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Abstract

Majority of biological processes can not be described deterministically. Multple
levels of regulation contribute to the noise in the observable properties of the cells:
fluctuations are ubiquitous in biological networks and in their spatial organization. In this
thesis we consider several examples from three broad categories. Firstly, we study two
problems that highlight connection between network topologies and manifestations of
stochastic fluctuation in networks of chemical reactions that are meant to represent
biological networks in the coarse-grained way. We show that specific network structure
can have profound consequences on the steady-state probability distribution function of
corresponding chemical system. Secondly, we study effects of spatial organization of the
proteins on the membrane surface of T-cells on the initialization of signal propagation.
We show that coordinated diffusion of proteins is critical for signal-enhancing properties
of co-receptors CD4 and CD8. In third part of the thesis we attempt to reconstruct
network topology based on incomplete information about specific interactions between
the network nodes and some information about "macroscopic" behavior of the system
governed by the network in question. The matter of the Part III, however, is one scale
larger than the corresponding objects considered in Part II and I. Specifically, we
consider transformations of cells between different cell types and molecular origins that
underlie cell transformations (such as differentiation/de-differentiation). Our model
suggests specific structure of the master-regulatory network of genes and makes testable
predictions.
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Chapter 1

Introduction

1.1 Background

Several levels of regulation govern life of biological cells. Signals from the

environment are received and processed by networks of proteins that undergo different

post-translational modifications, such as phosphorylation, dephosphorylation,

ubiquitination etc. Appropriately processed signals activate and induce translocation of

transcription factors into the nucleus, and promote the action of factors (e.g. chromatin

modifying factors) that could cause proliferation and differentiation. The resulting

alterations of the transcriptional program of the cell enable it to properly respond to the

external stimuli. Often, response involves significant changes in cell appearance,

function, and cell numbers.

Enormous numbers of proteins and nucleic acids regulate every aspect of cellular

existence. This complexity is accentuated by noise that is present at all levels of

regulation. Protein numbers differ from cell to cell and they fluctuate with time in a

single cell. Proteins are not distributed homogeneously or in any particular order inside

the cell, and are subject to stochastic forces and diffusive transport. Also, often very

small numbers of proteins or chemicals are involved in intracellular biochemical

reactions. For example, the typical acidity (pH=1) inside the phagosome of macrophages

implies that there are only 50 protons present in this closed space. This generates a source

of extrinsic noise because, when there are small numbers of reactant molecules, one must

account for the intrinsic stochasticity of chemical reactions (McQuarrie, 1967) that is

often neglected in classical chemical kinetics.



A biologically relevant situation where stochasticity of biochemical reactions

plays a critical role is recognition of ligands by cell surface receptors when stimulatory

ligands are limiting. One very important example of this situation is T-cell signaling. T-

cells are one of the most numerous cell types in an organism. T-cells represent 1 to 5 %

of all cells in humans, which reflects their importance as orchestrators of adaptive the

immune response to infectious pathogens that have evaded the defense mechanisms of

the innate immune system. Multiple cell surface molecules mediate T-cell interactions

with the environment in order to ensure appropriate responses and prevent spurious

responses to proteins of the host (which would lead to autoimmunity) (Janeway et al.,
2008).

T cells have evolved to combat pathogens that have invaded host cells. Proteins

transcribed by these intracellular pathogens (bacteria or viruses) are chopped up in to

short peptide fragments. These peptide fragments are then loaded on to proteins coded

for by the major histocompatibility (MHC) gene complex. These peptide-MHC

complexes are transported to the cell surface, and serve as molecular flags of the

pathogen. The most important interactions of a T-cell with its surroundings take place

through engagement of the T-cell receptor with these peptide-MHC molecules, which are

most prominently displayed on the surface of antigen-presenting cells (typically

macrophages, B-cells or dendritic cells). Outcome of such an engagement is critically

dependent on the pathogen-derived peptide.

In the healthy state of the organism, only peptides derived from the self-proteins

are presented to the T-cells for there are only self-proteins present in the system. Naive T-

cells are generally unresponsive to the self-antigens (due to thymic selection), thus,

avoiding autoimmune responses. When organism gets infected with a microbe or virus,

non-self proteins start circulating in the system. Pathogen-derived proteins give rise to

peptides that are different from the self-derived peptides and T-cell receptors sense this

difference which sometime can be as small as single aminoacid substitution (Fig. 1.1).

From the point of view of biophysical characterization, interactions between

ligand and receptors are described by an association-dissociation reaction. Sufficiently

strong binding is known to result in biochemical transformations of a myriad proteins

inside the T cell (signaling). These downstream events are represented by a chemical



network, either detailed or coarse-grained. Thus, understanding the influence of topology

of chemical networks on the signal processing properties of T cells is an important

research frontier. Part I of this thesis is devoted to the study of two coarse-grained models

of signaling networks (inspired by T cell biology) where topological effects enable

peculiar deviations from the mean-field behavior predicted by classical chemical kinetics.

Ligand quality (i.e. whether it is stimulating or non-stimulating ligand) is

typically reflected by the affinity (dissociation constant, Keq) and/or lifetime in the

bound state (dissociation rate, koff). In terms of T-cell ligands there is no clear

understanding as to which one is the critical parameter distinguishing between the antigen

and non-antigen. In our work we are using fixed kon since it has less variablility and vary

koff values, thus, making no distinction between Keq and koff.

T-cell sensory apparatus must be able to distinguish ligands with rather small

differences in k-off. Three major membrane proteins play important roles in this

discrimination: T-cell receptor (TCR), coreceptor (CD4 or CD8) on the T-cell surface

and peptide-MHC complex on the surface of antigen-presenting cell.

At the level of the membrane proximal events, stimulatory ligand sensing should

be translated into increased phosphorylation of intracellular part of TCR, which is then

used to propagate the signal further. This phosphorylation is carried out by Lck,

membrane associated kinase. Lck is present at the inner membrane in two forms: as a free

protein or as a coreceptor-bound form. Upon TCR-peptide-MHC engagement, Lck

phosphorylates intracellular domains of TCR thus mediating the signal input into the cell.

Coreceptor aids the phosphorylation process because it spans the membrane and is

capable of binding MHC with its extracellular part while being constitutively associated

with Lck inside the T-cell (Fig.1.2). Part II of this thesis presents detailed studies of the

earliest signaling events during T-cell activation. A new computational method for

efficient simulation of cell signaling processes is described, and some results that may

alter the textbook descriptions of coreceptor function are highlighted.

The complexity and robustness of post-translational modifications plays essential

role in propagating the signal down to the nuclei where it starts transcriptional programs.

The latter can change the cell in the most dramatic ways. For example, it can force the

cell to change its identity through differentiation. Although controlled by mechanisms of



colossal size and complexity, cell identity (T-cell, B-cell, red blood cell etc) is reasonably

stable and well-defined. Yet, it is far from being a deterministic concept. Cell

differentiation is viewed as probabilistic event, in that a progenitor can differentiate into

progeny 1 with some probability and into progeny 2 with some other probability.

Celular differentiation is usually encountered in the forward direction. For

example, an embryonic stem cell differentiates in to a hematopoietic stem which, upon

the receipt of appropriate cues, differentiates in to blood cells (e.g., T cells), etc..

Interestingly, current experiments (Jaenisch and Young, 2008) showed that cells can

change their identities in the opposite direction too, albeit with very low probabilities.

Although some information is available with respect to genes that maintain cellular

identities and mechanisms of transition between the cell states, our knowledge is far from

complete at this moment. Part III of this thesis focuses on understanding the general

topology of the network of interacting master regulatory genes that is compatible with

data on both cellular differentiation and de-differentiation. Specifically, the first theory

describing exciting new developments in reprogramming of differentiated cells to a

pluripotent state that can be used for patient-specific therapy is presented.

I would like to conclude this introductory chapter by noting that biology offers a

broad spectrum of problems ranging from fundamental studies of the stochastic behavior

of chemical networks important for signal processing all the way to the application of

coarse-grained statistical mechanical models for phenomenological description of cellular

behavior. Examples of such problems that span a spectrum of scales and levels of

theoretical description have been explored in this thesis.

1.2 Thesis outline

The thesis consists of three major parts which encompass, although not

exhaustively, the extent of my work as a graduate student in the Department of Chemistry

at MIT.

In Part I we study the appearance of bimodal steady-state probability distribution

in two non-typical model networks of chemical reactions. It is customary to observe

bimodal steady-state probability distribution in the situations when underlying system has

two stable fixed points. In these settings, and in the presence of noise, transitions between



stable states occur, and complete probability distribution has two peaks (or more, in the

case of multistability). In Chapters 2 and 3 we have considered situations when the

systems in question do not have any underlying multistabilities and, thus, are not

expected to exhibit multipeaked probability distribution. We show that in the regime

where intrinsic stochasticity of chemical networks must be taken into account bimodal

distribution can emerge as a consequence of combination of stochastic fluctuations in

numbers of particles and particular network topologies.

We have studied conditions on network topologies and kinetic parameters of the

networks that enable this effect in two classes of systems. Firstly, Chapter 2 illustrates

how a strong feedback loop can lead to the appearance of bimodal distribution in

irreversible systems. Secondly, Chapter 3 reports a novel mechanism, termed network

topology reduction, that leads to appearance of bimodality in monostable reversible

systems. In fact, biologically relevant systems discussed in the literature (Miller and

Beard, 2008; Samoilov et al., 2005a) exhibit bimodality due to network topology

reduction, which was not recognized previously.

Although material of Part I was motivated by biological systems, Chapters 2 and

3 do not address directly important biological questions. They consider general properties

of networks emerging in the biological applications. Part II, however, focuses on

biological problem where underlying stochasticity plays critical role.

T-cell signaling networks are the main subject of interest in Part II. Early

signaling events that take place in the membrane proximal region during the T-cell

activation serve as unique filtering module discriminating between noise and signal. By

natural design of the human (or mouse, as these are main objects of study in clinical

immunology) body, T-cell receptors are constantly interacting with multiple non-

stimulating ligands derived from self-proteins of the organism (i.e. self-peptides

presented in context of MHC complexes). Yet T-cell receptors have to be able to deliver

activation signal in rare cases when pathogenic-derived, stimulating ligand is presented to

them. T-cell machinery can distinguish these two classes of ligands, although they are

often very similar, sometimes differing by a single aminoacid substitution.

This remarkable resolution of T-cell sensory apparatus leads to the following

general question: what are the principles guiding the topology of signaling networks in T-



cell that allow it to achieve such discriminatory capabilities? In this thesis we only

consider a very limited part of T-cell signaling pathway which, nonetheless, amounts to

approximately 1,000 reaction chemical network. (Even though the number of interacting

proteins that we consider is less than ten, see below about the combinatorial expansion.)

The general idea that we adhere to in Part II is to deduce the topology of the molecular

network based on "microscopic" information about protein-protein interactions and

"macroscopic" information about T-cell response to different perturbations.

We face two major obstacles when studying realistic problems in signal

propagation. The most commonly recognized one is combinatorial expansion of number

of reactions and reactants in the typical biological systems. Unlike ordinary chemicals,

proteins that participate in signaling network do not loose their identity as a result of

reaction. Rather, they are modified in some way; for example, phosphorylated,

dephosphorylated, ubiquitinated etc. The origin of the combinatorial expansion problem

lies in the multi-domain structure of the proteins. One recognizes that the same protein

can have multiple modification states. Thus, presense of just two phosphorylation sites

implies that there are 4 different states this protein can be at. In the very direct manner

this also affects the number of chemical reactions in the network under consideration: one

has to consider four explicit binding reaction if two reacting proteins have one

phosphorylation site each. This problem has been recognized previously and several

solutions have been proposed, most notably based on rule-based modeling or K-

calculus.(Danos and Laneve, 2004; Faeder et al., 2009).

Second major problem has to do with spatial organization of the proteins

participating in the signaling network. Although this aspect is often neglected when

considering intracellular signaling cascades that take place in cytoplasm, it is critical to

consider interplay between the interactions and spatial motion of proteins when action the

interactions take place in two-dimensions, e.g. in cell membrane. The reaction-diffusion

view is especially appropriate in the problem of T-cell membrane-proximal signaling

because timescales of chemical reactions and diffusion processes of proteins in the

membrane are very similar, as will become apparent in Chapter 5. However, by the year

2009, there was only one simulation software that allow spatially resolved simulation of



stochastic chemical networks (MesoRD) that was created by Johan Elf and collaborators

(Hattne et al., 2005).

However, there was no computational solution that would provide the capabilities

to address both of the aforementioned problems. We were able to address this question

through the collaboration with Mieszko Lis, graduate student at MIT Computer Science

Department. He created the software (Lis et al., 2009), named SSC for Stochastic

Simulation Compiler, that combined the rule-based approach to solving the problem of

combinatorial expansion of chemical network and next-subvolume algorithm (Hattne et

al., 2005) for simulating spatial motion of particles. Appendix to Chapter 4, which is due

to Mieszko Lis and is not a part of my thesis, describes the details of the SSC software

and provides the basic examples of its use. Chapters 5 and 6 make extensive use of SSC

software and, thus, I feel that inclusion of rather large Appendix to Chapter 4 is justified.

Having clarified our simulation methods in Chapter 4 we move on to consider the

question of the coreceptor involvement in T-cell early signaling in Chapter 5. We find

that observed experimental characteristics of coreceptor-MHC interactions are

inconsistent with one of the commonly accepted (even in the textbooks) mechanisms of

coreceptor-mediated signal enhancement. By carrying out explicit molecular simulations

with the help of SSC software we were able to accurately describe the origins of the

positive effect of coreceptor involvement in signal initiation.

Next chapter, Chapter 6, deals with fascinating phenomenon of synergy between

two classes of TCR ligands. It was found relatively recently (Krogsgaard et al., 2007a)

that peptides derived from self-proteins can enhance the signal that originates from

stimulation with pathogenic peptides (Fig. 1.3), even though self-peptides do not deliver

any activation signal by themselves. Although conceptual models treating involvement of

self-peptides have been already published (Li et al., 2004b; Wylie et al., 2007b), coherent

description that would employ all of the available biophysical information in a consistent

manner has been lacking. In Chapter 6 we describe three explicit molecular models that

are compatible with current biological knowledge about protein-protein interactions and

corresponding biophysical parameters. This explicit description allows us to address an

important debate about origins of difference of self-peptide involvement in CD4 and CD8

systems (Ebert et al., 2009; Lo et al., 2009; Yachi et al., 2007). All the different models



that we consider point to the importance of the positive selection threshold for

identification of range of co-enhancing self-peptides. Our conclusions are corroborated

by recently published results in CD4 systems where only positively selecting peptides

were capable of synergizing the antigen-derived signal (Ebert et al., 2009; Lo et al., 2009;

Yachi et al., 2007).

Part III of this thesis is in line with general philosophy of Part II. Here too, we

attempt to reconstruct network topology based on incomplete information about specific

interactions between the network nodes and some information about "macroscopic"

behavior of the system governed by the network in question. The matter of the Part III,
however, is one scale larger than the corresponding objects considered in Part II.

Specifically, we consider transformations of cells between different cell types and

molecular origins that underlie cell transformations (such as differentiation/de-

differentiation).

Cell differentiation is ubiquitous phenomenon when different kinds of cells are

arising upon division of the older cells. One of the classical examples of differentiation is

formation of an organism starting from a single fertilized egg. It is commonly recognized

that all cells in an organism have the same DNA (in fact, only majority of cells have the

same DNA). Yet, the cells often appear as differently as red blood cells and T-cells and

skin cells. They express different proteins and carry out different functions. This is

because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly,
making it hard to express certain genes while facilitating the expression of others. This

additional above-(epi)-genetic level of regulations insures that diverse cell types can arise

based on the exact same DNA sequence. During development, upon receipt of

appropriate cues, pluripotent embryonic stem cells differentiate in to diverse cell types

that make up the organism (e.g., a human). There has long been an effort to make this

process go backward - i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent

status. Recently, this has been achieved by transfecting certain transcription factors in to

differentiated cells (Jaenisch and Young, 2008). This method does not use embryonic

material and promises the development of patient-specific regenerative medicine, but it is

inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly

understood. In Chapter 7 we report the first computational model of transcription factor-



induced reprogramming. Results obtained from the model are consistent with diverse

observations, and identify the rare pathways that allow reprogramming to occur. If

validated by further experiments, our model could be further developed to design optimal

strategies for reprogramming and shed light on basic questions in biology.

1.3 References to published work and work outside the thesis scope

The work presented in Chapter 2 has been published in Proceedings of the

National Academy of Sciences (Artyomov et al., 2007a) and was featured in Physics

Today (Fleming and Ratner, 2008). The work described in Chapter 3 is currently in press

at Journal of Chemical Physics. Collaborative work on creation of SSC software that is

described in Chapter 4 has been published in BioInformatics (Lis et al., 2009). The

materials of Chapters 5 and 6 are in the final stages of preparation for submission.

Chapter 7 is currently under review in the PLoS Computational Biology.

Although the Chapters of the thesis correspond to the most important research

projects of my PhD career, there have been many others that came along due to

discussions with experimental and theoretical scientists.

I was a part of three major experimental collaborative efforts during my PhD

career: the most current collaboration with Michel Nussenzweig lab at Rockefeller

University; collaboration with David Kranz and Jennifer Stone at UIUC; and

collaboration with Uli von Andrian lab from Harvard Medical School (HMS). In the first

(Rockefeller) project we were lucky to have contributed to understanding the

phenomenon of heteroligation of antibodies on the viral particles (one paper submitted to

Nature, and the other in final stages of preparation for submission to Journal of

Immunological Methods). As a result of this collaboration two manuscripts are now in

preparation. In the second (UIUC) project, we had a fascinating opportunity to dwell

deeper into the details and caveats of famous MHC tetramer assay. I believe that our

findings will improve the level of understanding of this widespread experimental tool.

The manuscript that reports the details of our work is currently in preparation. In the last

(HMS) project we were able to reconcile dynamics of peptides dissociation off the MHC

complexes of dendritic cells in vivo and in vitro, which appeared to be inconsistent on a

first glance. This work has been published in Nature Immunology (Henrickson et al.,



2008). In all of these collaborative projects, I want to be very clear about it, the most

difficult scientific work was done by our experimental colleagues; but I would like to

believe that we, too, contributed critical pieces of understanding.

During my MIT years I have been fortunate to continue interactions with

Professor Anatoly Kolomeisky from Rice University. Multiple discussions with him have

yielded interesting and analytically tractable questions in the theory of molecular motors.

We have addressed these questions in several publications (Artyomov, 2009; Artyomov

et al., 2008; Artyomov et al., 2007b; Morozov et al., 2007) with some containing exact

analytical results for burnt-bridge model of motor proteins (Artyomov et al., 2007b).

Please note that I use different spelling of my name in my publications. This

originates from the conflict between direct official transliteration of my family name

from Cyrillic to Latin alphabet (Maksym Artomov) versus the spelling that most

appropriately corresponds to phonetic pronunciation of my last name (Maxim N.

Artyomov).
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1.5 Figures for Chapter 1
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Fig.1.1. Schematic representation of MHC loading with foreign derived peptide. After

MHC has been loaded with peptide, it is targeted to the cell surface where it presents

peptide to the T-cell.

4

Fig.1.2. Schematic representation of coreceptor (CD4 in this case) involvement into

TCR-pepMHC interactions.
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Fig.1.3. Biological manifestation of the self-peptide enhancement phenomenon. Self-

peptides (designated null-peptides on the picture) do not stimulate T-cell activation and

proliferation (yellow curve on the right panel). However, when mixed with stimulatory

peptides (designated agonist on the picture), it provokes higher degree of activation as

measured by proliferation or, for instance, cytokine production.



PART I

Chapter 2

Purely stochastic binary decisions in cell signaling

models without underlying deterministic bistabilities

2.1 Introduction

The detection of external stimuli by receptors on a cell membrane followed by

intracellular signaling, gene transcription, and effector functions is ubiquitous, and

necessary for life. The regulatory processes involved in gene transcription are often

mediated by small numbers of molecules. This makes stochastic effects important and, in

recent years, many interesting consequences of such fluctuations have been elucidated

theoretically and observed in experiments (e.g., (Acar et al., 2005; Elowitz et al., 2002;

McAdams and Arkin, 1997; Weinberger et al., 2005)). The importance of stochastic

effects on enzymatic reactions in the zero order ultrasensitivity regime has also been

described (Berg et al., 2000; Samoilov et al., 2005a). Less attention has been devoted to

the effects of stochastic fluctuations on cell signaling dynamics. Yet, many such

processes involve small numbers of molecules. One important example is provided by T

lymphocytes (T cells), the orchestrators of the adaptive immune response. T cell

signaling and activation can be stimulated by as few as 3 molecules that represent

signatures of pathogens (called agonists) (Brower et al., 1994; Davis et al., 2007; Irvine et

al., 2002; Li et al., 2004a; Purbhoo et al., 2004; Sykulev et al., 1996). The small numbers

of molecules involved can make stochastic effects important for membrane-proximal



signaling in T cells. Here, we study simple and general models inspired by recent

descriptions of membrane-proximal signaling in T cells, and find an interesting

consequence of stochastic fluctuations. An essential feature of the model, dueling

positive and negative feedback loops, is ubiquitous, and so our findings may be of broad

relevance in cell biology.

Many examples (particularly models of gene regulation) have been studied

previously wherein a deterministic treatment of the kinetic scheme describing the

relevant processes has two stable steady states in a certain parameter regime (Acar et al.,
2005; Elowitz et al., 2002; Karmakar and Bose, 2007; Kepler and Elston, 2001b;

McAdams and Arkin, 1997). In such systems, stochastic effects can lead to bimodality

(e.g., populated "on" and "off' states) in the parameter range where bistability is

predicted by the deterministic equations as well as outside this range where there is a

single stable steady state (Acar et al., 2005; Elowitz et al., 2002; Karmakar and Bose,
2007; Kepler and Elston, 2001b; McAdams and Arkin, 1997). The latter phenomenon is

a consequence of stochastic fluctuations enabling the system to sample parameters (e.g.,
rate constants) that effectively fall within the range where two deterministically stable

fixed points are present. In these examples, the existence of bistability in the

deterministic analysis in some parameter range underlies the observation of bimodal

behavior in the stochastic treatment.

The model we study exhibits a different feature. The deterministic dynamical

equations yield a single steady state in all parameter ranges; i.e., there is no bistability.

Yet, stochastic fluctuations result in a bimodal long-time response with neither mode

corresponding to the steady state obtained deterministically. Upon increasing the copy

numbers of molecules, the stochastic description ultimately converges to the

deterministic behavior. Thus, we find a purely stochastically driven instability when

none exists in the deterministic treatment in any parameter range. When fluctuations are

important, we find that average quantities scale with parameters "anomalously"

compared to the corresponding mean-field behavior. Our analyses suggest that the

necessary and sufficient conditions for this phenomenon to occur are quite common.



2.2 Signaling model

Our simple ("toy") model is inspired by ideas proposed recently to describe T cell

responses to diverse stimuli (Altan-Bonnet and Germain, 2005; Davis et al., 2007; Irvine

et al., 2002; Li et al., 2004a; Stefanova et al., 2003; Wylie et al., 2007a). T cell receptor

(TCR) molecules expressed on the surface of T cells can bind complexes of peptides (p)

bound to major histocompatibility (MHC) proteins on the surface of antigen presenting

cells (APCs). TCR can potentially bind strongly to pMHC molecules where the peptide

is derived from a pathogen's proteins (agonists). In contrast, thymic selection ensures that

TCR bind weakly to "self' or endogenous pMHC molecules that are also expressed on

APCs (Starr et al., 2003). The binding of TCRs to pMHC molecules can initiate

signaling cascades that result in T cell activation and an immune response. T cells are as

good a sensory apparatus as any in biology, and can detect as few as three agonists in a

sea of tens of thousands of endogenous pMHC molecules, and it has been suggested that

this extraordinary sensitivity is mediated by cooperative interactions between self pMHC

and agonists(Davis et al., 2007; Irvine et al., 2002; Li et al., 2004a; Purbhoo et al., 2004;

Yachi et al., 2005b).

Another interesting response of T cells to pMHC molecules is called antagonism

(Evavold et al., 1994; Stefanova et al., 2003). Antagonists are pMHC molecules obtained

by mutating agonist peptide residues. When present on APC surfaces in sufficient

numbers, they can shut down intracellular signaling stimulated in response to agonists.

Recent experimental results (Stefanova et al., 2003) have suggested that this phenomenon

may be mediated by dueling positive and negative feedback loops (Fig. 2.1). One of the

earliest steps in downstream signaling initiated by the binding of the TCR to pMHC

molecules is the phosphorylation of cytoplasmic domains of the TCR complex by a

kinase called Lck. It has been proposed that Lck also activates its own inhibitor, a

phosphatase called Shp (negative feedback). This inhibitory interaction is prevented by a

product (ERK) of signaling downstream of phosphorylation of the TCR complex that

protects Lck by phosphorylating one of its sites (positive feedback). It has been

proposed, and detailed calculations support this (Altan-Bonnet and Germain, 2005; Wylie

et al., 2007a), that the positive feedback is dominant when T cells are stimulated by



agonists (and synergistic endogenous ligands), and negative feedback shuts down

signaling when sufficient numbers of antagonists are present.

