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Abstract

In this thesis, the dynamic role of bottom topography in a #3-plane channel is systematically
studied in both linear homogeneous and stratified layer models in the presence of either wind stress
(Chapters 2, 3, 4, and 6) or buoyancy forcing (Chapter 5). In these studies, the structure of
the geostrophic contour plays a fundamental role, and the role of bottom topography is looked
at from two different angles. It is shown that blocking all the geostrophic contours leads to two
different physical processes in which bottom topographic form drag is generated (Chapters 2, 3
and 4) and enables geostrophic flow in a /-plane channel to support a net cross-channel volume
transport (Chapters 5 and 6). It is demonstrated that by blocking all the geostrophic contours
in the presence of a sufficiently high ridge, the dynamics of both source-sink and wind driven
circulations in a #-plane is similar to that in a closed basin.

First, wind-driven circulation in the inviscid limit is discussed in a linear barotropic channel
model in the presence of a bottom ridge. There is a critical height of the ridge, above which all
geostrophic contours in the channel are blocked. In the subcritical case, the Sverdrupian balance
does not apply and there is no solution in the inviscid limit. In the supercritical case, however,
the Sverdrupian balance applies. The form drag is generated through two different physical pro-
cesses: the through-channel recirculating flow and the Sverdrupian gyre flow. These processes are
fundamentally different from the nonlinear Rossby wave drag generation. In this linear model, the
presence of a supercritical high ridge is essential in the inviscid limit. With this form drag gener-
ation determined, an explicit form for the zonal transport in the channel is obtained, which shows
what model parameters determine the through-channel transport. In addition, the model demon-
strates that most of the potential vorticity dissipation occurs at the northern boundary where the
ridge intersects.

The result from the homogeneous channel model in Chapter 2 is then extended to a model
whose geometry consists of a zonal channel and two partial meridional barriers along each bound-
ary at the same longitude. Both the model transport and especially the model circulation are
significantly affected by the presence of the two meridional barriers. The presence of the northern
barrier always leads to a decrease in the transport. The presence of the southern barrier, however,
increases the transport for a narrow ridge. The northern barrier only has a localized influence on
the circulation pattern, while the southern barrier has a global influence in the channel.



Then a multi-layer Q-G model is constructed by assuming that potential vorticity in all sub-
surface layers is homogenized. The circulation is made up of baroclinic and the barotropic part. The
barotropic part is same as that in a corresponding barotropic model, and is solely determined by
the wind stress, while the baroclinic part is not directly related to the wind stress. It is determined
by the potential vorticity homogenization and lateral boundary conditions. The presence of the
stratification does not affect the bottom topographic form drag generation. The interfacial form
drag is generated by the stationary eddies. Corresponding to the circulation structure, the zonal
through-channel transport associated with the barotropic circulation is determined by the wind
stress and bottom topography. The other part associated with the baroclinic circulation, however,
is not directly related to the wind stress and it is determined by the background stratification.

Based upon the discussion on the geostrophic contour, a simple barotropic model of abyssal
circulation in a circumpolar ocean basin is constructed. The presence of a supercritically high
ridge is both necessary and sufficient for geostrophic flow in a #-plane channel to support a net
cross-channel volume flux. In the presence of a sufficiently high ridge, the classical Stommel &
Arons theory applies here, but with significant modifications. The major novelty is that a through-
channel recirculation is generated. Both its strength and direction depend critically upon the model
parameters. Then, a schematic picture of the abyssal circulation in a rather idealized Southern
Ocean is obtained. The most significant feature is the narrow current along the northern boundary
of the circumpolar basin, which feeds the deep western boundary currents of the Indian Ocean and
Pacific Ocean and connects all the oceanic basins in the Southern Ocean.

Finally, the question of how the northward surface Ekman transport out of the circumpolar
ocean is returned is discussed in a two-layer model with an infinitesimally thin surface Ekman layer
on top of a homogeneous layer of water in a rather idealized Southern Ocean basin. First, the
case with a single subtropical ocean basin is discussed. In the case with a sufficiently high ridge
connecting the Antarctic and the meridional barrier, an explicit solution is found. The surface
Ekman layer sucks water from the lower layer in the circumpolar basin. This same amount of
water flows northward as the surface Ekman drift. It downwells in the subtropical gyre, and is
carried to the western boundary layer. From there, the same amount of water flows southward as a
western boundary current across the inter-gyre boundary between the circumpolar ocean and the
subtropical gyre along the west coast to the southern boundary of the meridional barrier. Then,
the same amount of water is carried southward and feeds the water loss to the surface Ekman layer
due to the Ekman sucking in the interior circumpolar ocean. The case with multiple subtropical
ocean basins such as the Southern Ocean is also discussed. It is demonstrated that the surface
Ekman drift drives a strong inter-basin water mass exchange.

Thesis Supervisor:
Dr. Rui Xin Huang, Associate Scientist
Woods Hole Oceanographic Institution
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Chapter 1

Introduction

Among the world oceans, the Antarctic circumpolar ocean is the only one which is not

blocked meridionally. It serves to connect the Indian, Pacific and Atlantic Oceans. Through

this circumpolar ocean the other three oceans communicate with each other in terms of

heat, fresh water and other properties, e.g., Gordon (1986) and Rintoul (1988). Most

early data came from commercial exploration of the Southern Ocean. Only recently has

more systematic and scientifically oriented exploration of the Southern Ocean taken place

resulting in the comprehensive atlas of the Southern Ocean by Gordon et al. (1982). A

comprehensive and informative history of the Antarctic circumpolar ocean is given by

Deacon (1984).

The Antarctic Circumpolar Ocean has long been recognized as a transitional zone

between surface waters with antarctic and subantarctic characteristics (Meinardus, 1923).

More recent studies, e.g., Gordon et al. (1977), showed that this transitional zone further

branches into several narrow frontal zones, mainly the subantarctic and polar fronts, as

shown in Fig.1.1. Associated with this transitional zone flows the largest eastward current

in the world, the Antarctic Circumpolar Current. Fig.1.2 shows the geostrophic

current at the sea surface referenced to 10OOdba. It is about 1800km wide except at Drake
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Figure 1.1: Potential density anomaly in vertical section across Drake Passage as observed

on R/V Thompson during 1976, adapted from Nowlin & Clifford (1982). SAF refers to
Subantarctic Front, PF the Polar Front and CWB the Continental Water Boundary.



* *

- - - - - - - -SCALE AO cmAM~C

SURFACE GEOSTAVC*NIC.
FLOW

(rLAFi 1M /MO OECISARSI

Figure 1.2: Geostrophic current at the sea surface relative to 10OOdba from historical data.
The current component is evaluated from 1* latitude by 20 longitude grid point values from
Gordon et al. (1978).
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Passage and extends all the way to the ocean floor as indicated by the strong and deep

reaching baroclinicity shown in Fig. 1.1.

Similar to gyre circulation in subtropical oceans, the Antarctic Circumpolar Cur-

rent (hereafter referred to as ACC) has been generally thought to be driven principally

by surface wind stress shown in Fig. 1.3, although the relative importance of wind versus

thermohaline forcing has not been clearly understood. The problem unique to the circum-

polar ocean is how the eastward wind stress input is balanced. Three basic explanations

have been proposed in the fifties and sixties. They are: form drag due to bottom topog-

raphy (Munk and Palmen, 1951); non-zonal dynamics (Stommel, 1957); and the water

discharged from the Antarctic (Barcilon, 1966). Very little attention has been given to the

overall vorticity balance, e.g., Baker (1982). Despite all these effort and some more recent

modeling works, e.g., Wolff et. al. (1991) and Klinck (1991), as Nowlin and Klinck (1986)

pointed out in their summary of the scientific level of our understanding of the dynamics of

the circumpolar ocean as of 1985, the important issue regarding both the momentum and

vorticity balances is still unclear. The most fundamental question here is what parameters

in the circumpolar ocean determine the zonal transport of the ACC.

1.1 Observational background.

The most fundamental dynamic property of the circumpolar ocean is the zonal transport

of the ACC. Realistic estimate of its zonal transport is often used as an observational check

on circulation models (Johnson and Bryden, 1989). Early estimates of the ACC transport

varied wildly because they required the selection of a reference level using dynamic calcula-

tion. As is clearly shown in Fig. 1.1, the geostrophic shear in the ACC extends practically

to the bottom. Any choice of a reference level would bias the zonal transport and result in

a westward flow below the reference level. The determination of the ACC transport is also

complicated by the fact that it is practically impossible to separate the ACC from adjacent



W E

\ -00 80

O.0
0.0 2.2

100 -100,

-0

180

Figure 1.3: Annual mean eastward wind stress (units of 0.1N/m 2 ) from Nowlin & Klinck
(1986).



currents associated with subtropical gyres in the open ocean except at Drake Passage. So

far all estimates of the ACC transport have been done within Drake Passage. This would

lead to the question, how representative is the ACC transport calculated within Drake

Passage of the entire ACC?

The first estimates of the ACC transport from direct measurement were made at

Drake Passage in 1969 (Reid and Nowlin, 1971) and 1970 (Foster, 1972). These two

independent estimates gave 237Sv and -15Sv, respectively. Understandably, these results

provoked further field observations. The reason for the wildly different results was later

identified as the poor determination of the reference level velocity in the calculation. Using

a much better data base, geostrophic transport through Drake Passage relative to 3000dba

for seven crossings made from 1975 to 1980 was shown to be fairly stable with an average

of 103Sv and a standard deviation of 13Sv (Whitworth et al., 1982). A major objective

of the International Southern Ocean Studies (ISOS) program was to obtain a year long

record of ACC transport at Drake Passage. Several estimates emerged from this program:

110 - 139Sv (Nowlin et al., 1977), 139 i 36Sv (Bryden & Pillsbury, 1977) and 127 i 14Sv

(Fandry & Pillsbury, 1979). Among these three estimates agreement was rather good. The

eastward flowing ACC is not uniformly distributed latitudinally in the circumpolar ocean.

Most of the ACC transport seems to be associated with two current cores separated by a

transitional zone. Through the thermal wind relation, these two cores are associated with

two density fronts: the subantarctic front and the polar front. Fig. 1.1 shows a vertical

section of the density anomaly at Drake Passage. A salient feature of this figure is that

the baroclinicity extends practically to the bottom. The fronts are rather narrow, 50 km

or less at Drake Passage (Nowlin and Clifford, 1982), and about 100 km in the open ocean

(Nowlin & Klinck, 1986). There are studies, e.g., Gordon et al. (1978) and Hoffman (1985),

which suggest that the Subantarctic Front and Polar Front are circumpolar in extent.

The final ISOS transport product at Drake Passage was a time series from January

1979 to January 1980. Results analyzed by Whitworth & Peterson (1985) are shown here in



Fig. 1.4. The net transport above 2500m, shown in the top panel of Fig. 1.4, is 125t10Sv.

The bottom panel shows the geostrophic transport in the upper 2500m relative to 2500dba.

The variation in this part clearly has a lower frequency than -the total. Pressure records

from 500m depth on both sides of Drake Passage during 1977 - 1978 were obtained, which

showed a strong semiannual signal (Wearn and Baker, 1980). Attempts have been made

to relate the observed variability of zonal transport in Drake Passage to that of the wind

stress over the Southern Ocean. Years of effort to correlate the variabilities of the zonal

transport and wind stress have proved equally difficult as the attempts to explain the

low and high index cycle of the mid-latitude westerlies in the atmosphere (Lindzen, 1986).

Wearn & Baker (1980) analyzed a 3-year time series of transport at Drake Passage inferred

from the bottom pressure measurement on both sides of Drake Passage. They found a high

correlation with the circumpolar-averaged zonal component of wind stress over the latitude

band 400S - 600S. Chelton (1982), however, pointed out that the results were suspect on

statistical background: the apparent high correlation could be due to existence of energetic,

narrow-band semi-annual variability in both time series.

One of the most distinct features of the circulation in the Antarctic circumpolar

ocean is that the influence of bottom topography on the circulation is much stronger than

that in subtropical gyres. This is demonstrated in two respects. First, the route of the

major part of the ACC is steered by bottom topographic features in the circumpolar ocean

shown in Fig. 1.5. Second, the influence of the topographic feature around Drake Passage

and any others in the circumpolar oceans seems to be quite different. Crossing Drake

Passage, the major part of the ACC shifts more than 10 degrees northward while in other

place it more or less follows the bathymetry or more precisely local geostrophic contours

(Gordon et al., 1978). This clearly indicates that the topographic features around Drake

Passage presumably has a far different role in determining the ACC compared to any other

topography there.
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Figure 1.5: Southern Ocean bathymetry from Gordon et al. (1978). Depth less than 4000m

is hatched.
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In addition to the strong ACC, the Antarctic region supplies the World Ocean with

its Antarctic Bottom Water, formed around the Antarctic Continent (Warren, 1981). This

bottom water formation must be compensated in the upper layer. In the deep layer, the

Antarctic Bottom Water could manage to flow northward across the circumpolar ocean as

deep western boundary currents against various ocean ridges. In the upper layer, how the

water is compensated is unclear. Since a strong meridional density gradient is associated

with the ACC as shown in Fig.1.1, a natural density barrier is created. Thus, in the

upper layer both sides of the ACC is isolated. Such isolating effect would presumably tend

to increase the density gradient across the ACC due to the air-sea heat exchange. This

has a profound influence on the baroclinic structure of the ACC. Using a 3-dimensional

ocean general circulation model, Cox (1989) found that if Drake Passage is closed, then in

the South Atlantic there is a strong meridional cell against South America driven by the

buoyancy forcing. In the presence of the gap near Drake Passage, however, the strength of

the meridional cell greatly reduces and splits into two cells with the stronger narrow cell

lying to the south of the gap. The presence of the ACC, which is generally thought to be

driven principally by wind-stress, would further strengthen this isolation of the extreme

Southern Ocean from the rest of the World Ocean.

Another related important issue regarding the water mass balance in the circum-

polar ocean is how the surface northward Ekman drift, which could be as large as 30Sv

(Trenberth et al., 1990), is returned. Warren (1990) and Toggweiler & Samuels (1992)

argued that on those isopycnal surfaces above the topographic features around Drake

Passage there can not be any net geostrophic flow across the circumpolar ocean. Thus,

Toggweiler & Samuels (1992) tied the return of the northward surface Ekman drift in the

circumpolar ocean with the North Atlantic Deep Water formation. The point is that this

North Atlantic Deep Water is deep enough to cross the circumpolar ocean as a regular

deep western boundary current against the topographic features around Drake Passage.

Nevertheless, this explanation seems to be unable to account for the difference between

the North Atlantic Deep Water formation of about 20Sv (Warren, 1981) and the surface



northward Ekman drift of about 30Sv (Trenberth et al., 1990) in the circumpolar ocean,

without even mentioning that some of the North Atlantic Deep Water flows to the Indian

and Pacific Oceans.

1.2 Dynamical modeling background

The most fundamental issue regarding the ACC is to find a dynamic balance that allows for

the observed surface wind stress as a driving force while maintaining a reasonable transport.

Transport is the most basic variable used to test the applicability of any models. By the end

of 1940's, the groundwork to understand the barotropic structure of the wind-driven gyre

circulation in closed basins was laid by Sverdrup (1947), Stommel (1948) and Munk (1950).

The natural step adopted by Hidaka and Tsuchiya (1953) was to apply the basic idea of

these theories to the circumpolar ocean. In their model, a constant wind stress was applied

as the driving force to a #-plane channel with a flat bottom; lateral and vertical viscous

effects provided the dissipation. Their model predicted a transport which was about an

order of magnitude larger than the observed value 134Sv (Nowlin and Klinck, 1986) with

a reasonable choice for the frictional process. Reducing the transport to a reasonable value

would require an uncomfortably large eddy frictional coefficient, which would imply (Wolff

et al., 1991) a meridional momentum transport of the order of 0.1m 2/s 2 . This is at least an

order of magnitude larger than the observed value 10-2 ~ 10- 3 m2 /s2 (Bryden and Heath,

1985). This dilemma was later confirmed by McWilliams et al. (1978). They developed

an eddy-resolving 3-layer Q-G model of the wind-driven circulation in a #-plane channel.

Vigorous eddies due to baroclinic instability developed in the flow. The equivalent eddy

viscosity calculated from the model was nearly equal to the value used by Hidaka and

Tsuchiya (1953) to get a realistic value for the transport. These results clearly suggested

that the basic dynamics adequate in a closed basin can not be directly applied to the

circumpolar ocean, and something fundamentally important must have been missing in



these models. As a result, three major mechanisms have been advanced to explain the

basic dynamics of the ACC.

The first one was introduced by Munk and Palmen (1951). They realized that nei-

ther the lateral friction nor bottom friction is large enough to balance wind stress. Instead,

they proposed that the bottom topographic form drag might be an efficient candidate to

balance the wind stress. It is now thought the only proper mechanism to balance the wind

stress input, e.g., Johnson and Bryden (1989), Wolff et al. (1991). Though continental

barriers are absent, yet there are significant submarine ridges to build up a net zonal pres-

sure gradient. They can enable the ultimate transfer of horizontal momentum into the

solid earth. This has two implications. First, the ACC must reach the bottom topography.

Second, the wind stress is not zonally uniformly transferred down into the bottom. The

difficulty with this mechanism is how the bottom topographic form drag is generated and

how the wind stress at the surface gets transported down to the bottom in the presence

of stratification. The estimation by Wang (1993b), which is not presented here, shows

that the form drag due to the nonlinear Rossby wave radiation resulting from flow over

topography discussed by people such as McCartney (1975) is too small. This presumably

suggests that some other mechanism must account for the major bottom topographic form

drag generation in the circumpolar ocean.

The second one was proposed by Stommel (1957). From an observational point of

view, Stommel was the first to find that the ACC does not flow in a zonal channel at all

but that only a narrow band of latitude is not blocked by land barrier. Even this narrow

band is blocked by bottom topography that comes within 1000m of the surface. Stommel

argued that most of the flow is Sverdrup-like. Furthermore, he maintained that viscous

dissipation takes place in the western boundary currents that exist along land barriers, with

the principal dissipation occurring downstream of Drake Passage along South America.

Stommel's argument is essentially about the potential vorticity balance associated with

the ACC.



The third one was put forward by Barcilon (1966, 1967). He showed that the

discharge of water from the Antarctic continent can drive a substantial westward flow,

thus reducing the eastward zonal transport. However, Nowlin and Klinck (1986) argued

that realistically this discharge is too weak to exert any significant effect on the dynamics

of the ACC.

Wyrtki (1960) made a detailed Sverdrupian transport calculation for the Southern

Ocean using his best estimate for the meridional structure of the zonal wind stress at

that time. The transport was integrated from the western coast of South America, where

meridional structure of the flow across Drake Passage was prescribed. The calculated

circulation was consistent with the large scale circulation in the Southern Ocean as it

was understood then. Obviously, this calculation was a diagnostic calculation which itself

could not determine the transport of the ACC. It did not address the dynamic balance

within Drake Passage. Baker (1982) made a similar Sverdrupian calculation using a much

improved data base. His calculation basically supported Wytki's (1960) calculation.

The first wind-driven transport theory of the ACC was put forward by Kamenkovich

(1962) as a combination of barotropic and Ekman flow. No stratification was included,

but smooth bottom topography was allowed. Vertical friction was used to balance the

wind stress. His model predicted a reasonable transport. However, the assumptions that

there is no blocked geostrophic contour and the surface Ekman drift be balanced by a

opposite bottom Ekman flow makes it difficult to tell whether his theory is relevant to the

ACC. Gill (1968) realized Stommel's (1957) hypothesis in its dynamic detail except with

a flat bottom. It was Stommel's basin model (1948) with a recirculating gap. Although

his results did show the dynamic importance of the meridional boundaries on the flow in

the Southern Ocean, without bottom topography it still required a uncomfortably large

bottom friction or lateral friction to get a reasonable ACC transport. Schulman (1970)

presented a numerical version of Gill's model including the effect of nonlinearity and bottom

topographies. His model results showed that the topographic ridge in Drake Passage



had far stronger influence on the ACC than any topographic features in the open ocean.

This numerical results suggested that the dynamic balance in Drake Passage might be far

different from that in the open ocean, which seemed to be consistent with the observational

study such as Gordon et al. (1978). A numerical investigation about the interaction of

stratification and bottom topography was carried out by Gill and Bryan (1971) by using an

eight-level primitive equation model. Two forms were considered for the gap through which

recirculation passes: with and without a topographic ridge in the gap. The interesting

result of their work was that as they added the topographic ridge, the transport increased

rather than decreasing as Munk and Palmen (1951) suggested. They ascribed this to the

thermal forcing induced by the presence of the topographic ridge.

Johnson and Bryden (1989) made a diagnostic study of the baroclinic structure of

the ACC. Their model incorporated the width of the ACC, the strong eddy process in the

region parameterized in terms of large scale characteristics, and the deep penetration of a

baroclinically unstable velocity field. Assuming that downward eddy transfer of momen-

tum was predominantly by transient eddies, they predicted a reasonable zonal transport.

McWilliams et al. (1978) described a set of eddy-resolving numerical experiments for a

wind driven channel flow over topography. In sharp contrast to the conventional thought

of down-gradient diffusion of momentum, their model showed that lateral Reynolds stresses

exerted by eddies on the mean flow tended to transfer momentum into the center of the

eastward current and thus concentrate the jet. Their model predicted several narrow jets,

which might have some implications for the observed multi cores of the ACC. Wolff et

al. (1991) extended McWilliams et al.'s (1978) work to a two-layer eddy-resolving Q-G

model. The principal dynamic balance emerging from the model results supported Munk

and Palmen's (1951) concept - momentum input by wind stress is transported downward

to the deep ocean, where it is further put into the solid earth via the topographic form

drag. However, their model results showed that the interfacial form drag is mainly gener-

ated by the standing topographic eddies, rather than by the transient eddies as Johnson



& Bryden (1989) assumed. Treguier & McWilliams (1990) reached a similar conclusion in

their numerical study on the ACC.

1.3 Overview of thesis

Despite all the effort, the central question as to what parameters in the Southern

Ocean determine the zonal transport of the ACC is still unanswered. To respond

to this question we have to understand the role of bottom topography as previous studies

clearly showed us that bottom topography must play an essential role in the overall dy-

namics of the Southern Ocean circulation. The central question can be answered from two

different angles. From the point view of momentum balance the question is really how bot-

tom topographic form drag is generated which is needed to balance the momentum input

by the wind stress. How the zonal transport is tied to the bottom topographic form-drag

generation is of key importance. In the presence of stratification another question natu-

rally arises as to how the interfacial form drag is generated. From the point view of mass

balance in the circumpolar ocean, the westerly wind stress drives the surface northward

Ekman flux on the order of about 30Sv out of the circumpolar zone. For the large scale

circulation it is generally thought that geostrophy applies. In a channel with a flat bottom

it is quite clear that geostrophic flow can not carry any net meridional volume flux. Now,

how is the northward surface Ekman drift returned? Can geostrophic flow in a channel

carry a net cross-channel volume flux?

1.3.1 Model assumptions

The realistic bottom topography and coastal line shape, as shown in Fig.1.5, are too compli-

cated to be included in any simple model. Throughout this thesis, the realistic circumpolar

ocean is idealized as either a ,3-plane channel (Chapters 2, 4 and 5) or 3-plane channel

with simple partial meridional barriers (Chapters 3, 5 and 6). The bottom topography



is idealized as simple ridges. Most of the time only a single ridge is considered, for the

sake of obtaining a simple explicit solution. It is by no means an attempt to simulate the

realistic large scale circulation in the Southern Ocean, but rather to try to understand the

physical process behind those complicated Southern Ocean circulations. In Chapters 2,

3 and 4, the dynamic role of bottom topography is discussed from the point of view of

momentum balance in the circumpolar ocean. In Chapters 5 and 6, the dynamic role of

of bottom topography is discussed from the point of view of water mass balance in the

Southern Ocean. The discussions throughout this thesis are carried out with the assump-

tion of inviscid limit for the sake of achieving solutions of explicit form. For the large scale

wind-driven circulation in a closed basin an important parameter is U/L 2 < 1, where U

and L are the characteristic velocity and length. Thus, the inertial processes are ignored in

the theories on the gyre circulation such as those of Rhines & Young (1982b) and Luyten,

Pedlosky & Stommel (1983). For the large scale circulation in the circumpolar zone with

U ~ 10cm/s and L ~ 500km, we have

U
~ 0.04 < 1.

#L2

Another way to look at this is by comparing the meridional momentum flux with the

wind stress. Bryden & Heath (1985) concluded from observational data that the merid-

ional momentum flux is about an order of magnitude smaller than the mean wind stress

input. Thus, in the discussions through-out this thesis all inertial processes will be ig-

nored. Within the various frontal structure with U ~ 50cm/s and L ~ 100km, however,

U/#3L 2 > 1. Thus frontal structure is left out throughout this thesis. Furthermore, as a

first step towards understanding the large scale circulation in the Southern Ocean, we will

ignore the variabilities of the circulation throughout the thesis.

1.3.2 Synopsis of thesis

In Chapter 2 we study the wind-driven circulation in a linear barotropic channel model

in the presence of a bottom ridge. There is a critical height of the ridge, above which all



geostrophic contours in the channel are blocked. In the subcritical case, the Sverdrupian

balance does not apply and there is no solution in the inviscid limit. In the supercritical

case, however, the Sverdrupian balance applies. The form drag is generated through two

different physical processes: the through-channel recirculating flow and the Sverdrupian

gyre flow. These processes are fundamentally different from the nonlinear Rossby wave

drag generation. In this linear model, the presence of a supercritically high ridge is essential

in the inviscid limit. The form-drag is generated regardless of the flow direction. With

this form drag generation determined, an explicit form for the zonal transport in the

channel is obtained, which clearly shows what model parameters determine the through-

channel transport. In addition, the model demonstrates that most of the potential vorticity

dissipation occurs at the northern boundary where the ridge is located.

In Chapter 3, the results from the homogeneous channel model in Chapter 2 are

then extended to a model whose geometry consists of a zonal channel and two partial

meridional barriers along each boundary at the same longitude. Both the model transport

and especially the model circulation are significantly affected by the presence of the two

meridional barriers. The relation between the transport and model parameters is more

complicated. The presence of the northern barrier always leads to a decrease in the trans-

port. The presence of the southern barrier, however, increases the transport for a narrow

ridge. In terms of the circulation structure, the presence of a southern barrier has a far

more profound influence than that of a northern one. The northern barrier only has a

localized influence (confined over the ridge) on the circulation pattern, while the southern

barrier has a global influence in the channel.

In Chapter 4, the influence of stratification is discussed. A multi-layer Q-G model is

constructed by assuming that potential vorticity in all sub-surface layers is homogenized,

which is presumably achieved by those transient eddies resulting from baroclinic instability,

not explicitly included. It is shown that the circulation is made up of the baroclinic part and

the barotropic part, which is same as that in a corresponding barotropic model. The wind



stress only determines the barotropic component, while the baroclinic part is not directly

related to the wind stress. The potential vorticity homogenization and the lateral boundary

conditions together determine the baroclinic component. The presence of the stratification

does not affect the bottom topographic form drag generation discussed in the corresponding

barotropic model. The interfacial form drag is generated by the stationary perturbations.

Corresponding to the circulation structure, the zonal through-channel transport associated

with the barotropic circulation is determined by the wind stress and bottom topography.

The other part associated with the baroclinic circulation, however, is not directly related

to the wind stress and it is determined by the background stratification. The presence of

stratification increases the zonal transport.

In Chapter 5, based upon the discussion on the geostrophic contour, a simple

barotropic model of abyssal circulation in a circumpolar ocean basin is constructed. The

presence of a supercritically high ridge is both necessary and sufficient for geostrophic

flow in a /-plane channel to support a net cross-channel volume flux. In the presence

of a sufficiently high ridge, the classical Stommel & Arons theory applies here, but with

significant modifications. The major novelty is that a through-channel recirculation is

generated. Both its strength and direction depend critically upon the model parameters.

Then, a schematic picture of the abyssal circulation in a rather idealized Southern Ocean is

obtained. The most significant feature is the narrow current along the northern boundary

of the circumpolar basin. It feeds the deep western boundary currents of the Indian Ocean

and Pacific Ocean and serves to connect all the oceanic basins in the Southern Ocean.

Then, in Chapter 6 the question of what is the fate of the northward surface Ekman

transport out of the circumpolar zone is discussed in a two-layer model with an infinitesi-

mally thin surface Ekman layer on top of a homogeneous layer of water in a rather idealized

Southern Ocean basin. First, the case with a single subtropical ocean basin is discussed.

In the case with a sufficiently high ridge connecting the Antarctic and the meridional bar-

rier, an explicit solution is found. The surface Ekman layer sucks water from the lower



layer in the circumpolar basin. This same amount of water flows northward as the surface

Ekman drift, and downwells to the lower layer in the subtropical gyre, where it is carried to

the western boundary layer. From the western boundary layer of the subtropical gyre, the

same amount of water flows southward as a western boundary current across the inter-gyre

boundary between the circumpolar ocean and the subtropical gyre along the west coast to

the southern boundary of the meridional barrier. From there, the same amount of water

is carried southward by the wind-driven Sverdrupian gyre circulation and feeds the water

loss to the surface Ekman layer due to the Ekman sucking in the interior circumpolar

ocean. Then, the case with multiple subtropical ocean basins such as the Southern Ocean

is discussed. It is demonstrated that the surface Ekman drift drives a strong inter-basin

water mass exchange.

It should be pointed out that due to the assumption of the inviscid limit, internal

discontinuities of streamfunctions is one of the major features in the circulation. The

internal current is presumably vulnerable to the presence of small but finite dissipation. It

is not very clear to us at this time how much of and to what degree the circulation obtained

in the inviscid limit will change when finite friction is introduced into the model. A parallel

numerical calculation with finite friction is very desirable in testing the robustness of the

solution, especially that of the multi-layer model, in the invicsid limit.

In summary, the dynamic role of bottom topography in the potential vorticity,

momentum and mass balances in a f-plane channel is discussed. It will be shown that

by blocking all geostrophic contours, the dynamics of both wind and source-sink driven

circulation in a 0-plane channel is somewhat similar to that in a closed basin which we

are familiar with. The physical process through which bottom topographic form drag

is generated is discussed in Chapter 2. The influence of partial meridional barriers on

the wind-driven circulation is discussed in Chapter 3. The influence of stratification is

discussed in Chapter 4. A simple model for the abyssal circulations will be presented in

Chapter 5. The water mass balance associated with the wind-driven circulation is discussed



in Chapter 6. We conclude this thesis with summary and discussion about the relevance

of the results from this thesis to the realistic large scale circulations in the Southern Ocean

in Chapter 7.



Chapter 2

Wind-driven circulation in a -plane
channel, Part I: A linear
homogeneous channel model

2.1 Introduction

Ever since the pioneering work of Sverdrup (1947), Stommel (1948) and Munk (1950),

almost all theories about large scale wind-driven circulations have been focused upon the

gyre circulations within closed basins, such as the North Atlantic. The backbone of all

these theories is Sverdrup dynamics, which is essentially a theory of potential vorticity.

Within the framework of this theory, it is generally assumed that gyre-scale circulations

within closed basins can be divided into two parts in which different dynamic processes

prevail. The first part is the so-called Sverdrup interior where friction and inertial effects

are not important. The second part is the western boundary region where the interior

southward Sverdrup flow is returned northward. Within this western boundary region,

higher order dynamics such as bottom friction (Stommel, 1948), lateral diffusion (Munk,

1950) and inertial effects (Charney, 1955) neglected in the Sverdrup interior are of essen-

tial importance. These theories have been quite successful in explaining many important



observed features in large scale gyre circulations. See Huang (1991) for a review of the

latest developments in the theories of large scale wind-driven circulations.

Despite much success in explaining wind-driven gyre circulations in closed basins,

the dynamic features of the Antarctic Circumpolar Current are poorly understood. Dif-

ferent from basins with meridional boundaries, the Antarctic Circumpolar region between

56*S and 62 0S is the only zonally unbounded region in the world oceans. Here the westerlies

continuously put eastward momentum and negative potential vorticity into the eastward-

flowing ACC (Nowlin and Klinck, 1986). Unlike the gyre circulation, here both the momen-

tum balance and potential vorticity balance play vital roles in determining the structure of

the ACC. The essence of the Sverdrup theory is the presence of an eastern boundary which

blocks all the geostrophic contours and gives rise to a single solution by integrating from

the eastern boundary. Since there are no meridional barriers in the Antarctic Circumpolar

Ocean, it is not clear whether Sverdrup dynamics can apply.

The most fundamental issue regarding the ACC is to find a dynamic balance which

allows for observed surface wind stress as a driving force while maintaining reasonable

transport values. Transport is a key variable to test the applicability of models to the

ACC. Early on, Munk and Palmen (1951) suggested that topographic form drag could

provide the retarding force necessary to balance the wind stress. Stommel (1957) first

observed, which is now apparent from the Gordon et al. atlas (1982), that the ACC does

not flow along latitude circles at all. In fact only a narrow band of latitude is not blocked

by land barriers and even this band is semi-blocked by bottom topography that comes

within 1000m of the surface. Stommel maintained that most of the flow is Sverdrupian-

like, since a pressure difference is allowed to build up across continental boundaries. He

further argued that dissipation take place mainly in the western boundary currents present

along the land barriers, with the principal dissipation occurring downstream of the Drake

Passage along South America.



Wang (1993a) (hereafter referred to as W93) has carried out a series of studies on

wind-driven circulation in a -plane channel, mostly through the approach of numerical

integration for the viscous cases with or without inertial effects. These studies show that a

topographic ridge and isolated topography have fundamentally different dynamic influences

on the wind-driven circulation. This suggests to us that the topography near Drake Passage

might play a far different role than any others in the Circumpolar Ocean. To see this, we

consider the following linear barotropic potential vorticity equation in the case with a

uniform wind stress

J (,#y + = -KV 2g', (1.1)

where conventional notations (see Pedlosky, 1987) have been used, and fo, H, h and r,

represent the mean Coriolis parameter in the 1-plane channel whose width is D, the

mean total water depth, the bottom topography and the bottom frictional coefficient,

respectively. In this simple linear model, the geostrophic contours are determined by

q = y + h(z,y).

In the case with isolated topography, no geostrophic contour is blocked due to the presence

of the topography. In the inviscid limit, there is a free mode to the linear model with

Of = Q #,3y+--oh,( fH

where Q could be any function. However, in the presence of a ridge, such as h = h(z),

some geostrophic contours will be blocked by the lateral boundaries. There is a critical

height

3Dhe -- H,
Ifol

above which, namely

max{h(x)} > he,



all geostrophic contours in the channel are blocked by the lateral boundaries due to the

presence of the ridge. In this case, there is no free solution to the linear model in the

inviscid limit. Any motions have to be externally forced. Actually, Bryan & Cox (1972)

already pointed out the importance of the geostrophic contour blocking in their numerical

simulation of the world ocean circulations. The numerical calculations in W93 suggest

that in the case with ho > he, the total through-channel transport converges to a finite

value as r, diminishes. This implies that a linear model possesses a basic dynamic balance

in the inviscid limit. The calculations also indicate that the zonal transport in the channel

tends to increase as the width of the ridge increases and decreases as the ridge height

increases. The numerical calculations, however, could not provide a clearer picture beyond

these points due to its own limitation. Then, the fundamental questions still remain to

be answered as to what and how model parameters determine the zonal transport in the

channel.

The first theory about the through-channel transport involving bottom topography

was proposed by Kamenkovich (1962). He made the assumption that there were no blocked

geostrophic contours, which in his model coincide with the streamlines to the lowest order.

Given the situation in the Drake Passage, this is clearly not justified. He showed that

the interior transport along the curves of constant f/H is proportional to the integral

of the wind stress component along f/H contours. Johnson and Hill (1975) extended

Kamenkovich's model (1962) into a 3-D homogeneous ocean with the additional assumption

that the surface Ekman transport balances the bottom Ekman transport. The model result

is about the same as that of Kamenkovich's. Given the situation around Drake Passage,

obviously, we have to modify the assumption that no geostrophic contour is blocked. Davey

(1980) presented a quasi-linear theory for rotating flow over topography in periodic channel.

His model had a weak and uniform forcing for small bottom friction and again isolated

bottom topography was used.



In this chapter, the Circumpolar Ocean is idealized as a simple homogeneous zonal

/-plane channel, isolated from the rest of the world ocean. There has been observational

evidence (Johnson & Bryden, 1989) that suggests that the momentum exchange between

the ACC and its adjacent oceans is negligible compared with the momentum input from

the wind stress. The focus of our study is on a linear barotropic model of the wind-driven

circulation in a zonal 3-plane channel in the inviscid limit. The discussions for a /-plane

channel in the presence of partial meridional barriers will be presented in Chapter 3. The

influence of stratification will be discussed in Chapter 4. The most fundamental question

we want to pursue is what and how model parameters control the zonal transport in the

channel. To analyze the dynamics of the circulation, several idealized prototypes will be

studied. We will begin our analyses with a f -plane channel model forced by a uniform wind

stress in Section 2, because it is very simple, yet physically rather illuminating. Afterwards

we will discuss the circulation in a /-plane channel forced by a uniform wind stress in

Section 3. The dynamic effect of the wind stress curl on the transport will be discussed in

Section 4. Special attention will be paid to topographic form drag generation via the wind

stress curl forcing. Finally, Section 5 closes this chapter with some discussions about the

results and the relevance of the model results to the Antarctic Circumpolar Current.

2.2 An f-plane model with a uniform wind stress

Assuming a uniform wind stress with r, = constant and r, = 0, for an f-plane channel

the potential vorticity equation (1.1) reduces to

J b,Lh = -4724 (2.1)

with boundary conditions

0|Y=o = 0; lk|y=D = fbo. (2.2)



'ko is determined through the momentum balance

foh - Hcgfo + = 0, (2.3)
Ox D P0

obtained by multiplying the zonal momentum equation by H - h, integrating over the

whole channel and using the quasi-geostrophic approximation. In (2.3), -xy is defined as

ZY 2 -- DZdxdy,

where L is the length of the channel. First, consider a simple case with

h(z, y) = Tho(1 -IL |) if |L/2 - ; ; (2.4)
y 0 otherwise.

