
FRACTURING AND SEALING IN GEOTHERMAL SYSTEMS

by

MICHAEL LEE BATZLE

B.S. Degrees in Geology and Geophysics
University of California at Riverside

(1973)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR

DEGREE OF

DOCTOR OF PHILOSOPHY

at the ~

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Signature of Author.. ..- . L.v..,r....-. ... - -. -y -...-..

Department of Earth and Plane ry Sciences
20 March 1978

Certified by.... ... , ... .- . . -.. -......... ---. --------------. -
Thesis Supervisor

Accepted by. .....-. .w .,------ --....................
Chairman, Departmental Committee on Graduate Students

Undgren



FRACTURING AND SEALING IN GEOTHERMAL SYSTEMS

by

MICHAEL LEE BATZLE

Submitted to the Department of Earth and Planetary Sciences

on 20 March 1977 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy.

ABSTRACT

Repeated fracturing and fracture sealing were observed in core
samples from six geothermal areas. Both fracture porosity and mor-
phology vary widely. The minerals that seal fractures show signifi-
cant temporal variations. Water-rock reactions and alteration often
produce low density or hydrous phases that further seal and block
cracks. Such parameters as hydraulic permeability and electrical con-
ductivity that influence the geologic environment or serve as geother-
mal indicators are dependent on the fracture state of the rock. Cemen-
tation and sealing can lower permeability and conductivity by several
orders of magnitude. Even a small value of crack porosity can signi-
ficantly reverse this sealing effect. Conductivity is dependent also
on the alteration and fluid characteristics and may not accurately
indicate other rock properties. Fractures may serve as the only con-
duits for geothermal fluids. Sealed fractures and veins, however, may
be effective barriers to further fluid migration. Sealed fractures
are often the boundaries between regions of significantly differing
physical properties.

Fracturing and sealing processes have both a cause and effect
relationship with the geologic environment. The effect of the environ-
ment is to modify or'seal fractures or cause alteration reactions along
fracture walls. Induration and sealing harden rocks and make them more
susceptible to brittle fracturing. Fracturing, on the other hand, can
strongly influence such physical parameters as porosity and permeability.
Cracks provide surfaces for water-rock reactions. Thus, the flow and
chemical characteristics of hydrothermal fluids are strongly influenced
by the same cracks and pores that these fluids will alter or modify.

Name and Title of Thesis Supervisor: Gene Simmons
Professor of Geophysics
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CHAPTER I

BACKGROUND

Introduction

Geothermal systems have been the object of considerable attention

recently because of their potential use for energy production. The sys-

tems are dynamic and involve the interplay among rocks, fluids, and the

local structural framework. As the result of numerous investigations,

the basic nature of the generalized system has been determined to a

great extent. However, the details of rock-water interaction, the im-

portance of local geologic structures, and the effect on and of physical

properties are still largely unknown. Fluid circulates in broad and

complex convection cells. Water and rock properties change continuously

in response to the variations in the physical environment. Circulation

paths commonly occur along fault and fracture zones. Many episodes of

fracturing and sealing by mineral precipitation and alteration are typi-

cal. A 'cap' or impermeable zone of sealed rock forms in many areas.

The availability of economic near-surface hot fluids is often dependent

on the stage of development of the system. The geothermal industry is

in its infancy and techniques are still evolving. Usually exploration

and drilling are done only where surface manifestations indicate anoma-

lously high temperatures at depth. An improved understanding of the

interactions within geothermal systems would lead to more effective

exploration and evaluation in known geothermal areas and would permit

exploration to be extended to areas lacking surface manifestations.

The purpose of this investigation is to examine geothermal systems,
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the physical processes involved, and the variation of physical proper-

ties with time. In this study, we examine fracturing and sealing pro-

cesses and attempt to determine their significance. Fluid circulation

is greatly dependent on paths provided by fractures. Fractures, in

turn, are modified by alteration and mineral precipitation from the

contained fluids. The microfracture content of a sample matrix con-

trols to a large extent its resistivity and hydraulic permeability.

The variations of these properties with time can be estimated qualita-

tively from the morphologic changes of fractures with time which can be

observed with the optical and scanning electron microscopes. The results

have significant implications for surface geophysical measurements. The

examination of textures and physical properties can indicate if hot

fluids have been actively circulating in the sample and, therefore, may

be circulating presently in open, active fracture systems nearby.

This investigation is not primarily to determine the exact chemical

or mineralogical interactions or responses involved in geothermal sys-

tems. Temperature-pressure-mineral relationships are not the topic of

this study. Hence, detailed petrographic and mineral descriptions are

not presented. The mineralogy is examined in detail only where immedi-

ately pertinent to the physical characteristics and properties of the

sample. Most observations concern texture and surface morphology for

the determination of spatial and temporal relationships. Phase identi-

fications and analysis are used primarily to indicate fluctuations in the

geologic environment.

This thesis is structured to present a unified, integrated summary

of the investigation. Since the samples collected form an incomplete
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set for any one area, the results will not be presented on an area by

area basis. Rather, a generalized view of geothermal systems will be

developed based on data from all the sampled localities. In a sense,

a 'typical' geothermal system will be constructed using parts from each

individual system. Within this framework, individual areas can be

compared and contrasted.

Definitions

Many terms in the literature pertaining to geothermal research have

very broad or ambiguous usage. Several important and frequently used

terms are defined below in order to restrict their meaning to the defini-

tions intended in this paper.

Geothermal area: A region of unusually high heat flow or thermal gradi-

ent resulting from high temperature hydrothermal convection or flow.

Geothermal system: The physical and chemical components of a geothermal

area. A geothermal system includes rocks, fluids, and thermodynamic

properties.

Geothermal fluid: Natural steam and hot water and any dissolved solids.

Geothermal fluid and hydrothermal fluid are considered synonymous

terms in this thesis.

Chemical and geochemical environment: The thermodynamic conditions and

active components of a system.

Physical environment: The physical properties and structural framework

not immediately involved in chemical reactions.

Aspect ratio (a): The ratio of the short dimension (width) to the long

dimension (length) of a void.



Fracture or crack: Breakage or separation of a formerly continuous

solid. Fractures have small (<<1) aspect ratios.

Pores: Approximately equant voids (a-l).

Healed fractures: Where a broken crystal lattice has reformed across

a fracture.

Sealed fractures or veins: Those fractures filled with precipitated or

alteration materials.

Fracture porosity: The volume fraction of open fractures determined

through stress-strain relationships.

Interconnected porosity: The volume fraction of connected voids deter-

mined by immersion techniques.

Total porosity: The total volume fraction of all void spaces including

all interconnected and isolated pores and fractures.

Samples

Almost ninety samples were obtained for this study from six dif-

ferent geothermal areas in the western United States (figure 1-1). The

suite of samples is excellent for examining many of the characteristic

properties and effects of geothermal systems. All specimens are portions

of well cores obtained during exploratory drilling. These cores range

in size from five to fifteen centimeters in diameter but several samples

are broken fragments retrieved from within a depth interval. Large vari-

ations in characteristics are expected both within single systems and

among the several sampled systems. The specimens are neither physically

unmodified nor representative of the entire geothermal system or strati-

graphy of any one region. Samples were chosen specifically for visible
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fracture and vein content. Weak and friable samples were usually avoided

due to preparatory or transportation problems. Because sample selection

often involved considerable inconvenience to other agency and corporate

personnel, preliminary examination and selection were often cursory and

incomplete. Each sample is described briefly in the first appendix and

the in situ settings are shown graphically in the geologic sections pre-

sented in Chapter II. Otherwise, detailed sample descriptions are not

given.

Even under ideal conditions, the sampling process itself has a con-

siderable affect on the properties of the sample. Friable and incoherent

samples are difficult to core and retrieve intact. The open and continu-

ous fractures which are extremely important to circulation are also not

sampled intact by drilling. Pressure, temperature, and saturation condi-

tions change drastically during sampling. Temperatures may drop more

than 1000C. Pressure drops abruptly as samples are removed and brought

to the surface. Fracturing may occur as a result of the strain release

and differential mineral expansion (for example, at Marysville distinct

'popping' noises were heard as cores were uncased after core retrieval).

Fluids originally in rocks are replaced during drilling and sample pre-

paration. Although saturation has little effect on textural observation

and fracture content, extrapolation of laboratory measurements to in situ

conditions is difficult. Hence, the sample suite has gone through

several stages of mechanical as well as conscious biasing.

The Geothermal System

This final section will introduce a basic conceptual model of a con-
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vective geothermal system and outline the effects of fracturing and seal-

ing. The hypothetical sequence of events in the life cycle of a hydro-

thermal system will be presented. This sequence will then serve as a

framework for the following chapters, each concentrating on some specific

aspect of the cycle.

Detailed models of convective geothermal systems have been developed

both for specific sites as well as for systems in general (see, for

example, McNitt, 1973; White, 1968; White et al., 1971; White et al.,

1975; Elders and Bird, 1974; Muffler, 1976; Nathenson and Muffler, 1975;

Grindley and Browne, 1976; and Healy and Hochstein, 1973). A circulation

'cell' begins as cold dilute meteoric water descends either along fracture

zones or permeable rock units. This water is heated and the dissolved

solids become more concentrated. In some areas, connate water may be a

major source of the hydrothermal fluids. Fluid may then enter ascending

limbs of the cell, rise, and often mix with cool shallow ground water.

In some systems where temperatures are high enough and pressure and flow

rates are low enough, boiling may occur at depth to produce a vapor-

dominated zone (Renner et al., 1975; White et al., 1971). As the fluid

cools, chemically changes, or boils, it becomes supersaturated with dis-

solved solids and precipitates material interstitially and within frac-

tures. Rock-water reactions produce a host of alteration materials.

Precipitation and alteration then serve to 'self-seal' the system or

form impermeable 'cap rocks' (Facca and Tonani, 1967), entrapping the

hydrothermal fluids. This sealing process requires that the system be

fractured repeatedly to permit continued circulation.

Various heat sources have been postulated to drive convective sys-



tems. In some cases, such as Hawaii, Long Valley, Coso, and the Geysers

in California, nearby young volcanics or shallow intrusives are obvious

sources. The systems in the Salton Trough of California are undoubtedly

the result of magmatic activity but the exact nature of the heat source

or sources is unknown. For a system to be extensive enough and suffici-

ently hot to be economic places a restriction on the size and age of

the magma body responsible. Modeling by many people, including Smith

and Shaw (1975), Norton and Knight (1977), and Norton (1977) requires

that these bodies be relatively young (<106 years) or very large

(>>103 km3). Some geothermal systems, such as the Raft River, Idaho

and Marysville, Montana have no obvious igneous heat sources and deep

and extensive ground water circulation has been postulated as a possible

source. These systems would then be the result of the regional geother-

mal gradient which is abnormally high in many areas, such as the Basin

and Range. Renner et al. (1975), however, do not believe that this type

of deep circulatory source can support a sustained high temperature con-

vective system.

Core samples for this investigation were obtained from wells drilled

at the geothermal sites shown in figure 1-1. The individual systems are

located in a wide variety of different geologic environments. Conditions

range from a possibly vapor-dominated caldera structure at Coso to hot

water systems circulating in alluvial sediments at Raft River, Dunes,

and Heber; and circulating in fractured igneous rocks at Marysville.

More detailed descriptions of each locality will be presented in Chap-

ter II.

The basic components of a generalized hydrothermal system are shown



in figure 1-2. The model has been constructed to include numerous

features from each of the localities in figure 1-1. Figure 1-2 should

be considered a compilation of aspects of several systems and not cor-

responding to any one in particular. The figure is based on both exam-

ination of the obtained samples as well as on the material published

on each area. Meteoric water invades fractured crystalline rocks (1),

as is the case in Marysville, Roosevelt, and probably in the lower por-

tions of Raft River. Considerable fluid may also be derived from the

connate water in sediments. A heat source is shown (2) although in all

the studied areas the precise nature of this source is not known. After

heating and at least partial saturation with materials such as silica,

potassium, sodium, calcium, chlorine, etc., the fluid may then move

either laterally or vertically into other portions of the system. The

fluids will invade fracture zones and permeable units (3). Considerable

horizontal as well as vertical flow (4) can occur (Healy and Hochstein,

1973). Hot fluids will not uniformly enter permeable units and fracture

zones, resulting in stratified and alternating hot and cold water aqui-

fers. The thermal inversions encountered in many areas confirm this

stratification. Hot water may not reach the surface if circulation is

confined within lower units or if the pressure is insufficient to ele-

vate the thermal fluids. The circulation patterns can also be perturbed

significantly by local hydrologic conditions such as mixing with near-

surface ground water. As the hydrothermal fluids cool or chemistry

changes in response to pressure changes or water-rock reactions, materi-

als such as quartz, calcite, albite, adularia, etc. may be precipitated.

Fluid reactions with the surrounding rocks commonly form clays, zeolites,
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and other low density alteration materials. Both precipitation and al-

teration tend to seal the system (6). This sealing retards fluid move-

ment or may seal the system entirely unless fracturing and refracturing

occur to keep circulation paths open. Active systems are therefore

commonly confined to recently active fault zones and fractures (7).

Note that the fractures have both a cause and an effect relationship

with the system. The fractures are caused by faulting and local stresses

such as changes in pore pressure and are sealed and otherwise modified

by the environment. On the other hand, the fracture state of the rocks

controls many of the important physical properties, such as permeability,

which, in turn, strongly influence the geologic environment. The sealing

and resultant production of a 'cap rock' can be beneficial by confining

high temperature fluids to porous units that serve as reservoirs. The

highly variable flow patterns, the effects of local hydrology, and the

dependence on structure, particularly faults and fracture zones, must

be emphasized since all these factors interact to form extremely complex

systems rather than the simpified version of figure 1-2.

As mentioned previously, the cores obtained for this study vary

widely in the rock type and type of geologic environment they represent.

The locations of the samples in the generalized geothermal system are

shown schematically in figure 1-3. Samples from no single area span the

entire range of environments shown in figure 1-3. However, because of

the range of different rock types obtained, it is possible to fill gaps

that may occur in any one system. Samples are confined to the more

active areas of convection as this is the portion of the system that is

of economic value and.therefore has been explored and drilled. Rocks
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from recharge limbs of the hydrologic cycle would be little affected

and difficult to identify as parts of the system. In later chapters,

specimens will be described and the position that they are interpreted

to hold in figure 1-3 will often be pointed out and explained. The posi-

tions are obvious for some samples but in many instances, placement in

this generalized scheme is somewhat uncertain.

The data and observations from these several areas can be used to

produce a scheme describing the processes that can occur through time

within a geothermal system. Figure 1-4 is the resulting schematic 'flow

chart' for the generalized system. This figure represents the sequence

of events that often occur at single locations within the system. A

typical sample will be subjected to the processes and events as a func-

tion of time as indicated by the arrows of figure 1-4. The numerical

values on the chart are crude guides to the range and response of the

physical parameters to the various processes involved in the development

of a system. Any near-surface geologic environment can be a potential

site for the formation of a convective system. Sediments, if present,

are compacted and indurated. Igneous and metamorphic rocks reach steady-

state temperatures, fracture content, and porosity. These initial stages

of induration may be a direct result of the geothermal activity. The

introduction of hydrothermal fluids usually seals the rocks with preci-

pitated and alteration materials. Fracturing is necessary if the sealed

rocks are to be reopened to circulation. A new sequence of sealing and

alteration may occur, often confined to the region immediately adjacent

to the fractures. Thus, a cyclical behavior begins if the rocks are re-

fractured and reopened. and subsequently invaded again by hydrothermal



PROCESS OR CONDITION REMARKS PHYSICAL
2

PARAMETERS*
3

INITIAL GEOLOGIC SETTING
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fluids. This requirement for episodic fracturing and sealing usually

confines the regions of active circulation to fault zones capable of

causing repeated fracturing (Elders, 1977; Elders and Bird, 1974; Grind-

ley and Browne, 1976). Alternatively, sealing can block further fluid

movement and a cap rock or impermeable boundary may form.

The chart of figure 1-4 will serve as the basic outline for the

latter part of this thesis. Since figure 1-4 is based on the idealized

processes occurring in a convecting hydrothermal system with time, chap-

ters four through six will describe the events and processes roughly in

a temporal framework. However, all the various processes may occur

simultaneously at different locations within a single system. Figures

1-2, 1-3, and 1-4 are idealized and are not meant to represent any

area in particular. Indeed, some systems (such as Heber) show wide

variations on these generalized patterns. This thesis is intended to

observe the processes involved in geothermal systems and to deduce the

generalized fracturing and sealing behavior and not to describe any

individual system.



CHAPTER II

SAMPLE LOCATION AND GEOLOGIC SETTING

Introduction

This chapter is to introduce and briefly describe each of the

sampled areas. For each locality the general geology, the major struc-

tures, physical characteristics, and well stratigraphy are presented.

The proposed geothermal systems for each region are discussed. The

areas are presented in a rough progression from entirely sedimentary

settings to igneous or metamorphic dominated settings. A casual exam-

ination of figures, particularly the well stratigraphy, will reveal the

complex and varying fracture, alteration, and sealing interaction within

each system. These local complexities should be kept in mind when the

various processes are described in detail later.

Sal ton Trough Region

The Salton Trough* is a structural basin transected by the United

States-Mexico border (see figures 1-1 and 2-1). The trough is approxi-

mately 200 kilometers long and up to 130 kilometers wide with an exten-

sive portion of the valley floor below sea level. The region is a struc-

tural continuation of the Gulf of California.. Several individual sites

of high heat flow occur within the basin. Thermal manifestations in

the form of hot springs and boiling mud pots occur at the Buttes-Salton

site at the southern end of the Salton Sea and at Cerro Prieto in Mexico.

The area has been explored for geothermal resources for more than a

*Also referred to as the Salton-Mexicali or Mexicali Trough.



Figure 2-1. Geologic structures and geothermal areas of the

Salton Trough (after Reed, 1972 and Biehler et al., 1964).



decade. Many test wells have been drilled at numerous recognized geo-

thermal sites and several are shown in figure 2-1. A 75 MW generating

plant is presently operating at Cerro Prieto.

The Salton Trough is filled with interbedded alluvial gravels and

sands, eolian silts and sands, and lucustrine silts and clays. The

sedimentary rocks comprised of this fill are complexly intertongued and

have rapid lateral facies changes. The trough began opening in the Mio-

cene (Hamilton, 1961) and was filled with alternating continental and

marine deposits until mid-Pliocene when the growing Colorado River

delta isolated the Salton Basin from the Gulf of California. The sedi-

mentation has been exclusively continental since the mid-Pliocene (Van

de Kamp, 1973). The maximum thickness of the valley fill is six kilo-

meters with the thicker portions located near the southern end of the

Salton Sea (Biehler et al., 1964). The sediments are at various stages

of diagenesis and alteration. Low-grade metamorphism of greenschist

facies grade is occurring at depths of only a few kilometers in the

Buttes-Salton area (Helgeson, 1968; Muffler and White, 1969; Elders

et al., 1972; Kendall, 1976). Cementation and low-grade metamorphism

may be occurring at shallow depths at many of the geothermal sites in

the region. Most of the valley fill is a mixture of deltaic and lucu-

strine deposits derived from the Colorado River. However, in the

northern portion of the basin and around its margins, alluvial sedi-

ments derived from the local mountains frequently predominate (Van de

Kamp, 1973). The fraction of mud and fine material in the sedimen-

tary section increases away from the crest of the Colorado River delta

toward the northwest (Randall, 1971). Several stages of lake filling
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and evaporation occurred in the basin as the Colorado River shifted

drainage between the Salton Trough and the Gulf of California. The

occurrence of small settling ponds and deltas, beach features, rework-

ing of sediments, channeling, cut and fill, etc. serve to make much of

the stratigraphy complex on a fine scale. Because of the basin

rifting, Miocene sediments are confined mostly to periphery of the

basin with younger, thicker units occupying the center.

The structure of the Salton Trough is a result of complex inter-

action between faulting and rifting. Several major transform faults

transect the region including the southern extension of the San Andreas

fault system (see figure 2-1). Many of the faults are presently active

and numerous large earthquakes have occurred in historic times. A mag-

nitude 7.1 earthquake in 1940 along the Imperial Fault caused offsets

of more than four meters. Many faults have been detected geophysically,

have significantly offset subsurface units, and have disrupted ground

water flow (Meidav and Furgerson, 1971; Rex, 1971; Combs and Hadley,

1977). The trough may be a region of incipient rifting and crustal

spreading (Elders et al., 1972; Garfunkel, 1971, 1972). The trough was

created when the North American Plate overrode the East Pacific Rise.

Elders et al. (1972) postulated the sequence .of events during rifting

shown in figure 2-2. Segments of the ridge crest are offset in an

en echelon pattern by northwest trending transform faults. Both ten-

sional and compressional features are developed within the trough as

a result of the interaction between the faulting and rifting (Garfunkel,

1971, 1972). Gravity data have been interpreted by Biehler et al.

(1964) and Elders et al. (1972) to indicate crustal thinning under the
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trough with implacement of basaltic magma at depth. Holocene volcanism

occurred near the Buttes-Salton and Cerro Prieto areas, and a diabase

dike was intruded at a depth of 1335 meters in the Heber area (Browne

and Elders, 1976). The spreading mechanism is responsible for the high

heat flow and the trough itself by the formation of 'rhombochasms'

(Elders et al., 1972) along ridge crests. Mudie (1975) believes, how-

ever, that this rifting model is based too strongly on ocean ridge

spreading. The Salton Trough is clearly tectonically active and dynamic.

The geothermal areas within the trough involve fluid circulation

either in broad convective cells or channelled along faults and fracture

zones. The original source of most of the ground water in the valley is

the Colorado River although, to the north, around the Buttes-Salton

area, and along the margins of the valley, water from local precipita-

tion may predominate (Coplen, 1972; Rex, 1971). In general, ground

water in the northern portion of the trough flows from the crest of the

Colorado River delta toward the Salton Sea. There exists a significant

salt concentration gradient along the axis of the valley. Ground water

increases in salt content from about a thousand parts per million (ppm)

near the delta crest to approximately 20 to 30 weight percent dissolved

solids in the deeper portions of the Buttes-Salton area (Meidav and

Furgerson, 1971; Furgerson, 1972). The ground water flow is inter-

rupted by the several fault zones in the valley. At geothermal sites

the deep ground water is heated and convects upward. In such areas

as Buttes-Salton and Heber where permeable sediments are extensive or

interconnected well enough by interbedding or fracturing, broad convec-

tion cells form (Randall, 1971; Helgeson, 1968; Kendall, 1976; Lloyd
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Mann, personal communication, 1977). At other locations, such as Dunes,

East Mesa, and Cerro Prieto, impermeable cemented zones or shale layers

restrict significant fluid flow to fracture and fault zones. Hot

fluids invade the more permeable sand units encountered (Mercado, 1969;

Combs, 1972; Reed, 1972; Biehler, 1971). The hydrothermal systems in

the Salton Trough are self-sealing. Geothermal systems with no surface

expression can be recognized by the gravity and seismic anomalies asso-

ciated with the 'silicified cap rocks' developed by precipitated minerals.

The local heat sources and the details of the hydrology of most of the

hydrothermal systems in the valley are not known.

Dunes Area

The Dunes geothermal area is located approximately 38 kilometers

east of Holtville on the eastern side of the Imperial Valley (see

figures 1-1 and 2-1). The geothermal potential was indicated by high

heat flow (25 HFU), a positive gravity anomaly (2 mgal), and low resis-

tivity (2 Qm) (Combs, 1971; Biehler, 1971; Combs, 1972; Black et al.,

1973). Several shallow holes were drilled in the early 1970's followed

by a 612 meter well drilled by the California Department of Water

Resources (DWR#1) in 1972. Ninety-six meters of core were recovered.

This well penetrated deltaic sand, channel fill, braided stream, dune,

and lacustrine facies sediments (Bird, 1975). The sediments have been

altered hydrothermally at seven distinct intervals of originally high

permeability. Alteration and precipitated minerals include quartz, adu-

laria, pyrite, and hydromuscovite. The well stratigraphy is presented

in figure 2-3. Ten core samples were chosen for this study that were
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either macroscopically fractured or representative of the local strati-

graphy.

High temperature fluids rise along fracture and fault zones to in-

vade several of the shallow permeable sand units. These rocks in the

Dunes site have been subjected to episodic fracturing and sealing (Elders

and Bird, 1974; Bird, 1975). Fracturing and geothermal fluid movement

are probably partially controlled by the San Andreas Fault which is

located only one-half kilometer to the east (Combs, 1971; Biehler, 1971;

Wilt, 1975). The temperature profile is complex and consists of five

temperature reversals with a maximum of 104*C reached at 280 meters

(see figure 2-4). The detailed temperature fluctuations are the result

of hot fluids flowing in various stratified permeable units and inter-

acting with shallow ground water flow. Temperature distributions in

shallow wells indicate that the hydrothermal system is disturbed by

ground water flow toward the northwest, away from the crest of the

Colorado River delta (Combs, 1972). Four liters per second of hot fluid

flowed from DWR#l from the interval between 572 and 585 meters. Fluids

contained less than 4000 ppm total dissolved solids (Bird, 1975). Ten

core samples were chosen for this study (figure 2-3) on the basis of

either high visible fracture content or as representative of the geologic

section.

Heber Area

The Heber geothermal field is located in the central portion of

the Salton Trough midway between El Centro and Mexicali (figures 1-1

and 2-1). In 1945, Amerada Oil Company drilled an oil test well (Tim-
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kin #1) in the area which encountered abnormally high temperatures

(Palmer et al., 1975). In the early 1960's, Chevron Oil Company con-

firmed the geothermal potential of the area with a series of shallow

test holes. The Heber site is characterized on the surface by a positive

gravity anomaly of 2 milligals, steep temperature gradients in excess of

180*C per kilometer, and a resistivity low of approximately one ohm-

meter (Biehler, 1971; Combs, 1971; Furgerson, 1972). Several wells have

been drilled in the area, including the Geothermal Wells (GTW) numbers

one and three used in this study. The locations of several of the wells

are shown in figure 2-5.