While the specific molecular identity of positive and negative regulators involved

in T cell signaling is still debated (Li et al., 2007), the idea that dueling positive and

negative feedback loops play a role in determining whether signaling is shut off

(antagonism) or sustained/amplified (agonism) is of general significance to cellular

decisions that lead to distinct outcomes. Furthermore, such processes are often mediated

by small numbers of molecules. Therefore, we set out to study the effects of stochastic

fluctuations on the following simple and general model with dueling positive and

negative feedback regulation:

Al k, > E + Al (1); A2  k2 > S+A2 (2)

E+A k3 >E+APROT (3); APROT k4 >E+APROT (4)

S +A A, *4 S +A AINACTIV (5); S kD > p, E kD 0 (6

While this model is general, seeing how it relates to T cell signaling makes clear that it is

relevant to situations where cells make distinct decisions (e.g., agonism and antagonism

in Fig. 2.1). The first reaction mimics the production of the positive regulator ERK (E)

upon agonist (A1) binding to TCR. Thus, it subsumes a large number of steps in the

actual signaling cascade into one. Of course, agonists also lead to production of the

negative regulator Shp (S), but this is ignored in this general model. Similarly, some

production of E by antagonist (A2) binding to the receptor is ignored, and reaction 2

mimics the production of the negative regulator. Reaction 3 represents positive feedback

and mimics protection of Lck from the action of Shp, in that the interaction of E with Ai

protects it (by forming A1 PROT) from the inhibitory action of S (reaction 5). Protected A

species can generate positive regulators E (reaction 4), and both positive and negative

regulators can be inactivated (reaction 6).

2.3 Results

The mean-field deterministic equations corresponding to the model described by

Eqs. 1-6 can be written down following mass action kinetics (web supplement), and yield

the following solution for the steady state:



-S)k k
A(ss) = 0 A PROT (SS) A(ss) = AiPROTtSS) is-SS APROT(SS) Siss) - A 2  (7)

1,NCI D kD

At steady state, the number of A1 molecules equals zero, the number of S

molecules is a function of the number of A2 molecules, the number of E molecules

depends upon the number of protected Ai molecules, and all solutions which satisfy the

constraint that the sum of the number of APROT species and AINACT species sum to the

initial number of A I are allowed. Thus, unique steady states cannot be obtained from Eqs.

7 without knowledge of the initial conditions. Rather, there is a line of possible steady

states. Stability analysis shows that all, but one, eigenvalues of the Jacobian matrix are

negative. The only non-negative eigenvalue is zero, and corresponds to sliding along the

line of possible steady states, A[PROT (SS) + A(,)4CTIV = initiai , with corresponding change

in the steady-state value of E. Solving the dynamical equations with specific initial

conditions and taking the long-time limit obtains a unique point on this fixed line. Thus,

the deterministic solutions of the model are a set of unique steady-states for all parameter

values.

While we have studied different parameter ranges for a stochastic description of

this model (web supplement), let us first consider situations that are inspired by T cell

signaling. Reactions (1), (2), and (4) represent multi-step processes (Lin and Weiss,

2001). Reactions (3) and (5), the dueling feedback loops, are thought to represent one

step phosphorylation or deactivation steps (Stefanova et al., 2003). So, we study

situations where k3 and k5 are much larger than ki, k2 and k4; i.e., both positive and

negative feedback loops are strong. Recent studies (Li et al., 2004a; Wylie et al., 2007a)

with detailed models of membrane-proximal signaling in T cells suggests that k4 could be

larger than k1, but we have taken them to be equal (k4 > ki is considered in the web

supplement). Changing the relative values of ki and k2 would simply modify the specific

value of the ratio of initial numbers of A1 and A2 molecules that would result in a

transition from "agonism" to "antagonism".

Fig. 2.2 shows results of spatially homogeneous stochastic simulations with

discrete number of molecules (using the Gillespie algorithm (Gillespie, 1977)) of the

model represented by Eqs. 1-6. When there are only a few molecules of A1 and A2,

essentially all the stochastic trajectories commit to one of two final states: all the A1



molecules are converted to the protected species, APROT , or are annihilated and signaling

stops. This bimodality is in striking contrast to the mean-field solution that does not

exhibit bistability for any parameter values. The qualitative phenomenon of finding a

bimodal stochastic solution when the deterministic solution is unique for all parameter

values is preserved as long as the positive and negative feedback loops are sufficiently

strong (web supplement).

The mechanism underlying this result is as follows. The species A, is converted to

either AIPROT or A INACT. The effective rates of production of these species can be

obtained from the deterministic equations. Both rates equal zero initially and at long

times, and exhibit a maximum (Fig. S2.4). The initial rise and amplitudes of the maxima

depend upon the values of the initial number of A1 and A2 molecules, and are very

different if one of these quantities is much larger than the other. In these circumstances,

either agonism or antagonism dominates in the deterministic and stochastic solutions.

The more interesting cases are ones where the generation of positive and negative

regulations is roughly balanced (Fig. 2.2) as it could result in a transition from agonism to

antagonism. Now, the rates at short times and amplitudes of the maxima for the

production of A1 PROT and A1 INACT are comparable in the mean-field sense, and the

deterministic equations yield a single steady state solution with an intermediate value of
PROTAP . However, stochastically, one of two reactions (1) and (2) occurs first. There is a

stochastic delay, t, before the other reaction occurs, and for this duration, the reaction

propensities are effectively as in cases where A1>>A 2, or vice versa. For small numbers

of A1 and A2 molecules, -c can be long. If - is longer than the intrinsic time scale

associated with the feedback reaction corresponding to the reaction that occurred first

(e.g., reaction (3) if (1) occurred first), then the small number of A1 molecules will all be

converted to either A PROT or be annihilated, depending upon whether reaction (1) or (2)

occurred first. So, the stochastic trajectories partition into two classes (those that end

with all A1 molecules annihilated or protected), and the stochastic solution is bimodal.

The time delay (,r) becomes smaller as the number of molecules of AI and A2

increases. This suggests that, for a sufficiently large number of particles, it will not be

longer than the intrinsic time scale associated with the feedback loops and the stochastic

solution will not be bimodal. Rather, it will be distributed around the mean-field solution.



Fig. 2.3 shows results of simulations that demonstrate this unequivocally. Thus, for the

same parameter values, as the number of molecules decreases past a threshold, the

stochastic solution exhibits an instability from one solution to bimodality. This transition

from unimodal to bimodal solutions is driven by stochastic effects, and occurs in the

absence of any underlying deterministic bistability.

The qualitative differences between the stochastic and deterministic descriptions

due to the dominance of fluctuation effects suggests that the manner in which the

response scales with different control parameters may be different. For example, we

expect the steady state amount of APROT to scale with k2A2 for the stochastic
k2 2

simulations. This is because the probability of conversion to AROT is essentially equal to

k A
the probability that reaction (1) occurs first, which is given by .1 Conversely,

k1A1 + k2 A2

k A
probability of annihilating all A1 molecules is equal to 2 2 (equal to probability

k1A1 +k 2A2

that reaction (2) occurs first). Both expressions depend only on the combination ki A
k2A2

This implies, for example, that the amount of A PROT scales linearly with ki (a measure of

how effective the agonist is in stimulating signaling). The deterministic solution, on the

other hand, is not expected to obey this linear scaling. Indeed, numerical solutions

support these expectations (Fig. S2.3).

The complexity of the model described by Eqs. 1-6, however, makes it difficult to

explore these differences in scaling behavior precisely. The complexity also prevents us

from analyzing the necessary and sufficient conditions for purely stochastic instabilities

(results in Figs. 2.2, 2.3) in cell signaling dynamics. Therefore, we formulated a simpler

model that enabled exploration of these issues.

This minimal model, which can be solved exactly, includes the following features:

irreversibility, branching, and feedback. The model is described in terms of the three

coupled reactions shown below:

Z+Y 1 >X+Y Z+X+Y 2 2X+Y, Y k3 >0 (8)



The deterministic equations corresponding to these reactions can be written down (web

supplement) following the mass action kinetics. Let us denote the numbers of x, y and z

species at time t by Nx(t), N(t) and N(t), respectively. At t = 0, only Z and Y species are

present; i.e., Nx(O) = 0, Ny(O) = N, and NM(O) = M. As for the more complex model, the

steady state values of the numbers of each species cannot be determined by setting the

right sides of the above rate equations to zero; i.e., only a line of possible steady states

can be obtained. Linear stability analysis of the steady state solutions shows that there is a

neutral mode (with an eigenvalue 0) corresponding to sliding along the line of possible

steady states, and stable modes along the directions N, + (k2N + kj)(M-N')/k3 6N, and

dN, respectively, which span the plane of the steady states. It is easy to solve the time

dependent equations and take the t -+ oo limit to obtain the unique steady-state solution

for given initial conditions. The time-dependent solution to the deterministic equations

describing system (8) is:

Nx t (F()-1 , N, (t) = Ne-k, ', N, (t) = M-_N, (t) (9)Mk2 + kF(t)

where F(t) = exp{(M2+ k})Nl - e .j* At long times (t >>kV), the steady state particle
_ k3-

numbers are,

N,(t -* oo)= N'= k1M(exp[N(Mk2 + kj)/k 3 ]-1) (10)
Mk2 + k, exp[N(Mk2 + kj)/k 3]

N, (t ->0=N,' = 0, N,(t -+0o) = Nzs = M - N,(t -> oo). (11)

Given initial conditions, these equations determine a unique steady state, a

behavior identical to that exhibited by the model described by Eqs. 1-6. Unlike the more

complex model, the deterministic scaling behavior can be determined, and is given by,

Ns (k,k 2 ,k,N,M)= Mf(Mk 2k~ , Nk k~1).

The following Master Equation describes the stochastic time evolution of the

reactions shown in (8):

P(nXnn) =[k2(nx -1)n,(n +1)+ k1n,(n, +1)]P(nx -1,n,,n, +1,t) (12)

+ k3(n , I)Py ,,n, + nz,t) -(k2nxnynz + kjn~nZ + kan,)P(n,,n,,nz,t)



P(n,,n,,nzt) denotes the probability of having nx,n, and nz particles at time t. The

probability distribution at t = 0 is given byP(nx,n,,nz,t = 0) ='5 on ,NnzM. Note that at

steady state (or in the limit, t -+ oo) there will be no y species present, and therefore,

P(nX,n,,nz,t -> oo) = #(nx,nz)g 0. However, any form of $(n,,nz) will make the right

hand side of Eq. 12 vanish. Therefore, as for the deterministic equations, irreversibility

makes it necessary to solve the time dependent Master equation for a particular initial

condition in order to obtain the steady state solution.

Using the method of generating functions (Gardiner, 2004), Eq. 12 can be solved

exactly (web supplement) to obtain:

P(nnnz0= p+, M Pnr NCnF (1- exp(-(Ar + k3)t exp(-ny(Ar +

(13)

F(M+ k/k 2 +1-r)F(M+ ki/k 2 -nj)
where Ar = r((M- r)k 2 + k1) and pnr =rCn (-1)nz F(M + k 1k2 +1-r)F(M+k1k 2 )

TF(M+ k 1k2+ 1- nz-r)F(M+k 4k2)

{A ,} are determined from the equations:

M

I A'rPnr = 0  for n < M (14)
r= n

=1 for n=M

At long times (t -+ oo), the above probability distribution takes the form,

M

P , t - = , , krP n3 (15)P~n~n~z t ->00)= 'n +nz Mgny10 A~nzr r(M - r) k2 + rk + k3_r-n 3

Note that this solution to the Master equation indicates the appearance of a spectrum of

time scales (indexed by r and ny), which is presumably related to stochastic delays.

Eq. 15 results in a steady state probability distribution that is bimodal for small

numbers of molecules (Fig. S2.5a) when the deterministic solution does not exhibit

bistability in any parameter range. In the more complex model that we studied (Eqs. 1-

6), mean-field behavior was obtained as the numbers of A1 and A2 molecules increased

past a threshold value even though their relative numbers were kept constant. The

corresponding limit for the minimal model is k3 -+ oo,N -* , with the ratio N/k 3 (or the

dimensionless, Nki/k 3) remaining constant. This is because a large value of N

corresponds to a large amount of the source of a positive regulator (A1 in Eqs. 1-6) and a



large value of k3 corresponds to greater annihilation or a big source (A2 in Eqs. 1-6) of

negative regulation. Fig. S2.5b shows that, like the more complex model, there is a purely

stochastic transition as the stochastic solution is unimodal and distributed around the

deterministic solution above a threshold value of N and k3. So, these results establish that

the sufficient conditions for the phenomena we report are: irreversibility, branching, and

feedback loops. But, are these also necessary conditions?

The possibility of two different outcomes is obviously necessary, and branching is

ubiquitous in cell signaling processes that lead to functional decisions. We have also

found that removing irreversibility abolishes the phenomenon (data not shown).

Ultimately, all reactions are, in principle, reversible. However, in the time scales of

interest to signal propagation in cells, many steps are effectively irreversible.

Feedback regulation is also necessary as the bimodal stochastic solution does not

exist if k2 in the minimal model tends to zero (Fig. S2.9). Insight into the kind of

feedback regulation that is necessary can be obtained by contrasting our studies of

dueling feedback loops in cell signaling to a model for binary drift in population genetics

(Gillespie, 2004; Rice, 2004). Consider a population of heterozygote individuals with two

forms, B1 and B2, for a particular allele. In the absence of mutations, the number of each

type of allele can change from generation to generation, even in a population of fixed

size, due to mating. The effects of binary selection on the numbers of B1 and B2 forms

can be roughly represented as follows (Gillespie, 2004; Rice, 2004):

BI + B2 k >, B, + B1, B, + B2 k' > B2 + B2 (16)

with k and k' related to the relative fitness of each phenotype.

The model described by Eq. 16 also contains branching and irreversibility. There

is also an effective feedback, but unlike Eqs. 1-6 or Eq. 8, there is no separate intrinsic

time scale associated with the feedback loops. A special case of this model (with no

selection), k = k', shares some features with the systems we are considering. The

deterministic changes in this limit are trivially zero, and any initial condition (along the

fixed line of B1+B2 = population size) remains fixed. These deterministic steady states

are unique, but the stochastic solutions yield a bimodal distribution. This is because the

stochastic trajectories are divided into two classes: ones which terminate when the



number of B1 particles vanishes and those which terminate when the number of B2

reaches zero.

There is an important difference, however, between the model for binary drift

with k = k' and the class of cell signaling models we have been considering. The

stochastic solution of the model represented by Eq. 16 does not converge to the

deterministic solution when the number of particles becomes large. The stochastic

solution at t -> oo is always bimodal! The stochastic trajectories cease to evolve when

either B1 or B2 become zero because only then is the effective rate of conversion between

these species equal to zero. The deterministic rates of formation of B1 and B2 equal the

same constant for all times. Increasing the numbers of molecules does not eliminate this

difference between the deterministic and stochastic cases. As the number of particles

increases, the stochastically determined time (t') required for B1 or B2 to equal zero

increases, but ultimately it always happens. There is no separate intrinsic time scale that

can compete with increasing values of t' as the number of particles increases and prevent

this from happening (i.e., a bimodal solution). Recall that, for the signaling models that

we focused on, the relative values of the stochastic delay, t, and the separate time scale

associated with feedback loops determined the stochastically driven transition when the

number of molecules was lowered (Figs. 2.3 and S2.5b). The absence of such an

interplay prevents a purely stochastic instability in the binary drift model as the number

of particles decreases. Correspondingly, if the rate coefficients in the model represented

by Eq. 16 were time dependent with an intrinsic time scale, the phenomenon of a purely

stochastic instability would be recovered.

The analyses presented above suggest that the necessary and sufficient conditions

for a purely stochastic bimodality in the absence of any deterministic bistabilities are: 1]

irreversibility 2] branching and 3] feedback regulation with an associated distinct and fast

time scale.

The analytical solution for the probability distribution (Eq. 15) obtained for the

minimal model of cell signaling that satisfies these conditions enables us to calculate

average properties, such as the average number of molecules of the product, <x>. This

allows us to examine whether <x> scales with parameter values in the same way as Nx

determined from the mean-field equations (see above). The average value, <x>, is:



(x) = I arpnr(M kj (17)
n=Or=n M r)k2 + k)+3

So, in general, there is no simple scaling law, such as Nx scaling with Nki/k3 , as in the

deterministic limit. Does this "anomalous" scaling, originating from the importance of

stochastic fluctuations, revert to mean-field scaling behavior in the limit corresponding to

a large numbers of particles?

In order to answer this question, as shown above, we need to consider the value of

<x> in the limit of large values of N, M, and k3. Consider first the limit of large values of

N and k3 for a fixed value of Nki/k 3. Simple algebra yields the value of <x> in this limit

to be:
M M

LtN- (x)= arnr(M- n)ep(-r((M- r)k2 /k +1)Nk /k 3). (18)
k3 __>00n=0Or=n

k3 IN fixed

So, the deterministic scaling with Nki/k 3 (Eq. 10) is recovered in the appropriate limit.

Similarly, mean-field scaling is recovered in the limit of large values of N and M (web

supplement).

The general solution (Eq. 18) for <x> does not allow us to explicate the non-

mean-field scaling when fluctuations are important. This can be obtained analytically

only in special limits. For example, consider the limit of infinitely strong feedback

(k 2 -> oo). In this limit, (x) takes the following form (web supplement):

i / N

(x)= M(1 k 3  = M(1 - e-Nln(1+M kI k3 (19)
MAk + kd

Fig. 2.4 shows that (x) obtained from numerical solutions of the Master equation (Eq. 8)

for different values of N and k3 collapse to one master curve when scaled according to

Eq. 19, a scaling that is distinctly different from the mean-field scaling with Nki/k3. We

have not been able to determine whether these specific differences in scaling laws

between the deterministic and biologically relevant stochastic solutions are universal to

all models which satisfy the necessary and sufficient conditions (identified earlier) for a

purely stochastic instability.



2.4 Discussion

Dueling positive and negative feedback loops are ubiquitous in biology. In many

instances, these processes involve small numbers of the pertinent molecules, and hence

stochastic fluctuations can be important. We report a striking result for such systems.

The models we have studied correspond to unique deterministic steady states for all

parameter values, and do not exhibit bistability. Yet, when there are a small number of

molecules, stochastic effects result in a bimodal solution with neither solution

corresponding to the mean-field result. Our analyses suggest that the necessary and

sufficient conditions for this phenomenon are irreversibility, branching, and the existence

of an intrinsic and relatively fast time scale associated with feedback regulation. Our

studies show that for specific examples of such systems, near the transition from one

phenotype to another (e.g., agonism to antagonism), mean-field scaling does not apply to

the stochastic solutions. Whether or not the specific differences in scaling between

mean-field and stochastic solutions that we report are universal for the class of models

which exhibit the phenomenon revealed by our studies remains an open question.

There is a key difference between models of gene regulation and cell signaling

where bimodality has been observed in stochastic limits under conditions where the

deterministic equations yield monostable solutions and our results. In the former

examples (double negative feedback, dimer mediated gene regulation, etc. e.g. (Allen et

al., 2006; Bhalla et al., 2002; Lai et al., 2004; McAdams and Arkin, 1997; Ozbudak et al.,

2004; Sasai and Wolynes, 2003; Xiong and Ferrell, 2003)), bistable deterministic

solutions exist in some other parameter regime. Stochastic bimodality displayed by

binary drift models in population genetics are also different from the phenomena we

report in that the stochastic solutions are always bimodal, regardless of the number of

particles; i.e., there is no stochastically driven transition from a single solution to bistable

solutions.

The necessary and sufficient conditions for the phenomenon that we report

(branching, irreversibility, and feedback loops with distinct time scales) are quite

common in cell biology. Our results suggest that these features, when combined with

stochastic fluctuations, can enable cells to make binary decisions while this would not be

possible in a deterministic world. For instance, if gene transcription and effector function



required greater than a threshold value of a downstream signaling product, in a mean-

field world, cells would be unable to make decisions with a distinct functional outcome

(Fig. 2.5). Under the same conditions, stochastic effects would result in cells being either

"on") or "off' (Fig. 2.5), as observed in experimental studies in diverse contexts.

For example, a recent study of HIV latency by Weinberger et al (Weinberger et

al., 2005) showed a 'temporary' bimodal cell population in a time window when there is

no instability in the set of rate equations used to describe the signaling events. The main

difference between this study and the results we have discussed is that in (Weinberger et

al., 2005) the observed bimodality disappears at long times. Another example is provided

by T cell signaling. It has been proposed that dueling feedback regulation could underlie

how antagonists shut off signaling in T cells. Experiments show a bimodal response for a

downstream signaling product (Erk), with the proportion of "off' cells increasing as the

number of antagonists becomes larger (Altan-Bonnet and Germain, 2005; Stefanova et

al., 2003). Stochastic simulations of a model of the T cell signaling network are in

accord with these experimental observations (web supplement); i.e., bimodal

distributions are the norm because of fluctuations, while the deterministic equations do

not exhibit bistability in any parameter regime. We emphasize, however, that a bimodal

or "digital" ERK response in T cells could also result from important contributions from

other molecular mechanisms (Roose et al., 2007).

We hope that the possibility of purely stochastic instabilities which lead to distinct

cellular decisions will be broadly explored in the context of cell signaling processes by

carrying out single cell assays for systems where the necessary and sufficient conditions

we have described are naturally present or are engineered.

2.5 Appendix to Chapter 2

1. Deterministic Equations for model described in section 2

dA1  -A -AL A = -k3A,E -k AS
dt

dAPROT1 = k3 A1 E
dt



dEk A +k APROT ~D E
dt 11 41

dS
-=k 2A2 -kDS
dt

2. Exploring different ranges of parameters for model described in section 2

Our computational studies show that any combination of parameters that

preserves strong feedbacks leads to a stochastic bimodal response. In addition to the case

discussed in the text, bimodal behavior is observed when k4, k 5>> ki, k2, k3. Biologically,

this can correspond to a situation where upon action of the positive regulator E, A] gets

further activated or it could result from cooperativity (Li et al., 2004a) with other

molecules, resulting in faster rate of production of the positive regulator. Figures S2.1

and S2.2 are drawn in complete analogy to Fig. 2.2 and 2.3 of the main text of the

Chapter and show stochastic bistability. This "all-or-none" behavior is explained by

exactly the same arguments as those described in the text.

3. Stochastic and mean-field scaling in the model described in section 2

To illustrate the differences in scaling behavior between the stochastic and

deterministic descriptions of the system, we calculated the amount of protected Al as a

function of the rate constant k for fixed values of k2 and the amount of Al. This could be

considered to be analogous to computing the cellular response as the nature of agonist is

changed. In Fig. S2.3, stochastic and deterministic dose response curves for the system

with 10 initial Ai molecules are plotted. The stochastic behavior (Fig. S2.3a) is

manifested in linear scaling of the amount of AfPROT with k, (agonist quality): all curves

coincide when the amount of A PROT in the steady state is plotted against 2 , which

k A
represents the scaling variable I1 (see main text) with k2 and A1 fixed. As can be seen

k2 A2

in Fig. S2.3b, the deterministic solution does not obey this linear scaling. Moreover, the

value of k4 naturally affects the deterministic steady state value of A['ROT, while it does



not have any influence in the stochastic c4se, since feedback regulation occurs before

reaction 4.

4. Rates of protection and inactivation as functions of time

On fig. S2.4, the time dependence of the rate of production of APROT (red curve)

and of A] INACT (blue curve) are shown for excess of antagonist (S2.4a) and equal amounts

of agonist and antagonist (S2.4b). The parameters of the model are the same as those

used in th Figs 2 and 3 in the main text: k=1, k2 =1, k3 =100, k4 =1, k5 =100, kD =1

5. Mathematical Details of Solutions to the simpler model (eq 12 of the main text of
this chapter).

This section is due to Jayajit Das

5a. Solution of the Meanfield Rate Equations

Here we describe the details of the calculations for the meanfield rate equations shown in
Eqs. 13-15 in the main text.
The mean field equations are,

dN~
= k2NNN,+ kNN, (A1)

dt

d =-k2NNN, - kNN, (A2)
dN

t=-kN, (A3)dt
and the initial conditions are, N(O) = 0,N,(O) = N and N,(O) = M. Since the total
number of x and z species are conserved at all times, we need to solve only two
equations,

dN~ dN
= k2NN,(M-N,)+k,(M-N,)N, and, y=-kN,.

dt dt
The equation for Ny can be readily solved to get N,(t) = Ne-k3'. Substituting this form of
Ny(t) in the equation for Nx we get,



dN- = (k 2 N, + kj)(M - N, )Ne-3''
dt

dN' = N-k3tdt
(k2N + k)(M - N +)

1 k 2dNx dN = Ne-k'

Mk2 + k, (k2N,+k) (M-Nx)]

k]M(F(t) -1)
Mk2 +k1F(t)

where, F(t) = exp (Mk2 + ki)-N (1 -ek3tl

[ k3 j
Therefore, the solutions to Eq. (Al -A3) are,

Nx(t)= k M(F(t) -1) (A4)
Mk2 + kF(t)

N,(t) = Ne-ks' (A5)

N,(t) = M - N,(t) (A6)

Fig. S2.6 shows the variation of the steady state value of Nx with k3 for various initial
numbers of the y species. The number of x species produced at the steady state decreases
exponentially as k3 > N(Mk 2 + kj).