The channel is divided into three different dynamic regions, A, B and C, shown in Fig.

2.1. On this f-plane channel, the potential vorticity is

q = -h + fo,H

i.e., the topographic vortex stretching term plus a constant planetary vorticity. For any

isolated topographic features in the f-plane channel, geostrophic contours coincide with

isobaths and thus close themselves. Any ridge in the form of (2.4) with ho > 0, however,

would block all the geostrophic contours over the ridge, as is shown in Fig. 2.1. In fact,

the critical height for the ridge like (2.4) is

he = 0.

So any ridge with ho > 0 would block all the geostrophic contours over the ridge; Fig. 2.1

is just one such example.

In region A, the potential vorticity is uniform and fluid particles are allowed to move

without any external potential vorticity forcing. In regions B and C, fluid particles are free

to move along isobaths. Any cross-isobath movement, however, has to be associated with

strong vorticity generation through the bottom frictional process, as is obvious from (2.1).

Consider how a fluid particle, P, shown in Fig. 2.1, crosses the ridge. In region A, its
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potential vorticity is fo. When P crosses x = L/2 - x0 and enters B, its potential vorticity

changes to fo(1 + h/H). Thus, there must be a source of negative vorticity. In this model,

it can only come from the frictional torque produced by the bottom friction within some

narrow boundary layers. In fact, a narrow southern boundary layer current over region

B along segment c - d fits the vorticity requirement because the strong frictional force

near the southern boundary and the weak frictional force off the boundary creates the

necessary vorticity source for a boundary current. On the other hand, any strong zonal

current away from the southern boundary can not meet the vorticity requirement because

on the southern side of such a current there is positive vorticity generation due to the

cyclonic velocity shear. Similarly, there is a northern boundary layer along segment a - b

over the region C. Accordingly, there is no boundary current possible along segment e - a

and d - f. So, compared to Stommel's classical model (1948) for a wind-driven circulation

in a closed basin, e - a and d - f are the two equivalent eastern boundaries, while a - b and

c - d are the two equivalent western boundaries with the background potential vorticity

decreasing (increasing) over region B (C) eastward.

Once the equivalent eastern and western boundaries are identified, it is rather

straightforward to find the solution in the inviscid limit. This is true for any arbitrary

ridges. In the inviscid limit the governing equation for both regions B and C except the

two equivalent western boundaries is

J( 0, h .=

Introducing characteristic variable s such that

dx fo A (2.5)
ds H ay'

dy fo A Oh
ds H x6

the potential vorticity equation reduces to

= 0. 
(2.7)

da



The boundary condition for region B, at the equivalent eastern boundary e - a, is

Y18=o = D,

0=o = fo.

Thus the solution is

B = 0o, (2.8)

except within the equivalent western boundary layer along segment c - d. This is true

for any arbitrary ridge. Similarly, the boundary condition for region C, at the equivalent

eastern boundary d - f, is

YI,=o 0,

Iao = 0.

Thus the solution is

Ic = 0, (2.9)

except within the equivalent western boundary layer along segment a - b. Along c - d, the

governing equation for the boundary layer current is

ay By2 '
where

S = r/a < D

with a = -(fo/H)(ho /&x) = -foho/Hxo as the topographic 3. 6 is the Stommel bound-

ary layer thickness along c - d. The boundary layer solution is

0 = fo(1 - e-"/'), (2.10)

except right near the corner points x = L/2 - xo and x = L/2. Similarly, along segment

a - b except x = L/2 and x = L/2 + xo, the boundary layer structure is

= Poe(D-)/. (2.11)



This completes the solution over the ridge. Between B and C is a discontinuity of stream-

function with

AOIC-B = -)o, (2.12)

which represents the internal jet connecting the two equivalent western boundary currents

along segments a - b and c - d.

With this solution over the ridge, the topographic form drag can be easily calculated.

The total form drag generated in the channel is

totai 2 -poJJ fo4-Adxdy = po(Hpo)AqD,

where Aq -foho/H. Thus, in the inviscid limit, the total form drag is linearly

proportional to the zonal transport, -H~o, in the channel, the width of the channel D,

and the strength of the potential vorticity barrier Aq = -foho/H imposed by the ridge.

It is linearly related to the relative height of the ridge with respect to the mean depth of

the water in the channel and the Earth's rotation rate. This linear topographic form-drag

generation is fundamentally different from that due to the downstream nonlinear Rossby

wave radiation in inertial models discussed by Johnson (1977). In an inertial model on an

f-plane, there is no topographic form drag generation. While in this linear barotropic

Q-G model in the inviscid limit, although isolated topographic features can not generate

form drag, ridges which block all geostrophic contours can lead to topographic form drag

generations. The form-drag is generated regardless of the flow direction in the channel,

and it is always against the flow.

From the total form drag, the channel-averaged form drag is

DO O fohopo
TD = pofoh -Po - (2.13)

4x L

Balancing the form drag and the wind stress input, one obtains the transport and a simple

relation between the model parameters and the zonal transport in the channel in the



inviscid limit

T, = -Hi0 = .L (2.14)
po folho

According to (2.14), the relation between the model parameters and the zonal trans-

port in the channel is rather simple in the inviscid limit. First of all, this simple formula

shows that the width of the channel has no effect on the total transport, which is fun-

damentally different from the frictionally controlled case with a flat bottom such as that

discussed by Hidaka & Tsuchiya (1953) and the fl-plane case to be discussed later. This

can be understood in the following way. By averaging the z-momentum equation along

the southern boundary and using vI,=o = 0, we obtain a momentum constraint at y = 0

-ulY=o = O (2.15)
H pO

It indicates that at the southern boundary, the wind stress is balanced purely by the bottom

frictional drag. This is also true at the northern boundary. As r, -+ 0, the boundary layer

current along segment c - d converges into a very strong narrow jet with characteristic

thickness 6 < D. Thus, the channel width D has no direct influence on either the boundary

layer thickness or the structure of the solution in the inviscid limit. Using (2.10) one has

= f oho 'o (2.16)
H L'

which is independent of both D and xO. Substituting (2.16) into (2.15) still leads to (2.14).

Second, the transport is proportional to L, the length of the channel. This is simply

because the total wind stress input along each latitude is proportional to L while the total

form drag is independent of the length of the channel. Lastly, the width of the ridge has

no effect on the transport so long as it is finite because either the form drag generation or

(2.16) is independent of the width of the ridge.

Equation (2.14) can be rewritten as

Tr - roL/po
Aq'



where Aq = -foho/H. Thus, the transport is inversely proportional to the strength of

the background potential vorticity barrier Aq, introduced by the presence of the ridge and

determined by the ridge height. From the potential vorticity balance, Aq represents the

net amount of potential vorticity each fluid particle has to exchange with the bottom in

order to cross the ridge. In this sense, the problem is really potential vorticity controlled in

the inviscid limit. Aq measures the degree to which the ridge impedes the through-channel

flow. Thus, we introduce a parameter, potential vorticity resistance, as

Pc = A q,

for a single ridge. In the case with a flat bottom, there is no potential vorticity resistance,

and the zonal transport in the channel goes to infinity in the inviscid limit. Similarly, for

isolated bottom topography with no blocked geostrophic contours, no potential vorticity

resistance is introduced either, so the transport still goes to infinity in the inviscid limit.

P, depends upon three model parameters, namely, fo, the Coriolis parameter, H, depth

of the water, and the ridge height, ho. In the barotropic model, the bottom topography

affects the whole water column uniformly, so it is not surprising to see that the model

transport is very sensitive to the ridge height, especially when ho is low.

So far, only the circulation structure over the ridge has been discussed. In the

interior away from the ridge, region A in Fig. 2.1, the governing equation is

a2+ -- = 0.
aX2  ay2

The boundary conditions at y = 0, D are

V =O 0; #iy=D = 0o,

while those at x = L/2 - xo and x = L/2 + xo are

=L/2-m = fo for y # 0,

x=L/2+xo = 0 for y #D;
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Figure 2.2: (a) The normalized streamfunction in the interior away from the ridge in the
inviscid limit with L = 24000km, D = 1800km and zo = 1500km, the corresponding
circulation over the ridge shown in Fig. 2.1. (b) The normalized streamfunctions of the
wind-driven circulation in the f -plane channel, for a case with a ridge in the form of (2.4),
ro = 0.08N/m 2 , L = 1000km, D = 100km, zO = 200km, ho = 60m and small but finite
friction r, = 5 x 10- 8 /s. Note here that in order to resolve the boundary layer currents, a
much smaller model domain is used. (c) Same as (b) but for a case with a Gaussian ridge.



see the appendix for a detailed discussion. Fig. 2.2(a) shows the normalized interior

streamfunction in the inviscid limit with xo = 1500km. It is driven by a source at the

upper left corner and a sink at the lower right corner. This figure together with the

circulation over the ridge sketched in Fig. 2.1 completes the wind-driven circulation in the

f -plane channel in the inviscid limit.

In the inviscid limit, along segment d- a over the ridge is a strong internal jet whose

width is zero. In the presence of a small but finite e, its width is finite. The leading terms

in the potential vorticity balance are

8- K-.

A scale analysis of this equation would give the thickness of the internal boundary layer as

It is quite different from the Stommel boundary layers. Numerical integration of the

model (2.1) and (2.2) is employed to find the solution for a small but finite K. Fig. 2.2(b)

shows the normalized streamfunction for a topographic feature in the form of (2.4) with

ho 60m and . = 5 x 10-8. In order to resolve the boundary layers whose scales are

b ~ 5km and b, ~ 23km, a much smaller model domain is chosen with D = 100km,

L = 1000km and x0 = 200km. The model resolution is Ax = 10km and Ay = 5km. Both

the internal boundary layer over the ridge and the two Stommel boundary layers along

the two equivalent western boundaries are well resolved. Corresponding to the inviscid

solution, there are a southern and a northern boundary layer over the ridge, which are

joined by an internal boundary current on the top of the ridge. About 100km (the width

of the channel) away from the ridge, is a uniform interior flow. Although the discussion

so far has been only for the case with linear profile like (2.4), the same approach and

argument apply to cases with arbitrary profile. One example is shown in Fig. 2.2(c) with

same model setting, except that h(x) has a Gaussian shape. Because a now changes with

x, so does the boundary layer thickness. And noticeably, a -+ 0 as x -+ 0. So for finite



ru, there is substantial east-west tilting of the internal jet joining the two boundary layer

jets. But as r, -* 0, the internal jet will and should converge to line x = L/2.

Finally, let us consider a case in which the topography consists of a series of isolated

ridges such as that shown in (2.4) with corresponding height {h.1} (i = 1, ---, N). Following

the same argument as that for the case of a single ridge, each ridge produces a potential

vorticity resistance with strength

Pej -fo-*'.
H

The total potential vorticity resistance introduced by the presence of the series of isolated

ridges is then

PC = PJ,

which is again independent of the width of the ridges. The presence of any additional

isolated bottom topographic features makes no contribution to the total potential vorticity

resistance. Correspondingly, the through-channel transport is

T,. = roL/po (2.17)
PC

It is rather interesting to see that formally the relation among the total wind stress forcing

roL along each latitude, the model transport T,. and the potential vorticity resistance PC

is strikingly similar to Ohm's law in the elementary theory of electricity.

2.3 A 0-plane model with a uniform wind stress

We discussed the wind-driven circulation in a f-plane channel forced by a uniform wind

stress. In the presence of a potential vorticity barrier introduced by a ridge, for example,

the through-channel transport of the wind-driven circulation is potential vorticity con-

trolled in the inviscid limit. In a 3 -plane channel, the presence of the 3-effect tends to



a
f c d yD

Y

x

h~x)

fC d d

y =0

~LL

Figure 2.3: (a) The geostrophic contour structure in the channel for the subcritical case
ho < he, dashed lines are the geostrophic contours. On top is the profile of the ridge. (b)
The geostrophic contour structure for the supercritical state with ho > he, dashed lines are
the geostrophic contours. The solid arrows represent boundary layer currents, the open
arrows represent the internal currents along a geostrophic contour.
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steer geostrophic contours across the ridge without being blocked by the lateral bound-

aries, as is shown in Fig. 2.3(a). Now the focus of this section is how the presence of

the f-effect will change the potential vorticity resistance, and thus the through-channel

transport in the inviscid limit. A simpler case forced by a uniform wind stress is discussed

first. The case with a nonuniform wind stress will be studied in the next section.

The governing equation in the #-plane channel is

J 4,#y+ h = -V 2 #, (3.1)

with the boundary condition

f lY=o = 0; si|y=D = 4)O. (3.2)

Again, #b0 is determined through the momentum balance (2.3), and h is defined in (2.4).

In the f-plane channel model, there is no potential vorticity gradient in the absence of

ridges. In the presence of the /-effect, however, geostrophic contours defined as

h
Oy + fo- = constant,H

are simply zonal lines in the absence of any topography. In the presence of a ridge,

geostrophic contours are deflected over the ridge, and some of the geostrophic contours are

blocked by the southern or northern boundaries over the ridge, as is shown in Fig. 2.3(a).

If ho < he, then all those geostrophic contours

3y + fh = 3 yo,H

with 0 < y D(1 - ho/he) are not blocked. 4 in Fig. 2.3(a) is just one such unblocked

geostrophic contour. Here

he = -- H,Ifo|

is the critical height of the ridge. ho < he is the subcritical state. Those nonblocked

geostrophic contours provide the free passage for the through-channel flow. Along these



nonblocked geostrophic contours, there is a free mode to the linear model (3.1) with

Of = Q #y + fog ,=H

where Q could be any function. In this case, the presence of the ridge does not introduce

any potential vorticity barrier in the channel, and along these nonblocked geostrophic

contours, any forcing could lead to a strong linear resonance depending upon the frictional

processes. And the solution is unbounded in the inviscid limit.

If ho > he, the model is in a supercritical state in which all geostrophic contours

in the channel are blocked either by the southern or the northern boundary as is shown

in Fig. 2.3(b). Correspondingly, there are neither free passages nor free modes in the

channel. To cross the ridge, the minimum amount of potential vorticity a fluid particle

has to exchange with the bottom is

ho
Pc = Ifolf- D. (3.3)

Parallel to the case on an f-plane, Pc is defined as the potential vorticity resistance

introduced by the the ridge on the f-plane. Obviously, the strength of the potential

vorticity resistance depends upon the supercriticality of the ridge, Ahc ho - h,

because

PC = o -- Ahc.
H

Note that he = 0 on the f-plane, so in the f-plane channel with the presence of any

ridges, there is always a potential vorticity resistance and the wind-driven circulation is

always supercritical. In this sense, Ahc is actually the effective height of a ridge on the

f-plane. At the critical state or in the subcritical state with ho <_ he, Pc = 0 and there

is no potential vorticity resistance.

As discussed in Section 2, in the supercritical state with a uniform wind stress,

no cross-geostrophic contour flow is allowed unless there is a strong potential vorticity



generation through the bottom friction. Similar to the f -plane case, an equivalent western

boundary layer is and is only allowed to develop along the segments a - b and c - d, shown

in Fig. 2.3(b). Different from the f-plane case, even in the interior away from the ridge,

there is a potential vorticity gradient due to the presence of the #--effect. Away from the

two possible equivalent western boundaries, any flow must follow geostrophic contours.

Therefore, the flow joining the two boundary layer currents along a - b and c - d has to

flow along a geostrophic contour, 41, defined as

y = -jz- -) +D. (3.4)

4i intersects the northern boundary at point c (L/2, D) and the southern boundary at

point b' (L/2 - xo + x.,0), where

# Ah,
z, = Xo -- D = xo.

a

It actually measures the supercriticality of the ridge height. Along b' - b there is no

boundary current. Otherwise, it has no place to go. b' turns out to be a corner point

where the current in the boundary layer a - b' changes its direction and flows along 41. c

is another corner point where the current changes its direction again and flows along the

northern boundary. Now the question is where this northern boundary current terminates.

There is a geostrophic contour f2, defined as

y = + zo - x) (3.5)
#2

t2 intersects the southern boundary at point e (L/2 + zo, 0) and the northern boundary at

point d' (L/2 + x., D). The requirement of no flow across geostrophic contours forces the

current in the interior away from the ridge to flow along the southern boundary, otherwise

streamlines would intersect the equivalent eastern boundary along f - c. Correspondingly,

over the ridge with L/2 < x < L/2 + xo, the current has to flow along f2. Therefore

the northern boundary layer terminates at point d'. Thus we have constructed a loop

of current as shown in Fig. 2.3(b), consisting of a southern boundary current in regions



0 < x < L/2 - (xo - x.) and L/2 + xo < x < L and a northern boundary current

in the region L/2 < x < L/2 + x.. Over the ridge, the current flows along 41 in region

L/2 - (xo - x.) < x < L/2 and along 2 in region L/2 < x < L/2+ x.. Currents along

segments a - Y' and c - d' are equivalent western boundary currents. While along 41, 2

and the southern boundary, the current flows as an internal boundary layer current in the

inviscid limit.

Another way to find the solution is by directly introducing a characteristic variable

s defined as

dx = 
(3.6)

ds ay
dy (37)
ds x'

then the potential vorticity equation reduces to

S = 0, 
(3.8)

ds

away from the two equivalent western boundaries along segments a - b and c - d, shown in

Fig. 2.4. The geostrophic contours, short dashed lines in Fig. 2.4, serve as the character-

istics. Starting the characteristic integration from the two equivalent eastern boundaries

f - c and b- e with

V'Lf-c = Vo,

V|lb-e = 0,

one obtains the interior solution

?k = 'o for region A,B,C

V; = 0 for region D, E.

Accordingly, there are discontinuities of streamfunction along f1 with

aflEA = -- 'o,
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along 1 with

AVIC-D =?P0

and along the southern boundary with

AlY=0 =00.

These discontinuities of streamfunction represent the internal currents over the ridge and

along the southern boundary.

This simple analytical solution gives rise to a straightforward calculation of the

topographic form drag. In comparison, a form drag calculation in the case with any finite

nt would require knowledge of the detailed structure of the wind-driven current over the

ridge. With the above discussion we have

TD pofoh-
Lix

" jLjD {6 [y - (x - xe) - D -6 - 3(X0 -x) } h(x)dxdy,

in the inviscid limit. This integration is straightforward and the result is

TD = - 1 - (3.9)L ho)0

Obviously, the topographic form-drag generation in this linear barotropic Q-G chan-

nel model is quite different from that in the inertial models discussed by Johnson (1977).

In the inertial model, any topography, whether it blocks any geostrophic contours or not,

would lead to a form-drag generation, although the blocking of the linear geostrophic con-

tours does enhance the wave drag generation (W93). In this linear model, however, only

supercritical high ridges can lead to form-drag generation in the inviscid limit. It puts a

rather strong restriction on the bottom topography with which linear form-drag can be

generated in the inviscid limit. Furthermore, this linear form-drag generation can occur

only in a channel with finite width, while in inertial models, the nonlinear form-drag gen-

eration can occur on an infinite 3-plane (Johnson, 1977). On the f-plane, however, it



can occur in a channel and the channel's width does not matter. Of course, for finite %,
any topography can lead to a linear form drag generation. Another fundamental difference

is that in the inertial model, only eastward flow can lead to a form-drag generation, while

westward flow can not. In this linear model, however, form-drag is generated regardless

of the flow directions. Similar to that in the f-plane model, the form-drag is always

against the flow, even in the case with a westward flow. It is rather easy to see that the

form drag generated in the f-plane model is stronger than that in the 3 -plane model

comparing the flow pattern in Fig. 2.1 and Fig. 2.3(b) for same model parameters noting

TD oc h&0/dx7. Actually, for a given iko and model parameters, the form drag generation

reaches its maximum in the f-plane channel model, noting he = 0 in (3.9) for the f-plane

case.

Balancing the topographic form drag with the wind stress input in (2.3) determines

0o, which gives the zonal transport in the channel as

T7  #DroL.po (3.10)
IAI 4H-,3D

In the calculations carried out by Gill & Bryan (1971), the earth's rotation rate used

was only one tenth of the real rotation rate. (3.10) suggests that the model could have

overestimated the through-channel transport by about 10 times. Actually, one can get

(3.10) from the boundary condition (2.15). On the f-plane the length of the boundary

layer at the southern boundary is xo, the half width of the ridge. On the #-plane, however,

the actual length of the boundary layer at the southern boundary is z. = zo. The

boundary layer current structure along a - Y' is similar to that of the f-plane model

discussed in the preceding section. Thus with (2.10), one can have

a|#z,~(.1
Y=o = . . (3.11)tcL

Substituting this into (2.15) gives rise to (3.10) again. Obviously, as / -+ 0, (3.10) ap-

proaches (2.14). This is because as # -- 0, Ahc -+ 0, thus x. -+ xo and (3.11) approaches

(2.16). It is worth noting that although as 3 -+ 0 the transport in the 3-plane model ap-

proaches that in the f-plane model, the circulation pattern in the 3-plane model shown



in Fig. 2.3(b), however, does not approach that in f-plane model shown in Figs. 2.1 and

2.2(a).

The relationship of transport versus model parameters for the f -plane and #-plane

are quite similar, as is apparent by comparing (2.14) and (3.10). The discussion in section

2 applies to the #-plane model, except for the extra OD term in the denominator of

(3.10). In the f-plane model, the transport is independent of the channel width, D. The

reason is that in the f-plane, the total potential vorticity resistance is solely determined

by the ridge. In the #-plane model, although the ridge does introduce the same amount

of potential vorticity resistance, |folh, yet the /-effect tends to steer the geostrophic

contours across the ridge without being blocked by the two lateral boundaries as shown

in Fig. 2.3(a). As a result, the potential vorticity resistance is reduced. Therefore, the

transport in the /-plane channel is always larger than its counterpart in an f-plane

channel. The weakening effect of # on the potential vorticity resistance is measured by

#D, the amount of planetary vorticity a cross-channel fluid particle would have to change.

It is solely determined by the width of the channel, D. This /-effect is stronger in a wider

channel than a narrower channel, since

PC = Ifo|- - /D = Ifo| .
H H

In the subcritical state with Ahc < 0, the #-effect overpowers the potential vorticity

resistance introduced by the ridge, and there is no net potential vorticity resistance. Only in

the supercritical state with Ahc > 0 does the potential vorticity resistance introduced by

the ridge overpower the / steering effect, resulting in a net potential vorticity resistance. In

the supercritical state, the strength of the net potential vorticity resistance decreases with

increasing channel width. Thus, in the /-plane, the transport increases with increasing

channel width. This is the only difference between the f-plane results and the /-plane

results in terms of the relationship between the transport and the model parameters.

Comparing Fig. 2.1 with Fig. 2.3(b), one can see that the length of the boundary

layer at the southern boundary for the f -plane model is xo, while that for the /-plane



model is z.. This gives rise to the difference between (3.11) and (2.16). The ratio between

the 3-plane one and the f-plane one is Ahe/ho with the former always smaller than the

latter for the same bo. To satisfy (2.15), #0 thus the transport in the #-plane channel is

always larger than that in the corresponding f-plane channel. The ratio between them

is just Ahe/ho. Another perspective from which to explain the difference is to check the

flow pattern over the ridge which critically determines the form drag generation. It is easy

to see that the flow pattern over the ridge in the f-plane channel model shown in Fig.

2.1 is more efficient than that shown in Fig. 2.3(b) in terms of generating form drag for

the same set of model parameters and 0 noting D oc h4Oa. To balance the same wind

stress leads to a larger 1'Iol, thus a larger zonal transport in the #-plane model than in the

f -plane model. It is worth noting that because Ahe/ho increases as either ho increases or

D decreases, the zonal transport difference between the f-plane model and the f-plane

model shrinks as either ho increases or D decreases. In the limit with D - 0, (3.10)

approaches (2.14), because he -+ 0 thus z. -- x0 noting (3.11) and (2.16).

Consider a model problem with parameters chosen as -ro = 0.08N/m 2, po = 1.03g/cm3,

L = 2.4 x 107km, D = 1.8 x 106 km, H = 5km, fo = -2w sin 00 and 3 = 2w cos 00/a with

0 = 60 0S and a = 6.37 x 106km, then the transport is 86Sv for the f-plane model, and

1504Sv for the f-plane model for a ridge with ho = 865m, close to the corresponding

critical height he = 815.7m in the f-plane channel. This transport value in the #-plane

model is an order of magnitude larger than the observed value. In the next section we will

show that in the presence of a nonuniform wind stress (in the Circumpolar Ocean the wind

stress is indeed not uniform), potential vorticity input will make a large contribution to

the form drag generation. This will change zonal transport in the channel substantially.

Suppose we now have a series of ridges, represented as {h'(x)} with j = 1, - -,m.

Each one is in the form of (2.4). Among these ridges,

h0 he (j = 1,. - -, mo),I



while

h-' <; he (j= o +1, -- ,m),

where h is the ridge height. Then, the total potential vorticity resistance introduced by

this series of topographic features is

*= |fo: - #D). (3.12)

Ridges with subcritical height do not contribute to the total potential vorticity resistance.

And the corresponding through-channel transport is

T,. roL/po (3.13)
PC*

The presence of those ridges lower than the critical height, he, has no influence on the

transport in the inviscid limit. The effect of these low ridges is merely to deflect the

flow passage slightly.

It is quite straightforward to extend the above discussions to a general bottom

topography, and the final result is still (3.13). In the real Circumpolar Ocean, besides the

ridge near Drake Passage, there are three other major ridges. They are the Kerguelen

Plateau in the southern Indian Ocean, the southeast Indian Ridge south of Australia, and

the Pacific Antarctic Ridge. The local meridional scales of these ridges are very large,

so are their corresponding local OD's. Their presence most probably introduces no net

potential vorticity resistance because they are very likely locally subcritical. Therefore, in

the case with uniform wind stress forcing, their presence most likely does not change the

wind-driven transport through the channel. It is solely determined by the ridge around

Drake Passage, as was suggested by Stommel (1957). At the longitudes of Drake Passage

the channel is very narrow, thus tending to introduce a strong potential vorticity resistance.

It is worth noting that observational studies, such as Gordon et al. (1978), have shown that

the transport of the ACC is mainly concentrated within two narrow frontal zones, which

are presumably caused by the baroclinic process. By coincidence, the model circulation



forced by a uniform wind stress even in this simple barotropic model is also concentrated

within a narrow zone. In the Circumpolar Ocean, the wind stress forcing is not uniform,

then what difference will the presence of an external potential vorticity input cause?

2.4 A /-plane model with a non-uniform wind stress

In the discussions above the influence of the external potential vorticity input through the

wind stress curl has been ignored. The numerical experiments by W93 showed that the

form drag generation due to the external potential vorticity input is comparable with the

mean wind stress input. The numerical experiments with finite r, also suggested that in the

supercritical state the Sverdrup balance holds in the interior away from topography. Due

to the limitation of the numerical experiments, however, it is not quite clear whether this

is true in the subcritical state close to the critical state. Now we are going to demonstrate

that in the inviscid limit the Sverdrup relation is bound to fail in the subcritical state even

if it is close to the critical state.

For simplicity, we decompose 4 as

0 = VY" + ,(41

where 4," is governed by equations (3.1) and (3.2), and thus carries all the zonal transport

in the channel; while 7kc satisfies

J( ,0Y + fo ) = 2 (4.2)

with boundary conditions

40 ..y=0,D = 0, (4.3)

4 , c is driven by the potential vorticity input w, and does not carry any net zonal transport.

The total transport, represented by 0, is still determined by (2.3). In the following



discussion, the wind stress is assumed to be

7r
1r = -rocos y + ero, (4.4)

which bears some similarity to the zonally averaged one (Nowlin & Klinck, 1986) if e, a

constant coefficient, is close to 1. Correspondingly, one has

.7r
we = wosZnfl Y,

with wo = -7rro/poHD.

From mass balance, the net flow across any geostrophic contour, 4,, shown in Fig.

2.3(a), for example, has to be zero, i.e.,

jvndl = 0, (4.5)

where n denotes the local unit normal vector of 4. Suppose 4, closes itself as shown in

Fig. 2.3(a), i.e., it is not blocked. If the Sverdrup balance holds everywhere along i, i.e.,

J (C,#y + h e = W,,

then, v is always larger or less than zero depending upon how we choose n noting we < 0,

and

jvndl : 0.

This clearly violates the mass conservation statement (4.5). Thus, the Sverdrup rela-

tion must fail somewhere along f4. This is similar to the case with a sufficiently high

bottom topography in a closed basin discussed by Pedlosky (1987). In the supercritical

state, however, all geostrophic contours are blocked, each geostrophic contour intersects

the boundaries twice. Boundary layer structure could develop at one end, through which

the interior (here it means away from the boundary layer) Sverdrup flow is returned and

mass conservation is satisfied. This is can be seen from Fig. 2.4, where a - b and c - d

are the two equivalent western boundaries and b - e and f - c are the two equivalent



eastern boundaries. In terms of the potential vorticity balance, the subcritical state poses

no potential resistance, there is free flow passage in the channel and there is no solution

along those unblocked geostrophic contours in the inviscid limit. Dynamically, this is quite

similar to a closed basin on a f-plane discussed by Stommel (1948). The supercritical

state poses a potential vorticity control and there is no free flow passage in the channel. In

this case there is a solution in the inviscid limit. Dynamically, this is quite similar to that

in a closed basin on a 3-plane where, in the presence of meridional barriers, the /-effect

poses a potential vorticity resistance in the basin in the sense that any meridional flow has

to be externally forced in the classical Stommel model (1948).

Now let us look at the circulation driven by the surface Ekman pumping and satis-

fying (4.3). Fig. 2.4 shows the model domain in the supercritical state. The heavy dashed

lines divide the whole domain into 5 small domains, labeled A, B, C, D and E, for the

convenience of characteristic integration. Away from the two equivalent western boundary

layers, the governing equation reduces to the Sverdrup balance

C ~h)
J(4V,/y + fo-) We.

Introducing a characteristic variable s such that

dx = 
(4.6)

ds ay'
dy = q (4.7)
ds ax'

then the potential vorticity equation reduces to

W- We. 
(4.8)

ds

In this way, the geostrophic contours fly + fo = constant serve as the characteristics in

this model.

In region A, the initial conditions for the characteristic equations (4.6), (4.7) and

(4.8) are

z|,o= x.,



yI.=o

-0

and the solution is

woD

a7r ( 1 +

In region B, the governing equation becomes

O-- = We,

with the boundary condition

#4c ix=L/2-xo
woD (

= - 1

and the solution is

- L/2 + xo) szny,

3 -i r
+ xO- 2L) sin-5y,

for O<z < L/2-xo;

for L/2+xo <x <L.

In region C, the initial condition for the characteristic equations (4.6), (4.7) and

(4.8) are

= L/2+xo,

= ye,
_ woD (

=- 1
air

+ Cos-y, +wo+ -- (2xo
0

.ir
- L)sin-y,

D

and the solution is

V)C C woD I o r Y= -D)1+cos- yair D
a L/2+xo-x)]

- L)sin r + Xo - z)]

a
- -(L /2 + zo -

13

+ r
+ cos 5y,

4' B

c1B

woD
air

woD
a=r

+ -(z

+ WO(

,r-+Cos 
y

,O r \)

x,=o

y,=o

VCIo=0

+ w(2xo

woD
air

7r
cos-- yD

7r
cos-y.

- (L/2

z) -Cos -yD5



In region D, the initial conditions for the characteristic equations (4.6), (4.7) and

(4.8) are

X18=o = X,,

y|,=o = 0,

'01o = 0,

and the solution is

woD ( r
'ID = ~ - 1-Cos y .)

In region E, the initial conditions for the characteristic equations (4.6), (4.7) and

(4.8) are

z.,=o= L/2,

- woD (1 Ory ),= =O - 1Cos D ,

and the solution is

'OIE woD Co r a 1 x-L2
ar D #,

w0D 7r a 7r
+ cos- y--(x -L/2) -cos y}.Ua7r D 0 1

Obviously, along both segments a - b and c - d, equivalent western boundary layers

are needed to close the circulation. The circulation 4 c is shown in Fig. 2.5 for a chosen

model parameter set. Notice that flow in regions A and D is purely zonal. The explanation

is as follows. Differentiating (4.2) with respect to x and noting w,/ax = 0, one can have

an equation for VC = 9Oc/zx such as

j (v,3y + fo) = - lV
2 V".( H
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Figure 2.5: The streamfunction (m 2 /s) of the external potential vorticity input-driven
circulations in the 13-plane channel. The model parameters are chosen as L = 24000km,
D = 1800km, zO = 4800km and -ro = 0.08N/m2 .



The boundary condition for region A is that v = 0 at y = D, the equivalent eastern

boundary for A. Then, based upon the characteristics and the same discussion for -4, one

has

V'IA = 0.

Obviously, the same is true for that in region D. There are discontinuities at the boundaries

between regions A and E and regions C and D with

Wp'|E-A =A IC-D = 2w 0D
air

Thus, in addition to the two equivalent western boundary layer currents at the northern

and southern boundaries, there are three internal currents along geostrophic contours.

They are along i1 between regions A and E, £2 between regions C and D, and 4a along

the southern boundary in the interior away from the ridge, shown in Fig. 2.5. The volume

transports of these three internal jets are all equal to

T,.in = .-oo
po fo Iho

The scenario is quite similar to the case in a closed basin discussed by Cessi & Pedlosky

(1986), and the physical mechanism for the presence of the discontinuities is similar to

that outlined there. For a wind stress in the form (4.4) with model parameters chosen

as ro = 0.08N/m 2 , po = 1.03g/cm 3 L = 2.4 x 107km, D = 1.8 x 106 km, H = 5km,

fo = -2wsin 0 and # = 2wcos90 /a with 9 = 600S and a = 6.37 x 106km

Tin = 8.5Sv, (4.9)

for xo = 1200km and ho = 865m. With the same model parameters, the meridional

Sverdrup volume transport in the interior basin for a narrow ridge is roughly

Hwo
Ts= (L - 2xo) = -257Sv, (4.10)

which is much stronger than the volume flux of the internal currents along £1, £2 and the

southern boundary.



The channel-averaged topographic form drag due to i$c is

pofo J ' pofo( JddLD OX LD Aax D E 11 6 0

Using the streamfunctions listed above, one has

AB = =0,TrD = TD = TrD=

rC -2(xo/L)ro -( 2 L -2x 0TD ---- ) + I
L o A. xo 2xo

rE = 2(o/L~ro(1 - -- +2 ),
TD \O/O\ o g2 20

h
r = -2(xo/L)ro(1 - ),

2ho

19 =-2(xo/ L)-ro--.TrD =2ho

Thus the channel-averaged topographic form drag generated by the external potential

vorticity input is

VIC 2xO~
r = -O 1 -- . (4.11)

This form drag generation is fundamentally different from both the nonlinear Rossby

wave drag generation discussed by Johnson (1977) and the linear form-drag generation

discussed in the preceding sections. In those cases, there is no external potential vorticity

input, and the form drag generation is closely related to the zonal transport within the

channel. In this case, however, the form drag generation is directly related to the external

potential vorticity input via the wind stress curl. The external forcing determines the

magnitude of the form-drag generation. But as is obvious from the discussions above,

the mean wind stress, r-'s, does not affect this form drag generation. In fact, only the

meridional shear of the wind stress, 49-r_/&y, contributes to the form drag generation. So

this form drag could either be against the mean wind stress if e > 0, or enhance the mean

wind stress forcing if e < 0. Furthermore, this form drag could either be stronger or weaker



in magnitude than the mean wind stress T,"z depending upon both the wind stress profile

and the model parameters.

The form drag generated by the through-channel flow, ,u, as discussed in the pre-

ceding section, is

e- PofoVfoho he
b - hL ho) (4.12)

If e = 1 in (4.4), then the mean wind stress is ro, and one has

-1 < < 0.
TO

First of all, the topographic form drag generated by the Sverdrup flow, 7kc, is always against

the mean wind stress, T;* = -ro, and smaller in magnitude noting (4.4). Thus, it always

decelerates the eastward through-channel flow driven by the mean wind stress. Second, its

magnitude decreases with increasing width of the ridge. This is different from that due to

the through-channel flow, Ou. Suppose we choose wind stress of the form

r2 = ro [1 -R(x, xo)cosiry/D] ,

with

{0 if h = 0;
R(zzo) = 1 if h # 0.

Then, using a similar procedure to that used to find 4 ,c we can find the corresponding

streamfunction. With the streamfunction one has

rD = 0,

and in this case the Sverdrup flow does not produce any topographic form drag. This

demonstrates the importance of the meridional flow within the basin driven by the vorticity

input in generating the topographic form drag. This also explains why there is a factor of

L -- 2xo in (4.11). Actually from (4.11), -rk = 0 if xo = L/2, i.e., if the ridge extends to the



whole channel. r0 could be very strong for a narrow ridge. For a ridge with xo = L/20,

one has

Tb' =0. 9,r.

So, for a narrow ridge, most of the mean wind stress input is balanced by the topographic

form drag generated by the Sverdrup flow. Third, the form drag generation, rb" in (4.12),

via the through-channel flow critically depends upon the supercriticality of the ridge height.

The form drag rb', however, does not depend upon the supercriticality of the ridge height,

so long as the ho > he. This is also rather different from the nonlinear Rossby wave drag

generation discussed in Johnson (1977) where the form drag depends upon the topographic

height. Fourth, similar to the form drag generation in the f-plane model, r-" does not

depend upon the the width of the channel.

For a wind stress in the form of (4.4) with e = 1, the momentum balance

TD + TrD + 01

leads to the total zonal transport

T = =xT,.o - 2x (4.13)
\fo - D L

Consequently, one obtains a constraint

0 < T. < T..

The ratio between T,. and T.O is

R - 2x
L

So the presence of the external potential vorticity input through the wind stress curl

reduces transport by as much as 1 - RT percent. As xo -- 0, RT --+ 0.

Different from the case with a uniform wind stress, the transport now does depend

linearly upon the width of the ridge, xo, due to ir- generation by the wind-driven Sverdrup



flow. For a ridge with xo = 1200km and the rest of the model parameters chosen as those

in obtaining (4.9) and (4.10), RT = 0.1, and correspondingly, T,. :: 15OSv for ho = 865m.

