form, allows the use of simple, arbitrarily-
oriented Cartesian coordinates [40]. There are no restrictions on the shape of the surface as long
as the assumption on the relative magnitude of the curvature 7.1 is observed. The finite-volume
and, in particular, the finite-element method provide a convenient way to transform between a local,
computational space (natural coordinates) and a global physical one. The result is that the curvature
and stretching of the grid is computed systematically, and conveniently, by the finite-volume or
finite-element method at the numerical level. This represents a fundamental simplification over the

traditional curvilinear-coordinate approach.

7.2 Global and local coordinate systems

The physical domain is subdivided into quadrilateral computational elements. The boundary-layer
equations are solved in local Cartesian coordinates for each element (2, 2',n), each defined in terms

of the global coordinates (z, z,y) as shown in Figure 7-1. The process involved has two stages:

1. The element normal is calculated by taking the cross-product of diagonals 1 — 3 and 2 — 4
and scaling the resulting vector so that its length is one. The nodes are numbered so that the

normal vector points into the flow.

2. The 2'-axis is chosen to be fixed in the plane of the element, for example in the direction of

diagonal 1 — 3, and the z’-axis is then calculated by taking the cross-product of the element
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Figure 7-1: The normal vector and coordinate system for an element.

normal and the z'-axis. The nodal positions can then be expressed in the local coordinates.
For some applications, the z'-axis is chosen to be the element-averaged outer-edge streamline
direction. Note that then, for viscous-inviscid calculations, the element coordinate system is

not fixed.

The relevant boundary-layer quantities in an arbitrary direction are related to those in the streamline
direction as listed in Appendix I of this chapter. The primitive boundary-layer parameters are used
to define quantities in the streamline direction for every node as an intermediate step, and these
are then expressed in the element coordinate direction for inclusion in the numerical differencing

scheme.

7.3 Finite-element discretization

Over each element ¢, interpolation functions Nl(e)(:ﬂ’,z’) are used to determine some quantity

u(®)(z',2'") in terms of its nodal values u;
4
ul® (2!, 2') = ZulNl(e)(:ﬂ', 2').
=1

Elemental quantities are denoted by the superscript (e) and [ is the local node number as indicated

in Figure 7-1. In what follows, the identical symbol is used for the function as well as its nodal value

106



for convenience, the distinction being implied by the use of a subscript on the latter.

Since the integral equations contain only first-order derivatives, bilinear interpolation functions,

defined in natural element coordinates

N o= (1-90-n)/4
Ny = (1+861—-n)/4
Ny = (1+81+n)/4
Ny = (1= +n)/4

will be sufficient to provide the necessary functional continuity. The interpolation functions for an
element must satisfy the property Z?:l N; =1 in order to be able to represent a constant function
exactly. For isoparametric elements (same interpolation function used for both element geometry

and quantity u), the natural coordinates are related to the local physical surface coordinates by

4
dEn = Y N
=1

4
29em = S Nien
=1

The details of the transformations between the two coordinate systems are well known and provided,

for example, by Hirsch [28].

The elemental residual 7(¢)(z', 2') for the steady form of the parent integral equation, Equation 2.13,

is

4
=Y VN (pegt o),

4 4
(Z N(e ¢(u) Z VNl(e) (ue)r + Z N[(E)(qsgw))l Z VNl(e) (we)l>

=1 =1 =1

4
'ZNI(E)(PeQe(S*)l

=1

(ZN“ (a0): ZVN )ZN(e)pqe )
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4
- <ZNJ(€)(%)1'ZVN(€ )ZN“ (pegt~1®2)
=1

=1

4 4

4
— > N ly=0) Z N Fy=) — > N (Dp),
=1

=1 =1

The individual residuals for the momentum and kinetic-energy equations fall out of this expression
as explained in Chapter 2. Explicit expressions for these individual equations are provided by

Nishida [44].

7.4 Method of weighted residuals

Following standard finite-element procedure, the elemental residual form of the equations is converted
into a weak form by projecting the elemental residuals #(°)(z',2’), which are in the space of the
interpolation functions, onto a space of weight functions (Wi(e) for node i) and integrating over
the element. This allows the equations to be expressed in terms of nodal quantities. The residual

contribution of element Q¢ to one of its nodes, 7 is

e) — // Wi(e)f‘(e) ds

The integrations are approximated by 2 x 2 Gauss quadrature for each element, and the contributions
to each node assembled globally. The sensitivities necessary for the residual Jacobian matrix are

also conveniently assembled by using a routine of a similar format to the one used for the residuals.

7.5 Choice of weight functions

The weight functions can be chosen to yield different discretization schemes. A very lucid description
of the various finite difference schemes possible within a finite element framework can be found in

Shapiro [52].

The boundary-layer equations contain first derivative terms, the numerical approximation of which
needs special treatment to avoid spurious oscillations. A Galerkin (G) approximation, where the

weight functions for a node are identical to the interpolation functions, produces a stencil which in
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Figure 7-2: Weight functions for the Galerkin, Crank-Nicolson and characteristic upwinding (a =
0.5) schemes for a characteristic oriented, as shown, at an angle of 30° with respect to the s-axis.
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turn is a blend of a finite-volume (FV) stencil (also known as a cell-vertex scheme in finite-element
parlance) and a central-difference (CD) one [52]. The resulting residuals satisfy the relation

€ 2 € ]‘ €
=2+ Ly

Spurious sawtooth oscillations are invisible to each of the counstituent stencils (for the derivative

terms) and hence the Galerkin one as well.

An obvious remedy is to add second order smoothing. This may be useful in certain specific condi-

tions (near separation regions, for example), but is excessive in most cases.

The directional nature of a hyperbolic system of equations suggests the introduction of upwinding
based, in some fashion, on the edge-velocity direction. This is considerably better suited to the
nature of the problem compared to a generic second-order smoothing term and is also less intrusive.
To this end, Nishida used a weight function equivalent to a Crank-Nicolson finite-difference scheme
over the two upstream elements. While this is a second-order accurate scheme and works well, it
requires the prior designation of what the upstream elements are and, furthermore, is ambiguous
for borderline edge velocity orientations. Another consequence is that that the mesh artificially
influences the solution. A more general upwinding strategy which is independent of the local grid
particulars, and which adapts naturally to coupled systems, is preferred. Such a strategy is developed

in the following subsections.

Before proceeding, it may be useful to note that, unlike the general upwinding strategy, the Crank-
Nicolson weighting is intrinsically applicable to marching solutions because the residual contribution
to a node is exclusively from the upstream elements. The same cannot be said for the Galerkin
weighting, or the upwinding strategy that is proposed next. Therefore, the facility to apply Crank-

Nicolson weighting is retained for marching calculations.

7.5.1 Upwinding the scalar wave equation

For the scalar non-homogeneous wave equation with constant coefficients

ou . Ou B . ) ) R
Cosﬂa-i—Slnﬂ&—ek-Vu—h, &, = (cosB)i + (sin B)k,
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the elemental residual in local coordinates is

4

4
’Fge) (37,; Zl) - (é;ce) ’ Z VNl(e) (xl’ ZI)) e Z Nl(e) (xl’ Zl)hl .
=1

=1

The superscript (e) will be dropped from the elemental variables for clarity for the remainder of
this chapter and is implied by context. The residual contribution from an element ¢ to one of its

nodes ¢ for a Galerkin approximation is
Ti'G =/ Nﬂ:v ds .
QE

Upwinding is introduced by adding a term, proportional to the component of the gradient of the

interpolation function VN;(z, z) in the direction of the characteristic, to the Galerkin weight function

rily = / / (N + K7, dS (7.2)

where

A
Wi(x',2') =&, - VN;, k= ag,

A is a (somewhat) arbitrary measure of the element size in the direction of é; as shown in the
figure and « is a numerical coefficient [73]. The net effect of the additional term is to redistribute
the elemental residual to the nodes taking into account the direction of information flow. Full
upwinding corresponds to « &~ 1. This addition is equivalent to artificial dissipation, but only in the
direction of the characteristic; there is no net contribution to the weight function in the direction
normal to the characteristic. The elemental residual here is emphasized to be in characteristic form
(necessarily for the scalar equation) for future use by use of the subscript v. In the literature, this
approach is generally termed “Petrov-Galerkin streamline upwinding (SUPG)”. In the context of
this section, the streamline is the mathematical characteristic, not necessarily the actual velocity

streamline.