Sandstones, siltstones, and claystones compose the bulk of the

strata at the Heber area. The upper thousand meters of the section are

predominantly clays and shales which grade at depth into more sandy and

hence more permeable units (Lambert, 1976). In the lower portions of

the section, permeable horizons and lenses are apparently interconnected

sufficiently to allow free circulation of hot water. Fractures are not

needed to provide circulation links (Lloyd Mann, personal communication,

1977). The production temperature is approximately 1850C and the fluid

is not extremely concentrated in dissolved solids (1.5 wt.%). The

'self-sealing' or mineralization process does not dominate in this area.

Hydrothermal minerals have been encountered at depth and include chlorite,

albite, calcite, epidote, and wairakite (Browne and Elders, 1976). A

diabase dike was encountered in the Holtz #1 well between 1335 and 1366

meters and could be related to the heat source for the site. Data on

fluid inclusions were interpreted by Browne and Elders (1976) to indi-

cate that two thermal.events had occurred at approximately 212*C and



Figure 2-5. Well locations for the Heber geothermal area. The named

wells are referred to in the text (from Lloyd Mann, personal communi-

cation, 1977).



235*C. Most data for the area are proprietary and therefore unavail-

able for this study. However, well logs from the Amerada test hole

were used by Randall (1971) to determine the downhole stratigraphy.

His interpretation of the sand versus clay content is shown in figure

2-6 along with the equivalent sample locations from wells GTW#s 1 and

3. Ten samples from these two wells were obtained from Chevron Oil

Company. Samples were chosen for megascopic fracture and vein content

and are predominantly shales and argillaceous siltstones. The samples

occur in a very narrow depth range and are restricted in the types of

geologic environment they represent.

Raft River Area

The Raft River geothermal area is south of the Snake River Plain

in southern Idaho approximately nine kilometers north of the Idaho-Utah

border (see figure 1-1). The area is in the Basin and Range physio-

graphic province. The geothermal site is located on the western flank

of the lower Raft River Valley. Natural evidence of hydrothermal ac-

tivity consists only of (1) a warm seep (38'C) located in 'The Narrows'

near INT#4 (see figure 2-7), (2) the altered alluvium around a former

hot spring located on the Bridge Fault about one kilometer northwest of

RRGE#1, and (3) minor green and yellow montmorillonitic alteration of

volcanic rocks exposed in 'The Narrows'. Many of the shallow irriga-

tion wells in the valley produce hot water and two such wells produce

boiling water. Silica and Na-K-Ca fluid geothermometry applied to the

well waters indicate a reservoir temperature of 150C (Kunze et al.,

1976; Williams et al., 1976). The U.S. ,Geological Survey initiated
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preliminary geologic investigations in the area in 1970 and in 1974 and

early 1975 five intermediate depth test wells (INT#s 1 to 5) were drilled

to depths from 76 to 434 meters (Williams et al., 1976). The deepest

well, INT#3, encountered water at 97*C near the bottom. The Energy

Research and Development Administration had three deep exploration wells

(RRGE#s 1, 2, and 3) drilled during 1975 and 1976 to depths in excess of

1500 meters. The deep wells produce hot water with downhole temperatures

of about 147*C (Kunze et al., 1976; Stoker et al., 1976, 1977, Kunze,

1977).

The Raft River area is typical of the Basin and Range province.

Block-faulted mountains surround the Raft River Valley to the west,

south, and east. The valley is a graben structure filled with approxi-

mately two kilometers of alluvial and tuffaceous detrital sediments.

The generalized geology of the area is shown in figure 2-7. This

geologic map and cross section, as well as most of the geologic descrip-

tions presented below, were adapted from Williams et al. (1974) and

Williams et al. (1976). The basement is a complex of Paleozoic sedi-

mentary rocks, Cambrian and Precambrian metasediments, and gneissic por-

phyritic adamellites (quartz monzonite). The major sedimentary unit

within the graben is the Salt Lake Formation. Pliocene and Miocene tuf-

faceous siltstones, sandstones, and conglomerates make up the bulk of

the formation. Locally, volcanic flows and breccias may predominate and

are used to divide the formation into upper and lower members. All mem-

bers of the Salt Lake Formation outcrop in the Jim Sage Mountains (fig-

ure 2-7) where the volcanics are most abundant. The Pleistocene Raft

Formation is the local subsurface unit overlying the Salt Lake Formation.



The Raft Formation consists of clay, silt, sand, and conglomerates.

The surficial units in this area consist of alluvium and eolian silt in

the central valley floor and alluvial fan gravels on the flanks of the

surrounding mountains. The fan deposits adjacent to the geothermal well

sites are composed of coarse subangular gravels derived mostly from the

volcanic members of the Salt Lake Formation exposed to the west. More

detailed information on the local stratigraphy is presented in the

borehole stratigraphic columns in figures 2-8 and 2-9.

Several major structural features occur in the Raft River area.

The mountain ranges are bounded by sets of subparallel dip-slip range

front faults. The faults dip 60 to 70 degrees toward the valley. The

north-trending Bridge Fault has the greatest offset locally, but ap-

parently has not been active for several hundred thousand years. The

'Narrows Structure' that trends northeast through 'The Narrows' has

regional geophysical expression and is probably a basement shear zone.

A concealed fault zone lies juxtaposed on this structure. The precise

nature and location of this 'Narrows Structure' is ambiguous. The Bridge

Fault and similar north-trending faults do not cross the structure. The

Jim Sage Mountains directly to the west show considerable faulting

which may be intense in some locations. The rocks in these mountains

are gently folded. The folding axis trends northward parallel to the

general trend of the faults.

In their geothermal model, Williams et al. (1976) postulate deep

circulation of meteoric water as the source of high temperature fluids.

The local volcanics are too old to provide a heat source. The chloride

content and low temperatures of well waters indicate a hot water system.



Heat flow data suggest that water would need to circulate to depths of

about 4 to 5 kilometers to reach temperatures in excess of 145*C.

Stanley et al. (1977) suggest a more prominent local heat source based

on a resistivity low (0.9 Qm) at a depth of approximately 7 kilometers

as determined by a magnetotelluric sounding in the valley. Hot water

rises along fracture and fault zones and through permeable zones in the

lower sediments. The hot fluids invade the more permeable horizons in

the upper sediments and result in the high temperature ground water

being widespread throughout the basin. Calcite, silica, and other al-

teration and precipitated minerals in the well cores and cuttings indi-

cate that the system is self-sealing.

Both shallow and deep core samples are available from the inter-

mediate and deep exploratory wells in the Raft River area. One core

sample was taken for this study from each of the INT#1 and INT#4 wells.

An excellent sample suite was obtained from INT#3. Sample locations and

well stratigraphy for INT#3 are given in figure 2-8. The deep explora-

tory wells (RRGE) had sparse coring and as a result few samples were ob-

tained. Most of the samples taken from the deep wells were from the

lower portions of the Salt Lake Formation. Deep well data are presented

in Table 2-1. Detailed well stratigraphy and sample locations are shown

in figure 2-9 for the RRGE wells. The RRGE#1 site was chosen so that

the intersection of the 'Narrows Structure' and the Bridge Fault would

be penetrated at depth. Samples were obtained from the region thought

to be the fault intersection and two samples were taken from the lower

metamorphosed quartz schist zone. RRGE#2 was also sited to intersect

the Bridge Fault at depth. Several core samples were taken from the
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Table 2-1.

RAFT RIVER GEOTHERMAL EXPLORATION (RRGE) WELL DATA.

RRGE#1 RRGE#2

Completed; depth

Reservoir temp.

Artesian pressure

(bars gage)

March 1975; 1524 m

1470C

3.45 cold

12.1 hot

June 1975; 1981 m

148 0C

4.14 cold

11.4 hot

June 1976; 1804 m

149 0C

2.76 cold

9.65 hot

Flow experience

Predicted after
10 years of produc-
tion

Total dissolved
solids (ppm)

Cl
Sio 2
Fe
Mg

25.2 1/s for many days
with artesian pressure
only. 54.9 1/s for 4
days pumping, drawing
down 114.3 m below
ground level.

69.4 1/s with 274.3 m
drawdown below ground
level.

31.5 1/s for several
days with artesian
pressure only. Three
distinct production
zones detected below
1200 meters.

94.6 1/s with 274.3.m
drawdown below ground
level.

2000

816

trace
0.23

400

85.2 1/s for one
day under artesian
pressure (145 0C at
surface).

31.5 1/s with 305 m
of drawdown below
ground level.

4592

1626
69
-- U

0.6

DATA RRGE#3



Table 2-1

DATA

K
Ca
SO0
HC 3

Specific conduc-
tivity (pmho/cm)

RRGE#1

<30

2700

(continued).

RRGE#2

Well data modified from Kunze, 1977; Spencer and Hickman, 1976; Miller, 1976; and Stoker et al.,
1977.

RRGE#3

95
200
34
51

9870



sediments above the postulated position of the fault (Kunze, 1977).

Reservoir tests on RRGE#l and RRGE#2 indicate a porous reservoir of high

capacity and permeability (Narasimhan and Witherspoon, 1977). RRGE#3

was located over a resistivity low and a self-potential anomaly (Williams

et al., 1976). The physical parameters and water chemistry of the RRGE#3

well indicate that it has a separate, distinct reservoir from RRGE#1 and

RRGE#2. After completion of the initial leg in RRGE#3, two 'kick out'

legs were drilled to increase production. Three samples were obtained

for this study from the lower portion of the Salt Lake Formation above

the producing fracture zones.

Coso Area

The Coso geothermal area is located in the Mojave Desert in east-

central California (see figure 1-1). The area lies in the Basin and

Range Province near the boundary of the Sierra Nevada Mountains. The

region of major hydrothermal activity is contained within the Naval

Weapons Center at China Lake. The surface expression of the hydrother-

mal activity consists of hot springs, fumaroles, and sinter deposits

and alteration zones (see figures 2-10a and b). Early geologic inves-

tigations were concerned primarily with the low-grade and dispersed

mercury deposits associated with the fumaroles (Wilson and Hendry, 1940;

Ross and Yates, 1943; Dupuy, 1948). Geothermal interest in the area

began with preliminary geologic and geophysical investigations by the

Weapons Center staff. A 114 meter test well, Coso #1, was drilled in

1967. This well, located on the fault zone near Coso Hot Springs, en-

countered a maximum temperature of 142*C (Austin and Pringle, 1970).
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More extensive investigations were begun in the early 1970's and drill-

ing began for the 'Battelle Deep Hole #1' (BDH#l, see figure 2-10b) in

late 1976. This well was badly mishandled and damaged. Drilling was

suspended in early 1977. Drilling began on a new well, Coso Geothermal

Exploratory Hole number one (CGEH#1) located on the same site, in late

summer 1977. At the time of this writing, CGEH#1 had been completed to

a depth of 1477 meters and downhole temperatures reached 193 0C (Joy

Hyde, personal communication, 1978). Well logging and testing are now

in progress.

The general geology of the Coso area consists of young volcanics

and alluvium capping metamorphic and plutonic rocks in a broad caldera

structure (Duffield, 1975). Metamorphic and Mesozoic granitic rocks

similar to those of the Sierra Nevada Batholith underlie the Coso Moun-

tains (figure 2-10a). Late Cenozoic volcanics in the region include

(1) basaltic and dacitic flows and cones, (2) tuffs, and (3) rhyolitic

domes, flows, and ejecta. At least 31 rhyolitic domes and flows exist

in the region and range in age from about 0.04 to 1 million years (Lan-

phere et al., 1975). The rhyolites retain their pumiceous and vitreous

surfaces and, with the associated unconsolidated ejecta, have a total

minimum volume of 2.4 cubic kilometers. Based on the homogeneous com-

position, Lanphere et al. (1975) conclude that all the rhyolites origi-

nated from a single magma body. The older (2-3 m.y.) dacites and

basalts top ridges in the Coso Range. The dacite flows overlie late

Cenozoic lacustrine sedimentary beds. The granitic rocks and alluvial

deposits immediately adjacent to the hot springs and fumaroles are in-

tensely altered. Feldspars have been completely altered to kaolinite



59

and alunite and the sediments are often indurated with layers of opal

and dispersed pyrite, hematite, and other hydrothermal minerals (Ross

and Yates, 1943; Austin and Pringle, 1970). The stratigraphy of BDH#1

is shown in figure 2-11. Preliminary downhole temperature data measured

during drilling are shown in figure 2-12.

The Coso geothermal area is not typical of the Basin and Range Pro-

vince. The hot springs are located near the center of a large caldera

structure defined by an arcuate 'ring' fault system (Austin et al., 1971;

Koenig et al., 1972; Duffield, 1975). These ring faults dip steeply

toward the interior of the caldera and vary from single fractures to

cataclastic zones tens of meters wide. The caldera extends westward to

include a portion of the Sierra Nevada Mountains and is concealed by

alluvium to the south. A dense rectilinear pattern of faults lies in the

interior of the caldera. These faults are steeply dipping, trend either

west-northwest or north-northeast, and have dip-slip components (figures

2-10a and b). This faulting is responsible for the linear distribution

of the hot springs and fumaroles. This caldera may be similar to the

calderas of Long Valley (Bailey et al., 1976) and Yellowstone (White et

al., 1971; Fournier et al., 1976). Duffield (1975) suggests that the

Coso area may be in a stage preceding large eruptions of ash flows and

major caldera collapse.

The Coso geothermal system may be steam dominated and heated by a

large magma body at depth. A region of high heat flow, up to 18 HFU,

encompasses the hot springs and fumaroles (Combs, 1976; Combs and Jar-

zabek, 1977). From seismic data, Combs and Rotstein (1976) calculated

low values of Poisson's ratio (0.16) under the heat flow anomaly and
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suggested that the system is vapor dominated. Based on Schlumberger,

audiomagnetotelluric, and telluric measurements, Jackson et al. (1977)

also conclude that the system is vapor dominated and is capped to depths

of a few hundred meters by a highly altered impermeable zone. If this

model is correct, then steam would flow up along faults and fracture

zones. The steam will then condense and the resulting hot water, pos-

sibly mixed with cold ground water, will feed hot springs and fumaroles

and invade permeable rock units. However, the high chlorine content of

up to 3681 ppm in the Coso #1 well water reported by Austin and Pringle

(1970) seems inconsistent with a vapor-condensate source. Cores from

BDH#l are intensely fractured and brecciated. However, alteration

products and precipitated minerals may be filling fractures sufficiently

to inhibit fluid circulation and thus permit steep temperature gradients

to exist (figure 2-12). P-wave delays and seismic attenuation under

the caldera indicate that the ultimate heat source for the region is a

deep magma chamber (Combs and Jarzabek, 1977).

Samples were obtained for this study from both shallow and deep

holes. More than 20 shallow heat flow wells were drilled in and around

the region of high heat flow (see figure 2-10b). One veined core sample

was obtained from each of heat flow wells 1, 3, 13, and 15. The deep

well, BDH#l, was drilled near the center of the heat flow anomaly over

a highly resistive basement structure interpreted to be a steam-dominated

zone (Jackson et al., 1977). Ten samples were taken from the interval

between 153 and 347 meters depth.



Marysville Area

The Marysville geothermal area is approximately 30 kilometers north-

west of Helena, Montana (see figure 1-1). The area is located in the

Rocky Mountains on the continental divide. No natural surface expres-

sion exists indicating hydrothermal activity and Marysville has been

termed a 'blind' geothermal area. The geothermal potential of the region

was discovered in the course of a regional heat flow study (Blackwell

and Baag, 1973). A maximum of 19.5 HFU was measured in holes drilled

for mineral exploration. A wide range of geologic and geophysical in-

vestigations was initiated in the early 1970's to determine the exact

nature of the system. The project culminated with the drilling of the

Marysville Geothermal Exploration Well Number 1 (MGE#1; figures 2-13a

and b) in the summer of 1974. The well reached a maximum depth of 2.1

kilometers and a maximum temperature of 98'C. The low temperatures in-

dicate that the system is not economically viable and most geothermal-

related work in the area has been suspended. The information summarized

in this section comes primarily from the publications of Blackwell and

Baag (1973), McSpadden et al. (1975), Blackwell and Morgan (1976),

and Blackwell (1977).

The geology of the Marysville region consists of sedimentary and

metasedimentary rocks overlying igneous intrusives. A Precambrian

series of limestones, shales, and sandstones are the important sedi-

mentary units in the immediate area. The oldest sedimentary unit is

an argillite which is overlain by the biotite-rich siliceous to cal-

careous Empire Shale (see figure 2-13a). The next unit is a siliceous

limestone and dolomite with interbedded shales and sandstones. The
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Figure 2-13a. Regional geology, structure, and heat flow for the

Marysville area. See figure 2-13b for cross section A-A'

Blackwell et al., 1975 and Blackwell and Morgan, 1976).
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Figure 2-13b. Cross section A-A' from figure 2-13a including

general structures, near-surface temperature gradients, and inter-

preted deep isograds. Tie = Empire Creek Stock, Tib = Bald Butte

intrusive, Kgr = Marysville Stock (from Blackwell et al., 1975).
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remaining overlying Precambrian rocks are dominantly shales and sand-

stones. Other sedimentary rocks ranging in age from lower Paleozoic

to Cretaceous rest unconformably above the Precambrian sedimentary series.

Several episodes of igneous activity have occurred locally. The Marys-

ville Stock is a Cretaceous (-79 m.y.) granodiorite and is probably re-

lated to the Boulder Batholith 20 kilometers to the south. The iso-

lated (figure 2-13a) Bald Butte quartz porphyry plug was emplaced about

49 million years ago. The Empire Creek Stock was intruded in the Oligo-

cene (~40 m.y.). This stock is a quartz-feldspar porphyry and has no

surface exposures. A few erosional remnants of rhyolite flows and tuffs

are located southwest of the Marysville area. The volcanics are about

37 million years old as are the numerous dikes and sills in the region.

The Marysville and Empire Creek plutons have produced contact metamor-

phism in the overlying Precambrian sediments. Metamorphism reached

diopside grade with temperatures and pressures estimated to be approxi-

mately 500*C and 500 to 750 bars. The diopside and tremolite contact

aureoles have been mapped (figure 2-13a) and indicate the lateral sub-

surface extent of the plutons.

The structure of the region is characterized by faulting and gentle

folding and doming. The folding and doming probably are a result of the

emplacement of the Marysville and Empire Creek plutons. The general

form of the folding is indicated by the extent and shape of the Empire

Shale exposure in figure 2-13a. North-south trending fracture cleavage

has been developed in the Precambrian sedimentary units. Faulting in

the area is usually poorly exposed and ambiguous. The major faults

are shown in figure 2-13a. Cutting relationships can prove only that



some of the faulting is younger than 79 million years. However, the

latest faulting is probably much more recent.

ing with displacements on the order of tens of

approximately 40 kilometers east of Marysville.

may underlie the region at depth. Some of the

trict have geophysical expression. The Empire

geothermal area are characterized only by broad

tivity (10,000 Pm) and low gravity (~-10 mgal).

indicate that the Marysville pluton is bounded

southwest near the limits of the outcrop. The

responsible for the contact aureoles extending

The deep exploratory well, !GE#l, was dril

A zone of thrust fault-

kilometers is

This

major

Creek

zones

Heat

in the

Empi re

to the

led th

brian metasediments and into the Empire Creek Stock.

exposed

thrust faulting

faults in the dis-

Stock and the

of high resis-

flow and magnetics

subsurface to the

Creek Stock is

southwest.

rough the Precam-

Fifteen sections

of core were recovered from various depths (see figure 2-14). Samples

for this study were obtained from each of the cored intervals. The well

penetrated several major fracture zones. Large amounts of water began

flowing into the well from fractures at approximately 450 meters depth.

The upper fracture zones have highest fluid pressure, which resulted in

water flow down the borehole to invade lower zones. The downhole tem-

peratures reflect this flow and show a thermal inversion with a maximum

temperature of 98'C reached at 1,000 meters. The measured well tempera-

tures and flow rates are shown in figure 2-15. The maximum standing

water level reached in MGE#l was approximately 180 meters below the

surface. The low fluid pressure may be responsible for the lack of

surface thermal manifestations.

The hypothesized.geothermal system in the Marysville area consists
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of warm water circulating through fractures. The early exploration of

the region was insufficient to differentiate between a 'hot dry' intru-

sive or shallow circulation of hot fluids as the source of the high heat

flow. Based on the low fracture content and low permeability of the

rocks exposed at the surface, the intrusive source was preferred. None

of the igneous rocks located in the area are young enough to provide a

shallow heat source. As is apparent from figures 2-14 and 2-15, the

Empire Creek Stock has been heavily fractured at depth and circulation

is pronounced. Fluid flow is significant within the fractures, but the

individual fracture zones can form discrete non-interconnected systems.

The isolation of individual fracture zones is demonstrated by the tem-

perature inversions and copious downhole flow. The active circulation

is apparently contained within the fractures of one pluton, the Empire

Creek Stock, and bounded on the northeast by another pluton, the Marys-

ville Stock. This area demonstrates the complex hydrologic conditions

possible in geothermal systems. Based on fluid geothermometry, tempera-

tures of 120 to 180*C should occur somewhere in the system. The inter-

preted positions of isograds, based on heat flow data, had been quali-

tatively located by Blackwell et al. (1975) on the cross-section in

figure 2-13b.

Roosevelt Hot Springs Area

The Roosevelt Hot Springs geothermal area is in southwestern Utah

(see figure 1-1). The site is located in the Basin and Range physio-

graphic province on the western flank of the Mineral Range. In the

early 1900's, the hot springs flowed at 88*C at a rate of about 0.6 liters



per second. The springs were dry by 1966 and a small 25*C seep is the

only remaining active surface manifestation. A discontinuous chain of

alteration and cementation zones roughly parallels the front of the

Mineral Range. These zones consist mostly of alunite, opal, kaolinite,

montmorillonite, and K-mica. Two samples were obtained for this study

from wells (wells 9-1 and observation hole #2) drilled by Phillips Pet-

roleum Company on opposite sides of this chain of alteration zones.

Since only a pair of samples were obtained from this area, the region

will not be discussed in detail; only a cursory description is presented.

Most of the information presented here is summarized from the recent in-

vestigations by the staff at the University of Utah (Evans and Nash,

1975; Nash, 1976; Parry et al., 1976; Ward et al., 1976; Ward and Sill,

1976; Crebs and Cook, 1976; Bryant and Parry, 1977).

The region is dominated by a block-faulted mountain range of young

igneous rocks flanked by alluvial fans. The Mineral Range Pluton

(9.2 ± 0.3 m.y.) makes up the bulk of the mountains. This pluton varies

in rock type from an altered granite to adamellite to granodiorite. The

pluton gradationally contacts gneissic rocks to the west. Central

portions of the Mineral Range are partially covered with rhyolitic vol-

canics ranging in age from 2.30 ± 0.14 m.y. to 0.42 ± 0.07 m.y. The

volcanics consist of 10 individual domes with associated deposits of

rhyolite, perlite, obsidian, and ash. Tertiary and Quaternary alluvi-

um blankets the plutonic rocks at the hot spring and alteration sites.

Numerous normal faults provide conduits for the circulating hydro-

thermal fluids. The Dome Fault is the most conspicuous of a series of

north-south trending faults. The Dome Fault is traced by the chain of



72

alteration zones mentioned previously. This fault forms one side of a

small buried horst in the Precambrian basement rocks west of the Mineral

Range. The Dome Fault has been tentatively dated as pre-Pleistocene,

but many of the less prominent parallel faults have been the sites of

more recent movement. Another sequence of faults trends east-west, in-

tersecting and crossing the north-south series of faults. The high tem-

perature reservoir is postulated to consist of the faults, fractures,

and joints in the Precambrian basement rocks and the plutonic rocks

underneath the Mineral Range. Water samples from both wells and the

warm seep are silica and sodium-chloride rich and acid-sulfate in

nature with approximately 6,000 ppm total dissolved solids. Well tem-

peratures reach 260 0C and the Na-K-Ca geothermometers suggest system

equilibrium temperatures of 2400C to greater than 294'C. The heat is

probably derived from the same magma bodies that supply the young rhyo-

litic volcanics. The hot fluids flow along the faults and fractures and

then into the alluvial sediments to the west. The Roosevelt Hot Springs

system is therefore similar to the Marysville system in 'source' and

the Raft River system in 'sink'.



CHAPTER III

EXPERIMENTAL AND OBSERVATIONAL TECHNIQUES

Introduction

The techniques used in this investigation will be discussed brief-

ly. The techniques included both direct and indirect measurements of

physical parameters, as well as direct observation of microscopic fab-

rics. Differential strain and interconnected porosity were measured on

almost all samples and hydraulic permeability and resistivity were de-

termined for several others. Observational methods included optical,

scanning electron, and cathodoluminescent microscopic examination.

Differential Strain Analysis

Differential strain analysis, abbreviated DSA, is a technique to

measure certain properties of open microfractures. This technique is

based on the pronounced effect fractures have on the compressibility

of rocks (see, for example, Walsh, 1965; Brace, 1965; Todd et al.,

1972). Strain versus pressure plots for dry fractured rock samples

often show two characteristic regions as in figure 3-la. The 'straight'

portion of the plot at high pressure is a result of the intrinsic

compressibilities, 6, of the constituent minerals. The curved por-

tion of figure 3-la includes the additional strain due to the closure

of cracks and pores. Fracture porosity, c c, is the amount of volu-

metric strain between the origin and the zero pressure intercept of

the 'straight' portion of the stress-strain plot (Walsh, 1965).

Morlier (1971) showed that the distribution of crack shapes could be
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obtained from plots such as that shown in figure 3-la, provided that

a specific crack shape is assumed.

Differential strain analysis was used in this investigation to

obtain the fracture porosity with respect to closure pressure and in-

dications of fracture shape, spatial distributions, and orientations

in the core samples. DSA is described in detail elsewhere (Simmons

et al., 1974; Feves and Simmons, 1976; Batzle and Simmons, 1976;

Siegfried, 1977; Feves et al., 1977; Feves, 1977) so only a very

brief description will be presented here. The differential strain is

obtained by subtracting from the rock sample strain, the strain of a

fused silica standard exposed to the same high pressure (hydrostatic)

environment. With this technique, errors due to instrument drift,

changes in lead resistance, and many thermal effects are eliminated.

The result is a strain measurement with a precision of about 2 x 10-6

The process of plotting differential strains essentially rotates

plots such as in 3-la into the form shown in 3-lb. In the transfor-

mation, the fracture porosity remains the strain between the origin

and the zero pressure intercept of the 'straight' intrinsic compres-

sibility portion of the DSA curve.