It reduces to about 47.8Sv if ho = 1000m. The total zonal transport increases linearly as

the width of the ridge, xo, increases, which is because Tr decreases linearly with increasing

width of the ridge. As is shown Fig. 2.6, the total zonal transport in the channel decreases

inversely and linearly as the ridge height increases. It is not surprising that the model

transport is so sensitive to the topographic parameters, given that a barotropic model is

used. In a baroclinic model, the result should be much less sensitive to the topographic

parameters.

With T. and T,.i,, the total volume transport of the internal current along the

geostrophic contour i is

Ah,
T11 = T, (1 + ,o

which always flows northward and larger than the transport of the through-channel flow.

However, the total volume transport of the internal current along the geostrophic contour

f2 is

1hc
T12= T (1 (

ho

which also always flows southward but is smaller than the transport of the through-channel

flow. It will be shown in Chapter 3 that this not always true in the presence of a partial

meridional barrier in the channel. For Ahc < ho, one has T,.i, < T,.. The volume flux

ratio between the Sverdrup flow in the interior basin away from the ridge and the through-

channel flow is

Ts, L Ahe
T 2xo he'

which is linearly and inversely linearly proportional to the ho and xo, respectively. For the

model parameters chosen in obtaining (4.9) and (4.10), one has

~ 1.8, (4.14)
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Figure 2.6: T, versus ho for xO = 1200km (solid line) and xo = 1800km (dashed line).
The model parameters were chosen as L = 24000km, D = 1800km, ro = 0.08N/m 2
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for ho = 865m and xo = 1200km; the zonal transport in the channel is only about half the

Sverdrup transport.

If a wind stress is of the form

7r
r. = -rocosly,

i.e., e = 0 in (4.4), then T;"Y = 0, and the corresponding through-channel transport is

T,. = -T,.o (1 - ). (4.15)

So in the case with a narrow ridge with zo < L, T,. ~ -T,.o, a very strong westward through-

channel transport is produced through form drag generated via the external potential

vorticity input. Only in the special case with xo = L/2 or if the form

= -roR(,xo)cos---

is chosen, can the through-channel transport vanish. This is rather different from the case

in a closed basin, where the mean wind stress does not have any direct effect on the lowest

order solution.

The discussions above can be easily extended to cases with multiple ridges. But

unlike the case forced by a uniform wind stress, a ridge with ho < he affects the Sverdrup

flow and thus changes the topographic form drag due to the Sverdrup flow. Otherwise, the

wind-driven circulation is similar to the case with a single ridge. In this section we have

only discussed the case with ridges in the form of (2.4), the same method is applicable to

a general topography so long as there are no closed geostrophic contours. But we may not

be able to get such a neat, explicit form as (4.13) for the zonal transport in the channel.

2.5 Conclusion and discussion

Simple linear barotropic models are proposed for the wind-driven circulations in both

f-plane and /-plane channels. In an f-plane channel forced by a uniform wind stress, a



ridge with non-zero height is always in a supercritical state, and a solution in the inviscid

limit always exists. The zonal transport in the channel can be written in a very simple

and explicit form (2.14). It is determined by the wind stress, the length of the channel,

the Coriolis parameter, the depth of the channel, and the height of the ridge. The width of

the ridge has no effect on the transport. A parameter called potential vorticity resistance

is introduced to quantify the degree to which the ridge impedes the through-channel flow.

It is defined as

PC a (fo I,

for a single ridge in the form of (2.4). From the potential vorticity balance, Pc represents the

minimum amount of potential vorticity a fluid particle has to exchange with its environment

in order to cross the ridge. Using Pc, the transport can be written

-roL/po

Tr= PC

So the transport decreases with increasing Pc, similar to Ohm's law in the elementary the-

ory of electricity. For the case with multiple ridges, the total potential vorticity resistance

is the sum of each individual's. Isolated topographic features, which can not block the

geostrophic contours, impose no potential vorticity control on the flow.

In the case with a /-plane channel forced by a uniform wind stress, the #-effect

tends to steer the through-channel flow over the ridge. This effect contributes -OD to the

potential vorticity resistance, so

PC |Ifo[|ho- D = Ifo| *.
H H

Notice that only a supercritical ridge with Ahe, the effective height of the ridge, positive,

can control the through-channel flow. With redefined Pc, the expression for the transport

is same as that for the f-plane cases. In the cases with multiple ridges, Pc is the sum of

the contributions from all supercritical ridges. Ridges with subcritical or critical height do

not affect the transport in the inviscid limit. In the cases with uniform wind stress, the



volume transport in the f-plane channel is always smaller than that in the corresponding

,3-plane channel.

In the presence of a nonuniform wind stress, however, the vorticity-driven flow will

also contribute to the topographic form drag generation. Again, only in the supercritical

state, can a solution for the vorticity-driven flow be found. It is the classical Sverdrup flow

(Stommel, 1948) with some modifications. In this case, the external potential vorticity

input is mostly dissipated within the two equivalent western boundary layers, especially

the northern one. The corresponding form drag generation depends upon the width of

the ridge with respect to the length of the channel. But it does not depend upon the

supercriticality of the ridge height. For a narrow ridge with zo < L, this form drag is

comparable to the mean wind stress. Compared with the case forced by a uniform wind

stress, one fundamental change is that the zonal transport in the channel does not depend

upon the length of the channel any more, instead it depends linearly upon the width of

the ridge. In the case with only external potential vorticity input, a westward flow can be

generated and its through-channel transport depends upon the width of the ridge. For a

narrow ridge, the westward transport can be very strong.

It has been demonstrated that the linear topographic form drag generation in the

inviscid limit is fundamentally different from the nonlinear Rossby wave drag generation

in an inertial model. Here, unlike the inertial model, not all topography can lead to form

drag generation. In the simple case discussed in sections 2 and 3, the linear form-drag

is directly related to the potential vorticity resistance introduced by the presence of the

ridge. In the inertial model such as Johnson's (1977), form-drag generation is possible

only for an eastward flow. In this linear model in the inviscid limit, however, form-drag

generation is possible regardless of the flow direction. The only similarity is that in both

cases, the form-drag is against the flow. In the case with external potential vorticity input,

via the wind stress curl discussed in section 4, however, the form drag generation is directly



related to the forcing. The other difference is that in this latter case, the form-drag is not

related to the height of the ridge, so long as the height is in the supercritical range.

Although we began the discussions in this chapter with the intention of applying

the results to the Antarctic Circumpolar Current, the circulation pattern shown in Fig. 2.5

looks like anything but the real ACC (Gordon et al., 1982). Then one naturally wonders

why this is the case. First of all, from the discussions in the preceding sections, one should

notice that the geostrophic contour structure, critically determined by the bottom topog-

raphy in a /-plane channel, determines the circulation pattern in the model. Obviously,

the topographic features in the Circumpolar Ocean are both far more complicated than

and different from the simple ridge chosen in the model for the convenience of getting a

neat and simple relation between the model transport and parameters. This presumably

would lead to a far different circulation pattern. Second, in this chapter, the discussions

proceed with the assumption of an inviscid limit. In the presence of finite friction, those

internal boundary layer currents have finite widths and the circulations will change ac-

cordingly. Lastly, as is shown by Nowlin & Klinck (1986), strong frontal structure is one

of the most significant features in the Circumpolar Ocean, but it is absent from our simple

barotropic Q-G model used here. The presence of these frontal structures must have a

profound influence on the wind-driven circulation.

Despite all simplifications and the associated limitations of our model, we believe

that some of the model results are robust regardless of the model's assumptions. First of

all, the geostrophic contour blocking is critical in determining the wind-driven circulation

in the periodic channel regardless of the model and topography geometry. Our analysis

indicates that the topography near Drake Passage, as Stommel (1957) speculated, plays a

central role in determining the wind-driven circulation in the Circumpolar Ocean, while

other topographic features most likely play only a secondary role. Second, the physical

processes through which the topographic form drag is generated are closely related to the

momentum balance in the Circumpolar Ocean, especially the importance of the external



potential vorticity input through the wind stress curl. This physical process is far different

from the better known and studied nonlinear Rossby wave drag generation, discussed by

Johnson (1977) for an example. Third, as the model suggests, the external potential

vorticity input from the wind stress is mostly dissipated around the tip of the South

American continent. As we will see in Chapter 4, the presence of stratification will not

change these three conclusions. Lastly, the model results have important implications for

numerical simulation of the wind-driven circulation in the Circumpolar Ocean, such as the

FRAM model (1991). The model indicates that the topographic form drag generation is

closely related to both the meridional and zonal structure of the wind stress. In addition,

the zonal volume transport is also linearly proportional to the mean wind stress. This

implies that to simulate the wind-driven circulation in the Circumpolar Ocean requires

rather high quality of the wind stress observations over the Circumpolar Ocean.

Appendix A
Is there a boundary layer along e - c or b - f in Fig. 2.1?

If there is a boundary layer along e - c, then one has

liMV)* (y; K) #A 7k0,

where #';(y; r,) = 0|I=L/2_xo (y, r,). From the solution in Section 2 we know that in the

interior of region B

0 = 0o.

Then, near e - c over region B there must be a boundary layer. The governing equation

to the lowest order is

- 2,' (A.1)

Noting the boundary condition, a scale analysis of (A.1) gives

8#b
2- o (A.2)



as s -+ 0 in the inviscid limit unless

as K - 0. On the other hand, in region A the governing equation is

024 g2i1
0 + = 0. (A.3)

and its boundary condition is

lkI=o = 0 |,=o =0t

and the two lateral boundary conditions at z = L/2 i zo. In region A, 0 is a well behaved

harmonic function given that the boundary conditions are continuous functions. So as

x +0

T /2-- * -+ 4o(y), (A.4)

from theory on elliptic equations, where 4o(y) is some finite function. Thus as K -+ 0,

discontinuity arises across z = L/2 - z0 in ;. From the governing equation (2.1), it is easy

to see that both 0 and should be continuous by integrating (2.1) across z = L/2 - zo.

Thus there is a contradiction. To remove this contradiction, we must have

40 --+'0o,

as K -+ 0 in the inviscid limit. The discussion for the case along z = L/2 + xo is similar.

Therefore, there is no boundary layer structure along either e - c over region B or b - f
over region C.

Appendix B
The influence of finite bottom friction on the loop of currents

Similar to the corresponding f -plane model, the characteristic thickness of the two

equivalent western boundary layers along segments c - d' and a - b' in Fig. 2.3(b) is

6 K r/a. (B.1)



Within the internal current along the southern boundary in the region 0 < x < L/2 - zo

and L/2 + xo < z L, the governing equation becomes

1$ 024

J X 4y2

It is a typical diffusive equation. Noting the minus sign, the width of the current gets

wider and wider further westward from the eastern end, point a in Fig. 2.3(b), of the

southern equivalent western boundary layer, which can be viewed as a point sink in the

inviscid limit. At point e of Fig. 2.3(b) just downstream of the ridge, the characteristic

thickness is

8, ~ (L - 2 zo)Ss, (B.2)

where 5s = K/# is the classical Stommel boundary layer thickness. For the internal current

along geostrophic contour 41 in Fig. 2.3(b) both the two ends are equivalent western

boundary layers, which in the inviscid limit can be viewed as a point source and a point

sink. With the coordinate transformation such as

X =ay + #,

Y =ly - ax,

the governing equation (4.1) becomes

4 1024, +24
a2+P2 2  - -K +-I.VX CX 2  gY2

Thus, similar to that for b,, the characteristic thickness of the internal current along 4i is

61~ 7, (B.3)

where ' = K/v/a2 +32 and L', = D2 + h2z/h2, is the length of 4. With similar

discussion, the characteristic thickness of the internal current along t2 is

82 ~ 61, (B.4)



noting its eastern end is the western end of the internal current along the southern bound-

ary. All these characteristic thicknesses are functions of the half width of the ridge, z.

For a model parameters chosen as as those before with K = 10- 7 s-1, ho = 900m, and a

narrow ridge with zo = 1.2 x 103m, both 5 ~ 5km < D and b1 = b2 =~ 70km < D, thus

the equivalent western boundary layer currents and the internal current along 4j are quite

narrow with respect to the channel width. They will keep their identities as intense nar-

row jets even in the presence of a finite bottom friction. On the other hand, 6.,~ 430km,

which is quite wide with respect to the channel width. Apparently if we decrease e, the

thicknesses of the loop of currents will decrease. Fig. 2.7 shows the numerical solution

for the cases with uniform wind stress (a) and the wind stress curl-driven Sverdrupian

gyre circulation (b) for a small but finite bottom friction. In order to properly resolve

the various boundary layer structure, a much smaller domain is used in the calculation.

As shown in the figure, the gyre circulation is rather close to the inviscid solution while

the mean wind stress driven circulation is substantially different from that in the inviscid

limit for the bottom frictional coefficient used. The ratio between the numerical and the

analytical solutions for the form drag generated by the Sverdrupian gyre is 0.33, while it

is only 0.075 for that generated by the through-channel recirculating flow. Obviously for

C = 10-7S-1 which corresponds to a spin-down time of about 120 days, the circulation

pattern, and the form drag in particular, are quite different from those obtained in the

inviscid limit. The situation is substantially better for the case with the f-plane model.

For the f-plane model, the ratio is about 0.7 for the through-channel recirculaing flow

for K = 2 x 10-s-1. If we carry out further calculations with even smaller bottom fric-

tional coefficient, the circulation will be closer to that obtained in the inviscid limit. But

a frictional coefficient much smaller than what is thought to be reasonable has to be used.

Thus, we conclude that the solution obtained in the inviscid limit is rather sensitive to the

presence of frictional processes in the realistic situation.
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Chapter 3

Wind-driven circulation in a -plane
channel, Part II: A linear
homogeneous channel model with
partial meridional barriers

3.1 Introduction

In Chapter 2, wind-driven circulation in an idealized homogeneous channel model was

discussed with the aim of trying to explain the wind-driven circulations in the circumpolar

ocean. The simple model clearly showed what and how the model parameters determine

the circulation structure, and especially the through-channel transport. In the supercritical

case, it revealed how and where the dissipation of the potential vorticity occurs, and how

the linear topographic form drag is generated. It emphasized the fundamental role of the

bottom ridge which can block the geostrophic contours in the channel. In the supercritical

state, dynamically speaking, the wind-driven circulation in the channel is similar to those

in a closed basin discussed in the classical Stommel model (1948) in terms of potential

vorticity balance. The novelty is the momentum balance in the channel. As is clear from

Gordon et al. (1982) atlas, the geometry of the circumpolar ocean is far different from

a zonal channel, notably the narrowness around the Drake Passage due to the presence



of both the South American continent and the Antarctic peninsula. As Stommel (1957)

pointed out, both the bottom topography and the coastal geometry could be important in

determining both the transport and the circulation in the circumpolar ocean. Gill (1968)

put forward a simple barotropic model which emphasized the role of the coastal geometry

but ignored the role of the bottom topography. His model did show that the geometry

of the coastal line has some influence on both the transport and the circulation in the

circumpolar ocean. His results, however, apparently showed the necessity of introducing

bottom topography into the model in order to get a reasonable transport.

The results from Chapter 2 clearly show us the topographic control on both the

through-channel transport and the circulation in a linear homogeneous zonal channel

model. Nevertheless, the circulation in the channel is far from the observed circulation in

the circumpolar ocean due to the various simplifications. It is the purpose of this chapter

to combine the discussions in Chapter 2 and Gill's (1968) together by including two par-

tial meridional barriers in the channel model to see what role partial meridional barriers

may play in determining the wind-driven circulation in the channel. As Gill (1968) did,

these two meridional barriers are meant to represent crudely the dynamic role of the South

American continent and the Antarctic peninsula in determining the transport and the cir-

culation structure in the circumpolar ocean as is shown in Gordon et al. atlas (1982). It

is hoped that the presence of the partial meridional barriers would make the wind-driven

circulation in the channel closer to the observed than that discussed in Chapter 2.

Following the discussions in Chapter 2, the circumpolar ocean is idealized here

as a simple zonal channel with two partial meridional barriers, isolated from the rest

of the World Oceans. Again a linear homogeneous Q-G model is used. This chapter

is organized in the following way. In Section 2 we will discuss the case with a uniform

wind stress, mainly how the geostrophic contour determines the current structure in the

channel and how the form drag is generated in the channel with the presence of the

two partial meridional barriers. In Section 3 we will discuss the case with a nonuniform



wind stress, mainly how the presence of the two partial meridional barriers affects the

Sverdrupian flow, and the associated form drag generation. Section 4 closes this chapter

with some discussion about the results and especially the relevance of the model results

to the wind-driven circulation in the realistic circumpolar ocean. This chapter is mainly

devoted to addressing the question: what dynamic role can partial meridional barriers play

in determining wind-driven circulations in a homogeneous channel model?

3.2 A 0-plane model with a uniform wind stress

Assuming that r, = ro = constant and ry = 0, then with the conventional notations (Ped-

losky, 1987), the quasi-geostrophic potential vorticity equation for a linear homogeneous

model is

J(4,3y + 'h = -4V 2 0, (2.1)

where fo, H, h and s represent the mean Coriolis parameter in the #-plane channel,

the mean total water depth, the bottom topography, and the bottom frictional coefficient,

respectively. The width and length of the channel are D and L, respectively. The boundary

conditions are

0= 4o along the northern boundary; (2.2)

= 0 along the southern boundary. (2.3)

The tips of the two meridional barriers are y1 and Y2. A schematic view of the model

domain is shown in Fig. 3.1. In this linear homogeneous model #O is determined through

the momentum balance

pofoh- - 1'poui7H + ro = 0 Y1 < y < Y2, (2.4)
ax

where -x is defined as

T = -- Zdx.
L o
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Equation (2.4) is obtained by multiplying the linear x-momentum equation with H - h,

integrating over a latitude circle and using the quasi-geostrophic approximation. It is worth

noting that in this linear model, there is no meridional momentum exchange between region

Y1 < y < Y2 and regions 0 < y y1 or Y2 y < D. The momentum input at each latitude

within the region with y1 < y < Y2 has to be balanced by the form drag generated at the

latitude together with the corresponding frictional drag. The momentum balance for the

region with either 0 < y y1 or Y2 y K D is similar to that in a closed basin.

As is discussed in Chapter 2, isolated topographic features are of no interest to us in

the inviscid limit. In the following discussions only ridge-like topography will be discussed.

First, let us consider a simple ridge in the form of

h(z, y) = ~ho(1 - I - ) if lL/2 -xl xo; (2.5)
0 otherwise.

Considering the situation around Drake Passage, the topography and the two partial merid-

ional barriers are located at the same longitudes. In the absence of any topographic fea-

tures, the geostrophic contours defined as

q = 3 y + fo h = constant
H

are simply zonal lines. Those in region y, < y < Y2 close themselves, while the rest are

blocked by the two partial meridional barriers. In the presence of a ridge in the form of

(2.4), however, some of the geostrophic contours with y1 < y < Y2 will be blocked by the

coastal boundaries as shown in Fig. 3.1(a). Nevertheless, if the ridge is not high enough

such that ho < hc, where

he = O(Y2 - Y) H
\fol

then not all geostrophic contours are blocked. Those geostrophic contours

#y + -h(x) = #yo,H

with y1 < yo < Ay(1 - ho/hc) are not blocked by the lateral boundaries. Ay = Y2 - Yl1 f,

is just one of these unblocked geostrophic contour. These nonblocked geostrophic contours



provide free passage for the through-channel recirculating flow in the inviscid limit, which

would lead to linear resonance in the presence of wind stress. However, if the ridge is high

enough such that ho > he, then all geostrophic contours in the channel are blocked by the

coastal boundaries. In this case, any motion in the channel has to be externally forced. Fig.

3.1(b) shows the geostrophic contour structure in the channel in one supercritical state.

Thus, he will be called the critical ridge height, and ho > (<)he will called the supercritical

(subcritical) state. In the absence of any partial meridional barriers, the critical ridge

height is

#D
hoc = o -H,

fol

in the same f-plane channel. The presence of the two partial meridional barriers obviously

lowers the critical height. And in the case with he < ho < hoc all geostrophic contours

in the channel are blocked in the presence of the barriers, while for the same ridges not

all geostrophic contours in the channel are blocked in the absence of the barriers. Thus,

for a ridge with he < ho < hoc, the presence of the two partial meridional barriers makes

a critical difference. Furthermore, in a purely f-plane channel, the supercritical state is

present only in a channel with finite width D. In the presence of the meridional barriers,

however, the width of the ridge does not matter so long as the gap between the two barriers

is finite.

With the same analysis as that in Chapter 2, the equivalent eastern boundaries are

a - b, b - c, d - e and f - g, as shown in Fig. 3.1(b), while the rest of the lateral boundaries

where geostrophic contours intersect are the corresponding equivalent western boundaries.

Accordingly, the model domain is divided into four dynamically different subdomains, A,

B, C and D. Then, in the area away from the equivalent western boundaries, the potential

vorticity equation reduces to

J (9,Oy + - h) = 0,H



in the inviscid limit. Let us introduce a characteristic variable s such that

dx - 9 
(2.6)

ds ay'
dy = -- (2.7)
ds iox'

and the potential vorticity equation reduces to

d#b
- = 0. (2.8)
ds

In this way, the geostrophic contours serve as the characteristics for the model. We start

the integration of (2.6), (2.7) and (2.8) in each subdomain from its corresponding equivalent

eastern boundaries with

V) la- Ob-c = 0

|-e = #|I-, = 0.

Then, the solution is

0 = 0 for regions A,B;

0 = 0, for regions C, D,

except within the equivalent western boundaries along segments f - j and c - i where

boundary layer currents are needed to close the circulation. Along geostrophic contour

y = y1 in the regions with 0 < x < L/2 - xO and L/2 + xo < x < L there is a discontinuity

of the streamfunction with

which, as an internal current, represents the model current in the inviscid limit. Between

regions B and C along geostrophic contour 41, defined as

Y = Y2 - (L/2 - ),



where a = -foho/xoH is the topographic #, is a second internal current with

Between regions C and B along geostrophic contour £2, defined as

Y=Y1 + -(L/2 + zo - z),

is a third internal current with

AVIB-C =

They are similar to the internal currents discussed in Chapter 2. Along f - j and c - i

are two equivalent western boundary layer currents which connect the internal currents.

Thus, a loop of currents as shown in Fig. 3.1(b) is present, which is forced by the uniform

wind stress.

The circulation structure in Fig. 3.1(b) gives rise to a straightforward calculation

of the topographic form drag

- 4 fohoPofofoho he
TD Pofoh- = LO - y<Y < Y2.

It is worth noting that -rD here is uniform within region y1 < y < Y2, just like the wind

stress input. Otherwise, meridional momentum exchange would be required and the linear

assumption would not be valid. The discussion about the form drag generation is similar

to that in Chapter 2. The presence of the two partial meridional barriers enhances the

form drag generation for the same model parameters and #0. First, noting that as the gap

between the barriers approaches zero, one has

lim he = 0,
V1-- Y2

thus, the maximum form drag in this #-plane channel is

a pofo4foho
D = im =-

Y1-+n L



which is the form drag generated in a corresponding f-plane channel model discussed

in Appendix A. Apparently, in an f-plane model, both the channel width and length

of the gap between the barriers do not affect the form drag generation. Second, unlike

that discussed in Chapter 2, the width of the channel has no influence on the form drag

generation in this #-plane model, and it can be generated on an infinite #3-plane so long

as ho > he. However, in the absence of the barriers, form drag can be generated only in a

3-plane model with finite width because hoc -- oo as D -- oo. Balancing the topographic

form drag with the wind stress in (2.4) determines 0, which gives rise to the following

simple formula for the through-channel volume transport

T -= roL/po (2.9)
PC

where Pc is the potential vorticity resistance in this model, defined as

Pc = |foI - Y(Y2 - Y1). (2.10)

Obviously, the presence of the two meridional barriers reduces the steering effect of the #-
effect on the geostrophic contours over the ridge, thus increasing the potential vorticity

resistance in the channel.

The presence of the two partial meridional barriers has two effects. First, it alters

the circulation structure. The presence of the southern meridional barrier moves the

position of the current from the southern boundary to y = yi, and now it appears as a

mid-ocean jet along y = yi. Second, it always reduces the through-channel transport. The

relation between the transport and the model parameters is similar to that in the purely

zonal channel model. The only difference is that in this model, the transport is related

to the width of the opening between the two meridional barriers, Ay = Y2 - y1, rather

than to the width of the channel, D. This can be explained in the following way. Noting

2±__ -0, the zonal mean momentum balance at y = yi is

rO =(2.11)
poH'



i.e., the wind stress at y = y1 is purely balanced by bottom frictional drag. The structure

of the equivalent western boundary current along f - j is

40 = #&o(1 - e-(Y-u/),

where 6 = r./a is the characteristic thickness of the equivalent western boundary. Appar-

ently, the structure of this boundary current is independent of both the width, D, of the

channel and the distance between the two meridional barriers, Ay. The zonal length of

this boundary current

Ax = zo ho (2.12)

however, depends upon Ay but not upon D. Ax actually measures the supercriticality,

ho - he, of the ridge height. With this, as K -+ 0, one has

KWZIy=yi - -0o "C

HL'

which is independent of D. Putting this equation into (2.11) one has (2.9).

The transport ratio for the cases with and without partial meridional barriers is

ho/hoc - 1

ho/hoc - Ay/D'

if ho > hoc, the critical ridge height in the absence of any partial meridional barriers.

Apparently, one always has

1 - hoc/ho < e < 1,

as shown in Fig. 3.2. If Ay/D < (2 - ho/hoc), e < 1/2. Thus, meridional barriers

with a narrow opening between, i.e., small Ay, could lower the transport substantially.

The influence declines as the ridge height increases, as shown in Fig. 3.2. Finally, one

interesting observation is that in the inviscid limit as Ay -+ 0 one has

roL/po
IfolIo
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Figure 3.2: Transport ratio e versus Ay/D. The solid line represents ho/he = 1.05 while
the dashed is for ho/he = 1.25.



It is actually the result of an f-plane model, discussed in the appendix. The reason is

that as , -+ 0, in the gap between the two meridional barriers, the boundary layer currents

along segments f - j and c - i converge to the boundaries at f - j and c - i. They are

independent of the width of the gap. Furthermore, as Ay -+ 0, Ax -+ xo noting (2.12).

Thus, the transport approaches that of the corresponding f-plane model results.

Now let's see how the presence of an additional ridge down stream would affect

both the circulation and through-channel transport. The bottom topography now is

h(z,y) = Ih(1 -- ) if IL1 - z : z1
y 0 otherwise

4 h 2(1 - | L-x I) if |L2 - z1 < X2;
0 otherwise,

which consists of two isolated ridges with X1 + X2 < L 2 - L1. The supercriticality of the first

ridge height hi > he is still assumed. Around the second ridge, there are no meridional

barriers. The presence of the additional ridge changes the geostrophic contour structure

within the area over the ridge. The dashed lines in Fig. 3.3 (a), (b) and (c) show the

geostrophic contours of the three cases with h2  h.c, h.c < h 2  hoc and h 2 > hoe,

respectively, where

h - #(D - y1) H
|fo I

In all three figures, f1 and £2 over the first ridge are defined similar to those in Fig. 3.1(b).

The difference among these three cases is that the geostrophic contour

fly + Lh(x) = Oyi,

crosses the ridge at x = L 2 in Fig. 3.3(a). In Fig. 3.3(b), it does not cross the ridge at

X = L 2 but not all of the geostrophic contours to its south are blocked by the northern

boundary over the area of the additional ridge, while in Fig. 3.3(c), all geostrophic contours

in the channel are blocked by either the northern or southern boundary over the area of

the second ridge.
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Knowing the geostrophic contour structure, one can determine the various equiva-

lent dynamic western and eastern boundaries similar to the previous case. The circulation

structure can be easily obtained by employing the same characteristic method as that for

the previous case with a single ridge. Around the first ridge, the circulation is the same

as that discussed in the previous case in the absence of the second ridge. In Fig. 3.3(a),

the additional ridge has only a local influence. The passage of the otherwise purely zonal

internal jet between x = L2- X2 and x = L 2 +X 2 is displaced northward over the additional

ridge. It flows along the geostrophic contour £2, defined as

#y+- h(x)112 = #y1.H

This circulation pattern indicates that the presence of the additional ridge at x = L 2 with

h2 <; h.c has no contribution to the topographic form-drag generation, and the potential

vorticity resistance is not increased either. The through-channel transport remains the

same as in (2.9).

In Fig. 3.3(b), the additional ridge is within the range h.c < h2 < ho,. The

geostrophic contour

#y + h(z) = #y1
H

is blocked by the northern boundary over the second ridge. In order to cross the second

ridge, downstream of the first ridge, the internal current has to flow along the geostrophic

contour £3, defined as

3y + h(x)1 1 3 = OD + h 2.H H

This current crosses geostrophic contours along the northern boundary between L 2 < X <

L 2 + X as an equivalent western boundary current, where z. satisfies

z. = x 2 - h*c
h2)

Afterwards, it flows along the geostrophic contour £4, defined as

y + -h(x) 4 = 3yi,



all the way to the western edge of the southern meridional barrier. Between 12 and f3,

the current has to flow along the eastern edge of the southern meridional barrier between

Y = yo and y = y1 as a regular western boundary current. The southern end of this western

boundary current, yo, satisfies

Yo = D 1_ .2
hoc

Unlike the case in Fig. 3.3(a), the presence of the second ridge with h.c < h 2 has

a global effect because the circulation pattern upstream of the second ridge is affected.

Furthermore, the form-drag generation is enhanced by the presence of the second ridge,

and with the circulation pattern shown in Fig. 3.3(b), one has

rD - -pofoVohi he pofoZoh2 h.c

L h1) L h2

It is obvious to see that were there no southern meridional barrier, the second ridge with

h*c < h2 < hoc could not lead to any contribution to the total topographic form drag

generation. The presence of the southern meridional barrier leads to the blocking of the

critical geostrophic contour

y+-h(z) = ALhyi,H

which results in the form drag generation through the second ridge even though h2 < hoc.

Unlike the case shown in Fig. 3.3(a), even though hi < he, still all the geostrophic contours

within the channel are blocked by the lateral boundaries and there is form drag generation.

Given the form drag, the through-channel transport can be easily obtained. It is the same

as (2.9) only with the potential vorticity resistance modified here as

Pc =- #(y2 - y1) - fo - /(D - yi). (2.13)
H H

The presence of the second ridge introduces an additional amount of potential vorticity

resistance -foh 2/H - #(D - yi). Apparently, the presence of the second ridge lowers

the through-channel transport. Again the width of the second ridge does not affect the



transport. As Y2 -- yi, the transport is still the same as (2.9), except that Pc is now

equal to IfoIA + IfoIA - (D - yi). This transport does not converge to the result of

the corresponding f-plane model because of the additional ridge. The transport for a

corresponding f-plane model is similar as (2.9), but the potential vorticity resistance is

POC Ahi _ oh2
Poe = -for - for.

In Fig. 3.3(c), unlike either 3(a) or 3(b), no geostrophic contours can go over the

second ridge with h2 > hoc. In order to cross the second ridge, the current has to cross

geostrophic contours along the southern boundary between x = Lo-X 2 and x = Lo-z2+z.,

as an equivalent western boundary current, where z.. satisfies

X** = X2 hoc.,= z2 (1 -s
h2)

Then, it flows along the geostrophic contour L, defined as

foh 2y = D- (X - L 2 ).
z 2H

Between f2 and point (L 2 - X2, 0) it first flows along the eastern edge of the southern

meridional barrier as a regular western boundary current until it reaches the southern

boundary. Afterwards, it flows along the southern boundary. The rest is similar to that

shown Fig. 3.3(b). The discussion about the relation between the transport and the model

parameters are the same as that for the case shown in Fig. 3.3(b) and is not repeated here.

It is worth noting that like Fig. 3.3(b), the additional ridge has a global influence on the

circulation structure. In both cases, the influence is upstream of the second ridge, while

downstream there is no influence.

It is quite straightforward to extend the above discussions to a general bottom

topography and coastal geometry, so long as there are no closed geostrophic contours. The

three cases above demonstrate that in a very wide channel with a narrow gap between

two meridional barriers, which corresponds to that in Fig. 3.3(b) with h*c > h2 and



he < hi, only topographic features between the barriers are important in determining

the circulation, while other topographic features can only alter the flow passage. This

presumably has important implication for the wind-driven circulation in the circumpolar

ocean. Because Drake Passage is much narrower than the gap south of either Australia or

South Africa, the critical height for the ridge around Drake Passage is much lower than

any others in the circumpolar ocean. This implies that the topography around the Drake

Passage could be in the supercritical range while the others are most likely not. This

indicates that the bottom topography around the Drake Passage plays a fundamental role

in determining the circulation in the circumpolar ocean, while others most likely play only

a secondary role should the wind stress be uniform. In this sense, the Drake Passage is

a choke point in the overall dynamics of the wind-driven circulation in the circumpolar

ocean. For a uniform wind stress with model parameters chosen as ro = 0.08N/m 2 ,

po= 1.03 x 1O3kg/m 3, L = 2.4 x 104km, D = 1.8 x 10 3 km, H = 5km, xo = 1200km,

fo = -2w sin 00 and 3 = 2w cos 00/a with 9 = 60 0S and a = 6.37 x 103km, he = 408m and

T, = 412Sv for ho = 587m, which is in the subcritical range if there are no meridional

barriers.

3.3 A #-plane model with a non-uniform wind stress

In the preceding section, we have discussed the case with a uniform wind stress forcing.

The influence of the two partial meridional barriers is quite clear and straightforward,

and result is qualitatively similar to the corresponding case in the absence of any barriers

discussed in Chapter 2. The discussion in Chapter 2 also showed that the wind stress curl

could lead to a strong topographic form drag generation against the mean wind stress. In

this section, we want to see how the presence of the two partial meridional barriers would

affect that result and the Sverdrupian circulation in the channel.



The governing equation is now

J (,b#/y + fo = We -KV 2 ,

with the boundary conditions (2.2) and (2.3). Again '4o is determined through (2.4) with

ro replaced by -;, even though r;" is now a function of y. The discussion in Chapter 2

showed that in the case with a subcritical ridge, the Sverdrupian balance does not apply

and there is no finite solution in the inviscid limit. In the case with a supercritical ridge,

however, the Sverdrupian balance applies in the 3-plane channel, even though there are

no east or west coasts. The discussion is similar in this channel model with the presence

of the two partial meridional barriers, it is thus not to be repeated here. In the case with

a supercritical ridge, the potential vorticity equation reduces to

J(0, q) = we, (3.1)

except within the various equivalent western boundary layers, see Fig. 3.4. Introducing

characteristic variable s defined in (2.6) and (2.7), then one has

d- = . (3.2)
ds

For the convenience of characteristic integration, the model domain is divided into sub-

domains A, B, C, D, E, F and G, as shown in Fig. 3.4. The wind stress is chosen

as

r = -o 1- e cos 7 Y (3.3)

and r. = 0. e = 0,1. e = 0 means uniform wind stress. Then, correspondingly

7r
we = wo sin y,

where wo = -er-ro/poHD.

In regions A and G, the governing equation becomes

8C,

OX
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Figure 3.4: A schematic view of the domain of the circulation driven by a non-uniform wind
stress in a f-plane channel with two partial meridional barriers. The short dashed lines
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with the boundary condition

V|.=L/2-xo

for region A, and

IX=L/2-meo

for region G. The solution is

wo
=00 + W

wo
= 40 +

7
(x - L/2 + xo)sin -y

D
3 \ 7r

(z - 2L + zo ) sin Dy

wo 7r
- (x - L/2+ o)sin- y

3

2

+ ) 7r
+zx0 sin -y

for 0 < x < L/2 - xo,

for L/2 - xo < z < L;

for 0 < x < L/2 - xo,

for L/2+xo<x<_L.

In region B, the initial conditions for the characteristic equations (2.6), (2.7) and

(3.2) are

yl.,=o

= x,

= Y2,

=) 1=0 0 .

The solution is

0IB = fo - ( D Y2

where

2w 0 D
Te = -.

a7r

In region C, the governing equation reduces to
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= 0

V)IG

wo

V)|IA

-O cos )y ,



with the boundary condition

Tc L 7r2
#|2g2- = 0 - CO cosy2

The solution is

wo+ (z101c = 0o - L/2 + zo)sin-y

for 0< x< L/2-xo;

=1o - -' COS Y22\ D
+ 1(z

3
-- L + xo)sin -y

2 D

for L/2-zo < z < L.

In region D, the initial conditions for the characteristic equations (2.6), (2.7) and

(3.2) are

Xo - L/2+ xo,

- cos Dy,) + '(2xo - L) sinfy.

The solution is

VYID = 0o
Te{-C COS

wo+ -(2xo

7r 
7r [

- L) sin -- y -DI

a
- -(L/2 +zo

L/2 + xo - X)]

{cos y-{ r

a
(L/2+ xo

In region E, the initial conditions for the characteristic equations (2.6), (2.7) and

(3.2) are

z,=o
y|,~=o

= z,,

= 0,

= y1-

= '0 - - c y2

7 \- COS 5y,

Te (CS-r Y
- coD2 Ir \)

x\ )

7r 
Y- z) -O co



The solution is

Tc ( r yr \.'E - COS Dy - COS y.

In region F, the initial conditions for the characteristic equations (2.6), (2.7) and

(3.2) are

xz =o = L/2,

yl,=o = y,

= (cos y1-cos y,.

The solution is

0|F = T, os r1 - cos y + (L/2 - z)
2 DD

- -{cos. y + c(L/2 - z) - cos y .

Similar to the case with a uniform wind stress, there are three internal currents

represented by discontinuities of streamfunction. Along geostrophic contour i, the dis-

continuity of the streamfunction is

Tc (r.4r
AVbo = -00 + - (cos Y1 - cos y2(3.4)

which indicates a northward flow if 0o < 0, i.e., there is an eastward through-channel flow.