The efficacy of this upwinding formulation for the finite element method in suppressing spurious
oscillations is demonstrated later. For most situations, small values of « (= 0.05) are found to be
sufficient. Note also that the presence of the source terms is an important consideration as shown

in Appendix II to this chapter.
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Figure 7-3: Element size in characteristic direction.

Conservative property of streamline upwinding

This modified weighting function maintains the conservative property of the Galerkin scheme. A

sufficient condition for conservation is [52]

Swi=1
[
for all nodes I on element 2¢. Then for the upwinding weighting,

> W
1

ST+ kW) (7.3)
1

1+kY VN - & (7.4)
1

Il
—
_|_
S
<
(]
=z
N——
>
x>
[
—
=
&

because ) . N; = 1.
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7.5.2 Complete upwinding for a coupled system

The vector of finite-element residuals approximating a upwinded system of first-order wave equations

(decoupled by default) is expressed in matrix notation

=// (NiI—i—KWi)fvdS, W, = VN; - (Aci + Ak),

where K and W; are now diagonal matrices. This is a straightforward extension of the scalar case.

Instead of solving the boundary-layer equations in a non-conservative characteristic basis, it is more
convenient to solve directly the conservative form. The elemental residual function of the coupled,
conservative-form system, denoted by the ¢ subscript, is related to that of the decoupled, non-

conservative-form system through the transform
~ —1~
. = XA,

where X is the eigenvector matrix for the flux-basis system and A, is a diagonal matrix of the cosine

of the elemental characteristic angles (with respect to the z'-axis).
The upwind-weighted residual system for the conservation-form system is:
ry, = / N XAH(NI 4+ KW)i, dS
- / / (Nl + XA K WA X i dS
= //C(Nil + XKW, X Hi.dS

= // (N, I+ VN; - XK(Aci+ Agk)X i dS

- // <NI+XK<(?3NIAC ‘ZJ\CAS>X1>MS, AA=A

The upwinding weight-function matrix for the conservation equations is no longer necessarily diag-

onal. Here A; is the diagonal matrix of the sine of the characteristic angles.

It may be more convenient to use flux Jacobian matrices with respect to primary parameters, J,

and J,/, rather than requiring the evaluation of system eigenvectors for use in the upwinding term.
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This can be achieved by restricting K to the form
K = k (min | cos 3j|) A"

so that the upwind-weighted residual contribution for the conservation-form equations is

N; N;
re; = //e <NZ~I + k (min | cos §;]) <2sz +J21Jz71%>> FedS, J.J' =XAX L.

Note that min | cos 8| — 0 provides the necessary boundedness as [Jg/| = 0 .

7.5.3 Simplified upwinding for a coupled system

Implementing the full characteristic upwinding in either characteristic or conservation form is com-
plicated in an implicit/Newton solver, where the residual Jacobian matrix is computed analytically,
because the sensitivity of the upwinding weighting term involves partial differentiation of differenti-
ated terms. While this is possible in theory, in this thesis the overall cost-effectiveness was judged
to be poor on the basis of successful numerical experiments with a simpler, related formulation;
however, this is not to detract from the considerable value and increased robustness of the complete

upwinding facility for more general applications.

A simple and effective alternative can be devised based on the essential feature of characteristic
upwinding. Each equation in the conservation form system, or some chosen combination of equations,
is upwinded individually with the facility to heuristically relate the upwinding direction €; and the

numerical coefficient « to the boundary layer parameters tailored to the particulars of the system

r, = / / <NiI+a(p)%VNi-ék(p)I) 7.dS.

Typically, just simple upwinding in the outer-edge streamline direction using a constant a = 0.05 is
found to be effective in the majority of cases tested. These are the settings used for the application
results presented in subsequent chapters. Regions of large separation (H > 6) in interactive mode
calculations were, however, found to be troublesome for this heuristic approach; for the cases tested,
the actual source of the trouble could partly be attributed to stiffness due to insufficient cross-stream

grid resolution.
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A comparison of the different weight functions considered here is performed on a rather severe test
case. The results are presented in Figure 7-4 for the Galerkin, Crank-Nicolson (upstream nodes
chosen are those to the left of a node) and upwind methods. The boundary conditions applied
are discontinuous at the upstream bottom corner. The discontinuity persists in the downstream
direction because the crossflow is positive (pointed into the discontinuity) below and almost zero
above it. This forces the characteristics to effectively merge '. As an aside, the discontinuity is more
evident in streamwise quantities, which are not plotted here, than in the crossflow displacement

thickness which is plotted.

There are two observations that can be made. First, the upwind weighting (o = 1) is moderately
effective in suppressing the spurious oscillations present in the Galerkin weighting and, to a somewhat
lesser extent, in the Crank-Nicolson weighting solutions. In less-severe cases, a far lesser value of «
for the upwind weighting, as already noted, or the use of Crank-Nicolson weighting is found to be
sufficiently effective. Note here the that the general appearance of the results indicate the presence

of stiffness associated with inadequate grid resolution.

A second interesting feature of this test case is the presence of low-wavenumber (about four and a
half wave-lengths across the bottom) oscillations associated with the dispersive error of the Galerkin
method. Shapiro [52], using a Fourier analysis, demonstrated the existence of these oscillations for
the Euler equation solutions near a shock, for Galerkin weighting, among others. Upwind weighting

(as one might expect) does not generate these oscillations; Crank-Nicolson, evidently does.

Finally, a comparison is performed with the upwind weighting applied in the outer-edge streamline
direction and one applied in a direction oriented slightly toward the crossflow. The results are very

similar, although the latter is arguably slightly more effective in suppressing spurious oscillations.

1The characteristic mechanics of this situation are similar those that lead to shocks in one-dimensional unsteady
Euler-equation solutions (where one characteristic coalesces)
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Figure 7-4: The effects of different weight functions: contours of 65 (20 steps from -0.0002 to 0.00001,
30 x 30 elements) with boundary conditions § = 0.1, ¢ = 0.0 on the left (z = 0), § = 0.01, ¢ = 0.5
at the bottom (z = 0), and H = 2.6 on both edges. The external velocity components are u, = 1.0
and w, = 0.5. (a) Galerkin weighting, (b) Crank-Nicolson weighting in the x direction, (¢) upwind
weighting with a = 1 and &, = 0°, (d) upwind weighting with a = 1 and &, = 20°.
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7.6 Appendix I: Relevant variables in general orientations

Thicknesses and shear stresses in (z, z) coordinates (defined by velocity components (u., w,)) can be
directly expressed as functions of their values in streamline (s,n) coordinates (denoted by numeric

subscripts).

Kinematic displacement
qe/ﬂz = ueﬁl - we/l92

qe/ﬂz = ’er’l91 + ue/l92

Displacement
qe0) = Ued] — Weos

qe0; = U0y + weo7

Momentum
2 .2 2
G- 0zs = uz011 + w.022 — uewe (612 + 621)
2 .2 2
q:0z: = ugbio — w021 + uewe (611 — 022)
2 _ .2 2
G:0.0 = ugbo — w012 + uewe (611 — 022)

qﬁé’zz = u§922 + w§9u + Uewe (B12 + 6021)

Density
qe0y" = ued7" — wed3”

Qe0y" = wed7" + ued3”
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Shear stress

QeTy = UeT1 — WeT2

QeT: = WeTy + UeT2

Kinetic energy

qSE«”«” = ugEll + uiwe(_'gElQ - 263) + erg (3E21) — ’IUEEQQ

CE,. = u2E1y + vlw.(E1 — 2E2) + uew?(—2E1y — 285 + Eg) + w’ By

@ oy = U Eoy + 02w (2E13 + 265 — Fao) + uew?(Eyy — 2E21) — w’Eys

ngzz = U§E22 + Ugwe (3E2]_) + ’U,ewf (3E12 + 263) + ngll

qet‘); = QG(Ezz + Ezw) = ueer — w60§

qe0: = QG(EZ:E + Ezz) = weef + u60§

CEme = CEy. + 12007 — uoweq. 0}

qumz = quz:v + wzqedl’; — UeWe e Oy

Dissipation

quw = ung — uewe D12 + w?DQ

quz = wal + ueweDio + uiDz

D=D,+D.=D1+ D,

Q§Dm = (ug — w?)Dm + 2uewe (D1 — Do)
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Figure 7-5: Upwinding weight function (solid line) compared to the Galerkin weight function (dashed
line) in one dimension. Here the flow is from left to right.