The precision of the DSA technique enables one to observe the

detailed behavior of the sample strain as a function of pressure.

Fracture closure with increasing pressure causes a strain normal to

the plane of the fracture. This strain or 'linear crack porosity'

can be measured in any direction and the distribution of fracture

orientations is often strongly anisotropic. The volumetric micro-

crack porosity is the sum of any three orthogonal linear crack



porosities or closure strains. With the penny-shaped crack model of

Walsh (1965), the stress-strain relations can be interpreted in terms

of fracture aspect ratio, a. In this model, fractures close linearly

with pressure. Fractures with aspect ratio a will be closed complete-

ly at a pressure, PC, such that a = 4Pc (-V2 )/uE, where v and E are

Poisson's ratio and Young's modulus of the rock matrix, respectively.

At this closure pressure, these fractures cease to contribute to the

sample strain. At P c, the zero pressure intercept of the tangent to

the stress-strain plot will be increased by the porosity of this set

of closed fractures. Hence, such a model allows the interpretation

of DSA data in terms of the porosity of fractures with specific as-

pect ratios. Similar, though more elegant, models have been developed

by Toksoz et al. (1976) and O'Connell and Budiansky (1976). In all

of these models, however, the fractures are considered to be isolated

and of simple (elliptical) shape. The physical interpretations are

strongly dependent on the assumed models. To avoid this model depen-

dency, Simmons et al. (1974) have used the experimentally determined

values of closure pressure, Pc, and cc, the strain due to all the

cracks (or segments of cracks) that have closed by P . A second de-

rivative of the DSA plot with respect to pressure and then multiplied

by the pressure yields the 'spectra' or rate of change with pressure

of the parameter c. This spectra indicates how the porosities of

microcracks of differing closure pressures are distributed.

The interpretation of DSA is not always straightforward. Fig-

ures 3-la and b are highly idealized curves typical of fractured

plutonic rocks. For altered igneous and sedimentary rocks the behav-



ior can be complex. Large decreases in volume occur with samples

that are easily compacted. The compressibility can increase with

pressure and can be orders of magnitude greater than for dense crys-

talline rocks. Abrupt changes in compressibility are character-

istic of clay-rich rocks (Lambe and Whitman, 1969, p. 125). The

large amount of strain renders the correction from the fused silica

reference as trivial and obscures the effects of fractures. A

similar but less pronounced effect, shown in figure 3-2, occurs when

material is crushed in the vicinity of intergranular contacts (Lee

and Farhoomand, 1967). This effect may also occur when 'bridges' or

materials spanning open fractures are crushed. Several samples have

DSA curves that abruptly change curvature and become less compres-

sible. Such changes might be due to movement of small amounts of water

in the crack network during compression. All these effects are usually

insignificant for dense crystalline rocks. In pliable sedimentary or

altered rocks, several effects often combine to make interpretation

of DSA curves qualitative at best.

Permeability

A pressure decay technique was used for the determination of

sample permeabilities in this study. This permeability system is

patterned after that of Brace et al. (1968), but employs substantial

technical and analytical modifications. Basically, the system con-

sists of a chamber or vessel filled with fluid and sealed except for

a sample 'plug'. After pressurization and isolation, the only outlet

for the fluid is through the sample. From the pressure drop as a
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The differential strain curve would appear identical to this

curve because the sample strains are much larger than the strains

of the fused silica reference (from Lambe and Whitman, 1969).



function of time and the measured parameters of the system, the amount

of water that has passed through the sample can be calculated. This

method is useful for measuring samples with permeability below a few

millidarcys.

The derivation of the basic permeability relationship is straight-

forward. The fluid flow rate, Q, is related to fluid volume change,

dV, and time, t, by

Q = dV/dt. (3-1)

Darcy's law states that for isotropic materials.

Q/A = k )VP

where A is the sample end surface area, k is the sample permeability,

y is fluid viscosity, and P is pressure. For samples of thickness h,

Darcy's law is simplified to

Q/A = -k/p(Ph

with P the internal vessel pressure and P2 the pressure on the oppo-

site side of the sample. In this study, P2 was always approximately

zero (gage pressure) and so this last equation can be combined with

equation (3-1) to yield

dV/dt =_-kA P (3-2)
y h

From the definition of compressibility, 6,

dV = VdP.



Substituting into equation (3-2) gives

dV/dt = VdP/dt = k P

or

k dt. (3-3)

In the present application, V represents the internal volume of the

system.

Brace et al. (1968) used the compressibility of water in their

relationship. However, this system includes o-rings, pressure fittings

and packings, sample, sample holder and adhesives, pressure transducer,

rupture disk, and entrapped air bubbles as well as water. These fea-

tures have a large effect on the pressure dependence of the system.

For a given change in the fluid volume, the pressure will not change

simply according to the compressibility of pure water. This difficulty

can be overcome by conceptually replacing the water with another fluid

of different effective compressibility, S'- This effective fluid

compressibility must then be determined to be able to relate a measured

pressure drop to the quantity of fluid that has left the system through

the sample. The effective fluid compressibility is strongly dependent

on the pressure within the vessel, as shown in figure 3-3. The incre-

mental change in pressure, AP, due to a known small reduction in the

internal system volume, AV*, is shown as a function of internal pres-

sure for various material 'plugs' in figure 3-3. This pressure depen-

dence can be described by one (or more) lines of the form

knP = c + mAP.
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where P is the internal pressure of the system.

If we define a' such that

*= A
-VAP

then

inP = c + m( AV*)

0' = AV*m/V(RtnP-c)

Putting this relation into equation (3-3) yields

d/P- AV*m dP -kAdtdPP=V P (Wn-c) dtV

or equivalently

dP -kAVdt -kAdt
P(znP-c) ~ VhAV*m phAV*m.

Integrating gives

dP
P(nP-c)

kA dt - -kA
phAV*m phAV*mt + const.

The pressure integral can easily be solved using the substitution

x = knP-c so that dP = ae Xdx. Then,

JP(tnP-c)
fae xdx = f = inx = zn(tnP-c)
ae x

Hence,

tn(tnP-c)' =hAV :mt = bt.

(3-4)

(3-5)
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The slope b of a plot of n(nP-c) versus time yields the coefficient

of time in the middle term of equation (3-5). After calculation of

c and m, the only unknown variable is permeability k.

The dependence of compressibility on pressure requires that mea-

surements such as in figure 3-3 be made frequently, usually before each

permeability determination. This method has the disadvantages that

several additional measurements must be made and the new parameters

m and c introduce considerable error. However, there are several ad-

vantages to this method: (1) the exact system volume, V, for each

determination is not needed; (2) the effects of the system components,

air bubbles, etc. are measured directly so that the experimental set-

up need not be precise and can be accomplished quickly; and (3) the

sensitivity of the system can be varied enormously, as is required for

the large variations of permeability encountered during this study.

Two basic modes of permeability determination were used: k as

a function of confining pressure and k at zero confining pressure.

The permeability versus confining pressure equipment is similar to

that of Brace et al. (1968). The configuration of the sample, reser-

voir, and end plates is shown in figure 3-4. The plates are made of

brass with stainless steel fittings soldered in place. A thin epoxy

cylinder is molded around the sample to prevent fluid flow along the

sides of the sample and to serve as a guide sleeve for the end plates.

The screen and grooves allow even flow to the sample surface. Simul-

taneous measurements of resistivity can be made since the reservoir

plate is isolated from the pressure vessel. The reservoir capacity

is approximately 25 cubic centimeters of which 5 cubic centimeters
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are initially filled with fluid to insure uniform wetting of the sample

surface. During most permeability determinations, only a fraction of

a cubic centimeter enters the reservoir. The air-filled volume is

still large enough so that P2 remains approximately zero. The entire

assembly is encapsulated in silicon potting compound to exclude the

pressure medium. Permeability can be measured as a function of hydro-

static pressure up to two kilobars.

The experimental arrangement is shown schematically in figure 3-5.

During a permeability determination, the system is isolated by closing

valve 4. Compressibility is checked at several fluid pressures by par-

tially (but not completely) closing valve 5 with a specific number of

turns. The valve needle moving in displaces the volume AV*. The iso-

lator is used to prevent mixing of the KCl solution moving through

the sample with the distilled water in the rest of the system. Except

for one fitting, the entire system can be leak-tested between deter-

minations.

An example of a permeability determination or 'run' is shown in

figure 3-6. The measurement of the effective fluid compressibility

precedes the run. The large curvature in the record is due to both the

decrease in the pressure gradient with time and the non-linear scale

(due to the electronics) on the recorded graph. The initial portions of

the determinations for low permeability samples were not picked to avoid

the effects of fluid pressure equilibration.

Permeability measurements made with no confining pressure are

quicker and less complicated in set-up than the high pressure deter-

minations. A cross-secton of the zero confining pressure assembly
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is shown in figure 3-7. This assembly replaces the separation vessel

in the schematic of figure 3-6. Valve 6 and the pressure vessel are

disconnected. The zero pressure measurements use the same general

procedure as in the permeability versus confining pressure determina-

tions. Although the large fluid pressures can result in large nega-

tive values of effective pressure within the sample, the effect is

countered by the constraining epoxy mount and sample ring and by the

stress pushing the sample against the bottom plate. Figure 3-8 shows

multiple runs made on three samples with pressure gradients that vary

significantly. The permeability values vary somewhat during the deter-

minations, but remain within the accuracy limits of about a factor of

two throughout the entire range of pressure drops.

The major sources for errors in these permeability determinations

arise from the measured parameters, temperature fluctuations, and

leaks. The measured parameters are those in equation (3-5). The

sample dimensions, fluid viscosity, pressure, and time measurements

are all accurate to within a few percent. The viscosity of water var-

ies less than one percent over the pressure, temperature, and salinity

ranges considered here (Matthews and Russell, 1967). The compressibility

slope, m, can vary by 10%. Variations in the compressibility intercept,

c, are important because they are subtracted from the nP term in

equation (3-5). The inaccuracies in c can be as large as 50% of the

calculated value. The absolute values of c are coupled with the value

of pressure, however, so that nP-c is always positive. The variations

in c affect the left side of equation (3-5) and alter the determination

of the slope b by as much as a factor of two.
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Temperatures in the laboratory can vary several degrees during a

measurement. The effect of the temperature fluctuations depends on the

magnitude of the fluctuation and the current value of effective fluid

compressibility. The result of these variations is an uncertainty in

the absolute measurement of k. When water is used as the flow medium,

this uncertainty is on the order of half a nannodarcy. Hence, the

temperature variations are important for low values of permeability and

serve as a lower limit to the measurement of k.

The system is checked for leaks before most runs. Leakage effects

can be measured and removed in the data reduction process. Leakage

results in a limitation of the minimum measurable permeability similar

to the temperature effects. With effort, leaks can often be reduced

so as to have a smaller effect than temperature fluctuations. Again,

the measured values of samples with low permeability are most affected.

The overall experimental error is a factor of two to three for

samples with permeabilities above a few hundred nannodarcys. The

error increases with decreasing permeability to the limit of resolution

of approximately one nannodarcy for the fluid (water) used in this

study. However, the precision of the technique is much better. Dur-

ing 'permeability versus confining pressure' runs, the only physical

parameter to vary is the confining pressure. Measurements then have

a precision of from 30 to 50%.

With few exceptions, the permeability measurements were made on

right circular cylindrical samples. The diameters ranged from 2.5

to 4.75 centimeters and thicknesses from one to four centimeters.

The end surfaces were ground parallel to.one another to within a few



92

hundredths of a millimeter. During mounting and subsequent leak test-

ing, the ends were sealed with tape or teflon masking. If a sample

was longer than the holder ring, the sides were coated with epoxy to

prevent fluid flow through and along the sides.

Resistivity/Conductivity Measurements

Resistivities were measured on numerous samples saturated with

various solutions. A frequency of 100 Hertz was used in order to re-

duce electrode polarization. The samples were usually right circular

cylinders. The lateral surfaces of all samples were coated with epoxy

to prevent conduction along surfaces. Measurements were made after

(or during) permeability runs so that the samples were flushed and

saturated with the appropriate electrolyte, usually 0.02 or 0.04 molar

KCl solution. Other samples were saturated by being placed under

vacuum for several hours and then vented with the proper electrolyte.

Two different methods were used to determine resistivity. The

first method consisted simply of comparing the voltage drops across

the sample and a known resistor in series with the sample. These

measurements were taken at atmospheric pressure with sample contact

made through damp filter paper over copper screen electrodes. The

contact resistance was on the order of 100 ohms. The second method

used the bridge shown in figure 3-9 for measurements during permeabil-

ity versus confining pressure runs. The two channels of a dual trace

oscilloscope were subtracted for use as a null detector. This bridge

was used because the oscilloscope, oscillator, and sample assembly

all shared a common ground. One disadvantage of this last method over
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the first was the relatively low input impedance of the oscillo-

scopes (-1 megQ) which limited the upper values of resistivities mea-

surable. For both techniques, measurements have an error of about

5 to 10% for most samples although this error increases to more than

20% for highly resistive samples.

Porosity

Sample densities and porosities were determined by immersion in

water. The specimens were evacuated for several hours at approximately

one torr and then 'vented' with water for saturated and submerged

weight determinations. Samples were evacuated again at 400C and then

vented with dry nitrogen for dry measurements. Errors are 5 to 10%

for the better indurated rocks; for friable and unconsolidated rocks

which tended to break and crumble, particularly when damp, errors may

be as large as 20 or 30%.

Observational Methods

A variety of observational and analytical equipment was used in

this investigation, including the petrographic microscope, the scanning

electron microscope, a cathodoluminescence attachment, the electron

microprobe, and x-ray diffraction. Most of this equipment and the

associated techniques are described adequately in the literature. Only

the exceptional details pertinent to this investigation will be des-

cribed below.

The petrographic microscope was used predominantly to examine

the morphology and texture of the fractures and veins within samples.



Bulk rock mineralogy was usually only cursorily examined. Both

standard (30 Pm) thin sections and 'crack sections' (100 pm) were

examined. The crack sections are valuable because they can be used

to get a three-dimensional view of the features contained in a slide.

As the microscope stage is raised and lowered, specific levels within

the section come into focus. Thus, features can be observed at dis-

tinct levels throughout the depth of the crack section. The opacity

of some samples, particularly clay-rich specimens, limited observation

to surface textures. Crack and thin sections must be prepared with

care to prevent adding or modifying cracks. Heating, rough sawing,

and stressing must be avoided. At least a one millimeter layer was

ground off each saw-cut face with a succession of fine grinding pow-

ders to remove any saw damage. Detailed descriptions of the prepara-

tion and observational techniques used in similar studies on igneous

and metamorphic rocks are given by Simmons et al. (1975), Simmons and

Richter (1976), and Richter and Simmons (1977).

The scanning electron microscope (SEM) was used to examine the

fracture and veining morphology. The SEM has been used extensively

recently to observe fractures and pores in many rocks (see, for example,

Sprunt and Brace, 1974; Montgomery and Brace, 1975; Richter and Sim-

mons, 1974). The same crack sections that were used on the petro-

graphic microscope were used with the SEM. Further preparation is

needed, as described in Sprunt and Brace (1974). A layer of several

tens of micrometers must be removed by bombardment with ionized argon.

This ion thinning gently removes any remaining damage due to grinding.

The thinning rate varies greatly among the various minerals from
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relatively slowly for plagioclase to quickly for quartz and mica. The

variations in thinning rate produce uneven sample surfaces. Numerous

mounds up to 50 Vm wide and perhaps a micron high cover the sample

surface as thinning artifacts. The exact cause of these mounds is not

understood but is related to the composition or impurities of the

thinned phase. Exsolution twins, mineral zonation, and overgrowths

often have characteristic mound densities and shapes. Fracture edges,

grain boundaries, and mineral defects are not preferentially thinned.

The topography produced by the mounding and variations in the extent

of thinning are extremely useful for identifying minerals and locating

grain boundaries. Large mosaics were constructed from individual Polar-

oid photographs with small fields of view but high resolution and magni-

fication. Large mosaics could thus be used to examine in detail ex-

tensive portions of sample surfaces. Analyses could be made at specif-

ic locations using the energy dispersive analyzer attached to the SEM.

These analyses are somewhat qualitative, however, due to the back-

ground effects and the lack of comparative compositional standards

(Belk, 1974). The maximum resolution on the SEM is limited to a few

hundred Angstroms due to the conductive coating deposited on the sec-

tions.

The electron microprobe was often used during this study both for

point compositional analysis and analysis conducted along traverse

lines. The microprobe technique is described in detail elsewhere (see,

for example, Reed, 1975) and the following discussion serves only to

describe the difficulties encountered in this study. The minerals

examined during this investigation typically were hydrous or light
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element phases such as clays and carbonates. The microprobe usually

cannot be used to determine the content of elements lighter than

sodium. Hydrous phases often decompose under the electron beam. Com-

positionally similar standards were usually not available so that cor-

rection factors had considerable error. Due to the fracture content

and extremes in hardness, sample surfaces were often very irregular.

Analyses of common non-hydrous minerals such as feldspars usually

have errors of less than a few percent. Hydrous or light element

phases can have errors which are considerably greater and analyses are

often only qualitative.

Cathodoluminescence refers to the phenonemon that some materials

emit light when bombarded with high energy electrons. A Nuclide Cor-

poration Luminoscope was used in this study and consists of a high volt-

age source and a vacuum chamber. The chamber is mounted on a standard

petrographic microscope. Electrons are accelerated through approximately

ten to fourteen kilovolts in a partial vacuum of approximately 40 milli-

torr and focused on the sample. The light emitted is observed through

the microscope. Details of the technique and applications have been

described, for example, by Smith and Stenstrom (1965), Sipple (1968),

and Sommer (1972). The intensity and color of the luminescence are

dependent upon composition, particularly trace or contaminant ele-

ments. Cathodoluminescence is particularly useful for studying car-

bonates in which Mn++ serves as an activator or source. Zonation,

overgrowths, and different veining mineralizations which cannot be

observed under plane or polarized light often become apparent by

cathodoluminescence. Because the luminescence is sensitive to trace
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element variations, even coarsely crystalline and otherwise uniform

calcite may display fine textures. Since the luminescence is a sur-

face property, polished slabs can be used hich are quickly and easily

prepared. This technique does have several disadvantages: many

minerals display no cathodoluminescence at all; iron, a common con-

taminant, quenches or prevents luminescence; and samples may overheat

and be damaged and distorted during bombardment, particularly during

the long exposures necessary for photography.



CHAPTER IV

INITIAL PROPERTIES AND PROCESSES

Introduction

The initial geologic environments encountered in a developing

geothermal system will be discussed in this chapter. Igneous and

metamorphic rocks such as those found in the basement of Marysville,

Raft River, and Roosevelt Hot Springs will be described briefly.

Next, examples of the more common unaltered sedimentary rocks that

typify the Dunes, Heber, and Raft River will be presented. A des-

cription of the effects of the various stages of diagenesis and lithi-

fication will follow. These diagenetic processes can be either 'nor-

mal' or processes more directly related to the invasion and reaction

of hydrothermal fluids. The results of the lithification necessitate

the initialization of the fracturing-refracturing cycle to keep the

system open to continued circulation.

Although the rocks in the geothermal system may be progressively

modified, unaltered rocks will exist both at the periphery and within the

system. Figure 1-2 illustrated how altered and unaltered rocks can be

intimately mixed. Indeed, most of the samples discussed in this chapter

as examples of unmodified rocks actually come from wells drilled over

the most active parts of the geothermal systems. Appendix 1 contains a

complete listing of the physical measurements made on each specimen.

Starting Materials

Geothermal systems can occur in almost any near-surface geologic
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environment. The exact location of a convective system is dependent

on the location and type of heat source. Areas of abnormally high

heat flow and the regions adjacent to virtually all large siliceous

intrusives may have, or may have had at one time, an associated hydro-

thermal system. Evidence for this association is the ore deposits

and alteration zones commonly found around exposed intrusives (Smith

and Shaw, 1975). The placement of the heat source will be independent

of the surficial geology, although the precise flow patterns will be

controlled by local structures, stratigraphy, and hydrology. The

result is that a wide range of geologic materials, properties, and

conditions may be encountered by a developing geothermal system.

The geologic units in the Marysville area and the deeper units in

the Raft River, Coso, and Roosevelt areas are composed of igneous or

metamorphic rocks. These rocks usually have relatively low values of

matrix permeability, conductivity, porosity, and fracture content.

Their location in the generalized system is represented by circle 1 in

figure 1-3. The differential strain analysis (DSA) curves for a Marys-

ville sample from a depth of 1954 meters are shown in figure 4-1.

These curves are typical of curves of similar granitic rocks. The data

in figure 4-la are differential strains versus pressure for three or-

thogonal directions. The curves are relatively smooth and continuously

concave upward. The second set of curves, figure 4-lb, is the cumula-

tive fracture strains or 'linear porosity' measured as a function of

closure pressure. Note that some of the fractures have closure pres-

sures below the approximate in situ pressure. This fracture porosity

would not exist at depth. Note that the cumulative linear fracture
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porosity continues to increase with pressure. Summing the three or-

thogonal strains at high pressure and deducting the values at in situ

pressure indicate that an in situ volumetric fracture porosity in

excess of 0.14% exists. This 'background' fracture content means that

the rock in situ will also have non-zero conductivity and fluid per-

meability. Figure 4-2 shows the permeability and conductivity measured

as a function of hydrostatic confining pressure on another sample from

the same core as the specimen in figure 4-1. The rapid decrease in

permeability corresponds to the closing of fractures with pressure.

The exact relationships between fracture content and both conductivity

and permeability will be exanuined in detail in the next chapter.

Another set of DSA curves is shown in figure 4-3 for a sample from

a depth of 1525 meters in Roosevelt Hot Springs well. This curve also

indicates a 'background' fracture content. These plots are complicated

by the break in curvature marked by the brackets. This break may.be

due to small amounts of water remaining in the rock during compression

(Feves, 1977). The volumetric crack porosity for this sample is

2.28 x 10-3 at zero pressure or 1.93 x 10-3 when adjusted for in situ

pressure. The total interconnected (immersion) porosity is 2.6 x 10-3

Since the crack porosity comprises such a large fraction of the total

interconnected porosity, any fluids within the cracks cannot move into

more equidimensional voids. As fractures start to close with pressure,

the entrapped fluids would also increase in pressure and modify the

strain behavior. This is a possible explanation for the decrease in

rock compressibility indicated by the breaks in curvature at the brack-

ets. Corresponding curves have been obtained for several other unaltered
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igneous rocks. These measured behaviors are typical of many igneous

rocks. For example, the cores from the shallow heat flow wells in the

batholith near Coso Hot Springs, but outside the area of hydrothermal

activity, have curves similar to those in figure 4-1. The sheared

and altered rocks from the deep Coso well, described later, are almost

unrecognizable as originating from the same pluton.

An entirely different type of behavior is exhibited by a Marys-

ville sample from a depth of 179 meters. The nearly linear behavior

of the DSA curves in figure 4-4 is obvious. This linearity starting

from atmospheric pressure indicates a very small fracture content, about

1.2 x 10~4, that is only poorly defined by the stress-strain plot. The

permeability measured on this core was on the order of a few nannodarcys.

The formation factor was correspondingly high, approximately 3 x 10g.

This sample is a metamorphosed shale and may behave somewhat plastically.

The rock may be unable to physically support open fractures.

The preceding three paragraphs have described some of the variable

properties measured on the igneous and metamorphic rocks. The trans-

port properties such as permeability do not depend only on the matrix

properties and minute fractures, however. Major fluid transport will

occur through joints and macroscopic fractures that are difficult to

sample. Although the measured permeability for the Marysville sample

of figure 4-2 (#1477) was only a few microdarcys, copious amounts of

water flowed through nearby fracture zones (figure 2-15). Permeability

and other properties presented here are measured on the matrix and

serve to indicate trends and behaviors in physical properties and not

to predict absolute formation values.
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Sedimentary rocks are the most common type of rocks obtained for

this study. Dunes, Heber, and all but a few Raft River samples are

sedimentary. Most geothermal systems have been detected on the basis

of surface manifestations. Since sedimentary rocks coat most of the

earth's surface most of the discovered systems will be composed at

least partially of such rocks. Sedimentary units are often very porous

and permeable and can form conduits and reservoirs for hydrothermal

fluids. Some of these fluids may be derived from the connate water

in the sediments. The stratigraphy often encountered in exploratory

wells consists of alternating sands and shales. The full range of

mixtures of tuffs, argillaceous siltstones, sandy mudstones, and other

sedimentary materials have also been penetrated. The properties of

these rocks are extremely sensitive to the postdepositional conditions

as well as to the original rock structure and composition. The remain-

der of this section will describe the properties of more or less uncon-

solidated and poorly lithified samples. Obviously, there is no definite

line dividing lithified rocks from unlithified sediments.

Sands, silts, conglomerates, and other coarse-grained sediments

generally dominate as the permeable units at depth. The location of the

unaltered coarse-grained material is represented by circle 2 in the

generalized system of figure 1-3. Porosity, permeability, resistivity,

and compressibility are all dependent on the grading, granular structure

or shape, and clay content of the sedimentary unit. These dependencies

have been the subject of decades of intensive study by geologists and

engineers interested in oil, gas, and water production and general

settling properties (see, for example, Chilingarian and Wolf, 1975;
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Bear, 1972; Lambe and Whitman, 1969). Several different types of

behavior can occur during compaction of unconsolidated granular materi-

al. Several recent papers dealing specifically with this topic include

Domenico (1977), Zoback and Byerlee (1976), and Raghavan and Miller

(1975). Abey (1977) developed a model to describe both the loading

and unloading behavior of partially saturated porous material. By use

of the porosity, , data in Appendix I, the void ratio, e, for each

sample can readily be calculated through the relation e = +/1-$. Plots

of the change in void ratio versus pressure on a log scale are commonly

used in the engineering literature. These plots are based on the assump-

tion that all of the sample strain is due to a loss of void space.

This assumption is valid for porous, easily compacted rocks. This type

of curve is an alternative way to present the strain data obtained with

DSA. The logarithmic plot of pressure places emphasis on the low pres-

sure behavior of the sample. The low pressure responses of rocks are

important to the economic development of a geothermal site. For example,

effective pressure may increase several bars due to fluid production.