Similarly, along geostrophic contour 2, the discontinuity of the streamfunction is

Tc/ 7r \ wo "r= 0o + - (cos 5y 1 - cos -Y2) + (2zo - L) sin Dyi (3.5)

which indicates a southward (northward) flow if it is negative (positive). Along geostrophic

contour y = yi, the discontinuity of the streamfunction is

Tc r 6r
V50 f + -Cos D y1 - Cos Dy2 , (3.6)



which generally indicates an eastward flow if ?ko < 0. Obviously, if e = 0, i.e., the wind

stress is uniform, the solution degenerates to the solution discussed in the preceding section.

And if yi = 0 and Y2 = D, the above solutions reduce to the purely zonal channel model

case discussed in Chapter 2. Figs. 3.5, 3.6, 3.8 and Fig. 3.10 show four examples of the

wind-driven circulation for different y1 and Y2 to be discussed later in greater detail.

With the above solution the calculation of the topographic form drag is straight-

forward albeit tedious, and one has

rD/Po = PHpo/L +0 rocos -y
D

-ro (1 - 2xo/L) cosD y + - (1 - hc/ho) cos y + cos y2) +

D hc 2xo(. 7r . 7r

7rAy ho L(snDY-siD 0

The form drag -rD depends upon y through the second term. Nevertheless, it has the

same dependence on y as the wind stress. Otherwise a meridional momentum exchange

would be required, and our linear model here would not be appropriate. The first terms,

as discussed in section 2, represented the linear form drag generation by the through-

channel recirculating flow carrying all the through-channel volume transport, while the

other terms together represent the linear form-drag generation via the Sverdrupian flow

driven by the wind stress curl, in accordance with discussions in Chapter 2. These two

form-drag generation processes are independent of each other in our linear model.

In Fig. 3.6 with y1 = 0 and Y2 < D, the form drag generated through the Sverdru-

pian flow is

7r
TD2 = rocos-y - (1-2xo/L)ro -

D
Xo /r D he 2xo .r

7o-(1 - h/ho) (1 + cosSy2i -Y -rAY ho L s y2,

and one always has

TD2 _ rD1,
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Figure 3.5: The streamfunction (m 2/s) for the case with a purely zonal channel. The model
parameters are H = 5000m, D = 1800km, L = 24000km, xO = 4800km, ho = 1000m,
0 = 60 0S, To = 0.08N/m 2 .
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The other model parameters are similar to those in Fig. 3.5.
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Figure 3.9: (a) y versus y1 for zo = 1200km, the solid line for ho = 900m and the dashed
line for ho = 1100m, (b) Same as (a) but o- versus y1 with xo = 1200km. The other model
parameters are similar to those in Fig. 3.5.
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where TD1, defined as

~D1 =0cos -- y - (1 - 2xo/L)ro,
D

is the form drag generated by the Sverdrupian flow in the purely zonal channel model.

So the presence of the northern barrier always enhances the linear form drag generation

via the Sverdrupian circulation against the zonal mean wind stress. The reason is the

following. Similar to Fig. 3.5, all the southward Sverdrupian flow within the interior

basin away from the ridge shown in Fig. 3.6 is returned northward in region D, noting

Fig. 3.4. This northward flow contributes to generate form drag against the mean wind

stress, noting (2.4). Unlike that show in Fig. 3.5, not all the southward Sverdrupian flow

in the interior in Fig. 3.6 goes through region D except within the northern equivalent

western boundary layer (comparing Fig. 3.4 and Fig. 3.6). This southward Sverdrupian

flow contributes to generate form drag which enhances the zonal mean wind stress, noting

(2.4). Thus the presence of the northern barrier results in a larger form-drag generation

against the zonal mean wind stress via the Sverdrupian circulation.

In Fig. 3.8 with y1 > 0 and Y2 = D, the form drag generated through the Sverdru-

pian flow is

7r7r
TD3 = TO cos -y - (1 - 2xo/L)-rocos -y 1 i+D D

xo r D hc 2xo r
70(1 - hc/ho) (1 -cos y + To ry ho L siny,

and one always has

TD3 _ TD1-

So the presence of the southern barrier always weakens the linear form drag generation via

the Sverdrupian circulation, because the presence of the southern barrier shrinks region

D, compared with that in Fig. 3.5. Noting (2.4), this would reduce the effective h(z)

in generating the form drag due to the Sverdrupian flow. Besides, the presence of the

southern barrier weakens the northward return flow of the Sverdrupian flow over the ridge
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in region D, this also reduces the form drag generation. Thus, the presence of the southern

barrier results in a weaker form drag compared with that in the purely zonal channel.

In the presence of both the southern and northern barriers, the above two opposite

effects will compete with each other. In general with Y2 <; D/2 or D - Y2 y1, the second

effect tends to dominate. For the simple case with Y2 = D - y1, one has

7 I
TD4 = TO cOS -y - (1 - 2x0 /L)To cos y1.

D D

Obviously, the second effect discussed above prevails, and one always has

TD4 > TD1-

Similar to case 3, In this case, the form drag generated by the Sverdrupian flow is always

smaller than that in the corresponding purely zonal channel model.

Balancing the wind stress r, with the topographic form drag TD in (2.4) determines

4'0, and leads to the following through-channel transport

T, = T,. 1 -(1 - 2xo/L) cos -y1 -T,. = 5[ (

x- h 7 7 D he 2x 0 ( ..
1 -h os CODyi + COS DY2 7rAy ho L im DY2 - smn Dyi . (3.7)

With the transport formula above one can discuss several special cases according to the

positions of the tips of the two partial meridional barriers.

(1) y1 = 0 and Y2 = D.

In this case, the solution reduces to the simple case discussed in Part I with

T, = ro2xo/po (3.8)
foI -#OD

So, the case discussed in Chapter 2 is only the simplest special case. In this case, regions

A and G in Fig. 3.4 disappear. The circulation pattern is shown in Fig. 3.5.

The circulation within the channel can generally be divided into 4 different com-

ponents. The major one is the Sverdrupian gyre over regions C and D, noting Fig. 3.4.
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The equivalent western boundary layer of this gyre circulation is along segment i - h along

the northern boundary. The rough estimate of the gyre's volume flux for the case with a

narrow ridge x0 < L is

HwoL (39)
'3

The second gyre lies over the ridge in region E and F. This mini-gyre can be further

divided into two parts, the outer and the inner part. For the outer part, in region E, it is

purely zonal. The equivalent western boundary layers are along segment j - d along the

southern boundary and along segment c - i along the northern boundary. In the meridional

direction, it is closed by the internal currents along f1 and 12. The inner part of this gyre lies

only over region F. The corresponding equivalent western boundary is along segment j - d

along the southern boundary. It is closed by the internal current along 41. The volume flux,

HTc, of this mini-gyre is generally much smaller than that of the first one for xo < L. Both

gyres are singly connected. The other two parts are the two through-channel recirculating

flows, whose volume fluxes combine to make the total through-channel transport. Unlike

the two gyre circulations, these later two through-channel recirculating flows are not singly

connected. The major one flows along the southern boundary, 4l and f2, as an internal

boundary current, while along segments f - j and c - i it flows as an equivalent western

boundary current. The volume flux of this branch is T,.1 - HTc. The second one is weaker,

and it flows to the north of the major Sverdrupian gyre in region C. Over region B, it

is purely zonal flow, and represented by #'|B. It flows along fi as an internal current and

crosses the ridge as an equivalent western boundary current along segment c - h.

(2) yi = 0 and Y2 < D.

In this case, the transport reduces to

-ro2xo/po 1 he c Dhe . r
T 2 = JIO Y/ 1 - - 1 h +cos Y2 - sin y2 . (3.10)

IfoI -#y2 2 ho! DL 7rayho

Thus in the presence of only a partial northern barrier, one always has

Tr 2 < T,. 1 .
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Unlike case 1, in this case the transport is related to both the ridge width and the length

of the channel, besides it is also related to the length of the northern barrier. The presence

of the northern barrier always leads to a lower through-channel transport. This is because

the presence of the northern barrier leads to both a larger potential vorticity resistance and

stronger form-drag generation against the zonal mean wind stress via the Sverdrupian flow.

Both effects contribute to lower the through-channel transport. The circulation pattern is

shown in Fig. 3.6.

As Y2 -- 0, i.e., the gap between the northern barrier and the southern boundary

is very small, we have

T,2 - 0.

Here it is assumed that r, -+ 0 such that S < Y2 still holds. This is quite intuitive. As

Y2 -* 0, the wind stress between 0 < y < Y2, V -+ 0. This transport is also the result of a

similar #-plane model with Y2 -+ 0 discussed in the preceding section forced by a uniform

wind stress V - 0. As we have discussed in the preceding section, as the channel width

goes to zero, the #-steering effect on the geostrophic contours over the ridge vanishes, and

the 3-plane result degenerates to the f-plane result. Fig. 3.7 shows o = T,2/T,1 versus

Y2 for ho = 900m (solid line) and for ho = 1100m (dashed line). It monotonically increases

from 0 at Y2 -+ 0 to 1 at Y2 = D, and increases with increasing ridge height. It is worth

noting that T,2/T,1 is independent of xo.

The circulation pattern shown in Fig. 3.6 is basically similar to that shown in Fig.

3.5. The only difference is that the major Sverdrupian gyre now lies over region A, C

and D, and the corresponding equivalent western boundaries are now along segment i - h

along the northern boundary and at the western boundary of the northern barrier, i.e.,

the eastern edge of the southern barrier. The rough estimate of the volume flux of this

Sverdrupian gyre for a narrow ridge is still given by (3.9). The presence of the northern

barrier weakens volume fluxes of both branches of the through-channel recirculating flows.
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It is interesting to note that as Y2 -+ 0, the through-channel recirculating flows vanish and

the circulation in the channel approaches the regular Sverdrupian gyre in a closed basin.

(3) Y2 = D and y1 > 0.

In this case, the transport reduces to

roL/po L - 2xo ,r

Ifol- -#(D - y1) L COSDiyl +
zo/ r \ 2x o D he 2

x(1 - hc/ho) (1 - cos yi) + Lr Dr ho s y (3.11)T D L rAy ho -D

This case is more complicated than case 2. Although the presence of the southern barrier

always leads to a larger potential vorticity resistance, it also leads to a weaker form-drag

generation via the Sverdrupian flow, compared with case 1. So, the transport can be either

larger or smaller than that in case 1. The corresponding circulation pattern is shown in

Fig. 3.8.

As yi -* D, we have

T 2roL/po
Ifolh

Here it is assumed that r. - 0 such that 6 < D - y1 still holds. Again, it is the result in

a f -plane model discussed in Appendix A if a uniform wind stress T = 2iro were applied,

because between y1 < y < D, T; -+ 2-ro. What is different from case 2 is that although

in both cases Ay -+ 0, the through-channel transport in case 2 vanishes while it does not

vanish in case 3. If

2xo
L

where

1 - cos yi
= + -(1 cos 'yi) - 1(1 -hc/ho) (I - cos My1) - sin -y1'

one has

Tr3 > T,1,
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where Pc0 = -foho/H - #D and APc = Sy1. In this case, the decrease of the form-drag

generation via the Sverdrupian circulation due to the presence of the southern barrier

overpowers the increase in potential vorticity resistance. And the presence of the southern

barrier leads to an increase, rather than decrease, in through-channel transport. Otherwise,

the opposite happens and the presence of the southern barrier leads to a decrease in the

through channel transport. As is shown in Fig. 3.9(a), y first increases from 0 as yi

increases from zero, then it decreases. Only for a rather wide ridge can the presence of the

southern barrier lower the transport. Fig. 3.9(b) shows a- = T,3/T 1 for zo = 1200km. It

indicates that for both cases with ho = 900m (solid line) and ho = 1100m (dashed line),

the presence of the southern barrier leads to a substantial increase in the through-channel

transport, except for a very small yi.

The detailed structure of the circulation patterns in the presence of the southern

barrier, as shown in Fig. 3.8(a) for y1 = 160km and (b) for y1 = 400km, is quite different

from that shown in Fig. 3.6. The difference between Fig. 3.8(a) and (b) is that in (a),

t2 l < 2 1 + Cos y1

the internal current along 12 continuously flows southward; while in (b)

Ao|t > 0,

the internal current along f2 flows northward, noting Fig. 3.4. The above two criteria can

be met by adjusting either the length of the southern barrier, y1, or the ridge height, ho. In

both (a) and (b), the major Sverdrupian gyre downstream of the ridge discussed in case 1

and case 2 breaks down into two gyres. The rough estimate of volume flux of the northern

Sverdrupian gyre, whose boundary is the outer most singly connected closed streamline to

the north of y = yi, for a narrow ridge is now

T;V ~ ~ (L - 2zo) 1 - sin 7ry, (3.12)

while that of the southern one is

Hwo 1
Ti ~ (L - 2xo) sin _yi. (3.13)

)3 D
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In (a), the southern Sverdrupian gyre with y < y1 is isolated from the circulation to the

north. Similar to case 1, the through-channel is still divided into two parts. Nevertheless,

the volume flux of the internal current along f2 is now weakened roughly by ly H(2xo -

L)singy1, and this part is carried out through the flow to north of the northern Sverdrupian

gyre. This branch of the through channel flow embraces the northern Sverdrupian gyre.

The rest of the circulation is similar to that in case 1.

In case (b), the circulation is much more complicated. (If yi > D/2, the northern

Sverdrupian gyre completely disappears.) The southern Sverdrupian gyre is not totally

isolated from the rest of the circulation. The volume flux of its western boundary current

is (3.13). Part of this western boundary current with volume flux

= H [o- 1+cos y).

is returned via the internal current along y = y1. The rest with volume flux Tn,,, -

T" - T. flows northward along 12 and splits into two parts. One part with volume flux

HQ (1 + cos My1) flows westward over region E to region F until it reaches the southern

boundary along j - d. There it converges to an equivalent western boundary current.

Afterwards, it flows northward along i1 and eastward along the northern boundary. It

joins the other branch, which flows directly northward along f2, at point i (see Fig. 3.4) at

the northern boundary. Then, they return southward as the flow to the immediate north

of the northern Sverdrupian gyre. The through-channel recirculating flow in region B is

similar to that in case 1. What is different is that unlike case 1 or (a), it does not split

at point i. It flows eastward to the north of the return flow for the southern Sverdrupian

gyre. Obviously, the circulation pattern of (b) is closer to the "observed" circulation in

the circumpolar ocean. Therefore, in terms of changing circulation structure, the southern

barrier has a far more fundamental influence than the northern barrier, especially when it

is sufficiently long. Furthermore, the influence of the northern barrier is localized around

the northern barrier, while that of southern one is global in that circulation structure in

the whole channel is affected.
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(4) Y2 = D - yi.

In this case, the transport reduces to

T4 = [1 - (1 - 2xo/L) cos -y1 . (3.14)
Ifol[ - #(D - 2yi) D

For this case with symmetric barriers, the relation between the transport and the model

parameter is quite simple. The weakening effect of the southern barrier on the form-drag

generation via the Sverdrupian circulation prevails over the enhancing effect of the northern

barrier. The form-drag generation via the Sverdrupian circulation is always weaker than

that in case 1. Nevertheless, the presence of the symmetric barriers also raises the potential

vorticity resistance. Thus, the situation is similar to that in case 3, and the transport can

be either larger or smaller than that in case 1. The corresponding circulation pattern is

shown in Fig. 3.10.

Similar to the preceding cases, as yi -+ D/2, we have

roL/po

Ifolho
Here it is assumed that r, -+ 0 such that b < Y2 - y1 still holds. Again, it is the result

in the corresponding f -plane channel if a uniform wind stress r, = ro were used, because

between y1 < y < Y2, ; - ro. And,

= 1 if 2,1 >
T, f 2,o

T > 1 if 2xp <

where

1 - cos yi

(1-cos -yi) +

where PO = IfolI -#OD and AP. = 2/y 1 . As is shown in Fig. 3.11(a), 7 (the dashed line for

ho = 1100m and the solid line for ho = 900m) increases with increasing yi, i.e., decreasing

gap between the two barriers, and increasing height of the ridge. This is slightly different

from those shown in Fig. 3.9(a). Above the line, the increase in the potential vorticity
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resistance prevails over the decrease in the form-drag generation through the Sverdrupian

circulation, and the presence of the two barriers lowers the transport, while below the line

the opposite happens. Fig. 3.11(b) shows o, versus zo (the dashed line for ho = 1100m and

the solid line for ho = 900m) for yi = D/3. For a narrow ridge, the presence of symmetric

barriers substantially enhances the through-channel transport, while for a wide ridge, the

opposite happens. Fig. 3.10(a) shows the circulation patterns for short symmetric barriers

with yi = 160km, while (b) shows that for a long symmetric barriers with yi = 400km.

The discussion is quite similar to that of case 3, and is not repeated here. For a wind stress

in the form (3.3) with model parameters chosen as ro = 0.08N/m 2 , po = 1.03 x 10akg/ma,

L = 2.4 x 104km, D = 1.8 x 103 km, H = 5km, xo = 1200km, fo = -2w sin 9 and

# = 2w cos 9/a with 9 = 600S and a = 6.37 x 1Okm, T,4 = 150Sv for ho = 587m, which

would be in the subcritical range if there were no meridional barriers. For these model

parameters, 2xo/L > y, thus the presence of the symmetric partial meridional barriers

substantially lowers the through-channel transport.

In the preceding section we have discussed the case with an additional ridge down-

stream of the first ridge. We could proceed with a similar discussion in the presence

of another additional ridge. The discussion is rather tedious, yet yields no new physics.

Therefore, the results are not presented here.

3.4 Conclusion and discussion.

In this chapter, the discussions in Chapter 2 have been generalized into a more general

situation in an otherwise purely zonal channel with two partial meridional barriers at each

side of the channel at the same longitude. The presence of the two meridional barriers has

significant influence on both the through-channel transport and especially the circulation

structure in the channel. The meridional barriers increase the potential vorticity resistance

introduced by the ridge. Nevertheless, it can either enhance or weaken the topographic
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form drag generation via the Sverdrupian flow forced by the wind stress curl, depending

upon the lengths of the two barriers and the ridge width in the gap. It demonstrates that

both the bottom topography discussed in Chapter 2 and the coastline shape discussed by

Gill (1968) are important in determining the wind-driven circulation in a f-plane channel.

In the case with a uniform wind stress, compared with the case discussed in Chapter

2, the presence of any partial meridional barriers always reduces the transport due to

the increase in the potential vorticity resistance, thus, a stronger form drag generation.

In the case with a non-uniform wind stress, the transport can either go up or go down,

depending upon the lengths of the two meridional barriers. In the case with only a northern

barrier, the form drag generation by the Sverdrupian flow is enhanced, in addition to

the increase in the potential vorticity resistance. Thus, the through-channel transport

is substantially reduced compared with the case without any meridional barriers. The

presence of a southern barrier, however, always raises the transport for a narrow ridge

despite the increase in the potential vorticity resistance. Only for a rather wide ridge can

the transport be reduced. In the presence of two symmetric meridional barriers at each

side of the channel, the transport decreases for a wide ridge, but increases for a narrow

ridge, compared with that in the case with a purely zonal channel. In all cases, most of the

dissipation of the potential vorticity occurs along segment c - h at the northern boundary

and the eastern edge of the northern barrier (Fig. 3.4).

The presence of the meridional barriers not only changes the through-channel trans-

port, but also very significantly changes the circulation patterns in particular. Relatively

speaking, the presence of the southern barrier has a far more profound influence on the

circulation structure than that of the northern barrier. The presence of the northern bar-

rier has only a local influence on the circulation structure within the area covered by the

northern barrier. However, the presence of the southern barrier has a global influence on

all the circulation structure within the channel, especially when the length of the southern

barrier is sufficiently long. In this case, there is no southward internal current over the
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eastern portion of the ridge. Instead, an additional northward internal current over the

eastern portion of ridge emerges. The through-channel recirculating flow is entirely to the

north of the northern Sverdrupian gyre, and the corresponding circulation pattern is closer

to the observed surface circulation in the circumpolar ocean shown in Gordon et al. atlas

(1982).

This model again demonstrates the importance of both the geostrophic contour

structure and the topographic form drag generation via the Sverdrupian flow forced by the

wind stress curl. The discussions in this chapter combine the Gill model (1968) and the

purely zonal channel model discussed in Chapter 2. It realized Stommel's (1957) hypothesis

in its dynamic detail in a rather idealized simple linear barotropic model. In their review

article, Nowlin & Klinck (1986) emphasized that two fundamental questions with regard

to the large scale dynamics of the wind-driven circulation in the circumpolar ocean need

to be answered. These two questions are how the momentum input via the wind stress

and the potential vorticity input via the wind stress curl are balanced in the circumpolar

ocean. So, to some extent, the discussions in this chapter and Chapter 2 answered those

two question in a rather idealized situation. Furthermore, this model suggests that both

the coastline geometry and bottom topography around Drake Passage play a fundamental

role in determining the wind-driven circulation in the circumpolar ocean, while all other

topography most likely plays only a secondary role.

Although the discussions in Chapter 2 have been generalized into a more general

geometry in this chapter, which is presumably closer to the realistic circumpolar ocean,

the circulation pattern in the inviscid limit shown in Fig. 3.10(b) is still far from the

observed surface circulation in the circumpolar ocean (Gordon et al., 1982). The reasons

for this are similar to those discussed in Chapter 2. First of all, a rather idealized bottom

topography and coastline geometry are used in the model. Second, the buoyancy forcing

and stratification are both ignored here. As we will see in Chapter 4, stratification has a

profound influence on both the circulation structure and zonal through-channel transport.
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Third, frontal structure, one of the most significant features of the large scale circulation

in the circumpolar ocean, is absent from the model. Lastly, an inviscid limit is assumed

in the model. Otherwise, the internal current along y = y1 in Fig. 3.10(b) would be a far

wider one, as explained by Wang (1993a) and would be counterbalanced by the westward

Sverdrupian flow in the channel. In spite of all the drastic simplification in setting up the

model, it is believed that the essential part of the model results has important implications

in the much more complicated real circumpolar ocean. First of all, both the coastline and

bottom topography play fundamental roles in determining the wind-driven circulation

in the circumpolar ocean. Second, the physical processes through which form drag is

generated is closely relevant to the momentum balance in the circumpolar ocean. Third,

most of the potential vorticity input from the wind stress curl is dissipated around the tip

of the South American continent, especially the eastern portion. As we will see in the next

chapter, the presence of stratification will not change these conclusions. From a practical

point of view, the model result suggests that to simulate the wind-driven circulation in the

Southern Ocean requires a good data set on both mean and horizontal structure of the

wind stress over the Southern Ocean.

Appendix
Wind-driven circulation in an f-plane model

Assuming a uniform zonal wind stress with r, = ro = constant, and r, = 0, for an f -plane

channel shown in Fig. 3.12, the potential vorticity equation (2.1) reduces to

J #i,{h) = -Vo,

with the same boundary conditions (2.2) and (2.3) and same constraint (2.4) for /O. With

same discussion as in Chapter 2, segments a - b and e - f are the two equivalent eastern

boundaries, while b - c and d - e are the two equivalent western boundaries. Using the

same characteristic method, one can find that

4' = bo for region B,
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Figure 3.12: A schematic view of the domain of the circulation driven by a uniform wind
stress in a f-plane channel over the ridge. On top is the profile of the ridge. The dashed
lines over the ridge are the geostrophic contours. The solid arrow represents boundary layer
current, the non-solid arrow represents the internal current along a geostrophic contour.
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for region C.

Along d - e and b - c are two western boundary currents. Along b - e is a discontinuity

of streamfunction with

A4\C-B -

which connects the two equivalent western boundary currents as an internal current. Cor-

respondingly, the topographic form drag is

pofo/oho
TD = ~ L

This form drag generation is independent of y1, Y2 and D. Balancing the form drag with

the wind stress, one obtains (2.9) with the potential vorticity resistance now defined as

PC foho
H

which is independent of y1, Y2 and D. Another way to determine the transport is using

(2.11). Similarly, one has

PC
?POJHL'

Note here the length of the two equivalent western boundaries is x0 rather than Ax as

in the /-plane case. In the interior away from the ridge, the circulation, similar to that

discussed in Chapter 2, can be thought of as being driven by a source at point c and a

sink at point d. Thus, the presence of the two partial meridional barriers does not have

any influence on both the zonal transport and the circulation over the ridge.
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Chapter 4

Wind-driven circulation in a p-plane

channel, Part III: A multi-layer
model

4.1 Introduction

Wind-driven circulations in a f-plane channel were discussed in Chapters 2 and 3 in

a linear homogeneous model. It was shown that geostrophic contour blocking plays an

essential role in generating topographic form drag and determining the circulation in the

inviscid limit. The circulation can generally be divided into two parts: the two equivalent

western boundary layers where friction is of vital importance and the rest where friction is

negligible and the Sverdrupian balance appears to hold. The model clearly demonstrated

how the bottom topographic form drag is generated, where the potential vorticity input is

dissipated, and what model parameters determine the zonal transport. One of the major

shortcomings of the model is its assumption of homogeneity thus lack of vertical structure.

In a homogeneous model, the bottom topography affects the whole water column from

bottom to top uniformly. This could change significantly in the presence of stratification.

Generally speaking, in the presence of stratification the problem becomes much

more difficult, because it brings in a strong nonlinearity associated with the large inter-
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facial displacement. The difficulty associated with the gyre circulation in a closed basin

was demonstrated by Rooth et al. (1978) and Rhines & Young (1982a, RYa hereafter).

Ignoring any nonlinearity including the interfacial vortex stretching in a two-layer Q-G

model, Smith & Fandry (1978) extended Johnson & Hill's (1975) linear homogeneous

model into its two-layer version. They found that both the upper and lower layer flows

tend to follow the linear barotropic geostrophic contour f/H because in their model there

were strong interfacial frictional coupling and no blocked geostrophic contour. However,

neglecting the nonlinearity associated with the interfacial stretching is not appropriate for

large scale wind-driven circulation in the circumpolar ocean given the large vertical dis-

placement of isopycnal surfaces shown in Fig. 1.1. The parallel case in a closed basin was

discussed by RYa. They demonstrated that interfacial vortex stretching plays a vital role

in the wind-driven circulation in a closed basin. Wind-driven circulations in a two-layer

/-plane channel model including the nonlinear interfacial stretching have been generally

studied through direct numerical simulations, e.g., McWilliams et al. (1978), Treguier &

McWilliams (1990), and Wolff et al. (1991). Their model's results generally point out the

different influence of isolated topography and ridges. Eddy-resolving numerical simulations

by Wolf-Gladrow et al. (1991) indicate that the potential vorticity gradient in each layer is

far different from the planetary vorticity gradient. Nevertheless, the fundamental question

of what model parameters determine the zonal through-channel transport remains unclear.

In a two-layer model, in addition to the question of how the bottom topographic form drag

is generated, another question naturally comes up as to how the interfacial form drag is

generated which is needed to transport momentum input downward from the surface layer

due to the wind stress. A major controversy arises with respect to this latter question.

All three eddy-resolving numerical model studies mentioned above pointed out that the

interfacial form drag is generated mostly through the stationary eddies in the presence

of large scale bottom topographic features. Johnson & Bryden (1989) and Marshall et

al. (1993) argued otherwise that the interfacial form drag is generated mostly through

transient eddies resulting from baroclinic instability.
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The purpose of this chapter is to address the central question of what model pa-

rameters determine the zonal transport in the presence of stratification. To answer this

question we have to answer two other questions first: how the presence of stratification

affects the bottom topographic form-drag generation discussed in Chapter 2 and how the

interfacial form drag is generated. Similar to Chapter 2, a zonal channel model will be used,

and the inertial effects will be ignored but the nonlinearity associated with the interfacial

vortex stretching will be retained. By doing so, meridional momentum exchange between

different latitudes is excluded. Thus momentum input at each latitude has to be locally

balanced in a way similar to that in the corresponding linear barotropic model. The central

assumption in the model is that the transient eddies, while not explicitly included in the

model, would nevertheless homogenize the potential vorticities in each sub-surface layer

away from possible boundary layers following the discussion by Rhines & Young (1982b,

RYb hereafter). This assumption of potential vorticity homogenization is consistent with

the potential vorticity map obtained by Wolf-Gladrow et al. (1991) in their Q-G eddy-

resolving numerical simulation. The major difference is that in the /-plane channel there

is no shadow zone similar to that in a closed basin. The parallel case for the mid-latitude

atmosphere is discussed by Lindzen (1993).

The discussion is organized as follows. The wind-driven circulation in a two-layer

model will be discussed in Section 2. We will first discuss the case forced by uniform

wind stress, then the case forced by nonuniform wind stress. There are three important

points we want to make. First, stratification does not have any direct influence on the way

bottom topographic form drag is generated, and it is identical to that in the correspond-

ing barotropic model. Second, stationary eddies are capable of transporting momentum

downward. In fact, the interfacial form drag generation in the model is entirely due to the

stationary eddies. Third, the wind stress curl leads to both large interfacial and bottom

topographic form-drag generation in the case with a narrow ridge. Then, in Section 3 a

corresponding three-layer model will be discussed. It demonstrates that increased vertical

resolution does not affect the results from the two-layer model. Section 4 closes this chapter
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with discussions. This chapter demonstrates that the total transport is composed of two

parts. The first which we call the barotropic part is identical to that in the corresponding

barotropic model discussed in Chapter 2 and is determined by the wind stress and model

parameters associated with the ridge. The second part, the baroclinic part, is due entirely

to the presence of the stratification. Thus, the presence of the stratification enhances the

zonal transport in the channel.

4.2 A two-layer model

In Chapter 2, the circulations driven by both uniform and non-uniform wind stress were

discussed. Unlike the case in a closed basin, the uniform wind stress could drive a strong

loop of currents in the #-plane channel. In the inviscid limit the circulation is confined

within the loop of currents which has vanishingly small width. A non-uniform wind stress,

however, drives a loop of currents and a Sverdrupian gyre circulation and the zonal trans-

port is much reduced in the case with a narrow ridge. In this section, let us see how

the presence of stratification would change the circulation structure in the simplest layer

model, i.e., a two-layer model.

Assuming wind stress is r_ = r,(y), -r, = 0 and following conventional notations,

the potential vorticity equations for the upper and lower layer are (Pedlosky, 1987)

J(1 , qi) = H1 We - KH 1 V2 (4#1 - 02), (2.1)
H1

J(02, =2) = V2(#1 - 02) - KoH 1 V 2 0 2 , (2.2)

respectively with

q1 = y + F(02 - 01),

q2 = y + F(#1 - 02) + h,

F = f2|g'H1 .
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fo is the reference Coriolis parameter in the channel. g' = g(P2 - P1)/po is the reduced

gravity with pj as the density in jth layer, and po is the reference density. Each layer

has the same depth Hi = H/2, where H is the total depth. Following RYb, i; and qj

are time-mean flow quantities. The nonlinear inertial effect is assumed unimportant. The

interfacial friction, X, presumably represents the net effect of the transient eddy process,

for which RYb gave a detailed discussion. no is the bottom frictional coefficient, which

represents the ultimate dissipation in this two-layer model. h is the bottom topography,

which for simplicity is chosen as

h(z, y) = Iho(1- I) if |L/2 - <z; (2.3)
10 otherwise,

where L is the length of the channel. The boundary conditions are

#1|Y=o 0; V'l1y=D = 10, (2.4)

V2|y=o 0; i2|yj = b20 . (2.5)

O;O are determined through the momentum balance

f __ 021 802 a0
-02 +H1 + +- = 0, (2.6)
9' 'z9y y / Po19X a 1 9Y y P

f20 42 4#2 819,0184
-,91 + foh - 2 1 + KoH1 = 0. (2.7)

g''zB9B y oy

The first equation is obtained by multiplying the upper layer zonal momentum equation

by its thickness, integrating over the whole channel and using the quasi-geostrophic ap-

proximation. The second equation is obtained in a similar way. In the above, -x is defined

as

1
~ = -]Zd.

Because the inertial effect is neglected, there is no meridional momentum exchange and

(2.6) and (2.7) have to be satisfied at each latitude except along the two lateral boundaries.

In (2.6) the first term represents the interfacial form drag, while the second term represents

the interfacial frictional drag. These physical processes together account for the total
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downward momentum transport from the surface layer to the bottom layer. In (2.7) the

first and third terms are identical to those in (2.6) with a different sign. The second term

represents the bottom topographic form drag and the fourth term represents the bottom

frictional drag. In the absence of bottom topography, one apparent solution is

U1 = (1+ o/) 2 ,

poPoHo

In this solution, there is neither interfacial nor bottom topographic form drag and the

frictional process determines the solution. This is essentially the dilemma experienced

by Hidaka & Tsuchiya (1953). If we choose "reasonable" value for r = to = 10-7S-1,

corresponding to a damping time scale of about 120 days, then

Ui - U2 = 31cm/s,

for r, = 0.08N/m 2 and H = 5km. However, the critical shear for baroclinic instability is

(Pedlosky, 1987)

AU = #g'H/2f2 = 2.7cm/s,

for g' = 1.5cm/s. Apparently, the frictionally determined flow in the absence of bottom

topography is well baroclinically unstable which could lead to the development of large

transient eddies as demonstrated by McWilliams et al. (1978) in a much more elaborate

numerical model. In the presence of bottom topography, the circulation could be entirely

different as discussed in Chapter 2. In the following discussion we will always assume that

the wind stress is strong enough such that the corresponding wind-driven flow in the case

with a flat bottom is baroclinically unstable.

Consider a spin-up process of this two-layer model. Once the wind stress is switched

on, the flow in the channel will grow first in the upper layer. As the shear becomes large

enough, baroclinic instability will emerge, which will result in strong transient eddies.

These transient eddies will transport momentum from the surface layer to the lower layer
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to be balanced by the bottom topographic form drag. At the same time these eddies drive

a circulation in the lower layer which is not directly forced by the wind stress. See Rhines

& Holland (1979) for an insightful discussion of the role of these transient baroclinic eddies.

In this initial spin-up process, the downward transport of momentum from the surface to

bottom layer is carried out predominantly by those transient eddies. Once this spin-up

process is completed and the system settles down to a statistical equilibrium, it is assumed

that the potential vorticity in the lower layer will be homogenized presumably by those

transient eddies originating from baroclinic instability except within possible boundary

layers. See RYb for a detailed discussion for a closed basin. Actually, there are both

observational and numerical evidences, as discussed by Marshall et al. (1993), which seems

to suggest that the potential vorticity in those non-outcropped isopycnal surfaces in the

circumpolar region is indeed very homogeneous. It is worth pointing out that in the mid-

latitude atmosphere the potential vorticity on isentropic surfaces is also found to be rather

uniform as discussed by Lindzen (1993). Assuming that the potential vorticity in the lower

layer is homogenized away from possible boundary layers, we have

01 = 02 + (q20 - y-Ah, (2.8)F H1

where q20 is the uniform potential vorticity in the lower layer. The zonal mean baroclinic

shear is a uniform westerly shear flow with T5' -V = g'H 1#/f2, which is just the threshold

shear for the onset of barocinic instability in a two-layer model. It is very important to

notice that this shear is not directly related to the wind stress, but rather is determined

solely by the background stratification presumably set by the global thermohaline process.

Equation (2.8) immediately implies that, within the segments f - d and a - e where

the ridge intersects the northern and southern boundaries (see Fig. 2.3), the potential

vorticity in the lower layer is not homogenized. In those areas, the frictional process will

be important just like the western boundary layer in a closed basin (Young & Rhines, 1982).

It is assumed that there are always suitable boundary layers which can close the circulation

in a way similar to Luyten et al. (1983). See Appendix A for a more detailed discussion
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about these boundary layer dynamics. Away from those areas that have vanishingly small

area in the inviscid limit, the potential vorticity in the lower layer is assumed homogenized.

It is rather easy to see that (2.8) automatically satisfies the momentum balance (2.7) in

the inviscid limit by multiplying (2.8) with 84 2/ax and integrating around the channel.

Therefore, the momentum balance is now the bottom topographic form drag balancing the

wind stress

foh 02 + = 0,
ax pO

except along the two lateral boundaries. Noting (2.8), (2.1)+(2.2) yields

f fo '

J( ? 2 ,0y +-h = -jwe + -- J(h,#y)H H 2 fo

away from the two segments f - d and a - e. If we put

2 = OB y )'(2.9)
F

then

J(OB, 3Y+ h) = fWe. (2.10)
H H

Quite remarkably this governing equation of bB is identical to the governing equation in

the corresponding linear barotropic model, and the linear geostrophic contours fy + LOh =

constant of the corresponding barotropic model discussed in Chapter 2 again serves as the

characteristics for the governing equation of 4 B in this two-layer baroclinic model. Fig. 2.3

shows one example of the geostrophic contour structure in the supercritical state. Notice

that they are all blocked by the lateral boundaries in the segments f - d and a - e. In

the barotropic model this equation is valid except the two equivalent western boundaries,

segments c - d and a - b. In this two layer model, however, the above equation breaks down

within entire segments f - d along the northern boundary and a - e along the southern

boundary. The general solution to the above equation is

B = kb + G 3y + h) 7
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where Ib, a forced circulation, is the solution of the corresponding linear barotropic model

discussed in Chapter 2. The second part is a free solution and G could be any function.

Noting that the potential vorticity in the lower layer is assumed homogenized, this #bB
satisfies (2.2) to the lowest order away from the two segments f - d and a - e. In the

corresponding linear barotropic model, the geostrophic contour blocking along the two

equivalent eastern boundaries automatically removes the free solution and only the forced

solution, i.e., the first part, is left. In this two-layer model, the situation is subtler and

such a mechanism does not work because (2.10) is not valid along segments b - e and

f - c. Nevertheless, as we discussed in Appendix A, to the lowest order segments f - c and

b - e (see Fig. 4.1), which are the two equivalent eastern boundaries in the corresponding

barotropic model, can not support any boundary layer structure. Any non-zero G would

require lowest order boundary layer structures within both f - c and b - e. Such lowest

order boundary layers along b - e and f - c, however, do not exist. Therefore, one must

have

G =0,

to the lowest order. This uniquely determines the wind-driven circulation in #-plane chan-

nel. For the convenience of the following discussions, we will first take up the circulation

forced by uniform wind stress, then we will discuss the circulation forced by nonuniform

wind stress.