5b. Large particle number limit (M -> oo and N -> oo) from the mean-field solution

F M (eNk (Mk2 /k, +1)k 1) A ( - eNNk1 (Mk2  ki +1)kcAs
From Eq. A4, N (t) = k±Nc(/2/±)c'-1±(k k~Nc(/2/l1)/ . As,

Mk2 Ik,+e Nk, (Mk2 / k, +1)k3'- ( k2 1 -Nki (Mk2/kj +1 )k3~

M -> oo and N -> oo, Nkj(Mk 2 /k +1)/k 3 >>1, therefore,

Lt Nx (t) = M(1 - O(e-Nk, (Mk 2 /k, +1)kil)) (A7)
N -)o

In the next section, we will show how the average particle number of species x,
calculated from the stochastic solution of the Master Equation corresponds to Eq. A7 in
large particle number limit.

5c. Exact Solution of the Master Equation

We describe the details of calculations for the solution of the Master Equation in Eq. 19.
The Master Equation is given by,
o'P(n,,n,,nz, t) =[k 2 (nx -1)n,(nz + 1)+ kln,(nz +1)]P(nx -1,n,,nz +1,t)+ k3(ny + l)P(nM,n, + I,nz,t)

(k2nxnyn,+ klnyn, + kan~y n,n,,nz,)
(B 1)



M N M

We define a generating function, G(s,,s 2,s3 ,t) = I s s2 sYP(n,,n,,n)
n,= On, Onz 0

(Gardiner, 2004). The time evolution of the generating function determined by the above
Master Equation is given by,

__ = k2siS2(si -Ss, aG+ ks(s, S3) ,2 ,G-k3(S2 -1)s2G (B2)

At t = 0, G(s,s 2 ,s3,t =0)= sNsM , in addition to that, it should satisfy G(,1,1,t) = 1 at all
times, which is a condition for the conservation of the sum of the probabilities for all
possible particle configurations.
If we look for a solution in terms of the reduced variables, si, s2 and =(sI -s 3 )/s1 then
G(s,,s 2, ,t) satisfies the following equation:

= -k 2ss 2  - k2 --1)s 2 s G + (k2 - kl)s 2%92 i3 G - k (s2 -1)s2.G (B3)

We define, G(s1,s 2,, t) = s"'G'(s2 ,0,t),

= -- k2 s2 g(1 - )5 G' - (k2a, - k2 + k)s 2 5 16s2G' - k3(s2 -1)JsG' (B4)

If, G'(s2 , , t)= eEt (s2,), then,

E,= -k 2s2 (1- l #-(k 2a1 - k2 +k)s 2  d 0 - k3(s2 -l)ds2# (B5)
Introducing a separation of variables, #(s2,) = S(s2)E( ), Eq. B5 becomes,

k2 (1- ) d2E dS (k2a, -k 2 + k,) dE dS k3 (s2 -1) dS E,+ + + =m0 (B6)
SE d2 ds2  SE d ds2  s2S ds2 s2

The above equation will be satisfied if,
k2 (1- ) d2E dS 4(k 2a, -k2 + k) dE dS = f(s 2) (B7)

SE d 2 ds2  SE dg ds2  f
and,

k3(s2 -1) dS E
s2  ~2+ ' Af(s2). (B8)s2S ds2 s2

However, from Eq. (B7) we get,
1 dS
S ds2  (B9)

Therefore, in order to make Eq. B8 consistent with Eq. B9 we have to choose the

following form forf(s2 ): f(s 2) =- Em
(k3 +An )s2 -1k3

Using the above form we get the solution for S(s2) as,

kdk k3 +^,,S(s2)= S2- d

3 +n

E( ) satisfies the equation below,

k2 2(- E) + g(k2 a, - k2 + k1) ~- AE 0, By changing 4 to r7=1- = s3 sI, we get,



kl-))d772-y -) dq n (B 10)

where, A= k2ca1 - k2 + kj
This equation has the form of the ODE which yields hypergeometric functions (Bateman
Manuscript Project. et al., 1953) as its solutions. The following ODE has hypergeometric
functions as its solutions.

d2u du
z(l-z) 2 +(c -(a+ b+1)z) d- abu=0 (B11)

dz2 dz
The hypergeometric function is defined as,

2F (a,b,c;z)= (a)n(b)n zn (B12)
nO (c)

where, (a)n = F(a .n) The series in Eq. B12 is convergent for a positive c and Iz<1. If
1(a)

a is a negative integer, i.e., a = -n, the series terminates after z". Comparing Eq. B 10, to

Eq. B11 we get, if, c -+-a,+l- -, and a=-n, then b=-a+n--k . In that
k2 k2 k2

case, An = n(-a + n)k 2-
k2

Therefore, the general solution to Eq. B2 is,
E 

MG(s2,s 0 - k3 '", k3e_ Et a,b,c; . (B13)
m= I=0 n=0 3)1

The constants are chosen in such a way that the solution satisfies the initial condition and
also the sum of the probabilities is conserved at all times.

At t = 0, Eq.B13 takes the form,
00 00 00Em

G(s,s 2 ,s,t=0)= a'A,si"' s2 - kF (B 14)
m=01=0 n=O n Sl

NFk 3_ ( kYF Nk ( _ _

Now, s2N k3 L3 k1N2 3 N k] ( k3 -m2 3 i , therefore,
A2 +k ,+k ,o + kS2 An + kN

if we choose,
kN-m

Em = -m(k 3 + An) and iZlmn=Nc Al J n for m : N

=0 form>N
Then Eq. B 14 satisfies the initial condition for S2. If we choose,
am = M and Aln = (5mAn then Eq.B14 assumes the form below,



=0)= s2N MIn 2F a,b,c;s_3
n= 0 

S1/

o nr

=sN ILn p rn (L
n = 0 r 0 

S 1 )

M M n

=s2 M ,PnrH

n=O r=n 1

M ~n

n=0 
( 1I

where, P,.n = (an)r(bn )r
(cn )rr!

cn =-M+1 1 If " 0
k2kc2  =1

G(s,s 2,s ,t =)= s2N M

M

q= I 2 rPnr and

for n < M

for n = M

an =-n, bn=-M + n I
k2

and

then, Eq.B 14 satisfies the initial condition,

Therefore, the time dependent generating function is given by,
M M

G(s,,s 2,s3, t)= =n S2, 3
n= 0 rn

+ N
+ (s2- k3 -(3 +A,>'t and

M

I Zrpn,=
0 for n<M

r- n

AMpMm =1 forn=M
It is straightforward to show, G(s, =i,s 2 =1,s3 =1,t)=1 for
coefficients. The proof follows below. From Eq. B 15,

(B 16)

the above choices of the

M M M M

G(s, =1,s 2 =1,s 3 =1,)0 = I Arpnrf(r,s2 -1, t) = Anprf(ln,S2 =1, -
n= 0 r= n n=0 r=0

.G(1,1,1, t)=1, if, Ip,.n =0 for n > 0 and AO =1. This is because, f(0,1,t) =1 and p0 0 =1.
r=0

n

Proof: ILPrn = 0, when, n >0.
r=0

G(s1,s2,s3,t

where, f(s2,r, t) Ar+k 3

(B15)



In
F(M+ k /k 2 +1-n) "nCr(_1)r F(M+ kj/k 2 -r)

F(M+k,1 k2 ) Lr=0 F(M+ kI k2 +1-n-r)_

F(M+ k 1k2 ±1-n)Kn n-1

F(M+ k/k 2  ) Cr(1)' SP (a- r)l where,a=M+ k/k 2 -1
2) _r= p=O

J(M + k 1k2 + 1-n) S1P ( C a -q r "C,.( -)

F(M+k k2 ) _- I nnr-0)r1J1
In the above, expressions, S,'") denotes the Stirling number of the first kind (Gradshtein et

al., 2000).

n

" 0C,(-1)r 
=

r= 0

However, therefore,

=0, hence,. For, 0 5 q s n -1,

n

Prn =0.
r=O

Proof: AO =1
Using, Eq. B 16,

M M M n M n

I I A.pnr = 1, :>1A2nPn = 1, ->20pOO + Z1 AnPrn = 1.
n=0 r=n n=Or=0

n
Since, 1pr =0 forn>0 and poo =1; AO =1.

r=O

Therefore, G(1,1,1, t) =1. QED.

n=1 r=O

Expanding the polynomials one can easily get the probability distribution
M~-n,

P(nn,nynzt) = 8n MI AXrp NMn ,- - exp(-(Ar ex
n,+Ir-n, z r nYLAr~k (1k3t

x=1

(-fy(Ar +

(B17)

where, Ar = r((M- r)k 2 + kI) andpn rCnz (-1)n F(M+ k 1k2 I1- r)F(M± k 1k2 - nz)
F(M+ k /k 2 +1-n --r)(M+ k 1 k2)

{A ,.} are determined from the equations,
M

I ArPnr = 0 for n < M

=1 for n=M

At large times, t->oo,

~N
fAs2,r,t)= k3,

A,.+k3_
Ar = r((M- r)k2 + k) >0 for r M. Therefore, the generating function at the steady
state has the following form,

M M n N

G(s , t = kSM 3 s3"
n=0 r=n 3 r)

(B18)

n

IPn
r-0o

because,

(1- x)"n = n r "C(-1)'r rx',

x q 1-x"



Hence, the probability distribution function at t -> oo is given by,

P(n,,n,, n, t -> co)= , n,,o a rpnrM k3 . (B19)X5 Y5(5n,+n,,M g t- A,_ (r(M - r) k2 + rk)+ k3-

For fixed ki, k2, and kd , the factor u(r)= kd 1 is peaked at r = 0 and r
(r(M- r)k + rk2)+ kd

= M which corresponds to the cases at n, = M and n, =0 respectively. The values of the
1N

peaks are u(r = 0) =1 and u(r = M)= .Therefore, the peak at r = M, will
(Mk /k3 + 1

have significant contribution when, k3 >> Mk, i.e., the y particles decay at a much faster
rate than it generates particles of the x species. Furthermore, if the initial number of the y
particles increases, the value of the peak at r = M goes down. Therefore, we can expect to
see a bimodal behavior in the distribution function for k3 >> Mk, and small N. Fig. S2.7
displays the above characteristics in the distribution function.

5d Calculation of the average particle number

The average particle number of any species can be easily calculated from the generating
function, G(s,s 2 ,s3 , t). For example, the average number of x species is given by,

M M

(x(t)) = i, G(s,s 2,s 3 ,t) ,=i =1 = Z12rpnrf(r,s2 = 1, t)(M- n) (B20)
n=Or=n

At, t -+ oo, the above average takes the following form,

(x(t ->00))= r( (,.pn k3 (M- n) (B21)
=o I rnr r((M- r)k2 + k)+ k3

5e. Limit of large N and large k1/k3, keeping the ratio Nki/k3 fixed:
Let us, write,

NN
k3

r((M-r)k2 + k)+ k3 J 4 aIN+ JN, where, a = r((M- r)k2 /k, + 1)Nk 1 /k3 .

Therefore, in the limit, N - oo and Nk/k3 = const,
N 1/y

LtN--o I = Lt,,o = g
(a/N +1 1 ay+1)

when y =1/N.

Now, ln(g)= -l/y ln(ay +1) -*-a+ O(y) as y --+0.

.- LtN 4  j= exp(-a)

Thus,
M M

LtN- (x) = arpnr(M - n)exp(-r((M - r)k 2 1k + )Nk /k 3). (B22)
k3 -Nfxe n=O r=n
k3 /Nfixed



5f Large M limit:

Rewriting, Eq. B22 as,
M n

LtN (x) an pn(M - r) exp(-n((M - n)k 2/k +1)Nk /k 3 )
k3 __W n=0 r=0

k3 IN fixed (1323)
M n

= M- Za exp(-n((M- n)k 2 /k + 1)Nk /k 3 ) rpm
n=1 r= 0

In the limit, M -+ oo, each term in the sums of Eq. B23 decay exponentially with M, thus,
we can write, LtN-+w (x) = M(l O(e-Nk /k3 (Mk2 /kl+1))).

k3 IN fixed
M -+a>

This form is consistent with the large particle limit of the solutions of the meanfield rate
equations in Eq. A7.

5g. Strong feedback limit (k 2 -> oo and k 1/k2 = ' -+0)
In this limit, k2 -+ o and ki /k2 =e-*0.

Particle distribution function
The probability of having no x species in the steady state is given by,

P(n =0,n, =0,nZ = M)=AMPMM 3 _ j ( 3 , because, AmpAf = 1 from
Mkj + k) Mkj + k3)

Eq.B 16. Note, the distribution does not depend on k2 and this form of the distribution
function holds good for any value of k2.

Now, in the limit, k /k2 =, s- 0,

PMM=M CM ( 1)" =F(l)F(C) -1, using (Abramowitz and Stegun, 1972),
F(-M+1 + c)F(M)

F(-n + s)= - y as c -+0. (B22)
n! X C J

where, y ~ 0.5772 is the Euler Mascheroni constant.
We need to evaluate, other p, for r = n .... M (0 n M) and j..... Am in order to

compute the probability distribution function for all particle numbers. Now,

pnr =Cn()n F(M+ s+1- r)F(M+ - n) -+ 0 for n+r > M+1 andnwr. For
F(M+ +- n - r)F(M+,)

n+r >M+l andn=r; pn, =-1. Therefore, Ar=O forM/2 ! r<M which can be

easily shown from Eq. B16. For, n+r<M+1pnr>rCn( 1)"lF(M+I-r)F(M-n)
F(M+1-n -r)F(M)'

however, from Eq. B16 it can be shown that, A = 0 for 0 <r < M/2 and AO = 1.

Therefore, the probability distribution is,
N / N

P(nn, =0,n,)= k3 g n,n + 1 _ k3 (5n X 4,O (B23)X5 Y(AMk, + k3) Mkj + k3-



Note, that the distribution is strictly bimodlal with peaks at n, =0 and n, = M. The
magnitudes of the peaks depend on Mki, N and k3. The probability of having no particles
of x species is easy to guess from following observation: Starting with N particles of y
species at t 0, the probability of having N successive y annihilation events is

k , which is also the probability of having no particles of x species in the
Mkj /k3 +1

steady state. Now intuitively on can think that when a single reaction for the creation of
the x species occurs, the strong positive feedback will convert all the z species into the x
species. Fig. S2.8 shows the comparison of Eq. B23 with the Gillespie simulation with a
very large positive feedback.

5h. Calculation of the average particle number
Using the same properties of the coefficients, {Ar} and {Pnr} it can be shown that,

(x(t -> oo)) = AOM+ AM 3  = M 1- k3 (B24)
k 3 + Mkik3+ M

5i. No Feedback Limit (k2 -> 0)
The limit, k2 - 0, is tricky to take directly from Eq. 20 because k2 multiplies the highest
derivative in Eq. B3, therefore, analyzing the limit k2 -+0 becomes a case of singular
perturbation theory. A simpler approach would be to analyze the case with k2 = 0 from
the Master Equation and solve it directly. In that case, the Master Equation will be given
by,

P(nxnYnZt) = kIn,(nz +1)P(nx -1,nyn. + 1,t)+ k3(ny +1)P(n,n, +1,nZ, t) B25)

-(k,nn+ k3n)P(nx,n,nz')
The equation followed by the generating function,

M N M

G(s1,s2,s3 ,t)= I sxs"-s"P(n,,n,,nz,t) is,
n,=On= Onz=O

= ks 2(s1 -s 3 )d d G-k 3(s2 -1)i 2G (B26)

This equation can be solved in a similar way by changing to variables,
s1, s2 and = (s, - s3)/s, and performing separation of variable on the ensuing equation.
The general solution of Eq. B26 is

t)= sCnNN rn 3r 2 M 3 m( 3e p -,N sll nj NnJ exp(-m(k3  nk)t)

(B27)
In the steady state (t -> oo), the probability distribution can be easily obtained from Eq.
B27, which is given by,

M N

x t ->y0) (n,+, nv,0 M r r nz _,r+nz k3 .(B28)P ~ n x n y l n + M (5 1 r k I + k y



This form always gives a unimodal distribution (Fig. S2.9, also see Fig. S2.8(b)).
Therefore, the nonlinear feedback is essential in order to realize a bimodal distribution.
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2.7 Figures for Chapter 2

No signal

* Activating Stimuli () Positive Regulator
* Inhibiting Stimuli () Negative Regulator

Figure 2.1 A schematic representation of dueling positive and negative feedback loops

stimulated upon receptor binding to stimulatory or inhibitory ligands. The negative

regulator can shut off signaling by inactivating the receptor-associated signaling complex

(negative feedback), while the positive regulator could prevent this inhibitory interaction

and increase or continue production of downstream signaling products (positive

feedback).

....................
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Figure 2.2 Bimodal stochastic solutions distinct from the unique deterministic solution.

Histogram showing the bimodal distribution of the protected agonists at steady state (red)

for a situation when there are 10 agonist (Al) and 10 antagonists (A2). The

corresponding single steady state solution of the deterministic ODEs (blue) is also shown.

The other parameter values are: kl =1, k2 =1, k3 =100, k4 =1, k5 =100, kD =1 (all s-1),

and statistics were collected over 5000 trajectories obtained using the Gillespie algorithm.

The result is robust to variations in the parameter values as long as there is strong

feedback.
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Figure 2.3 A purely stochastically driven transition. Histograms showing the

distribution of the protected agonists at steady state (red) and corresponding steady state

solution of deterministic ODEs (blue) for different amounts of agonist and antagonist.

All other parameters are identical to that in Fig. 2.
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Figure 2.4 Results from the Minimal Model. Non meanfield scaling in the limit of large

positive feedback (k2 + o'):The average values of X species, <x>, at steady state

obtained from Gillespie simulations scale with(/log(1 + M/q /k3))/N instead of the mean

field scaling variable Nk/k3. The values of the parameter k2 is 100 s-1 (i.e. a large

value). kl=0.0012 s-1 and M=20 are held fixed as k3 and N are varied. The solid line is a

plot of the scaling function shown in Eq. 19.
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Figure 2.5 Stochastic fluctuations can enable cellular decisions. Schematic

representation showing that irreversibility, branching, and dueling feedback loops

associated with intrinsic time scales, when combined with stochastic effects, can result in

distinct functional decisions for each cell. A deterministic treatment would mask this

ability of cells to make decisions.



. I IIIIEI I .

2000

1000

0
0 1 2 3 4 5 6 7 8 9 10

#PROT

Fig. S2.1: Bimodal stochastic solutions distinct from the monostable deterministic

solution. Histogram showing the bimodal distribution of the protected agonists at steady
state (red) for a situation when there are 10 agonist (A1) and 10 antagonists (A2). The
corresponding single steady state solution of the deterministic ODEs (blue) is also shown.
The other parameter values are: kz =3, k2 =0.7, k3=1, k4 =1000, k5 =50, kD=l, and statistics
were collected over 5000 trajectories obtained using the Gillespie algorithm. The
robustness of this result to variations in the parameter values is discussed in the main text
and section 1 of the web supplement.
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Fig. S2.3: The variation of the average number of AROT species as a function of the

number of A2 molecules and the parameter k, (which could be considered to reflect the

quality of the agonist).

a) Results of the stochastic simulations collapse to one master curve when

scaled with A2
k,

b) The deterministic results do not follow this scaling. All results are for

cases where k3, k5 >> ki, k2, k4.
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Fig. S2.4: Time dependence of the deterministic rate of production of protected species

(red) and inactivated species (blue) as a function of time.

a) For 10 molecules A, and 100 molecules A2

b) For 10 molecules A, and 10 molecules A2
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Fig. S2.5: Results from the Minimal Model. (a) Exact solution of the Master Equation:

The exact solution (Eq. 20) shows a bimodal distribution for low values of initial

numbers of Y (N=2) and Z (M=20) species. The reaction rates are taken to be, ki=0.0012

s-1 , k2 = 0.0010 s , and k3 =0.0125 s~1 (b) Minimal model captures the essential

characteristics of the larger model: Distribution of the number of X species at steady

state is calculated from Gillespie simulations as both N (related to agonist number) and k3

(related to antagonist number) are increased keeping the ratio N/k3 fixed. All the other

parameters, as well as the ratio, N/k3, are the same as in (a). The distribution is markedly

bimodal for a low value (shown in red) of N = 2. The distribution becomes unimodal

(shown in blue), peaked at the mean field value (shown with the black bar) as both N and

k3 are increased 1000 fold keeping all other parameters unchanged. We use Gillespie

simulations instead of the exact solution (Eq. 20) for the above cases because numerical

evaluation of the Gamma functions for large arguments (required to evaluate Eq. 20) is

computationally more expensive than carrying out Gillespie simulations. The Gillespie

simulations agree with the exact solution.
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Fig. S2.6: The steady values of the number (N. ) of the x species as the decay rate of

the y species (k3) is varied. Three cases, corresponding to different values of the initial

numbers (N) of species Z are shown.
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Fig. S2.7 The distribution of the number of x particles at the steady state. Results

obtained from the analytic solutions (given by Eq. 20) are compared with the results

from Gillespie simulations. All the cases have a fixed k2=0.001 s-, and are started with

the same number (M = 20) of particles for the Z species. (a) A bimodal distribution is

obtained for ki=0.0005 s-, k3=0.06 s-1 and N= 15, where N is the number of Y species at

t=0. (b) The bimodal distribution in (a) turns in a unimodal distribution as k3 is inceased

to 0.5 keeping other parameters fixed. (c) The distribution becomes unimodal when ki is

increased to 0.005 s-1. (d) The bimodal distribution in (a) becomes sharper as N is

reduced to 5 with other parameters held fixed.
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Fig S2.8 The particle number distribution function for the x species at the steady state for

(a) a very strong positive feedback, k2 = 2s-1 and (b) for a very weak positive feedback

k2=10- s '. The values of the other parameters are,

k =0.0005s-',k 3 =0.2§-1,M=20 andN=15, where, M and N are the numbers of

particles at t=0 for the Z and Y species respectively. The solid line and the red points are

obtained from the analytical solution and the Gillespie simulation respectively.
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Fig. S2.9 Particle distribution functions for the X species do not show any bimodality

when there is no positive feedback, i.e., k2=0. The plots show cases for (a) M=25, N=5,

ki=0.005s~1 and k3=0.1 s-1, (b) M=25, N=100, ki=0.005s~1 and k3=0.8 s~1. The Gillespie

solution is compared with the exact solution in Eq. B28.
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Chapter 3

Stochastic bimodalities in deterministically mono-

stable reversible chemical networks due to network

topology reduction

3.1 Introduction

Diverse cellular functions are mediated by signal transduction and subsequent

gene transcription events. The dynamical behavior of chemical reaction networks control

and regulate these processes. The dynamics of spatially-homogeneous chemical

reactions are often described by deterministic ordinary differential equations in terms of

classical chemical kinetics (CCK) (Goldbeter and Koshland, 1981; Gomez-Uribe et al.,

2007; Lai et al., 2004; Markevich et al., 2004). The mean-field character of such a

treatment is exemplified by considering the following deterministic ordinary differential

equation describing the dynamics of second order reactions such as A + B * AB.

Sd(A = kA -B) ~ k(A)(B) (1)

where k is the rate coefficient. In writing Eq. 1, the number of molecules of each species

is described by an average concentration (<A> or <B>) and the average of the product of

the number of A and B molecules is replaced by the product of the average

concentrations. In other words, stochastic and discrete features of the underlying

molecular number levels, including fluctuations and associated correlations are ignored.

Cell signaling and gene transcription often involve small copy numbers of the

pertinent molecules. Therefore, many important examples of stochastic fluctuations in

determining cellular response have been reported (Artyomov et al., 2007a; Berg et al.,

2000; Kepler and Elston, 2001a; Levine et al., 2007). Accurate analysis of these and other

chemical processes - for which the underlying discrete molecular states or random nature



of individual interactions become important - requires methods able to capture such

features. This is frequently done in via the chemical master equation (CME) (McQuarrie,

1967).