7.7 Appendix II: Streamline upwinding applied to a model

problem

A suitable scalar model equation for exploring oscillatory behavior of the integral boundary layer

system is

du

% = h(u7 'T) )
on the domain z = [0, 1]. This domain is discretized into elements Q¢ of equal length A. A feature of
the weighting scheme is that the source term influences the presence of spurious sawtooth oscillations.

For simplicity, the equation is linearized around a solution u = ug(z),

du dh
= uou—A(:ﬂ)u

where the dependent variable can also be viewed as a perturbation around the solution. Upwinding
is introduced as in Equation 7.2 through the additional gradient term, here in one dimension,
A dN;

Wi:Ni'FkWi:Ni'i'OéE dr .
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Figure 7.7 shows the weighing function for an interior node juxtaposed against the Galerkin weighting

function (linear interpolation function) for a characteristic oriented to the right.

The weighted residual form for the model equation for a node ¢ in the interior is

2 (e)
Wi (x) Z (le (x)u; — Nl(e) (w)Alul> dz ,

e dzx
Q =1

integrated over all elements, where A; and wu; are now the values at the nodes for the element €.

Only the two elements containing the node yield non-zero contributions.

On isoparametric elements, assuming a constant A, the assembled residual equation for an interior

node is
<(1 —a) — (§ — %)p) U1 + (2a — 4%) u; + <—(1 +a) - (% + %)p) uiy1 =0,

where p = Ah. The residual has the usual anti-symmetric contribution from the derivative term
corresponding to a central finite difference. However, the interpolation functions distribute the source
term value to all three nodes. This represents a difference from the conventional finite-difference
treatment. The consequence, in upwind weighted residual is that the source terms contributes to

the asymmetry in the direction of the the derivative term:

derivative: (-1 0 1)
derivative upwind: a (-1 2 -1
source: (-2 _%P -2
source upwind: a (=% 0 £)
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Chapter 8

Application I: Bidirectional

Crossflow

The basic equation system for calculating unidirectional-crossflow boundary layers contains the two
momentum and the total kinetic-energy (or more commonly, in the literature, the entrainment)
equation. The calculation of bidirectional crossflows requires an additional mode in the crossflow
velocity profile family, and an appropriate auxiliary equation to close the problem, over the basic
third-order system. The additional velocity mode, as discussed in Chapter 3, can be included as an

extra term

w(c, c13y) = ¢ ((wo(y) + Grwi(y)) = cwo(y) + crwi(y) - (8.1)
The choice of the specific additional equation is not straight-forward and is the main subject of

this chapter. The system, with the appropriate auxiliary equation, is validated using a quasi-three

dimensional finite-difference calculation.
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8.1 Choice of additional equation

The natural candidate for the additional equation can be deduced by examining the usual two-
equation system for two-dimensional calculations, consisting of the streamwise integral momentum
and kinetic-energy equations. There, the unknown parameters are the boundary-layer thickness
scale (9, or equivalently any thickness, for example 6;;) and a streamwise profile shape factor (for
example, H). The basic idea can be extended to the crossflow direction for three-dimensional flow.
With the cross-flow magnitude ¢ as a cross-stream scale, and ¢ the cross-stream profile shape factor,
the equation system is extended to include the cross-stream integral momentum and kinetic-energy
equations. Equivalently stated, the momentum /kinetic energy combination, which has been shown
to accurately simulate variable profile shapes in two dimensional flow, can also used to simulate

variable-crossover profile shapes. Stock [56] used these equations in his computational method.

For any general coordinate orientation (including, of course, streamline-aligned), the use of the
total kinetic-energy equation in addition to either x or z kinetic-energy component is equivalent to
using the two individual components instead (different combinations of the same equations being a
similarity transform). Therefore, without loss of generality, and for clarity, the equation system is

written with the two individual kinetic energy components:

Oue Oue

%(peqﬁ%) + %(peqﬁ%z) +Peqedy 5+ peded 5= =T,
(f_x(pquazz) + %(peqﬁezz) + mq&i% + peqed? a;;e = Ta
;—x(peQSEm) + %(peqSEm) + peded; %f + peqed; Ej;f
e (u%i + w"j;i) o, (8:2)
aa_x(pquEzz) + %(ﬂquEzz) + Peqe0; aaf + Pege Zagf
— 2peqeV. (ue% + w, ag) =2D: (8.3)

This proposed system, it turns out, is ill-conditioned in certain conditions in an implicit/Newton

solver. Before discussing the reasons, note as an aside, that the derivative-term Jacobian matrices
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of this system in streamline-aligned coordinates are

( 011 511 0 0
C0_21 09_21 0_21 C0—121
J, = , (8.4)
Ep, Ell 0 0
L C2E21 C2E21 2CE21 CzEél

( 09_12 C0_12 9_12 09_112
020_22 C2§22 2C0_22 020_;2

_ = _ —
CE12 CE12 E12 CE12

L C3E22 03 EQQ 3C2E22 03 E;Q

where the columns are partial derivatives with respect to (Ind,pi,c,é)7. The overbar denotes
quantities evaluated at ¢ = 1 allowing the dependence on ¢ to be clearly shown.
8.1.1 Ill-conditioning property of equation system

In streamline-aligned coordinates, the cross-stream component kinetic-energy equation simplifies to:

2(pe@PEn) + Z=(pedPBErn) — 2upeqds = 2D,

NC2 NC3 ~ C ’\-'C2

The dependence of each term in the equation on the crossflow magnitude parameter is also shown.

The equation is identically satisfied for ¢ = 0 and the lowest order term varies as ¢. A significant

problem arises when the pressure gradients in the external flow are zero (= ag‘f: = 0). Then, the

lowest order remaining terms vary as ¢®>. In any implicit or Newton-like numerical scheme, this
results in extreme ill-conditioning for small crossflows because the derivative of the residual tends

to zero. In fact, at zero crossflow, the residual Jacobian matrix becomes singular (for the derivative
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terms, the singularity is evident in the Jacobian matrices 8.4 and 8.5, where the terms in the last

row all vanish for ¢ = 0). This makes the overall equation system untenable.

8.1.2 Possible remedies

In theory, the natural fix is to deflate the singularity in the equation by dividing it by a quantity
that varies like ¢. In practice, this would involve identifying the numerical direction along which
the deflation is to be carried out for each element. The deflation would need to be flanked by
transformations between the deflation-direction coordinates and the local element coordinates. This

is a difficult and complicated proposition.

Another idea is to introduce an O (¢) dependence (other than in the pressure-gradient term) into the
cross-stream kinetic-energy equation by adding some suitable fraction of the entrainment equation.
There are at least two problems with this approach. First, the addition involves an arbitrary mix
of the two equations, and hence an arbitrary mix of physics. Second, an additional closure relation
for the entrainment coefficient will be needed which also introduces more empiricism. Furthermore,
systems using the entrainment equation are generally less accurate than those using some form of

the kinetic-energy equation.

The desired remedy is to use the mixed-component kinetic energy equation as the auxiliary equation
to the original third-order system (one that employs the total kinetic-energy equation). The resulting

system replaces Equations 8.2 and 8.3 in the initially proposed system

9. o, . du du
A \Pe azz a_ \Pe Zewz e 66*—6 e 66*—62 T, .
g Pelelac) + 5-(Peclaz) + Pededy 7= + peged; 7= =T, (8.6)
9, o, . Bw dw
A \Pe Hz.r a_ \Pe 2922 e 66* - e 66* < = Z4 .
g Peleza) + - (Pedclsz) + peqedy 5= + peged; = = T2, (8.7)
2( 30*)+2( 30%) + 6*6—(1§+ 6*8—(13—2D (8.8)
aw Pedeby 62’ PeqcY; PeqeOy aib PeqeO, az - N
2( ’E )+2( 5E )+1 6**a—q§+ 6**a—q§
o Peqe Lma 92 PeqeLimz D) Peqe0y 9z PeqeO, o
Owe  Oue N N
( 02 - o ) (peueQe(Sz - peweQeéz) =D, (8-9)
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For the conditions under which the earlier system was ill-conditioned (zero crossflow, zero pressure
gradients), the total kinetic-energy equation becomes identical, of course, to the streamwise kinetic-
energy component equation (which is well-conditioned), and the mixed-component kinetic-energy

equation in streamline coordinates simplifies to:

Z(pe@Brs + pedids) + Fm(pediBa) = Diy

The overall equation system is now clearly well-conditioned because the new equation has a Oc
dependence independent of the pressure gradient. Furthermore, use of the mixed-component kinetic-
energy equation preserves the fundamental idea of using an energy-type equation to solve for the
cross-flow shape factor. However, care must be taken in using this equation because it is orientation-
dependent (fundamentally not part of a vector of equations). The obvious direction to use is the

streamline-aligned one.