4.2.1 A case with uniform wind stress

If r, = ro = constant, the governing equation (2.10) for OB reduces to

J (B,3,Y+-$h) = 0
H

with the boundary condition

#)BY=O = 0,

V)B y=D b0
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where ,bo = b2O - #D/F to be determined later by momentum balance. With the discus-

sions above, IPB is just the barotropic circulation discussed in Chapter 2, and one has

#s = '#bo for region A,B,C,

#OB = 0 for region D, E,

except along segments a - b and c - d, where are boundary layer structures according to

the discussions in Appendix A. Thus the streamfunction in the lower layer is

02 = '3 F y, (2.11)

and streamfunction in the upper layer is

01 = OB - 2 y h. (2.12)

q20 = 0 is chosen noting the condition along the southern boundary away from the ridge

area. The interface between the two layers is

h2 = H1 + h + y1. (2.13)
fo

So, besides the zonally uniform meridional tilting, the interfacial profile is exactly the same

as that of the bottom ridge. To look at the circulation structure (2.11) and (2.12), the

circulation can be decomposed into two parts: the barotropic part

O, O(2.14)

and the baroclinic part

-2y - gh, (2.15)

--- y (2.16)2 ~F

for the convenience of the physical explanation. In Appendix B, a two-layer uniform

baroclinic zonal flow over a ridge on a 3-plane is considered. It is shown there that if

the lower flow satisfies U2 = 3/F, then there is no response in the lower layer and all the
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response is trapped within the upper layer regardless of the flow in the upper layer. In

the present two-layer model of wind-driven circulation, to satisfy that condition, the lower

layer flow in the barocinic part is just (2.16). In this way, the interfacial form drag is

guaranteed to be equal to the bottom form drag and carries momentum downward from

the surface layer to the bottom layer where it is balanced by the bottom topographic form

drag. Thus this process determines the flow in the lower layer. As is assumed, the potential

vorticity in the lower layer is homogenized which is presumably carried out by transient

eddies, thus in order for this baroclinic flow (#i, 7k;) to be marginally stable baroclinically,

the shear has to be

This process determines the barocinic shear structure. These two physical processes above

determine the baroclinic structure (4,; 0c) of the wind-driven circulation in the channel.

Similar to the barotropic model, in both layers there are discontinuities of stream-

functions along f1 with

A1|E-A A 2JE-A =-bo,

along e2 with

AV41IC-D = 2C-D =47

and along the southern boundary with

AO1|Y=o = A02|y = /bo.

These discontinuities of streamfunctions represent the barotropic internal currents over the

ridge and along the southern boundary. These loops of internal currents do not change

with depth, and we will see that it is similar in the three layer-model to be discussed in

the next section.
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With the circulation structure discussed above, the bottom topographic form drag

can be easily calculated as

TD = pofoh-2 pofooho( 1 - hc/ho), (2.17)ax L

where

|fo|

is the critical ridge height in the corresponding linear barotropic model, which can block

all the geostrophic contours in the #- plane channel. In this form-drag generation process

in the lower layer, only the $OB component makes a direct contribution, while the other

part associated with the baroclinic circulation does not. It is quite clear that the form-

drag generation in this stratified two-layer model is similar to that in the corresponding

barotropic model, and the presence of stratification apparently has no direct influence.

The momentum input from the wind stress in the upper layer is transported down

to the second layer by the interfacial form drag

71 = PO02- = - pofo'boho( 1 - he/ho).g x L

This interfacial form drag generation is due to the correlation between the barotropic flow

VB and the baroclinic flow (7kc,iOc). It is only related to the barotropic through-channel

transport represented by Obo and is independent of the zonal transport associated with

the baroclinic circulation. It is also related to the ridge height and the channel width

because he is related to the D. In this two-layer model the interfacial form drag is entirely

due to the stationary eddies, which is not inconsistent with the results from the two-layer

eddy-resolving numerical model such as that of Wolf-Gladrow et al. (1991) and the FRAM

model results (Stevens & Ichenko, 1992).

Balancing the interfacial form drag and the wind stress to determine Obo, one obtains

the transport and a simple relation between the model parameter and the zonal transport
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in each layer

T o- L H 1|po 3
T,. = + 2DH1,

|folho -ODH F

r0LHI/po 13
T2= + DH 1 -.

|folho - /DH F

In each layer, the first part is due to the loop of barotropic currents. Its relationship with

model parameters was discussed in Chapter 2. The second part is due entirely to the

presence of the stratification. Apparently, the stratification enhances the zonal through-

channel transport, which is consistent with the numerical model results of Bryan & Cox

(1972) and Cox (1989). This part is very sensitive to the choice of the background strati-

fication. Nevertheless, it is independent of any parameter associated with the ridge. The

total zonal transport in the channel is then

roL H/po 
2

Tr. = Ifolho - QDH + 3g'DH'P3fO. (2.18)

So, given the stratification, the baroclinic transport is solely determined by the width of

the channel and is not directly related to the wind stress. The barotropic transport is the

same as that of the corresponding barotropic model and is determined by the wind stress.

Figs. 4.1(a) and (b) show the normalized streamfunctions in the upper and lower

layer, while (c) shows the interface between the two layers. It is worth noting that the

solution obtained does not apply within the two segments f - d and a - e except within

the segments f - c and b - e for the lower layer. As we discuss in Appendix A, boundary

layer structures have to be appended, thus, in Fig. 4.1 the contours in those areas are only

schematic. Unlike the corresponding barotropic model, in this two-layer model, besides the

loop of currents, there are uniform eastward flows in both layers. Moreover there is a strong

stationary eddy represented by -g'h/fo in (2.12) in the upper layer over the ridge. It plays

a fundamental role in generating the interfacial form drag. The circulation structure in

both layers is much richer than its corresponding barotropic model. Fig. 4.1(c) shows that

away from the ridge the interface uniformly tilts southward, and rises up over the ridge.

It reaches its maximum height over the ridge. From the results of 3-plane model, it is
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Figure 4.1: The normalized streamfunctions of uniform wind stress-driven circulations ((a)
for the surface layer, (b) for the bottom layer) and the corresponding interface (c) in the

L3-plane channel with model parameters chosen as L = 24000km, D = 1800km, H = 5km,
xo = 2000km, ho = 950m and Ap/po = 4 x 10-4, H1 = 2.5km, fo = -2wsin 0 and
# = 2wcos90 /a with 9 = 60 0 S and a = 6.37 x 106 km, po = 1.03g/cm3 and ro = 0.08N/m 2 .
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quite interesting to see that in a corresponding f-plane model with # = 0, the presence

of the stratification does not have any influence on the zonal transport. The circulation

in the baroclinic model is the same as that in the corresponding barotropic model except

that there is a stationary eddy in the upper layer over the ridge.

Suppose we now have a series of ridges, represented as {h'(x)} with j = 1,. ,m.

Each one is in the form of (2.4). Among these ridges,

while

h0< he (j=MO + 1, -. - -,m),

where hj is the ridge height. Then, following the discussion in Chapter 2, the total potential

vorticity resistance introduced by this series of topographic features is

"'* h -0
PC= (fo|- D .

Ridges with subcritical height do not contribute to the total potential vorticity resistance.

And the corresponding through-channel transport is

= roL/po + 3g'DH'/3/fl. (2.19)
PC

The presence of those ridges lower than the critical height, he, has no influence on the

transport in the inviscid limit. The effect of these low ridges is merely to deflect the flow

passage of the loop of currents slightly, and the baroclinic circulation is not affected.

It is quite straightforward to extend the above discussions to a general bottom

topography, and the final result is still (2.19). In the realistic circumpolar ocean, in

addition to the ridge near Drake Passage, there are three other major ridges. They are

the Kerguelen Plateau in the southern Indian Ocean, the southeast Indian Ridge south of

Australia, and the Pacific Antarctic Ridge. The local meridional scales of these ridges are
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very large, so are their corresponding local OD. They are most probably locally subcritical,

thus their presence introduces no net potential vorticity resistance. Therefore, in the case

with uniform wind stress forcing, their presence most likely does not change the wind-

driven barotropic through-channel transport. It is solely determined by the ridge around

Drake Passage. Near Drake Passage the channel is very narrow, thus tending to introduce

a strong bottom topographic and interfacial form-drag generation, and circulation is most

likely only determined by parameters associated with this topographic feature.

4.2.2 A case with non-uniform wind stress

In the above discussion the influence of the wind stress curl was ignored. In the correspond-

ing barotropic model, the wind stress curl leads to a very significant amount of bottom

topographic form drag generation in the case with a narrow ridge. Now let us see how

that works in the presence of stratification. In the following discussion the wind stress is

chosen as

.= o 1- Cos y ,

and ry = 0, which is somewhat similar to the zonally averaged observed one in the cir-

cumpolar zone as shown by Nowlin & Klinck (1986). From discussion in Chapter 2, we

conclude that the Sverdrupian balance only applies to the case with a supercritical ridge.

And the solution to (2.10) is

woD 7
B A = bo - 1 + Cos ,

aiar
woD 7r w

OB IB Obo- 1 + coS-y) + 12(x - L/2 + xo)sin-7 y, for 0< x< L/2 -xo,

wD( D w3
B I B b4 - + Co. 7y + (x + xo - L)3in y, for L/2+xo <x < L,

a~bwoD = 2 +
OB IC O - w 1 + Co. -- y - -- (L/2 +xo - x)] +

axr DT
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wvo a
WO(2xo - L)sin-. [y - (L/2 + zo - x)] -

COS- y- (L/2+xo -x) - cosry},
avr D #

woD o 7r

air D Y)

V)B JE = w Cos y -(x-L/ 2 ) +
air D3 #I

WOD 7r [Y a (7r
Cos- y -- - L/2)] - cos-y

axr D # D

where wo = -7r-ro/poHD. Therefore, the wind-driven circulation in this two-layer model is

#1 = bB - 2 y f h, (2.20)

V2= FB -y. (2.21)
Fy

Although the presence of wind stress curl changes the barotropic component of the cir-

culation, the baroclinic part is not affected. The reason is that the baroclinic part of the

circulation is again determined by the two physical processes: maintaining the neutral

baroclinic instability and keeping the interface in the same shape as that of the bottom

except the zonally uniform meridional tilting such that the interfacial form drag equals

the bottom topographic form drag. Apparently, these two physical processes are not af-

fected by the presence of the wind stress curl. The wind stress change can only induce

corresponding change in the barotropic component.

Similar to the circulation forced by uniform wind stress, there are discontinuities of

barotropic streamfunction at the boundaries between regions A and E with

A01|E-A A02JE-A = ~b _ 2woD
a7r

between regions C and D with

A01IC-D = 021C-D = bO 2woD
air
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and along the southern boundary away from the ridge with

= = _2woDA01|Jy=o = A02|Jy=o = Ob0 - ,wO

air

where a = Ifolho/Hxo.

From the solution above, one can calculate the bottom topographic form drag as

TD #2 pofo~boho ,
TD = pofoh =L (1 - he/ho) - ro(1 - 2xo/L) + rocos y,

which is same as that in the corresponding barotropic model discussed in Chapter 2 and

discussion about its generation and relation to model parameters is thus similar. The first

part is due to the loop of the barotropic currents. The second and third part is directly

due to the wind stress curl. Apparently, the presence of the stratification again does

not have any direct influence on the two physical processes of bottom topographic form

drag generation first discussed in Chapter 2 in the corresponding barotropic model. The

interfacial form-drag is

= o _# pofogboho 7
f po #2 a -=1 L (1 - he/ho) - ro(l - 2xo/L) + Tocos- y.
g ax LD

This interfacial form-drag generation is due to the correlation between the barotropic flow

bB and the baroclinic flow (#/,'ibO). Similar to that in the case with a uniform wind

stress, it is only related to the barotropic through-channel transport represented by #Oo

and independent of the baroclinic transport. Apparently the wind stress curl significantly

enhances the interfacial form-drag generation just as it does the bottom topographic form-

drag generation in the case with a narrow ridge. Nevertheless, this part of the form drag is

always weaker than the mean wind stress ro, and it is again due to the stationary non-zonal

flow, which is the wind stress curl driven Sverdrupian gyre circulation together with the

perturbation -g'h/fo.

Balancing interfacial form drag and the wind stress to determine Obo, one obtains

the zonal transport in each layer

ro2xoH1|po
T,.1 = f+ 2D-H1 0/ F
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T = ro2xoH1/po- + DH10/F.
|folho - #DH

In each layer, the first part is due to the loop of barotropic currents discussed in Chapter

2. The second part is due to the presence of the stratification. The total transport in the

channel is then

ro2xoH/po
T,. = foho - DH + 3g'DH i3/fo. (2.22)

Apparently, although the presence of the wind stress curl enhances both the interfacial and

bottom topographic form-drag generation leading to a smaller barotropic zonal transport,

while the baroclinic part remains the same. In the next section we will show that this is also

true in a three-layer model, actually it can be shown that this is true in any layered model.

In the limit ro -+ 0, the zonal transport in the channel would be purely the baroclinic part

with

T,. -+ 3g'DHj3/f2.

It is worth noting that this limit is achieved in the inviscid limit. For the case with subcrit-

ical ridges among which the case with a flat bottom discussed previously is the simplest,

the corresponding transport is infinitely large in the inviscid limit! This is fundamentally

different from that in a closed basin. In a closed basin, the eastern boundary automatically

shuts off this part. In this channel model, however, there was no such eastern boundary.

Therefore for a rather weak wind stress, the through-channel transport is mostly associ-

ated with the baroclinic circulation. Quite obviously, there is always a finite friction in

the realistic circumpolar ocean, thus the above discussion only applies for a strong enough

wind stress in the sense that the wind-driven flow is in the supercritical state for baroclinic

instability in the absence of bottom topography. According to the rough estimation made

previously, even if the wind stress is as weak as one tenth of the observed, the correspond-

ing wind-driven flow in the absence of topography is still in the supercritical state for

baroclinic instability.
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For model parameters chosen as ro = 0.08N/m 2 , po = 1.03g/cm 3, L = 2.4 x 104km,

D = 1.8 x 103km, H = 5km, xo = 1200km, fo = -2wsin 0 and # = 2wcos90 /a with

0 = 60 0S and a = 6.37 x 103km

T, = 148Sv, (2.23)

for ho = 950m and Ap/po = 4 x 10-4, which corresponds to quite a large baroclinic Rossby

deformation radius ~ 24km. Among them 53Sv is carried by the barotropic component

4'B, the rest with 95Sv is carried out by the baroclinic component (#,1 ;). The upper

layer carries about 9OSv, while the lower layer carries about 58Sv. Apparently, for a

higher ridge, both the barotropic transport and the transport in the lower layer will be

smaller. Fig. 4.2 shows the total transport, the transport in the upper layer and that in

the corresponding barotropic model, respectively. If

ho < h. = hc + 4Froxo/(3polfoI3D),

the zonal transport carried by the barotropic component #OB is larger than that by the

baroclinic component (10,4c). Otherwise, it is weaker than that by the baroclinic com-

ponent. In the corresponding barotropic model, the through-channel transport is rather

sensitive to the choice of ridge height. In this two layer model, however, for the range with

ho > h, the transport is mostly determined by the baroclinic component (01i#), thus it

is not so sensitive to choice of the ridge height as is shown in Fig. 4.2. With the same

model parameters, the meridional Sverdrup volume transport in the interior basin away

from the ridge is roughly

Hwo
Ts,, (L - 2xo) = -257Sv, (2.24)

for a narrow ridge. Thus the meridional Sverdrupian volume transport is substantially

higher than the zonal through-channel transport.

Figs. 4.3(a) and (b) show the streamfunction in the upper and lower layer, re-

spectively. Noting that the zonal velocity associated with the baroclinic component in the
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Figure 4.2: The zonal transport T,. versus ho in the case with a non-uniform wind stress.
The ridge width is chosen as xo = 1200km, while the remaining parameters are similar to
those used in Fig. 4.1. The short dashed line is the total transport, the long dashed line is
the transport in the upper layer, and the solid line in the corresponding barotropic model.
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Figure 4.3: Same as Fig. 4.1(a) and (b) but for the case with a non-uniform wind stress.
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upper layer is stronger than that in the lower layer, away from the ridge, the velocity vector

in the lower layer rotates clockwise with respect to that in the upper layer. This is typical

of the /-spiral in the wind-driven subpolar gyre. Although the Sverdrupian gyre circula-

tion and the loop of currents which constitute of the barotropic component do not change

with depth, the vertical shear in the baroclinic component renders the circulation structure

in the upper layer rather different from that in the lower layer. The gyre circulation in

the upper layer shrinks further to the southeast corner downstream of the ridge than that

in the lower layer, compared with the corresponding barotropic situation. The structure

of interface between the two layers is the same as that shown in Fig. 4.1(c). This is very

different from that in a closed basin where associated with the subpolar gyre, the interface

rises in the center of the gyre. In this 3-plane channel, however, there is no such interface

elevation because the Sverdrupian gyre circulation is barotropic, and does not lead to any

associated interfacial elevation. The chief reasons are that here unlike the closed basin,

there is no so-called eastern shadow zone associated with the wind-driven circulation, and

the wind-driven circulation penetrates all the way to the bottom. Nevertheless, interfacial

elevation does occur over the ridge due to the effect of the baroclinic flow over the ridge

discussed in Appendix B.

4.3 A three-layer model

Despite its simplicity the two-layer model illustrates all the physical processes essential to

the stratified wind-driven circulation in a #-plane channel:

(1) The circulation consists of two parts: the barotropic part and the baroclinic part. The

barotropic part is the same as that in the corresponding barotropic model.

(2) The wind stress determines the barotropic component only.

(3) The requirement that potential vorticity in the subsurface layer be homogenized, except

within possible boundary layers, determines the vertical shear of the baroclinic component

except over the ridge.
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(4) The inability of segments f - c along the northern boundary and b - e along the

southern boundary to support any boundary layer structure to the lowest order determines

the uniform zonal velocity of the baroclinic component in the lower layer.

(5) The presence of the stratification does not have any direct effect on the topographic

form drag generation.

(6) The interfacial form drag is generated by the stationary eddies.

It would be interesting to extend the two-layer Q-G model results to a two-layer planetary

geostrophic model which allows outcropping of the lower layer such as the Luyten et al.

(1983) model. Instead, we want to discuss the wind-driven circulation more thoroughly by

increasing the vertical resolution, and we want to show that the procedure discussed in the

two-layer model is readily applicable to any layer models so long as the Q-G assumption

is valid.

The simplest layer model with more vertical resolution is of course the three-layer

model. A significant new feature is that the middle layer is not directly forced by the wind

stress nor is it directly affected by the bottom topographic form drag. It merely acts as a

messenger to pass the momentum from the surface layer to the bottom layer where it is

balanced by the bottom topographic form drag. With standard notion, the Q-G potential

vorticity equations are (Pedlosky, 1987)

J #1,y + f(# 2 - 1)] 1 We, (3.1)
'+ H1 H1 ,

J O92,#y + 1 (01 - 02) + (32 -( 2) = 0, (3.2)

J 03,0Y + 4(02-3)+ = 0, (3.3)
g" H3 H3

away from possible boundary layers within segments f - d and a - e; see Appendix A

for a detailed discussion. g' =2-PIg and g" = 2 "g, pi is the density of layer j. The

mean layer thicknesses of the three layers are H1 , H 2 and H3 , respectively. The bottom

topography is still in the form of (2.3). The boundary conditions are

I y=o = 0; b|yv = igo, (3.4)
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where j = 1,2,3. 47jo is determined through the momentum balance

f 02 -+ - = 0, (3.5)
9 Ox Po

f i 02 fo a02
-1 + -11 - 0 (3.6)9 x 9" ax

-0 2--- + foh - 0. (3.7)
9"1 ax ax

The first equation says that the wind stress input in the surface layer is transferred down

to the middle layer by the interfacial form drag between the surface and middle layer

7I12 = PO .

In the middle layer, the momentum input from the surface layer is then transferred down

to the bottom layer by the interfacial form drag between the middle and bottom layer

f 2 042
_r123 = PO-#a -= g' Ox

In the bottom layer, the wind stress is ultimately balanced by the bottom topographic

form drag

TD = pofoh .3
ax

Assuming that the potential vorticities in both middle and bottom layers are ho-

mogenized away from possible boundary layers, as is suggested by Wolf-Gladrow et al.'s

numerical simulation (1991), one has

g"H3  g'(1H2 + Ha) g+g (3.8
#1 = 03 - 2+ gH2H31Oy -9I+ ~ h, (3.8)I f 02fo

02 = 43 - gH -h. (3.9)
fo fo

Without losing any generality, the potential vorticities in both the middle and bottom

layers are chosen to be zero. Noting (3.7) and (3.8), the summation of (3.1), (3.2) and

(3.3) yields

fo fo g'H1 + g"(H 1 + H2)J(hp) (3.10)
J ,+ hWe+ Hfo
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So, just like the two-layer model discussed in the preceding section, the linear barotropic

geostrophic contours #y + LOgh = constant of the corresponding barotropic model again

serve as the characteristics for the governing equation of 'b3 in this three-layer model. It is

quite straightforward to demonstrate that this is true regardless of the number of layers so

long as the Q-G assumption is valid and the potential vorticity homogenization is assumed

for all sub-surface layers. In light of the discussions in section 2, the streamfunction in the

bottom layer is

g'H 1 + g"(H1 + H2)fl (3.11)

where bB is the same as that in section 2.2. The streamfunctions in the surface and the

middle layers are

= O- ( g'+g")H - g'+ h (3.12)
f 02fo

fl2 = B - Hy - -h. (3.13)
f 2 fo

The interface between the surface and middle layers and that between the middle and

bottom layers are

h2 = H 2 + H3 + h + f(H 2 + H3 )y, (3.14)
fo

h3 = H3+ h + y13 (3.15)
fo

So, except for the zonally uniform meridional tilting, both interfacial profiles are exactly

the same as that of the bottom ridge. And it can be shown that this is true regardless

of the number of the layers. Following the discussions in section 2, the circulation can be

decomposed into two parts: the barotropic part

Oi = OB, (3.16)

and the barocinic part

c (g' + g")H g' + g"
1 = 2 0y - f h, (3.17)
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c g'H1 + g"H
#2= - f2 0y - -h, (3.18)

c g'H1 + g"(H1 + H 2 )
#3 = -2 Py. (3.19)fo

With discussion similar to the two-layer model, one can show that the requirement that

the baroclinic part be baroclinically marginally stable and the response of the interface

shape at each latitude be like that of the bottom ridge completely determines the barocinic

component of the circulation.

Similar to the two layer model, in all three layers there are discontinuities of stream-

functions at the boundaries between regions A and E with

AO1 E-A = A'02 E-A = A'3E-A = -bbO 2woD
air

between regions C and D with

A#1IC-D = AV2|C-D = A'0 3 1C-D = -- b 2woD
air

and along the southern boundary away from the ridge with

A01ly=o = A0 2 |y=o = Afsly=o = 4b - 2wOD
air

These discontinuities represent the internal barotropic currents over the ridge and along

the southern boundary away from the ridge. This can be shown to be present in models

with any number of layers.

With the streamfunctions in (3.11), one can compute the bottom topographic form

drag as

-- pofo~boho ,r
TD = 7112 = T 123  L (1 - h/ho) - -ro(1 - 2xo/L) + rocos-y.

L D

The bottom topographic form drag rD is same as that in the corresponding barotropic

model, and the interfacial form drags T11 2 and T123 are the same as those in the two-layer

model. The first term represents the form drag generation due to the loop of currents
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and the second and third terms are due to the wind stress curl. The presence of the

stratification and finer vertical resolution appear to have no direct effect on the bottom

topographic form-drag generation. Just like the two-layer model, the interfacial form-drag

generation at both interfaces is due to the correlation between the barotropic component

and the baroclinic component. It depends only upon the barotropic transport associated

with 4b. The zonally mean baroclinic flow does not contribute directly. Furthermore, the

wind stress curl leads to a very significant interfacial form-drag generation just like that

in the two-layer model.

Balancing the interfacial form drag and the wind stress determines Obo, which gives

rise to a simple formula for the zonal transport in each layer

-ro2xo H1/po (g' + g") H
|folho -3DH fj'

Tr2  = ro2xoH 2|po g'H +g"H
|folho - 3DH fj '

Tr3  ro2xoH3 /po g' H1 + g"(H1 + H2) DH
Ifolho - DH f0

In each layer, the first part is carried by the barotropic component. Its relation with the

model parameters is similar to that in the corresponding barotropic model. The second part

is carried by the baroclinic component due to the presence of the stratification. Similar to

the two-layer model, the barotropic part is determined by the wind stress. The baroclinic

part, however, is not directly related to the wind stress but is determined by the background

stratification. The total zonal transport in the channel is

_ 02xoH/po
T, = |folho - 3DH + [g'H1(H + H 2 + H3)+ g"(H1 + H 2)(H + H3)] 3D/fo. (3.20)

So the first part carried by the barotropic component is determined by the wind stress

and topographic parameters. It is not affected by either stratification or finer vertical

resolution. The second part is not directly related to either the wind stress or the to-

pographic parameters. It is determined by the stratification, which is presumably set by

thermohaline process, and the presence of background stratification leads to a stronger
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zonal through-channel transport. Apparently this second part is affected by the vertical

resolution.

Figs. 4.4(a), (b) and (c) show the streamfunctions in the surface, middle and bottom

layer, respectively. As is shown in (3.11), (3.12) and (3.13), the streamfunction in each

layer is the barotropic circulation superimposed upon a uniform eastward flow away from

the ridge, and this eastward flow increases from the bottom to the surface layer. Thus,

visually the Sverdrupian gyre circulation is more compressed against the southeast corner

downstream of the ridge from bottom to surface. Noting that the baroclinic zonal flow

increases from the bottom to the surface layer, the velocity vector outside the ridge rotates

clockwise from the surface to bottom, which is typical of a /-spiral in a subpolar gyre

circulation. The interface elevations between the surface and middle layers and between

the middle and bottom layers are similar to that shown in Fig. 4.1(c). Figs. 4.5(a) and (b)

show the cross section of the interfacial height of the three layer model. In the meridional

section away from the ridge, the interfaces slope downward northward. And the lower

interface has a weaker slope than the upper interface in accordance with the thermal wind

relation. As indicated by (3.12) and (3.13), both slopes are independent of strength of the

stratification, i.e., the density differences between different layers. In the zonal section,

the shapes of both interfaces are identical to that of the bottom one. They are again

independent of the stratification. Thus in each layer along any latitude, the situation

looks similar to the corresponding barotropic model and the momentum balance in each

layer is thus satisfied.

Similar to the two-layer model, the discussion in this section can be extended to

any kind of bottom topography so long as there are no closed linear barotropic geostrophic

contours. The results can be further extended to higher order layered models. The conclu-

sion is still that the wind stress and bottom topography determine the barotropic part

of the circulation, while the baroclinic circulation is not directly related to the wind

stress. For a model with parameters chosen as L = 24000km, D = 1800km, H = 5km,
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Figure 4.4: The normalized streamfunctions in the surface layer (a), middle layer (b)
and bottom layer (c). The model parameters are chosen as Hi = 1OOm, H 2 = 1000m,
H3 = 3000m, (P2 - P1)/Po = 3 x 10-4, (P3 - P2)/Po = 3 x 10-4, while the rest are similar
to those used in Fig. 4.2.
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H1 = 1000m, H 2 = 1000m, H3 = 3000m, (P2 - P1)/Po = 8 x 104, (P3 - P2)/PO = 1 x 10-,

fo = -2wsinO and # = 2wcos9/a with 0 = 600 S and a = 6.37 x 10 6 km, po = 1.03g/cm 3

and ro = 0.08N/m 2, the total zonal transport is

T,. = 164Sv.

for zo = 1200km and ho = 950m. Among them about 68Sv is in the upper layer, 26Sv

is in the middle layer while the rest, 70Sv, is in the bottom layer, thus quite a significant

amount of zonal transport is carried by circulation below 2000m in the bottom layer.

Apparently, the channel width to a large extent controls the zonal transport associated

with the baroclinic part of the wind-driven circulation.

4.4 Conclusion and discussion

In this chapter, we have constructed a multi-layer Q-G model of the wind-driven circulation

in a 3-plane channel in the presence of a sufficiently high ridge. The central assumption

is that potential vorticity in all sub-surface layers is fully homogenized except within pos-

sible boundary layers. The potential vorticity homogenization is presumably carried out

by transient eddies, which are not explicitly included in the model. Similar to the corre-

sponding linear barotropic model, geostrophic contour blocking is essential to the existence

of a solution in the inviscid limit. The wind-driven circulation appears to be composed

of a barotropic part and a barocinic part. The barotropic part, identical to that in the

corresponding barotropic model discussed in Chapter 2, is determined by the wind stress

and the ridge parameters. The baroclinic part, however, is not directly related to the

wind stress. It is determined by the requirement that the baroclinic flow be baroclinically

marginally stable and the interfacial elevation between layers be in the same shape as the

bottom ridge at each latitude in order that interfacial form-drag is equal to the bottom

one. Due to the presence of the baroclinic flow, the wind-driven circulation exhibits a

typical /3-spiral structure in the vertical direction outside the ridge. And the Sverdrupian
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gyre is increasingly more compressed against the southeast corner downstream of the ridge

from the bottom layer up to the surface.

It is shown that the presence of stratification does not have any direct influence on

the bottom topographic form-drag generation. It is the same as its barotropic counterpart,

and supercriticality of the ridge height is essential. In this multi-layer model, the interfacial

form drag is generated by the stationary eddies. It is due to the correlation between the

barotropic component and the baroclinic component, but the zonal mean baroclinic flow

does not make direct contribution. Furthermore, the dependence of the interfacial form

drag upon model parameters is similar to that of the bottom one. This appears to be

generally true regardless of whether the potential vorticity in each sub-surface layer is

fully homogenized or not so long as the inertial and frictional effects are weak enough.

Take the three layer-model (3.1), (3.2) and (3.3) for example, generally in the middle and

bottom layers one has

y + "2 (01 - 02)+ *2 (03 - 02) = R2(02)
g' H 2  g

y + 4(V2 - 03) + fh = R 3(0 3)
g"1H3 H3

in the lowest order. R 2 and R 3 could be any reasonable functions. Multiply the first

equation with 19'8 2 /Ox and the second equation with a 3 /OX, then integrate them along a

latitude, and one gets equation (3.6) and (3.7). There is no contradiction between our con-

clusion here and that arrived by Marshall et al. (1993) regarding the downward momentum

transfer. Horizontal momentum is a 2-D vector. Marshall et al.'s (1993) conclusion only

applies to that along a time mean Montgomery streamline, which is markedly different

from a zonal line as indicated by the circulation structure obtained here.

In this multi-layer model, corresponding to circulation structure, the total zonal

through-channel transport can be divided into two parts: the barotropic part and the

baroclinic part. The first part is identical to that in the corresponding linear barotropic

model. Thus, the wind stress, its meridional structure and the parameters associated with
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the bottom ridge determine the transport. The baroclinic part, however, is not directly

related to the wind stress and its meridional structure. It is determined by the vertical

stratification only. The stronger the stratification is, the larger the baroclinic transport.

This result seems to be consistent with Olbers & Wubber (1991). To a large extent,

this stratification is presumably determined by the global buoyancy-driven thermohaline

circulation. Thus, the buoyancy forcing plays a fundamental role in determining the zonal

transport and this process is not locally determined. To fully determine the zonal transport

one has to understand the global thermohaline circulation first. This is fundamentally

different from that in a closed basin. In a closed basin, the total meridional Sverdrupian

transport is uniquely determined by the wind stress and is independent of the stratification

(RYa, Luyten et al., 1983), although the vertical structure is. In the present #-plane

channel model, however, wind stress alone can not fully determine the total through-

channel transport.

Although compared with its barotropic counterpart the circulation in the surface

layer looks much closer to the observed large scale circulation in the circumpolar area

shown by Gordon et al. (1978), the circulation pattern and interfacial elevation structure in

particular still do not look like those of any observed corresponding isopycnal surface. This

presumably implies that some important physics is still missing from this simple stratified

Q-G model. First, in the discussion potential vorticity homogenization is assumed in sub-

surface layers. Any departure from that assumption would induce interface distortion from

the one obtained in the model. Second, as was discussed in Chapter 3 in the corresponding

barotropic model, the presence of any partial meridional barriers could induce significant

change in the barotropic wind-driven circulation in the channel. If partial meridional

barriers were included in this multi-layer model, corresponding change would presumably

occur. Third, the bottom is assumed to be an isothermal surface. As shown by Orsi et

al. (1992), there is indeed intersection of isopycnal surface with the ocean bottom in the

circumpolar ocean, although this intersection is much weaker than that at the sea surface.

Fourth, the discussion is carried in the inviscid limit. It is not clear how a small but finite
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friction would change the picture obtained in this chapter. Fifth and most importantly,

strong frontal structure is one of the most significant features in the circumpolar ocean

(Nowlin & Klinck, 1986), but it is excluded from our present model by virtue of the

model assumption. Its presence could have substantial influence on the three dimensional

structure of the wind-driven circulation.

In spite of all the shortcomings, the model does highlight some of the important

physics of the large scale wind-driven circulation in the circumpolar ocean. First of all, just

as the corresponding barotropic model shows, the topography around Drake Passage plays

a vital role in determining the wind-driven circulation in the circumpolar ocean regardless

of the presence of stratification. It blocks all the linear barotropic geostrophic contours

(Krapisky, personal communication), thus the topographic form drag is generated. The

model suggests that the bottom topographic form-drag generation process is not directly

influenced by the stratification, and the horizontal structure of the wind stress is of leading

order importance. Second, the model suggests that the interfacial form drag needed to

transport momentum down from surface to the bottom is probably mostly due to the

stationary eddies. This presumably implies that one may be able to get most of the

downward momentum flux from the conventional data base such as hydrographic sections.

Whether the mechanism indeed operates in the realistic circumpolar ocean is apparently

an open question. It would be very interesting to make an actual calculation using the

currently available data in the circumpolar area. Lastly from the point of view of numerical

modeling, the simple Q-G model suggests that to model correctly the zonal transport of

the Antarctic Circumpolar Current, generally thought driven primarily by wind stress,

one has to model the global thermohaline circulation correctly in order to determine the

stratification.

Appendix A
Boundary layer structure within segments f - d and a - e
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In the following discussion we will assume that, within these boundary layers, r, = no for

simplicity.

A.1 Boundary layer structure in the two layer model

A.1.1 Boundary layer structure within segment f - c

Adding (2.1) and (2.2) yields

)i -- +4 2 + C -, 2 KOV20 2  (A.1)
ax ax ay H1

where a = -- (> 0). Unless there is a shadow zone near f - c similar to that inH1 am

a closed basin such as that discussed by Young & Rhines (1982), the potential vorticity

homogenization requires that there be a boundary layer structure along f - c to the lowest

order at least in one layer in order to satisfy the kinematic boundary conditions at f - c.

The numerical results of Wolf-Gladrow et al. (1991) seem to indicate that there is no

shadow zone structure in any sub-surface layers. If the characteristic thickness of the

boundary layer is 1/rc, then it is easy to see that there could not be any boundary layer in

either the lower or the upper layer for the lowest order solution. Thus, the characteristic

thickness of the boundary layer should be different from 1/t. Suppose it is e = 1//fi, and

Y = D -y (A.2)
6

#j(X, Y) (=(, Y) + E7P(X, Y) +. (A.3)

then from (A.1) the lowest order balance gives

f0() = Pb#o -#D/F, (A.4)

Noting /'2 |y=D. Therefore, the bottom layer can not support a boundary layer to the lowest

order and there must be a boundary layer structure to the lowest order in the upper layer.

The first order balance of (A.1) gives

# - a ~ 2  = 0. (A.5)
ax aY
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The first order balance from (2.1) gives

a200) 0 0) / 0440) a4' 0,(o) 0
±+ # ' + F -- 0. (A.6

aY2 + x + y ax ax aY 0

(A.5) and (A.6) determine #0) subject to the boundary conditions

01(0)|y=o = bo - 20D/F

#1(0)|yc -+Ow - 20D/F - g'h/fo,

noting 01 |y=D and 41. In principle we can solve the above boundary value problem pre-

sumably through numerical methods and determine the boundary layer structure. If the

above boundary value problem has no solution, then there must be a shadow zone near

f - c and the whole discussion in the present chapter has to be modified. But this is

against Wolf-Gladrow et al.'s (1991) numerical simulation which seems to indicate that

there is no shadow zone in any sub-surface layers. Therefore we conclude that the above

boundary value problem has a solution and the discussion carried in this chapter is valid.

The discussion about the situation along segment b - e is similar.

A.1.2 Boundary layer structure within segment c - d

Unlike segment f - c, there is a boundary layer in each layer within segment c - d. Suppose

E = 1/K, and

Y =D - y
C

O(x, y) = O' 0 (x, Y) + e0( (x, Y) +

then the governing equations are

0244O) )F (0 (A.7)

aY
2 + y ax O9x ay '

a2,00) aO)
2 a 2 = 0. (A.8)

aY2 (9Y
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The corresponding boundary conditions are

Vy1(O)|y=o = Oo - 2#D/F,

1(0)|y-.o -+ B(xD) - 2#D/F - g'h/fo,

V)2(0)IY=O = #o- D/F,

#2(0)Ir_.oo - #B(x, D) - OD/F,

noting # l|=D and # . In principle we can solve the above boundary value problem numer-

ically and determine the boundary layer structure. The discussion and conclusion for the

situation within segment a - b are similar.