For example, when a continuous-deterministic CCK description of the dynamics

of chemical reactions yields multiple steady states in some parameter range, the

corresponding discrete-stochastic CME descriptions will generally produce a multimodal

distribution of responses. This is because CCK closely follows modes of the underlying

CME distribution, so presence of multiple steady states under the same set of parameters

broadly indicates existence of multiple distribution modes (Samoilov and Arkin, 2006).

Notably, CME distributions with this type of multimodality, e.g. bimodality with cells

being either "on" or "off", can be realized for parameter ranges where a deterministic

multi/bistability is predicted as well as outside of these regimes. The latter phenomenon

results from stochastic sampling of parameters or dynamic states in the deterministically

bistable regime, which is enabled by the fluctuations inherent in CME system trajectories

that are not available under CCK.

A more intriguing class of phenomena is comprised of studies showing the

existence of bimodal stochastic responses for systems whose deterministic description

yields monostable solutions for all parameter ranges. Two types of reaction networks in

this class have been reported. One is comprised of systems with absorbing states (i.e.,

systems comprised of irreversible chemical reactions). We have recently demonstrated

that the necessary and sufficient conditions for such a system to exhibit purely stochastic

bimodal responses are the existence of more than one absorbing state and feedback loops

characterized by distinct time scales (Artyomov et al., 2007a). The focus of this paper is

on chemical reaction networks without absorbing states, e.g. networks comprised of

reversible chemical reactions, that exhibit bimodal stochastic responses when a

deterministic treatment is devoid of instabilities in any parameter range.

An example of such a system is obtained by considering the following simple

birth-death process for a species X (Lipshtat et al., 2006; Loinger et al., 2007):

kx
$ 7;-> X (2)

k-x



The rate constants in Eq. 2 can be chosen such that at steady state there are only few

molecules of X present. This reaction can then be coupled to a fast "indicator" reaction

as shown below:

X k X + y; y 1 # (3)

Species X gives birth to species Y with rate ky, and Y can be degraded with the rate ky.

If the rate constants ky and k.y are chosen to be much larger than kx and kx, an adiabatic

concentration of Y is established corresponding to the particular value of X being

sampled stochastically. When a small number of X molecules is present, on average, one

can see the signature of the discreteness of X in multiple peaks appearing in the steady-

state probability distribution of Y (see Fig. 3.1, simulations carried out with standard

Gillespie algorithm(Gillespie, 1977)), provided that the rates of the reactions (3) are fast

enough that peaks in the steady-state distribution of Y are resolved. The "indicator

reaction" effectively amplifies the discrete nature of the molecules of X which is why this

scenario can be called the "discreteness amplification" scenario for obtaining multi-

peaked distributions for deterministically monostable systems. A particular example of

this scenario that was presented in Ref ((Lipshtat et al., 2006)) can be obtained from the

reaction scheme (2-3) by restricting possible numbers of X molecules to zero or one.

Referring to the state with X = 0 as the inactive state of a gene and X = 1 as the active

state, a bimodal distribution of cellular response is obtained for conditions where the

adiabatic limit is approached (see above).

Our focus is on a different class of chemical reaction networks without absorbing

states that can exhibit purely stochastic bimodalities. Kinetic schemes in this class have

been described previously (Samoilov et al., 2005b), but the underlying reason for a

bimodal stochastic response in the absence of any deterministic instabilities remained

unclear. Here, we show that a previously unreported phenomenon, network topology

reduction, is one of the mechanisms that could result in this unusual behavior.

3.2 Model development

We start by considering the following simple chemical reaction network:



ki k3

N+N # A+N, N 7 A, (4)
k2 k4

k5

A B (5)

The deterministic kinetic equations for this system are

dN NkNkk=N-kiN 2 + k2 N A-k3 N+k4 A
dt

dA
-=kN 2 - k2 NA+k 3N-k A-k 5 A+k 6 B (6)
dt
dB

= kA -k 6B
dt

Eq. 6 makes clear that the quadratic equation obtained for steady-state concentrations of

A (or B) can only result in a single stable fixed point for all possible values of rate

parameters. Stochastic simulation of this reaction network for some choices of parameter

values, however, yields a bimodal response for the number of B molecules (Fig. 3.2).

This phenomenon cannot be explained by the arguments described above in the

"amplification of discreteness" scenario.

One of the peaks in the bimodal distribution in Fig. 3.2 corresponds to the

monostable deterministic steady state solution of Eq. 6, but the other is different. The

explanation for this unexpected stochastic bimodality can be found by considering the

time courses of the concentrations of N and B simultaneously (Fig. 3.2, inset). One

notices that values of B corresponding to the peak that is not centered around the

deterministic solution (i.e., B~27) are sampled when the number of molecules of N in the

system accidentally, by way of stochastic fluctuations, becomes zero. In this situation,

the reaction network effectively reduces in size because all reactions where N is among

the reactants cannot occur, which leads to certain kinetic degrees of freedom otherwise

available to the system to be temporarily "frozen out", subsequently constraining it onto a

smaller dynamical manifold. The latter may potentially display different temporal or

stationary features, thus contributing another behavioral mode to discrete-stochastic

reaction network properties that may then be reflected in the overall species state

distribution.



While a general analytical investigation of specific CME mechanisms underlying

such phenomena is substantially outside the scope of this work and would need to be

further addressed/discussed elsewhere, the described mechanism provides a compelling

example of how this type of deviant chemical and biochemical dynamics can arise even

in seemingly simple reaction mechanisms, making them relevant for in vivo and in vitro

applications. For example, of the six reactions in the scheme described by Eqs. 4-5 only

three are still possible if N is eliminated. If parameters are chosen appropriately, this

reduced network may be realized for a sufficient amount of time to allow sampling of its

steady state, with the second peak in the bimodal response shown in Fig. 3.2

corresponding to it. The only way for the system to escape from being "trapped" or

"frozen" in the reduced network is thorugh the occurrence of a reaction that produces N,

i.e. the one that converts A to N here.

This type of behavior was, in fact, observed by Samoilov et al(Samoilov et al.,

2005b)and it was attributed to the non-linearity of the noise appearing in the system

coupled to the "noise generator" of reactions of type (4) (or reaction 9 below). These

authors considered (Samoilov et al., 2005b) the much-studied and biochemically

ubiquitous futile cycle (Berg et al., 2000; Goldbeter and Koshland, 1981; Gomez-Uribe et

al., 2007; Levine et al., 2007), which interconverts X and X* with the help of enzymes E+

and E. according to the standard Michaelis-Menten mechanism, with E+ subject to noise

(9):

k+1 k.3
X + E+4 X-E±-> X* + E+ (7)

k+2

k.1 k-3

X* + E.4X*-E.-> X + E. (8)
k-2

In (Samoilov et al., 2005b), the peculiar bimodal steady-state distribution of species X

has been attributed to a sufficiently non-linear yet monomodal external noise

distributions imposed on the forward enzyme E+ in the Michaelis-Menten reaction

network. The specific example considered in (Samoilov et al., 2005b) achieved the

required non-linearity of noise appearing in the system reactions (7-8) by having it

coupled to a "noise generator" reaction mechanism of type (4) (or reaction 9 below).



k21  k22
N+N # E4+N N g E, (9)

k-21 k-22

The deterministic steady-state equations for the reaction system (7-9) are

polynomials of up to 6th order and it is not straightforward to show that there is no

bistability for all possible sets of rate constants. This can be circumvented by using the

topological rules described by Feinberg and coworkers (Craciun et al., 2006), which

allow us to conclude that the system can not admit more than one positive steady-state,

regardless of parameter values. However, a bimodal steady-state distribution of X (and

X*) was found in(Samoilov et al., 2005b) for a fully discrete-stochastic description of

this chemical network in a narrow range of parameters (Fig. 3.3). Just like in the simple

example considered previously, the behavior of the generator reaction (9) may be viewed

as having two network topologies. For non-zero values of N, the complete network (7-9)

is explored and a peak around its steady state solution emerges. But when the number of

molecules of N stochastically becomes zero - the effective topology is reduced similar to

that of mechanism 4-5 (see Fig. 3.3).

The necessary conditions for observing bimodality due to network topology

reduction is that the steady-states for complete and reduced topologies are sufficiently

different so that two distinct peaks can be resolved. The other necessary condition is that

system stays "arrested" in the reduced topology for a time scale sufficient for sampling its

steady state. Samoilov et al.(Samoilov et al., 2005b) actually achieved this for the driver

reaction (9) by "kinetically" arresting the system in the reduced topology by setting k-22

(9) to be smaller than reaction rates pertinent for the reduced network (7-8). Since

reaction k-22 is the only possible way to return from the reduced topology to the complete

network, this kinetic restriction fulfils the second necessary requirement.

The transient nature of the bimodality observed by Samoilov et al (Samoilov et

al., 2005b) is related to the violation of the second necessary condition above, which

requires that the system be able to spend sufficient time in the N = 0 state and that is

possible only for a relatively small number of N molecules in the steady-state. Therefore,

the observed bimodality disappears in Samoilov et al (Samoilov et al., 2005b) when

increasing the number of molecules of N participating in the reaction. For N + E+ = 40,



the peak around X= 790 corresponding to reduced topology becomes very small

compared to the situation when N + E+ = 35 (Fig. 3.3). In spite of the fact that peaks are

well separated, the reduced topology is rarely sampled because fluctuations leading to

N=0 are rare and the time spent in this state is short when Nit, is large.

When decreasing the number of molecules of N in the system, steady-state

concentrations for complete and reduced topologies are very close to each other, and can

not be resolved in the simulation. For N + E+ = 35, one sees two distinct peaks

corresponding to X = 1455 (complete system) and X = 1120 (reduced topology).

However, for N + E+ = 30, steady-states for the full and reduced topologies are X = 1766

and X=1639, respectively. These peaks can not be resolved completely due to intrinsic

noise of the level ± 70 molecules at steady-state conditions (Fig.3.3). With the further

decrease of concentration, the two peaks merge in to one.

3.3 Solution of Fokker-Planck Equation

We next turn to the possibility of treating systems of this type with continuous

approximation methods, particularly the Fokker-Planck equation. The interest is

stimulated by the fact that bimodality in this class of systems occurs due to special

behavior at the single point where N=0. Is N=0 still a special point when N can take on

non-integer values in a continuous approximation (Gardiner, 2004). For arbitrary small

N, as long as it is not exactly 0, the effective topology is still the complete topology of the

network, and the effect of the second attractor is not obvious.

Consider again the simplest kinetic scheme (4,5) featuring the network-topology

reduction induced bimodality. The corresponding master-equation

dP tn,a,b () = -{kn(n -1) + k2na +k 3n +k 4a k5a +k 6b Pna,b ( ±
dt

+ kin(n+ l)In+la-lb (t) + k2 (a + 1)(n - 1)Pn-,a+,b (t) + k3 (n+ ')+,a-1,b (t) (10)

+ k4 (a + 1)P-1,a+1,b (0 + k5 (a + 1)Pn,a+1,b-1 (0 + k6 (b + 1)Pn,a-1,b+1 (0

can be transformed into a Fokker-Planck equation according to standard rules (Gardiner,

2004), and after taking care of conservation of mass law n + a + b = T becomes



aP(n,a,t) a a 1 a2

ata2= an [(n, a)P(n, a,t)] + [f 2(n, a)P(n, a, t)]+ 2 2 [f 3 (n, a)P(n, a, t)] +

aI ia2
+ [f 4 (n, a)P(n, a, t)] + - [f5 (n, a)P(n, a, t)]

aaan 2 aa
with

f = kjn2 - k2na + kan - ka

f = -kn 2 + k2na - k3n+k 4a+k 5a -k 6 (T -a -n)

f = k1n2 + k2na+k 3n+k 4a (12)

f = -k 1n 2 - k 2na - k3n - ka

f5 = kn 2 + k2na+k 3n+k 4a + ka + k 6(T -a -n)

The time dependent partial differential equation (10) was solved numerically with

reflecting boundary conditions and the steady state distribution was determined in the

very long time limit. In Fig. 3.4 the numerical solution of the Fokker-Planck equation is

shown along with the steady-state distribution obtained from the stochastic simulations.

One can see immediately that continuous approximation correctly reproduces network

topology reduction effects. An analogy can be drawn with diffusion on a surface where

there is a point-like sink to understand why the Fokker Planck equation reproduces

behavior that appears to arise from discreteness. Even if the surface is curved such that

the mass is concentrated well away from the sink, in the very-long time limit the mass

will escape through the sink due to negligible, but still non-zero, diffusive motion. The

described Fokker-Planck equation has the character of diffusion in a potential well with

an additional "finite" point-like sink at the boundary.

3.4 Discussion

Finally, it can be argued that the fact that both systems (4-5) and (7-9) are

"closed" systems strictly obeying conservation of mass introduces additional non-

linearity at the boundary that is necessary to observe the mechanism of network topology

reduction. In order to address this point we have constructed "open" system exhibiting

the stochastically bimodal distribution due to topology reduction:

k, k3 k
N + N B + N, N A, N -><(13)

k2 k4



k7 ks k8

A > , A -B, #-+ B (14)
k6

As one can see from the Fig. 3.5, two peaks are observed in the steady-state

histogram of B molecules. First peak at B~37 molecules correspond to the complete

network when both eqns (13) and (14) are dictating steady-state of the network. The

second peak at B-91 molecule correspond to the steady-state of the reduced network

which consists only of equations (14). The second peak is observed when number of

molecules of N stochastically goes to zero (see inset of Fig. 3.5).

In this work we have identified the mechanism that allows multipeaked steady-

state distributions for the systems without absorbing states characterized by a single

deterministic attractor (e.g. chemical networks consisting of purely reversible chemical

reactions that have single stable solution for their ODE chemical equations). This

mechanism can be realized in both closed, mass-conserving, system and in open, steady-

state systems. The network topology reduction relies on the stochastic fluctuations in the

particular network architectures that allows effective reduction in the number of possible

reactions due to exhaust of one of the components. The validity of continuous (Fokker-

Planck) description of this mechanism was also studied.
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3.6 Figures for Chapter 3
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Figure 3.1: Stochastic simulations for network (1-2)

X=0.01, kY= 300, k-Y = 10. Steady-state distribution of

with parameters kX =0.01, k-

molecules Y is shown.
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Figure 3.2: Stochastic Simulations of the network (3-4) with parameters kl=0.1; k2=10;

k3=13; k4=0.03; k5=100; k6=10; N+A+B=30. Steady-state distribution of molecules B

is shown. Peak at B-27 corresponds to steady-state of reduced network, while peak at

B-15 corresponds to steady state of the complete network. Inset: time course of

simulations shown for N (red) and B (black) species.
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Figure 3.3: Steady-state probability distribution, for the reaction network (7-9) with

parameters kl=40; k2=104; k3=104; k-1=200; k-2=100; k-3=5000; k2l=10; k-21=5;

k22=10; k-22=0.2; X+X*=2000; E- = 50 (same as (Samoilov et al., 2005b)) and E+ + N

= 30 (red), E+ + N = 35 (black), E+ + N = 40 (blue);.
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Figure 3.4: Numerical solution of the Fokker-Planck eqn (10) at infinite time, coinciding

with results of stochastic simulations for network (6-8) with the same parameters as fig.3

and E++ N = 30.
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PART II

Chapter 4

Introduction into SSC: algorithm, units conversion

and examples

4.1 General description of the algorithm

In this chapter we briefly describe the simulation algorithm used for modeling

reaction-diffusion processes. More general and thorough descriptions of the simulation

algorithms can be found elsewhere (Lis et al., 2009). All the simulations presented in Part

II were carried out with the help of SSC software ((Lis et al., 2009), see also Appendix to

this Chapter) which performs spatially-resolved stochastic chemical master-equation

simulations and allows efficient treatment of the combinatorial expansion problem in the

size of simulation network.

Discretization is used for treatment of spatial components: space is discretized

into subvolumes and all the particles withtin subvolume are assumed to be well mixed. In

our simulations typical subvolume size is determined by the interaction length of

proteins. We will illustrate the mechanics of SSC by example of T-cell surface proteins

interacting with proteins on the surface of antigen presenting cell.

According to the experimental data interface between T-cell and APC is of the

order of 1 ptm 2 (Grakoui et al., 1999). In our simulation it is represented by a square of

dimensions 1 pim x 1 pim (although SSC provides capabilities to explore other

geometries). Simulation surface is divided into square chambers (subvolumes) of the



length L=100 angstrom (0.01 tm), which implies that we simulate a "chessboard" of

100 x 100 chambers. The dimensions of the individual chamber are chosen to correspond

to the range of attractive interactions between T-cell membrane proteins (Yachi et al.,

2006).

At any moment of time there might very well be more than one protein in each

chamber. We are ignoring internal degrees of freedom and specific positions of proteins

inside the chamber saying that proteins can react with each other provided that both are in

the same chamber (i.e. they are within the range of interactions). Reactions between the

species in different cells are not permitted. Diffusion of proteins is considered as a first

order chemical reaction and is represented by protein hopping from one chamber to the

neighboring chamber with corresponding rate constant.

The simulation consists of very large number of repetitions of two basic

operations (which is very similar to original algorithm(Gillespie, 1977)):

1. Choosing subvolume where reactions take place

2. Choosing next process happening (might be reaction or diffusion - they are on

the same footing)

3. Choosing the time when next process happens

And, after updating concentrations and positions, these steps are repeated all over again.

In first step, probability to choose specific subvolume is determined by a relative

reaction flux in this subvolume compared to total reaction flux in all subvolumes.

We illustrate the procedure behind second step by considering the molecule A

which can either diffuse to the neighboring chamber with rate constant kmotion or

transform into molecule B (as in A->B) with rate constant kA-B. Probability that

diffusion will occur is found with:

P(diffusion) - kmotion (1)
k,- ion +k A- B

P(reaction) _ kAB = I - P(diffusion) (2)
kmotion +k A-*B

We throw a random number within 0 to 1 interval, and if it turns out to be smaller than

P(diffusion) then we make a diffusion move, otherwise we substitute one molecule of A

with B.



The time when the process determined by above procedure occurs is defined by

picking a random number from an exponential distribution eX with parameter

A = kmotion kA-B. This implies that after throwing another random number from 0 to 1

(rand) we employ the formula:

t =in( (3)
k,,oti + k A -B rand

It is important to note, once again, that diffusive motion and chemical reactions -

both first and second order, are treated on the same footing which differs from the usual

way they are described in experiments: diffusion by the diffusion constant D (cm 2/s), first

order reactions by rate constant ki (s-1), second order reactions by rate constant k2 (M- s- 1)

etc.. In a following section, we describe in detail how we shift to description where all

the parameters have the same units and, thus can be compared to each other.

4.2 Rate constant unit conversion

The processes are characterized by the rate constants, but it is propensity of the

reaction rather than its rate constant that enters into expression for relative probabilities.

Propensity is defined as reaction flux in a given volume, i.e. number of reactions taking

place every second. Thus, for

* first order reaction A->B

aAB =kA-B x (# of molecules A per chamber), (4a)

which for the case of the single molecule coincides with rate constant aAMB= kAaB*

This is why expressions (1) and (2) have rate constants in them.

0 second order reactions A+B->C

aA+B-C =kA+B-C x (# of molecules A per chamber) x (# of molecules B per chamber) (4b)

e diffusion of molecules A out of the particular chamber

adif A = kd if x (# of molecules A in chamber) (4c)

Note, that all propensities must have the same units, namely, 1

s x chamber area

i.e. the physical meaning of propensity is the reaction flux in a individual chamber on the



surface. Unit consistency in equation (4) requires the rate constants to have the different

units:

k

chamber area

molecules x s

kdiff A :

(5a)

(5b)

(5c)

One can see immediately, that units of (5b) are very different from the ones used

in bulk measurements for k2, namely M~'s. 1 L
mole x s

. Below we show how to

transform experimental value k2 in units M-'s- to the computational parameter kA+B-C in

units chamber area
molecules x s

k2  L = k 103 m3

mole x s 6 23 molecules x s

k2 * i-3 10'%upx pm2

6 .1023 molecules x s
k2 *10- 3 .1018

6 .1023

i10 chambers k2 -10-3 .1018 -104

molecules x s 6 .1023

chamber
,um Xmolecules x s

(6)

where we have used the fact that our contact area of 1 ptm 2 consists of 104 chambers.

The last step is to convert three dimensional value of k2 into the 2-dimensional kA+BC.,C

To do that, we have to know a characteristic length, corresponding to the confinement of

the proteins to 2-dimensional membrane. Usually, we assume that membrane proteins can

move in direction perpendicular to membrane within the distance of approximately d= 10

Angstrom=10-3 pim. Thus:

k2 -10-3 .1018 .104

6 -1023

chambers 1
pmx xmolecules xs 10- pm

k2 -10- 3 -. 1018 -104
kA+B-C 6 .1023 1-3

where k2 is in units M' s-1 and kA+B->C is in units chamberarea
molecules x s

Note, that for each

particular choice of the individual chamber size (which is determined by the range of

chambers
molecules x s

(7)

(8)



interactions), one should recalculate the value of kA+B-c accordingly, while experimental

value, naturally, does not change.

Rate of the diffusion process is estimated from the diffusion rate constant D,

which is usually measured in units pm2/s. Here, we can simply multiply by the number of

chambers in 1 pm 2, which is 104 in this particular case:

1
kd=Dx 104 - (9)

S
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ABSTRACT
We present the Stochastic Simulator Compiler (SSC). a tool for exact
stochastic simulations of well-mixed and spatially heterogeneous
systems. SSC is the first tod to allow a readable high-level
deseription with spatially heterogeneous simulaion slgorithms and
complex geometries; this permts large systems to be expressed
concisely. Meenwhile, direct native-code complation allows S8 to
generate very fast simiations,
Aveleblty: SW curently runs on ,nux and Mac OS X and is freely
available at http:/veb.mit.edusrc/ssc/
Contact: mieszko@csail.mit.edu
supplementary Information: Supplementary data are available at

Bioinformatics orine.

I BACKGROUND
Cells interact with their environment via receptors that bind
to extracellular molecules: these events are then translated into
functions by biochemical signaling networks. Non-linearities arising
from the complex topology of such networks often make it difficult
tointuit qualitative behavior of signaling modules. Moreover. recent
imaging experiments have revealed that signaling components are
organized into spatial patterns that modulate signaling (Grakoui
el al., 1999; Lee ei at., 2003). Finally, extrinsic and intrinsic
stochastic effects. which make each cell's response unique, can
be important when small numbers of signaling molecules are
involved (Artyomov ei al., 2007). As computational studies
are increasingly becoming necessary complements to genetic.
biochemical and imaging experiments in unraveling this non-
intuitive behavior of cell signaling networks, efficient and easy to
use tools that can carry out stochastic simulations of biochemical
networks, both in well-mixed and spatially inhomogeneous
approximations, have become key technologies.

Since the original stochastic simulation algorithm (Gillespie.
1977), basic computer science techniques have reduced the rate
at which the per-step computation time grows with the number of
possible reactaons to loganthmtic growth (Gibson and Bruck. 2000;
Li and Petzold. 2006; Wylie el al. 2006). or optimized perfornance
by noting that a few reactions account for most events (Cao et al.,
2004; McCollum et al, 2006); moe recently, Slepoy el al. (2008)

*To whom conmspondence should be addmsed.

have reduced per-step computation to expected constant time via an
elegant composition-rejection algorithm. Similar techniques have
been applied to reduce spatially heterogeneous simulation time to
logarithmic (Elf and Ehrenberg, 2004). The combinatorial growth
of the instantiated reaction network size, another limiting factor for
complex systems, has been addressed either by generating species
and reactions on the fly (Faeder ei al., 2005; Lok and Brent,
2005) daring a Gillespie-based simulation, by representing each
molecule separately (Morton-Firth and Bray, 1998), or ingeniously
do away with explicit counts altogether by adjusting the sampling
distribution (Danos et a.., 2007; Yang et a. 2008).

Efficient formulation of such simulations in a general
programming language like C or FORTRAN, however, is not a
trivial task; while simulating a few reactions is fast even with a
simple implementation, a system with thousndIs of reactions and
subvolumes demands more complex algorithms which are much
more tricky to code. The programming burden has been reduced
by libraries (e.g. Li et al., 2008) as well as by simulators for
well-mixed (e.g. Gillespi et a., 2006 Mauch, 2009) and spatially
inhomogeneous (e.g. Hatine eta)., 2005; Meier-Schellersheim ri a.,
2006) models. File formats like SBML (Hucka el al., 2008),
developed to express biochemical models, can be read by several
simulators.

The modeling task is further complicated by the explosion
in combinatorial complexity which arises when modeling post-
translational modification or reactions local to one molecule in a
complex (Ilavacek et al, 2006): in SBML (and, indeed, in most
simulators) all possible species and each combination of every
possible reacting complex must be written out as a separate reaction,
which renders expressing even modestly complex reaction networks
impractical. To mitigate these limitations, BioNetGen (Paeder er a.,
2009) and & (Danos and Laneve, 2004) have proposed higher
level specifications where the reactants in each reaction are written
as panerns covering many possible species; such descriptions not
only naturally correspond to the intuitive concept of a biochemical
reaction, but are significandy smaller and therefore more readable
as well as much less error-prone.