Such small fluctuations in pressure can be important factors in land

subsidence and changing reservoir characteristics. This void ratio-

log pressure type of plot will be used for several of the sedimentary

samples described below.

A Heber sample from a depth of 970.5 meters from GTW#l exemplifies

the behavior of many of the loose sandy samples. The stress-strain

curves are reproduced in figure 4-5; the DSA curve is shown in 4-5a;

the volumetric zeta curve is shown in 4-5b; and a plot of void ratio

versus log pressure is shown in 4-5c. These curves can be divided into
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Figure 4-5. Heber GTW#l sample #1459-3184, 970.5 meters depth. I - compaction region,

II - grain crushing region (see text).

(a) Differential strain curves.
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distinct regions. Region I represents compaction due mostly to rear-

rangement of grains into a more dense packing (Lambe and Whitman, 1969).

This sample has probably already undergone some compaction so that the

magnitude of the strain in region I is relatively small. Grain crushing

dominates region II. Point contacts are broken and grains continue to

slide and rotate past one another as the entire skeletal structure slow-

ly collapses. As this process is highly non-elastic and requires con-

siderable grain motion, strains are time dependent. A very large hystere-

sis is developed as the sample is unloaded to atmospheric pressure.

This Heber specimen behaves very similarly to the loose Ottawa Sand

samples of Zoback and Byerlee (1976) and Domenico (1977). The agreement

is even closer if the in situ pressure is considered as preconsolidating

(precompacting) the sample and thus lowering the strain in region I.

Individual compressibility curves for similarly porous samples can

be considerably different from the curves of figure 4-5. For a loosely

packed sample, the magnitude of strain in region I is large and often

is a large fraction of the total high pressure strain. If grains are

very angular, the sediment will have sharper, more fragile point contacts

than sediments with more rounded grains. This will result in the initia-

tion of grain crushing at any pressure down to atmospheric. The strains

of the regions are additive and can overlap to the extent of forming a

single smooth curve continuously concave upwards.

During the compaction of granular materials, permeability and con-

ductivity will continue to decrease with decreasing pore volume. For

sands like the Heber sample in figure 4-5, one can expect an abrupt

decrease in the permeability after the onset of grain crushing. This
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type of behavior was observed by Zoback and Byerlee (1976) for the

Ottawa Sand. Permeability changes associated with the compaction of

a very angular, loose, granular material were measured in the present

investigation during calibration runs with 120 grit silicon carbide.

The silicon carbide was loosely packed between a teflon sleeve and two

brass end plates in a similar arrangement to that shown in figure 3-4.

The results are shown in figure 4-6. The permeability decreases linearly

with pressure indicating that there is no abrupt onset of grain crushing

but rather a relatively uniform rate of compression including both con-

solidation or compaction as well as crushing.

Clays, mudstones, and shales are generally highly porous yet inhibit

fluid flow. Because of their flaky, layered and cohesive nature, clays

can form open but poorly interconnected structures. In spite of the low

permeability, the high porosity and large specific surface areas of clays

and clay-rich rocks will result in good electrical conduction due to

mineral surface conduction. Thus, the effects of the clays may dominate

exploratory geoelectrical measurements. Clays are also very compressible

and often behave plastically. During compaction, muds and clays can

lose water in excess of half the original sediment volume (Rieke and

Chilingarian, 1974). This water loss can be a significant source of free

water in deeply buried sediments. The high water content coupled with

the low permeability can produce zones with fluid pressures considerably

higher than hydrostatic (Weaver and Beck, 1971, p. 62; Papadopulos

et al., 1975). Clay units may therefore serve as the controlling factors

in natural subsidence. Circle 3 in figure 1-3 shows the position unal-

tered clay would represent in the generalized geothermal system.
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The stress-strain curves for a sample from 93.9 meters in the Raft

River Intermediate well #1 are shown in figure 4-7. This specimen is

clay-rich, very porous (approximately 48%), unconsolidated, and very

friable. The DSA curve in figure 4-5a displays the sample collapse at

low pressure and subsequent compaction until an almost constant volume

is reached at about 1300 bars. By 2500 bars, the specimen has decreased

in volume by about 27%. The sudden collapse at about 70 bars is more

vivid in the void ratio-log pressure diagram of figure 4-7b. This sample

typifies the large amount of volume loss that can occur early in the

burial history of clays.

The transport properties of permeability and conductivity differ

widely from one another in their dependence on the clay content. Figure

4-8 demonstrates how even a small amount of clay can drastically lower

the permeability of loose sand. Due to surface conduction, the sample

conductivity can actually be enhanced by increasing clay content depend-

ing upon the saturating fluid properties. The conductivity dependence

will be discussed in detail in another chapter. The permeability, con-

ductivity, and DSA curves are shown in figure 4-9 for a poorly sorted,

clay-rich sandy siltstone from a depth of 1287 meters in the Raft River

RRGE#2 well. The large decrease in permeability below the in situ pres-

sure may result either from the minor closing of fractures and pores

opened as a result of drilling and sampling; or from the slight crush-

ing of the specimen ends by the stainless steel screen. At higher pres-

sure, there is an almost linear decrease of permeabilty with pressure.

The conductivity, however, remains approximately constant indicating the

dominance of conduction along clay surfaces even for the relatively con-
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Figure 4-8. Permeability versus clay content for various clay types:

1 - montmorillonite, 2 - polymictic clay, 3 - kaolinite (after
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Figure 4-9. Raft River RRGE#2 well, sample 1454-4224, 1287 meters depth.

(a) Permeability and conductivity versus pressure.
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ductive fluids of about 0.23 (im)~1 used. The onset of crushing ob-

served in the strain data at 1500 bars apparently has only minor ef-

fects on transport properties and these effects become vaguely visible

above 1800 bars. Sands and clays and their mixtures obviously have

complex properties and behaviors.

Diagenesis, Lithification, and Initial Stages of System Sealing

This section describes the processes that indurate and seal rocks,

making them less permeable and less conductive. In the previous section,

the enormous range of properties encountered in the developing geothermal

system was briefly discussed. The lithification processes described

below tend to narrow the range of properties. These processes will tend

to close the system and increase the necessity for fracturing.

Compaction is one of the first and most obvious processes to occur

in sediments. Compaction involves the reduction in bulk volume and

water content as pressure is increased by the overburden of later de-

posited sediments. The overall fractional change in volume can range

from nearly zero in some poorly sorted dense sediments to more than one-

half in highly porous rocks. One effect of compaction was already des-

cribed for the Heber sample from a depth of 970.5 meters shown in fig-

ure 4-5. The magnitude of strain of region I was reduced, which is

indicative of a closer grain packing.

Another compaction effect is the consolidation and overconsolidation

of clays. The initial compaction occurs along a 'virgin' compression

line as porosity is decreased with increasing pressure. Grains and

particles cannot recover their initial positions during unloading. The
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strain curve will have a large hysteresis as both the relaxation (un-

loading) and recompression curves will have much different slopes than

the virgin compression (Ladd, 1971, 1973; Lambe and Whitman, 1969;

Rieke and Chilingarian, 1974). The result is that preconsolidated

clay-rich samples will also develop regions of distinct behavior on

stress-strain curves. The same specimen shown in figure 4-7 can be re-

examined in these different terms. Region 1 is the result of recom-

pression of the sample. In this region, the specimen has already been

compacted so that only a small reduction in pore space occurs. Region

2, however, has much larger compressibilities. The sample is now in

the virgin compression range. Grains are shifting and rotating to

become more densely packed. The pressure at which virgin compression

restarts can be interpreted as the maximum past pressure that the sample

had been subjected to. This pressure, approximately 60 bars, is in

considerable excess of the expected in situ pressure of about 14 bars.

This sample has been in effect 'overconsolidated'. The general shape

of figure 4-7 is very similar to the shape of figure 4-5. However, the

two curves are the result of different processes and the similarity in

shape is coincidental. The overconsolidation can be the result of

several factors. The overburden or effective pressure may have been sig-

nificantly higher in the past due to changes in fluid pressure, glacia-

tion, a thicker sediment sequence in the past, etc. In this case, how-

ever, the overconsolidation is almost certainly due to some lithifica-

tion process such as mild cementation which gives the appearance of over-

consolidation.

Induration and cementation occur when material is deposited in voids,
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along grain boundaries, and at grain-to-grain contacts. Cementation

results in a marked increase in the sample strength. An example of

light cementation is a rounded lithic arenite from 85.7 meters depth in

the Dunes well. A layer of microcrystalline quartz roughly 5 to 30

microns thick has coated the sand grains as can be seen in the photomic-

rograph of figure 4-10. The cement supports and bonds the grain contacts.

This bonding inhibits relative grain motion and crushing. Note the

fractures radiating from some of the grain contacts which are indicative

of local stress concentrations. This unstressed sample demonstrates

that microfractures do exist in weakly consolidated rocks. In fact,

the core from this depth contained several large partially sealed

fractures approximately one millimeter wide. The fractures are usually

overshadowed by the much larger effects of compaction. The DSA curves

are reproduced in figure 4-11. The cementation has had the effect of

producing a smooth compaction curve with no abrupt onset of crushing.

The rate of compaction continues to increase with pressure indicating

that, as more grain contacts break, progressively greater amounts of

material become available for further compaction and crushing. Perme-

ability was determined as a function of pressure on a specimen from

this same section of core. The permeability (figure 4-12) decreases at

a much smaller rate than observed in other less-indurated samples. The

smaller decrease is probably due to the large open framework being sup-

ported by the cement (Maxwell, 1960). To within measurement error, the

permeability curve is smooth as is the case with compression. At about

900 bars, grains dislodged by the stainless steel screen plugged the

narrow high pressure tubing preventing any futher measurements.
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0.2 mm

Figure 4-10. Dunes sample 1452-281 from a depth of 85.7 meters.

Standard thin section seen under plain polarized light displaying thin

cementation and point contact fractures. This sample has not been sub-

jected to laboratory stress.
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Figure 4-11. Dunes 1452-281, a sample from the same core as the specimen in figure 4-10.

(a) Differential strain curves.
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More intensive but restricted cementation may be encountered

when material rapidly precipitates out of saturated hydrothermal fluids.

This process can result in a sharp boundary between cemented and non-

cemented regions. This feature can be similar to concretionary textures

except that irregular but interconnected fronts or boundaries are

formed. Similarly abrupt cementation boundaries are observed in many

of the samples obtained for this study. Such abrupt cementation boun-

daries may be a wide-spread phenomenon in geothermal systems. This

cementation texture may be an indication of the early stages of hydro-

thermal fluid invasion and resultant induration. Circle 4 in figure

1-3 represents the position of this cementation feature in the general-

ized geothermal system.

An argillaceous, felsic wacke from a depth of 609.2 meters in the

Dunes well serves as an excellent example of the abrupt cementation

boundary described above. The abrupt and concretion-like texture of the

front is easily seen in figure 4-13a. Figure 4-13b is a photomicrograph

of an area encompassing the boundary between the loose and well-indurated

portions. In the right half of 4-13b, the dark areas between grains are

open pores. This portion of the rock is friable and has a high porosity

of about 35%. To the left in figure 4-13b, the light areas between

grains are calcite cement. The porosity, approximately 6%, is greatly

reduced and this portion is dense and hard. Even on a microscopic scale,

the boundary is abrupt.

The physical properties differ substantially between the loose

and indurated portions of the sample. The DSA curves for the two portions

are presented in figures 4-14a and 4-14b. Significant strains occur at
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5 cm

Figure 4-13. Dunes sample #1452-1998, from a depth of 609.2 meters.

(a) Overview of split core sample.
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Figure 4-13b. Photomicrograph in crossed polarizers with calcite cemented

portion to left (after Batzle and Simmons, 1976).
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the beginning of the runs below the approximate in situ pressure of 100

bars. These low pressure strains are probably due to fractures induced

by unloading, coring, and temperature changes resulting from drilling.

Note that the total strains below 100 bars are of the same absolute mag-

nitude for both the loose and cemented portions although this strain

has a much smaller relative effect in the former portion. Above approxi-

mately 100 bars, the loose portion undergoes crushing and becomes densely

packed. At 2500 bars, this poorly consolidated material has lost about

13% of its total volume or more than one-third of the initial porosity.

The high pressure structural collapse is prevented by the calcite de-

posited in the intergranular areas of the indurated section. The total

volumetric strain is approximately 0.6%, which represents a decrease of

only a tenth of the original porosity. The compactions of both the

well-cemented and unconsolidated portions are largely nonreversable as

demonstrated by the hysteresis.

Permeability and conductivity also differ drastically between the

two regions. A sample taken from the unconsolidated portion had a per-

meability of nearly 3 millidarcys. A similar sample from the cemented

region had a permeability of 340 nannodarcys, a difference of four orders

of magnitude. The formation factor is approximately doubled from the

loose to the cemented portions (28 om fluid). The relatively small

change in conductivity is probably due to the clay content which provides

a large surface conduction contribution. This sample is an excellent

example of large changes in permeability being accompanied by only trivial

changes in resistivity. Thus, even in large and otherwise homogeneous

units, large-scale changes in permeability may thus be undetectable
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geoelectri cal ly.

Another example of an abrupt cementation boundary is a sample of

a pebble conglomerate from a depth of 422.7 meters in the Raft River

Intermediate well #3. A thin section of the boundary between the well-

indurated and poorly-consolidated regions is shown in figure 4-15. This

photomicrograph was made with cathodoluminescence as this technique em-

phasizes the texture of the calcite cement. The well-cemented portion

is on the left. Calcite is the continuous light material between dark

grains of sand. The dark region on the right of the figure is uncemented.

The boundary is again distinct on a microscopic scale. Once again the

calcite progressively cements or seals the rock along a front. The cal-

cite does not form uniform qrain coatings as would be expected for homo-

geneous circulation of calcite-saturated fluids. The uncemented portion

is loose and crumbles easily when handled. This loose portion has a

permeability of about 0.2 darcys and a formation factor of 20 (2.0 Qm

fluid). The permeability of the indurated portion is 2.1 millidarcys

and the formation factor is about 47. The drop of two orders of magni-

tude in permeability but halving of conductivity indicates that larger

pores are sealed but many smaller voids and cracks remain open. Smaller

pores and clays once again result in relatively high electrical conduc-

tivity but low permeability.

Implications

In this section, the need for geothermal systems to remain open to

fluid circulation is briefly discussed. For a convective system to be

economic, severe restrictions are placed on the fluid production charac-
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Figure 4-15. Raft River Intermediate well #3, sample #1457-1387,
0.4 m m

422.7 meters depth. Cathodoluminescence. To the left the light

material between grains is the calcite cement. The right half of

this figure is uncemented.
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teristics of the local stratigraphy. Present economics require that the

producing rock units have permeability-thickness products on the order

of 105 millidarcymeters. To extract sufficient energy, roughly 20 to

100 kilograms per second flow is required per well in hot water systems

(Nathenson and Muffler, 1975; Crosby, 1977). The wells themselves must

be productive for several years and the reservoir must have a lifespan

on the order of decades. These limits are very crude and depend largely

on factors such as drilling costs and energy conversion factors. The

production figures do require that the system remain open. Circulation

must be continuous. Flow can occur through interbedded permeable hori-

zons, such as at Heber, and through confined fractures zones as at Marys-

ville.

Geothermal systems can become too impermeable even for slow fluid

migration on a geologic time scale. Shale beds have permeabilities low

enough to support overpressured zones. Nannodarcy permeability can in-

hibit equilibrium between fluid and rocks even at high temperatures (Ken-

dall, 1976, p. 173). Although the formation of an impermeable cap rock

is often beneficial, eventually the entire cooling portion of the system

can become choked with deposited material.

In this brief chapter, it was possible only to give a very cursory

introduction to the various physical parameters of rocks pertinent to

this study. Examples were chosen to demonstrate the wide range of

starting properties, results of lithification processes, and the effects

of cementation brought on by the initial invasion by cooling hydrothermal

fluids. The processes discussed, if carried out to a significant degree,

significantly lower permeability. One overall conclusion to be drawn
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from this chapter is that for a system to be economic or even to remain

active in a geologic sense may require substantial fracturing.
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CHAPTER V

FRACTURING

Introduction

In this chapter, the observed fracture content of samples is des-

cribed and the effect of open fractures on rock transport properties is

evaluated. Chapter IV examined initial rock properties and the processes

of lithification and early stages of cementation that tend toward low

permeability. Figure 1-4 indicated that fracturing is necessary to keep

the system open to circulation. Evidence for the numerous fracturing

and refracturing events that occur in geothermal regions will be present-

ed first. The dependence of the fluid permeability and electric conduc-

tivity on individual fractures and fracture populations will be examined

by direct measurement and fracture modeling. The dominant crack param-

eters and characteristics of porosity and shape will thus be determined.

Relationships between in situ fracture and flow parameters will be brief-

ly discussed. Finally, this chapter will conclude by noting several of

the basic mechanisms that may be responsible for the repeated fracturing.

Observations

Episodic fracturing has been recognized in many geothermal regions.

Samples were usually chosen for this study on the basis of visible macro-

scopic fracturing. A few examples will be discussed here as either

typical or particularly illustrative of the fracturing-refracturing pro-

cess. Much of the evidence of this section bears great similarity to

the next chapter (sealing, healing, alteration) as evidence for frac-
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turing is often in the form of alteration and veining textures.

Numerous types of evidence can be used to establish the temporal

relationships of fracturing events. Etched non-matching surfaces in-

dicate that the crack was open in situ. Cross-cutting relationships

often allow fracture episodes to be dated on a relative basis. Younger

fractures often terminate on older cracks. Overgrowths will enclose

the older features but are transected by younger cracks as is seen in

figure 5-1. Variations in veining materials, crystal habits, and zona-

tion can also be utilized. Possible ambiguities arise when refracturing

complicates the textural relationships. Textures can be obscured by

crystal cleavage or habit. New fractures often follow older planes of

weakness such as sealed or partially healed cracks as shown in figure

5-2. A wide variety of textures can thus be used to document the frac-

turing history and content of samples.

The first examples are drawn from the igneous and metamorphic rocks

that make up the basements in hydrothermal cells. Several different

fracturing ages and styles occur in a sample of quartz schist from a

depth of 1431 meters in the RRGE#1 well. Figure 5-3a shows the earliest

fracturing observed. The oldest fracture, fl, is cut by the younger

fracture, f2. Both these fractures are surrounded by parallel sets

of bubble planes, which is suggestive of strong shearing. The bubble

planes are sites of former breakage where the crystal has healed or

regrown across the crack. At other locations within the sample, the

shearing is represented only by diffuse zones densely populated by fluid

inclusions. Such zones can be several grains wide. This shearing may

be related to the 'Narrows Structure' (figure 2-7 in Chapter II) that
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50 Am

Figure 5-1. Fracture cutting relationships viewed in plane polarized

light. Quartz overgrowth surrounds old fractures consisting of planes

of fluid inclusions. New fracture transects both overgrowth and old

fractures (from Batzle and Simmons, 1976).
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0.1 mm

Figure 5-2. Refracturing along lines of weakness viewed in plane

polarized light. Portions of old closed cracks consisting of planes

of fluid inclusions are reopened by a new episode of fracturing

(from Batzle and Simmons, 1976).
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0.1 m m

Figure 5-3. Multiple fracturing in a sample from a depth of 1431 meters

in the RRGE#l well. Plane polarized light.

(a) Initial fractures, fl and f2, with subsidiary parallel sets of

'bubble' planes.
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Figure 5-3b. Larger chlorite-filled vein, f3, that has been refractured and oxidized along f4.
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dominates this region. If so, the healing indicates that the activity

of this structure is very old. A completely different type of fractur-

ing is represented by the vein, f3, in figure 5-3b. This vein is wide,

undulating, and filled with chlorite. Not only is the sealing process

different, but the basic fracturing mechanism has changed. Even f3 is

later broken by a much narrower uniform crack, f4. The oxidation rim

around f4 indicates that it was open in situ to oxidizing fluids.

Hence, at least three distinctly different episodes of fracturing are

obvious in this sample.

Massive shearing and breakage are evident in a sample from 285

meters depth in the Coso BDH well (figure 5-4). This rock has developed

a cataclastic texture. The original leucogranite has been broken and

crushed. Large porphyroclasts have granulated margins and are densely

populated with fractures on a microscopic scale. These clasts are

surrounded by a matrix of small granules of quartz and feldspar dis-

persed in brown-yellow mixed layer clays. Several shear zones with

slickensides cut the core. The rock has become pliant and friable. The

shearing has drastically altered both the macroscopic and microscopic

properties.

The DSA curves for this Coso specimen are shown in figures 5-5a

and b for two parallel gages in the axial direction separated by

approximately 2.5 centimeters. The two locations have significantly

different strains at high pressure, probably due to the compaction of

varying amounts of clay. The sample is very inhomogeneous on a small

scale. Many irregular clay-rich zones surround the larger clasts and

account for the differences in strain values. The maximum cumulative

II
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0.2 mm
- I

Figure 5-4. Coso BDH#l well, depth 285 meters, cathodoluminescence.

Light-colored broken and crushed feldspar grains are embedded in the

dark clayey matrix.
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linear fracture strains (high pressure c values) for the two locations

are approximately equal at 0.22 percent each in spite of the large

differences in strain. The total average sample fracture porosity ad-

justed for the in situ pressure is 1.0 percent. This value is obtained

by averaging the strain measured by parallel gages and then summing

these average strains for three orthogonal directions.

The permeability and conductivity curves are presented in fig-

ure 5-6. The change in permeability is much smaller than in previous

examples in spite of the large amount of compaction. The conductivity

shows almost no variation. The compaction and fracture closure behavior

may be the result of the collapse of the clayey matrix until the angular,

'poorly sorted' clasts contact and support the structure. Loose, open

material between the coarser grains permits relatively high permeabili-

ty. This mechanism plus the clay content combine to prevent any signi-

ficant decrease in the conductivity.

A porphyritic granite from a depth of 1298 meters in the Marysville

well illustrates the type of fractures developed in dense igneous rocks.

Two episodes of fracturing can be clearly resolved in the scanning elec-

tron micrographs of figure 5-7. The light-hued pyrite-filled vein at

A is transected by a younger open fracture set. Etched surfaces, dis-

continuities, and 'bridges' or material spanning the open fracture such

as at B are indicative of the fracture being open in situ. At C,

this fracture merges with an open crack near the boundary of a plagio-

clase grain. The more equidimensional pores in the plagioclase may be

similarly interconnected with the fracture system although it may not

appear as such in the two-dimensional view of figure 5-7. Open cleav-
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Figure 5-7. SEM photomicrographs of sample #1474 from a depth of

1298 meters in the Marysville well (photographs by S. Shirey).

(a) Overview showing several grains and a large open fracture.

See figure 5-7b for an enlargement of the area outlined by the

white rectangle. C, fracture in plagioclase; D, cleavage crack.
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Figure 5-7b. Enlargement of the outlined area of figure 5-7a.

A, pyrite-sealed crack; B, bridging of open fracture.
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age cracks are visible at D in figure 5-7a. Once again, numerous frac-

turing episodes are observed, each with distinct characteristics. These

three fractured and shear specimens are interpreted to represent circle

5 in the generalized system of figure 1-3.

Sedimentary rocks can also possess complex fracture histories. Det-

rital grains may have been fractured at their source or in transporta-

tion and deposition. Figure 4-10 demonstrated how compaction can cause

fracturing and crushing. Major fractures often permeate and transect

entire core samples. A specimen from a depth of 116 meters in the Dunes

well serves as an excellent example. Figure 5-8 is an SEM mosaic of

this sample, a well-sorted lithic arenite. Intergrown grain boundaries

result from the formation of overgrowths. In figure 5-8, the cutting

relationships suggest at least four different episodes of fracturing.

All but the final episode show some sign of healing or sealing by miner-

al precipitation. The episodes begin with the major fracture denoted

fl and end with the small fracture f4, possibly due to drilling. An

ambiguity in the relative ages of fracturing events exists among f2,

f3b, and f3c. Apparently, f2 formed first followed by f3b and f3c.

The similarities in morphologies and merging near D of f3b and f3c

indicate that they are due to the same fracturing event. At location

K, f3c terminates on f2. This termination implies that f3b is younger

than, or at least the same age as, f2. On the other hand, the two

cracks f3b and f2 merge at L. Here at L, f3b probably represents the

refracturing of f2. Hence, this sample has a complex fracturing his-

tory developed within an area of only about one square centimeter.

This sample would hold a position such as circle 6 in the system shown

II
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0.1 m m

Figure 5-8. Dunes sample from 116 meters depth (from Batzle and

Simmons, 1976).

(a) SEM mosaic of an area of fracture intersections. In the inset,

the clay fragment is viewed in reflected light. See figure 5-8b

for an index sketch of the principle features.
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Figure 5-8b. Index sketch of the principle features of figure 5-8a.

A-B = microprobe traverse line through altered feldspar; E = pyrite

grains; F = lithic fragment; G = altered clay fragment; H = authi-

genetic quartz overgrowth; I = interior of detrital quartz grain;

J = void now filled with epoxy; K, L = fracture intersections; fl

to f4 = fractures (see text).
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in figure 1-3.

A more dramatic and straightforward example of multiple refrac-

turing is presented in figure 5-9. The rock is an argillaceous silt-

stone from a depth of 968 meters in the Heber GTW#l well. The figure

is a view of a calcite-filled vein. The outstanding characteristic of

this sample is the development of layering which exactly parallels the

vein wall. Most of the vein in the area of the figure is occupied by

a single crystal of calcite. The dark wavy bands are made up of clay

and silt grains (confirmed by microprobe analysis) remaining on the cal-

cite when the vein and matrix separated durinq fracturing. This texture

is not due merely to the deposition of successive layers of calcite

along the boundaries of an open vein. The precise repetition and dupli-

cation of the shape of the vein wall at A can only occur as a result of

successive fracturing and sealing cycles. The composition of the cal-

cite remains uniform throughout these several veining events to within

the error of microprobe analysis. At least a dozen separate fracturing

events have occurred. This sample and the following specimen would well

represent location 7 in the generalized hydrothermal cell pictured in

figure 1-3.