A.2. Boundary layer structure in the three layer model

The discussion within both segments c - d and a - b are similar to that in the two layer

model, and they can support a boundary layer with characteristic thickness - 1/K in each

layer. Within segments f - c and b - e the discussion is slightly different but the conclusion

is similar. Suppose e = 1/I~, and

Y = D-y

then we have

0") =Obo -,D/F, (A.9)

noting '02 |y=D. Therefore, the bottom layer can not support a boundary layer to the lowest

order, and the first order balance gives

0 (01 + -V2) a = 0. (A.10)
i8x C1x ) BY

The first order balance from the equation resulting from adding the potential vorticity

equations of the surface and middle layer gives

12(O) O(/(O ) + = 0. (A.11)
CY2 +x + y ax - x aY 
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The lowest order balance of the surface layer gives

1* 0 " O#(o) 24,") - (A.12)
aY Ox ax aY

The boundary conditions are

o g"Hs g'(H 2 + H3 )JD,
YI = 0b - 2 + 0 ID

g'1 + g" gH + g'(H2 H2 )1+D
(11 Y--o 00 'bo - o -h- [ 2 + 02)D,

Y00I=o = /bo- 9H3 D,

0201yOO -+ #6 - gh - g" H D,
o

noting jl|y=D and 0j. (A.10), (A.11) and (A.12) together with the boundary conditions

above make up the boundary value problem for 71 and 0 2 , which in principle can be solved

numerically. The discussions for any higher order layer model are similar to this three layer

model.

In conclusion for any layer models, within segments c - d and a - b, there is a

boundary layer in each layer with characteristic thickness ~ 1/; within segments f - c

and b- e, there is a boundary layer in each layer except the bottom layer with characteristic

thickness ~-'-v 1/y" for the lowest order solution.

Appendix B
Large scale uniform flow over topography

The influence of bottom topography on oceanic flow is widespread, depending upon

the characteristic time and horizontal scales of the flow, and the characteristic scale of the

bottom topography. In the stratified ocean, this influence also depends upon the vertical

stratification. Following Rhines (1983) and Haynes (1985), we choose here to discuss one

particular model about the influence of large scale bottom topography on planetary scale
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slow baroclinic oceanic flow to highlight the physics behind the way how the zonal velocity

associated with the baroclinic component in the two-layer model in the lower layer discussed

section 2 is determined. We consider a two-layer model with baroclinic zonal flow U1 and

U2 , density p1 and P2, and equal depth H1 on an open 3-plane. It encounters a large

scale mid-ocean ridge h(x) in the form of (2.3). With standard notation, the governing

equations for the steady motion are simply

J(01,7 q1) =0, (B.1)

J(4 2 ,q 2) =0. (B.2)

Equations (B.1) and (B.2) simply state that in both layers potential vorticity is conserved

following streamlines, or in other words, fluid particles flow along isolines of potential

vorticity in both layers. q, is without relative vorticity. The partial differential equations

can now be simplified into the simple algebraic equations

qi = Qi(01), (B.3)

q2 = Q2(0 2 ). (B.4)

The functional forms of Qi and Q2 can be determined by tracing along streamlines until

h vanishes. As noted by Rhines (1983), for this simplified problem, we can use an either

upstream or a downstream condition to determine the functional forms of Q1 and Q2.

Using an upstream condition of uniform zonal flow, we have

QW(OO) - /# + F(U1 - U2 ) (B.5)
U1

Q2(02) - F(U1 - U2 )0
Q2(4'2) =- 2 (B.6)

U2

These equations readily show that in the presence of uniform zonal flow U1 and U2 with

U1 > U2 , the planetary vorticity gradient # in the upper layer is enhanced by the interfa-

cial vortex stretching, while that in the lower layer is weakened by the interfacial vortex

stretching. With the two equations above, the solution can be found by simply substituting
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equations (B.5) and (B.6) into equations (B.3) and (B.4), we have

FfohU
01 = -Uy + H (1/U2 - F - FU1 /U 2 )-',

02 = -U2y + (

In the special case with

then

FU2/U1 - #/U 1 )(#/U 2 - F

U2 = 'F,

01 = -U1y - !h

fo
2 = -U2y,

(B.8)

(B.9)

regardless of U1. In this special case, there is no response in the lower layer; all the response

is in the upper layer.

159

(B.7)

- FU1/U2)-1



Chapter 5

A simple model of abyssal circulation
in a circumpolar ocean

5.1 Introduction

In the preceding three chapters, the dynamic role of bottom topography in the momentum

balance is discussed. It is shown that the supercriticality of bottom ridges is essential in

both the bottom topographic and interfacial form drag generation. In this chapter and the

next one we want to study the dynamic role of bottom topography in the mass balance in

a #-plane channel. In this chapter the buoyancy-driven circulation is discussed, while in

the next chapter the wind-driven circulation will be discussed.

In the World Oceans, there are several distinct source regions of deep water forma-

tion, such as that in the North Atlantic Ocean. Warren (1981) gave an excellent review of

the deep water formation in the world oceans. In compensation for the deep water forma-

tion in small source regions, there is a general slow upward movement of deep water over

the rest of the world oceans. Based upon this idea and with the assumption of planetary

geostrophy for flow away from the western boundaries, Stommel and Arons developed a

theoretical conceptual model for the abyssal circulation in both closed basins and global

ocean basins (Stommel, 1958; Stommel et al., 1958; Stommel & Arons, 1960a and b).
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The model predicted intense western boundary currents in each closed basin. And this

prediction was indeed, to some extent, confirmed by Swallow & Worthington (1957) in the

North Atlantic and by observations in other closed basins.

The classical Stommel & Arons model has been extended in several different di-

rections. Kuo & Veronis (1973) employed tracers as indicators for the interior sluggish

poleward flow. In contrast to the Stommel & Arons model, Kawase (1987) introduced a

Newtonian damping in the continuity equation in a linear two layer model. It replaces

the prescribed sinks and sources in Stommel & Arons' model (1960a) (SA hereafter), so

that the buoyancy forcing is crudely determined by the internal dynamics of the model.

The model was spun up from rest, and gave a steady state that is quantitatively consis-

tent with the simpler Stommel & Arons theory. In the spin-up process, both Rossby and

coastal Kelvin waves play important roles in propagating information in the basin. Hau-

tala & Riser (1989) extended the Stommel & Arons model by including wind forcing and

geothermal forcing. Rhines (1989) and Straub & Rhines (1990) discussed the influences of

stratification, bottom topography, and the nonlinear spin up of the model abyssal circula-

tion. They showed the importance of the geometry of geostrophic contours and steepening

of the nonlinear Rossby waves.

All the theories above are applicable only to closed basins with meridional bound-

aries, where conventional Sverdrup dynamics is generally thought to hold. In the circum-

polar ocean, there are no meridional boundaries to support the western boundary current,

which is essential for the Stommel & Arons theory of abyssal circulation in closed basins. In

the circumpolar ocean, the conceptual difficulty is to identify a physical process through

which net meridional water mass exchange is carried out. In an annulus channel with

a uniformly distributed source along the inner boundary and a corresponding uniformly

distributed sink along the outer boundary, it was demonstrated in both laboratory exper-

iments and theoretical models that the source to sink flow is carried jointly by the surface

and bottom Ekman flow, e.g., Barcilon (1967) and Hide (1968). Associated with this
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meridional circulation is a strong westward through-channel flow. It was this flow pattern

which prompted Barcilon (1967) to argue that the peripheral Antarctic water discharge

could act as a retarding force to counterbalance the wind stress. Wright & Willmott (1992)

essentially applied the abyssal circulation theory for a closed basin to a circumpolar ocean.

They discussed the time evolution of isolated cooling events, which dynamically is rather

similar to the evolution of 18'C water in a subtropical gyre discussed by Dewar (1987).

Despite all these studies, fundamental questions are still left unanswered. For example, is

the classical Stommel & Arons theory for closed basins applicable to a circumpolar ocean

in the presence of a sufficiently high bottom ridge? How do bottom waters formed in

Weddell Sea and Ross Sea (Warren, 1981) cross the channel? Can geostrophic flow in a

#-plane channel support a net cross-channel volume transport?

The purpose of this chapter is to discuss the abyssal circulation in a circumpolar

ocean, idealized here as an isolated zonal 0-plane channel. As the first step, the discus-

sions will be carried out in a simple barotropic model similar to that for the wind-driven

circulation discussed in Chapters 2 and 3. In section 2, the barotropic model and properties

of the corresponding geostrophic contours will be discussed. Then, in section 3, following

Stommel et al. (1958), we consider simple cases forced only by a point source and sink in

the channel placed at the same side of the channel. In section 4, a simple case forced only

by a point source and sink in the channel placed on different sides of the channel will be

discussed. Our intention is mainly to answer the last two questions and to demonstrate

the novelty of the buoyancy-driven flow in a channel against that in a closed basin. We

will also show the similarity between wind stress forcing and buoyancy forcing in terms of

generating through-channel recirculations. In section 5, we are going to demonstrate that

in the presence of a sufficiently high ridge, the classical SA model in closed basins is appli-

cable to a circumpolar ocean, but with significant modifications. In section 6, a schematic

picture of the abyssal circulation of an idealized Southern Ocean will be constructed. It is

characterized by a strong inter-basin water exchange. Thus, the circumpolar part of the
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schematic picture of the global abyssal circulation, first proposed by Stommel (1958) is

completed. We close this chapter with discussion in section 7.

5.2 The linear homogeneous model

Following SA, we consider a homogeneous ocean in a planetary 3-plane channel. Away

from boundary layers and following conventional notation, the planetary geostrophy is

-fv = -g - (2.1)

U= a (2.2)faBy)

where ( is the deviation of the free surface from its mean. The linear mass conservation

equation is

(H - h)u (H - h)v (2.3)
ax + 9 = -

where Q denotes the source (< 0) and sink (> 0) prescribed at the surface in the spirit of

Stommel & Arons. H and h represent the mean water depth and the bottom topography,

respectively. For simplicity, h(x, y) is chosen as

h(x,y) = h - -) if |L/2 - z <z; (2.4)
10 otherwise,

where L and xO are the length of the channel and half width of the ridge, respectively. The

above equations lead to the following linear potential vorticity equation

q2
J((,q) = -Q, (2.5)

9

where q is the linear potential vorticity defined as

q = - (2.6)H - h'

Similar to the linear Q-G model, in this linear planetary geostrophic model, the potential

vorticity of each fluid particle is solely determined by its position, and q = constant defines
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the geostrophic contours. Mass conservation (2.3) requires

(H - h)v1 ~ dy', (2.7)

where

Z~~ =L-Zdx.L 0

In this equation, L(H - h)o represents the total net cross-channel geostrophic volume

transport. In the absence of any bottom topography, it is quite clear from (2.1) that one

always has

T =O0

because of the periodicity for ((x, y). In this case, geostrophic flow can not support any net

cross-channel volume transport. Any net cross-channel volume transport has to be carried

out through other physical processes, such as the surface and bottom Ekman boundary

layers discussed by Hide (1968). In the presence of bottom topography, however, even

though we still have V = 0, (H - h)v may not necessarily be zero. Thus, geostrophic

flow in a circumpolar ocean may be able to support a net cross-channel volume flux, to be

demonstrated later.

As the model stands as (2.5), the discussion in terms of the geostrophic contours in

Chapter 2 holds equally well here for the buoyancy driven flow. Therefore, in this chapter

we will follow the same approach developed there. For the wind-driven circulations, as are

discussed in the preceding chapters, in the case with a very low ridge there is no solution in

the inviscid limit. In the case with a sufficiently high ridge, however, there is a solution in

the inviscid limit. In the planetary geostrophic model, in the absence of any topography,

the geostrophic contours q = constant are straight zonal lines. In the presence of a ridge

in the form of (2.4), some of the geostrophic contours will strike either the southern or

northern boundary. Nevertheless, for a sufficiently low ridge with ho < he, all of the

geostrophic contours

fs + /Yo
q= H '
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with 0 < Yo < DH(he - ho)/hc(H - ho) will strike neither the southern nor the northern

boundary: they close themselves. he is defined as

_ fD
he = -H,

fs

and fs = fly=o. Free solutions exist along the unblocked geostrophic contours in the

inviscid limit. For a sufficiently high ridge with ho > he, however, all geostrophic contours

in the channel are blocked by the lateral boundaries; Fig. 5.1 shows such an example. In

this case, any movement in the channel has to be externally forced. Correspondingly, he is

defined as the critical height, and the case with ho > (<)he will be called the supercritical

(subcritical) state. With discussion similar to that of the wind-driven circulation, segments

a - c (see Fig. 5.1) along the northern boundary and h -j along the southern boundary are

the two equivalent eastern boundaries. Segments c - e along the northern boundary and

f - h along the southern boundary are the two equivalent western boundaries. This is true

regardless of the ridge height. From what we learned from gyre dynamics (SA), ((x, y) has

to be prescribed along the equivalent eastern boundaries. Without losing any generality,

we can set the boundary condition along the northern equivalent eastern boundary a - c

as

((X, D)|a-c = 0,

while the condition at the southern equivalent eastern boundary h - j as

((z,0)|h_5 = (O.

This boundary condition can not be set arbitrarily and has to be determined through the

mass balance (2.7). This completes the model for the source-sink-driven circulation in a

/-plane channel.

Unlike the wind-driven circulation, we will show that for the cases with only point

source and sink forcings, solutions in the inviscid limit may be possible even with a sub-

critically high ridge in some cases. Nevertheless, a supercritically high ridge is needed if a
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Figure 5.1: The circulation pattern driven by a pair of point source and sink at the northern

boundary of the channel. Case I. On top is the profile of the ridge. Dashed lines are the

geostrophic contours. Solid lines are the current route. Solid arrow represents equivalent

western boundary current, while those open ones represent internal currents.
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cross-channel volume flux is necessary. In section 3 we will present some interesting cases

forced only by point sources and sinks placed at the northern boundary. In section 4 we

will present a case forced by a point source and a point sink placed at different sides of

the channel. These discussions by no means are intended to exhaust all possibilities, but

rather they are meant to demonstrate both the dynamic difference and similarity between

the classical SA model and the f-plane channel model. In the following discussions a

supercritically high ridge will always be assumed.

5.3 Flow driven by a point source and a point sink at
the northern boundary

It is assumed that the buoyancy forcing is in the form

Q(xy) = -QoS(x - xi)6(y - D) + QoS(X - X2 )6(y - D), (3.1)

where L/2 - zo < X2 < X1  L/2. They are both within the segment a - c. Away from the

point source and sink and the two equivalent western boundaries, the potential vorticity

equation (2.5) reduces to

J((, q) = 0.

Thus, any flow has to be along geostrophic contours in the interior. Cross q-contour

flow is allowed only within the two equivalent western boundaries c - e and f - h. In

the supercritical state, the northern equivalent eastern boundary is divided by point b

(L/2 - x, D), where

Ahe
xc =oxo

and Ahc = ho - he, into two segments a - b and b - c. xe actually measures the super-

criticality of the ridge height. The corresponding equivalent western boundary, d - e, for

segment a - b is within the northern equivalent western boundary. The corresponding

167



equivalent western boundary, f - g, for segment b - c is within the southern equivalent

western boundary. Depending upon the location of the point forcing with respect to the

critical point b, there are three different flow patterns. The essence of these discussions is

that because the point source and point sink are placed at different geostrophic contours,

the fluid from the point source to point sink has to cross q-contours. The real question is

where is the cross q-contour flow.

Case I: X2 < X 1 < L/2 - zc

Both the point source and point sink are within segment a - b, so the only possible

solution is shown in Fig. 5.1. The flow, with volume flux Qo, starts from the source at

(x, D) and moves along the geostrophic contour £2

fN
H - h(xi)'

where fN = fIy=D, until it reaches the northern boundary again at point (L - xi, D) within

the northern equivalent western boundary. Afterwards, the flow changes direction, crosses

q-contours, and moves eastward until point (L - X2 , D). At this point, it changes direction

again, and moves along the geostrophic contour i1

fN

q~z~y|e =H - h(z2)'

all the way to the point sink at (X2 , D). Dynamically, this solution is quite similar to that

discussed by Stommel et al. (1958). It is easy to verify that there is no net cross-channel

geostrophic volume flux, and the mass balance (2.7) is satisfied. Furthermore, there is a

net westward volume flux Qo from the point source to the point sink, but there is no net

eastward flux everywhere in the channel. A significant feature of this flow pattern is that

the flow does not reach the southern boundary and there is no southern equivalent western

boundary layer. All the cross q-contour flow occurs within the northern equivalent western

boundary layer. A brief discussion about the influence of a finite and weak friction on this

flow pattern is presented in the appendix.
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Case II: X2 < L/2 - x < x

The point source is within the segment b - c while the point sink is within the

segment a - b. This case is still similar to that discussed by Stommel et al. (1958),

nevertheless there is a substantial modification. The only possible solution is shown in

Fig. 5.2. The flow, with volume flux Qo, starts from the source at (xi, D) and moves

southward along the geostrophic contour to

(x 4= qo HfN
H - h(xi)'

until it reaches the southern boundary at point f' (x1., 0) with

fs
H - h(xi.) = qo*

At f', this flow splits into two parts with volume fluxes Qi and Q2

Qo = Qi + Q2. (3.2)

Within the southern equivalent western boundary layer, one branch with volume flux Q1

flows eastward to point g (L/2 - xo + x, 0). The other branch with volume flux Q2 flows

westward along the southern boundary all the way to point j (L/2 + xo, 0). Afterwards,

the Qi branch flows northward along the geostrophic contour f1

q(x,y)e1 = qi - H - ho'

until it reaches the northern boundary at point c (L/2, D). Then, it flows eastward along

the northern boundary until it reaches point d' (L - X2, D). Within segments f' - g and

c - d', the Qi branch flows within the equivalent western boundary layers in order to cross

the geostrophic contours. The Q2 branch does the same within the segment f - f'. From

point j, the Q2 branch flows northward along the geostrophic contour £2

( , y )|t = q2 '
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Figure 5.2: Similar to Fig. 5.1 but for Case II.
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until it reaches point d (L/2 + xe, D), where it meets the Q1 branch. Then, it turns

eastward and flows along the northern boundary until it reaches point d'. From d', all the

fluid from the source joins and flows along the geostrophic contour £3

q(xy)e = q3 fN
H - h(X2)

until it reaches the point sink at (X 2 , D).

To determine Qi and Q2, we need another equation besides (3.2). The periodicity

of ((x, y) around the channel requires that

A(o + A( 1 + LA 2 = 0,

where A(j (j = 0,1,2) is the difference of the surface dynamic topography across the

corresponding geostrophic contours. The relation between the volume transport along

a geostrophic contour and the corresponding surface topography difference across the

geostrophic contour satisfies

Q = A(SC j=0,1,2.
qi

With this relation, the above periodicity yields

Qoqo - Q1q 1 - Q 2q2 = 0. (3.3)

Using (3.2) and (3.3) one can determine the volume fluxes of the two branches

H - ho h(xl) - he
Q1 = - Q0H - h(x1 ) ho - he

QH - he ho - h(z1)Q
H - h(xi) ho - he

noting h(xi) > he in the supercritical state. Again it is easy to verify that there is no net

cross-channel volume flux, and (2.7) is satisfied. Unlike Case I, there are now both net

eastward and westward zonal volume transports from the point source to the point sink.

The eastward volume flux from the source to the sink is Q1, while that of the westward
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one is Q2. The relative strength of these two branches is determined only by the position

of the source. As x1 -- L/2 - xe, i.e., h(xi) -+ he, Q1 -+ 0, and the Qi branch disappears.

This essentially degenerates to Case I. On the other hand, as x1 -+ L/2, i.e., h(xi) -+ ho,

Qi - Qo and Q2 - 0, o coalesces with f1 and both Q1 and Q2 branches disappear. In this

limit, the fluid flows directly from the source to (L - X2 , D), and then from there it flows

along 6 all the way to the sink. Between these two extremes, the flow from the source

always branches upon reaching the southern equivalent western boundary because of the

two requirements, the periodicity of ((x,y) around the channel and no net cross-channel

geostrophic volume transport. The other significant difference between Case I and II is

that now the flow reaches the southern boundary, and cross q-contour flow occurs within

both the northern and the southern equivalent western boundaries.

Case III: L/2 - x,< X2 <X 1

Both the point source and point sink are within segment b - c. This case is also

similar to the case discussed by Stommel et al. (1958); nevertheless, there is again a

substantial modification. With this forcing pattern, the only possible solution is shown

in Fig. 5.3. The flow starts from the source at (xi, D) and flows along the geostrophic

contour f1

q ( , y ) | z, . = q i o = - ( z )=H fN~x)

until it reaches the southern boundary at point g' (Xi.,0) with xj1 satisfying

fs _

H - h(xi.)

It then splits into two parts. One branch with volume flux Q1 flows eastward until it

reaches point g (L/2 - xo + x, 0). Afterwards, this Q1 branch flows northward along the

geostrophic contour f1

q(x,y) , = i H o'
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Figure 5.3: Similar to Fig. 5.1 but for Case III.
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Upon reaching the northern boundary at point c, it flows eastward within the northern

equivalent western boundary layer until point d (L/2 + xe, D). Then, this Q, branch flows

southward along the geostrophic contour 2

q(x,y)|e2 = = ,

until it reaches the southern boundary at point j (L/2+xo, 0). After that, it flows westward

all the way to point f (L/2 - xo, 0). Within the southern equivalent western boundary

layer, this Qi branch crosses geostrophic contours until it reaches point f' (X2.,0) with X2.

satisfying

fs __fN

H - h(X 2 .) =H - h(2)

The other branch with volume flux Q2 flows westward from the branching point at g' until

f'. Here, the two branches join together and flow along the geostrophic contour f20

q(z, y)|,. = q20,

all the way to the point sink at (X 2 , D).

To determine Q1 and Q2, we can use the mass balance (2.7) and the periodicity of

the surface dynamic topography. Suppose we define the differences of the dynamic surface

topography across geostrophic contours 120, i10, i1 and 12 as A 20 , AC10, A(1 and A( 2,

respectively. Then, the periodicity of surface dynamic topography gives

( 2 + A( 1 + A 2 0 + A( 1 0 = 0, (3.4)

while the mass balance (2.7) gives another equation

AL2 /q 2 + ACi/q1 = 0. (3.5)

Solving (3.4) and (3.5) gives us

(H - he)(H - ho) h(z 1 ) - h(X2)Q 0
(H - h(xi))(H - h( 2 )) ho - he

Q2 = QoQ-.

174



Overall, the circulation shown in Fig. 5.3 is rather similar to that shown in Fig. 5.2. But

unlike Case II, as x1 -- L/2, although geostrophic contour i1o overlaps i, the branching

does not disappear and still occurs at point c.

The three cases above are all forced by a pair of point source and sink located at the

northern equivalent eastern boundary. If the pair of point source and sink is located at the

southern equivalent eastern boundary, both the discussion and solution will be quite sim-

ilar. In the discussions above, a supercritical ridge is assumed. In the supercritical state,

as we discussed at the beginning of this section, point b divides the northern equivalent

eastern boundary a - c into two dynamically different segments a - b and b - c. Similarly,

point i divides the southern equivalent eastern boundary h - j into two dynamically dif-

ferent segments h - i and i - j. In the subcritical state, however, the regions between lines

f - b and g - c, c - i and d - j, within which q-contours directly connect the two lateral

boundaries, disappear. In this case, both Cases II and III degenerate to Case I. We

readily see that in Case I, supercriticality of the ridge height, ho > he, is not necessary

in the inviscid limit. Another common feature of the above three cases is that there is no

through-channel recirculation, which results in the question: what will happen if the point

source and sink are placed at different sides of the channel? This leads to the following

section, which discusses the simplest case among those forced by a point source and sink

placed at different sides of the channel.

5.4 Flow driven by a point source and a point sink
placed at different sides of the channel

In the preceding section, flow driven by a pair of point source and sink both placed at the

northern boundary are discussed. The common feature of the circulations is that there is

no through-channel recirculation. Now let us look at the case forced by

Q(xy) = -QoS(x - L/2 - xo)S(y) + Qob(x - L/2 - xo) 6 (y - D). (4.1)
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In the absence of any bottom topographic features, there cannot be any net geostrophic

volume transport across the channel in the inviscid limit. Thus, any net geostrophic mass

flux from the source at the southern boundary to the sink at the northern boundary

has to be associated with some bottom topographic features. The discussions for the

previous three cases in the preceding section, where the flow from the source to the sink

is geostrophic except along the two equivalent western boundaries, show that geostrophic

flow can cross the channel along a blocked geostrophic contour, such as f1 and 12 in Fig.

5.2 and Fig. 5.3, which connects the two lateral boundaries. Nevertheless, in both Case

II and Case III, there is no net meridional geostrophic volume transport because both

the source and sink are placed at the northern boundary. Now let us see what happens

when the point source and sink are placed at different sides of the channel.

Away from the point source and sink, there is no buoyancy forcing. Thus, any flow

has to be along the q-contours, while any cross q-contour flow has to be within the two

equivalent western boundary layers. In Fig. 5.4, the flow with volume flux Q1 starts from

the source at (L/2 + xo, 0) and moves northward along geostrophic contour i1,

q = qi. E

which and its like will be called critical geostrophic contours hereafter in this section. Q1

and A(1, the jump of ((x, y) across f1, satisfy

Q1 = g(.
qi

Upon reaching the northern boundary at point d, it splits into two branches. One branch

with volume flux Qo flows along segment d - e eastward within the northern equivalent

western boundary layer until it reaches the sink at point e (L/2+xo, D). It is quite obvious

that if Qi = Qo, then the condition that ((x, y) be periodic around the channel is violated.

Thus, another branch with volume flux Q2 flows westward along segment c - d until it

arrives at point c (L/2, D). Then, this branch flows southward along geostrophic contour
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Figure 5.4: Similar to Fig. 5.1 but for the case driven by a pair of point source and sink
with source (sink) at the southern (northern) boundary of the channel.
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q112 q2= fN
9|6- 9 =H - ho'

until it reaches the southern boundary at point g. Afterwards, it flows along the southern

boundary and recirculates back to the source at (L/2 + xo, 0). Q2 and AC2 , the jump of

((x,y) across 12, satisfy

Q2 = .
q2

Along segment f - g at the southern boundary the branch with volume flux Q2 crosses the

q-contours within the southern equivalent western boundary layer. Unlike the previous

three cases where there is only divergent flow directly from source to sink, the buoyancy-

driven circulation here consists of two parts, the divergent part and the rotational part.

The first part flows directly from the point source to the point sink, always with volume flux

Qo regardless of model parameters. The second part is the through-channel recirculation

part with volume flux Q2, which depends critically upon the model parameters.

To determine Q1 and Q2, both the periodicity of ((x, y) around the channel and the

mass balance (2.7) have to be used. The periodicity of ((x, y) around the channel requires

that

q1 Q1 + q2 Q2 = 0.

The conservation of volume flux gives

Qi + Q2 = Qo.

The solution is that along e1 the northward geostrophic volume flux is

H - h
Q1 = - Q0, (4.2)

ho - hc

while the geostrophic volume transport along £2 is

H - ho
Q2 = - Q. (4.3)

ho - h,
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It is obvious from these two equations that if Qo > 0, i.e., we have a source at (L/2+zo, 0)

and a sink at (L/2 + xo, D), along i1 the fluid flows northward, and the recirculation is

westward. If we have a sink at (L/2xo, 0), the fluid flows southward along f1, and the

recirculation is eastward. In either case, we have

1Qi = 1Q21 + |Qol

With (4.2) and (4.3) we can introduce a recirculation index

Rc = Q2/Qol = H - (4.4)
ho - hc'

This index depends only upon the model parameters, but is independent of the source/sink.

The condition for the recirculating part to be equal to or stronger than the direct source

to the sink flow is

Rc > 1,

i.e.

ho <; h = (1 )H (4.5)
0 ~2fs )H

noting that the supercriticality requires that

ho > (1 -N)H.
fs

For even higher ridge with ho > h*, the source to sink flow is stronger than the recirculating

part. Fig. 5.5 shows Rc versus ho/H. It is not surprising to see that as

ho- H,

we have

Q Q Qo,

Q2 -+ 0.
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Figure 5.5: The recirculation index Re versus ho/H with D =1800kmn and 60 60*S.
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So, for a very high ridge extending almost to the surface, the recirculation is very weak, and

the buoyancy-driven flow is predominantly from source to sink. In the limit with ho -+ H,

the buoyancy-driven circulation in the channel converges to that in a corresponding closed

basin. On the other hand, as

ho -he

we have

Q 2 00

Thus, the buoyancy forcing leads to a massive westward through-channel recirculation.

This discussion readily shows us that a ridge with a subcritical or even a critical

height cannot support a net cross-channel geostrophic volume flux. To support a net

cross-channel geostrophic volume transport, a ridge with a supercritical height is both

necessary and sufficient as well. The ultimate reason is that in our linear #-plane channel

model, away from the the point source/sink, cross-geostrophic-contour flow is possible only

within the two equivalent western boundary layers. In the case with a subcritical ridge,

there are non-blocked geostrophic contours, which separate the southern boundary from the

northern boundary. Any flow from the southern boundary to the northern boundary or vice

versa would have to cross these unblocked geostrophic contours, which is not allowed in the

interior away from the two equivalent western boundaries. In the presence of a supercritical

ridge, however, these closed geostrophic contours disappear, and the southern and northern

boundaries are connected by geostrophic contours. Thus, any cross geostrophic contour

flow is possible within either the southern or the northern equivalent western boundary.

Another point worth noting is that, as clearly shown in Fig. 5.4, the net cross-channel

geostrophic volume flux is the net sum of the northward flow along f1 and the southward

flow along f 2 . The cross-channel geostrophic flow is not uniformly distributed around the

channel.
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Overall, this circulation pattern has some similarity to that in an annulus chan-

nel discussed by Hide (1968). In both cases, the circulation consists of two parts: the

direct source to sink flow and a through-channel recirculation. Nevertheless, there are

fundamental differences. First, in our case here, the cross-channel flow is geostrophic with

the support of the sufficiently high ridge; while in the latter, the cross-channel flow is

completely ageostrophic because a flat bottom was used. Second, in our case, the through-

channel recirculation is critically determined by the ridge height and it flows as a loop

of currents having a vanishingly small thickness; while in the latter, the through-channel

recirculation is critically determined by the frictional process and it flows uniformly in the

channel except near the boundaries.

The case discussed in this section and the three cases discussed in the preceding

section are driven by a point source and a point sink, yet there is a fundamental difference

between them. In the case discussed in this section, a ridge with a supercritical height is

necessary, while in Cases I, II and III, supercriticality of the ridge height is not necessary.

Second, as is required by mass balance, there is net cross-channel geostrophic volume flux

in the case discussed in this section, while in the cases discussed in the preceding section

there is no such cross-channel geostrophic volume flux. Third, in the case discussed in

this section, the point source and sink drives a through-channel recirculation around the

channel, in addition to the flow from the source to sink just like that in Cases I, II and

III. In accordance with the discussions of Chapter 2, a ridge with a supercritical height

poses a potential vorticity resistance, defined here in the model formulation of planetary

geostrophy as

Pc = q1 - q2 (4.6)

on the buoyancy-driven through-channel recirculation. In terms of this potential vorticity

resistance, the through-channel recirculation is

Q2 = q Q (4.7)
PC
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Correspondingly, the recirculation index is

Rc = q. (4.8)
PC'

Thus, the position of the source and the topography together determine the recirculation

via qi and the potential vorticity resistance, for a given Qo.

The results obtained for the simple ridge can be readily extended to topography

with an arbitrary shape so long as all geostrophic contours are blocked. It is not difficult to

see that the presence of any additional ridges with subcritical heights does not change the

result. On the other hand, the presence of topographic features with supercritical heights

will change the recirculations. Suppose there is a series of ridges with positive potential

vorticity resistance {Pc}, (j = 1. . . J), the buoyancy forcing is still in the form of (4.1).

Then, the volume transport of the recirculation driven by the point source and point sink

forcing is still in the form of (4.7). But the total potential vorticity resistance, Pc, is now

J

PC = E Pj.
j=1

5.5 Abyssal circulations driven by point source/sinks
and a uniform sink at the surface

In the preceding sections we have discussed the abyssal circulation driven by point source

and sink only. It is meant to demonstrate the dynamic role of a supercritical ridge. Fol-

lowing Stommel et al. (1958), in this section we choose the buoyancy forcing as a uniform

sink at the upper surface and a point source and sink at each side of the channel to model

crudely the Weddell Sea bottom water formation and the net deep water exchange between

the circumpolar ocean and the rest of the world ocean. The buoyancy forcing is assumed

to be

Q(z,y) = W - Q1&(x - L/2 - xo)S(y) - Q2 b(X - L/2 - xo)S(y - D), (5.1)
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with

Q1 + Q2
LD

Without losing generality, the northern equivalent eastern boundary along segment a - c

in Fig. 5.6 is used as a reference level for the free surface

(|y=D = 0 for L/2 - xo < x < L/2; (5.2)

while at the southern equivalent eastern boundary along segment h - j

(ly=o = (o, for L/2 <x < L/2 + xo, (5.3)

where (o is a constant and will be determined by the mass balance (2.7). Noting the

structure of the geostrophic contours, we divide the channel into subdomains A, B, C, D

and E, shown in Fig. 5.6 for the convenience of characteristic integration.

To solve the potential vorticity equation (2.5), let us introduce a characteristic

variable s such that

dx = - (5.4)
ds ay
dy q(5.5)
ds Ox

Thus, the geostrophic contours serve as the characteristics and the governing equation is

then converted to

d( q2  (5.6)

ds g

For different regions, we have different initial conditions.

In region A, the initial conditions for the characteristic equations are

x1.5 o = z,,

y1. = D,

(|=o = 0.
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Figure 5.6: Schematic view of the model domain. On top is the profile of the ridge.
Short dashed lines are the geostrophic contours, while long and heavy dashed lines are the
boundaries of the various subdomains.
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Integrating (5.4), (5.5) and (5.6), we have

f fN
H - h(X) H - h(x,)'

2 ff2
2a3q2

f 2 - fN2

-2ap3g'

with a = ho/xo. Along segment f - g an equivalent western boundary layer is needed to

close the circulation.

In region B except the north and south boundaries, the governing equation becomes

__( f 2
-- =Sw

-z g H/3

with the boundary condition

_ 
2 

- fAg
(I=L/2-Xo - 2a/3g W .

The solution is

f f 2

f 2

gH (

- L/2 + xo) f 2 _- 2W
- w.

2a/3g

- 3L/2+ Xo) - N,
2aog

for O<z <L/2-xo;

for L/2+ xo < x < L,

and a boundary layer at each side of the channel is needed to close the circulation.

In region C, the initial conditions for the characteristic equations are

X18=o = L/2 + xo,

Y|,=o

(|,=o

= y.,,

f 2(y,)
=w.,(2o - L)

gHP

Integrating equations (5.4), (5.5) and (5.6), we have

f f(y,)

H - h(x) H

Sf 2 _ f(y,)2

2ap3q2
2 Hq2 2 _ - fN

( = - ,2g

f 2 (y,) _ fIr
2aog

H 2 2,

gH,3
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where AL = L - 2xo. Along segment d - e an equivalent western boundary layer is needed

to close the circulation.

In region D, the initial conditions for the characteristic equations are

z|,=o = z,

y|,=o = 0,

(|,=o = (o.

Integrating equations (5.4), (5.5) and (5.6), we have

f fs
H - h(x) H - h(z,)'

f2 _ f2
s5 =

2apq2

(0+f2 _ fS2

2a3g

Along segment d - c an equivalent western boundary layer is needed to close the circulation.

In region E, the initial conditions for the characteristic equations are

xIo = L/2,

y=o = Y,

f (y, )2 _ fS2
(Io o + 2a.g

Integrating equations (5.4), (5.5) and (5.6), we have

f f(y,)
H - h(x) H - h'

f 2 _ f(y,)
2

2apq2

f 2 + f - 2(H - ho)2q2

2a3g

Along segment g - h an equivalent dynamic western boundary layer is needed to close the

circulation.
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Similar to the wind-driven circulation discussed in Chapter 2, flows in both regions

A and D are purely zonal and discontinuities arise at the boundaries, 41 and f2, between

regions A and E and regions C and D, respectively, and the explanation is similar. Across

the boundary, 41, between regions A and E, the discontinuity is

A(|t = (0 - A N W,. (5.7)
2ag

And across the boundary, f2, between regions D and C, the discontinuity is

fS2- f fjAL
A(11 = -(o - w, - W.. (5.8)

= C -
2 a4 3 g gH/3

In addition, there are various boundary layers along both the southern and northern bound-

aries, which are needed to close the circulation.

With the solution above, we can compute the meridional volume flux across a

latitude circle between any sections x = x1 and x = X2 , defined as

/22T(y) = (H - h)vdx.

In regions A and D, the flow is purely zonal, thus there is no meridional flux

TA(y) = TD(y) = 0.

In region B, the meridional volume flux is

TB =-Lw,

which is always southward for w, > 0. In region C, the meridional volume flux is

2(f - fs) 2(f - fs)
Tc = - ALw, - Hw.,# a#3

which is again always southward. In region E, the meridional volume flux is

TE = 2 (f-fN)(H - ho)w
a#

188



which is also southward. So, the only places the flow goes northward are along 41 and 2.

The northward volume flux along 41 is

T11 = - (H - ho)w, +
2afN

H - ho

fN
(5.9)

which could be northward or southward, depending upon (o. The northward volume flux

along 2 is

T12 = 2 fN Hw, - g(o H
2aofs fs

Then, the total volume flux across any latitude is

-fsALw.

'3

TO = -wyL + (Qi + Q 2)R(0 ) (5.10)

with

R(o) - zo 1
L

he  Ahe
2ho H - heJ

The mass balance (2.7) requires that

TO = -w,yL + Q1.

Using (5.10), one determines the unknown constant Co

(= - Nhg0 he [Q1 - (Q1 + Q2)R(o)] , (5.11)

which is critically determined by the supercriticality, Ahe, of the ridge height.

It is readily seen that if w, = 0, i.e., Q1 + Q2 = 0, the solution reduces to the case

discussed in section 4. In the general case with Qi + Q2 5 0, the volume transport of the

internal jet along 41 is

H-ho
T11 = Ahe . Q 1 + 2 ) ( 1 + A h o '

noting (5.9) and (5.11). This internal current could disappear should the model parameters

satisfy

Q1
Q1 + Q2

zo Ahc
= -(1 + ).
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Otherwise, there is always an internal jet along the geostrophic contour i1, similar to that

sketched some 35 years ago by Stommel (1958). The direction, however, could be either

southward if

Q1 > -o(1+ h),
Q1+Q2 L ho

or northward otherwise. Thus, for a narrow ridge with a very small x0 , the internal jet

flows southward. Obviously, if Qi = 0, the internal jet always flows northward just like

that sketched by Stommel (1958, his Fig. 5.2).