The derivative-term Jacobian matrices for this system are:

611 011 0 0

B 0521 621 Célm
J, = (8.10)

Ell =+ C2E_'21 Ell =+ C2E21 26E21 C2E;1

02E21 02521 26E21 C2E;1
iz 20 012 Cg’u
2049 02522 2¢025 02522
J, = (8.11)

CE_'12 + 63E22 CE'12 + 03522 E12 + 302E22 CE12 + C3E_';2

— = — —
C3 E22 63 E22 3C2E22 C3 E22

It is important to use ¢; instead of ¢; as the new parameter. To illustrate, consider the last column

of the Jacobian matrix (corresponding to the partial derivative with respect to é ) for the source
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terms in the residual vector (without the pressure gradient terms)

JInle, =
2¢2D'

—/
cDyy

Here, the cross-stream wall-shear stress is assumed derived from the laminar cross-flow profile defi-
nition. The last column of the residual Jacobian matrix is the sum of some combination of the last
columus of J; and J,,, as in Matrices 8.10 and 8.11, and of Jp|z . As ¢ — 0, all terms in the last col-
umn of the residual Jacobian matrix vanish making the system ill-conditioned. This ill-conditioning
is avoided simply by defining the cross-flow velocity in Equation 8.1 in terms of ¢; instead of ¢;.
Then, some of the terms are non-zero. The same arguments also apply, in principle, to the system

proposed first (which is ill-conditioned of course, but for a different reason).

8.2 Calculation with periodic outer-edge velocity

Equation system 8.6-8.9 is used to solve an infinite-span (quasi-three-dimensional), bidirectional
laminar flow with a periodic imposed velocity distribution. This calculation is meant to vividly
demonstrate the effect of allowing bidirectionality in the crossflow velocity profile. The assumed
family of profiles used for closure are given by Equation 3.7 in the streamwise direction and Equa-

tion 8.1 in the cross-stream direction.

Note that the notion of characteristics is not applicable to a quasi-three-dimensional calculation.
Hence, the system is solved without recourse to the eigenvalue-based closure method described in

Chapter 6, and furthermore, is solved using the Newton method.

The calculation is performed on a domain z = [0,1] discretized into 100 elements at a reference
Reynolds number of 10, 000. The imposed chordwise velocity profile distribution is shown in Figure 8-

1 and analytically given by

1 .
ue(z) =1+ 0 sin?(3mz) .
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Figure 8-1: Imposed velocity and calculated streamwise displacement thickness

The spanwise velocity is w. = 1. The initial conditions are

6 = 0.00025

no = 0.77 (Blasius : H = 2.6)
cg = 0

cc = 0

Periodic boundary conditions are imposed at the spanwise edges. Note that the infinite-span outer-
edge velocity distribution is always an irrotational flow field; use of the kinetic-energy equations in

the system, for which this is a restriction, is therefore valid.

Also shown in Figure 8-1 is the calculated displacement thickness. In Figure 8-2, the calculated
streamwise shape factor and crossflow-related parameter distributions are shown. The two crossflow
parameters are ‘out-of-phase’ responding directly to the imposed pressure-gradient. The parameter
co is closely related to the cross-stream wall shear-stress through the assumed profile, as shown in
Figure 8-3. The calculated physical quantities 65 and ¢y, are also out of tandem clearly indicating

the presence of a bidirectional crossflow profile.
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Figure 8-2: Calculated shape factor and the two empirical crossflow parameters
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Figure 8-3: Calculated crossflow displacement thickness and skin friction
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Figure 8-4: (a) Outer-edge streamlines and comparison stations. (b) Imposed chordwise outer-edge
velocity distribution.

8.3 Validation of equation system

The Equation system 8.6-8.9 is used to solve for another incompressible infinite-span, attached,
laminar flow and the results compared with those from a quasi-three-dimensional finite-difference
solver for the differential equations provided by Drela [18, 22]. For an infinite-span calculation,
the spanwise gradient terms vanish in the differential boundary-layer equations. Letting x be the
chordwise direction, the incompressible equations are:

Ou Ov

= 12
6:6+6y 0 (8.12)

Ou Ou Ou., 10%u
U—+ V5 =

oz "oy~ “r T v

(8.13)

o , 0w _ 10
oz Oy v Oy?

(8.14)
with boundary conditions

u=0,v=0,w=0 aty=0,
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u=1u(z), w=w, aty=oo.

Here, it has been assumed that the spanwise component of the outer-edge velocity is constant
everywhere. For this system, the chordwise solution, as is well known, decouples from the w velocity.
Then, Equations 8.12 and 8.13 can be used to solve for 4 and v using a finite-difference method [18]
and these velocity solutions used in Equation 8.14 to calculate w. This second calculation is a simple

quadrature if the well-known Falkner-Skan-Cooke scaling transform is employed.

The finite-difference solution is compared with the integral method. The integral system is, as
before, closed by profile families given by Equation 3.7 in the streamwise direction and Equation 8.1

in the cross-stream direction.

The test calculation is performed on a domain z = [0,1] discretized into 100 elements with the

imposed edge-velocity distributions

Ue

1 /7., 3 .5 7
1+ 0 (sm (mx) + 2 Sin (2:p)> ,

we = 1,

for a reference Reynolds number of 10, 000. For the integral calculation, periodic boundary conditions
are imposed on the spanwise edges. For the finite-difference calculation, the upstream boundary
condition is provided by similarity solutions; for the integral equations the following conditions are
used as an approximate match (it is not important to be exact because of the initial moderate

favorable pressure gradient)

6 = 0.001

o = 0.77 (Blasius : H = 2.6)
cg = 0

cgc = 0

The chordwise imposed velocity is plotted in Figure 8-4. Also shown are the outer-edge streamlines
which barely have a discernible curvature. This is because the chordwise pressure gradient is severely
limited for laminar flows which separate easily. Nevertheless, the gradient used here does generate
significant crossflows. Also indicated in the Figure are the six stations where the velocity profiles from

the finite-difference calculation are compared with the profiles implied by the integral calculation.
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Figure 8-5: Comparison of calculated shape factor and momentum Reynolds-number distributions.

The solid line is for the integral system solution.
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Figure 8-6: Comparison of calculated displacement-thickness components.
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Figure 8-7: Comparison of calculated skin-friction components.
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The solid-line results shown in Figures 8-5 to 8-7 are from the integral equation calculation. Note

that the results are compared in streamwise coordinates and not chordwise ones. In general, the

agreement of the streamwise integral quantities is excellent, while that of the cross-stream quantities

is only marginally less so. As expected, the cross-stream displacement thickness and skin friction

switch signs in disparate locations indicating the presence of bidirectional crossflow.

The finite-difference calculation velocity profiles are compared with those implied by the velocity

profile model used in the integral calculation. In the latter, the profiles are generated for the calcu-

lated values shown in Table 8.3 at the comparison stations using the closure models. These profiles

Station ) "o Co 1
A 0.0178 | 0.8395 | -0.3231 | -0.2843
B 0.0195 | 0.7616 | -0.0844 | -0.8501
C 0.0218 | 0.6521 | 0.2411 | -1.4470
D 0.0248 | 0.5355 | 0.5561 | -1.9230
E 0.0274 | 0.5000 | 0.7562 | -2.1920
F 0.0293 | 0.6648 | 0.6347 | -1.9000

Table 8.1: Calculated boundary-layer parameters from the integral system calculation which are
used to generate the velocity profiles for comparison with the finite-difference solution.
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are shown in Figure 8-8 with those for the integral calculation plotted with bold lines. The agree-
ment is fair given that the profile model was formulated without consideration to this comparison.
Clearly, the agreement could be much improved by using a slightly different profile family, but the

comparison does seem to indicate that the current model should have wide applicability.
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Figure 8-8: Comparison of velocity profiles computed by the finite-difference method (thin lines)
with those computed from the integral solution (bold lines). The streamwise profiles are too close
to be differentiable here.
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Chapter 9

Application II: Separated Flows

The calculation of separated flows using classical boundary-layer solution methods is not possible
because of the existence of singularities. In two dimensions, the Goldstein singularity is well-known
and documented and has been recognized to be a mathematical artifact of the way the equations
are solved. A variety of solution techniques for the equations, spanning the range from inverse to
simultaneous, have been devised that do not contain the singularity. More recently, these methods

have been successfully extended to the three-dimensional equations.