This veined Heber sample is exceptional but not unique. An example

of a very similar texture occurs in a specimen from a depth of 403.9

meters in the Dunes well. This Dunes specimen is an indurated, lithic

wacke with several large clay clasts embedded within an otherwise uniform

sandstone. A photomicrograph is presented in figure 5-10 of the boun-

dary between a clay clast and the surrounding sand matrix. Again, a

calcite vein demonstrates numerous episodes of fracturing by the develop-
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0.3 m m

Figure 5-9. Calcite veining in a siltstone from a depth of 968 meters

in the Heber GTW#l well. Viewed with crossed polarizers. Note the

uniform curvatures at 'A' indicating repeated fracturing.
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0.5 mm

Figure 5-10. A Dunes sample from a depth of 404 meters. Multiple

fracturing events recorded in a calcite vein. This is a thick section

(100 pm) viewed with crossed polarizers (from Batzle and Simmons, 1977).
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ment of banding parallel to the vein wall. In this case, five episodes

of fracturing are indicated. The refracturing textures in figures

5-9 and 5-10 are exceptionally well-developed. Less straightforward

but similar features are found in several specimens from most of the

regions of this study.

Crack Porosity

There exists an obvious need to determine the exact fracture con-

tent of the rocks. The method used here to measure the open fracture

porosity is differential strain analysis (DSA). DSA was performed on

almost the entire sample set and the detailed results are tabulated in

the first appendix. Several examples of DSA have been presented pre-

viously. A few illustrative analyses will be described here. The

Dunes sample from 116 meters can be examined again to observe how the

fracture content measured on the matrix material corresponds to the

several open fractures visible in figure 5-8. Figure 5-11 shows the

DSA curves for the axial and radial directions. The two curves differ

significantly, indicating a substantial anisotropy in physical proper-

ties. The larger radial strain is a result of fractures having a pre-

ferred orientation parallel to the core axis. The constantly changing

slopes, even at high pressure, imply that not all of the fractures are

closed by the maximum of 2000 bars reached during this particular measure-

ment. The measured fracture porosity will therefore be minimum values.

The linear segments in the radial direction are probably due to sets of

fractures closing completely at distinct pressures. In turn, such

closures imply that fractures are grouped into sets with discrete values
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of aspect ratios. The smoother axial curve probably measures fractures

with more continuous shape distributions. If radial symmetry is assumed,

then the total fracture porosity is twice the radial zero pressure inter-

cept of the high pressure strain plus the axial value: i.e. 0.0507.

The open fracture porosity is small compared to the numerous fractures

visible in figure 5-8.

To test the effects of anisotropy and drilling on fracture content

several strain gages were placed on a single sample from a depth of 241

meters in the Dunes well. This specimen is a well-sorted medium-grained

sandstone with no apparent bedding or directional fabric. The sample

has several macroscopic steeply-dipping fractures that penetrate approxi-

mately two centimeters radially inward from the edge of the core. These

fractures may have been caused by drilling. The top of the core is a

single fracture surface coated with fine adularia crystals. The DSA

curves are shown in figure 5-12. The curves are smooth and show no

linear segments to within the measurement error of approximately 2p

(2 x 10-6). Irregularities exist at the low pressure ends of the curves

which are probably due to the crushing of grain contacts and material

spanning fractures. The curve for the axial direction at the edge of

the core (AE) parallels the curve for the same direction at the center

(AC). The edge strain is greater in magnitude by 50p at high pressure.

The larger strain at the edge is perhaps due to an increased number of

fractures near the drilled surface. The stress due to drilling would

tend to produce tensional cracks with surfaces perpendicular to the

core axis. The strain was also measured in two perpendicular radial

directions X and Y. The Y directions differ by only 261u at 2000 bars
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with the center measurement (YC) having the larger value. The differ-

ential strain for the' X direction at the center (X) is greater in mag-

nitude than for YC. This difference is not due to preparation and must

be due to sample anisotropy. The total crack porosity, 0.037%, is the

sum of the intercepts of the three central linear strains.

In most of the softer sedimentary rocks, particularly at Heber and

Raft River, the effects of fractures are obscured by the much larger

compaction effects. Several examples of compaction were discussed in

the previous chapter (figures 4-5, 4-7, 4-14). One very interesting

example of mixed behavior occurs in a Raft River sample from a depth of

937 meters in the RRGE#2 well. The DSA plots are shown in figure 5-13.

Note how in the initial low pressure stages of compression the plot

has a curvature typical of fractured rocks. Above 270 bars, crushing

apparently starts between grains and dominates the high pressure strain.

The fracture characteristics dominate the strain properties of the rock

under the low pressure conditions encountered in situ. This sample

probably represents a transitional region between compaction-like

behavior and fracture-like behavior. We have seen, therefore, a com-

plete progression from the soft sediment compaction and crushing in

figures 4-5, 4-7 and 4-14a; to the smaller compression of cemented sand

in 4-14b; to the transition behavior displayed here; and finally to the

well-indurated sediments of 5-11 and 5-12 with strain curves typical

of fractured igneous rocks. In such a progression, strain becomes

smaller but the relative contribution of fracture closure and the

influence of fractures in general become much larger.

Several conclusions can now be drawn. Evidence for fracturing and
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refracturing has been seen both in the form of several distinct fracture

sets as well as in the form of multiple breakage along the same vein.

The same general processes and textures are visible in almost all of the

samples obtained for this study. In spite of the repeated breakage,

crack porosities measured on the matrix by DSA remain small, usually

from 10-3 to 10- 5. The fractures, therefore, are either (1) confined

to the major cracks and veins unsampled by the strain technique or

(2) quickly closed by healing and sealing, the topic of the next chapter.

Fracture distribution is inhomogeneous and anisotropic. Brittle frac-

ture textures are observed even in pliant sediments still susceptible

to large amounts of compaction. Because of the interbedded and zoned

nature of the geothermal systems, the measured crack porosity has no

simple consistent behavior as a function of depth. Each sample has

properties independent of samples only a few meters distant. The frac-

turing is mainly a function of local stresses associated with joints

and fault zones. Fracture porosity may be changed by local sealing and

alteration. The fracturing and refracturing is common and widespread

in the systems studied. The fracturing processes may be responsible

for the numerous 'nanoearthquakes' occurring in some geothermal systems

(Combs and Hadley, 1977).

Effects of Fractures on Permeability and Conductivity

The episodic refracturing observed in the geothermal systems neces-

sitates the examination of the general effects of fracturing on the

transport properties of rocks. Fractures and joints dominate the flow

characteristics of most dense crystalline rocks. A large fracture
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content can increase the permeability sufficiently to render otherwise

dense plutonic rocks porous and important as aquifers. As an example

of the effect of a single fracture, we can once again re-examine sample

1452-380 of figure 5-8. The permeability of the sealed, unfractured

matrix is approximately 2.8 nannodarcys. A sample containing the

single, partially-sealed fracture fl in figure 5-8 has a permeability

of about 8.2 millidarcys - an increase of six orders of magnitude.

The conductivity was similarly increased by approximately one order

of magnitude. Such a strong dependence on fractures will also occur on

a large scale. At Marysville, for example, a specimen from a depth of

1010 meters has the transport properties shown in figure 5-14. The

permeability is on the order of 100 nannodarcys at in situ pressure

conditions. Similar properties were measured on the sample from 1954

meters shown in figure 4-2. However, a large amount of fluid flow

occurs in nearby fracture zones (figure 2-15). Obviously, even a trivi-

al fracture porosity can have a major impact on the economics of a

geothermal system.

Numerous mathematical treatments of flow through fractured media

have been developed (see, for example, Snow, 1968; Parsons, 1966;

Sharp and Maini, 1972; Norton and Knapp, 1977). The simplest and most

straightforward analogy is with flow between parallel smooth plates.

The flow rate, q, is dependent on the width, w, of the fracture to the

third power

q = 9 VP (5-1)

where P is the fluid viscosity and Z is the length of the fracture nor-
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mal to the direction of maximum pressure gradient, VP. This width

dependence is by far the most cormon assumption made to model flow

through fractures. Other developments (see, for example, Hubbert, 1956;

Bear, 1972; Brace, 1977) dealing with more generalized flow through

porous media relate flow to mean hydraulic radius and porosity or to

the mean specific surface of the conduction path. The other treatments

usually reduce to equation (5-1) in the idealized parallel plate case.

Two difficulties immediately arise when applying idealized flow to real

fractures in rocks. Flow may not be laminar. A Reynolds number can

be derived for fractures (2wvp/y) where v and p are the fluid velocity

and density, respectively. The extremely small size of the cracks dealt

with in this study (w<<mm) insures that flow is below the threshold of

the turbulent flow regime of a Reynolds number of about 2000 to 5000

(Parsons, 1966). In larger fractures and joints, however, the tur-

bulent regime may be entered. A far more serious difficulty is that

fractures are definitely not smooth or parallel. This difficulty can

be documented by an examination of real fractures in rocks such as in

figures 5-7 and 5-8. Although the regime of classical turbulence may

never be entered, rough surfaces, changes in width and direction, and

obstructing materials can give rise to cross currents that disturb laminar

flow. The result will be a more homogeneous and mixed flow throughout the

fracture. This mixed or non-laminar flow will behave similarly to

truly turbulent flow. Sharp and Maini (1972) suggest that the flow

dependence on width be wn where 1.5 <n <3. Gale (1975) argues that the

change in width dependence is not necessary if surface roughness is

taken into account. Flow through a single fracture is complex and
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poorly understood. Obviously, less is understood about the complex inter-

actions between the entire fracture populations in real rocks.

Geometric Mean

Many investigations have modeled fractures by embedding discrete sets

of slits in a permeable or impermeable matrix. Warren and Price (1961),

Parsons (1966), Madden (1976), and Madden et al. (1977) conclude that the

geometric mean of individual fracture contributions gives a good overall

estimate of the entire system values. Madden used a network analogy sim-

ilar to the techniques used previously by Parsons. Originally, Madden

(1976) developed the geometric mean model for rock conductivity and this

development has been adapted in Appendix 2 for calculations of permeabil-

ity. The technique of Appendix 2 can utilize fracture parameters mea-

sured on samples with DSA. From the measurement of the fracture poros-

ity, + , aspect ratio, w./k., and estimates of length, y, single frac-

ture permeability, k , and conductivity, Y , can be calculated:

w 3 k .
k. - 8 ( w ) (5-2)

and

Y = 2 w Z( ) (5-3)

Here y, and a are the fluid viscosity and conductivity, respectively.

The overall geometric mean values of the system will be

P.
<<k>> = ik.

i.1
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P

i I

where P. is the probability of the 'i' fractures. The model is applied

directly to Westerly granite because it is a fine-grained, homogeneous,

approximately isotropic (to within the measurement error of permeability

and conductivity) rock with well-known properties and is frequently

used in other geophysical research. Though specifically applied to Wes-

terly granite, the results can be extrapolated to other rocks.

The model developed in Appendix 2 involves several important assump-

tions and simplifications. The assumptions are involved with the flow

and conduction dynamics and with the shape and size of the fractures.

Darcy's law is assumed valid even for flow through fractures with aper-

tures on the scale of a few tens of Angstroms. Conduction along mineral

surfaces is ignored here but becomes significant for small crack widths

and low fluid conductivities. The effective width is used with no adjust-

ments for surface roughness or boundary effects. The pores and cracks

are assumed to interact simply, to be well-interconnected, and to be

independent of connective topography. The rock is considered as homo-

geneous and isotropic. Accordingly, permeability and conductivity, which

are actually tensor properties, will also be considered isotropic in

this analysis. The fractures are modeled as rectangular voids with one

dimension common to all sizes. The other two dimensions are allowed to

vary. The fractures are grouped together into sets according to aspect

ratio with a corresponding porosity. Each set is assumed to have a

single effective width, length, and closure pressure. The aspect ratio

and porosity are determined with the DSA data in accordance with the
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relationship developed by Walsh (1965) and Morlier (1971) for the closing

of idealized cracks. Aspect ratios above 0.01 cannot be measured with

strain data and so the porosity of the more equidimensional pores must

be estimated in accordance with the total rock porosity. The resulting

model is obviously crude. Through the use of this technique, important

fracture parameters can be constrained and identified and some basic

insights into flow interactions can be gained.

Permeability and conductivity curves are fit by combining measured

values and estimated parameters in a crude inversion procedure. The

model is not well-constrained and requires that several important pa-

rameters be estimated. First, from DSA, porosity as a function of as-

pect ratio is determined. Since conductivity and permeability have dif-

ferent sensitivities to width and length (equations 5-2 and 5-3) these

flow values can be used to estimate both relative fracture shape as well

as absolute size. The relative length distribution is altered until the

conductivity is matched. The absolute size can then be increased or

decreased until the permeability is similarly matched. Ideally, the

best method to investigate the effects of the fracture content would be

to keep the matrix (i.e. unfractured rock) properties constant and ob-

serve the effects of altering the fracture porosity. One simple approxi-

mation to this technique is to make observations as fractures close under

increasing pressure. In the model, cracks will be closed by pressure by

means of two different types of mechanisms. These mechanisms will model

crack closure by changing fracture widths and flow properties.

The geometric mean model is applied to a sample of virgin Westerly

granite. The observed and calculated permeability and conductivities are
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shown in figure 5-15. The porosity versus aspect ratio distribution

is shown in figure 5-16. Note that the porosity decreases rapidly at

small aspect ratios. The porosity must be extrapolated for a > 103

and the two largest sets of aspect ratios must be expanded in order

to increase the total porosity to the value measured by immersion. The

total interconnected porosity includes both the fractures and the more

equidimensional pores. In Westerly granite, the plagioclase grains in

particular are filled with pores which comprise a large proportion of

the measured immersion porosity of approximately 1%. The estimated

length distribution requires that cracks shorten as aspect ratios in-

crease, otherwise too many narrow cracks exist and the probability dis-

tribution is overdominated by small aspect ratios. Large quantities

of narrow cracks result in overestimating the effects of confining pres-

sure and necessitate unrealistically large lengths and widths. The

model fractures are closed by increasing confining pressure via two types

of mechanisms. Type 1 consists of closing down each width to a small

fraction of the initial value. The 'best fit' fraction found was 1/25

of the initial width and the resulting curve is shown in figure 5-15b.

This type of closure is what would be expected for smooth parallel

plates. Figure 5-15b demonstrates the poor fit that ensues. The con-

ductivity and permeability diverge: too large a decrease in permeability,

too small a change in conductivity. Other closure fractions could match

either conductivity or permeability values, but not both. Improving the

fit of one value greatly increases the error in the other. Another

type of mechanism needs to be utilized. Type 2 is a somewhat ad hoc

mechanism that simply forces all cracks,to collapse such that they all
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have the same small values of transport properties at closure. This

latter type would be the behavior expected for rough irregular fractures

with very inefficient closure. The effective lengths are closed as well

as the widths. The resultant 'best fit' curve is shown in figure 5-15b.

The fit to the observed data is entirely within the error limits of

measurement. This latter type of closure is an important result and in-

dicates that closure is not simple for Westerly granite.

The model developed above specifically for Westerly granite contains

numerous assumptions and estimations. The absolute magnitude of the

calculated values of both the conductivity and permeability could be

shifted by changing the initial size and shape of the model fractures.

Most of the significance should be placed on the good agreement between

the shape of the type 2 closure and observed curves. The agreement

indicates that the rock behavior can be modeled by simple fracture inter-

action and closure. The more equidimensional voids must play a signi-

ficant role in the flow, otherwise permeability and conductivity would

be too small at high pressure. The inefficient closure indicates that

fractures do not behave like the isolated smooth ellipses frequently

used as a model shape. As can be seen in the photomicrographs of this

thesis (figures 5-3, 5-4, and 5-8) as well as in other observational

investigations (Brace et al., 1972; Sprunt and Brace, 1974; Richter

and Simmons, 1977; Simmons and Richter, 1976), fractures are typically

rough, irregular, and often partially sealed and bridged. The DSA

porosity determination cannot differentiate between smooth, simple,

elliptical fractures with corresponding simple complete closure, and

irregular, undulatory fractures which close in several separate stages.
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Some of the porosity attributed to small aspect ratio cracks is almost

certainly due to the early closing stages of wider irregular cracks.

These observations indicate why fractures seem so well-interconnected

and independent of specific connective topographies. The decrease in

the transport properties with pressure is smooth and continuous. A

large number of independent narrow cracks in the conducting network of

the rock would cause a catastrophic decrease in permeability and con-

ductivity when a critical probability of closure is reached (Madden,

1976). The dependence on small aspect ratio cracks explains, for example,

the large influence of pore pressure on flow properties. Changes in

fluid pressure during injection and withdrawal tests in wells give sig-

nificantly different rock permeabilities. Small decreases in effective

pressure will have a large effect on the small aspect ratio fractures

critical to permeability and conductivity at low confining pressure.

Lowering the effective pressure widens the original fractures and opens

new ones. The new open cracks are placed in the fracture network at

better than parallel efficiency. In other words, not only do the new

fractures conduct fluids and electric currents as an independent set,

but these new fractures also serve to interconnect pre-existing cracks.

Modeled crack closure is consistent, therefore, with rock properties

measured both in the laboratory and in the field.

The geometric mean model developed above is idealized, highly

specific to Westerly granite, and most applicable to fractured crystal-

line rocks. Almost as much insight can be gained by examining the

relationship between conductivity and permeability. Brace (1977) dis-

cussed the simple relation derived from flow equations and Archie's
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1 aw:

k = (m2/k0)3 _ (m2/k0 )(a /ar)-1.5

where m and ar are the mean hydraulic radius and rock conductivity,

respectively, and k0 is constant shape factor. The equation can be re-

written

k 2
1.5 = 1

with c1 a constant. Similarly, equations (5-2) and (5-3) can be com-

bined to form

2aw r
k = a

or equivalently

a 2
r

and c2 another constant. Applying this equation to Westerly granite in

figure 5-15 gives only a small variation in the ratio of permeability to

conductivity which requires m or w to remain approximately constant.

This result again is indicative of inefficient closure. The technique

may be applied to other samples such as the Marysville #1471 (figure

5-14). The ratio k/ar decreases by two orders of magnitude which implies

.2
a similar decrease in w2. The decrease suggests less dependence on the

more equidimensional voids in this sample, not a surprising result

because the total porosity of this rock is less than 0.002. The in-

dicated decrease in width requires that a large portion of the flow

occur in the small aspect ratio cracks that close completely below the
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in situ pressure. This behavior may be typical of low porosity crystal-

line rocks that are damaged during sampling. A similar conclusion may

be drawn for the Marysville sample #1477 presented in Chapter IV. The

Dunes sample from 116 meters also demonstrated the marked dependence

on fracture width. The difference in permeability of six orders of

magnitude coinciding with the order of magnitude changes in conductivity

between the fractured and unfractured samples implies that the mean

width changes by 2 to 3 orders of magnitude. The large partially-sealed

fracture, fl, in figure 5-8 has an observed width of about 15 pm. The

decreased 'mean' width of the unfractured sample is then approximately

0.05 pm. The smaller width is in agreement with the observed small frac-

tures such as f3 and f4 in figure 5-8 that permeate the core. The com-

paction, grain crushing, and dependence on clay content make the extrapo-

lation to other sedimentary samples difficult.

Large Scale Properties

Any measurement on small samples will fail to include the flow

contributions of large faults, joints, and fracture zones. These large

features often dominate the overall flow values, as observed in the

Marysville well. Direct application of the geometric mean model is

difficult not only because of the larger scale, but also because of

differences in the basic characteristics and dependence on physical

parameters. Joints may be wider but poorly interconnected. The depen-

dence on the more equidimensional void indicated for the Westerly

granite samples is probably not valid for a jointed pluton. A more

analogous comparison for the small Westerly samples might be with a
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fractured sedimentary unit where both the matrix and fractures contrib-

ute significantly to the total permeability. In situ measurements are

the only way to adequately account for such features if the absolute

flow capabilities of the system are to be determined. Two methods for

in situ observations are direct fracture and joint measurement and

injection-withdrawal tests. Snow (1968) estimated the fracture widths

and spacings from pumping tests in drill holes at several dam sites.

He concluded that the fracture porosity and crack apertures decrease

logarithmically with depth with simultaneous increases in spacing

between fractures. Pratt et al. (1977) performed tests on an outcrop

of granite by measuring flow along joints in an isolated block. The

results suggest a permeability on the order of millidarcys in otherwise

intact igneous rock. Direct measurements of fractures in wells have

been accomplished with devices such as impression packers and downhole

cameras. Norton and Knapp (1977) made a survey of porosity by both

field and laboratory measurements. Total porosity was defined as con-

sisting of major flow porosity, diffusion (i.e., 'dead end') porosity,

and non-interconnected residual porosity. They concluded that, although

total rock porosity is commonly 0.2 to 0.01 in hydrothermal systems,

most porosity is contained in the residual pores. Flow and diffusion

porosities are small, on the order of 10-3 to 10-5. These values of

porosity are in agreement with the fracture porosities measured by DSA

(Appendix 1). The flow-diffusion porosity hypothesis of Norton and

Knapp can be applied to several veins observed in this present study.

For example, in a Dunes sample from 148 meters depth (figure 5-17),

pyrite is developed in the matrix adjacent to a pyrite-filled vein and
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Figure 5-17. Dunes sample from a depth of 148.4 meters. Matrix

pyrite content as a function of distance from a pyrite-sealed frac-

ture. Content determined from 80 point count traverses running

parallel to the pyrite vein at successive distances of 0.1 milli-

meters.
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decreases in abundance with distance, as would be expected for dif-

fusion transport away from the vein. On the other hand, the results

of the modeling in the last section contradict the conclusion of

Norton and Knapp of little or no flow contributions from the more

equidimensional 'residual' pores. The discrepancy may be due to the

relatively open nature of Westerly granite porosity. The conclusion

drawn from most in situ investigations is that the normal near-surface

permeability of even dense crystalline rocks is on the order of micro-

to millidarcys rather than the nannodarcy values measured in the labora-

tory.

Causes

This section briefly examines the different mechanisms used to

explain the origin of fractures in hydrothermal systems. The most ob-

vious mechanism is faulting. With the exception of Marysville, all the

systems in this study are located on or near large faults. Most sys-

tems in general are associated with fracture and fault zones. Permeable

conduits are provided and kept open by continued fault motion. Normal

faults, common in the Basin and Range Province, may be particularly

efficient in this respect. Another mechanism is natural hydrofracturing.

Grindley and Browne (1976) conclude that hydrofracturing is important

in producing permeable breccia zones in the geothermal fields of New

Zealand. In many of the samples obtained for the present study, soft,

pliant sediments are filled with veins which are often many millimeters

wide. These veins are common in the Raft River and Heber areas. The

Heber sample from a depth of 968 meters (figure 5-9) is one example.



186

At Heber, the lithostatic pressure at the sampled depth is approxi-

mately 200 bars. The only way to tensionally open fractures in such

soft rocks would be by the development of high fluid pressure. However,

such high fluid pressures are not presently observed in the wells.

Thermal cycling of rocks has caused significant increases in the frac-

ture porosity on a laboratory scale (Cooper and Simmons, 1977). Mos-

kowitz and Norton (1977) believe that increasing temperature can cause

the fluid pressure in isolated pores to increase sufficiently to cause

hydrofracturing on a small scale. They conclude that such fractures

significantly alter the flow properties of the rocks in geothermal sys-

tems. Several other mechanisms may be possible, including the differ-

ential compaction of sediments, settling, and movement occurring in

reponse to changes in fluid pressure. Stress relief may be important in

the formation of the near-surface joints described by Snow (1968). It is

difficult to distinguish among these different causes on the laboratory

scale, but all will contribute to the transport properties of the rock.

Conclusions

This chapter discussed a wide variety of evidence, methods, and

results concerning fractures. Observations were made on a microscopic

scale of fracturing histories and characteristics. The effects of

microfractures on the transport properties of rocks were both measured

and modeled. Both in situ studies and extrapolation of model param-

eters indicate that major fractures and joints are widespread and

dominate the overall flow properties in crystalline rocks. These large

features could not be sampled in this investigation. Several general
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conclusions can still be drawn:

(1) Evidence for fracturing is widespread and abundant in the

geothermal areas.

(2) Many episodes of fracturing and refracturing occurred with

differing age, intensity, and morphologies.

(3) The fractures have a drastic effect on the transport proper-

ties. Permeability can be increased by several orders of

magnitude by even single partially sealed fractures.

(4) The effects of the fractures can be modeled by the geometric

mean of a population of small idealized cracks.

(5) Naturally occurring fractures are irregular, undulatory, and

clogged with material making the flow characteristics complex

and resulting in inefficient closure under pressure.
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CHAPTER VI

SEALING, HEALING, ALTERATION

Intro duct ion

Sealing, healing, and alteration processes tend to reverse the

effects of fracturing. These modifying processes can lower permeability

and conductivity by several orders of magnitude and require new episodes

of fracturing to keep the geothermal system open to circulation. Such

modifications are caused by crystal regrowth across cracks, by material

precipitation out of solution, and by water-rock interactions. The

changing physical conditions within a system generally make hydrothermal

fluids supersaturate with respect to numerous compounds. The fluid-rock

reactions often produce low density hydrous phases. Any open fractures

will therefore have a strong tendency to be sealed and filled quickly in

most systems. The result is the development of complex histories of

repeated fracturing and fracture sealing. The nature and characteristics

of both fracturing and subsequent modification may vary significantly

with time.

In this chapter, we will examine the processes that alter and fill

the cracks, fracture zones, and nearby matrix. The evidence presented

will be predominantly in the form of fabric and textural observations.

The fluid properties typical of many hydrothermal systems will be dis-

cussed briefly since these properties are critical to the reactions that

occur. Several examples of sealing and alteration will be presented.

The effects of these processes on the physical parameters will be inves-

tigated through both direct measurement of physical properties and
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examination of rock textures. The chapter will conclude with generaliza-

tions on the results of fracture closure by sealing and alteration. Al-

though several examples are cited, the chapter will not be an exhaustive

survey of all textures and fabrics observed in all the samples obtained.

Since the purpose of this investigation is not to define the pressure-

temperature conditions in general or to deduce phase relations or equi-

libria, the detailed mineralogy will be discussed only when it pertains

to physical characteristics.