The volume transport of the internal jet along 12 is

T = -H(1 - 2zo/L)(Q1 + Q2) + H-h Q - (Q1 + Q2) xohc-ho
he Ahe L ho H - hel

Generally, this internal current flows northward. Fig. 5.7 shows one example of the surface

dynamic topography, ((x, y). In this case, the internal current along f1 flows southward,

while that along e2 flows northward.

Noting (5.9) and (ID, the zonal volume transport at x = L/2 is

x0 he H-ho g oTO = -T-o -W Q- +Q2 + -( H - ho).
L hH -(Q1 +Q2)

Noticing the case discussed in section 4, the second term essentially represents the total

volume flux of the net through-channel recirculation driven by the buoyancy forcing, i.e.,

TIC = (H - ho) = - Q1 - (Q1 + Q2)R(] , (5.12)
fN Ahe

critically determined by Ahe, the supercriticality of the ridge height. This through-channel

recirculation could either be westward or eastward. If

- 1 <.1 R(0)
Q1+Q2

it flows eastward; otherwise it flows westward. As

ho -+ he,
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Figure 5.7: The surface dynamic topography (cm) for the case with Qi = 5Sv and

Q2 = -lSv, D = 1800km, L = 24000km, ho = 1km, H = 3500m, xo = 4800km and

Oo = 60 0S. Dashed (solid) lines represent the negative (positive) dynamic topography.
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we have

Tre -+ +00.

So for a ridge with a height close to the critical, the volume transport of the through-

channel recirculation could be massive. On the other hand, as

ho -+ H,

we have

Tre -> 0,

which approaches that in a corresponding closed basin! It is readily seen that if Q1 = 0,

the deep water formation at the northern boundary always drives an eastward through-

channel recirculation. Generally, for a narrow ridge with g < 1, and Q1 : 0, we have

T"e ~ -ho Q1 + o -) (Q + Q2).
Ahc L

Correspondingly, the recirculation index

R =E T e Q - H - ho + xo

which is rather similar to (4.4) for a case driven by a pair of point source and sink. So for a

narrow ridge, bottom water formation in the southern boundary always drives a westward

recirculation.

The discussions above show us that in this linear model, the buoyancy-driven flow

can be divided into five different parts, as is shown in Fig. 5.7 for a chosen set of model

parameters. The first one is the direct flow with a volume flux of 1Sv from the source to the

sink along f2, noting Fig. 5.6. The second part with a volume flux of 4Sv from the point

source at (L/2 + xo, 0) is carried by the horizontal flow and is lost through the uniform

sink prescribed at the upper surface. The third part is the Sverdrupian gyre located on

regions A, B and C, with a volume flux roughly as

fw.,(L - 2xo) 15Sv,TsV = ~ 5o
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for the parameters chosen as those listed in Fig. 5.7. The part of the Sverdrupian gyre

over region A is returned via the internal current along 41. The other two parts, similar to

those in the wind-driven circulation discussed in Chapter 2, are two recirculations, which

together make up the total through-channel flow with a volume flux roughly at 18Sv. The

major recirculation appears as a loop of currents. It flows along the southern boundary

from point g to j, along the two q-contours 41 and £2 and c-d, noting Fig. 5.6. The minor

one coalesces with the major one except over region D, where it flows as a purely westward

flow. The Sverdrupian gyre is singly connected while the through-channel recirculations

are multiply connected. The Sverdrupian gyre and the through-channel recirculations are

rotational circulations.

Fig. 5.8 shows T,/Q1 (a), Te2/Q1 (b) and T, /Q1 (c) for a case with ho = 1000m.

First of all, the through-channel recirculation shown in (a), is always westward and the

volume transport can be much larger than the bottom water formation rate at the south-

ern boundary for a narrow ridge. Even if the ridge extends throughout the whole channel,

the through-channel recirculation is still stronger than the bottom water formation at the

southern boundary. Second, the flow along £2, shown in (b), is always northward and

the volume transport is much stronger than the bottom water formation at the southern

boundary, especially for a narrow ridge. Clearly, the ratio T12 /Q1 is usually much larger

than the corresponding one in SA's model. This part roughly combines the volume of

the five circulations discussed above. Third, the flow along i, shown in (c), is gener-

ally southward except in special cases with very wide ridges and assisted by deep water

formation at the northern boundary of the channel. The volume transport is again gen-

erally much stronger than the bottom water formation at the southern boundary. For a

model circumpolar ocean, we estimate that T, - -25Sv, T, - 5OSv and T,, - -25Sv

for a narrow ridge with xo = 1200km and ho = 1000m in a homogeneous model with

H = 3500m, Qi = 5Sv and Q2 = -iSv. All of them are much stronger than the bottom

water formation at the southern boundary.
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Figure 5.8: (a) T,,/Qi versus the width of the ridge. (b) T1 2/Q1 versus the width of the
ridge; (c) T1, /Q1 versus the width of the ridge. In all three plots, Q, = 5Sv, the solid, long
and short dashed lines show the cases with Q2 = 2Sv, OSv and -2Sv, respectively. The
other model parameters are ho = 1km, H = 3500m, fs = -2wsin7O0 , 3 = 2wcos6 0 /a,
L = 24000km, D = 1800km.
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The discussion above presumably has a very significant implication for Antarctic

Bottom Water formation. The topographic feature around Drake Passage is indeed very

narrow compared to the length of the circumpolar ocean. Thus, the discussions above imply

that a small amount of AABW formation could drive a substantial amount of westward

through-channel recirculation which is against that due to the wind stress discussed in

Chapter 2. Were it not for the wind stress, we might have observed a westward flow

at the Drake Passage. The observed flow at the Drake Passage is thus the sum of the

through-channel recirculating flow due to the wind stress and that due to the buoyancy

forcing. On the other hand, given the above estimation, the bottom water formation

around the Antarctic continent is unlikely to play a major role in the momentum balance

of the Antarctic Circumpolar Current as Barcilon (1966) originally thought.

5.6 Coupling the abyssal circulation in the circumpo-
lar basin with that in the rest of the global ocean

In both Stommel's (1958) and Kuo & Veronis's (1973) schematic models of the abyssal

circulation of the world oceans, the dynamic detail in the circumpolar ocean is not clear,

although the circulation in the three closed basins is depicted by SA's model. In the

preceding sections we have discussed the abyssal circulation in a rather idealized and

isolated circumpolar basin. It is quite straightforward to couple this model circumpolar

abyssal circulation with the abyssal circulation within other basins. Now let us construct a

schematic picture of the global abyssal circulations in rather idealized world oceans, shown

in Fig. 5.9. Suppose the deep water formation in the northern North Atlantic is Q1 and

that in the Weddell Sea is Q2 , the areas of the Atlantic, Pacific, Indian and the circumpolar

oceans are Sa, S,, Si and Sc, respectively. The widths of the Atlantic, Pacific and Indian

Oceans are L,, L, and Li, respectively. In the spirit of SA, the uniform upwelling is

W, = .1 (6.1)
Sa + Sp + Si+ Sc*
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Figure 5.9: A schematic picture of the abyssal circulation in a circumpolar basin coupled
with the other three major ocean basins.
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Suppose that the ridge around Drake Passage is in the supercritical range. The interior

planetary abyssal circulations in the three closed basins are still in the Sverdrupian regime,

as were discussed by SA and Stommel (1958), while the circulation in the circumpolar ocean

is the same as that discussed in the preceding section, except along its northern boundary.

Thus, the linear potential vorticity balance yields

= -W., (6.2)

which is true everywhere in the global ocean basin away from topographic features and

western boundary layers. From the SA model, we have three regular western boundary

currents in each of the three closed ocean basins. At the northern boundary of the circum-

polar basin, the volume fluxes of these three western boundary currents are

Qa = Q1 fN - SaW,, (6.3)
NFLaWs as

Q, - L w, + Sw.,, (6.4)

Q1 fN Li + Sjws. (6.5)

We can view the three western boundary currents as one source (the Atlantic) and two

sinks (the Pacific and Indian) for the circumpolar ocean. Then, where does the water of

the deep western boundary currents for the Pacific and Indian Oceans come from? Due to

the continuity of the Sverdrup balance in the ocean interior across the northern boundary

of the circumpolar ocean, a northern boundary current starting from the southern bound-

ary of South America across the model Atlantic and Indian basins as internal currents in

the inviscid limit satisfies the potential vorticity balance. It only changes along the south-

ern boundaries of the African and Australian continents. This narrow current along the

northern boundary of the circumpolar ocean is needed to feed the deep western boundary

currents for the Pacific and Indian Oceans. Different from that in the preceding section,

the northern boundary current terminates at the western boundary of the Pacific Ocean.

The schematic picture of the abyssal circulation in the model ocean is shown in Fig. 5.9.
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The most prominent features of this schematic abyssal circulation are the internal

boundary current along the geostrophic contours i, f2 (see Fig. 5.6), the Sverdrupian gyre

circulation downstream of the ridge, and the northern boundary current noting Fig. 5.6.

The last one is consistent with the results from primitive equation models such as those

of Toggweiler (personal communication) and Semtner & Chervin (1988). Their models

suggest that there is an intense eastward flow starting from about the southern tip of

South America, in the latitudes to the south of Africa and Australia. Due to the presence of

frictional processes and transient meso-scale processes, the current in the numerical model

appears to be rather wide. This northern boundary current also appeared in the schematic

picture of inter-ocean water exchange discussed by Gordon (1986). The bottom water

formed at the southern boundary immediately downstream of the ridge flows northward

along f2 as an internal boundary current. Upon reaching the northern boundary, it splits

into two parts. One part flows eastward to join the deep water from the North Atlantic

at A, the eastern tip of the South American continent. The other branch flows westward

along the northern boundary, then along i1 and the southern boundary. It recirculates

back to the source region. The relative strength of these two branches depends critically

upon the topographic parameters as discussed in the preceding section.

East of the South American continent, the bottom water from the two sources

joins and flows eastward as an internal boundary current along the geostrophic contour

q = fN/H. While keeping its volume flux, this current is joined by water from the interior

South Atlantic as the southward Sverdrupian flow but loses the same amount of water

which flows southward into the circumpolar basin, as part of the southward flowing branch

of the Sverdrupian gyre circulation in the circumpolar ocean. At the southern boundary

of the South African continent, the current appears as a boundary current. It loses some

water, due to the southward flowing Sverdrupian flow in the circumpolar basin. Upon

reaching B, the eastern tip of the African continent, this eastward current branches into

two parts. One part with volume flux Qi flows northward as the deep western boundary

current of the Indian Ocean. The other branch continues eastward along y = D. Across the
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Indian Ocean, it does the same as when it crosses the South Atlantic. The only difference

is that it entrains the Indian Ocean interior water to its north. As it flows eastward along

the southern boundary of Australia, it does the same as along the southern boundary of

the African continent. But upon reaching C, the eastern tip of Australia, it does not

branch and flows northward as the deep western boundary current of the Pacific Ocean.

Unlike those in both the South Atlantic and Indian Oceans, there is no mid-ocean internal

boundary current within the South Pacific basin.

With the discussion in the appendix about the influence of bottom friction, this

simple deep circulation scheme in the inviscid limit suggests to us that in the presence of

mixing, the water masses of both the southward branch of the abyssal Sverdrupian gyre

circulation in the circumpolar basin and the deep western boundary currents of the Indian

and Pacific Oceans are quite complicated. In this barotropic model, the water mass of

the deep western boundary current in the Indian Ocean is a mixture of water from both

sources and from the interior South Atlantic and circumpolar ocean. In the Pacific, it is

the combination of water from both sources and from the interior South Atlantic, Indian

and circumpolar oceans. The water mass of the southward flowing branch of the abyssal

Sverdrupian gyre circulation changes eastward. Flowing from the longitudes of both the

South Atlantic and South Africa, it is a mixture of the deep water from the two sources

and the interior South Atlantic. Flowing from the longitudes of both the Indian Ocean

and Australia, it is the mixture of the deep waters from the two sources and the interior

South Atlantic and Indian Ocean. Flowing from the longitudes of the Pacific, however, it

consists purely of interior South Pacific water.

5.7 Discussion and conclusion

The classical SA model in a closed basin is applied to a circumpolar basin in the pres-

ence of sufficiently high ridges. The planetary geostrophy is assumed in the interior of the
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#-plane channel. We begin with abyssal circulations driven by a point source and sink.

In the first three cases with the forcing at the same side of the channel, there is neither net

cross-channel geostrophic volume transport nor through-channel flow, although the flow

passages are quite complicated compared with the similar case in a closed basin discussed

by Stommel et al. (1958). For these three cases, actually, supercriticality of the ridge

height is not necessary in the discussion. In the case with the point source and sink placed

at different sides of the channel, supercriticality of the ridge height is both sufficient and

necessary in order to support a net geostrophic volume flux across the channel. In this

case, besides the divergent flow from the point source to the point sink, a through-channel

recirculation is generated, which is a rotational flow. Its volume flux is critically controlled

by the potential vorticity resistance, i.e., the supercriticality of the ridge height. This is

very similar to the wind-driven circulation. In this sense, the buoyancy forcing is very

similar to the wind forcing. Near the critical state, this recirculation can be very strong

compared with the source to sink flow. Only for a sufficiently high ridge will the recircula-

tion be smaller than the source to sink flow. The recirculation is westward (eastward) for

a case with a source (sink) at the southern boundary. As the ridge height extends to the

surface of the water, the volume transport of the through-channel recirculation vanishes,

i.e., the circulation pattern converges to that in a corresponding closed basin.

Then, in the spirit of SA, we consider a model of the circumpolar abyssal circulation

driven by a uniform sink prescribed at the surface and two point sources at each side of

the channel immediately downstream of the ridge. The one at the southern boundary

presumably mimics the bottom water formation in the Weddell Sea. On the other hand,

the one at the northern boundary presumably represents the net deep water exchange

between the circumpolar ocean and the rest of the world oceans. In the case with a ridge

of a supercritical height which crudely simulates the dynamic effect of the topography

around Drake Passage, the classical SA model in a closed basin applies with significant

modifications. First, the interior southward Sverdrupian flow is returned northward via an

internal boundary current along a critical geostrophic contour over the ridge, rather than
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through some equivalent western boundary current such as that in the SA model. This

demonstrates the importance of the supercriticality of the ridge height. In the case with a

supercritical ridge, there are geostrophic contours which run from the southern boundary to

the northern boundary over the ridge. So, although a strong internal jet across q-contours

is prevented by potential vorticity conservation, strong along q-contour flow is allowed. As

the model demonstrates, the q-contours connecting the two boundaries provide the flow

passages for the return of the interior basin predominantly southward Sverdrupian flow.

Second, besides the interior singly connected Sverdrupian gyre circulation like that in the

SA model, there is a through-channel recirculation, which is multi-connected. Its direction

depends upon the model parameters. And its magnitude depends critically upon the

supercriticality of the ridge height, in a way similar to that in the wind-driven circulation.

In our linear homogeneous model, the volume transports of both the internal bound-

ary current and the through-channel recirculation could be much higher than the bottom

water formation rate at the southern boundary of the channel, while in the classical SA

model, the largest ratio of the deep western boundary current versus the deep water forma-

tion is 2. Only for a sufficiently high ridge will the volume transport of the through-channel

recirculation be weaker than the bottom water formation rate at the southern boundary.

For a narrow ridge such as that around Drake Passage, the through-channel recirculation

will always flow westward with bottom water formation, such as the Weddell Sea bot-

tom water formation, at the southern boundary. As the ridge extends to the whole water

column, the buoyancy-driven circulation approaches that in a corresponding closed basin.

This simple model suggests that the Antarctic Bottom Water formation in the Weddell Sea

could drive a substantial westward through-channel flow, which could have been observed

were it not for the wind-driven eastward through-channel flow. The observed eastward flow

is thus the sum of these two flows, which suggests that the purely wind-driven through-

channel volume transport at Drake Passage could be substantially higher than what is

observed now. On the other hand, because the buoyancy-driven through-channel flow is

substantially weaker than the wind-driven one, the AABW formation does not play a first
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order role in the overall momentum balance of the Antarctic Circumpolar Current. This

indicates that only the topographic form drag discussed in Chapter 2 plays a vital role in

the overall momentum balance of the ACC.

Then, assuming that the height of the ridge around the Drake Passage is within the

supercritical range, the abyssal circulation in the circumpolar basin is coupled with those

in the rest of the world oceans in a highly idealized model. The coupling does not affect

the circulation pattern obtained from the isolated case except the circulation along the

northern boundary of the circumpolar ocean. The most prominent feature is the eastward

boundary current along the northern boundary of the circumpolar ocean, through which

all ocean basins in the Southern Ocean are connected. This current entrains interior water

from both the South Atlantic and Indian Oceans as it flows eastward. It loses water to

the deep western boundary currents of the Indian and Pacific Oceans and the southward

flowing branch of the abyssal Sverdrupian gyre circulation in the circumpolar basin. This

current terminates at the western boundary of the South Pacific. The model shows us that

the deep western boundary current of the Indian Ocean is composed of waters from the

two sources and the interior South Atlantic Ocean, while that of the Pacific Ocean is from

the two sources and the interior South Atlantic and Indian Oceans. The water mass of the

southward flowing branch of the recirculation consists of waters from the two sources and

the South Atlantic, Indian and South Pacific interiors.

In this chapter we have demonstrated the critical importance of a supercritical ridge

in the buoyancy-driven circulation in a -plane channel. First, all geostrophic contours in

the channel are blocked by the lateral boundaries, just like those in a closed basin, albeit

in a different form. Second, the two lateral boundaries are connected by some blocked

geostrophic contours, while in the case with a subcritical ridge, the two lateral boundaries

are separated by the nonblocked geostrophic contours. In the realistic circumpolar ocean,

both topographic features and buoyancy forcing are much more complicated. And the

model discussed here is not intended to be a realistic description of the deep-ocean circula-

202



tion in the Southern Ocean. The most notable simplification is the barotropic assumption.

It does not allow any layered deep flow, which happens most spectacularly in the South

Atlantic where AABW flows northward beneath the southward flowing North Atlantic

Deep Water. Nevertheless, the circulation scheme obtained is dynamically consistent al-

though the model is extremely idealized. We believe two conclusions from the model have

important implications for the realistic Southern Ocean. First, the model suggests that

the AABW could drive a substantial amount of westward flow which could balance some

part of the eastward flow driven by the wind stress, but it does not play a zeroth order

role. Second, along the northern boundary of the circumpolar ocean, there is a strong,

narrow current which connects all the oceanic basins in the Southern Ocean. It is part

of the buoyancy-driven global conveyor belt as discussed by Gordon (1986). In the next

chapter we will show that wind stress could also drive a strong inter-basin water mass

exchange among the different basins in the Southern Ocean.

Appendix
The influence of a small finite bottom friction

In Case I of section 3, the discussion is carried out in the inviscid limit. In that

case, the only places where cross q-contour flow is allowed are the two equivalent western

boundary layers. In the presence of a finite albeit weak bottom friction, however, cross

q-contour flow can be induced by the weak bottom friction through the entire flow passage,

although it could be very weak away from the two equivalent western boundary layers. In

the discussion on the wind-driven circulation by Wang (1993a), it was shown that because

of the long route of the internal current, even a weak friction could have a profound effect

on the circulation, and the circulation in the presence of a weak and finite friction could

be substantially different from that obtained in the inviscid limit. Now let us look at

how a weak and finite bottom friction could affect the circulation scheme of Case I. The

discussion for other cases is similar. In the presence of bottom friction, the linear governing
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equation away from the point source/sink is

J ((, y + 10h)=-V( (A.1)

where nc is the bottom frictional coefficient. q is further linearized to ( 3y + I h)/H for the

sake of algebraic simplicity, because the following discussion is a scale analysis only. In

the inviscid limit, the thickness of the internal current emanating from the point source

to the point sink is vanishingly small. In the presence of a finite bottom friction, however,

this thickness will grow from the source to the northern equivalent western boundary

layer shown in Fig. 5.1 in light of the discussion by Wang (1993a). From the discussion

there, by the time the internal current along f2 reaches the northern boundary again, its

characteristic thickness grows to

& ~ Ss( L -2xo) + 2vqL~, (A.2)

where 6s = n/0 is the Stommel boundary layer thickness, &' = n/v/2+ a is the modified

Stommel boundary layer thickness, a = Ifolho/Hzo, and

L' = (zi - L/2 + Xo) 2 + D 2h(xi)2/h2

is the length of the jet over the ridge emanating from the source. The distance between i

and £2 is

hczo
= (zi - z2). (A.3)

D2h + h2Xz

The condition that 6 So is

K ~ KO = (L- 2xo)/,3 + 2 L'/ 4 2 + a ]2 (A.4)

So, if x is small enough such that K < Ko, then the characteristic thickness of the current

along f1 and t2 is much less than the distance between them and the cross q-contour flow

occurs predominantly within the northern equivalent western boundary layer. In this case,

the circulation pattern shown in Fig. 5.1 will be affected very little by the presence of
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the bottom friction and the buoyancy-driven circulation is essentially in the inviscid limit.

On the other hand, if . ~. 0 or even larger, then the presence of the bottom friction will

have a fundamental influence on the circulation pattern shown in Fig. 5.1. In that case,

because 6 > So, the cross q-contour flow has occurred before the current along f2 reaches

the northern equivalent western boundary. In this case, the buoyancy-driven circulation

is essentially diffusive and is fundamentally different from that in the inviscid limit shown

in Fig. 5.1.
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Chapter 6

How is the northward surface Ekman
drift out of the circumpolar ocean
returned?

6.1 Introduction.

In Chapters 2, 3 and 4, the wind-driven circulation in a f-plane channel is discussed

from the viewpoint of momentum balance in quasi-geostrophic models. In considering the

momentum balance, there is no communication between the circulations in the circum-

polar ocean and those in the subtropical basins. In this chapter, we want to look at the

wind-driven circulation in the f-plane channel from the viewpoint of mass balance. The

question we want to address is how the northward surface Ekamn drift in the circumpolar

zone, which is clearly present in the FRAM model simulation as shown by Saunders &

Thompson (1993), is returned.

So far, most of the discussions of water masses have been primarily concentrated

on those below the surface Ekman layer, to name a few examples, Worthington (1981)

and Warren (1981) from an observational point of view and Cox (1989) from a numerical

point of view. Much attention has been paid to the North Atlantic Deep Water and

Antarctic Bottom Water formation and those various associated deep western boundary
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current transports. Little attention has been paid to the question associated with the

surface Ekman flux. From an observational point of view, Wunsch and his co-workers,

e.g., Wunsch & Grant (1982) and Wunsch (1984), included the surface Ekman flux in

their inverse calculation. Thus the surface Ekman flux is involved in the overall general

circulation of the ocean. From the theoretical point of view, Pedlosky (1967) and Csanady

(1986) discussed a simple model of the circulation associated with the surface Ekman drift

in a closed basin. Based on the model used, the circulation scheme is quite simple. As

Csanady (1986) demonstrated, the surface Ekman layer picks up water from the subpolar

gyre and drops it in the subtropical gyre. To close the circulation, there is a northward flow

within the western boundary layer across the inter-gyre boundary from the subtropical gyre

to the subpolar gyre along the western boundary. In this process, the western boundary

plays a vital role to close the circulation.

In the latitudes of the circumpolar ocean, roughly between 56*S and 62 0S, there

is no meridional boundary to support the western boundary layer current, a vital part in

the Csanady model (1986). The surface Ekman drift present regardless of any geometry

is about 30Sv as suggested by the recent data set compiled by Trenberth et al. (1990).

It is northward and out of the circumpolar ocean. This volume flux is even larger than

the North Atlantic Deep Water formation, and much larger than the Antarctic Bottom

Water formation. How this amount of water is returned to the circumpolar ocean is of

great interest to understand the overall large scale circulation in the Southern Ocean. In

the numerical study carried out by Toggweiler & Samuels (1992), they tied this north-

ward surface Ekman flux to the North Atlantic Deep Water formation. They argued that

due to the fact that there are no north-south continental barriers, there can be no net

meridional geostrophic flow across the latitude band of Drake Passage in the upper layer.

Net meridional geostrophic flow is only possible at depths below the sill connecting South

America and Antarctica. They argued that it is this deep southward flow that upwells and

compensates for the water loss due to the Ekman sucking to the surface Ekman layer in

the circumpolar ocean.
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In the source-sink-driven circulation discussed in Chapter 5, it was shown that

in the presence of a sufficiently high ridge, geostrophic flow in a #-plane channel can

support a net meridional volume flux. Therefore, there is no geostrophic constraint in

the circumpolar zone in the barotropic model. In the wind-driven circulation discussed in

Chapters 2, 3 and 4, a quasi-geostrophic and depth integrated form of the circulation is

discussed. As Stommel (1955) pointed out, this powerful technique of dealing solely with

the vertical integral of the horizontal velocity often hides important details, notably the

marked difference between the wind drift in a surface Ekman layer and the geostrophic

regime below. It is the purpose of this chapter to see what happens if we partition the

flow in the Southern Ocean into the surface Ekman layer and a geostrophic flow in the

lower layer. As we will see, through this way a very simple plausible explanation for the

circulation associated with the surface Ekman drift leaving the circumpolar ocean emerges.

What is more interesting is that unlike that in the Q-G model discussed in Chapters 2, 3

and 4, circulations in the Southern Ocean are connected by this wind-driven surface Ekman

drift. This presumably can lead to a strong inter-basin water mass exchange among the

different oceanic basins in the Southern Ocean as discussed by Gordon (1986).

Consider two layers of homogeneous fluid. The upper layer with infinitesimal thick-

ness is the surface Ekman layer which carries all the Ekman flux. Below this surface Ekman

layer is a layer of homogeneous water extending to the bottom. The model domains are

shown in Figs. 6.1 and 6.2. The length and width of the circumpolar ocean are L and

D, respectively. The meridional width of the subtropical ocean is also assumed to be D.

For algebraic simplicity of the discussions in sections to follow, the wind stress (r.,ry) is

chosen to be in the form of

rZ = ro f(1-cos), ry =O0. (1.1)

f is the Coriolis parameter, fo is the mean. In the circumpolar area, meridional structure

of the wind stress chosen above looks somewhat similar to that shown in Fig. 1.3. At each

latitude, this wind stress drives a zonally uniform northward Ekman flux in the surface
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Figure 6.1: Schematic view of the circulations in the surface Ekman layer. Thin solid
arrows represent the Ekman drift. Heavy solid arrow represents a boundary layer current
along the southern coast of the South American continent. Cross within a circle represents
downwelling Ekman pumping, while dot within a circle upwelling Ekman pumping.
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Figure 6.2: Schematic view of the model domain in the supercritical state. Dashed lines
are the geostrophic contours, heavy dashed ones are the boundaries of the subdomains of
A, B, C, D, E and F. On top is the profile of the ridge. Heavy solid lines are the various
regular or equivalent western boundary currents needed to close the circulations.
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Ekman layer with volume flux

roL ry
TEkman = - 1 - c , (1.2)

pofoD

where po is the mean water density. At the northern boundary of the circumpolar ocean,

one has

TEkman y=D = -2 -r~L 28Sv
po fo

for po = 1.03 x 1O3kg/ma, ro = 0.08N/m 2 , L = 2.4 x 10' and fo = 1.3 x 10-4S-1, which is

comparable to that obtained by Trenberth et al. (1990) from the wind stress data. Through

this Ekman flux, the surface Ekman layer in the circumpolar area with 0 < y D loses

water to the subtropical area with D < y 2D. Then, how is this water compensated in

the Ekman layer? To balance the water mass in the Ekman layer, in the subtropical area

the Ekman layer pumps water down to the homogeneous layer below at the rate of

we = wosin , (1.3)

where wo = -rro/pofoD. w, just compensates for the water gained across the northern

boundary of the circumpolar ocean due to the northward surface Ekman flux. In the

circumpolar area, the Ekman layer sucks water from the homogeneous layer of water below

at the rate of we, which just compensates the water loss in the Ekman layer through the

northern boundary of the circumpolar ocean. Through the Ekman downwelling, the lower

layer in the subtropical area gains water, while the circumpolar area loeses water. This

raises several questions for the mass balance in the lower layer. For the subtropical area,

there should be ways to get rid of the amount of water from the Ekman layer, while for the

circumpolar area, there are two questions. First, it has to get the same amount of water

from somewhere. Second, there should be a net southward mass flux

Toer - r (. 1 - Cos- , (1.4)
Po fo D)

across each latitude of the circumpolar ocean to supply the water lost to the surface Ekman

layer in the interior circumpolar ocean. In light of the discussions by Csanady (1986),
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the simplest possible explanation to the question for the subtropical area and the first

question for the circumpolar area is quite straightforward. The amount of water gained in

the subtropical area flows southward as a western boundary current across the inter-gyre

boundary at y = D to the circumpolar ocean, represented by the heavy arrow in Fig.

6.2. This is because the northward Ekman flux downwells in the subtropical gyres from

the surface Ekman layer to the homogeneous layer below and is carried westward into the

western boundary layer, and this water has to return to the circumpolar area where it will

be picked up by the Ekman layer through the Ekman sucking. It is the second question

concerning the circumpolar ocean that needs to be closely examined. The fundamental

issue is that in the presence of bottom topography will geostrophic flow in a #-plane
channel support a net southward volume flux in the form of (1.4)? Furthermore, in the

case with multiple basins such as the Southern Ocean, what is the circulation associated

with the surface Ekman drift?

6.2 The linear homogeneous model

To answer the questions raised in the preceding section, planetary geostrophy is assumed

here. Away from boundary layers, with conventional notations, the linear momentum

equations are

-fv = -g--, (2.1)

fu = -g-, (2.2)
ay

where ( is the deviation of the free surface of the lower layer from the mean. This ho-

mogeneous layer of water below the surface Ekman layer is forced above by the Ekman

pumping, we, as required by mass balance. The linear mass conservation equation is

a(H - h)u + (H - h)v w(y) (2.3)
ax ± a0

where H and h represent the mean water depth and the bottom topography, respectively.

For simplicity as we did in the preceding chapters, we again choose the bottom topography
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h(x,y) as

h(x, y) = ho(1 - IL/2-z 1) if JL/2 - z xo; (2.4)
10 otherwise,

where xO is the half width of the ridge. Isolated topographic features are of no interest to

us here. (2.1), (2.2) and (2.3) lead to the following linear potential vorticity equation

J((, q) = q-e (2.5)
9

where q is the linear potential vorticity defined as

q H h (2.6)

Similar to the linear Q-G model, in this linear planetary geostrophic model, potential

vorticity of each fluid particle is solely determined by its position, and q = constant

defines the geostrophic contours of this linear model. The mass conservation (2.3) requires

a southward mass transport by the geostrophic flow

(H - h)o' = TO.,./L, (2.7)

at each latitude in the circumpolar area with 0 < y < D, where

1 L
T"= Zdz.

L o

This southward volume flux exactly balances the northward surface Ekman flux and feeds

the Ekman sucking in the interior circumpolar ocean, thus maintaining the mass balance

in the lower layer and Ekman layer as well. In the absence of any bottom topographic

features, it is quite clear from (2.1) that one always has

VO = 0,

in this linear model because of the periodicity for ((x, y). In this case, geostrophic flow in

the lower layer can not support any. net meridional volume transport in the circumpolar

area. Any net meridional volume transport there has to be carried out through other
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physical processes, such as the surface and bottom Ekman boundary layers discussed by

Hide (1968). Thus, the assumption of a two-layer fluid with Ekman layer on top of an

inviscid fluid is invalid. In the presence of bottom topography, however, even though one

still has Vy2 = 0, but (H - h)v may not necessarily be zero, i.e., geostrophic flow in the

circumpolar ocean may be able to support a net meridional volume flux as is demonstrated

in Chapter 5.

So long as we can see from (2.5), the discussion in terms of the geostrophic contours

in Chapter 5 for the source-sink-driven flow holds equally well here for the Ekman pumping-

driven flow. So in this chapter, we will follow the same approach developed there. For

the source-sink driven flow, in the case with a very low ridge there is no solution in the

inviscid limit. In the case with a sufficiently high ridge, however, there is a solution in

the inviscid limit. In the absence of any topographic features, the geostrophic contours

q = constant are straight zonal lines and close themselves. So the two lateral boundaries

are separated by these geostrophic contours. In the presence of a ridge in the form of

(2.4), however, some of the geostrophic contours will strike either the southern or northern

boundary. Nevertheless, for a ridge with ho < he, all of the geostrophic contours

fs + yo
q- H '

with 0 < yo < DH(hc - ho)/hc(H - ho) will strike neither the southern nor the northern

boundary, they close themselves. fs = fly=o and he is defined as

#3Dhe = H.
fs

In this case, the southern and northern boundaries of the circumpolar ocean are still sepa-

rated by those unblocked geostrophic contours. Free solutions exist along these unblocked

geostrophic contours in the inviscid limit. In this case, net meridional volume flux across

these unblocked geostrophic contours has to be carried out by other physical process, such

as the bottom Ekman flow discussed by Hide (1968). For a ridge with ho > he, how-

ever, all geostrophic contours in the channel are blocked by the lateral boundaries, and
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the southern and northern boundaries of the circumpolar ocean are connected by some

geostrophic contours. Fig. 6.2 shows such an example, where i1 and 12 are two geostrophic

contours connecting the two lateral boundaries of the circumpolar ocean. In this case, any

movement in the channel has to be externally forced. Correspondingly, he is defined as the

critical height, and the case with ho > (<)he will be called the supercritical (subcritical)

state. With discussion similar to that of the wind-driven circulation discussed in Chapter

2, segments a - b (see Fig. 6.2) along the northern boundary and f - g along the southern

boundary are the two equivalent eastern boundaries. On the other hand, segments b - d

along the northern boundary and e - f along the southern boundary are the two equiv-

alent western boundaries. This is true regardless of the ridge height. In the subtropical

gyre area, the conventional Sverdrupian dynamics applies, and ((x, y) has to be prescribed

along the equivalent eastern boundaries. Without losing any generality, we can set the

boundary condition along the western coast of the meridional barrier in the subtropical

region and the northern equivalent eastern boundary a - b as

((X, D) b 0.

The boundary condition along the southern equivalent eastern boundary f - g as

((z, 0)|g = Co.

This boundary condition can not be set arbitrarily and has to be determined through the

mass balance (2.7). Thus, we have completed the model for the interior geostrophic regime.

In the next section we will use this model to find the solution for the interior geostrophic

regime and discuss the model circulation in the supercritical state. One will see that both

the method and the solution are rather similar to the source-sink-driven circulation and

correspond rather well with the wind-driven circulation in the parallel quasi-geostrophic

models discussed in Chapter 2.
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6.3 The circulation in the case with a single subtrop-
ical oceanic basin

To solve the potential vorticity equation (2.5), let us introduce a characteristic variable s

such that

ds y
dy

ds
Oq
ax

(3.1)

(3.2)

The geostrophic contours serve as the characteristics and the governing equation is then

converted to

S - -We,
ds g

away from the equivalent western boundaries. For the convenience of characteristic in-

tegration, the model domain has been divided into subdomains A, B, C, D, E, F. For

different regions, we have different initial conditions. The only difference between this

model and that discussed in Chapter 5 is that here w, is a function of y.

In region A, the conventional Sverdrupian dynamics applies. The governing equa-

tion (2.5) reduces to

a( f2  . ry

- = wosin-
-ax g H D'

with the eastern boundary condition

(|z=L/2-o = 0.

The solution is

_f
2

= wO(x
gHO(

= wo(x
gHO

iry- L/2 + xo)sin-
D

- 3L/2 + xo)sin--
D

for Ox <L/2-xo,

for L/2+xo <x <L.
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In region B, the initial conditions for the characteristic equations are

X13= = z,

yS=o = D,

(|8= = 0.

Integrating (3.1), (3.2) and (3.3), we have

f fN
H - h(z) H - h(x,)'

f 7ry
(B - Wo Cos -

S f 2 _ fN2

2apq2

ry fN
si2 D +

with fN = fty=D, a = ho/xo, e = 7r//3D and Wo = wo/afig. Along segment e - f an

equivalent western boundary layer is needed to close the circulation.

In region C, the governing equation becomes

a( f 2 . Ty
-- = -Hwoszn-

with the boundary condition

f 7ry
C~ L/-O =6 W O S -s-

1 . ry
- Dsin

E2 -D7

The solution is

f2 - L/2

| wo(x - 3L/2
gH3

+ . 7ry
zo)sn-

D eD
fO - 1 .ry

e2 D

for Ox < L/2-xo;

.iry f Wy+ xo)szn- + WO cos--
D eD

1 s ry
- -- n-

e2 D
for L/2+xo x L.

In region D, the initial conditions for the characteristic equations are

z|,=o = L/2 + xo,
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Y1e=o = y,

= f(y)2moALsin +gH3 D

fW., 7ry, 1 7ry, fNWo Cos-- - -sin- + --
w e D 32  D e

where AL = L - 2xo. Integrating equations (3.1), (3.2) and (3.3), one has

H -h(x)
f(y,)
H'

f 2 _ f(y,) 2

2apq2

f y -
C|D = -WO -Cos-D

1 .
- sin

( Hq )2
woAsLsinE( H q - fs) +

gH/3

7ry Hq

H q
WO I -cose(Hq - fs) -

LE

1
+ 1 sine(Hq

E2
- fs)

1.
-sine( Hq - fs) +E2

Along segment c - d an equivalent western boundary layer is needed to close the circulation.

In region E, the initial conditions for the characteristic equations are

y o = 0,

(=o = Co.

Integrating equations (3.1), (3.2) and (3.3), we have

f
H - h(x)

CIE = Co - Wo -cos- --
(E D7 -E2 s

fs
H - h(z,)'

f 2 _ f

2apq2

ry fs
D e

Along segment b - c an equivalent western boundary layer is needed to close the circulation.