This chapter contains a brief review of the singularities in the direct-mode ((where the outer-edge
velocities, and hence the pressure gradient, are prescribed) solution of both the two-dimensional
equations as well as the three-dimensional ones. The singularities in the former are a limiting case of
the those in the latter. The practical consequence of these singularities is the difficulty in computing
solutions near a separation line. Frequently, the dependent variables become extremely sensitive to
small changes in the primary parameters and the calculation breaks down. The discussion here is

limited to steady flow.

A fully-simultaneous coupled viscous-inviscid solver based on the Newton method is described. The
interaction between the boundary layer and the inviscid flow is based on the wall-transpiration
model. This method differs from others in its ability to allow general parametric representations for
the closure in the boundary-layer equations. It is used to calculate a separated flow over a smooth

three-dimensional bump.
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9.1 Separation and singularities in the equations

9.1.1 Two-dimensional flow

The Goldstein singularity in two-dimensional direct-mode calculations using the differential boundary-
layer equations also manifests itself in integral equation systems. In particular, this includes systems
containing the momentum integral and kinetic-energy/entrainment equations. Paradoxically, the
presence of this singularity is an indication that the mathematical properties of the equation system

are closely correlated to the actual flow physics.

It will be useful to distinguish between physical and mathematical definitions of separation. Sep-
aration, in the physical sense occurs at the point where the wall shear stress is zero while the
mathematical criterion is the singularity of the coefficient matrix (derivative-term Jacobian matrix);
the two definitions are close but do not necessarily coincide. The definition relevant to the stability
of calculation methods is the mathematical one. For a system containing the momentum and kinetic-
energy equations, the determinant of the coefficient matrix (in direct mode, the system parameters

are boundary-layer variables) is

MES | o2, e Eu
- oE — Y11 dH I - 911 -
En oI

In closure schemes for laminar flows where the velocity profile u(H;y/0) is obtained by sliding the
origin along a given curve, (as discussed in Chapter 3 for Equation 3.7), the correspondence between

the physical and mathematical definitions is exact

dH* ou

dH Y |, h

For most other laminar and turbulent methods employing these equations, the correspondence is
very close. Very similar results are obtained, as was noted in Chapter 5, if the entrainment equation

is used in place of the kinetic-energy one, because the respective shape-factor functions (H*(H))

both have zero gradients very close to one another.

When the coefficient matrix is singular, the boundary-layer solution is infinitely sensitive to the

primary parameters. Inverse or simultaneous methods avoid the Goldstein singularity by capturing
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the strong physical coupling that exists between the boundary layer and the external flow in the
vicinity of separation. In the inverse mode, where one of the primary parameters is the velocity, the

coefficient matrix is well-conditioned near separation.

The inspiration for inverse and fully-simultaneous methods is that the equations at a separation point
admit only a unique pressure gradient, which, therefore, cannot be imposed. Consider, again, the
two dimensional system containing the momentum and kinetic-energy equations. Near separation
the pressure gradient is primarily controlled by the shape parameter equation [21], which is a unique

combination of the two equations in the system. In residual form, this equation is

(9.1)

2Cp o § dH* dH
H* 2 '

TH:————(—R€0—+R€0 +R€0H*ﬁg

Note that the pressure-gradient parameter is related to Pohlhausen’s parameter A by

6% dg.  6°
vds 02
and that, for laminar flow, the terms Rey 25,? and Reg%i are unique functions only of the shape

factor H. At separation, Cy =~ 0 and ddLH* = 0 and, therefore,

H1>

The residual is only satisfied for a unique pressure gradient which, therefore, cannot be imposed.

THep = - H*

6* dgq. 1 2Cp
~ T8 _Re
v ds Hgep — 1

9.1.2 Three-dimensional flow

The appearance of separation in three dimensions is considerably more complex than in two because
the notion has to be extended from that of a point to that of a line. Separation lines are defined
as the envelope of coalescing limiting wall streamlines which demarcate the boundary between fluid
with ‘different’ origins (near the wall). These envelopes are clearly visualizable in experiments from
surface oil-flow patterns. In fact, very complicated topologies are possible and have been observed.
For the purposes of this thesis, interest will be confined to simple separation bubbles or the separation

line in front of a blunt object.

In the direct-mode three-dimensional equations, the notion of characteristic lines is useful in the

explanation of singularities. This is particularly true in the case of the outer-most (largest angle
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with respect to external streamline) characteristic line. Note that in well-designed closure schemes,
it is always possible to closely identify this characteristic with the limiting wall streamline. Cousteix
and Houdeville [10] demonstrate this in their study of the nature of a particular system of the

integral equations with approximate closure.

The outer-most characteristic lines can also coalesce to form an envelope resembling the separation
line. This envelope is called the singularity line. As in the two-dimensional case, the distinction
between the physical definition of separation and the mathematical one can be made. The singularity
line, and not the separation line, is relevant to the mathematical character of the equations and is
responsible for the unstable behavior of direct-mode solution methods. In the depiction in Figure 9-
1, the physical appearance of the separation line is contrasted to the mathematical picture of the
singularity line for a boundary-layer flow in front of a blunt object. This object generates a pressure
field that tends to cause both the outer-edge and limiting wall streamlines to diverge. The separation

line is close to the singularity line but the two are not necessarily identical.

Also shown in Figure 9-1 are two features A and B of special interest. The distinction between
the two can be made in terms of the properties of the derivative-term Jacobian matrices. In the
calculations, it is in general not possible to connect the location of the singularity line, depicted as
Region B, to the singular behavior of the matrices. By contrast, the rather special point of symmetry

at A is directly related to this behavior.

Singularity saddle points

Consider feature A first. The singularity of a Jacobian matrix associated with one of the coordinate
axes indicates that at least one characteristic is aligned with the other coordinate (provided, of
course, that the other coefficient matrix is not simultaneously singular). Therefore, if J, is singular,
at least one characteristic, which is usually the outer-most one, is at right angles to the outer-
edge streamline direction (aligned with the n axis). While this singular point resembles the one in
two-dimensional flow (especially because the crossflow is zero by symmetry) it is in fact a three-
dimensional phenomenon. This is so because some of the cross-stream derivatives (for example, for

peqelan) in the equations are non-zero.

Singular points in three-dimensional flows are, therefore, characterized by |Js| = 0 and ¢ = 0. A
variety of systems are used for three-dimensional calculations and, consequently, there are a variety

of criteria for singular points as well. Two examples are presented here. Consider first a system
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Figure 9-1: The physical separation line (envelope of coalescing limiting wall streamlines shown as
thick lines) contrasted with the direct-mode mathematical singularity line (envelope of coalescing
outer-most characteristic lines shown as thin lines) in the diverging flow in front of a blunt obstacle.
Also marked are two features of special interest.
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proposed for the bidirectional crossflow calculations (this system is of course ill-conditioned in certain

situations when used in an implicit solver but this fact is not relevant here). The Jacobian matrices

are
011 611 0 0
00_21 09_21 0_21 C0—121
Js = 3
E,  En 0 0
02E21 02521 20E21 CQE;I
( 09_12 C0_12 9_12 09_112
020_22 C2§22 2C0_22 020_;2
Jn = ’

_ = _ —
CE12 CE12 E12 CE12

L C3E22 C3E22 3C2E22 CSE;2

where the columns are partial derivatives with respect to (Ind,p, c,c;)? and the overbar notation

has been retained to clearly show the dependence on ¢. The determinant of J; is
0 E11 P -
|Js| = [efla—pl (E)] [62 (921E21 — 2E21921):| .

The first factor is recognized to be identical to the two-dimensional system determinant. The second
factor is related to the shape of the crossflow velocity profile and defines a different mathematical
singularity mechanism. The presence of the ¢? factor may be misleading in that it indicates a

6

singularity of degree two as ¢ — 0. However, note that |J,| ~ ¢°, so that in the limit of zero

crossflow, all four characteristics are in fact aligned with the s axis.

The criterion is slightly more complicated if the total kinetic-energy equation is used instead of just

the streamwise component in a three-equation system. The Jacobian matrices are

( 011 11 0 |

Js = a1 0521 621 )

L B+ 2By B+ 2Ey  2cEy
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( CG—IZ Cé_m 512

Jn = 020_22 C2§22 209_22 ?

L CE12 + 03E22 CE12 + C3E22 E12 + 3C2E22

where the columns are partial derivatives with respect to (Ind, p,c)?. The determinant of J, is

_ d Ein + PE _d 6
|Js| =673, [_GQIE (%) + 2% By — (£>} .