Fluid Properties

The fluids in geothermal systems are extremely variable in composi-

tion. The composition is dependent on numerous factors, including

temperature, country rock, circulation history, and contamination by

near-surface ground water. The dominant ionic characteristics of solu-

tions of most systems are sodium chloride, acidic sulfate chloride,

acidic sulfate, and calcium bicarbonate (Sigvaldason, 1973). The sys-

tems studied in this thesis are of the sodium chloride type except for

the sodium sulfate bicarbonate fluids at Marysville. All types of solu-

tions also can contain significant amounts of silica, sulfate, bicarbon-

ate, sulfides, and dissolved gases, as well as the dominant sodium and

chloride ions. The pH values of the fluids are usually about 7, approxi-

mately neutral. The total dissolved solid content ranges from about

4000 parts per million at Dunes and Raft River to less than 800 ppm at

Marysville.

The chemical characteristics of hydrothermal fluids change in

response to the changing physical and chemical environment. The general-
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ized geothermal system described in Chapter I involves heating and

cooling cycles. As temperature increases, fluids saturate with com-

ponents derived from the surrounding rocks. As the temperatures drop

in ascending limbs of the system, fluids become supersaturated. This

temperature dependence is the basis of the several chemical geothermo-

meters applied to geothermal fluids. Chemical changes also occur, for

example, when the fugacities of oxygen or carbon dioxide fluctuate or

the pH and ionic concentrations vary as a result of gas venting, mixing

with ground water, or rock reactions. Fluids and rocks are frequently

not in equilibrium (see, for example, Hoagland, 1977). Water-rock reac-

tions often produce hydrous minerals such as zeolites, clays, and hydro-

micas with low density. Unstable minerals may alter or be replaced.

For example, dispersed iron and organic sulfur can combine to form pyrite

which is later oxidized to hematite or limonite. The fluctuations in

fluid properties result in a wide variety of possible reactions. At

various stages sealing, leadhing, or metasomatism may occur within and

around the same fracture (Batzle and Simmons, 1976). The interpretation

of such sealing textures may be ambiguous as several processes can give

rise to the same results. As an example, calcite may be precipitated due

to changes in temperature, pH, partial pressure of carbon dioxide, or

gross fluid chemistry. The typical result of fluid and rock interac-

tions is a sealing of fractures with precipitated and alteration materials.

Examples of Fracture Sealing, Healing, and Alteration

The evidence for healing, sealing, and alteration is abundant

throughout the complete sample set. The, processes are interrelated and
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there is no sharp division defining the three types. Healing results

when the broken crystal lattice reforms across a crack. The texture

produced is often chains and planes of fluid inclusions such as in

figures 5-1 and 5-2. Sealing refers to the process of filling fractures

with precipitated materials. A large variety of minerals can be involved

in sealing and numerous species were indicated in the well stratigraphies

shown in Chapter II. Textures typical of sealing were already shown in

figures 5-9 and 5-10. Alteration is also common and ranges from subtle

replacement such as albitization of existing feldspars to the more ob-

vious development of clays or oxide rims around unstable minerals. All

three processes often occur simultaneously within a single specimen.

The several modification processes can be observed in the Dunes

sample from 116 meters of figure 5-8. Examples of healing are shown in

figure 5-8 at 'healed f2' and 'healed f3a'. Sealing by mineral precipi-

tation occurs at 'sealed fl'. The sealing minerals are mostly quartz

with the addition of a few pyrite grains. The sharp, unetched nature of

the fracture boundaries within quartz grains indicates that the fluids

were always silica-saturated.

This Dunes specimen shows the effects of time-varying fluid chemis-

try. The fluids in the rock were in the process of oxidizing pyrite.

Both oxidized rims around many pyrites and varying degrees of pyrite

oxidation exist throughout the sample. At some locations within the

major fracture fl, pyrite grains are almost completely altered to hema-

tite. At other locations within this same fracture, unaltered euhedral

pyrite grains still exist. Hence, fluid flow is restricted to specific

sites within the fracture.
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The progressive oxidation occurs in a particularly significant

form within the altered clay (A-B). The oxidation reaction is poorly

understood. Apparently, pyrite is oxidized to hematite and a highly

soluble sulfate or hydrogen sulfate complex (Barnes and Czamanske, 1967).

The sulfate is removed from the sample in solution. The hematite coats

the pyrite grains and, more importantly, is distributed along the frac-

tures. The active fractures, or fractures open to oxidizing fluids,

appear as an abrupt rise in the iron background in microprobe analysis.

This correlation is seen in the microprobe traverse A-B in figure

6-1. Proceeding from B to A there is an abrupt rise in the iron content

when crossing the first fracture f3b. The traverse then parallels the

fracture for about 0.04 mm. This juxtaposition results in the gradual

decrease in iron to the left side of the peak. Therefore, active frac-

tures can be recognized on the basis of the local iron content. The iron

inthe fracture cannot be due to broken pyrite grains emplaced there dur-

ing grinding because the sulfur content remains essentially zero within

the fracture.

Zones of progressive oxidation can also be seen. These zones ap-

pear as shaded areas (brick red in color) in the clay as indicated in the

inset of figure 5-8. The red hematite is obvious along f3b but also oc-

curs as a broad zone around fracture f3c near D. Several of the pyrite

grains within the clay fragment are fresh. The presence of strong oxi-

dation gradients within the clay is interpreted to mean that oxidizing

fluids are restricted to the vicinity of fractures.

A specimen from a depth of 1187 meters in the Heber GTW#3 well has

a complex history of calcite veining. The dark argillaceous siltstone
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Figure 6-1. Microprobe traverse A-B of measured iron and sulfur content across the clay

fragment in figure 5-8. Note change of scale in ordinate after '5 wt.%' (from Batzle and

Simmons, 1976).
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matrix is shown in figure 6-2 cut by several veins. The veining is so

intense in this core that the view of figure 6-2 is actually a small

chip surrounded by larger veins. The cutting relationships allow four

episodes of fracturing and sealing to be distinguished, numbered 1 to 4

in the photomicrograph. Two distinctly different types of luminescence

are shown by the veins. The increase in intensity of the later two veins

corresponds to an increase in the trace content of manganese. Variations

in the composition of sealing phases indicate two different fluid com-

positions or distinctly different physical conditions. Fluid inclusion

work by Elders (1977) on similar samples from this region indicates two

different thermal events occurred at 212 0C and 235 0C. Perhaps the two

types of luminescent veins correspond to the two separate temperature

events. The two events may represent invasion and flushing of this por-

tion of the system by two solutions with different compositions. This

specimen would be representative of position '8' in the idealized geo-

thermal system of figure 1-3.

Multiple episodes of fracturing superimposed on variations of

sealing mineralogies can be observed in the sample shown in figures 6-3a

and b. The rock is an argillaceous, poorly-sorted sandstone from a

depth of 345 meters in the Raft River Intermediate well #3. Several

sealed and open fractures are visible to the unaided eye. The high clay

content makes observation by transmitted light difficult except for areas

of translucent fracture mineralization. The sample is divided by the

fractures into two regions. One region is well-indurated with siliceous

cement and minor carbonate cement. The other region is friable and

easily crumbles when handled. This division indicates that the sealed



0.2 mm

Figure 6-2. A sample from a depth of 1187 meters in the Heber GTW#3 well. Calcite veins in

siltstone viewed with cathodoluminescence. Numbers refer to relative ages of veins: 1 to 4,

oldest to youngest.
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1 mm

Figure 6-3. Sample from a depth of 345 meters in the Raft River

Intermediate well #3.

(a) SEM photomicrograph. fl to f4b = fractures (see text). See 6-3b

for enlargement of outlined portion.

(b) See following page. SEM micrograph (mosaic). Enlargement of the

outlined portion of 6-3a. B = analcime plates (?) in matrix; C = cal-

cite; D = analcime; E = void; F = void now filled with epoxy; fl to

f4c = fractures (see text) (from Batzle and Simmons, 1976).
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Figure 6-3b. See caption on preceding page.
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fractures have acted as effective boundaries to the circulating fluids

responsible for the induration. Continuity of bedding across frac-

tures indicates that there has been no significant movement along frac-

tures.

Five episodes of fracturing are indicated in figure 6-3. The first

to occur, fracture fl, is now filled with calcite. The calcite tends to

grow inward in small tablets perpendicular to the fracture walls. The

sealing is complete except for a discontinuous chain of cavities at the

center. A second series of fracturing, f2a, angles down from the upper

right-hand corner of 6-3a to join fl at the center of the figure. Frac-

ture f2a then continues toward the left paralleling and crosscutting fl.

Fracture f2b most likely occurred during the same fracturing episode that

produced f2a. The evidence for this similarity in relative ages is that

f2a and f2b trend in the same general direction, but are perpendicular

to the later set of fractures, f3a and f3b. Fracture f2b is completely

sealed with analcime, reflecting a change in the fluid chemistry from

calcite to analcime supersaturation. Fracture f2a is lined with euhedral

growths of analcime. The sealed and ingrown natures are clearly shown

in 6-3b. Fractures f3a and f3b occurred next propagating downward from

the upper left until terminating on f2a. Fractures f3a and f3b are

partially filled with analcime.

A more substantial change in fluid chemistry is recorded in frac-

tures f4a, f4b, and f4c which crosscut fl and f2b. Most of the original

void spaces of f4a, f4b, and f4c have remained open cavities. They con-

spicuously narrow when cutting the analcime of f2b. The fluids within

these cracks have become undersaturated with respect to the matrix or



199

cement. The undersaturation does not affect the analcime already

deposited in f2b but causes large voids in the clayey matrix. Hence,

the various modes of fracture modification reflect changes in fluid

properties. This sample would be another example of circle 6 in the

generalized system of figure 1-3.

An example of the sealing and cementing developed as hydrothermal

fluids invade permeable sediments along fractures is shown in figure 6-4.

The core section is from 154.5 meters in the Raft River Intermediate

well #3. The core contains a fault contact between an argillaceous

sandstone and a claystone. The faulting is evidenced by cut bedding and

slight sympathetic folding. Apparently, the sealing fluids penetrated

upward along the fault and invaded the sandstone. The sandstone is

cemented to a distance of approximately fifteen centimeters from the frac-

ture. The cemented portion terminates abruptly and irregularly in a

fashion similar to the samples seen previously in figures 4-14 and 4-15

of Chapter IV. The cementing fluids could not penetrate the less per-

meable clay which remained soft and pliable. This core is a striking

example of the importance and interrelationship of fracturing and sub-

sequent sealing. This specimen typifies circle 9 on figure 1-3 of the

generalized system.

Complex veining textures are observed in several Coso samples. A

veined specimen from a depth of 190.2 meters is presented in figure 6-5.

The matrix is a gray-green metashale that has been faulted into direct

contact with an equigranular diorite. Several episodes of veining can

be seen in figure 6-5a, each characterized by a specific mineralogy.

The first episode involved fracturing, then growth of euhedral steller-



Figure 6-4. A core sample from a depth of 154.5 meters in the Raft River Intermediate well #3.

The white line indicates the fault plane. Laminated clay is to the right of the fault, argil-

laceous sand is to the left. The calcite cementation terminates about 15 cm from the fault

and may have resulted when saturated fluids invaded the sand from the fault. 0
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Figure 6-5. A veined metashale from a depth of 190.1 meters in the Coso BDH#l well. All

four photomicrographs in this figure were taken of cathodoluminescence.

(a) Overview of the sample. The light-hued vein occupies the center of the figure with

dark metashale on either side. See figures 6-5b and 6-5c for enlargements of outlined

areas A and B, respectively.
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0.4 m m

Figure 6-5b. An enlargement of a portion of figure 6-5a showing details

of the calcite (light) and stellerite (gray) intergrowth. Note the

bright calcite sealing the microfractures within the stellerite.
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0.4 mm

Figure 6-5c. An enlargement of the heavily-zoned calcite within ,the

vein of figure 6-5a. The intensity of the luminescence varies frequent-

ly and abruptly. The intensity is dependent on the Mn++ content and may

represent the periodic flushing of the sample with fluids of varying

composition.
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0.3 m m

Figure 6-5d. Cataclastic texture in calcite. Dark hued, broken cal-

cite crystals are embedded in a lighter calcite matrix. This portion

of the vein is not in the field of view of figure 6-5a.
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ite (a zeolite). Later, calcite formed in the vein and in microfrac-

tures developed within the stellerite (figure 6-5b). The calcite was

followed by renewed deposition of a zeolite (?) similar in composition

to stellerite. Finally, heavily zoned calcite formed in another portion

of the vein (figure 6-5c). The refracturing of the vein involved some

breakage of the pre-existing veining material as shown by the broken and

clastic texture of the calcites with various luminescent intensities

(figure 6-5d). The numerous changes in mineralogy and intense zoning

indicate rapid fluctuations in the chemical or physical environment.

Many smaller calcite-sealed fractures of uniform composition have also

been formed in the rock. The exact age relationships between the later

zeolite and calcite stages within the vein are ambiguous.

Deposition and alteration occur simultaneously in a sample of grano-

diorite from a depth of 608.7 meters in a Roosevelt Hot Springs well. A

zone of alteration surrounds the sealed fracture or vein diagonally

crossing the field of view in figure 6-6. Two distinct types of veining

material can be distinguished in the fracture (numbered '1' and '2' in

figure 6-6). The zone marked '1' is quartz and feldspar-rich. Zone '2'

is predominantly hematite. The zones indicate that two distinct episodes

of fracturing and sealing may have occurred. The relative ages between

these two events is not known. The fluids circulating in and around the

fracture have produced a zone of alteration within the local matrix.

The biotite grains along the fracture (at 'A') are being altered and

only hematite remains. Farther from the fracture, the mafic minerals

are fresh. At 'B', an albitization rim has formed along a plagioclase

crystal split by the fracture. The narrow zones of alteration around
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Figure 6-6., Roosevelt Hot Springs sample from a depth of 608.7 meters, photographed with

crossed nicols. The dark band marked '1' and '2' is a sealed fracture. 'A' and 'B' are altera- C

tion zones (see text) (from Batzle and Simmons, 1977).
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this vein indicate that the fluids are largely confined to the regions

immediately adjacent to fractures in crystalline rocks.

Effects on Physical Properties

The sealing and alteration of rocks usually reverses the effects

of open fractures. Permeability can be reduced by several orders of

magnitude. Conductivity can be lowered significantly, but the change

depends on the mineral content and specific type of alteration. The

sealing and alteration can fill pores and voids making the rocks dense

and brittle. On the other hand, development of clays can so severely

alter rocks as to make them soft and porous. In this section, several

more examples will be examined that demonstrate some of the specific

effects that sealing and alteration have on physical properties.

An indurated, argillaceous wacke from a depth of 1184 meters in

the Heber GTW#l well is cut by several branching calcite veins a few

millimeters wide. The initially open fracture must have increased the

permeability and conductivity significantly. However, the precipitation

of calcite had the opposite effect, reducing both of these transport

properties to values lower than the prefractured values. Permeability

and conductivity were measured with flow both parallel and perpendicular

to a vein in the same rectangular sample. Flow in the rock parallel to

the vein will be predominantly through the matrix. In this direction,

the permeability is 15 microdarcys and the formation factor is 40

(2 Qm fluid). Flow perpendicular to the vein will be blocked by the

crystalline coarse and interlocking texture of the calcite in the vein.

The measured permeability and formation factor in this direction are
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5 microdarcys and 120, respectively. The decrease in both permeability

and conductivity is thus due to the blockage by the vein. Hence, al-

though the initial fracturing will increase the flow characteristics,

the subsequent veining and sealing can lower overall values below the

initial matrix properties.

Similar anisotropic characteristics are observed in a veined sample

from a RRGE#2 core. This porous, argillaceous, tuffaceous wacke from a

depth of 937 meters has a several irregular diffuse veins. Permeability

(figure 6-7) and conductivity were measured in a sample that contained

one dominant planar albite vein approximately half a millimeter wide.

The permeability and formation factor measured parallel to the vein were

22 millidarcys and 6.8, respectively (2.3 Qm fluid). Perpendicular to

the vein, the permeability is decreased to 6 millidarcys. The formation

factor measured in this direction was changed only to 7.3. The factor

of three drop in permeability, but negligible change in conductivity,

may be due to small breaks and discontinuities in the vein which conduct

electric currents more efficiently than fluid. The permeability measure-

ments for the parallel and perpendicular directions are shown as a func-

tion of pressure drop across the sample in figure 6-7. The two curves

indicate the dependence of the measured permeability on the pressure

gradient. Non-darcy flow dependence is frequently observed in clay-rich

samples. This dependence has been variously attributed to mechanisms

such as a 'threshold' pressure needed to start flow, variations of fluid

viscosity within clays, and the chemical and bonding properties of clays

(Bear, 1972; Low, 1959; Lambe and Whitman, 1969; Reed, 1972). The large

hysteresis with pressure suggests that the higher velocities at large
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pressure gradients have flushed material out of the flow paths. In

spite of the obscuring effect of this pressure dependency, the flow

discrepancy between the parallel and perpendicular directions is ob-

vious.

A more graphic example of the effects of veining can be seen in

a specimen from 264.6 meters in the Raft River Intermediate well #3

(figure 6-8). This rock is a tuffaceous siltstone. The matrix has

had significant development of heulandite and many of the glass shards

have been completely replaced. Figure 6-8a is a photomosaic of a por-

tion of this sample that is cut by several veins. The dark, well-

developed crystals in the large vein 'A' are euhedral analcime. Light-

gray cryptocrystalline analcime (?) with a similar composition surrounds

the.larger crystals. Both types of analcime are cut by later small

quartz veins. Although these veining processes will affect the rock

properties, a more illustrative texture can be observed along the smaller

calcite veins 'B' shown in detail in figure 6-8b. The variation in

luminescence indicates that two different episodes of fracturing and

sealing are responsible for the veins '1' and '2'. Note that the veins

themselves take up only a small portion of the figure. Most of the cal-

cite has been deposited in the pores of the matrix. This texture has

great significance because it indicates that the calcite has been 'ab-

sorbed' into the matrix completely filling all voids in the vicinity of

the veins. This mechanism would be very efficient in reducing the per-

meability and conductivity of the sample. The measured values of per-

meability parallel and perpendicular to the veining do not differ sub-

stantially, being 35 and 32 microdarcys, respectively. The measured
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Figure 6-8. Tuffaceous siltstone from a depth of 264.6 meters in the Raft River Intermediate

well #3.

(a) Overview of veins under both reflected light and crossed nicols. A - analcime-filled vein;

B - calcite-sealed vein.
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0.3 mm

Figure 6-8b. Cathodoluminescence of the calcite vein intersection

showing veining episodes with differing intensity (1 and 2, youngest

and oldest). In both, the central vein is surrounded by a light

region where calcite has penetrated into the matrix.
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values indicate that these sealed fractures are not sufficiently con-

tinuous to prevent flow normal to the veins. This calcite veining and

the subsequent penetration of calcite into the matrix can be considered

a microtextural equivalent to the cementing feature seen previously in

figure 6-4.

Intense faulting, crushing, and alteration have occurred in a Coso

sample from a depth of 228.6 meters. The cataclastic texture and mixed

layer clay alteration of this former granitic rock are apparent in

figure 6-9. This rock is typical of many of the faulted and altered

zones in the Coso BDH well such as the 285 meter sample examined previous-

ly in figures 5-4 to 5-6, The development of finely-granulated quartz and

feldspar and the banded clay matrix renders the rock pliant and friable.

The DSA curves for this sample are shown in figure 6-10. These curves

are remarkable in that this formerly dense crystalline plutonic rock

now deforms like the sedimentary rocks analyzed in Chapter IV. The

specimen has been so thoroughly crushed and altered that considerable

compaction can occur at low pressure. In spite of the porous and open

properties of this and other samples from the Coso well, temperature

continues to rise with depth. Free circulation and convection must

therefore be impeded. The clays developed must block flow effectively.

The permeability of this sample could not be measured due to the fri-

able nature. Hence, this sample demonstrates that the processes occur-

ring in geothermal systems can not only indurate but also can weaken

and produce a more 'sedimentary-like' behavior. This Coso specimen

could be representative of the locations marked '5' in the generalized

system (figure 1-3) if the indicated faulting and alteration are
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0.3 mm

Figure 6-9. Sample from a depth of 228.6 meters in the Coso BDH#l

well viewed under reflected light. Light grains are broken and

rotated clasts embedded in the gray-green mixed layer clay matrix.
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Figure 6-10. Differential strain curves for the Coso sample from a depth of 228.6 meters.

Note that the strain curve has behavior similar to porous sedimentary rocks.
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extensive.

Marysville is the one location with the suitably uniform charac-

teristics which allow the physical properties to be presented meaning-

fully as a function of depth. A reasonably complete and representative

sample suite was obtained. The country rock at this location was

granitic and originally fairly uniform. Any variations in physical

properties would therefore result from the observed fracturing and al-

teration. These variations are not overdominated by original litho-

logic characteristics. The Empire Creek Stock is a porphyritic granite

composed mostly of albite, orthoclase, quartz, and biotite. The stock

can be divided into several zones of fracturing and alteration (Blackwell

et al., 1975; Blackwell and Morgan, 1976). Above 1200 meters, the rocks

have been heavily altered. Below 1200 meters, only light alteration is

encountered. Numerous small veins of a wide variety of minerals permeate

much of the stock. Details of the well stratigraphy were presented in

Chapter II, figure 2-14.

The measured values of permeability, formation factor, and fracture

porosity are shown as a function of depth in figure 6-11. A pattern

is developed which is dependent on the alteration and clay content. In

the upper portion of the Empire Creek Stock, the pores and fractures are

filled with alteration material. As a result, the measured fracture

porosities are small, less than 10-3. The permeabilities are corres-

pondingly small, ranging from about two hundred nannodarcys down to

below the limit of measurement, about half a nannodarcy. Below 1200

meters depth, the fractures are open and clean. The measured fracture

porosity increases abruptly to more than, 2 x 10-3 in several specimens.
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Figure 6-11. Fracture porosity, formation factor, and permeability

plotted as a function of depth for the Marysville MGE#l well. Frac-

ture porosity is shown as both raw and corrected for approximate

in situ pressure. Sample resistivities were measured with 1.8 to

2.0 Qm saturating fluid. Several of the permeabilities were measured

as a function of confining pressure. Open circles represent the

total fracture porosity at zero confining pressure. Solid circles

represent the fracture porosity adjusted for in situ pressure.
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The permeability also increases, becoming as large as ten microdarcys

in one sample. The conductivities show similar variations but the

values are dependent on the fluid properties. Peeples (1975) measured

resistivity on numerous Marysville core samples with the rocks saturated

with 10 nm fluid. He found no significant variations in the conductivity

values with depth. In the present study, the samples were saturated

with 1.8 to 2.3 Qm solutions. The resultant formation factors (figure

6-11) decrease below 1200, another indication of open fractures at

depth. The approximately constant values measured by Peeples were

probably the result of surface conduction through clays in the altered

zones. This surface conduction has a more pronounced effect with the

dilute solutions he used. The variations in formation factor detected

with the more conducting solutions used in this present investigation

more accurately indicate the degree of alteration of the rocks.

The textures and exact nature of the alteration materials filling

the microcracks in the Empire Creek Stock can be seen in figure 6-12.

This figure is a scanning electron photomicrograph mosaic of a sample

(#1467) from a depth of 305 meters. The sample is from the shallow

portion of the stock just below the shale contact. The large fracture

that crosses the figure is filled with a very fine-grained material.

The platy habit and microbeam analysis are consistent with montmoril-

lonite. The numerous small cracks in this clay may be due to dessica-

tion. The clay filling the fracture results in a low fracture porosity

and a low permeability would be expected. Montmorillonite has a large

specific surface area and so would have a large surface conduction.

The clay content is unusually high in this sample and may account for



Figure 6-12. SEM mosaic of a Marysville sample from a depth of 305 meters (photomosaic by

Steve Shirey). The fracture diagonally crossing the sample is sealed with clay. Smaller

openings within the clay may be dessication cracks.
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the low value of formation factor. This clay-filled fracture from 305

meters can be contrasted with the open, clean fracture previously exam-

ined in figure 5-6. The latter sample is from 1298 meters, below the

alteration zones. The fracture porosity and permeability values are

relatively large and formation factor correspondingly low. Hence, the

clays and alteration products have a dominant role in determining the

physical properties of the Empire Creek Stock.

Conclusions

Sealing, alteration, and healing of the fractures and matrix were

observed in all the geothermal systems investigated. This sealing and

modification may be confined to specific fractures and permeable units

invaded by hydrothermal fluids. Distinct silicified and indurated zones

or cap rocks may be developed. The sealing can confine fluid flow to

specific horizons. Occasionally, as in the Raft River sample of figure

6-3, fractures are modified by etching and leaching. The etching widens

fractures and enhances the flow characteristics. Such dissolution is

not common in the ascending cooling limbs of the system. The typical

effect observed is to close both fractures and nearby matrix. Not only

is the permeability of the matrix reduced, but the sealed fractures can

become effective barriers to flow normal to the plane of the fracture.

This behavior can make the process of sealing and flow inhibition more

efficient than just bulk pore filling. Veins can form impermeable planes

which give rise to significant permeability and conductivity anisotropy

and inhomogeneities.

The observations and results can be summarized in several specific
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conclusions:

(1) Fracturing and matrix closure by sealing, healing, and altera-

tion is typical of geothermal systems.

(2) Sealing and alteration can lower permeability, conductivity,

and fracture porosity by orders of magnitude and make the

rock dense, hard, and more susceptible to brittle fracturing.

(3) These processes will require refracturing to keep the system

open to fluid circulation. Systems can thus be involved in

repeated cycles of fracturing and fracture sealing.

(4) The type and characteristics of sealing and alteration can

vary significantly with time as a result of variations in

fluid properties and physical conditions.

(5) Occasionally leaching, crushing, and alteration may occur,

which makes rocks more porous and less brittle. Rocks may be

rendered weak and friable.



222

CHAPTER VII

CONCLUSIONS AND APPLICATIONS

Introduction

In this last brief chapter, observations and interpretations are

summarized and several specific conclusions are discussed. The results

of previous chapters were derived for the specific sampled sites but

most of these results can be generalized to other systems. This chap-

ter will close with several proposed applications of the techniques

and data of this investigation. This thesis has demonstrated the inter-

relationships among the evolution and characteristics of geothermal sys-

tems, fracturing and faulting, sealing and alteration, and the properties

of the enclosing rocks. Although the different processes observed were

the topics of separate chapters, all can occur simultaneously within the

system.