In region F, the initial conditions for the characteristic equations are

xI,=o = L/2,
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Y1|=8 = Ys,

~ I.= - - f(y,) iry, 1 . 7ry, _fs,(=O = (0 - WO Cos 7, sin .

E D e2 D e 

Integrating equations (3.1), (3.2) and (3.3), we have

f f(y,)
H - h(x) H - ho'

S = -f
2 _ f(y,) 2

2ap3q 2

f1 .i ry
CIF +WO (Cos -Sn

~'~kC Oe D e2  DJ{(H - ho)q cosE [(H - ho)q - fs] - 2sine [(H - ho)q - fs]
E 62

((H_-ho_ 1. fs'
WO (H ho)q 0 se [(H - ho)q - fsl - sine [(H - ho)q - fs| -

Along segment e - f an equivalent dynamic western boundary layer is needed to close the

circulation.

Similar to the source-sink-driven circulation, flows in both regions B and E, are

purely zonal and discontinuities of the surface elevation arise at the boundaries, l and 12

between regions B and F and regions D and E, respectively. Discontinuity also arises at

the southern boundary. The explanation is similar. Across the boundary between B and

F, fi, the discontinuity is

A(l11= C( + WOfs+ fN (34)

And across the boundary between D and E, 12, the discontinuity is

A(l1 = -Co + WOfs+fN (3.5)

Across the southern boundary, the discontinuity is

A(lY=o = -(o + Wo fs +fN (3.6)

because

C|Y=o+=Co, for O<x<L/2-xo and L/2+x-O<x<L,
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noting (|f-g = Co. These discontinuities represent internal currents of the model similar to

those discussed in Chapter 2. In addition, equivalent western boundary layers along both

segments e - f and b - d are needed to close the circulation.

With the above solution, one can compute the meridional geostrophic volume flux

across a latitude circle in the circumpolar area between any z = x1 and x = X 2, defined as

T(y) = (H - h)vdx.

In both regions B and E, the flow is purely zonal, and there is no meridional flux

TB = TE = 0.

In region C, the meridional geostrophic volume flux is

_ woAL iry
Tc = fsin-

# D'

which is always southward, and reaches its maximum at the middle of the circumpolar

ocean. In region D, the meridional geostrophic volume flux is

TD = - _ i- - +2 1 - Co3--

f D E D)'

which generally flows southward. In region F, the meridional geostrophic volume flux is

TF - 2 g(H - ho)Wo I - Co)y 4 g(H - ho)Wo
E D) e '

which always flows southward. Along £1, the geostrophic volume flux is

-g(H - ho) (WfN+fS) (3.7)
fN N

which may or may not flow southward depending upon (o. However, along 1 2, the geostrophic

volume flux is

gH fN +f)S
TZ, - -CO+ Wo , (3.8)fS e
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which again may or may not flow southward depending upon (o. With the calculation

above, the total meridional geostrophic volume flux in the interior circumpolar ocean is

T =roLi - ry Ngi.hc r- z hetah, (9
Total = O 1 - Cos ( ~ ,o - ox 1 - .,h (3.9)

POlo ( D fN Pofo 2ho(H - h)

The mass conservation requires that the northward surface Ekman flux should be coun-

terbalanced by the same amount of southward geostrophic volume flux in the lower layer,

which gives

Ttotal = Tiower.

Thus, (o can be determined as

fN 2xoroI h(Hh) (3.10)
gAhc gpofo 2ho(H - hc)'

which is critically determined by the supercriticality, Ahe, of the ridge height, and is always

negative noting hedhe < 2ho(H - hc). Not surprisingly, in the quasi-geostrophic limit with

OD < Ifol and ho < H, g~o/fo -+ Oo of the wind-driven circulation discussed in Chapter

2.

With (o determined, the geostrophic volume flux of the internal current along 4 is

Ttl H - ho 2-roxo +Ahe
Ahc pofO ho'

noting (3.7) and (3.10). This internal current always flows northward. The geostrophic

volume flux of the internal jet along 2 is

T1=H - ho 2roxo Ahc
Ahe Pofo ho

noting (3.8) and (3.10). This internal current always flows southward. This corresponds

rather well with the wind-driven circulation in the Q-G model discussed in Chapter 2.

Now let us look where the southward geostrophic volume flux in the lower layer

comes from. Near the northern boundary, i.e., y -+ D, the meridional geostrophic volume

fluxes in both regions C and F are vanishingly small, i.e.,

TC, TF -+ 0.
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In region D, the meridional geostrophic volume flux is

T0L oxo H-ho
TD -* ~2 -4

polfo| polfo| ho '

and

Ti1+t, = T 11 + T 12 = 4 oo H - ho

Therefore, near the northern boundary of the circumpolar ocean, northward flow occurs

along fl, while southward flow occurs both along f2 and within region D. Furthermore,

the source region for these southward flows is the equivalent western boundary at segment

c - d along the northern boundary of the circumpolar ocean, as is clearly shown in Fig.

6.3. This requires compensating water either from the subtropical gyre to the north or

from the Ekman layer above.

With the solution (JA for the subtropical gyre, one can compute the net westward

volume flux into the western boundary layer of the subtropical gyre with D < y < 2D as

T2D -ro(L - 2xo)
TW = ID = -2 Poo

This amount of water crosses the inter-gyre boundary at y = D in the same way as that

in a closed basin discussed by Csanady (1986) to the equivalent western boundary layer

at segment c - d of the circumpolar ocean along the west coast of the meridional barrier.

This water from the western boundary layer of the subtropical gyre, however, does not

account for all the southward volume flux in the circumpolar ocean. Along segment a - d,

the northward surface Ekman flow with volume flux

T= 4roxo

Polfol

impinges the southern boundary of the meridional barrier (the cross-hatched area in Fig.

6.3). In the discussion here it is assumed that xO < L. So

T. < Tw.
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Figure 6.3: Surface dynamic topography (cm) of the "Southern Ocean". The model pa-
rameters are fo = -1.3 x 10- 4 s-1, 3 = -1.1 x 10-s-1m-1, -ro = 0.08N/m 2, xo = 2 x 103m,
L = 2.4 x 107m and D = 1.8 x 106m. Cross-hatched area is the meridional barrier in the
subtropical area. Dashed (solid) lines represent the negative (positive) dynamic topogra-
phy.
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The flow impinging segment a - c moves eastward along the southern boundary of the

meridional barrier in the surface layer in a way similar to that discussed by Pedlosky

(1968) to within segment c - d and sink to the lower layer there in a way similar to

that discussed by Hide (1968) to compensate for the total southward volume flux of the

circumpolar ocean. Due to the fact that the detail dynamics of the flow along a - d

within the surface Ekman layer and that along the lateral boundary in the lower layer

are not explicitly included in the model, the above circulation scheme resulting from the

Ekman flow impinging upon segment a - d is rather schematic. The discussion about the

detailed dynamics is very much involved and tedious, and beyond the scope of this paper.

Nevertheless, the volume flux associated with this circulation is much weaker than that

returned from the subtropical gyre, i.e., T. < Tw with the assumption xo < L. Thus

we complete the source water with volume flux of Ti,. for the southward flow from the

segment c - d along the northern boundary of the circumpolar ocean.

With the discussion above, we have completed the wind-driven meridional cell,

called Deacon Cell, e.g., Bryan (1991), in this simple homogeneous two-layer model. As

we have seen through the discussion above, this meridional cell is fundamentally three

dimensional and nonhomogeneous in the layer below the surface Ekman layer, although

it is often project into a two-dimensional meridional plane as Gill & Bryan (1971) did for

example. In the surface Ekman layer, i.e., the surface branch of the cell, fluid particle moves

northward according to the Ekman layer dynamics. This surface branch is vanishingly

thin in the inviscid limit, but the fluid movement is rather uniform except along the

segment a - d. The sinking branch is in the subtropical area, while the rising branch is the

circumpolar zone. Both the sinking and rising are carried out by the Ekman pumping. This

three branches of the cell are governed by the Ekman layer dynamics. The lower branch

in this two-layer model formulation is much more complicated. The downwelling water

from the Ekman layer in the subtropical area is carried northward and westward by the

subtropical Sverdrupian gyre to the corresponding western boundary. This water is then

carried southward by the western boundary layer current to segment c - d, see Fig. 6.2. It
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is then further carried southward by the Sverdrupian gyre circulation in circumpolar zone

to feed the Ekman sucking. Thus, the lower branch of the Deacon Cell is governed by both

Sverdrupian and western boundary layer dynamics. Therefore, the dynamics governing

the so-called Deacon Cell is quite different for different part.

Noting (3.7) and (IE, the zonal volume transport at x = L/2 is

T 2rozo H - ho

PoIfo| Lhc

Because the flow within the circumpolar ocean is divergent, the zonal volume flux at

different longitudes is different. This presumably suggests that the volume transport of

the Antarctic Circumpolar Current measured at different locations is different, although

the transport measured at Drake Passage is often quoted as the transport of the ACC.

Nevertheless, the difference, so far as the linear model discussed here is concerned, is no

more than the surface Ekman flux. We will define To roughly as the net through-channel

transport driven by the surface Ekman pumping, anyway. Not surprisingly, in the quasi-

geostrophic approximation with ho < H, this transport approaches the through-channel

transport in the corresponding quasi-geostrophic model discussed in Chapter 2. Although

the discussion carried out for the quasi-geostrophic model only applies for a low ridge,

the discussion here applies for any ridge so long as it is in the supercritical range. Quite

intuitively, as ho -+ H,

TO - + 0.

For a narrow ridge with xo < L, the interior basin is occupied chiefly by the Sverdrupian

gyre circulation, as is shown in Fig. 6.3. The volume transport of this Sverdrupian gyre is

roughly

irro(L - 2xo)

/3poD

Both these transports are forced by the surface Ekman pumping. To measure these trans-

ports against the total water sucked from the lower layer to the surface Ekman layer, two
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parameters, Ro and Rs,,

Ro = 0 - , (3.11)
L ho - he)

7r Ifol L - 2xo
Rs, 2 - -D - , (3.12)

are introduced. Rs, is independent of the ridge height so long as it is supercritical, and

one has

7r I|fo|I
Rs, ~

2 OD'

for a narrow ridge. It is purely determined by the ridge width. Ro depends upon the ridge

height. There are two interesting limits. In one extreme, as ho --+ h

Ro oo.

While in the other extreme, as ho -+ H

Ro -0.

Fig. 6.4 shows Ro versus ho, and we have

Ro = 1 if ho (= h+Hxo/L
1+xo/L

Thus, the through-channel transport could be either stronger or weaker than the total

surface Ekman sucking depending upon both the ridge height and width. And in this

homogeneous model, Ro is rather sensitive to the ridge height, ho.

6.4 Implications for inter-basin water mass exchange
in the Southern Ocean

In the preceding section, the subtropical area consists of a single ocean basin for simplicity

of discussion. The subtropical area of the realistic Southern Ocean, on the other hand,
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Figure 6.4: Ro versus ho/H. The model parameters are similar to those in Fig. 6.3 except
that zo = 1.2 x 101m.

227



consists of three ocean basins in the subtropical area. They are the South Atlantic, Indian

Ocean and South Pacific, which are partially separated by South American, African and

the Australian continents. A schematic view of the subtropical area is shown in Fig. 6.5.

In the case with a single ocean basin in the subtropical area, all the Ekman flux carried

northward into the subtropical area downwells into the subtropical gyre and is carried

westward into the single western boundary layer. Then, a western boundary layer current

carries this amount of water southward across the inter-gyre boundary into the northern

equivalent western boundary layer of the circumpolar ocean. In the presence of multiple

north-south barriers, such as South American, African and the Australian continents, the

situation is much more complicated. For simplicity, it is assumed that each ocean basin

has the same width, W, and each continent has the same width, w, too, and w < W.

The southern boundary of each continent is assumed all at y = D. Furthermore, in the

circumpolar ocean there are no topographic features other than the supercritical bottom

ridge in the form of (2.4) which connects South America and Antarctic. The remaining

model parameters are same as those in the preceding sections.

In each subtropical ocean basin, across its boundary with the circumpolar ocean,

there is a northward inflow in the surface Ekman layer to the subtropical area with volume

flux

ToE = 2 - (4.1)
polfo|

In each subtropical ocean basin, this same amount of water is pumped down into the

subtropical gyre and carried westward by the subtropical gyre to the corresponding western

boundary layer. The northward Ekman flow impinging upon the southern boundary of

South America with volume flux

Toe = 2 T 0 W (4.2)
pot fo|I

does the same as that discussed in the preceding section. Those northward Ekman flows

impinging upon the southern boundaries of the other two continents sink to the lower layer
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in a way similar to that discussed by Hide (1968). Again, the circulation associated with

Ekman flux impinging upon the southern boundary of the three meridional barriers is not

explicitly depicted by the model used here. Nevertheless, T. < ToE assuming w < W.

Supposing the ridge connecting South America and Antarctica is supercritical, then the

discussion in the preceding section about the circulation in the circumpolar ocean applies

here regardless of whatever happens in the subtropical area in the linear model used here.

To maintain mass balance in each ocean basin gives rise to two questions. First, how does

the water lost in the circumpolar interior due to the Ekman sucking get compensated?

Second, how does each ocean basin in the subtropical region export the amount of water

brought in by the surface Ekman drift?

The answer to the first question is the same as that discussed in the preceding

section. The equivalent western boundary layer along the southern boundary of the South

American continent serves as the source region to compensate for the water loss to the

surface Ekman layer in the interior circumpolar ocean. Now the only remaining question is

how the amount of water brought in by the surface Ekman drift in each subtropical basin

can reach the equivalent western boundary layer along the southern boundary of the South

American continent. For the South Atlantic ocean, the answer is quite straightforward

given the discussion in the preceding section. The water with volume flux ToE flows within

the western boundary layer southward directly to the equivalent western boundary layer

for the circumpolar ocean. Nevertheless, for the other two basins, the solution is not so

straight forward. In the South Pacific, the inflow is carried westward into the western

boundary layer by the subtropical gyre in the subtropical South Pacific. Then, a current

with volume flux ToE flows southward within the western boundary layer to point E, the

southeast corner of the Australian continent. At point E, this current turns westward and

flows westward along y = D across the Indian Ocean to point C, the southeast corner

of the African continent. It entrains the water that sank from the surface Ekman layer

with volume flux T, between D and E. An eastward flow along y = D across the South

Pacific would intersect the east coast South America, which violates the condition of no
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flow intersecting an eastern boundary. Because there are no topographic features other

than that connecting South America and Antarctica by model assumption, y = D is a

geostrophic contour in the linear model and any flow along it with a constant volume

flux abides by the law of potential vorticity conservation in the inviscid limit. This flow

pattern is quite similar to the cross-ocean internal current discussed in the source-sink-

driven circulation in Chapter 5. In the Indian basin, the subtropical gyre there carries

the inflow from the surface Ekman layer to the western boundary layer. Like the South

Pacific, a current with volume flux ToE flows southward within the western boundary layer

to point C and joins the flow from the South Pacific. Then, it turns westward along y = D

all the way to the equivalent western boundary layer along the southern boundary of the

South American continent. It entrains the water that sank from the surface Ekman layer

with volume flux T, between B and C. After B, the volume flux of this current grows to

Twetward = 2ToE + 2Te.

This completes the inter-basin water mass exchange driven by the surface Ekman drift,

as is shown by the heavy and open arrows in Fig. 6.5 in the inviscid limit. The most

significant characteristics for this flow pattern of inter-basin water mass exchange is the

following. The water mass from the South Pacific to the equivalent western boundary layer

along the southern boundary of the South American continent does not participate in the

circulations of the subtropical gyre in either the South Atlantic or the Indian Ocean. In a

similar way, the water mass from the Indian Ocean does not participate in the circulations

of the subtropical gyre in the South Atlantic either.

In Fig. 6.5, the westward internal current from D to C and from B to A along

y = D is flanked by eastward flow on both sides under the assumption of inviscid limit.

In the realistic oceans, frictions such as bottom friction and lateral diffusion, are present

regardless of other physical processes. It may be small, but its effect may be profound as

is demonstrated by Wang (1993a). In the presence of finite bottom friction, the internal

current along y = D will have finite width, and thus it will overlap and strongly interfere
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Figure 6.5: Schematic view of the circulation and inter-basin water exchange in the South-
ern Ocean. Thin solid lines represent the subtropical gyre circulations. Heavy solid arrows
represent the western boundary layer currents associated with the inter-basin exchange
driven by the wind stress. Open arrows represent the internal currents associated with
the inter-basin exchange in the inviscid limit. The dashed arrows represent the revised
inter-basin exchange in the presence of finite bottom friction.
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with the eastward flow on both sides. The governing equation for the internal current

along y = D in the presence of bottom friction is approximately

a( ~ i-92 (4.3)

where K is the linear bottom frictional coefficient. Then, a scale analysis of this equation

gives rise to the characteristic width of the internal current as

6Y = v136 7, (4.4)

where 6 = K/ 3 is the Stommel boundary layer thickness. Thus, the characteristic westward

zonal velocity of the internal jet is

Urn ~ -ToE/H~y,

in the Indian Ocean, noting w < W. In the South Atlantic we have

Usa~ -2ToE/H ,,

in the presence of bottom friction. The characteristic zonal velocity at y = D of the

subtropical gyre is

1rfowoW

H OD'

in either the South Atlantic or Indian Ocean, noting (IA in the preceding section. Then,

for a small bottom friction with 6 ~ 15km, one always has

U.ub+ USA > 0, (4.5)

for other model parameters chosen as fo = -1.3 x 10 4 s 1 , / = -1.1 x 10-"s- 1 m-1 and

D = 1.8 x 106m. Thus, as the result of interfering with either the subtropical gyre or

the circumpolar circulation, the internal current can not flow along y = D any more in

the presence of a finite and small bottom friction. Instead, it will be entrained into and

participates in the subtropical gyre and the circulations within the circumpolar basin.
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If the southern ends of the South American, African and Australian continents

are indeed at the same latitude y = D, the zero line of We, then the water from the

internal current is about evenly partitioned into the subtropical basins and the circumpolar

basin. In the realistic Southern Ocean, the South American continent extends much farther

south than the other two continents. Furthermore, the southern ends of the African and

Australian continents are much farther north than the local zero line of wind stress curl, see

Nowlin & Klinck (1986). Taking this into account, the internal current would be completely

within the subtropical gyres rather than at the boundary between the subtropical gyres and

the circumpolar circulation. Thus, in the presence of a small but finite bottom friction,

the internal current will only interfere with the subtropical gyre. As a result, it will

be entrained by and participates only in the generally northward flowing subtropical gyre

interior flow. The inter-basin water mass exchange in the open ocean will be fundamentally

different from that shown in Fig. 6.5 for the inviscid limit. Schematically, the route for the

inter-basin water exchange is shown as the dashed line in Fig. 6.5 for the case with a small

yet finite bottom friction. The water from the South Pacific flows as the northeast branch

of the subtropical gyre in the Indian basin, and is carried by the subtropical gyre to the

western boundary layer. After that the same amount of water together with downwelling

water from the surface Ekman layer into the subtropical gyre in the Indian Ocean flows

southward as a western boundary current and around the southern boundary of the African

continent into the South Atlantic. In the South Atlantic, the circulation in the subtropical

basin similar to that in the Indian Ocean happens, only that the inflow from the southeast

corner is about twice as strong as that in the Indian Ocean. This might be one possible

reason why the inflow from the Indian Ocean to the South Atlantic is so visible from the

observation such as shown by Gordon (1986). Comparing to the simpler case discussed

in the preceding section, the structure of the Deacon cell is quite similar except in the

subtropical region, where the flow structure associated with the cell is more complicated.

It is now governed by Sverdrupian, western boundary layer and internal boundary layer

dynamics.
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6.5 Discussion and conclusion

In this chapter the dynamic role of a supercritical ridge in the mass balance associated

with the surface northward Ekman drift in the Southern Ocean is discussed in a linear

homogeneous model. In the quasi-geostrophic formation of the wind-driven circulation in

a 0-plane channel discussed in Chapter 2, a vertically integrated form of the circulation

is discussed. This technique of dealing solely with the vertical integral of the horizontal

velocity often hides the marked difference between the wind drift in the thin surface Ekman

layer and the geostrophic regime below. In this chapter, the circulation is split into the thin

surface Ekman layer and lower homogeneous layer. This leads to the question as to what

is the circulation associated with the surface Ekman drift, which is present regardless of

the model geometry. In the surface Ekman layer, water is sucked up from the circumpolar

region and flows northward across the inter-gyre boundary between the circumpolar ocean

and the subtropical gyre. In the subtropical area, water from the circumpolar area is

pumped down to the subtropical gyre in the lower layer. Due to the circulation associated

with the surface Ekman flow, the subtropical area in the lower layer has a net gain of

water while the circumpolar area in the lower layer has a net loss of the same amount of

water. Then, there must be a southward flow from the subtropical area across the inter-

gyre boundary into the circumpolar zone. In the linear model discussed, it was proposed

that this cross-gyre flow occurs as a regular western boundary layer current. This water

mass from the subtropical area, however, has to be carried southward across the latitudes

of the circumpolar region. It requires that there should be a net southward geostrophic

volume flux even though there are no meridional barriers.

In a 3-plane channel without any topographic features, any meridional flow in the

latitudes of the circumpolar ocean has to be associated with ageostrophic processes. In the

presence of a sufficiently high ridge, however, geostrophic flow can support a net meridional

volume flux. Associated with the southward volume flux required by mass balance is
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an eastward flowing loop of currents, which are similar to those discussed in a quasi-

geostrophic model. So in the case with a supercritical ridge connecting the Antarctic and

the meridional barrier in the subtropical region, the northward flowing surface Ekman drift

out of the circumpolar zone returns to the southern boundary of the barrier as a western

boundary layer current in the lower layer. From the southern boundary of the meridional

barrier, this water mass from the subtropical gyre is carried southward by the Sverdrupian

gyre circulation in the circumpolar ocean and sucked up by the surface Ekman layer.

The most important characteristics of this flow pattern is that in the lower layer all the

return flow to the interior circumpolar ocean starts from the eastern part of the southern

boundary of the meridional barrier to the north of the circumpolar ocean. This discussion

essentially completes the three dimensional structure for the so-called Deacon Cell first

founded by Gill & Bryan (1971) in a numerical model in a rather simple homogeneous

two-layer model. The surface branch, which has vanishingly thin thickness, and the sinking

and the rising branches are all governed by the Ekman layer dynamics. The lower branch,

which dynamically is very nonhomogeneous, is governed both boundary and Sverdrupian

dynamics. This cell is fundamentally three dimensional system.

This circulation associated with the surface Ekman drift has a very significant im-

plication for the inter-basin water mass exchange among the subtropical basins in the

Southern Ocean. It has generally been thought that inter-basin water mass exchange is

closely associated with the global thermohaline circulation, such as in the studies of Gordon

(1986) and Rintoul (1988). It is demonstrated that the circulations associated with the

surface Ekman drift, however, can also induce a strong inter-basin water mass exchange.

The chief reason is that all the return flow to the interior circumpolar ocean starts from

the eastern part of the southern boundary of South America, so long as the present simple

model is concerned. Therefore, the model, albeit being linear and homogeneous for the

water below the surface Ekman layer, essentially suggests that the wind stress can also

drive a strong inter-basin water exchange in the Southern Ocean. Thus, the observed inter-

basin exchange might not be necessarily associated only with the thermohaline circulation.
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Another way in which the wind stress can drive an inter-basin water mass exchange purely

due to the geometry of the Southern Ocean and the various land areas was discussed by

de Ruijter & Boudra (1985). All these add up to the complexity of identifying the cause

for the inter-basin water mass exchange. If we project the meridional circulation associ-

ated with the surface Ekman drift, albeit being depicted just in a two-layer model, into a

meridional plane, one would get the so-called Deacon cell as discussed by England (1992)

in a GCM experiment.

The discussion in this chapter is carried out in rather simple models, notably the

simple geometry and bottom topography, linear and homogeneous assumption for the water

below the thin surface Ekman layer and a solid northern boundary. This last assumption

essentially excludes the possibility of returning the water mass from the South Pacific and

Indian Oceans to the South Atlantic by other means. Gordon (1986) pointed out that the

inflow from the South Pacific to the Indian Oceans is mostly, if not all, to the north rather

than to the south of the Australian continent. Nevertheless, the essential significance of

the supercritical ridge connecting South America and the Antarctica and the inter-basin

water mass exchange associated with the surface Ekman drift is believed to be relevant to

the large scale circulations in the Southern Ocean. The discussion in this chapter is purely

dynamic. It is not difficult to see that in the realistic Southern Ocean, associated with

this inter-ocean water mass exchange is a very complicated three dimensional structure of

various tracer fields.

236



Chapter 7

Discussion and conclusion

7.1 Summary of the thesis

In this thesis, the dynamic role of bottom topography in both momentum and mass bal-

ances in a #-plane channel is systematically studied in both homogeneous and layered

models in the presence of either wind stress (Chapters 2, 3, 4 and 6) or buoyancy forcing

(Chapter 5). In these studies, the structure of the geostrophic contour plays a fundamental

role. Accordingly, the bottom topography is classified into two categories. In the first one,

all geostrophic contours are blocked by lateral boundaries, while in the second category,

not all or none of the geostrophic contours in the channel are blocked by the lateral bound-

aries. Chapters 2 and 3 address the question of how topographic form drag is generated in

a f-plane channel in a homogeneous model. Chapter 4 addresses the questions of what is

the effect of stratification on the bottom topographic form-drag generation and how is the

interfacial form drag generated. These three chapters mainly discussed the dynamic role

that bottom topography plays in the momentum balance. Chapters 5 and 6 address the

question of whether geostrophic flow in a #-plane channel can support a net cross-channel

volume flux. These two chapters mainly discuss the dynamic role bottom topography plays

in the mass balance. As shown in Chapters 2 and 6 these two questions are essentially one

question but looked at from different angles.

237



First, wind-driven circulation in the inviscid limit is discussed in a linear barotropic

channel model in the presence of a bottom ridge. There is a critical height of the ridge,

above which all geostrophic contours in the channel are blocked. In the subcritical case,

the Sverdrupian balance does not apply and there is no solution in the inviscid limit. In

the supercritical case, however, the Sverdrupian balance applies and an explicit form for

the wind-driven circulation and especially the zonal transport in the channel is obtained,

which clearly demonstrates what model parameters determine the zonal through-channel

transport.

In the case with a uniform wind stress, the transport in the #-plane channel is

independent of the width of the ridge, linearly proportional to the wind stress and the

length of the channel, while inversely linearly proportional to the ridge height. In the

f-plane with # = 0, the transport is even independent of the width of the channel. In

the case with a nonuniform wind stress rx = ro(1 - cosry/D), the Sverdrupian flow driven

by the vorticity input always induces a form drag against the mean wind stress. Now, the

transport depends on the width of the ridge but not on the length of the channel.

The model clearly demonstrates how the topographic form-drag is generated in a

linear barotropic model, which is fundamentally different from the nonlinear Rossby wave

drag generation. In this linear model, the presence of a supercritically high ridge is essential

to the form-drag generation in the inviscid limit. In the supercritical case, form-drag is

generated regardless of the flow direction. In addition, the model demonstrates that most

of the potential vorticity dissipation occurs at the northern boundary where the ridge is

located.

The results from the homogeneous channel model in Chapter 2 are extended to

a model whose geometry consists of a zonal channel and two partial meridional barriers

along each boundary at the same longitude. Both the model transport and especially the

model circulation are significantly affected by the presence of the two meridional barriers.
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There is a critical height of the ridge between the two partial meridional barriers, above

which all geostrophic contours in the channel are blocked.

In the subcritical state, the Sverdrupian balance does not apply and there is no

solution in the inviscid limit. In the supercritical state, however, an explicit form for the

through-channel transport is obtained in the inviscid limit. In the case with a uniform

wind stress, the transport is independent of the width of either the ridge or the chan-

nel, and is linearly proportional to the wind stress and the length of the channel, while

inversely linearly proportional to the ridge height. In the case with a nonuniform wind

stress -r = -ro(1 - cos-y), the relation between the transport and model parameters is

more complicated. It is related to the width of both the ridge and the channel, and the

lengths of the two partial meridional barriers, besides those like the case with a uniform

wind stress forcing. The presence of the northern barrier always leads to a decrease in

the transport. The presence of the southern barrier, however, increases the transport for

a narrow ridge.

The model again demonstrates the importance of the topographic form drag gener-

ation via the Sverdrupian flow forced by the wind stress curl. In terms of the circulation

structure, the presence of a southern barrier has a far more profound influence than that

of a northern one. The northern barrier only has a localized influence on the circulation

pattern over the ridge, while the southern barrier has a global influence in the channel. In

addition, the model demonstrates that most of the potential vorticity dissipation occurs

around the northern barrier.

Chapters 2 and 3 address the question regarding the role of bottom topography

in the momentum balance in a homogeneous model. In Chapter 4 the same question is

addressed in a layer model. By assuming that potential vorticity in all sub-surface lay-

ers is homogenized, a multi-layer Q-G model of large scale wind-driven circulation in a

#-plane channel is constructed. The circulation is made up of a baroclinic part and a

barotropic part. The barotropic part is the same as that in a corresponding barotropic
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model discussed in Chapter 2. The wind stress only determines the barotropic component,

while the baroclinic part is not directly related to the wind stress. The potential vor-

ticity homogenization in each subsurface layer and lateral boundary conditions together

determine the baroclinic component. The presence of the stratification does not affect the

topographic form drag generation discussed in the corresponding barotropic model. The

interfacial form drag is generated by the stationary perturbations. Corresponding to the

circulation, the zonal through-channel transport associated with the barotropic circulation

is determined by the wind stress and bottom topography. The other part associated with

the baroclinic circulation, however, is not directly related to the wind stress; it is deter-

mined by the background stratification. The presence of stratification increases the zonal

transport.

Chapters 2, 3 and 4 demonstrate the importance of a supercritical ridge in the

form drag, both bottom and interfacial, generation and thus the momentum balance. The

same question is looked at from a different angle in Chapters 5 and 6. It is rather easy

to see that in a f-plane channel with a flat bottom, geostrophic flow can not carry any

net cross-channel volume flux. The question is whether geostrophic flow can carry a net

cross-channel volume flux in the presence of bottom topography. We begin with the source-

sink-driven circulation. In Chapter 5, a simple barotropic model of abyssal circulation in

a circumpolar ocean basin is constructed. In the presence of a sufficiently high ridge, the

classical Stommel & Arons theory applies here with very substantial modifications. In the

case with a point source at one side of the channel and a point sink at the other side of

the channel, there is a through-channel recirculating flow in addition to the flow from the

source to the sink. The volume flux of this recirculating flow is critically determined by the

supercriticality of the ridge height. In the case with uniform sink and point sources and

sinks, the circulation is essentially in the Stommel & Arons sense with one major novelty.

That is, a through-channel recirculating flow is generated. Both its strength and direction

depend critically upon the model parameters. This suggests that the Antarctic Bottom

Water formation could drive a substantial amount of westward flow which counterbalances
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the wind-driven eastward flow. Lastly, a schematic picture of the abyssal circulation in a

rather idealized Southern Ocean is obtained. The most significant feature is the narrow

current along the northern boundary of the circumpolar basin, which feeds the deep western

boundary currents of the Indian Ocean and Pacific Ocean. It serves to connect all the

oceanic basins in the Southern Ocean.

What is the fate of the northward surface Ekman transport out of the circumpolar

ocean? This question is discussed in a two-layer model with an infinitesimal surface Ekman

layer on top of a homogeneous layer of water in a rather idealized Southern Ocean basin.

First, the case with a single subtropical ocean basin is discussed. In the case with a suffi-

ciently high ridge connecting the Antarctic and the meridional barrier, an explicit solution

is found. The surface Ekman layer sucks water from the lower layer in the circumpolar

basin. This same amount of water flows northward as the surface Ekman drift, and down-

wells to the lower layer in the subtropical gyre, where it is carried to the western boundary

layer. From the western boundary layer of the subtropical gyre, the same amount of water

flows southward as a western boundary current across the inter-gyre boundary between the

circumpolar ocean and the subtropical gyre along the west coast to the southern boundary

of the meridional barrier. From there, the amount of water is carried southward by the

Sverdrupian flow and feeds the water loss to the surface Ekman layer due to the Ekman

sucking in the interior circumpolar ocean. Then, the case with multiple subtropical ocean

basins such as the Southern Ocean is discussed. It is demonstrated that the surface Ekman

drift drives a strong inter-basin water mass exchange.

7.2 What have we learnt?

The first question one would like to ask about this thesis is what have we learnt. The

most important thing we have learnt from the thesis is the fundamental role a topographic

feature of the first category plays in determining both the wind-driven and source-sink-
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driven circulations in a #-plane channel. It boils down to one central question which

can be looked at from two different angles. From the viewpoint of momentum balance in

the channel, the question is how bottom topographic form drag is generated. From the

point of view of mass balance in the channel, the question is whether geostrophic flow in

a #-plane channel can carry net cross-channel volume transport.

From the viewpoint of momentum balance, it is demonstrated that the supercrit-

icality of the ridge used in discussions throughout the thesis is essential in the process

of bottom topographic and interfacial form-drag generation. It appears that the form

drag can be generated through two different physical processes. The first one is by the

barotropic zonal through-channel recirculating flow. In this process, the zonal transport

and the supercriticality of the ridge height determines the bottom form-drag generation.

In the second process, the wind stress curl determines the form-drag generation so long as

the ridge is in the supercritical range. The presence of stratification appears to have no

direct influence on the bottom topographic form-drag generation. In the layered model,

however, another question arises as to how the momentum input at the surface gets down

to the bottom. It is demonstrated that the stationary eddies resulting from the Sverdru-

pian gyre circulation together with the baroclinic flow over bottom ridge carried out the

momentum downward transport.

From the viewpoint of water mass balance in the channel, it is shown that in the

presence of a supercritical ridge, geostrophic flow can carry net cross-channel volume trans-

port. In the wind-driven circulation, associated with westerly wind stress is a strong

northward Ekman drift throughout the channel in the surface Ekman layer. This north-

ward flow is supplied by the geostrophic flow regime below which carries a net southward

cross-channel volume flux.

So far as the circulation structure is concerned, only in the supercritical state can

we find an explicit solution in the inviscid limit. In the homogeneous model, the wind-

driven circulation consists of the Sverdrupian gyre circulation and the through-channel
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recirculation flow. The source-sink-driven circulation is similar. In the stratified model,

the wind-driven circulation consists of two parts. The first part is the barotropic cir-

culation which is same as the corresponding barotropic model. The second part is the

baroclinic part which is anticyclonic circulation over the ridge superimposed upon a un-

form baroclinic flow. The barotropic circulation is determined by the wind stress forcing.

The baroclinic circulation, however, is not directly related to the wind stress forcing. This

presumably implies that the wind stress variability can only drive a similar response in the

barotropic circulation and its associated zonal transport and that there is no response in

the baroclinic circulation and its associated zonal transport. This seems to be consistent

with the currently available measurements about the time variability in the circumpolar

area.

Apparently the model used in the discussions throughout this thesis is rather ide-

alized, particularly with respect to the bottom topographic ridge and coastline shape.

Nevertheless, the methodology employed here can be extended to fairly general bottom

topography and coastline. Despite the many simplifications discussed throughout thesis,

some results from the model are believed to be robust regardless of the model assumption.

First, geostrophic contour blocking plays an essential role in both homogeneous and strat-

ified oceans in terms of generating bottom topographic and interfacial form drag and of

supporting a net cross-channel geostrophic volume flux. This clearly singles out the funda-

mental importance of the topographic features around Drake Passage in determining the

overall dynamics of both the wind-driven and source-sink-driven circulation in the South-

ern Ocean, thus the global ocean circulation. Were there no topography around Drake

Passage or if the distance between the Antarctic and South America were much larger,

both the wind and buoyancy-driven circulations in the Southern Ocean and thus the global

ocean would be completely different from what exists today. Second, the physical process

associated with the bottom topographic form-drag generation is closely relevant to the

momentum balance in the circumpolar ocean, especially the importance of the wind stress

curl driven circulations, which puts a high quality demand on the wind stress measurement
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in order to properly constrain the transport of the Antarctic Circumpolar Current. Third,

the circulation driven by the wind stress curl plays a fundamental role in the momentum

downward transport process, and stationary eddies rather than transient eddies play a

dominant role in this process. Nevertheless, those transient eddies would presumably tend

to homogenize the potential vorticity in all subsurface layer, thus leave all potential vortic-

ity gradient trapped near the upper surface. Fourth, the thermohaline circulation, which

presumably determines the background stratification, plays a significant role in determin-

ing the transport of the ACC. Unfortunately I am unable to address the source-sink-driven

thermohaline circulation in a similar way as I do the wind-driven circulation. The discus-

sion here, however, does suggest that to really understand what determines that transport

of ACC one has to understand the thermohaline circulation first. Fifth, the wind stress

through the surface Ekman drift drives a strong inter-ocean exchange among the different

basins in the Southern Ocean which has been generally thought to be driven primarily by

the source-sink forcing.

7.3 Future work

Although we have made significant progress in terms of our theoretical understanding of

the large scale circulation in the Southern Oceans, much more work is needed to deepen

our understanding. From a theoretical point of view, the most important issue is the

buoyancy-driven circulation in the Southern Ocean, which presumably sets the background

stratification for the wind-driven circulation. Bottom topography is again expected to

play an important role in determining the thermohaline circulation. One of the most

significant feature in the circumpolar ocean is the multiple frontal structures, why are there

multiple fronts and what determines the position of these fronts. From the standpoint of

observational studies there are several issues need to be resolved. The first one is related

to the downward momentum transport or meridional heat flux. I believe that most of

the downward momentum transport is due to the large scale stationary eddies, and we
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should be able to infer some of this information from currently available data base. The

second issue is the volume flux, heat and fresh water fluxes associated with both the wind

and buoyancy driven inter-ocean exchange among the different basins in the Southern

Ocean. This inter-ocean exchange is the key part of the global "conveyer belt", which is

of fundamental importance to the understanding of the global climate of decadal or longer

time scale.
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