The singularity criterion is identical to the two-dimensional one if ¢ = 0 because the lowest-order

dependence of |J,| is ~ c.

Singularity lines

A singularity line (highlighted as feature B), like a separation line, is not necessarily aligned with the
cross-stream coordinate everywhere. Computationally, its presence is indicated by unstable behavior.
It is usually not possible to predict its location from the singular properties of the Jacobian matrices.
There are exceptions in some simple situations, however. An example of this is the separation line
for a separating flow on an infinite-span wing [62]. Here, one would look for the singularity of
the Jacobian matrix associated with the chordwise-axis to indicate the alignment of the outer-most

characteristic line with the spanwise direction.

It is useful to view the problem of well-posedness in the three-dimensional equations in terms of
the flow of information implied by the orientation of the characteristic lines. Across a singularity
line, discontinuities in the characteristic variable corresponding to the outer-most characteristic are
possible. This is a well-known result of the theory of characteristics and is, perhaps, best compared
to the formation of a shock in the inviscid Burger’s equation. In the boundary-layer equations this
implies the possibility of infinite first-derivatives across the singularity line. This is not a realistic
situation because it violates the principle of regularity near and across a separation line (despite the

existence of large gradients) [10]. Clearly it is an artifact of the direct-mode formulation.

According to an analysis of an integral system that is also found to possess real eigenvalues in the
inverse mode by Yoshihara and Wai [72], no characteristic line could be identified with the limiting
wall streamline. The implication is that a singularity line does not exist here and consequently

stability issues (related to well-posedness) do not arise. There is another aspect to the direct-mode
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singularity line. In Yoshihara and Wai’s direct-mode method where the solution is marched along
characteristic lines on an infinite-swept wing in compliance with domain of dependence constraints,
the boundary-layer equations are found to violate compatibility conditions along the singularity line.

These violations are also traced to the imposition of the pressure-gradient across the singularity line.

9.1.3 Ill-conditioning of residual Jacobian matrix

The coupling scheme presented in this thesis is based on the Newton solution of the equations. It is
of interest to examine the singular behavior of the direct-mode residual Jacobian matrix, as opposed
to the derivative-term Jacobian matrices. Only the two-dimensional equations in incompressible

laminar flow are considered.

The two-equation system can be written in terms of the shape-factor Residual 9.1

v ds H-1

TH = + Rey + Rey H dH ds

6 dg. L (_po 200 Cr 0 dH* dH
O 2

and one for the thickness scale of the boundary layer

T = Re(;% - Reg% +(H —i—2)§(2i56 .
Let the system parameters be the boundary-layer variables § and H for direct-mode calculations.
The pressure gradient is prescribed and so the only dependence on H in ry is the balance between the
skin-friction-term sensitivity and the pressure-gradient parameter. Numerically, these terms tend
to cancel out. In the vicinity of separation, the term in parenthesis in 7z is numerically very close
to zero [21] indicating that it is also virtually independent of H. Therefore, the residual Jacobian
matrix becomes highly ill-conditioned because both terms in the column containing H-derivatives
tend to vanish. In fact, numerical experiments show that the global Jacobian matrix determinant of
the discrete residual system passes through zero in the vicinity of separation as shown in Figure 9-2,
the exact location determined by the imposed pressure gradient. Nishida has also documented this

behavior [44].

The ill-conditioning property of the equations can be removed by making the pressure gradient an
unknown variable. Historically, a variety of iterative inverse and semi-inverse methods have been pro-
posed. Recently, Nishida developed a robust fully-simultaneous method coupling the Full-Potential

equation to the three dimensional boundary layer equations (basic system) in a Newton solver [44].
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Figure 9-2: The determinant of the residual Jacobian matrix near separation.

Milewski adapted the method, based on the two-dimensional code XFOIL [20], and used lifting Panel
techniques for inviscid flow [38]. The general method presented here differs from that of Milewski in
that instead of using generic second-order artificial dissipation to control spurious oscillations, the
considerably less intrusive, and better-suited, directional upwinding is used. Furthermore, Milewski
requires the use of mass-defect components as two of the boundary-layer parameters. The method

presented below is not restricted in this manner.

9.2 A fully-simultaneous coupling scheme

The objective here is to develop an ability to couple general boundary-layer systems that use empiri-
cal velocity and density profile parameters instead of the mass-defect components. Such an approach
is more flexible in the use of different assumed profile families. It also allows systems of arbitrary

order to be easily coupled to the inviscid flow.

Since the objectives are limited, the goal will be to calculate separated flow over a smooth three-
dimensional bump using a viscous-inviscid interaction procedure. Simple Panel methods are conve-
nient and expeditious for this purpose. Moreover, since the surface body will not generate lift, the
need for a Kutta condition is obviated and the perturbative influence of the body on the ambient

velocity field can be modeled by a sheet of sources only (doublets will not be needed, but may be
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added easily if desired).

The interaction between the inviscid flow and the boundary layer is also naturally formulated in terms
of the source-sheet strength. This coupling scheme can serve as a useful test bed for investigating
more sophisticated viscous as well as inviscid solvers (such as Full-Potential, lifting Panel, Euler,

etc.).

9.2.1 Inviscid flow

A general inviscid flow over a non-lifting surface is constructed by superimposing a free-stream

potential and the perturbation potential of a source sheet

q)(w7y72) = P+

a(xo, Yo, 20)

1
il ds.
4”/5 V(& —20)>+ (y — yo)? + (2 — 20)?

= (uoow + V0¥ + wooz) -

The velocity components generated at an arbitrary point (z,y, z) are computed by taking the deriva-
tives of @

0% 09 09
q= (u,v,w) = (%7 B_y’ 5) .

Following standard procedure, the surface is discretized into K flat panels Sy (o, yo, z0) of constant-
strength oy, with a perturbation potential at (z,y,z) given by the integral over the surface of the

panel

b (0, Yo, 20)
4m Js, /(@ —20)? + (Y — y0)? + (2 — 20)

o = = do dyo dzo (9.2)

and for each an outwardly-directed normal vector €, is defined. The velocity induced by all panels

at the centroid of the kth panel (x,y, z) is determined by summing their contributions

Uny, = ZV¢]('T7:U72) 'énk:ijUja jakz]-a"'7K7
J

where the gradient function involves an integral over the surface of a contributing panel. The kth
panel contribution to the normal velocity is simply o /2. The result is conveniently expressed in

matrix format so that P is the resultant K x K influence matrix.
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The inviscid velocity field is now expressed in terms of K panel source strengths. This field is
determined by the K collocation conditions requiring wall-parallel flow. Therefore, setting the total

induced normal velocity equal to negative the component corresponding to the freestream
-1 -1 .
0j = L Uny, = _ij Qoo * €ny,

fixes the source strengths and also the inviscid velocity field.

It is convenient to directly express the inviscid velocity components at the N number of panel nodes
in terms of the normal velocities induced by the panel sources at their centroids. The source strengths
can be eliminated by again summing the gradient of the potential function to generate three matrices
E® E® E® each of order N x K, one for each velocity component. The components of inviscid

velocity at node (i = 1,..., N) is then given by :

)

wr; = _Ez(;U)PﬁclqOO : énk = _Dflicu Qoo * émz
Each of the three matrices D is only a function of the surface geometry. Hence, each is computed

once and stored for later use.