General Summary

Several distinct processes or features were observed in all the

investigated geothermal systems. In general, these systems involve cir-

culation in broad and complex convection cells. Heated fluids rise

-along fractures and fault zones and invade permeable rock units. The

generalized system was discussed in Chapter I and figure 1-2 showed the

basic components and flow patterns that occur. Figure 1-4 indicated

the evolution of the conceptual system and the effects on physical prop-

erties. For convenience, the processes have been categorized here al-

though they need not occur in any specific order or independently of
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one another. (1) Compaction, lithification, and cementation processes

are predominantly confined to sedimentary rocks and may be unrelated

to the geothermal system. The permeability is usually lowered which

significantly inhibits flow. Cementation and intense diagenesis may

be the first stages brought about by invading hydrothermal fluids.

(2) The fracturing and crushing of rocks can increase both the perme-

ability and conductivity by several orders of magnitude. The fractur-

ing is often repeated and varies greatly in morphology and extent.

(3) Cracks and pores are usually filled and closed with phases precipi-

tated out of hydrothermal fluids. Water-rock reactions cause altera-

tion and metasomatism resulting in low density, hydrous phases which

cause further filling and sealing. The type and degree of sealing and

alteration can vary greatly with time. The permeability can be lowered

by many orders of magnitude. Conductivity may be lowered similarly

depending upon the mineralogy developed. Thin veins can act as effec-

tive barriers to flow normal to the plane of the vein. (4) The lowering

of permeability by sealing and alteration requires renewed fracturing

of rocks to maintain fluid circulation. The system may thus enter a

cycle with multiple episodes of fracturing and subsequent sealing.

In detail, the individual geothermal systems are more variable

and complex than indicated in this simple summarization. Etching and

dissolution can occur instead of sealing. Intensive shearing and al-

teration can make rocks soft and porous. The development of clays

along fractures can lower permeability significantly but leave conduc-

tivity relatively unaffected.

Fracturing and sealing processes have a cause and effect relation-
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ship with the local geologic environment. The effect of the environment

is demonstrated by the wide variety of reactions which have occurred

within cracks and veins. Minerals are precipitated and the surrounding

rocks are altered or indurated. Induration makes the rock more suscep-

tible to brittle fracturing. The fracture morphology and properties

can be substantially changed. Fracturing, on the other hand, can strong-

ly influence many of the physical parameters which control the reactions.

Permeability can be increased by more than five orders of magnitude by

a single partially sealed fracture. Thus, the flow of hydrothermal

fluids is controlled by the same cracks and pores that these fluids will

alter or modify.

Applications

The observations and results of the investigation can be applied

to several of the problems encountered in the development of a geothermal

site. Problems include both the exploration for and evaluation of the

high temperature reservoir. The size and heat content of the system

must be determined. Future changes of system characteristics due to

development must be estimated. Only a brief discussion of some possible

applications will be presented here because either the sample suite

is inadequate for complete evaluation or the application must be

specifically modified for use in each individual area.

The strain analyses and laboratory flow measurements might be used

to predict future reservoir behavior. The withdrawal of fluid from

producing horizons will lower pore pressure and increase the effective

pressure. The increased effective pressure can cause collapse of porous
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rocks resulting in land subsidence and decreased permeability. The

friable, weak rocks encountered in many wells indicate that such col-

lapse could be a serious problem of large-scale geothermal production.

The present sample set is somewhat restricted and not well-suited for

this type of evaluation. The specimens were generally well-indurated,

or macroscopically fractured, or veined. As a result, softer, more

permeable rocks, or open fracture zones are underrepresented. Such

softer units are largely responsible for subsidence and changes in

fluid production characteristics. Two basic observations can be made

however. No samples from within the active portions of the hydrothermal

systems showed large strains under the increased confining pressure (a

few bars) expected during production. Usually the initial identifiable

geothermal processes involved induration and cementation. Such processes

prevent collapse under increasing pressure. The induration tends to

stabilize the rocks and prevent compaction and reduction in permeability.

The planned development of several areas calls for reinjection of

used geothermal fluids. These spent fluids may invade the reservoir

and replace the high temperature fluids (Schroeder,1966; Kettenacker,

1977; Kasameyer et al., 1977). However, the sealing textures seen

previously, as well as the thermal inversions in several wells, indicate

that hot water flow is often restricted to distinct horizons and zones.

Used fluids could be injected into isolated aquifers with little prob-

ability of subsequent contamination of the high temperature reservoir.

Resistivity measurements are commonly used in exploration for

geothermal resources. Obviously, as discussed previously, these measure-

ments will be dependent on the fracture and pore content of the rocks.
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The resistivity will also be dependent on fluid and mineral content.

Usually the object of electrical exploration is to map the location

of hot or briny fluids. However, the results of resistivity deter-

minations may be only a measure of alteration. For example, in a

fractured feldspar-rich rock, the alteration products are often clay

minerals. Clays have large specific surfaces and therefore their sur-

face conduction is large. Hence, as the feldspars become coated with

clays, the resistivity will drop significantly, even with a relatively

small amount of bulk alteration. This effect is shown qualitatively

in figure 7-1. For our hypothesized feldspar-rich rock, the resistivity

will initially be within the range of values typical for granite. As

alteration proceeds, the rock resistivity will decrease to values more

typical of clays. However, the degree to which this 'alteration con-

duction' will affect the overall conductivity of the rock is dependent

on pore size and specific fluid conductance. For rocks saturated with

fluids having a very low specific conductance, the surface conduction

effects dominate (Brace et al., 1965; Williams, 1976). With highly -con-

ductive fluids, the fluid properties dominate. The relative importance

of this 'alteration conduction' can be compared to the fluid resistivity

as in figure 7-2. In figure 7-2, typical 'granite' and 'clay' resis-

tivities are shown (see, for example, Keller and Frischknecht, 1966,

p. 41; Keller, 1968) along with the measured resistivities of several

fluids, including many geothermal brines. For fluid resistivities less

than 1 Qm, surface conduction is unimportant. However, with fluid

resistivity greater than approximately 100 Qm, surface conduction will

dominate (Brace et al., 1965). The field resistivity measurements made
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Figure 7-1. Resistivity versus degree of alteration for the

idealized feldspar-rich rock in the upper right. The rock is

saturated with a highly resistive fluid.
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in geothermal exploration commonly have values in the region of 'clay'

of figure 7-2. Hence, if such alteration has occurred, and if the

fluid resistivity is high, the resistivity measurements made in geo-

thermal areas will produce values resulting from the combined effects

of fluid properties, clay alteration, and pore content. Although these

results are very qualitative, they are an indication of the dominant

role that can be taken by alteration within fractures.

The fracturing and sealing processes observed in the geothermal

systems may be used as a possible exploration technique. The repeated

fracturing and subsequent veining with a variety of minerals typifies

active systems. Therefore, if such features are observed, the specimen

was subjected to active circulation in situ.' Hot fluids may presently

be circulating nearby. The Coso sample from 190.1 meters shown in

figure 6-5 of Chapter VI is an excellent example. Several mineral

species are developed within the vein and one, calcite, is intensely

zoned. Evidence for repeated fracturing exists in the form of the broken

and fragmented calcite seen in figure. 6-5d. The minerals must have been

precipitated from fluids with rapidly varying chemistry or under fluctu-

ating physical conditions. These features are probably not isolated

events but may be characteristic of active systems. If such fabrics

are observed in shallow test holes, futher exploration nearby is indi-

cated. Similarly, such features in cores or cuttings from dry or poorly

producing wells imply that further drilling or hydrofracturing may

intersect productive fracture zones or rock units. The observations

necessary for such evaluations can be simply and quickly performed.

The techniques may be adaptable for usein the field. These observa-
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tions of physical characteristics could be used in conjunction with

any mineralogic indicators developed for individual geothermal areas.
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APPENDIX 1

SAMPLE DATA AND DESCRIPTIONS

In this appendix, the physical parameters measured on each sample

will be summarized and the sample will be described briefly. The well

stratigraphic columns in Chapter II should be referred to for a graphic

representation of sample characteristics and the surrounding geologic

settings. Several features are noted here for use in the following

table. The numbers refer to the superscripts in the column headings

in Table Al-la and also apply to the remaining portions (b through f)

of the table.

1. In situ effective pressure (EP) is estimated as lithostatic pres-

sure minus fluid pressure calculated for uniform columns of dry rock

and water respectively. Dry rock densities were the averages of the

measured values for each area and the fluid was assumed to have a

density of one gram per cubic centimeter. Any reported well fluid

pressure was also included.

2. Fracture or crack porosity (FP) is the sum of the strain due to

fracture closure at high pressure in three orthogonal directions.

The volume fraction is reported in units of 10-6 unless otherwise

noted. Total high pressure sample volume change is reported for

specimens with large amounts of compaction and consolidation. Com-

paction volume decreases are noted with a 'C'. If three orthogonal

strain measurements were not available, sample symmetry was assumed

to deduce the other direction(s) needed to estimate volumetric

strains. The maximum pressure for all strain measurements was

2.5 kbars unless otherwise indicated.
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3. 'Raw' fracture porosity and consolidation data are for strain mea-

surements extrapolated back to atmospheric pressure.

4. Adjusted (ADJ.) fracture porosity and consolidation data are the

strain data adjusted for the estimated in situ pressure. In other

words, the strains due to fractures that would be closed under

in situ pressures or the consolidations at less than in situ pres-

sures are subtracted. Often, the in situ pressures are small and

no adjustments (NA) to the raw data are necessary.

5. Abbreviations used:

no Y gage: strain measured in only two orthogonal directions.

frx: fracture or fractures.

fracture closure behavior: the sample has stress-strain curves

with shapes typical of fractured rocks (see Chapter III).

compaction behavior: the sample has stress-strain curves with

shapes typical of compaction and consolidation.

bumps: irregularities and deflections in the general trend of

strain curves.

b: bars.

C: volumetric consolidation.

6. The schematic DSA diagram shows the generalized behavior of the

measured strain curves. The scale for each diagram is arbitrary.

The overall behavior is emphasized, not the absolute size.

7. Porosity (POR.) and Density (DENS.) by immersion in water. The

porosity measured is therefore the interconnected porosity and

the values are given in void volume fraction. Density values

are in grams per cubic centimeter.
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8. Permeability (k) values are in darcys (10-8cm2) or standard sub-

divisions. Values were adjusted (A) for in situ pressure only

for samples used for permeability versus confining pressure deter-

minations.

9. Formation factor (For. Fac.) is equal to the rock resistivity (p r)

divided by the fluid resistivity (pf). Exponents indicate the

power of ten multiplier, i.e., 2.33 = 2.3 x 103 (p in sm).

10. The well stratigraphies of Chapter II should be referred to for

the surrounding physical settings and for the identification of

alteration and veining minerals within samples.

Abbreviations:

gr: grained.

frx: fracture or fractures.

<: less than.

>: greater than.

qtz: quartz.



TABLE Al-1. SAMPLE DATA AND DESCRIPTIONS

(a) DUNES (well #1452)

In situ1
Sample E~fetive

(Depth, m) Pressure

d - STRAIN DATA

FP or3C
2

Raw3
FP or C4Adjusted Remarks 5

Schematic 6  Porosity 7
Diagram Density

8  For. Fac.
9

Perm., k (pf) - Sample Description and Remarks10

12.9 C 3% NA Smooth consolidation,
Z gage failed.

.24
2.01

507 NA To 2kb, no Y gage, .030
curve has several line- 2.52
ar segments.

22.3 1514 NA Rough curve, fracture
closure behavior.

340 NA To 2kb, no Y gage, some
initial grain crushing
and linear segments

371 NA To 2kb, numerous gages
show similar magnitude
and behavior.

43.1 392 NA To 2kb, no Y gage,
smooth fracture closure
behavior.

43.8 1710 NA Very rough, fracture
closure behavior, large-
ly anisotropic.

60.7 Failed due to oil leak.

91.3 C 13% NA Compaction and grain
crushing, onset of
rapid comp. about 850 b.

91.3 C 1.5% C 1.2% Compaction- similar to
the initial portion of
the 1998 loose curve.

25 md A 24.4 Pink, medium-grained, lighted cemented lithic
(2.3) arenite with several partially sealed frac-

tures (see figure 4-10).

2.8 nd-unfrx-7520
8.2 md - frx - 1130

.0382.63

.075
2.43

.059 .45 md -cen - 2510
2.49 10 md - edg - 1507

.086
2.41

.13
2.28

.35
1.59

.059
2.53

3.2 md

.34 yd

(pf - 28) Red-gray, indurated, lithic wacke
with several partially sealed fractures (see
figure 5-8).

Gray, medium-grained, lithic arenite with
2mm wide, pyrite-sealed fracture (see figure
5-17).

Gray, coarse-qrained, lithic wacke. well-
indurated and no visible fractures or veins.

(cen = center of core, edq - edge; of - 2.1)
Gray, indurated arenite with open and adu-
laria-sealed fractures (see figure 5-12).

Gray, well-indurated, lithic arenite with
numerous .lmm wide, calcite-sealed frac-
tures.

Gray, well-indurated, medium-grained lithic
arenite grading into a conglomerate with
quartz and adularia-sealed fractures.

Gray-green, medium-grained argillaceous
wacke with large clay clasts and calcite-
sealed fractures (see fiqure 5-10).

3.7 Gray-green, medium to coarse-grained, fri-
(28) able, argillaceous lithic wacke (see fig-

ure 4-14).

2.9 Same as 1998. Loose but well-indurated
(28) with calcite cement.

17.4

22.7

36.2

281
(85.7)

380
(116)

487
(148.4)

495
(151)

792
(241.4)

942
(287)

957
(291.7)

1325
(404)

1998 loose
(609)

1998 indur.
(609)



(b) HEBER

Samp e &.

In situ FP or C FP or C
E ~~ R~w ADJL Remarks

Schematic POR.
Diagram OENZ7

For. Fac.
k (5f) Sample Description and Remarks

HEBER GTW#l well (#1459)

3167 145
(965.3)

Not run.

C 6.9% NA Increased rate of
paction at about
550 bars.

Not run.

146 C 13% NA Massive compaction oc-
curs at 1500 b. (ODSA
on different sample
gives c - 9.1%.)

146 C 12% NA Increased rate of com-
pac. at about 1270 b.
(DSA on different sam-
ple gives c - 13%.)

.25
2.08

.20
2.18

.25
2.01

.26
1.97

.29
1.89

HEBER GTW#3 well (#1460)

177 410 368 Small fracture content
with straight consoli-
dation. c - 1.9%.

3888 178 3250 1750 Fracture closure +
(1185) compaction above 800

c -1.8%.

3891 178 8900 6140 Fractures + compac-
(1186) tion. Bump in data

at 1900 b.

178 3100 2000 Fractures + compac-
tion. c 5.8%.

.13 15 pd-O vein - 40
2.34 5 0d-lvein-120

.086
2.47

.15
2.37

.13
2.39

Light gray, homogeneous, silty mudstone
weakly consolidated and readily breaks up
into clumps.

Light gray, homogeneous, silty mudstone
similar to 3167, several small calcite
veins (figure 5-9).

Light gray, friable, argillaceous sandy
siltstone; one vertical -Imn wide calcite
vein.

Light gray, homogeneous, weakly-indurated
argillaceous, sandy, pyritic siltstone.

Light gray, medium-grained, slightly
pyritic qtz. arenite.

(Pf - 2.0) Gray, moderately-indurated,
sandy siltstone with small chlorite (?)-
filled faults and many mm wide calcite
veins.

Gray, moderately-indurated argillaceous
siltstone with several vertical cm wide
calcite veins.

Dark gray, friable, silty, pyritic clay-
stone with small <mm chlorite (?) and
calcite veins.

Dark gray, friable, argillaceous silt-
stone with many cm wide and smaller cal-
cite veins (figure 6-2).

3905 178 5750 3500 Compaction. c a 1.7%.
(1190)

.16
2.23

65 Ud 25 Light gray, moderately-indurated, silty
(2.0) sandstone with two <mm wide vertical

calcite veins.

3177
(968.4)

3181
(969.6)

3184
(970.5)

3193
(973.2)

com-

3885
(1184)

3894
(1187)

l



In situ FP or C FP or C
Sample EP ~ Raw ADJ. Remarks

(c) RAFT RIVER

Schematic POR.
Diagram ENS.

For. Fac.
k (Of) Sample Description and Remarks

Intermediate well #3 (#1457)

9.7 C 18% NA Slight compaction fol-
lowed by abrupt collapse
after about 65 b.

23 Not run.

23 NA Not run.

23 C 1.42% NA Smooth consolidation
behavior.

27 C 1.2% NA Smooth consolidation.
X gage failed. Bump
in Z at 1500 b.

27 C 10% - NA Increased rate of com-
paction at approxi-
mately 250 b.

212
(64.6)

507 clay
(154.5)

507 loose
(154.5)

507 indur.
(154.5)

594 sand
(181)

594 clay
(181)

868
(264.6)

982
(299.3)

991
(302.1)

1067
(325.2)

NA Increased rate of com-
paction at approxi-
mately 200 b.

45 C .38% NA Smooth simple compac-
tion.

45.5

49 610

Not run.

2kb max. Mixed consol.-
and fracture behavior.
c - .32%.

.51
1.22

.36
1.70

.10
2.36

.092
2.38

.26
1.92

.34
1.71

.39
1.50

.094
2.39

.32
1.64

.14
2.13

35 td -I vein - 32
32 ud-±Lvein- 146

Light green, silty claystone with
soft sed. deformation and small sand
lens.

Light green, friable, bedded mudstone;
in fault contact with 507 indurated
below (see figure 6-4).

Light green, friable, argillaceous
lithic wacke, uncemented (see fig-
ure 6-4).

Dense, gray-green, same rock as 507
loose but well cemented with calcite
(see figure 6-4).

Light green, argillaceous lithic wacke;
cemented at distinct spots with calcite
similar to 507.

Light green mudstone with several 3mm
wide calcite veins; directly contacts
594 sand, 450 bedding planes.

(pf - 2.3) Altered tuffaceous silt-
stone; many 3 mm wide calcite and
analcime veins (see figure 6-8).

Dark gray, well-indurated, laminated.)
argillaceous siltstone with numerous
<2mm analcime veins.

Light green, indurated, argillaceous
siltstone with many <2mm wide frac-
tures partially sealed with calcite
and analcime.

Light green, indurated, sandy, argil-
laceous siltstone, numerous 2m wide
fractures coated with analcime.

40 C 15%



(c) RAFT RIVER (continued)

In situ FP or C FP or C
Sample ~~EF~ Raw ADJ. Remarks

Schematic POR.
Diagram DENS.

For. Fac.
k (of) Sample Description and Remarks

51 C 6.6% NA 2kb max. increased rate
of compaction above
500 b.

52 C .36% NA 2kb max., minor frac-
ture behavior.

See 1132 loose.

Not run.

55 C .6% NA Simple compaction be-
havior with slight in-
crease in rate above
200 b.

56 Not run.

1107
(337.4)

1132 loose
(345)

1132 indur.
(345)

1159
(353.3)

1204
(367)

1217
(370.9)

1247.5
(380.2)

1257
(383.1)

1387 loose
(422.8)

1387 indur.
(422.8)

Not run.

.36
1.56

.36
1.44

.13
1.99

.39
1.55

.15
2.21

.49
1.32

.39
1.58

Light green, friable, argillaceous wacke
with one 6mm wide multilayered vein with
analcime and hematite.

tight green, friable, argillaceous,
sandy siltstone with many calcite and
analcime veins (see figure 6-3).

Same as 1132 loose but cemented with
analcime. Cementation boundaries
along small veins (see figure 6-3).

Pale yellow, friable, argillaceous,
sandy siltstone; numerous fractures
and vugs coated with analcime.

1.1 yd 5.8 Light to dark green indurated mudstone
(52) with <mui wide chlorite veins and small

analcime crystals in matrix.

2.5 ud

.39
1.65

.13
2.32

Light green, soft, argillaceous silt-
stone, few fractures partially filled
with analcime and calcite.

White to green, soft mudstone, a few
<mm wide open fractures, prominent
soft sed. deformation.

1.5 Gray, soft bedded mudstone with a few
(28) <lmm wide calcite veins.

.2 d 20 Pale gray, friable, poorly sorted ar-
(2.0) gillaceous pebble conglomerate (see

figure 4-15).

2.1 md 47 Same as 1387 loose but heavily indu-
(2.0) rated with calcite cement; abrupt

cementation boundary (figure 4-15).

57 C 15% NA Compaction with fairly
abrupt structural col-
lapse above 375 b.

58 C 5% NA Simple smooth compac-
tion until sample
failed at 1000 b.

64 Not run.



(c) RAFT RIVER (continued)

In situ FP or C FP or C
Sample EF~ Raw ADJ. Remarks

Schematic
Diagram

POR.
DENS.

For. Fac.k (of ) Sample Description and Remarks

Intermediate well #1 (#1456)

308
(93.9)

14 C 27% NA Abrupt increase in comp.N
above 55 b., almost con- 1
stant strains after
1300 b.

.48
1.27

Intermediate well 94 (#1458)

175
(53.3)

8 2810 NA Fracture closure behav-
ior anisotropic and
very rough.

RRGE#l well (#1453)

4495-4500
(1371)

4690
(1430)

4694
(1431)

196 C 8.8% NA Increased rate of com-
paction above 600 b.

.061
2.45

.29
1.88

Not run.

205 400 360 Small fracture content,
large 24 hour temp.
oscillations.

.0049
2.73

RRGE12 well (#1454)

3075
(937)

3082
(939)

3725
(1135)

130 C 9.4% NA Mixed fracture + con-
FP 9800 5500 solidation behaviors,

break at -270 bars.

131 C 17% NA Consolidation behav-
ior, data missing be-
tween 255 and 776 b.

160 C 3.5% NA Smooth consolidation
behavior; -Y and Z
gages failed.

.45 22 md I vein - 6.8
1.45 .6 md 1 vein - 7.3

LL ~

.51
1.29

.20
2.11

Tan, very friable, poorly sorted, ar-
gillaceous, sandy siltstone grading
into a coarse sandstone.

Purple-gray porphyritic volcanic;
many open fractures and vugs with
thin coatings of clay and qtz.

Light green, indurated, tuffaceous
siltstone with many mm wide vugs and
a 6nm albite vein, broken fragments
only.

White-gray, banded quartz-feldspar
mica schist; some irregular fractures
and open, coated vugs.

Gray, layered, dense quartz mica
schist; several <1mm wide quartz and
chlorite veins (see figure 5-3).

(PT - 2.3) Light green, friable, ar-
gillaceous siltstone with several
<mm albite veins.

Light green, argillaceous tuffaceous
wacke with several <nm vertical al-
bite veins.

Light green, moderately-indurated,
argillaceous, sandy siltstone;
faulted bedding and numerous calcite
veins.



(c) RAFT RIVER (continued)

In situ FP or C FP or C
Sample E~ Raw ADJ. Remarks

Schematic POR.
Diagram DENS.

For. Fac.
k (pf) Sample Description and Remarks

183 C 3.4% NA Mixed fracture + con-
FP 1500 400 solidation behavior.

Increased comp. above
1700 b.

190 4810 NA Increased rate of con-
solidation above 1500.
Y gage failed.

RRGE #3 well (#1455)

118 C 11% NA Consolidation behav-
ior, increased compac-
tion above 350 to 650 b.

144 C 8.0% NA Slightly increasing
rate of comp. at high
pressures.

172 C 15% NA Increasing rates of
compression above 550
to 650 b.

.19
2.43

.089
2.43

.20
2.14

.21
2.06

.30
1.84

A 9.8 ld 18 Light green, moderately-indurated,
(4.2) argillaceous, sandy siltstone; a few

<mm calcite and clay-sealed fractures.

Dark grav, dense, indurated, silty
shale with many <rmn chlorite (?)
sealed fractures.

2.9 md

Light green, moderately-indurated, ar-
gillaceous, micaceous, lithic wacke,
one <mm wide calcite vein.

17.1 Light green, moderately-indurated,
(3.1) argillaceous, tuffaceous wacke with

many <mm calcite-filled vugs and frx.

3.2 md 8.75 Light green, argillaceous, micaceous
(3.9) wacke with interbedded siltstones.

no visible fractures.

4224
(1287)

4370-4376
(1333)

2811
(857)

3365-3380
(1026)

3974
(1211)



(d) COSO HOT SPRINGS

In situ FP or C FP or C
Sample EP Raw ADJ. Remarks

Schematic
Diagram

POR.
DENS.

For. Fac.
k (~f) T Sample Description and Remarks

SDH#1 well (#1650)

NA Fracture closure behav-
ior for clast in brec-
cia, Y and Z gages
failed.

28.5 1270 NA Rough fracture closure | i.
behavior, X gage failed,L
large anisotropy.

667 30.5 635 NA Straight elastic com-
(203.3) pression. K I

.014
2.78

.0065
2.86

.063
2.71

33 200 NA Linear compression,
measurements made on in
tact clast inside brec-
cia.

750 34 C 12.5% NA Has a behavior like the
(228.6) compaction of sedimen-

tary rocks.

890 Not run.
(271.3)

10120 Fracture closure be-
havior; two gages in
each direction.

NA Fracture closure be-
havior, some crushing
in X direction.

1400 Typical fracture clo-
sure behavior, aniso-
tropic.

.11
2.49

.084
2.50

.18
2.17

.032
2.58

.059
2.50

Dark gray, fine-grained diorite, in-
tensely broken and sheared with devel-
opment of clays and slickensides.

Dark green, veined, metashale in fault
contact with medium-grained, slightly
altered diorite (see figure 6-5).

Medium to fine-grained, dark gray di-
orite with many felsic and clay-filled
mm wide fractures.

Cataclastic qranodiorite, very fri-
able and heavily altered to light
green clays.

Cataclastic, original felsic rock.
broken into small clasts surrounded by
dark green clays (see figure 6-9).

Fine-grained, equigranular, gray dior-
ite with many som veins and one 5m
calcite and zeolite vein.

A 70 Pd 20.8 Cataclastic, yellow and pink, grano-
(2.3) diorite clasts in a matrix of yellow

clays (see figure 5-4).

Light gray meta-wacke(?) heavily bro-
ken with <3mmn calcite and clay-
filled fractures.