The main contribution of the Stochastic Simulation Compiler
(SSC) that we present here lies in combining a higher level
specification required for modeling larger systems with the ability to
model spatially heterogeneous systems It differs from BioNetGen
and x because their syntax and expansion algorithms offer no

o 2009 The AuxWo(s)
Thi is an Open Acoms aricle <stried under the terms ot the Creative Corns Attusn Non-Cosumrcia Liense orIttp/creatieoon orgeimses/
btra/2.OAA/ which pemits unrestricted non-commercial use, distwsrun, end repodmcm in medIn. provided the aigial work is propedty cied.
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support for spatially inhomogeneous containers, wille SSC supports
multiple regions with arbitrarily comnplex shapes specified using
Constructive Solid Geometrv (CSG; meanwhile, while MesoRD
allows such regions and geomretries, it suffers front the combinatorial
complexity Imitations described above. In addition, SSC produces
fast simulations (cf Supplementary Material) by directly generating
iachine code tailored to a specific architecture.

2 IMPLEMENTATION
2.1 Tool flow
The tool fow resetmbles a progratuning language conpiler. The
user writes a high-level description of the reaction system (see
Supplementary Material for examplest, using patterns to select
and change specific parts of cotpounds (sitilar to how a cell
biologist would describe a kiown or hypothesized cell signaling
network). Regions are specified using CSG a technique thal emiploys
simple operations (e.g. union, intersection, difference atid scale) on
basic shapes (such as spheres, cubes, cylinders, etc.) to describe
arbitrarily complex geometries and widely used in solid modeling
and computer graphics (see,e.g. Requicha and Vocleker, 1977 Any
reaction can be restricted to a subset of regions, and diffusions
within and among the regions are written using the same high-
level pattent syntax as reactions. The compiler then expands the
model starting with initial species aid reaction patterns. creating
the recessary instances with specific properties and connections as
well as specific reactions operating on each of those compounds
in each region; meanwhile, the regions are discretized into cubic
subvolunes. [his intermediate representation is used to produce a
simulator executable, which, in turn, simulates the itiodel signaling
pathway.

2.2 Reaction expansion
Most biologically relevant signaling reactions are conceptually
local, that is, they 'sce' only a part of a larger nolecule or conmplex
(say, a single phosphorylation site( Therefore, we write reactions
and diffusions locally, using pattern matching to recognize and
nxify parts of complexes, and rely on the compiler to derive all
the possible cases in all regions. Similarly, only initially present
compounds are specified; the compiler generates the rest from the
initial set and the reactions.

Formally, the reactions and diftusion form a graph term-rewriting
system, which is fully evaluated to generate the simulator. Briefly,
cacti expansion step considers a rule in the system, finding all
cotibinations of substrates inl the relevant region that matchI tIh
rule. The rule is then applied to cacti match, possibly resulting in
new compounds. and a compound-specific reaction is created for the
specific substrate combination. Any new compourds rot excluded
by predefined limits (used to prevent intinite expansion) are added to
the region where the reaction took place and any regions reachable
by following the given diffusion patterns; the cycle then repeats until
no more new compounds have been created (See Supplenentary
Material for details of the expansion prc-ss).

2.3 Direct code generation
We obtain the efficiency of hand-optinized code by directly
generating assemibly code fromi tie fully expanded set of reachable
species and reactions. his allows us to avoid the interpretive

overhead of consultmg dependency graphs to detennine which copy
counts and propensities must be recomputed.

The generated code is also tailored for model complexity and
processor architecture. For most sizes, the compiler creates a
separate. straight-line segment of code for each possible reaction
in a region; each segment is parameteried only on the subvolume
for. in the case of diffusion, two subvoluracs), and directly updates
and propagates the affected propensities (se Section 2.4). This
avoids pipeline stalls and cache flushes caused by mispredicted
branches, and reduces the number of data memory reads and writes
(which are the performance bottleneck) to the absolute minimum.
(See Supplenentary Material for a detailed description of the code
generation method).

2.4 Reaction-diffusion simulation algorithm
The simulation algorithm is similar to the logarithtmic-time versions
of the direct stochastic simulation algorithm (Li and Petzold. 2006.
Wylie et aL., 2006). The simulation-time representation details may
be found in the Supplementary Material; briefly, the reactions
in each subvolutne (or on each boundary between subvolumes
are arranged in an n-ary heap with the leaves corresponding
to individual reaction propeisities atid each node carrying the
combied propensty of the reactions underneath the topaost node
for each subvolume is, then, the propensity of any reaction taking
place within. The subvolume and boundary reaction propensities
are, in turn. themselves arranged in a heap where each leaf is either
a subvolume or a boundary propensity; the topmost node is the
propensity of any reaction in the system taking place (and, lhence,
the range frotn which the random number should be selected).

Simulation proceeds as follows: a random number r is selected
firomi range ,0.R) where R is the propensity of any reaction taking
place; then the subvolume and reaction corresponding to r is selected
by n-ary search in the heap. Next, the reaction is 'executed, that is,
the copy nunbers of the affected species are adjusted as the reaction
dictates. Finally, the propensity of each reaction whose substrate
copy counts were altered is recomputed, and the partial propensities
are propagated up the propensity heap until the new R is recomputed
and the cycle can be repeated.

Since the propensity heap in each subvolume (or boundary) has
height logarithic in the number of reactions witlin, and the heap
above is logarithmic in the number of subvolumes and boundaries,
the total tree depth scales roughly logarithmically in the number of
reactions in the systetm. Both the reaction selection/search atid copy
number/propensity update step. therefore. run in time logarithmic in
the number of reactions.

3 PERFORMANCE
A cotnparedspatiallyhomogetnous SSCagainst fBioNeiCeti 2.0.46

(Faeder el at. 2009o (since, like SSC, it builds reaction networks
from pattern-matching rules), and against simulators built with the
SiochlKit library OLt et al., 2X8); because of the complexity of
the larger nxxels, we had SSC automatically geerate the required
StochKit C++ configurations. To test real-world performance, we
selected two toy systems and two more realistic systems with
various reaction counts: a diner decay model (Gillespie, 2001)
with four reactions, a sitplified EGFR signaling modcl (Blinov
et al,. 2006) with 64 reactions, a tnodel for the earliest events in
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T-cell ignaing tWylie et al., 2006) with 1120 reactions. and an
enhanced version of the same with 2422 reactions. To test spatially
heteroetous models, we compared with the latest developntent
revision of MesoRL) (Hattne et at, 2005o SVN r559; we used
tie T-cell, signaling model above where single molecules ibut not
conpounds i were permitted to diffuse around a memibrane interface,
which was divided into 100, 10000, and 50000 subvolutes.
All situlations produced the s.nte results irnodulo random seed
variaion and precision loss during floating point arithnetic, To
focus on measuring only the sinaulation tilm, we disabled all output
except the final species counts. and repeated each expetiment 5-fold
to account for initial random seed variation and possible effects of
other procsses executing ont the systent.

We foutxi that SSC consistently outperfortmed the faster of the two
spatially totogeneous simulators we tested by 2 to 6 , with the
advantage growing with the size of the model 'see Supplementary
Fig,. . For spatially heterogeneous simulation, we found that SSC
was 50 y faster than MesoRD. although both scaled very well
with the number of subvolunes see Supplementary Fig. 4 .

4 CONCLUSIONS
We have described the SSC, a new tool for exact stochastic
simulations of biochetical reaction networks. SSC is, to our
knowledge, the first tool to combine a succinct high-level description
twhich avoids combinatorial complexity explosion) with spatially
resolved simulation where species and reactiots tay be restricted
to specific regions of arbitrarily complex shapes, atid unique in
emnployitg direct natinve tachine code generatiot to produce fast
sitnulators.

ACKNOWLEDGEMENTS
This research was funded by N1t Crant #1POl /A1071195/01.

Confiet a{ Interest: none declared.

REFERENCES
Arts'movs'4N, e 5007 Purly aocst ~tmr daiasions mntt signaingr models

withmt underlpi deeiimnidai NabitlitieP ?- VZ: A4%1d S' '7A, 104,

flnov.M.Le e a25XiAnetwork modelotexy ents in epidennstgrowth fatior
a.areign 'aingom ituat morts rar ianbirnal compkxVy. ' <.83, ,a

Co.Y e! " X4; Elticient forialamn of the stmbadia sanatiinan algorIm for
c heickaly racting systems. ; Chem Phn 121,4059.

Danod and l anever.4 ' CotFatrnalmolcularbNoloy. EP ' a1'. 325.69,

Daino.V. ata 'Saiabk simanianofcellufa arenuhnonawokai f F.a
'aFAT.45 z* e N., *, - pig

EtU and hener,.M C141' Spontaneusa sepanrtion of bttable dt ietiiiai
yitem uno spatalc dimain ofopposphases- asya , 1. . F

FiaterJ R W 'ta15) Rul I'nad modeMin of binaciemical network c-p

'ataedeJ R ra 004- Rule tWed mnodehng oftNroichrical sytems with Bi3.oNetGeni

laa Maily 4r oed., M ':": '.: d M. r . ot. 5A)

Hmna 4e.. Clifton, NJ.
Gitsn.MA and BukiJ aFM Ef*ient eu at siochasta simuktion of chemkial

systemsith many spacies and many channs ?I CIF M: A. It4. I76.
Gitkepie S ,a.' aaa4TaoLs for the SBMLm camnmnity "' .. 22 ,

Gilespie'aT i 191 'acL t stochasta amnulatit ofcoupini chrnk atracitas$
em.41. 2XI0.

Gille.pieP.T C001t, Approximnate arkated dothasti. anutlon of chemically

racting systemsn / Go F ya 115. 116.
Grakocii.A. .' i ( W)aWiae anmiunological synapse: a moaiir mactun ontrollnmg

Ttcll activation. Sa ., 285 , 2t

iane.,aa 0005o Stidadaa reactiosn diffuion aanutnitn wat MeoRD.
.. Zlma . 1.(2

ttvatek.wf -I . ('06o Rules far modeling aignal tmastction sydena rm

Hucka% , r C(NS Sysens tlogyto markup languHa (SBL i level : dructure
and facilties f<4 model deinitions. Na, F. Epub ahead of print, doi:

10, 103aspre..N08..2715. 1, November 5. 2.07]
LeeX 11. r COWrPhe immunological synape balanws T-1 celeceptor dgArpag

and degirdatiion. Se!. .302. 121s
Li.H and Petzoid,LA 000. Logritmiac direct me"tod for disrete stochastic

simulation of ciemically readinp systems T ' r.' . tCSH (oinplPer
sen-ce and ignring GopQW, Santa Hattra. (A-

La.H. ' aa CXa Algoritas and siltware for stodiasti simultin of biocetnical
ractinga syems. a s ha ? , 3, %6 '1]-

Lok.L anid renI 0110o Autouatni feaeratio of uarinteation aetwoAks with
Mokxsutiaer I. M ' :.c ".25.13-13,

MaXbS. ?00^ C am: aistbatic snintlalions for channal kine s Avaiable it
httarlk inasouraforye nd/at(b. ac.e daie May to. N'a)4s

McoHamJ -M . a '00"0, marin? direct method fotr stochatic anuhtion
of bkidiaikai system sm ih vaying reaction ens'otaona tahavica,:

Mier SeWIrshesn.M.te. a 42o06) Key role of ka1 regulation in clenownnmp
reveiakd bw a new molecuaiar intraction ased modoiip method, T,'F -S

Morton Fu thCl J andirays.D 1993Praleinraeiporallkctuatons inan ntraceular
a.than pathay. I .- ' , 192 11 1 .

Requihai.A. and Wbekker.t 419'' Condraxtive solid geometry. I."'
M- -. - .. % koduckion Autoaaio Project. Uniasaaiuy of Rodestae.

Rchestoe. NY
SlepoyA. e: - '*sc Aseastani kane kieta Monte Cark alarithrm roa asnuiautn

of lare hkxhemal retion networks. P ?ihy. 128.05101.
wyhte.D.C. .' a-. f2!006) A hybrid deeuniniastiahasne algorithm fot modelin

aell sigMtair dynnamas in spatially inhonsoencouAs envon aents and undera the
indnemace ofoetenal f.ii " Phfv .. * .i1. 1174q

Yang), e ' 0a)t0 Kinetia Motte Carlo netod for rule-based modehtng oftaochnical netorka. 'ya A . , 78, 01910-

2291



4.4 Appendix 2 to Chapter 4: Examples of SSC codes

This appendix is a result of work of summer research student Mykyta Artomov, who was
testing SSC under my supervision.

The reaction networks treated in this appendix are exactly same networks initially
simulated in famous Gillespie 1977 paper (Gillespie, 1977).

1. Isomerisation reaction
Consider the following reaction:

Si - + Z with reaction rate c

la. Parameter set 1: c = 0.5, SI = 1000, time step = 0.1

Create a file isomerisation.rxn, and put the SSC code into it:

To compile the code, run:

To start the simulation:

-e 10 - end the simulation after time 10
-t 0.1 - the time step of output equals 0.1

1200

1000 - -

0 
0 2 4 6 8 10 12

time

Fig.1 Smooth line - plot of master equation solution, oscillating line - stochastic solution

lb Parameter set 2: c = 0.5 S1 = 5000, time step = 0.1



Do the same procedure as in 1.1., but notice, that initial number of SI species is different.
SSC code:
region World

box width 1 height 1 depth 1
subvolume edge I
rxn x:Sl at 0.5 -> destroy x

new SI at 5000
record Si

400D

1000

0 1 2 3 4 5 6 7 8 9 10 11
time T

Fig.2 Simulation results for c=0.5, S10 = 5000

Ic Parameter set.3. c = 0.5 S1 10000, time step = 0.1
SSC code:
region World

box width 1 height I depth 1
subvolume edge 1
rxn x:S1 at 0.5 -> destroy x

new SI at 10000
record Si



0 1 2 3 4 5 6 7 8 9 10 11
tie

Fig.3 Simulation results for c = 0.5, S10 = 10000

The more initial number of S1 species is, the smoother line you have and it is similar to
master equation solution.

2. Autocatalytic reaction

Si + S2 -P 2S2 with reaction rate cl
2S2 -* Z with reaction rate c2

Create a file autocatalytic.rxn and put into it one of the described SSC codes.

2.1. c1*S1=5 , c2=0.005, S2=10 and S2=3000, time step=0.1. Deterministic steady state
S2=1000

SSC code:

SSC code S2=3000:



neSl at 1O
new S2 at 3000
record S2

To compile the code, run:
[zxc"zxc]$ ss autocatalytic.rxn

To start the simulation:
[zxcv 1zxcv]$ ./autocatalytic -e 20 -t 0.1

2500

20DD

O 2 4 6 8 10 12 14 1% 18 20 22
time T

Fig. 4 Simulation results for autocatalytic reaction: ciS1 = 5 , c2 0.005, S20 =

10 - line, S20 3000 - dashed line

To build a distribution in steady state:
[zxcv@zxcv]$ ./autocatalytic -e 50 -d 5

0.01

04

850 00 950 1o0w 1050
number of S2 molecules

1105 1150

Fig.5. S2 species distribution

3. Lotka reactions

S1-+S2 -- 2S2

A-6.2dt -



S2+S3 -2S3 c2
S3 -- + Z c3

Create the file lotka.rxn and put into it one of the following SSC codes.

Parameter Set: cl*S1=10, c2=0.01, c3=10, S2=1000, S3=1000, time step=0.1.
Deterministic steady state S2=S3=1000.
SSC code:

To compile the code, run:

To start the simulation:

0 5 10 15 20 25 30

time -

Fig.6. S2 - smooth line, S3 - dashed line. clSl=10, c2=0.01, c3=10, S2=1000, S3=1000



4000

3000

2000

time
20 2is 30

Fig.7. S2 time dependence. c1SI= 10, c2= 0.01, c3 = 10, S20 = 1000, S30 = 1000

6000

5000

4000

2 3000

2000

1000

3000

Fig.8. Phase diagram

To build a distribution in steady state:
[zxcv'.zxcy]$ ./lka -e 5C -d 151

0.00i2 0 i .c~rdti utSfag 1:2

0002-

00016

230 400 600 600 1000 1200 1400 1600 1800 2000
number of S2 molecules

Fig.9. S2 species distribution

2200 2400



0.003

0.0025

0.002

0.0015

0.001 -

0.0005 -

20

4. The Brusselator scheme

Create the file brusselator.rxn

400 600 600 1000 1200 1400 1600 1800 2000 2200 2400

number of S3 molecules

Fig.10. S3 species distribution

X1 --- Y1, cl

X2 + Y1 - Y2 + Z1, c2
2Y1+Y2--*3Y1, c3

Y1l--Z2, c4
and put into it one of the following SSC codes

Initial conditions: cl*X1=5000, c2*X2=50, c3=0.00005, c4=5, Y1=1000, Y2=2000
(deterministic steady state), time step=0.01.

SSC code:

To cornpile tecdrn

To start the simulation:

R *' --0 M-' iAi 0- 1**



I f II

UJ U.ULJL aj
0 2 4 a 8 10 12 14 16 18 2D 22 0 2 4 10 12 14 10 1s

tMe T time T

loom 'g14..3.6

000 -

400-

0

0 1000 2000 3000 4000 5000 6000 7000
Yi

Fig.11. Results stochastic simulations run of the Brusselator reactions, with cl*X =
5000, c2*X2 = 50, c3 = 0.00005, c4 = 5, Y1 = 1000, Y2= 2000

0 1000 2DD 3000 4000
Y1

5000 6000 7000

Fig.12. Plot of four stochastic simulation runs, each having the same reaction parameters
as in fig.19, but different initial values of Y1 and Y2.

To build a distribution:
[zxcv@zxcv]$ ./brusselator -e 250 -4 50

IMM



o o 14.d*.,da 'J1Q14A.d.*. WV 13

00007

0.004
00002

00022 -10

2000 1000 2000 000 4000 o

number of YI molecules number of Y2 molecules

Fig.13. Yl,Y2 species distributions

5. The Oregonator scheme

X1 + Y2- Y1 cl
Y1 + Y2 -+Z1 c2

X2 + Y1 -- 2Y1 + Y3 c3
2Y1 -*Z2 c4

X3 + Y3 -0 Y2 c5

Create the file oregonator.rxn and put into it one of the following SSC codes

Initial conditions: c1 = 0.001, c2 = 0.1, c3 = 0.1, c4 = 0.016, c5 = 0.1, X1 = 2000, X2=
1040, X3 = 260, Y1 = 500, Y2 = 1000, Y3 = 2000.

SSC code:



To compile the code, run:
[zxcv@zxcv]$ ssc oregonator.rxn
To start the simulation:
[zxcv@zxcv]$ ./oregonator -e 25 -t 0.01

4=0

10 15 20 25 30 0 0.5 1 1.5
time time

i . e24.4.at - I

3500 500 1000 1500 2000 2500 3000 3500
Yi

Fig.14. The Oregonator scheme simulation results. cl = 0.001, c2 = 0.1, c3 = 0.1, c4 =
0.016, c5 = 0.1, Xl = 2000, X2 = 1040, X3 = 260, Yl = 500, Y2 = 1000, Y3 = 2000

1DDDD1

4000

2M0

0 500 100D 1500 2000 2500 3000
Y1



Y2

Fig.15. Plot of four simulations runs same as fig.24, but different initial values of
Y1,Y2,Y3

To build a distribution in steady state:

i~34.dsk.d.t" 504~9 2

C 300 400 000 000

C 20M 400 a00 Boo

number of y1 molecules

Fig.16. Y1 species distribution

a Ai 2i d.4 .~I3

I= 100 200 00 4M0 500 =0 7=0 00 9W

number of y2 molecules

Fig.17. Y2 species distribution

200 400 000
number of y3 molecules

Fig.18. Y3 species distribution = 10000, Y1 = 2000, Y2 = 4000, Y3 = 8000
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Chapter 5

Dissecting the role of CD4 and CD8 co-receptors in T

cell signaling: A puzzle resolved?

5.1 Introduction

CD4 and CD8 are membrane proteins expressed on T helper cells and cytotoxic T

lymphocytes, respectively, that are known to augment the sensitivity and response of T

cells to cognate pMHC ligands (Holler and Kranz, 2003; Li et al., 2004a). Textbooks

ascribe the ability of these co-receptors to enhance T cell responses to two main effects:

1] Binding of CD4 and CD8 to MHC class II and class I molecules helps stabilize weak

TCR-pMHC interactions. 2] The Src kinase, Lck, which is bound to the cytoplasmic tail

of co-receptors, is efficiently recruited to the TCR complex upon co-receptor binding to

the MHC, thereby enhancing the initiation of TCR signaling (Janeway et al., 2008).

Surface Plasmon resonance (SPR) experiments show that the half-life

characterizing co-receptor-MHC interactions is shorter than 35 milliseconds (off-rate

greater than 20 s-1, the resolution of SPR instruments) for both CD4 and CD8 (Gao et al.,

2002; Wyer et al., 1999; Xiong et al., 2001)). It is difficult to understand how the two

effects noted above can be potentiated by such fleeting interactions. For example,

consider the effect of co-receptor-MHC interactions in stabilizing the TCR-pMHC

complex. A typical good agonist pMHC ligand is bound to TCR for approximately 10

000 milliseconds (corresponding to an off-rate of 0.1 s-1) (Stone et al., 2009). This

implies that during the lifetime of the TCR-pMHC bond a co-receptor would disengage

from MHC approximately 1000 times, thereby making stabilization of TCR-pMHC

interactions via co-receptor-MHC binding unlikely.

Yet, expression of CD8 was found to stabilize pMHC binding to CD8+ T-cell

surfaces (Luescher et al., 1995; Wooldridge et al., 2005), and augment sensitivity (Holler



and Kranz, 2003). In contrast, past studies (Hamad et al., 1998) and recent in situ

measurements at intercellular junctions show that CD4 does not stabilize the interactions

of TCR with class 1I pMHC molecules (Huppa et al., Nature 2009). But, CD4 does

enhance the sensitivity of T helper cells (Huppa et al., Nature 2009; Li et al., 2004). As

the binding affinity of CD4 for the MHC ectodomain is just 2-4 times weaker than that

characterizing CD8-MHC interactions (Gao et al., 2002), and the half-lives of both co-

receptor MHC interactions are a 1000-fold shorter than the TCR-agonist pMHC bond,

these results are difficult to reconcile. To shed light on this puzzle and to understand the

potentially different ways in which CD4 and CD8 may augment TCR signaling, we

carried out computer simulations of the well-established earliest events in TCR signaling.

5.2 Simulation results

We carried out computer simulations of a T cell-APC interface of 1 pm2 area

contained 300 T-cell receptors, 100 co-receptors and 100 pMHC complexes (these

concentrations are typical for in vitro experiments, (Grakoui et al., 1999). The

biochemical reactions that could occur upon the appropriate proteins encountering each

other were (Scheme 1 in Fig. 5.1): TCR-pMHC binding and unbinding, co-receptor

binding to MHC and coreceptor binding to TCR via Lck (Fig. 5.1). TCR, co-receptors,

and pMHC were allowed to diffuse on the T cell and APC surface. In order to determine

the apparent dissociation rate of pMHC molecules off the T-cell surface we initialized the

simulation with 100 pMHC proteins bound to TCRs. We then simulated the biochemical

reactions noted above using the Stochastic Simulation Compiler (Lis et al., 2009) that

allows efficient implementation of the Gillespie algorithm (Gillespie, 1977) to study cell

signaling processes, including protein motion and stochastic effects (details in SI).

Several replicate simulations for each scenario were carried out, and average values of

the dissociation rate of pMHC proteins in the presence and absence of coreceptors were

obtained.

If a pMHC molecule dissociated from the T cell surface during the simulation, we

removed it, thereby preventing rebinding. This mimics experiments where antibodies are

used to achieve the same end. The parameters used to simulate situations with and

without co-receptors were identical (Table 1), and we studied the effects of varying the
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dissociation rate of the coreceptor-MHC bond (kog), keeping the on-rate the same. These

calculations aimed to explore whether the measured higher affinity of CD8 for MHC

class I proteins, compared to CD4-MHC class II interactions, could explain why CD8,

but not CD4, is observed to stabilize TCR-pMHC interactions (Hamad et al., 1998;

Huppa, 2009; Luescher et al., 1995; Wooldridge et al., 2005).