For the exploratory purposes of this thesis, the integrals in Equation 9.2 are approximately evaluated
using 2 by 2 Gauss quadrature instead of the usual cumbersome analytical expressions (though these
can be substituted if desired). The velocity contribution of a panel to its nodes are approximately
calculated assuming an equivalent point source at the panel centroid. Finally, edge effects are
mitigated at the boundary nodes by assuming an equal effect from a reflected virtual panel containing

the node of the same geometry and source strength reflected outside the domain.
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9.2.2 Incorporation of displacement effects

The entrainment equation, Equation 2.6, was derived in Chapter 2 and, for the purposes here, is

written in terms of the outer-edge component of normal mass flux

-

Pee =V - (pGQe(S*) —0V - peqe -

This expression is for real viscous flow (RVF). The value of this normal mass flux is compared to
one derived using an equivalent inviscid flow (EIF) model. There, it is assumed that pu and pw are
constant in y across the extent of the boundary layer y = [0, d] and equal to their respective values
at the outer-edge in RVF. Hence, in EIF

0% pv
= EIF
=0 ()

by taking the y partial derivative of the continuity equation. The two scenarios are compared in
Figure 9-3. The displacement effect of the boundary layer in EIF is now borne by a wall-transpiration

mass flux. The mass flux pv at the edge is:

4
Opv

PeVe = PyUyw +
eve wYw an

Y

5
PeVe = Puwlw _/ V- pady
0
PeVe = Puwlw — ) (V - peqe) (93)

Comparing Equations 2.6 and 9.3, the wall transpiration flux that is equivalent to the displacement

effect of the boundary layer is

-

Pty =V« (peqed™) . (9.4)

The transpiration model is naturally suited for a panel-method-based interaction scheme. The

displacement effect is incorporated through the panel source strengths so that the outer-edge veloc-

ities at the nodes are linearly superimposed on the undisturbed inviscid flow field (k = 1,..., K,
i=1,...,N):
te; =ur, + 3 DRIV - (peqed) (9.5)
k
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RVE /

Figure 9-3: The variation of the wall-normal component of mass flux in real viscous flow (RVF) and
equivalent inviscid flow (EIF).

ve, = v, + Y DYV (peqed™)]i (9.6)
k

we, = wr, + Y DYV (peqed™)] (9.7)
k

The mass-defect vector divergence is computed over the kth panel/element. At this point, these
expressions could be further simplified for a particular discretization scheme by computing the
divergences for all elements, and storing the coefficients of the resulting relationships between the
nodal values of the outer-edge velocity components and the mass-defect components. However,
this would represent a restriction in the use of assumed profile families, which would then have to
be defined in terms of these mass-defect components as opposed to natural empirical parameters.

Therefore, the outer-edge velocity expressions are left in the form shown above.

9.2.3 Equivalent boundary-layer parameters

It has already been noted that the transpiration mass flux in Equation 9.4 is a function of the two

boundary-layer mass-defect components, which are natural candidates for primary parameters in a
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solution scheme. If used as such, the resulting Newton matrix is not as full which can be exploited
(as in XFOIL for two dimensions [20]) for more computational efficiency and speed. However, as
has been pointed out, the use of the mass-defect components as primary parameters restricts the

ability to use profile families. The ability to retain the use of empirical profile parameters is sought.

By employing empirical profile parameters as primary parameters, the outer-edge velocity definitions
become tautologies (circularly defined) because of the appearance of the local velocity magnitude
on the right hand side of Equations 9.5- 9.7. To overcome this complication, the simple functional
relationship of the two mass-defect components to the two universal boundary-layer parameters § and
¢ (the case of two mode crossflow profiles is a simple extension) is used. Changes in the mass-defect
components due to changes in the velocity magnitude are borne by these boundary-layer parameters
while, at the same time, keeping the velocity magnitude fixed at the non-perturbed value. These
modified parameters values, which together with the non-perturbed inviscid velocity field, yield the
correct mass-defect divergence are termed equivalent boundary-layer parameters (EBLP) as opposed

to real boundary-layer parameters (RBLP).

The EBLP values, denoted by the subscript ep, are derived by equating the value of the mass-defect
components expressed in terms of RBLPs using ¢. to that expressed in terms of EBLPs using q;.
Denote the displacement thicknesses evaluated at 6 = 1 and ¢ = 1 by the overbar notation. Consider

first the streamwise mass defect
’ITLT L Peqe ) S; (qe) = Peq1 6ep g; (q[) .
This leads to the relation

5= uwhla) s (9.8)

=

4e 61 (qe)

Similarly, consider the cross-stream mass defect

m; o Pele dc 3;((16) = Pedr 5ep Cep 3;(q]) .

This leads to another relation
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Figure 9-4: Nodal neighbors of i.

In the equations above, the dependence of the displacement thicknesses on velocity is necessary
because of the profile-shape dependence on Reynolds number Res in turbulent flow. For laminar
flow, where there is no such dependence, a single, simpler equivalence suffices based only on the

streamwise mass-defect definition

s=Ls,.

9e

In the interests of generality, the full dependencies are assumed in what follows.

9.2.4 Direct and interactive algorithms/data structures

Before outlining the algorithms and data structures for the two calculation modes, it will be conve-

nient to define some notation.

1. For an unstructured grid, it is useful to define a function j = A4, (7, 1) to denote the immediate
nodal neighbors of a node i. The function maps the local node number [ = 1,...,9 for eight
neighboring nodes to the global node number j. The ninth node is ¢ itself, i = Ap,qp(4,9).

Appropriate allowances for the boundaries are made.

2. It is useful to define two primary parameter vectors. The first containing the RBLPs is denoted

p = (6,¢,...)T, where the ellipses refer to profile shape factors. The second vector, where the
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= (i)
Pi,qr1;
Input
1= 1,---7Nnodes
f‘z(ﬁ]aql(;ll))
Residual J = Dmap(i,1)
l=1,...,9

Figure 9-5: Main features of the direct-mode algorithm.

two RBLP’s are replaced by EBLPs, is denoted p = (d¢p, Cep, - - -)L. Both vectors, of course,

are of order N which is also the order of the integral-equation system.

3. For brevity, the three velocity components (u,v,w) are denoted by q'"), where i, =1,...,3.

The direct-mode algorithm is summarized in Figure 9-5. Nodal values of the primary parameter
vector p and the unperturbed inviscid velocities are the inputs to the spatial discretization scheme.
After visiting each element, the assembled vector of residuals (of order N) at each node is a function

only of the parameter values at its neighboring nodes.

The interactive-mode algorithm is summarized, as a contrast to the direct-mode one, in Figure 9-6.
Here, the system parameters are chosen to be p instead of p as in the direct mode. These are used
together with the unperturbed velocity field to generate the transpiration fluxes for all elements,
and then the perturbed velocity field. The nodal RBLP’s are computed next and, together with the
nodal values of the perturbed velocity components, are used to generate the residual vector at the
nodes using the same scheme as in the direct mode. Because the perturbed velocities are a global
function of the primary parameters through Equations 9.5-9.7, the residual vector at node i is also

a global function of the parameters.

The implicit/Newton-solver Jacobian matrix in the direct mode is sparse. The global/elliptic char-
acter of the interactive mode fills the matrices. Moreover, the analytical determination of this matrix

is considerably more cumbersome. The elements are the sensitivities of the residual vector at node
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/

Figure 9-6: Main features of the interactive-mode algorithm.
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i with respect to the parameter vector at node m (the nodes defined as shown in Figure 9-4):

or; 08 (<~ 98, el g
opn 3 (Z @ oot o,
Pm _ i \i=1 aq u Pm Pm

9 - 3 (3u)
or; aCj aer aCj
i Zacj <Z () Opm ' Opm

iu=1 aer

9 3 O aq(tu " i OF; Op; o~ 0 ifpisdorc
= = a (zu pm sw 613] apm; sw

=1

1 otherwise

Here, the hatted residual vectors are emphasized to be in terms of local nodal quantities. The
global dependence clearly enters through the perturbed velocity values. Also, j = Apep(3,1) in the

expression above.

9.2.5 A word on the mathematical nature of the coupled system

The global dependence of the outer-edge velocities through Equations 9.5-9.7 makes the coupled
system formally elliptic. In the neighborhood of the singularity line, the coupling will be strong.
However, it is expected that the underlying mathematical nature of the direct and inverse-mode
formulations will still apply to the boundary-layer equations especially away from separation. This
is because in the limit of infinite Reynolds number, the coupled system degenerates into direct
and inverse mode formulations in the attached and separated regions respectively. Therefore, the
orientation of direct and inverse mode characteristic lines can be used to impose boundary conditions

and, if needed, used in upwinding the equations.

9.3 Calculation of a separated flow

The fully-simultaneous coupling scheme is demonstrated by calculating the laminar, incompressible
flow over a smooth sine-squared hill. The boundary layer separates downstream of the hill where a

separation bubble forms.

The standard third-order system is used containing the streamwise and cross-stream momentum

equations and the total kinetic-energy equation. Since the inviscid flow is irrotational, the simpler
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irrotational version of the kinetic-energy equation is used. The calculation is performed on a domain
x =[0,1], z = [0, 1] discretized into 30 elements to a side as shown in Figure 9-7. Also shown is the
diagonal cut away of the hill, which has a maximum height of 0.02. The coarseness of the grid is
driven by the provisional nature of the matrix-inversion routine (a direct solver) used in the code
which entails a large memory requirement. There is, of course, considerable room for improvement

here.