White, sheared, friable, aplite(?)
with many branching fractures filled
with muscovite.

23 2100502.5
(153.2)

624
(190.1)

721
(219.8)

934
(285)

1033
(314.8)

1051
(320.3)

43 11600

47 1930

48 1450



(d) COSO HOT SPRINGS (continued)

In situ FP or C FP or C
Sample EP~~~ Raw ADJ. Remarks

Schematic POR.
Diagram DENS.

For. Fac.
k (pf) Sample Description and Remarks

1139
(347.2)

52 770 NA Almost linear compres-
sion, some minor
compaction in Y direc-
tion.

Heat Flow well #3 (#1651)

36 -0 6820
(11.0)

Heat Flow well #13 (#1652)

299
(91.1)

13.7 8910

NA Smooth fracture clo-
sure behavior.

NA Consol. behavior at
low pressure; break in
slope at 1200 b. leak?

Heat Flow well #15 (#1653)

150
(45.7)

7 1660

Heat Flow well #1 (#1654)

150
(45.7)

7 4900

NA Rough fracture clo-
sure behavior.

NA Smooth fracture clo-
sure behavior. Kr

.026
2.59

.037
2.74

.010
2.70

.014
2.59

Dark gray, fine, equigranular, meta-
sed(?) with numerous <mm chlorite-
filled veins.

Medium-grained, pink, slightly altered
quartz monzonite, very few small frac-
tures with hematite.

Medium to fine-grained, gray green
diorite(?) with two <3m calcite and
chlorite(?) veins, one shows offset.

Fine-grained, equigranular granodiorite
with few small clay filled fractures.

Pink, medium-grained, equigranular
quartz n'onzonite with slight oxida-
tion of mafics.



(e) MARYSVILLE

In situ FP or C FP or C
Sample EP Raw ADJ. Remarks

Schematic POR.
Diagram DENS.

For. Fac.
k (pg) T Sample Description and Remarks

473 463 Almost linear compres-
sion.

286 NA Almost linear compres-
sion.

360 NA Almost linear compres-
sion.

124 NA Almost linear compres-
sion.

263 NA Slightly increasing
rate of compression at
high pressure.

358 NA Increased rate of com-
pression after few hun-
dred bars.

320 270 Anisotropic with Z clo-
sure strains larger by
factor of 7.

366 NA Anisotropic with Z clo- .-
sure strains larger by _
factor of 2 1/2. ,

1462
(101)

1462A
(101)

1463
(134)

1464
(178)

1465
(282)

1466
(304)

1467
(304)

1468
(465)

1478
(592)

1469
(700)

123 450 NA Typical fracture clo-
sure behavior.

1470 145 880 NA Smooth fracture clo-
(849) sure behavior.

.00047
2.67

.0078
2.71

.00028
2.79

.00036
2.73

.0013
2.69

.0019
2.59

.0016
2.59

<.5 nd 2.6 4
(1.8)

Dark gray, porphyritic dacite with several
small vertical veins and 5mm wide shear
zone.

150 Green-gray, banded dacite; numerous near
(1.8) vertical mm wide veins with bleached zones.

5.84
(1.8)

3 nd 3.14
(1.8)

Dark gray, indurated metashale with numer-
ous intersecting <mm wide veins.

Dark gray, indurated metashale similar
to 1463, dark mm wide bands surround
veins.

5 nd 375 Dark gray, indurated, silty metashale
(1.8) with numerous mn wide veins.

390 Very fine-grained, porphyritic granite
(1.8) with rounded phenocrysts, many veins,

dark stained zone.

795 Fine-grained, altered, porphyritic gran-
(1.8) ite with several vertical mm wide veins

(figure 6-12).

25.0

25.0

33.6

44.6

60.3

63.8

63.8

87.8

.0038
2.55

.00085
2.57

.0080
2.58

3.04
(1.8)

.11 yd 1.14
(2.3)

3.53
(1.8)

Fine-grained, altered, porphyritic gran-
ite with dark wavy veins (a fractured
sample had k - .2 yd).

Medium-grained, altered porphyritic
granite with zoned phenocrysts; single
5mm wide vein.

Medium-grained, altered porphyritic gran-
ite, single mm wide vein (another sample
had For. Fac. - 65).

Coarse-grained, altered granite with
numerous veins surrounded by darkly
stained zones.

-- <.5 nd 6.0 4(?)
(3)

107 508 498 Typical fracture clo-
sure behavior.



(e) MARYSVILLE (continued)

In situ FP or C FP or C
Sample E~ Raw ADJ. Remarks

Schematic POR.
Diagram DENS.

For. Fac.
k ( g) Sample Description and Remarks

170 485 476 Typical fracture clo-
sure behavior; X gage
failed.

193 670 655 Almost linear compres-
sion dominates frx
closure behavior.

213 2951 2566 Typical fracture
closure behavior.

.0018
2.60

.046
2.56

.027
2.57

A .12 ud A 6.3 4
(3)

Coarse-grained, altered granite with
numerous <nmn wide, sealed frx (another
sample had k = 67 nd).

735 Medium-grained, sheared, and altered
(1.8) porphyritic qranite with numerous

>mm wide dark veins.

12 ud 2.0 3
(1.8)

213 3960 3120 Smooth fracture clo-
sure behavior until
gage failures at
about 1200 b.

259 2905 2350 Smooth fracture clo-
sure behavior K~ 1

294 1950 1413 Smooth fracture clo-
sure behavior.

311 1910 1410 Fracture closure
behavior with small
bumps at 222 b.

Medium-grained granite porphyry with
numerous >imn wide veins; many feld-
spars altered to clay.

750 Coarse-grained granite with numerous
open clay-lined frx; many altered
feldspars (figure 5-7).

-- Pink, fresh coarse-grained granite
-- with open vugs and numerous open

fractures.

.011
2.60

.0069
2.60

2.13
(1.8)

-- A 1.1 ud A 4.13
(3.7)

Pink, fresh, equigranular medium-
grained granite; many small frx within
and between larger grains.

Pink, fresh, equigranular, medium-
grained granite; many small frx with-
in larger grains.

1471
(1010)

1472
(1165)

1473
(1298)

1474
(1298)

1475
(1607)

1476
(1836)

1477
(1954)



(f) ROOSEVELT HOT SPRINGS

In situ FP or C FP or C
EP Raw ADJ. Remarks

Schematic POR.
Diagram DENS.

For. Fac.
k (pf) N Sample Description and Remarks

OBSERVATION HOLE 02

91(?) 975 NA Somewhat rough frac-
ture closure behav-
ior.

230(?) 2280 1930 Fracture closure be-
havior but with signi-
ficant bumps at 800 b.

.00312.70 Gray-green, medium-grained, equigranu-
lar granodiorite, some alteration of
mafics, feldspathic, and hematite
veins (see figure 6-6).

Gray, medium-grained granodiorite,
slight alteration of mafics, many
small fractures visible in larger
grains.

.0026
2.67

Sample

1997
(608.7)

WELL 9-1

5002
(1525)
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APPENDIX 2

GEOMETRIC MEAN MODEL

A detailed description of the geometric mean model is presented

in this appendix. This model is used to interpret the dependence of

permeability and conductivity of rocks on a homogeneous fracture popu-

lation. The development is patterned after the geometric mean con-

ductivity model of Madden (1976) which can be considered an extension

of work done previously by Parsons (1966). The model variables include

the measured fracture parameters of aspect ratio and fracture porosity

derived from differential strain analysis (DSA). This method is ap-

plied to Westerly granite because this rock is fine-grained, homogene-

ous, approximately isotropic (to within the measurement errors of per-

meability and conductivity), and the characteristics are well-known.

The results of the modeling are used in Chapter V to examine the inter-

action and dependence of transport properties on various fracture parama-

ters.

The general scheme for the modeling is developed in several distinct

steps:

(1) The appropriate equations are developed for the dependence of

permeability and conductivity on individual fractures and on

the fracture population in general.

(2) The dependence is reduced to the three parameters (porosity,

width, length) that need to be determined.

(3) Parameters are measured on a sample, in this case Westerly

granite. Only porosity can be determined directly; aspect

ratio is determined indirectly.
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(4) Estimates of relative values of length versus aspect ratio

are made in order to match the rock conductivity.

(5) The absolute values of length are adjusted to match the

rock permeability.

(6) The model fractures are then closed with increasing pressure

by two distinct mechanisms and the result compared to measured

values.

The modeled rock is constructed of a large number of microscopic

zones or cubes with edges of length L. Each cube is either solid matrix

material or contains a single fracture. Each fracture is a rectangular

'box' with one dimension, L, common to all fracture sizes (see figure

A2-la). Using the parallel plate analogy for a single fracture of size

'i' gives

w3 Y
K. - 1 1
1 12pA

where w. and z i are the width and length (both variable) of the fracture,

respectively, y is the fluid viscosity, and A is the surface area of

the zone. Expanding the equation gives

2 2 2w. w Z w2 w t L w2 V.

KiL 12p * L-L-L 1y * V

V. is the volume of the crack and Vz is the volume of the zone; hence,

the ratio of V. to Vz is the single fracture porosity 4si. The per-

meability is then

2w.
K = 1 Si
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LIE
TIwLLIEI

(b)

Figure A2-1. (a) Unit zone with modeled fracture dimensions.

(b) Six zones with a 0.33 fracture probability.
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or equivalently

=k (12p/w )

For many zones, the total porosity, + , of all the fractures with this

same width is proportional to the probability that the zones contain

such fractures

(A2-1)
P = P k (12yi/w )

Here, P. is the probability that a fracture wit

in a zone. For example, in figure A2-lb, P =

for the total crack porosity of the rock, $,

h a width w. occurs

2/6 = .33. Hence,

= = 12p P k /w?

The total number of ith-sized cracks in the rock

volume of ith-sized cracks divided by the volume

ture:

is equal to the total

of a single such frac-

Ifi
w i t L

For the entire rock, the probability of the ith fractures is then the

total number of ith-sized cracks divided by the total number of frac-

tures within the rock or

1 w.ikL w z L w wi

Substituting in equation (A2-1) and cancelling yields

k = li)
i 12y wi Z1

(A2-2)
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Equation (A2-2) is only valid when all fractures are oriented parallel

to the direction of flow. In an isotropic rock, many of the fractures

will not be oriented parallel to flow. The model zones will have frac-

tures oriented along all three of the coordinate axes. An inefficiency

factor must be added due to the approximately one-third of the frac-

tures (in a cubic system) that are oriented normal to flow.

For small porosities the equation can be simplified to

k = ( i ) (A2-3)
i 18p1 w

The resulting geometric mean permeability, <<k>> for the rock will then

be the product of all the individual permeabilities exponentiated to the

respective probability:

P.
<<k>> K (A2-4)

i i

A similar derivation will occur for the individual fracture conductance,

Y .

Y.= 2w Z ) (A2-5)I f 3 w~t

where a is the saturating fluid conductivity. The resulting geometric

mean rock conductivity is then

P.

<<a>> = TY (A2-6)

i

The use of the geometric mean model requires the values of porosity,
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width, and length for each fracture set. Porosity can be derived

directly from strain data. The width and length can only be measured

by stress-strain techniques coupled together in the aspect ratio,

a = w./Z.. Values of either w. or . must then be estimated. The

aspect ratio is determined through the relationship derived by Walsh

(1965), as was mentioned in Chapter III. This relation can be expressed

in the form

2
a 41-v 2 (A2-7)

~c37TFI --2v7

where 6 and v are the compressibility and Poisson's ratio, respectively,

of the fracture-free matrix and Pc is the crack closure pressure. Sever-

al investigations have improved on this formula recently, but considering

the crudeness of this model, equation (A2-7) is quite adequate. Sub-

stituting the values v = 0.21 and a = 2.06 Mb~I (Brace, 1965) gives

a = 1.44 x 10-6 Pc

Porosity as a function of aspect ratio can thus be determined from

strain data through the closure pressure-shape relation of equation

(A2-7). A graph of cumulative fracture porosity derived from DSA on

Westerly granite is shown in figure A2-2. As pressure increases,

according to equation (A2-7), cracks with larger aspect ratios close

with a subsequent drop in total porosity. For use in this model,

closures are grouped into 5 sets centered (logarithmically) about dis-

tinct closure pressures of 20, 70, 200, 700, and 2000 bars. These

closure pressures correspond roughly to the aspect ratios 10- 4.5

104, 10-3.5, 10- 3, and 10-2.5 (10.5 ~ 3.16). The result is the tabu-

lation of porosity versus aspect ratio shown in figure A2-3.



VIRGIN WESTERLY 1134
800-

600-

S2000 -I-

0 400 - 0

200

w

-

C

LA.

w

5 
200 

5 
2

F.- o 700_ __

2700

0-

0 500 1000 1500 2000

FRACTURE CLOSURE PRESSURE

Figure A2-2. Cumulative fracture porosity from DSA of Westerly granite. Intersecting vertical

and horizontal lines are used to measure fracture content for logarithmically increasing frac-

ture closure pressures (DSA data from Cooper, personal communication, 1976).
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Figure A2-3. Aspect ratio versus porosity as calculated from Figure A2-2 and total rock

porosity. The values of Hadley (1976) as tabulated by Madden (1976) are included.
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Three comments should be made about the distribution shown in

figure A2-3. First, measurement above an aspect ratio of about

3.16 x 10-3 is not possible with the equipment available for this study.

Porosity values of cracks with aspect ratios of 0.01 and larger must

be extrapolated based on the general trend of the curve of figure A2-2

and on other less precise high pressure data (Brace, 1965). Secondly,

the total porosity of Westerly granite is approximately one percent.

This porosity is contained mostly in the more spherical pores and void

spaces (Sprunt and Brace, 1974; Montgomery and Brace, 1975). This

porosity is measured by an immersion technique which requires that the

voids be interconnected. These pores will play a significant role in

the transport properties. The porosities attributed to the 0.316 and

1.0 aspect ratio pores are increased to accommodate these more equidi-

mensional voids. Finally, the fracture porosity has also been surveyed

under the scanning electron microscope by Simmons and Richter (1976),

Feves et al. (1977), Feves (1977), and Hadley (1976). Hadley's values

were used in investigations by Brace (1977) and Madden (1976). The values

reported by Madden are included in figure A2-3 for comparison. The

two distributions in figure A2-3 are in approximate agreement in the

mid-range of aspect ratios but differ considerably at the extremes.

The total porosity measured with the SEM is too low because of the low

reported values for the more equidimensional voids. At very small

aspect ratios, Hadley's porosity is also much lower than the values

determined with DSA. With the SEM, fractures under approximately

0.03 pm in width cannot be observed due to the conductive coating.

Since a considerable proportion of small aspect ratio cracks may have
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correspondingly small widths, Hadley's distribution probably under-

estimates the number of these small fractures.

Aspect ratio is the ratio of length to width and so the length

distribution needs to be estimated. One possibility is to hold length

constant and let width vary according to aspect ratio. However, this

distribution results in too large a number of small narrow cracks. A

very large number of narrow cracks of length Y, will be created for the

same value of porosity that produces a single spherical pore with the

same diameter 2 (figure A2-4a). The result is a very strong pressure

dependence. At very low pressures the calculated values of both per-

meability and conductivity decrease by many orders of magnitude. Hence,

the length must decrease with increasing aspect ratio (figure A2-4b).

The width will not then increase as rapidly with increasing aspect

ratio. This kind of length-width relationship is observed in the several

SEM studies mentioned previously. Dependence is now spread more evenly

among all the fractures and pores. The result is a smaller decrease in

permeability and conductivity at low pressure.

Once the length distribution has been established to fit conduc-

tivity values, the absolute size of the cracks can be altered to match

zero pressure permeability. Conductivity is independent of absolute

size if the relative sizes stay the same. By equation (A2-5) any in-

crease in w1k1 will be cancelled by the equal increase in w i . Per-

meability is very sensitive to even slight changes in width, which

is apparent from equation (A2-3). The result will be a length versus

aspect ratio distribution similar to the type shown in figure A2-5.

The final step is to actually close fractures with pressure.
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(a)

(b)

Figure A2-4. Schematic width-length relationships.

(a) Length constant with increasing aspect ratio.

(b) Length decreasing with increasing aspect ratio.

To increase the number or probability of the more spherical voids

for a given porosity, the relative sizes must decrease with increas-

ing aspect ratio as in (b). The actual values used are given in

Figure A2-5.
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Although the fractures are closed, they must remain in the system with

the same probability. The cracks are still interconnected but have

much smaller permeability and conductivity values. The first type of

closure mechanism, the type that seems most obvious, is to reduce

widths to some small fraction of the initial width. The pressure is

increased in logarithmic increments to close the sets of cracks with

logarithmically increasing aspect ratios. Since the cracks close

linearly with pressure, the result is that the width is first reduced

to 1/3 of the original value and then to the final closure value of

1/25 after the next pressure increment. The calculated values are shown

in figure 5-15b and are given in Table A2-1. The results are not very

satisfactory. The reduction to 1/25 of the former width is a 'best fit'

for this type of closure mechanism. Permeability is too strongly af-

fected by confining pressure, but conductivity is not decreased suf-

ficiently. Another closure scheme, type 2, is to make all the closed

fractures have the same small constant value of permeability and conduc-

tivity. The 'best fit' of this second type of mechanism is also pre-

sented in figure 5-15b and in Table A2-1. This type of closure gives a

fit to the observed values well within the limits of measurement error.

This latter type is characteristic of very inefficient closure, espe-

cially for small aspect ratio fractures. The effect is the same as if

the fracture closed as much by length as by width. Such inefficient

closure would be the case for contorted, crenulated fractures. The

two closure types are fundamentally different.

This model is somewhat crude, but some valid interpretations can

be drawn. Fracture closure can explain the decrease in permeability
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and conductivity. The fractures in Westerly granite are probably rough

and irregular as closure is inefficient. Larger pores and voids play a

significant role in the flow properties. The geometric mean model needs

more thorough testing before more detailed conclusions can be drawn.

In the present form, the model is too specific to Westerly granite.



Table A2-1. Geometric mean fracture probability, permeability, and conductivity.

(a) No confining pressure, all cracks open and using the distribution
of figures A2-3 and A2-5.

Aspect Length Width Cond. Perm.
ratio (cm) (cm) Por. Prob. (Qm)-l (cm2)

W w 3 /w P Y Y k k i

10-5

3.16x10- 5

10~ 4
3.16x10~4

10- 3
3.16x10-3

10-2

3.16x10-2

10- 1

3.16x10~ 1

.003

. 003

.003

1 .9x10-3

1 .2x10-3

7.6x10~4

5. Oxi0~4

3.2x10~4

2.0x10~4

2.0x10~4

3.0x10-8

9.5x10- 8

3.0x10~7

5.9x10~7

1.2x10-6

2.4x10- 6

5.0x10-6

1 .0x10- 5

2.0x10-5

6.3x10- 5

2. Oxl 0-23

8. 5x1 0-22

2. 7x10-20

2. 1x10~ 19

1.7x10-18

1 .4x10 17

1 .25x10-16

1.0x10-15

8.0x10-15

2.5x10-13

1 2.0x10~4 2.0x10~4 8.0x10- 12

0

21.5

81

159

265

222

100

100

100

4500

4500

0

7.5

9.0

14.3

18.4

12.2

4.0

3.1

2.5

35.7

0

0.064

0.076

0.121

0.156

0.103

0.034

0.026

0.021

0.303

7.5x10~4

2.36x10-3

2.9x10- 3

3.8x10-3

4.8x10-3

6.55x10-3

8.4x10- 3

1 .05x10- 2

3.3x10-2

11.3 0.096 1.05x10~ 1

1.0

.633

.630

.493

.419

.576

.843

.882

.908

.356

-19
1 .7x10

-18
5. 3x1 0

-17
2.6x10

-16
1.34x10

-16
7. Oxi 0

-15
4.l1xlO0

-14
2.1 xl 0

-13
1 .05x10

-12
3. 3x1 0

-10
.805 1.05x10

2z 118

1.0

6.4x10- 2

4.8x10-
2

9.8x10- 3

3.35x10- 3

2.7x10-2

0.325

0.44

0.53

3.35x1 0-4

0.11

'IT 7.7x10-15-f 9.18x1 0- 3



' Table A2-1 (continued).

(b) Type 1 closure with increasing pressure (see text).
Note: Blank spaces indicate no change from preceding lower pressure values.

70 BARS CONFINING PRESSURE

3 P.P
a w. w 3 $/w z P. Y. Y i k. ki

10-5

3.16x10- 5 .003

.003

3.8x10 9 5.5x10-26

1.2x10 -8 7.7x10- 24

3.16x10~4 1.9x10- 3 3.9x10~7 5.9x10- 2 0

3.16x10- 3

10-2

3.16x10- 2

10~1

3.16x10~1

1

.159

0.064 3.0x10-5

-5
0.076 9.4x10

14.3 0.121 1.9x10- 3

.513 1.1x10- 23

.494 3.4x10-22

.470 7.4x10-18

.419

.576

.843

.882

.908

.356

.805

TT 5.6x10- 3

.034

.023

8.46x10-3

3.35x10- 3

2.7x10- 2

.325

.44

.53

3.35x10~4

.11

TT 1 .7x10~- 4



(b) Type 1 (continued)

200 BARS CONFINING PRESSURE

w w /w P1 P Y Y k k i

10-5

3.16x10- 5

10~4

3.16x10~4

.513

1.9x10- 3 2.4x10- 8 1.3x10- 23

10-3 1.2x10- 3 8.0x10~7 5.1x10~19

3.16x10- 3

10- 2

3.16x10- 2

10- 1

3.16x10~ 1

1

0.121 1.2x10~4

0.156 2.5x10-3

.494

.334 1.7x10-21

.393 4.0x10 1 7

.576

.843

.882

.908

.356

.805

T 3.7x10- 3

.034

.023

3. 1x0-3

2.8x10-3

2.7x10-2

.325

.44

.53

3.35x10~4

.11

1T 5.lxlO-6



(b) Type 1 (continued)

700 BARS CONFINING PRESSURE

a W. w . $ /w z P Y. Yi k ki

10-5

3.16x10-5 .034.513

.494

3.16x10~4

10-3 1.2x10-3 4.8x10- 8 1.lxlO-22

3.16x10- 3 7.6x10~4 1.6x10- 6 4.1x10- 18

10-2 ' .

3.16x10- 2

10- 1

3.16x10- 1

1

.156 1.5x10~4

.103 3.2x10-3

.334

.253 8.6x10-21

.553 2.1x10-16

.843

.882

-908

.356

.805

TT 2.3x10

.023

3.1 x 0-3

7.4x10~4

2.4x10-2

.325

.44

.53

3.35x10~4

.11

T I.2x10-16



(b) Type 1 (continued)

2000 BARS CONFINING PRESSURE

w w 3 $./w z P. Y i k k i
1 1I 1 1 1 1 1 1

10-5

3.16x10-5

10~4

3.16xl0~4

10- 3

3.16x10- 3

10-2

3.16x10- 2

10- 1

3.16xl0~ 1

1

.513

.494

.334

7.6x10~4

5.0x10~4

9.6x10- 8

3.3x10-6

8.8x10-22

3.7x10 17

.103

.034

1 .9x

4.4x

.253

10~4 .414

10- 3 .831

.882

.908

.356

.805

TT 1.7x10- 3

4.5xl0

1.2x10

.034

.023

3.1xl0- 3

7.4x10~4

-20 .0102

-15 .312

.44

.53

3.35xl0~4

.11

TT 4.9xl1~



Table A2-1 (continued).

(c) Type 2 closure with increasing pressure (see text).
Note: Blank spaces indicate no change from preceding lower pressure values.

70 BARS CONFINING PRESSURE

3 PP
1w w 1 /w . P Y Y i k k

.140 lx10-5 .20 2x1 0-20 1 . 75x10-3

3.16x10-5

-10~ 4

3.16x10~4

.10-3

3.16x10- 3

10-2

3.16x10- 2

10-1

3.16x10- 1

1

1.9x10- 3 3.9x10~ 7 5.9x10- 20 .159 14.3 .121 1.94x10-3 .470

.419

.576

.843

.882

.908

.356

.805

T 4.38x10-3

7.4x1 0- 18 8.46x10-3

2.35x10-3

2.7x10- 2

.325

.44

.53

3. 35x10~4

.11

TT 3.74x10-15



(c) Type 2 (continued)

200 BARS CONFINING PRESSURE

w. w 3 $i /w P. Y Y Pik k i

lx10-5 4.96x10-2 2x10- 2 0 7.22x10-6

3.16x10- 5

10~4

3.16x10~4

10-3 1.2x10- 3 8.Oxl0~7 5.1x10~ 1 9

3.16x10- 3

10- 2

3.16x10- 2

10- 1

3.16x10~ 1

1

265 18.4 0.156 2.5x10- 3 .393 4.0x10 17

.576

.843

.882

.908

.356

.805

TT 2.17x10- 3

2.8x10- 3

2.7x10- 2

.325

.44

.53

3. 35x10~4

.11

T 1.51x10- 15

.261



(c) Type 2 (continued)

700 BARS CONFINING PRESSURE

W w /w P Y. Y i kg kl

1xl0- 5 8.2xl0- 3
2xl0- 20 6.1xl0~9

3.16x10- 5

10~4

3.16x10~4

10-3

3.16x10-3

10-2
3.16x10-2

10-1

3.16x10-1

1

7.6x10~4 1.6x10- 6 4.1x10- 18 222 12.2 .103 3.2x10- 3 .553 2.06x10-16 2.42x10- 2

.325.843

.882

.908

.356

.805

T 8.77x10~4

.44

.53

3.35x10~4

.11

TT 4.12x10- 16

.417



(c) Type 2 (continued)

2000 BARS CONFINING PRESSURE

w w 1 /w 1 P Y Y1i k 1i

lx10-5 2.5x10-3 2x10- 2 0 4.0x10 1 1

3.16x10- 5

10~ 4

3.16x10~4

10-3

3.16x10- 3

10- 2 5.0x10~4 3.33x10- 6

3.16x10- 2

10 .1

3.16x10~1

1

3.7x10 1 7 100 4.0 .034 4.4x10-3 .831 1.22x10- 1 5

.882

.908

.356

.805

TT 4.77x10~4

0.312

0.44

- 0.53

3.35x10~
4

0.11

T 1.07x10- 1 6

.520
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