Based on arguments noted above, we expected differences in the half-life of co-

receptor-MHC interactions to have a minimal effect on the dissociation rate of pMHC

molecules from the T cell surface. However, our results (Fig. 5.2a) indicate that this is

not necessarily true. For co-receptor - MHC interactions with a kog value of the order of

20 s-, the effective half-life of pMHC molecules bound to the T cell surface is enhanced

by about a factor of 1.5. However, a 4-fold lower co-receptor-MHC affinity (kog ~ 80 s-

1), results in an effective dissociation rate from the T cell surface that is indistinguishable

from simulation results without the co-receptor. These results recapitulate the

experimental observation that CD4, which binds MHC class II proteins with a 2 to 4-fold

lower affinity compared to CD8 binding to MHC class I (Gao et al., 2002), does not

stabilize the TCR-pMHC bond, but CD8 does (Hamad et al., 1998; Huppa, 2009;

Luescher et al., 1995; Wooldridge et al., 2005). This is pleasing because it shows that

experimental results for CD4 and CD8 (Hamad et al., 1998; Huppa, 2009; Luescher et al.,

1995; Wooldridge et al., 2005) are not in conflict with each other.

However, what was wrong with the argument made earlier which suggested that

the fleeting interactions between MHC proteins and CD4 or CD8 could not stabilize

TCR-pMHC bonds? That argument did not account for the fact that co-receptor

associated Lck also interacts with TCR. Thus, the co-receptor's interactions with a TCR-

pMHC complex are bivalent, with one arm binding to MHC and the other to TCR

(cartoon on right in Fig.5.1). Thus, if the co-receptor dissociates from MHC, it is still

bound via Lck to the TCR-pMHC complex, and this enables rapid rebinding to MHC. A

similar effect is in play if Lck dissociates from the TCR. Our results show that such

cooperative interactions can cause co-receptor-mediated stabilization of the TCR-pMHC

bond only if co-receptor-MHC interactions have a half-life not much larger than 20 s-1

(fig. S5.3).

Although CD4 does not stabilize TCR-pMHC interactions (Hamad et al., 1998;
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Huppa, 2009), like CD8, it does enhance T cell responses (Huppa, 2009; Li et al., 2004a).

This raises the question of whether CD4 can enhance Lck recruitment to the TCR

complex, and more generally, whether CD4 and CD8 enhance T cell sensitivity to

antigen in different ways.

To examine these issues, we carried out computer simulations of the type used to

obtain the results in Fig. 5.2a except that the set of possible biochemical reactions was

augmented to include the earliest event in TCR signaling, phosphorylation of the TCR

ITAMs by Lck (scheme 2 in Fig.5.1). Multiple phosphorylation states of the ITAMs on

Q-chains of the TCR were represented by two phosphorylation states - partially and fully

phosphorylated TCRs (see, for example, (Wylie et al., 2007b)). To assess the role of the

co-receptor in TCR triggering, we studied two situations: 1] Lck is present as a free

membrane-associated molecule and there are no co-receptors; 2] Lck is associated with

the co-receptor. We carried out computer simulations for these two situations, with all

parameters being identical (Table 1), and compared the levels of TCR phosphorylation

(readout of signal strength). Varying the off-rate of coreceptor-MHC interactions did not

affect the qualitative results of these simulations (Fig. S5.2).

Fig. 5.2b shows simulation results of signal strength as a function of the off-rate

characterizing TCR-pMHC interactions. The simulations correctly recapitulate

experimental observations in that TCR phosphorylation discriminates between

stimulatory and non-stimulatory ligands. The border between stimulating and non-

stimulating peptides (~0.1-1 s 1 in the simulations carried out with co-receptors present,

black line in Fig. 5.2b) is dependent on the on-rate of the TCR-pMHC interaction. The

simulations correspond to this rate being 104 M~1s~1, as is experimentally measured for

typical good agonists. But, for higher value of the on-rate, pMHC ligands that bind TCR

with off-rates larger than 1 s-1 are stimulatory.

Importantly, co-receptors clearly enhance TCR phophorylation. As shown in Fig.

5.2b, if a threshold amount of TCR phosphorylation is required for downstream digital

signaling modules (Altan-Bonnet and Germain, 2005; Das et al., 2009; Reyes et al.,

2005) to be activated (resulting in T cell responses), peptides that bind to TCR with off-

rates in the range of 0.04-0.2 s-1 are stimulatory only when the co-receptor is present, but

barely stimulate TCR phosphorylation without the co-receptor. pMHC ligands that bind
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TCR with longer half-lives are stimulatory even withot the co-receptor. This is consistent

with reports of co-receptor-dependent and independent ligands in both CD4 and CD8

systems (Holler and Kranz, 2003; van Bergen et al., 2001). Dose-response curves

obtained from the simulations further support this point (Fig. S5.1).

We used the computational models to parse the relative contributions of TCR-

pMHC stabilization and Lck recruitment to coreceptor-mediated signal enhancement in a

way that is difficult to accomplish experimentally. We carried out computer simulations

where the only effect of co-receptors was to enhance Lck recruitment. This was achieved

by simulating systems where ITAM phosphorylation was allowed only if TCR and

pMHC were directly bonded, and not if they were a part of the TCR-pMHC-co-receptor

complex. These simulations showed results (Fig. 5.2c) similar to those in Fig. 5.2b. We

also carried out computer simulations where the only effect of the co-receptor was to

enhance the stability of the TCR-pMHC bond by a factor of 1.5 (as per results in Fig.

5.2a for kog = 20 s-, corresponds to CD8). This was accomplished by simulating

situations without the co-receptor (no enhancement of Lck recruitment), but with TCR-

pMHC half-lives enhanced to mimic co-receptor mediated stabilization. The results (blue

line, Fig. 5.2c) show that stabilization of the TCR-pMHC bond makes a minor

contribution to co-receptor-mediated enhancement of TCR signaling. Thus, even for

CD8, the main effect of the co-receptor is to enhance Lck recruitment to the TCR

complex, and for CD4 it is the only effect.

How can fleeting CD4-MHC interactions, which do not stabilize the TCR-pMHC

bond, enhance Lck recruitment? To answer this question, we analyzed the simulation

results using the following simple arguments and calculations.

When two membrane proteins capable of binding approach within the range of

interactions, there are two possible outcomes: the proteins associate and form a complex,

or they diffuse away from each other and leave the domain of interactions. This is

because there are two driving forces, attractive interactions pulling them together and

random diffusive forces pushing proteins apart from each other. As both processes are

stochastic, each possible outcome has a certain probability of occurrence. We calculated

the probability for Lck association with the TCR complex for the case when Lck is co-

receptor associated and when it is not. Differences in the probability with which Lck
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binds to the TCR and its mechanistic origin shed light on how the co-receptor enhances

Lck recruitment.

When Lck is not co-receptor-associated, vicinal TCR and Lck can either bind or

diffuse away. The on-rate of Lck-TCR association can be estimated in the following

way. It has to be large enough for the time required for TCR-Lck association to be longer

than the lifetime of strong agonist pMHC-TCR complexes, otherwise these ligands would

not trigger TCR in a co-receptor-independent way (Fig. 5.2b and (Holler and Kranz,

2003)). Also, the time required for TCR-Lck association must be shorter than the

lifetime of endogenous pMHC-TCR bonds in order to prevent frequent spurious

triggering of TCRs bound to endogenous ligands. These considerations imply

thatkoffAg <konLck < koffEn. Based on measurements of TCR-pMHC off-rates, we took

k onLck ~1 s- 1 molec' (area of interaction). Effects of variations in kon,Lck are detailed in

appendix to chapter 5 (see Fig. S5.4). The diffusion constant of membrane-associated

proteins is typically 0.01 tm2/s (Dushek et al., 2008). Assuming the range of interactions

to be of the order 100 angstroms (0.01 ptm)(Yachi et al., 2006), we can compute the rate

with which membrane proteins will leave the range of interactions due to diffusion to be

kmotion 100 s-1 . To find the probabilities escape versus binding, we compare the rates

of motion and binding to obtain:

kmotionLck + kmotionTCR 200
kmotionLck + kmotionTCR + konLck 201

P(binding) = konLck - 1 0.005 (2)
2kmotion+ kon,Lck 201

These estimates suggest that it is rather unlikely that Lck will form a bond with the TCR

when it is not associated with the co-receptor.

Now consider the situation when Lck is associated with the co-receptor. Once the

co-receptor is in the vicinity of a TCR-pMHC complex, it can either diffuse away or bind

to the MHC. Experimental measurements (Gao et al., 2002) estimate the on-rate for co-

receptor-MHC interactions to be very large - kon,MHC-CD4(8) > 105 M-'s-1 . This leads to the

following estimate for the 2-dimensional value of this rate parameter (appendix to
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(area of interaction)
chapter 5): kon,MHC-CD4(8) (2D) = 1670 . Notice that this is 16 times

molec x s

larger than the rate parameter corresponding to diffusive motion of proteins away from

each other (knoton ~ 100 s-1). This suggests that the large on-rate for co-receptor-MHC

interactions will combat diffusive forces effectively, enabling co-receptor binding to the

MHC with high probability. Also, once this bond between two proteins anchored to

apposed membranes is established, diffusion of the co-receptor and the MHC will be

severely slowed down compared to a protein on a single membrane. These effects allow

the co-receptor to effectively localize Lck to the TCR-pMHC complex.

To estimate the likelihood of successful Lck-TCR association given that the TCR-

MHC-coreceptor complex is assembled, we must consider the following possible events:

breaking TCR-MHC bond (koff 1 s-1), breaking MHC-coreceptor bond (kff ~ 20 s-1),

forming the TCR-Lck bond (kon 1 S1). Following the argument made earlier to

compute the probability of binding versus diffusion for free Lck, the probability of Lck

binding to the TCR complex is found to be:

P(binding) = kon,Lck 1 0.05 (3)
koffMHC-CD4(8) + koffTCR-MHC + konLck 20

Eqs. (2) and (3) show that Lck recruitment to the TCR complex is ten times more likely if

it is associated with the co-receptor compared to when it is present as free Lck.

We conclude that co-receptors CD4 and CD8 augment T cell signaling primarily

by enabling efficient recruitment of Lck to the TCR complex. The large on-rate of co-

receptor-MHC interactions enables efficient recruitment of Lck by combating the effects

of diffusive forces that tend to separate proteins within the range of interactions.

Although, for reasons we have discussed, CD4 and CD8 have differential ability to

stabilize TCR-pMHC interactions, the impact of this difference in triggering TCR

signaling appear to be minor.

5.3 Appendix to Chapter 5

5.3.1. Dose response curves for peptides of different strength

Another possible test of the model would be to study the dose-response curve that

follows form simulation of the model. We choose three different peptides: strong agonist
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(koff = 0.002), typical agonist (koff=0.02) and weak agonist (koff=0.1) to see how the

dose response curves change with for different peptide quality:

We see (Fig. S5.1) that although strong peptides are capable of signaling even without

coreceptor, ability of weak agonist to signal is critically dependent on the presence of

coreceptor. As mentioned in the main text, one might parallel this behavior to

experimentally determined classes of coreceptor-dependent and coreceptor-independent

peptides.

5.3.2. Cooperative binding is required for MHC stabilization on T-cell surface

Fig. S5.3 shows the enhancement of half-life of MHC bound to T-cell surface in

situation when Lck can not bind TCR' intracellular domain. In this situation MHC

interacts separately with TCR and coreceptor molecules present on the T-cell surface and

presence of coreceptor does not improve the half-life of MHC.

5.3.3. Parameter sensitivity studies

Parameter sensitivity studies were carried out for parameters that have no experimental

data available (typed in black font in Table 1):

* Fig. S5.4 illustrates that variations of kon, Lck-TCR (rate of Lck engagement

with TCR) within the range of 0.5 - 5 s-1 do not change the qualitative picture resulting

from simulations reported in the main text.

- Fig. S5.5 illustrates that variations of koff, Lck-TCR (rate of Lck disengagement

with TCR) within the range of 0.5 - 5 s-1 do not change the qualitative picture resulting

from simulations reported in the main text.

- Fig. S5.6 illustrates that variations of kp (rate of phosphorylation of TCR by

Lck) within the range of 0.02 - 0.2 s-1 do not change the qualitative picture resulting from

simulations reported in the main text.

- Fig. S5.7 illustrates that variations of kdp (rate of dephosphorylation of TCR)

within the range of 0.05 - 0.5 s-1 do not change the qualitative picture resulting from

simulations reported in the main text.

106



5.3.4. SSC code for simulating dissociation of MHC off the T-cell surface

region World
box width 100 height 100 depth 1

subvolume edge 1

-MONOMER DISAPPEARANCE

rxn m:MHC(t#, c#) at 100000000 -> destroy m

-COMPLEXES FORMATION

- MHC/TCR bond
rxn m:MHC(t#, c#) t:TCR(m#, c#) at kon -> m.t # t.m
rxn m:MHC(t#, c#1) CD4(m#1, t#) t:TCR(m#, c#) at kon -> m.t # t.m
rxn m:MHC(t#, c#) t:TCR(m#, c#1) CD4(t#1, m#) at kon -> m.t # t.m
rxn m:MHC(c#2, t#) t:TCR(m#, c#1) CD4(t#1, m#2) at kon -> m.t # t.m

rxn TCR(m#1) MHC(t#1, p="ag") at koffAg -> break 1
rxn TCR(m#1) MHC(t#1, p="en") at koffEn -> break 1

-- TCR/CD4 bond
rxn t:TCR(c#, m#) c:CD4(t#, m#) at konLckl -> t.c # c.t
rxn t:TCR(c#, m#1) MHC(t#1, c#) c:CD4(t#, m#) at konLck -> t.c # c.t
rxn t:TCR(c#, m#) c:CD4(t#, m#1) MHC(c#1, t#) at konLck -> t.c # c.t
rxn t:TCR(m#2, c#) c:CD4(t#, m#1) MHC(c#1, t#2) at konLck -> t.c # c.t

rxn TCR(c#1, m#2) MHC(t#2) CD4(t#1) at koffLck -> break 1
rxn TCR(c#1, m#) CD4(t#1) at koffLck -> break 1

-- MHC/CD4 bond
rxn m:MHC(c#, t#) c:CD4(m#, t#) at konCD -> m.c # c.m
rxn m:MHC(c#, t#1) TCR(m#1, c#) c:CD4(m#, t#) at konCD -> m.c # c.m
rxn m:MHC(c#, t#) c:CD4(m#, t#1) TCR(c#1, m#) at konCD -> m.c # c.m
rxn m:MHC(t#2, c#) c:CD4(m#, t#1) TCR(c#1, m#2) at konCD -> m.c # c.m

rxn MHC(c#1) CD4(m#1) at koffCD -> break 1

--initial species

new MHC(p="ag", t#1) TCR(p="p0",m#1) at count-ag --start with MHC bound to T-cell surface through TCR
new MHC(p="en") at counten
new TCR(p="p0") at 200
new CD4(Ick="basal") at 100

diffusion at 0
diffusion MHC(t#, c#) at kdiff
diffusion TCR(m#, c#) at kdiff
diffusion CD4(m#, t#) at kdiffCD4

record MHC(p="ag",t#1) TCR(m#1)
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5.3.5. SSC code for simulation phosphorylation due to MHC-TCR interactions

--SPACE SETTINGS
region World

box width 100 height 100 depth 1
subvolume edge 1

--COMPLEXES FORMATION
- MHC/TCR bond
rxn m:MHC(t#, c#) t:TCR(m#, c#) at kon -> m.t # t.m
rxn m:MHC(t#, c#1) CD4(m#1, t#) t:TCR(m#, c#) at kon -> m.t # t.m
rxn m:MHC(t#, c#) t:TCR(m#, c#1) CD4(t#1, m#) at kon -> m.t # t.m
rxn m:MHC(c#2, t#) t:TCR(m#, c#1) CD4(t#1, m#2) at kon -> m.t # t.m

rxn TCR(m#1) MHC(t#1, p="ag") at koffAg -> break 1

-- TCR/CD4 bond
rxn t:TCR(c#, m#) c:CD4(t#, m#) at konLckl -> t.c # c.t
rxn t:TCR(c#, m#1) MHC(t#1, c#) c:CD4(t#, m#) at konLck-> t.c # c.t
rxn t:TCR(c#, m#) c:CD4(t#, m#1) MHC(c#1, t#) at konLck -> t.c # c.t
rxn t:TCR(m#2, c#) c:CD4(t#, m#1) MHC(c#1, t#2) at konLck -> t.c # c.t

rxn TCR(c#1, m#2) MHC(t#2) CD4(t#1) at koffLck -> break 1
rxn TCR(c#1, m#) CD4(t#1) at koffLck -> break 1

-- MHC/CD4 bond
rxn m:MHC(c#, t#) c:CD4(m#, t#) at konCD -> m.c # c.m
rxn m:MHC(c#, t#1) TCR(m#1, c#) c:CD4(m#, t#) at konCD -> m.c # c.m
rxn m:MHC(c#, t#) c:CD4(m#, t#1) TCR(c#1, m#) at konCD -> m.c # c.m
rxn m:MHC(t#2, c#) c:CD4(m#, t#1) TCR(c#1, m#2) at konCD -> m.c # c.m

rxn MHC(c#1) CD4(m#1) at koffCD -> break 1

-MODIFICATIONS TO SPECIES
- Phosphorylation/Dephosphorylation
rxn t:TCR(p="p0", c#1, m#2) MHC(t#2) CD4(Ick="basal", t#1) at 2*kp -> t.p "pl"
rxn t:TCR(p="pl", c#1, m#2) MHC(t#2) CD4(Ick="basal", t#1) at kp -> t.p = "p2"

rxn t:TCR(p="pl", m#) at 2*kdp -> t.p = "p0"
rxn t:TCR(p="p2", m#) at kdp -> t.p = "pl"

--initial species
new MHC(p="ag") at count ag
new TCR(p="pO") at 300
new CD4(Ick="basal") at 100

diffusion at 0
diffusion MHC(t#, c#) at kdiff
diffusion TCR(m#, c#) at kdiff
diffusion CD4(m#, t#) at kdiff

--OUTPUT
record TCR(p="p2")
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Tables:

Table 5.1. Rate parameters (in units s-.) used in simulations. Experimentally derived

parameters are shown in red (see review (Gao et al., 2002) for references), there are no

experimental data available for black entries. See appendix to chapter 5 showing that our

qualitative conclusions do not change upon varying these parameters, except if Lck does

not associate with TCR. Unit conversion rules can be found in chapter 4.

Rate parameter Reaction described

150 kon, TCR-MHC TCR-MHC on rate, (exp-104 M-Is-')

0.02 koffTCR-AgMHC TCR-MHC off rate for agonist peptide (exp-0.02 s-1)

1000 kon,CD4(8)-MHC MHC-coreceptor (CD4/CD8) on-rate(exp-10 5 M-'s 1 ')

20 koffCD4(8)-MHC MHC-coreceptor (CD4/CD8) off rate (exp-20 s-1)

50 kdiff, rate of diffusion of membrane surface proteins (exp-0.01 Ipm2/s)

20 koffTCR-EnMHC TCR-MHC off rate for endogenous peptide (exp-20 s-')

0.05 k,, rate of phosphorylation of TCR by Lck

0.2 kp,rate of dephosphorylation of TCR

1 ko, Lek-TCR, rate of Lck engagement with TCR

1 koff Lck-TCR, rate of Lck disengagement with TCR
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5.5 Figures for Chapter 5

5.5.1. Main Figures

Fig. 5.1. Pictorial representation of the computer simulations that were carried out. Three

kinds of proteins (MHC, coreceptor, TCR) were allowed to diffuse on the surface that

represents 1 [tm 2 of the T-cell/APC interface. Proteins were allowed to interact in accord

with the indicated biochemical reactions. In the first set of simulations, reactions from

scheme 1 were implemented; in the second set of simulations reactions from scheme 2

were implemented. Reaction rate parameters for these biochemical reactions are provided

in the Table 1. Cartoon of the Lck-TCR complex that leads to cooperative interactions

between the TCR, pMHC and coreceptor/Lck is shown on the right.
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Fig. 5.2 a) Effective half-life of MHC on the T-cell surface as a function of koffMHC-
coreceptor (which is proportional to affinity of the MHC-coreceptor interaction) as obtained
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in the first set of simulations (scheme 1 in Fig.1). At koff- 20 s- the half-life is enhanced

by -1.5 times in the presence of coreceptor, while at ko - 80 s-1 half-lives with and

without coreceptor are statistically indistinguishable.

b) Levels of TCR phosphorylation as a function of kff of the TCR-pMHC interaction.

The results are obtained from simulations of 1 tm2 of the T-cell/APC contact area with

the following protein concentrations: 300 TCR per pim 2, 100 co-receptors per pm 2 (black

curve), or no coreceptor present (red curve). Horizontal line indicates a threshold value of

TCR phosphorylation threshold required to potentiate downstream signaling and T cell

activation. Blue region represents the range of peptides that are coreceptor-dependent.

c) Signal enhancement measured by TCR phosphorylation. The red curve indicates

phosphorylation level in the absence of coreceptor (for peptides of different potency, as

measured by kog of TCR-pMHC complex). The blue curve represents phosphorylation

levels if coreceptor can only stabilize pMHC-TCR interactions, but not recruit Lck. The

black curve represents phosphorylation level when coreceptors can enhance Lck

recruitment but not stabilize the TCR-pMHC bond. How computer simulations could

separate these effects is described in the text.
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5.5.2 Supplementary Figures
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Fig. S5.1 Amount of fully phosphorylated TCR as a function of amount of peptides

presented in the contact area (Dose-Response curves) for strong agonist(a), typical

agonist(b), weak agonist(c)

-- 100 peptides, no coreceptor
- 100 peptides, with coreceptor

k0(coreceptor-MHC) = 20 s"
u-li

10 1

30 peptides, with coreceptor
k0 (coreceptor-MHC) = 80 s"

0.1 0.01

kff(TCR-MHC), s~

Fig. S5.2 Amount of fully phosphorylated TCR as a function of peptide quality (as

determined by kffTCR-pMHC) Coreceptor mediated enhancement does not change

qualitatively when varying stability of coreceptor-MHC interactions between 20 s~1

(black curve) and 80 s~1 (blue curve).
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Fig. S5.3 Effective half-life of MHC on the T-cell surface as a function of koffMHC-coreceptor

(which is proportional to affinity of the MHC-coreceptor interaction) as obtained in the

first set of simulations (scheme 1 in Fig. 1) with association between Lck and TCR set to

zero (kon(lck-TCR)=O). One sees that in the absence of cooperative binding (see fig. 2a of

main text) MHC is not stabilized on the surface.
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Fig. S5.4 Parameter sensitivity studies for kon(Lck-TCR). Amount of fully

phosphorylated TCR is plotted a function of peptide quality (as determined by koffTCR-
pMHC). TCR phosphorylation with and without coreceptor is shown for 3 cases: kon(Lck-

TCR) = 0.5; 1; 5 s-1 (the rest of the parameters are the same as in Table 1). Coreceptor

mediated enhancement does not change qualitatively when varying koffTp
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Fig. S5.5 Parameter sensitivity studies for konf(Lck-TCR). Amount of fully

phosphorylated TCR is plotted a function of peptide quality (as determined by koffTCR
pMHC). TCR phosphorylation with and without coreceptor is shown for 3 cases: kof(Lck-

TCR) = 0.5; 1; 5 s-1 (the rest of the parameters are the same as in Table 1). Coreceptor

mediated enhancement does not change qualitatively when varying kofTCRpMHC
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Fig. S5.6 Parameter sensitivity studies for kp. Amount of fully phosphorylated TCR is

plotted a function of peptide quality (as determined by koffTCRpMHC). TCR

phosphorylation with and without coreceptor is shown for 3 cases: kp = 0.02; 0.05; 0.2 s-

(the rest of the parameters are the same as in Table 1). Coreceptor mediated enhancement

does not change qualitatively when varying kp.
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Fig. S5.7 Parameter sensitivity studies for kap. Amount of fully phosphorylated TCR is

plotted a function of peptide quality (as determined by kofTCR-pMHC) TCR

phosphorylation with and without coreceptor is shown for 3 cases: kap = 0.05; 0.2; 0.5 s-1

(the rest of the parameters are the same as in Table 1). Coreceptor mediated enhancement

does not change qualitatively when varying kap.
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Chapter 6

Mechanisms of signal enhancement by non-cognate

peptides in CD4 and CD8 T-cells

6.1 Introduction

Interactions between peptide-MHC complex and T-cell receptor (TCR) play

major role in shaping response of the T-cell to its environment allowing for pathogen

recognition and proper T-cell homeostasis. Normally, during the immune response, T-cell

activates only upon TCR stimulation with peptide-MHC complexes containing peptides

derived from pathogenic proteins. Although peptides derived from self-proteins are not

able to stimulate naive T-cell by themselves, they actively participate in the action of the

immune system. Firstly, thymocytes are tested in thymus against the pool of self-peptides

to ensure appropriate sensitivity of the T-cell receptor (through positive and negative

selection) (Palmer and Naeher, 2009). Secondly, it was reported that peripheral presence

of weak ligands, such as self peptides, is required for proper homeostasis of the naYve T-

cell population (Surh and Sprent, 2008). Thirdly, some self-derived peptides can enhance

signals that were initiated by the pathogenic-peptides (Krogsgaard et al., 2007a;

Krogsgaard et al., 2005). Interestingly, the manner of enhancement was found to be quite

different in the CD4 and CD8 T-cells (Ebert et al., 2009; Lo et al., 2009; Yachi et al.,

2005a; Yachi et al., 2007). Our paper focuses on the last phenomenon and provides

computational insight into the possible differences between the CD4 and CD8 systems

that could be responsible for the observed difference in the co-enhancement quality of the

self-peptides in the mixtures of self- and non-self peptides.