The assumed family of profiles used for closure are given by Equation 3.7 in the streamwise direction
and Equation 8.1 with ¢; = 0 in the cross-stream direction. This closure system closely resembles the
turbulent closure system with Johnston’s crossflow model investigated in § 5.3.2 which was shown

to be hyperbolic. On these grounds, this system is assumed to be hyperbolic.

The freestream velocity components are u; = 1 and wy = 1 and the reference Reynolds number
Re,.; = 10,000. Because of the orientation of the freestream velocity vector, the application of
boundary conditions is unambiguous. These are imposed along two sides of the domain indicated

by the heavy lines in Figure 9-8(a):

6 =0.01
c=0
Mo = 0.77

The objective here is to capture the separation bubble, not to compute an accurate flow for compar-
ison. The value chosen for ¢ is strictly not in compliance with the small-curvature rule for first-order

boundary-layer theory, but is tolerable, nevertheless, in view of the limited objectives.

The computed outer-edge velocity streamlines are shown in Figure 9-8(a) and the velocity magnitude
is shown in Figure 9-8(b). An approximate check of the Falkner-Skan pressure-gradient parameter
(. computed at the upstream separation line gives the figure of 0.08 which compares favorably with

the similarity value of 0.0904.

Computed limiting wall streamlines (skin-friction lines) are shown in Figures 9-9(a) with a more
detailed plot shown in Figures 9-9(b). While the separation bubble is large enough to be apparent,
details are clearly not adequately resolved (about five elements across bubble). The resolution, as

indicated earlier, is limited by the inefficient solver used. Note that the orientation of the limiting
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Figure 9-7: (a) Surface-relief contours and computational grid. (b) Profile (not-to-scale) of surface
along diagonal.

wall streamlines is opposite to that depicted in Figure 9-1 which is for the flow in front of a blunt
obstacle. This is because the pressure gradient here, indicated by the curvature of the outer-edge

streamlines, is in the opposite direction due to the presence of the hill.

The susceptibility of laminar boundary layers to separation limits the severity of the allowable
pressure gradients (effectively the height of the hill). Consequently, the crossflows generated are

small as indicated in Figures 9-12 and 9-14.
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Figure 9-8: (a) Selected outer-edge velocity streamlines, and boundaries where the input conditions
are applied. (b) Outer-edge velocity magnitude along streamwise diagonal.

/
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Figure 9-9: (a) Selected limiting wall streamlines. (b) Close-up detail of separated region.
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Figure 9-10: (a) Momentum Reynolds-number contours. (b) Variation along streamwise diagonal.
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Figure 9-11: (a) Boundary layer thickness parameter contours. (b) Variation along streamwise
diagonal.
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Figure 9-12: (a) Crossflow magnitude parameter contours. (b) Variation along cross-stream diagonal.
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Figure 9-13: (a) Shape-factor contours. (b) Variation along streamwise diagonal.
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Figure 9-14: Velocity profiles at stations A;B and C.
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Chapter 10

Concluding Remarks

In this thesis, several issues concerned with the integral solution of three-dimensional boundary
layers have been addressed in a novel manner. Some of these issues involve mathematical properties
of integral systems while others arise in their practical solution. The contributions of this work are

listed below.

10.1 Hyperbolic integral-equation systems

A major contribution of this thesis is the eigenvalue-based method for the closure of an integral
system in direct-mode formulation. The resulting system is always hyperbolic. In the traditional
method, the system and its closure are not directly related; the character of the resulting system has
an element of arbitrariness and can be non-hyperbolic. The new method is based on the recognition
that the closure, here formulated in terms of assumed profile families for velocity, is not independent

of the equation system. The two must be considered in an integrated manner.

A key feature of the eigenvalue-based method is the provision to prescribe the characteristic directions
in a manner consistent with the physical flow of information in the boundary layer. This physical
picture is carefully constructed from the nature of the differential boundary-layer equations. The

hyperbolicity of integral systems is also justified on these grounds.
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One inherent limitation of the method is its linearized treatment of the problem. This prevents its
use in conjunction with the very useful Newton solution method. However, no restriction exists for
use in the usual array of implicit and explicit solution methods for which it is well suited. There,
both space-marching strategies for the steady equations and time stepping ones for the unsteady

equations can be employed.

10.2 Application of streamline upwinding

Petrov-Galerkin streamline upwinding is applied to the boundary-layer equations, in the context of
the finite-element discretization. This includes the extension of the idea from a scalar equation to
a coupled system. In practice, however, the use of the full extension is probably not warranted nor
feasible (in an implicit/Newton solver with analytically-computed sensitivities); in its place, a simple
heuristic version is shown to be effective. The upwinding represents a significant improvement over

the traditional use of generic second-order artificial smoothing.

10.3 Well-conditioned system for bidirectional flows

There is only one method in the literature, to the author’s knowledge, where bidirectional crossflow
profiles have been computed using a true integral system [56]. This method uses a space marching
strategy in the solution of the equations. In this thesis, it is shown that the auxiliary equation em-
ployed for the purpose produces ill-conditioned residual Jacobian matrices in an implicit or Newton
solver, under most equilibrium conditions. An alternative equation is proposed and shown to be
well-conditioned. Moreover, the use of this equation is validated using a finite-difference solution of

the differential boundary layer equations on an infinite-span wing.

10.4 Fully-simultaneous Panel coupling for general systems

A fully-simultaneous coupling of the integral boundary-layer equations to a simple Panel method
for the inviscid flow has been developed to calculate separated flows. The novelty of this method is

the built-in ability to incorporate into this coupling scheme any general assumed profile family.
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10.5 Other contributions

There are a few minor contributions in this thesis in addition to the ones listed above. These include:

1. The parent integral equation derived in Chapter 2 is a convenient means to derive any moment-
of-momentum equation, including the well-established lower-moment ones: momentum and

kinetic energy.

2. The tools to investigate the nature of the steady differential equations are applied to the
unsteady equations. It is shown that information is convected along pathlines. A qualitative

description of the unsteady domain of dependence and range of influence is then possible.

3. An analysis of the standard third-order equation system with Johnston’s turbulent crossflow
model while retaining Reynolds number and Mach number dependence in the assumed stream-
wise closure relations is performed. The system is shown to be hyperbolic. Previous analyses

were limited to approximate one-parameter, incompressible closures.

10.6 Recommendations for future work

In this thesis, many issues were touched upon that hold the potential for interesting and fruitful

further study. Some issues related to theory include:

1. The derivation of the parent integral equation vividly illustrates the existence of an infinite
series consisting of integral equation approximations to the differential system. The natural
question then is is whether a convergent subset of this series can be shown to be an ‘exact’
approximation to the differential system, and if so what would be an ‘optimal’ finite system

for practical solution.

2. The proposed eigenvalue-based method for ensuring hyperbolicity should be implemented and
with practical experience further refined. One feature of the method is the ability to com-
pute bidirectional crossflows with the standard third-order integral system. The eigenvalue
prescription conditions essentially substitute for the additional equation needed in traditional
closure. The exact role of the eigenvalues in the equation system/closure scheme needs further

investigation.
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More practically-oriented issues include:

1. Many accurate closure models for laminar attachment-line flow, for the criterion for turbu-
lent flow along the attachment-line, for laminar-turbulent transition including that triggered
by crossflow instabilities exist in the literature. Wake flows are simply calculated by set-
ting wall shear-stress terms to zero in the conventional turbulent flow models and in the
integral-momentum equations. All these models can be used to calculate complete flows over

aerodynamic bodies within the current framework.

2. The closure in this thesis is achieved through profile families which are used to compute
necessary boundary-layer integral quantities on the fly with numerical quadrature. In the code,
these thicknesses are all defined and stored independently. Since the discretization method also
involves rotating these thicknesses, the code is fairly complicated. Actually, these thicknesses
need not be computed and stored independently. The data structure can be dramatically
simplified by integrating the differential boundary-layer equations themselves numerically on
the fly. This is equivalent to performing the derivation of Chapter 2 numerically instead of a
priore as in current practice. The rotations of thicknesses would be replaced by simply rotating
the velocity components. This simpler approach has great potential in terms of ease of coding

as well as reducing storage needs.

3. The matrix inversion solver used in the current code is a simple direct Gaussian-elimination-
based routine. While the fully-coupled scheme produces a full residual Jacobian matrix many
of the elements are negligible in most calculations. The memory-storage requirements as well
as run-times can be greatly improved by using an iterative sparse solver in conjunction with

drop tolerances.
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