From the biophysical point of view, difference between self- and nonself-derived

peptides is manifested through the different affinities of interactions between TCR and
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peptide-MHC complex (Holler and Kranz, 2003; Stone et al., 2009). Mature T-cell

receptors that have undergone thymic selection are generally expected to interact very

weakly with self-peptides (although exceptions do exist (Rosette et al., 2001)). Typically,
self-peptides have kof (TCR-pepMHC) > 10 s-1 while pathogenic peptides capable of

activating T-cell have kort (TCR-pepMHC) < 1 s-1 as measured by BiaCore experiments

(Stone et al., 2009). Thus, one can view the value of korr 1 s-1 as a kind of threshold in

koff values that ensures recognition of the peptide.

It should be noted, however, that T-cell sensitivity (for example, as determined by

the threshold value of korr) to TCR stimulation is not set in stone and varies whilst T-cell

progresses through different developmental periods. It is achieved through different

"rheostat"-like mechanisms with most notable being miR181a regulations (Li et al.,
2007). For instance, thymocytes are more responsive than mature T-cells and can respond

to self peptides due to the change of the activating threshold as regulated by miR181a

(Ebert et al., 2009).

Mature T-cells, on the other side, have a reasonably high threshold of activation

such that self-derived peptides presented to T-cells on the lipid bilayer or APCs do not

provoke T-cell activation. Yet, mature T-cells are able to sense the presence of self-

peptides in the mixture with cognate peptides as indicated by signal augmentation

compared to the situation when only cognate peptides are presented to the T-cell (Ebert et

al., 2009; Lo et al., 2009; Yachi et al., 2005a; Yachi et al., 2007). This indicates that

mechanism of enhancement is different from sensitivity modulation. The exact molecular

mechanism remains the subject of the debates particularly because of the contrasting

results obtained with CD4 and CD8 T-cells (Ebert et al., 2009; Lo et al., 2009; Yachi et

al., 2005a; Yachi et al., 2007).

In CD8 T-cells it has been found that all tested non-activating-peptides are able to

synergize the effect of cognate peptides, while in CD4 cells only some of the null-

peptides are capable of enhancing the signal provided by agonist (Li et al., 2007; Yachi et

al., 2007). In this paper we show that these results are, in fact, consistent with each other

and can arise from a single mechanism.

Involvement of non-cognate peptides along with agonist peptides presents an

interesting puzzle because of the dramatic difference in the time scales associated with
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stability of different pepMHC-TCR complex. For the activating peptides lifetime of the

bound TCR-pepMHC complex is about 10-100 seconds (kog ~ 0.1-0.01 s-1), while self-

derived peptides that are always present on the APC surface in complex with MHC form

extremely unstable bond with TCR with lifetime about 50 milliseconds (kog >20 s-1).

Three orders of magnitude in difference between koff's suggest that different mechanisms

may operate in each situation.

First step to reconciling these rate differences was due to Wylie et al who

hypothesized that Lck might have two states capable of carrying out the phosphorylation,

basally active and fully active states (Wylie et al., 2007a). While the former has limited

kinase activity, the latter is active enough to phosphorylate even short lived complexes

such as self-peptide-MHC-TCR. This assumption was recently confirmed in experiments

studying the properties of membrane bound phosphotase CD45 that actively maintains

the balance between three forms of Lck (inactive, basally active, fully active) (McNeill et

al., 2007; Zamoyska, 2007). Particularly, CD45 promotes transformation of the inactive

form of Lck to the basally active, but also inactivates fully active form down to the

basally active one. In other words, it is CD45 who assures that Lck is in the basally active

state.

This function of CD45 protein, together with its peculiar physical dimensions,

plays the crucial role in the spatial coordination of the kinase activity of Lck. Namely, the

length of the extracellular domain of CD45 is approximately 40 A, which is considerably

larger compared to approximately 15 A of the total length of the TCR-pepMHC

connection. The dimensional mismatch makes it impossible for phosphotase CD45 to be

localized in close proximity to the bound TCR-pepMHC complex (Burroughs and van

der Merwe, 2007). So, Lck can be securely promoted to the fully active state while in

contact with TCR-pepMHC complex, but it will be deactivated shortly upon departure

from the safe zone around TCR-pepMHC. This, as one will see in more details below,

creates a potential for the signal enhancement: if fully activated Lck encounters TCR

engaged with the self-pepMHC before it gets deactivated, it might as well phosphorylate

its C-chains, thus, increasing the total TCR phosphorylation level.

As one can see from the above considerations, the mechanism behind the self-

peptide co-enhancement includes profound contribution of the spatial component.
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Although there have been conceptual studies dealing with the principles behind the self-

peptide enhancement (Li et al., 2004a; Wylie et al., 2007a), coherent consideration that

takes into account both protein-protein interactions and spatial localization and

incorporates all available biophysical measurements is still lacking. Here, we report the

first study that meets these criteria and, thus, allows us to analyze different possible

enhancement mechanisms in details.

We consider the situation when antigen presenting cell (APC) presents the

mixture of cognate and non-cognate peptides on its surface. We analyze three different

explicit models that describe signal enhancement due to the presence of non-signaling

peptides on the APC surface. Each model represents distinct mechanism that is

characterized by a certain parameter regime of validity and specific assumptions about

the molecular interactions. We find in all cases that interplay between spatial motion of

membrane proteins and protein-protein interactions are critical to the signal enhancement

mechanism.

This explicit description of synergism due to non-cognate peptide-MHCs allows

us to address the important debate regarding the differences in the signal enhancement in

CD4 and CD8 T-cells (Ebert et al., 2009; Lo et al., 2009; Yachi et al., 2005a; Yachi et al.,
2007). We search for the possibility that differences in CD4 vs CD8 experiments arise

from a common mechanism due to differences in the strength of molecular interactions.

For example, it is well known that CD8 has larger affinity for MHC molecules than CD4

(Gao et al., 2002). We, therefore, examine the models with respect to parameters that

describe structural and molecular differences between CD4 and CD8 coreceptors, such as

interactions with MHC receptor, interactions between TCR and Lck bound to

intracellular domain of the coreceptor and efficacy of (-chain phosphorylation by Lck. In

all three models we, indeed, are able to identify the critical properties that are responsible

for the observed experimental distinction between CD4 and CD8 self-peptide co-

stimulation.

Finally, the prospective taken in this work, namely, a heavy emphasis on spatial

movement of proteins in the membrane in early T-cell signaling, allows us to comment

on the importance and function of the heterogeneteities existing in the T-cell membrane

before any TCR signaling. Important example is microclustering of T-cell receptors on
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the surface (Campi et al., 2005; DeMond et al., 2008; Dustin, 2009). Our work offers the

way of thinking for more detailed studies of spatial effects in T-cell signaling that will

address the questions like what is optimal spatial distribution of TCR leading to the

optimal signaling (i.e. what is optimal size and pattern of microclusters) etc.

6.2 Model 1 of self-peptide enhancement

Model 1 is described by the following general picture. At rest, T-cell surface

contains a mixture of T-cell receptors and coreceptors (Lck is assumed to be constantly

associasted with coreceptor, at least on the time scale of the early signaling events). Large

amounts of CD45 ensure that Lck, both free and coreceptor associated one, is in the

basally active state, thus, at the initial point we assume that all of the Lck is at the basally

active state. The activity of Lck is defined through its ability to phosphorylate engaged T-

cell receptor, reflected by the C-chain phosphorylation rate (k, and kp,act - see Table 1)

(Kersh et al., 1998). We define the level of basal activity of Lck (kp) as the one that is

consistent with kinetic proofreading requirements sufficient to deliver TCR

phosphorylation by an agonist (koff, TCR-AgMHC <0.l s), but not by the self-peptide. Upon

engagement with the antigen-presenting cell, coreceptor-associated Lck is recruited to the

engaged TCR-pepMHC complex. This process is regulated by two interactions:

coreceptor-MHC binding (on-rate kon,CD4(8)-MHC and off-rate koffCD4(8)-MHC) and Lck

association with intracellular domain of TCR (on-rate kofn,Lck-TCR and off-rate koffLck-TCR).

In this model we assume that Lck can carry out c-chains phosphorylation only if it is

associated with TCR that is engaged with MHC at the same moment. Note that peptide

identity does not play direct role, the likelihood of TCR phosphorylation is very different

for self and non-self-peptides due to different lifetimes of the pepMHC-TCR complex.

Only upon complete C-chain phosphorylation, adapter proteins associated with T-

cell receptor can upgrade Lck to the fully active state provided that Lck remains

associated with TCR sufficiently long. This process is coarse-grained into one activation

reaction described by the rate kact. Fully active state of Lck is characterized by increased

-chain phosphorylation rate (kp,act) and can carry out phosphorylation even before

engagement with TCR, rather, spatial proximity is sufficient condition for kinase action.

Deactivation under the action of CD45 is also described through single reaction
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characterized by the rate kdeact; it is assumed that deactivation can only take place when

coreceptor is not associated with either TCR or MHC and, thus, approach of oversized

CD45 protein is possible.

Ultimately, coreceptor bearing fully active Lck can disassemble from MHC-TCR

complex after which it diffuses freely around the T-cell surface. During this period, fully

active form of Lck survives for a limited amount of time until CD45 downgrades Lck to

basaly active form (this timescale is set by the choice of kdeact to be approximately

1/kdeact). If, during this time, it encounters TCR that is transiently associated with the self-

derived pepMHC, Lck can phosphorylate new TCR provided that fully active Lck is

sufficiently active. The sufficient condition is that kp,act 2 koffTCR-EnMHC, i.e. endogenous

peptide-MHC comlpex is engaged with TCR long enough for the fully active Lck to

phosphorylate its C-chains. This mode of action is local with respect to the initial agonist-

MHC engagement position because fully active Lck can only go so far before it becomes

deactivated to the basal level. This mechanism is summarized pictorially on the Fig. 6.1.

We see therefore, that self peptides involvement in the signaling process is

critically dependent on the spatial component and mutual locations of cognate pepMHC,
non-cognate MHC and coreceptor. We can deduce the most sensitive parameters

controlling enhancement by self peptides to be diffusion rate of the coreceptor, rate of

deactivation of the fully active form of Lck, and, of course, concentration of the self-

peptides. It comes as no surprise in this model that artificially co-localized self- and

agonist peptides are capable of the strong enhancement of the signal, e.g. when put

together on the quantum dot or bound by a molecular tether (Anikeeva et al., 2006;

Krogsgaard et al., 2007b).

In order to study the behavior of the model in details we have performed spatially

resolved stochastic simulations mimicking 1 tm 2 interface between T-cell and antigen-

presenting cell. We assume that there are 300 T-cell receptors, 100 coreceptors engaged

with Lck and 100 MHC-peptide complexes freely diffusing in this area. The read-out of

the simulation was the amount of fully phosphorylated TCRs at steady-state. For

simplicity, multitude of phosphorylation site on -chain of TCR was modeled by

introducing two states - partially phosphorylated TCR and fully phosphorylated TCR

(Kersh et al., 1998; Wylie et al., 2007a). The presence of the phosphotases that
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constitutively dephosphorylate c-chains was modeled by the dephosphorylation reaction

characterized by the rate kap.

Table 1 presents parameters used in the simulations, and lists the basic set of

reactions. The red entries indicate parameters available from biophysical measurements.

These table entries were recomputed from available experimental information (all the

numbers are in units of s4 in accord with the discussion in methods section,

experimentally measured values corresponding to the simulation parameter are also

provided). Black entries had to be estimated theoretically. In fact, in many cases

experimental data provide indirect, yet very strict bounds on the experimentally

unavailable parameters.

For instance, the phosphorylation and dephosphorylation by basal Lck rates are

readily estimated from the fact that kinetic proofreading scheme leading to fully

phosphorylated TCR must separate peptide-MHC complexes into two classes in accord

with their koffTCR-pepMHC. Particularly, peptide-MHC complexes with korr >1 s4 should

never be able to stimulate the T-cell (i.e., fully phosphorylate TCR in this model) while

peptide-MHCs with korr<l s 1 deliver different levels of TCR phosphorylation (see Fig.

6.1). Rate of Lck association with internal part of TCR and Lck activation rate are

estimated following the same reasoning. There is, however, no reliable argument to

anticipate the value of two parameters.

Firstly, phosphorylation rate by fully activated Lck is free parameter of the model

that has been varied extensively. As one will see below, it is varying this rate parameter

we find that the model exhibits regimes reminiscent of CD4 and CD8 behavior with

respect to self-peptides for different values of phosphorylation rate by fully activated

Lck.

Secondly, Lck deactivation rate from fully active to the basal state is completely

free parameter. As mentioned above, this parameter regulates the lifetime of the freely

diffusing fully active Lck. Thus, two extreme scenarios are possible: one, when Lck has

lifetime sufficient to encounter other TCR-MHC complexes, and second, when Lck is

deactivated immediately upon coreceptor disengagement from TCR-MHC. This, in fact,

leads to two very different mechanism of signal enhancement that are considered in

models 1 and 2. Here, in first model, we set deactivation rate to a sufficiently small
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value. Physically this means that coreceptor with activated Lck will have a reasonable

lifetime after disengagement from the original TCR-pepMHC. During this lifetime,
activated Lck will phosphorylate TCRs transiently complexed with self-peptides-MHC.

Next, we see how the levels of phosphorylation delivered by agonist alone

compare with the phosphorylation triggered by the mixture of agonist and null-peptide

(k, =20 s 1). According to experimental data, mixtures perform better due to synergistic

effects of the non-cognate peptides. Indeed, as one can see on the Fig. 6.3 addition of

non-cognate peptides dramatically increases the signal. Moreover, for small

concentrations of agonist, we see that 10 agonist peptides presented in the sea of the self-

peptides perform as good as ~30 agonist peptides alone.

What is the parameter, responsible for the amount of enhancement delivered by

self-peptides? Rate of deactivation of coreceptor associated Lck, which, basically,
represents the activity of the CD45 and diffusion rate of the free coreceptor both

determine how far away can receptor with fully active Lck diffuse from the agonistMHC-

TCR complex which initially activated Lck. The bigger is the area covered by diffusion

of fully active Lck, the bigger is the harvest of TCRs bound to endogenous pepMHC that

Lck can phosphorylate. As one can see from Fig. 6.3 (red open circles), increasing

deactivation rate leads to the smaller signal enhancement levels.

Molecular and structural differences between the CD4 and CD8 coreceptors can

be ascribed to several parameters in this model. Firstly, these are parameters

corresponding to the interaction of coreceptor with MHC. It is generally accepted that

CD8 affinity to the MHC class I molecules is 2-3 times higher than CD4 affinity to MHC

class II molecules (Gao et al., 2002). Secondly, the rate of Lck binding to TCR can be

different due to different structure of intracellular and transmembrane domains of CD4

and CD8 proteins. Finally, the rate of phosphorylation by the fully active Lck could also

be different for CD4 and CD8 proteins as a consequence of different spatial organization

of coreceptor-Lck-TCR complex.

Experiments show that enhancement effect depends on the self-peptides identity,
which in kinetic reaction-diffusion scheme translates into stability of self-pepMHC-TCR

(kog), for tested pool of peptides in case of CD4 T-cells, while all tested null-peptides
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enhance the signal equally well in CD8 T-cells. Can we describe these experimental

differences varying parameters distinguishing CD4 and CD8 T-cells?

In our simulations behavior of CD8 cells would be manifested in that all the self-

peptides in the wide range of koffTCR-EnMHC (e.g. 10 s 1 to 300 s-) would be able to

enhance the signal initiated by the agonist. On the other side, experimentally observed

CD4-like behavior would correspond to the situation when only limited range of self-

peptides could co-enhance agonist-MHC (e.g. only 10 s4 to 50 s-1).

We find in our simulations that varying parameters related to coreceptor

association with MHC or Lck binding to TCR does not change the range of self-peptides

that are able to enhance the agonist-derived signal. Rather these parameters affect the

magnitude of enhancement for all the self-peptides equally. However, when the

effectiveness of TCR phosphorylation by fully activated Lck is perturbed, one sees that

range of co-enhancing self-peptides changes. If the phosphorylation rate by fully active

Lck is high, then practically all the self peptides can synergize the signaling with equal

efficiency (see Fig. 6.4a), which correspond to the observations made on CD8 T-cells. If,

however, phosphorylation by fully active Lck is moderately stronger then by basal Lck,

the quality (koff) of the self-peptide plays a crucial role (see Fig. 6.4b), like it was

observed in case of CD4 T-cells. Biologically this would mean that CD8 coreceptor

associates Lck with TCR more tightly and carries out phosphorylation more effectively

then CD4.

Also, note that in CD4-like regime (Fig. 6.4b) only strong agonist can be

synergized by sufficiently good peptides, whereas in CD8-like case (Fig. 6.4a) this effect

is independent of quality of the agonist.

Summing up, in the described mechanism, the difference in behavior of the CD4

and CD8 T-cell is due to the distinct ways of coordinating Lck nearby intracellular part of

the TCR, which leads to the higher efficiency of phosphorylation in CD8 T-cells

compared to CD4 cells. Indeed, the recent experiments (Mallaun et al., 2008) indicate

that the potency of coreceptor associated kinase is critically dependent on the close

proximity between coreceptor and T-cell receptor. This difference in CD4 versus CD8

Lck proximity to intracellular domain of TCR can be a consequence of the difference in

affinities of the coreceptors to MHC or simply follow from the different structures of
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these proteins. We identify it as a critical, parameters, but the cause of variation lies

actually in the physical differences for CD4 and CD8 coreceptors ((association with

MHC, structure of the intracellular domain).

6.3 Model 2 of self-peptide enhancement

In this model we explore a different set of assumptions that describe the self-

peptide involvement in the signaling process. Here, we consider the regime when

deactivating ability of CD45 is very high (kdeact is large) and lifetime of fully active Lek

is very small, i.e. it becomes deactivated almost immediately upon disengagement from

TCR-pepMHC complex. Thus, the only the possibility to extend action of fully active

Lek is through stable association with intracellular domains of TCR for as long as TCR is

engaged to peptide-MHC complex (i.e., koff,Lck-TCR is very small). Because of the stable

binding, activated Lek is always localized within the original, successful TCR-pepMHC

interaction. Thus, signal enhancement can only occur when other MHCs that bear self-

peptides occasionally engage with TCR in the region nearby the initial TCR-MHC

complex (as shown pictorially on Fig. 6.5).

If, in order to reflect the above biological picture, we merely change koff, Lck-TCR in

the model 1 to the smaller value, it leads to the constitutive signaling even with non-

signaling peptides, thus, losing the distinction between agonist and non-agonist peptides.

Such a behavior is due to stochastic activating of Lek: once every while, even self-

peptides are capable of activating one or few fully active Lek molecules. Such rare events

play no role in model 1 because Lek is deactivated shortly after it disengages from TCR.

If Lek binds to TCR very stably then single fully active Lek has a lifetime determined not

by deactivating ability of CD45 but rather by dissociation rate of Lck-TCR connection.

Presence of active Lck allows for phosphorylation of bystander-TCR-pepMHC which, in

turn, activates more Lek leading to global TCR phosphorylation. In this manner rare

events trigger uncontrolled activation of T-cells. The only difference between weak and

strong peptides in this situation is in average waiting time until such rare event occurs.

Biologically this would imply that every T-cell could get activated by non-cognate

peptide if we observe it for sufficiently long time, which is obviously non-realistic.

130



Hence, model 2 requires that, unlike in previous model, we use two different

parameters describing the stability of Lck-TCR complex. As one can see from table 1,

rate of Lck dissociation from TCR, koff, Lck-TCR, takes two different values: very large,

when TCR is not bound to pepMHC (i.e. Lck-TCR bond is very unstable without

pepMHC), or small value, when TCR is bound to pepMHC (i.e., Lck-TCR bond is

stable). As detailed above, additional discrimination between the rates of TCR binding

with free Lck or MHC-coreceptor mediated Lck binding is necessary in this model,

because otherwise free Lck could trigger unstimulated T-cell due to single stochastic

engagement leading to long stable binding.

As one can see from Table 1, reaction network in this model is almost identical to

the previous model with the only difference in rate constants and possibility to cross-

phosphorylate bystander TCR by Lck engaged with the other TCR. In order to study this

mechanism and do not mix it with model 1, deactivation rate of Lck was set to the very

large value. This means that Lck will be deactivated almost instantaneously upon

disengaging from TCR, hence, only proximal mode of cross-phosphorylation is possible.

Two mechanisms described by models 1 and 2 are, therefore, not mutually exclusive,

and, in reality, signal enhancement is likely to be the consequence of both of the

mechanisms.

Since no changes are made in the basic signal initiation module, model 2 is

equally capable of discriminating between agonist and non-agonist peptides (see Fig. 6.6)

in the same manner as model 1. One finds, however, that enhancement mechanism of

model 2 is less efficient compared to the model 1 (see below). It is because the

mechanism of signal enhancement in Model 2 requires that 5 proteins ultimately appear

in the very close proximity to each other (see Fig. 6.5) as opposed to just 3 proteins

"colliding" productively in the Model 1.

In terms of models simulations the difference in enhancement strength is seen

when varying TCR dephosphorylation rates in each model, which represent activity of

generic phosphotases. To recognize the effect of dephosphorylation rate one should note

that in both models TCR phosphorylation is arising from two sources: direct

phosphorylation due to engaging with agonist-MHC, which provides the signal, and
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phosphorylation due to non-agonist pepMHCs, which provides signal enhancement.

Changing the dephosphorylation rate affects differentially each of the mechanisms.

Direct phosphorylation mechanisms and rate parameters are identical in both

models. Since in both models dephosphorylation is possible only after disengagement of

TCR from MHC (i.e. when phosphotase can approach it), then, even in the limit of the

very strong dephosphorylation rate, TCRs bound to the agonist MHCs will get

phosphorylated. In this limit, upon disengagement TCRs will get dephosphorylated

almost instantaneously and thus phosphorylation levels (i.e. signal levels) are defined by

the number of TCR bound to agonist-MHC at each instant of time. Note, that signal

enhancement decreases to zero when phosphotases are very active because those TCRs

are regularly exposed to phosphotases due to shortness of binding time with non-cognate

peptide-MHC. Hence, we see that rate of dephosphorylation affects phosphorylation

levels due to signal initiation less dramatically then signal enhancement. As one

decreases kdph, TCR (i.e. reduces level of phosphotases activity), signal enhancement

becomes more and more pronounced. By comparing the level of signal enhancement for

equal values of kdph,TCR in both models we can judge the efficiency of each enhancement

mechanism.

In simulations of model 2, kdph,TCR must be decreased compared to model 1 in

order to observe similar levels of signal enhancement (see table 1 and Fig. 6.7). Indeed,
when keeping dephosphorylation rate in Model 2 exactly the same as in Model 1, one

observes no signal enhancement when comparing agonist-null-peptide mixture against.

the agonist alone. Even though this comparison allows us to judge the relative "strength"

of signal enhancement in each mechanism, it does not provide the basis for

discriminating between two models, because one can not say which value of the

dephosphorylation rate corresponds to the level of phosphotases activity inside the real

cell since kdph,TCR actually coarse-grains a number of processes into a single step

In spite of the different enhancement mechanism, model 2 exhibits features

similar to model 1 with respect to the discrimination between CD4-like and CD8-like

behavior. Similar to model 1, in model 2 there are several relevant parameters: rates of

coreceptor-MHC association and dissociation, rate of Lck associating with, and
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dissociating from, the internal domain of TCR, and, finally, the rate of phosphorylation

by fully active Lck.

Varying relevant parameters we should be able to reproduce both CD4- and CD8-

like behavior of T-cell activation module with respect to self-peptides. Namely, for

different values of the parameter we should be able to see that the self-peptides of broad

range contribute approximately equally to the signal enhancement, independent of their

quality (CD8-like), or that self-peptides of restricted range are capable of co-enhancing

(CD4-like behavior).

Decreasing coreceptor-MHC association rate or increasing their dissociation rates

decreases levels of TCR phosphorylation due to signal enhancement, but does so equally

for all self-peptides. Same results are obtained when varying parameters of TCR and Lck

interactions. Therefore, it is impossible to reproduces both CD4 and CD8 behavior only

changing these parameters. The discrimination of the self-peptides based on their quality

can, however, be explained when varying the rate of TCR-phosphorylation by fully active

Lck with CD8-like regime observed for more efficient phosphorylation by fully active

Lck, and CD4-like regime for less efficient phosphorylation (Fig. 6.8). Biologically, this

can be the consequence of the bigger stability of CD8-MHC interactions and differenes in

structure between CD4 and CD8 coreceptors.

6.4 Model 3 of self-peptide enhancement

In this part we study spatial behavior of the model that can be considered as a

modification of the "pseudodimer" model (Krogsgaard et al., 2007a). Note that in models

1 and 2 coreceptor could bind to the engaged pepMHC-TCR complex at the same time

through both its extracellular domain (CD4/CD8+MHC interactions) and its intracellular

domain (Lck associated with coreceptor + TCR interaction). This arrangement plays

important role in the described mechanism of Lck recruitment to the engaged TCR. In

this, a la "pseudodimer", model, it is assumed that due to steric reasons (Krogsgaard et

al., 2007a) such an arrangement is not possible. Instead, receptor bound to engaged TCR

through intracellular domain can attach to another MHC molecule forming

"pseudodimer" structure with two different MHCs in the close proximity of a single

coreceptor and its Lck kinase (Fig. 6.9).
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As one can see from Table 1, the basic parameters of the model are the same as

for model 2 with the exception of the dephosphorylation rate constant and rate of Lck

association with TCR. Due to this similarity, we see that discrimination of the agonist and

null peptides is preserved in this model (Fig. 6.10). However, since model 3 does not

provide efficient Lck recruitment through coreceptor, rate of direct association between

Lck and intracellular domain of engaged TCR has to be increased compared to the

models 1 and 2 in order to achieve reasonable levels of signaling. At the same time, we

find that enhancement strength, as understood in previous section, is about the same for

model 3 as for model 1. This is reflected in that similar enhancement levels (Fig. 6.11)

are achieved with same rate of dephosphorylation (Table 1). Improved enhancement in

model 3 compared to model 2 is due to strong interactions (see kon,coreceptor-MHC, Table 1)

of the extracellular domain of coreceptor with bypassing MHCs, effectively recruiting

them to the engagement site while in model 2 it was passive process of random

occurrence of MHC nearby the site of initial engagement.

We do not find, however, that "pseudodimer" behaves like catalytic center

phosphorylating multiple TCRs transiently engaging with non-cognate pepMHC part of

pseudodimer (Krogsgaard et al., 2007a). Rather, because of the short-lived coreceptor

MHC association, we find that multiple engagements of MHC-TCR lead to the signal

enhancement

Finally, we study how in this model the differences between CD4 and CD8

receptors can be accommodated. Following the same procedure as for the previous two

models, we find that in model 3 it is also effectiveness of phosphorylation by fully active

Lck that is responsible for observed experimental disparity between CD4 and CD8 T-

cells. The Fig. 6.12 indicates that for smaller value of kp.act one can observe the difference

between the different non-cognate peptides enhancing the signal, while for larger value of

kp,act all natural non-cognate peptides will deliver approximately similar level of signal

enhancement.

6.5 Discussion

We have described three models detailing possible mechanisms of signal

enhancement by non-cognate peptides. Each model is characterized by different set of
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assumptions and employs parameters consistent with available direct biophysical

measurements. Model 1 requires the smallest number of assumptions and parameters

about the molecular interactions. Models 2 and 3, however, require additional assumption

about ability of fully active Lck to cross phosphorylate bystander TCR while still bound

to initial TCR. Also supplementary distinction of Lck binding with engaged/free TCR

should be introduced to models 2 and 3. Note that models 1 and 2 are compatible with

described mechanism (Chapter 5) of the Lck recruitment, while model 3 does not have a

mechanism for coreceptor recruiting Lck to the engaged TCR. It must be also

additionally stressed that models 1 and 2 are not mutually exclusive and actual

enhancement process can employ both mechanisms at the same time.

Importance of the spatial coordination of T-cell receptors and MHC proteins is a

feature common to all the models. The locality of the action of fully activated Lck

restricts the region of active signaling to the proximity of the initial TCR-MHC

productive encounter. This correlates well with recent experiments indicating that

additional co-localization of TCRs (e.g. through the actin skeleton actions) improves

signaling in T-cells (Anikeeva et al., 2006; DeMond et al., 2008; Krogsgaard et al.,

2005). On the same basis, the experiments where peptide-MHC proteins are artificially

co-localized with a biotin link (Krogsgaard et al., 2005) are also explained by either of

three models.

Analysis of all models reveals that one of the important differences between CD4

and CD8 T-cells is the efficiency of TCR phosphorylation by fully activated TCR. This

efficiency determines the ultimate level of sensitivity accessible by T-cells, because no

pepMHC-TCR interaction can be "felt" by T-cell if lifetime of pepMHC-TCR complex is

smaller than time required by fully active Lck to phosphorylate engaged TCR. All the

considered models predict that fully active Lck is more efficient in CD8 T-cells (i.e.

kp,actCD8>kp,actCD4). This fact has to be of special importance in the situation when T-cell

operates on the edge of its sensitivity threshold, e.g. when it has to be positively selected

during the thymic selection process. In accord with the considered models, it would be

reasonable to predict that CD8 T-cells could be positively selected on the broader set of

peptides than CD4 T-cells (as measured by koff, pepMHC-TCR)- This prediction is

corroborated by recent experiments by Mark M. Davis group (Ebert et al., 2009) and
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Allen's group (Lo et al., 2009) where endogeneous positively selecting peptides were

identified for the first time and it was found that only these peptides are capable of co-

enhancing activation signal derived from agonist.

We conclude by considering the possibilities of experimental discrimination

between three models. Model 3 does not allow coreceptor to be simultaneously bound to

the engaged TCR-MHC complex with both its intracellular domain bound to TCR and

extracellular domain bound to MHC. FRET or similar structural studies could be of help

when judging the reliability of this assumption. Models 1 and 2 are different in more

subtle manner and are not mutually exclusive. Model 1 requires coreceptor to diffuse

away from the site of original engagement, while model 2 provides very local mode of

signal enhancement. Note, that Model 2 would be very insensitive to the variations in the

phosphotase maintaining Lck in its basal state (CD45), while large increase of the CD45

levels will shut down any signal enhancement in Model 1. So, varying CD45 levels and

measuring the change in signal enhancement, one can estimate experimentally the

contribution of each of the model. Alternative experiment would be to physically co-

localize coreceptor with TCR with some kind of covalent linker and determine the level

of signal enhancement. With physical co-localization, only model 2 that can be realized

and, hence, measured change in enhancement levels will describe the contribution of

enhancement in accord to the model 1.

Finally, it follows from all of the considered mechanisms that colocalization of T-

cell receptors on the surface will drastically improve signaling and sensitivity. This is

particularly important because according to recent experiments (Campi et al., 2005;

Dustin, 2009) T-cell receptors are not randomly distributed across the T-cell surface but

rather are organized in the pre-formed microcluters. The formation of microclusters can

be very important part of the spatial organization critical for the early T-cell signaling

which we plan to assess in future work.
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6.6 Appendix to Chapter 6

SSC code Model 1:
--COMPLEXES FORMATION
-- MHC/TCR bond
rxn m:MHC(t#, c#) t:TCR(m#, c#) at kon -> m.t # t.m
rxn m:MHC(t#, c#1) CD4(m#1, t#) t:TCR(m#, c#) at kon -> m.t # t.m
rxn m:MHC(t#, c#) t:TCR(m#, c#1) CD4(t#1, m#) at kon -> m.t # t.m
rxn m:MHC(c#2, t#) t:TCR(m#, c#1) CD4(t#1, m#2) at kon -> m.t # t.m

rxn TCR(m#1) MHC(t#1, p="ag") at koffAg -> break 1
rxn TCR(m#1) MHC(t#1, p="en") at koffEn -> break 1

- TCR/CD4 bond
rxn t:TCR(c#, m#) c:CD4(t#, m#) at konLck1 -> t.c # c.t
rxn t:TCR(c#, m#1) MHC(t#1, c#) c:CD4(t#, m#) at konLckl -> t.c # c.t
rxn t:TCR(c#, m#) c:CD4(t#, m#1) MHC(c#1, t#) at konLckl -> t.c # c.t
rxn t:TCR(m#2, c#) c:CD4(t#, m#1) MHC(c#1, t#2) at konLck2 -> t.c # c.t

rxn TCR(c#1, m#2) MHC(t#2) CD4(t#1) at koffLck -> break 1
rxn TCR(c#1, m#) CD4(t#1) at koffLck2 -> break 1

- MHC/CD4 bond
rxn m:MHC(c#, t#) c:CD4(m#, t#) at konCD -> m.c # c.m
rxn m:MHC(c#, t#1) TCR(m#1, c#) c:CD4(m#, t#) at konCD -> m.c # c.m
rxn m:MHC(c#, t#) c:CD4(m#, t#1) TCR(c#1, m#) at konCD -> m.c # c.m
rxn m:MHC(t#2, c#) c:CD4(m#, t#1) TCR(c#1, m#2) at konCD -> m.c # c.m

rxn MHC(c#1) CD4(m#1) at koffCD -> break 1

- MODIFICATIONS
- Phosphorylation/Dephosphorylation
rxn t:TCR(p="p0", c#1, m#2) MHC(t#2) CD4(Ick="basal", t#1) at kpl -> t.p = "p1"
rxn t:TCR(p="pl", c#1, m#2) MHC(t#2) CD4(Ick="basal", t#1) at kp2 -> t.p = "p2"

rxn t:TCR(p="p0", c#1, m#2) MHC(t#2) CD4(Ick="active", t#1) at kpactl -> t.p = "p1"
rxn t:TCR(p="pl", c#1, m#2) MHC(t#2) CD4(Ick="active", t#1) at kpact2 -> t.p = "p2"
rxn t:TCR(p="p0", m#2) MHC(t#2, c#1) CD4(Ick="active", m#1) at kpactl -> t.p = "p1"
rxn t:TCR(p="pl", m#2) MHC(t#2, c#1) CD4(Ick="active", m#1) at kpact2 -> t.p = "p2"

rxn t:TCR(p="p1", m#) at kdpl -> t.p = "p0"
rxn t:TCR(p="p2", m#) at kdp2 -> t.p = "p1"

- Lck activation/deactivation
rxn c:CD4(lck="basal", t#1) TCR(c#1, p="p2", m#2) MHC(t#2) at kact -> c.Ick = "active"
rxn c:CD4(lck="basal", m#1) TCR(p="p2", m#2) MHC(c#1, t#2) at kact -> c.Ick = "active"
rxn c:CD4(Ick="active", t#, m#) at kdeact -> c.Ick = "basal"

--initial species
new MHC(p="ag") at count ag
new MHC(p="en") at counten
new TCR(p="pO") at 300
new CD4(Ick="basal") at 100

diffusion at 0
diffusion MHC(t#, c#) at kdiff
diffusion TCR(m#, c#) at kdiff
diffusion CD4(m#, t#) at kdiff

record TCR(p="p2")

Rate parameters

'kon': 150, 'koffAg': 0.02, 'konCD': 1000, 'koffCD': 20.0,
'kpl': 0.1, 'kp2': 0.05, 'kdpl': 0.4, 'kdp2': 0.2, 'kdiff: 50, 'kact': 1,
'kdeact': 0.3, 'koffEn': 20, 'konLckl': 1, 'konLck2': 1, 'koffLck': 1,
'koffLck2': 1, 'kpactl': 10000, 'kpact2': 10000, 'countag': 0, 'count en': 0,
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SSC code Model 2
--COMPLEXES FORMATION
- MHC/TCR bond
rxn m:MHC(t#, c#) t:TCR(m#, c#) at kon -> m.t # t.m
rxn m:MHC(t#, c#1) CD4(m#1, t#) t:TCR(m#, c#) at kon -> m.t # t.m
rxn m:MHC(t#, c#) t:TCR(m#, c#1) CD4(t#1, m#) at kon -> m.t # t.m
rxn m:MHC(c#2, t#) t:TCR(m#, c#1) CD4(t#1, m#2) at kon -> m.t # t.m

rxn TCR(m#1) MHC(t#1, p="ag") at koffAg -> break 1
rxn TCR(m#1) MHC(t#1, p="en") at koffEn - break 1
-- TCR/CD4 bond
rxn t:TCR(c#, m#) c:CD4(t#, m#) at konLckl -> t.c # c.t
rxn t:TCR(c#, m#1) MHC(t#1, c#) c:CD4(t#, m#) at konLckl -> t.c # c.t
rxn t:TCR(c#, m#) c:CD4(t#, m#1) MHC(c#1, t#) at konLckl -> t.c # c.t
rxn t:TCR(m#2, c#) c:CD4(t#, m#1) MHC(c#1, t#2) at konLck2 -> t.c # c.t

rxn TCR(c#1, m#2) MHC(t#2) CD4(t#1) at koffLck -> break 1
rxn TCR(c#1, m#) CD4(t#1) at koffLck2 -> break 1
- MHC/CD4 bond
rxn m:MHC(c#, t#) c:CD4(m#, t#) at konCD -> m.c # c.m
rxn m:MHC(c#, t#1) TCR(m#1, c#) c:CD4(m#, t#) at konCD - m.c # c.m
rxn m:MHC(c#, t#) c:CD4(m#, t#1) TCR(c#1, m#) at konCD -> m.c # c.m
rxn m:MHC(t#2, c#) c:CD4(m#, t#1) TCR(c#1, m#2) at konCD -> m.c # c.m

rxn MHC(c#1) CD4(m#1) at koffCD -> break 1
-MODIFICATIONS
- Phosphorylation/Dephosphorylation
rxn t:TCR(p="p0", c#1, m#2) MHC(t#2) CD4(Ick="basa", t#1) at kpl -> t.p = "p1"
rxn t:TCR(p="p1", c#1, m#2) MHC(t#2) CD4(Ick="basa", t#1) at kp2 -> t.p = "p2"

rxn t:TCR(p="pO", c#1, m#2) MHC(t#2) CD4(Ick="active", t#1) at kpactl -> t.p = "p1"
rxn t:TCR(p="p1", c#1, m#2) MHC(t#2) CD4(Ick="active", t#1) at kpact2 - t.p = "p2"
rxn t:TCR(p="pO", m#2) MHC(t#2, c#1) CD4(Ick="active", m#1) at kpactl - t.p = "p1"
rxn t:TCR(p="pl", m#2) MHC(t#2, c#1) CD4(Ick="active", m#1) at kpact2 -> t.p = "p2"

rxn t:TCR(p="p0", m#1, c#) MHC(t#1) CD4(Ick="active") at kpactlcross -> t.p = "p1"
rxn t:TCR(p="p1", m#1, c#) MHC(t#1) CD4(Ick="active") at kpact2cross -> t.p = "p2"

rxn t:TCR(p="p1", m#) at kdpl -> t.p = "p0"
rxn t:TCR(p="p2", m#) at kdp2 -> t.p = "p1"
- Lck activation/deactivation
rxn c:CD4(Ick="basal", t#1) TCR(c#1, p="p2", m#2) MHC(t#2) at kact -> c.Ick = "active"
rxn c:CD4(Ick="basal", m#1) TCR(p="p2", m#2) MHC(c#1, t#2) at kact - c.Ick "active"
rxn c:CD4(Ick="active", t#, m#) at kdeact -> c.Ick = "basal"

--initial species
new MHC(p="ag") at count ag
new MHC(p="en") at count en
new TCR(p="pO") at 300
new CD4(Ick="basal") at 100
diffusion at 0
diffusion MHC(t#, c#) at kdiff
diffusion TCR(m#, c#) at kdiff
diffusion CD4(m#, t#) at kdiff

layout grid 100 *100

record TCR(p="p2")
record MHC(p="ag", c#, t#)
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SSC code Model 3:
limit TCR at 5
--COMPLEXES FORMATION
- MHC/TCR bond
rxn m:MHC(t#) t:TCR(m#) at kon -> m.t # t.m

rxn TCR(m#1) MHC(t#1, p="ag") at koffAg -> break 1
rxn TCR(m#1) MHC(t#1, p="en") at koffEn -> break 1

-- TCR/CD4 bond
rxn t:TCR(c#) c:CD4(t#) at konLck -> t.c # c.t
rxn TCR(c#1) CD4(t#1) at koffLck -> break 1
rxn TCR(c#1,m#) CD4(t#1,m#) at koffLck2 -> break 1

-- MHC/CD4 bond
rxn m:MHC(c#) c:CD4(m#) at konCD -> m.c # c.m
rxn MHC(c#1) CD4(m#1) at koffCD -> break 1

- MODIFICATIONS
- Phosphorylation/Dephosphorylation
rxn t:TCR(p="pO", c#1, m#2) MHC(t#2) CD4(Ick="basal", t#1) at kpl -> t.p = "p1"
rxn t:TCR(p="p1", c#1, m#2) MHC(t#2) CD4(lck="basal", t#1) at kp2 -> t.p = "p2"

rxn t:TCR(p="pO", c#1, m#2) MHC(t#2) CD4(Ick="active", t#1) at kpactl -> t.p = "p1"
rxn t:TCR(p="p1", c#1, m#2) MHC(t#2) CD4(Ick="active", t#1) at kpact2 -> t.p = "p2"
rxn t:TCR(p="pO", m#2) MHC(t#2, c#1) CD4(Ick="active", m#1) at kpactl -> t.p = "p1"
rxn t:TCR(p="p1", m#2) MHC(t#2, c#1) CD4(Ick="active", m#1) at kpact2 -> t.p = "p2"

rxn t:TCR(p="pl", m#) at kdpl - t.p = "p0"
rxn t:TCR(p="p2", m#) at kdp2 -> t.p = "p1"

-- Lck activation/deactivation
rxn c:CD4(lck="basal", t#1) TCR(c#1, p="p2", m#2) MHC(t#2) at kact -> c.ick = "active"
rxn c:CD4(Ick="basal", m#1) TCR(p="p2", m#2) MHC(c#1, t#2) at kact -> c.ick = "active"
rxn c:CD4(Ick="active", t#, m#) at kdeact -> c.ick = "basal"

--initial species
new MHC(p="ag") at count ag
new MHC(p="en") at count en
new TCR(p="pO") at 300
new CD4(Ick="basal") at 100
diffusion at 0
diffusion MHC(t#, c#) at kdiff
diffusion TCR(m#, c#) at kdiff
diffusion CD4(m#, t#) at kdiff

layout grid 100 * 100

record TCR(p="p2")
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Table 6.1 Rate parameters used in simulations of Models 1-3, studying signal

enhancement by non-cognate peptides. (Experimentally derived parameters are shown in

red, fitted parameters are shown in black - there are no experimental data available for

black entries)
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Model #
Reaction described

1 2 3

150 150 150 kon, TCR-MHC. TCR-MHC on rate (exp~ 104 Ms-1)

0.02 0.02 0.02 koffTCR-AgMHC TCR-MHC off rate for agonist peptide (exp~0.02 s-1)

1000 1000 1000 kOn,CD4(8)-MHC MHC-coreceptor (CD4/CD8) on-rate (exp~ 105 M's-1)

20 20 20 koffCD4(8)-MHC MHC-coreceptor (CD4/CD8) off rate (exp~20 s-1)

50 50 50 kiff, rate of diffusion of membrane surface proteins (~0.01 pm2/s)

20 20 20 koffTCR-EnMHC TCR-MHC off rate for endogenous peptide (exp~20 s~1)

0.05 0.05 0.05 kp, rate of phosphorylation of TCR by basal Lck

0.2 0.02 0.2 kdp,rate of dephosphorylation of TCR

1 1 100 kon, Lck-TCR, rate of Lck engagement with TCR

0.0002 0.02

1 20 20 koff, Lck-TcR, rate of Lck disengagement with TCR

300 300 300 kp,actve,, rate of phosphorylation by fully active Lck

1 1 1 kact rate of Lck activation

0.3 101 101 kdeact, rate of Lck deactivation when away from TCR-pepMHC
complex

N/A 300 kpcross rate of phosphorylation of the bystander TCR by the fully
active Lck bound to another TCR
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6.8 Figures for Chapter 6

Fig. 6.1 Pictorial description of Model 1. The grey surface represents interface between

T-cell (underneath the surface) and APC (above the surface). MHC proteins (brownish)

at APC present two types of peptides: agonist peptides (red star) and non-cognate

peptides (yellow star). Coreceptor (rainbow color) that spans through the interface is

constitutively associated with Lck (red oval) associates with MHC and TCR and after full

activation of Lck disengages, diffuses around and occasionally encounters TCR engaged

with non-cognate pepMHC and phosphorylate it.
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Fig. 6.2 Peptide potency as a function of koff of the peptidesMHC-TCR for the model

where Lck can be basally active or fully active. Simulation of 1 pim 2 of the T-cell/APC

contact area. Concentration of TCR is 300 per pm2, concentration of coreceptor is 100

per pm2.

145



80- -

60- -

40- 0

0-1

0 20 40 60 80 100

#Ag

Fig. 6.3 Signaling levels of the agonist peptide alone (closed squares) compared to the

mixture of agonist and non-cognate peptide (open circles). The curve in red describes the

behaviour of the mixture of agonist and non-agonist peptides with the rate of Lck

deactivation twice larger than that for the black curve (Table 1). Increasing deactivation

reduces the lifetime of fully activated Lck and hence reduces the signal enhancement
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Fig. 6.4 The TCR phosphorylation stimulated by agonist of indicated kog (three types of

Ag are presented: strong with ko = 0.02 in black, intermediate with kon=0.06 in red and

weak with koff=O.1 in green) or mixture of agonist together with non-stimulating peptide

(denoted as En, endogenous). x-Axis shows the kog for EnMHC-TCR interaction. Panel

(a) corresponds to the high value of the rate of phosphorylation by fully active Lck (kph,act

= 300), while panel (b) has low rate of phosphorylation by fully active Lck (kph,act 100).

As on can see from panel (a) non-cognate peptides of all kinds synergize equally well

when kph,act is large, which is reminiscent of CD8 T-cells behavior. On panel (b)

enhancement level differs for different non-cognate peptides, which is similar to observed

CD4 behavior.
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Fig. 6.5 Pictorial description of Model 2. Coreceptor binds stably to the assembled TCR-

agonistMHC complex and associated Lck gets fully activated. Fully activated Lck is

capable of phosphorylating bypassing TCRs that engage with any pepMHC in the close

vicinity of the original complex. Upon disassembly from original complex fully activated

Lck is deactivated almost instantaneously, which ensures the proximal mode of signal

enhancement.
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Fig. 6.6 Peptide potency as a function of koff of the peptidesMHC-TCR for the model 2.

Simulation of 1 pm2 of the T-cell/APC contact area. Concentration of TCR is 300 per

2 of 12
tmconcentration ofcoreceptor is 100 per M.
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Fig. 6.7 Signaling levels of the agonist peptide alone (closed squares) compared to the

mixture of agonist and non-cognate peptide (open circles). A mixture delivers biger

phosphorylation due to non-cognate peptides enhancement.
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Fig. 6.8 The TCR phosphorylation stimulated by agonist of indicated kff or mixture of

agonist together with non-stimulating peptide (denoted as En, endogenous). x-Axis shows

the kof for EnMHC-TCR interaction. Panel (a) corresponds to the high value of the rate

of phosphorylation by fully active Lck (kph,act = 300), while panel (b) has low rate of

phosphorylation by fully active Lck (kph,act 100)-
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Fig. 6.9 Pictorial description of Model 3. Coreceptor associated Lek binds to the

intracellular domain of TCR that is engaged with pepMHC. Due to steric reasons,

extracellular domain of coreceptor can not bind to the engaged MHC, and so it binds to

the bypassing pepMHC, forming "pseudodimer" like structure. When Lek is fully

activated, it can cross-phosphorylated any TCR transiently engaging with the second

pepMHC, leading to signal enhancement.
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Fig. 6.10 Peptide potency as a function of kort of the peptidesMHC-TCR for the model 3.

Simulation of 1 ptm 2 of the T-cell/APC contact area. Concentration of TCR is 300 per

pm2, concentration of coreceptor is 100 per pm2.
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Fig. 6.11 Signaling levels of the agonist peptide alone (closed squares) compared to the

mixture of agonist and non-cognate peptide (open circles) for simulation of model 3. A

mixture delivers biger phosphorylation due to non-cognate peptides enhancement.

Enhancement curves for two different agonist peptides are shown: strong agonist

(kof=0.02 s~) and weak agonist (kof= 0.1 s-)
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Fig. 6.12 The TCR phosphorylation in Model 3 when stimulated by mixture of agonist of

indicated k,,f and non-stimulating peptide (denoted as En, endogenous) or agonist alone.

x-Axis shows the kof for EnMHC-TCR interaction. Panel (a) corresponds to the high

value of the rate of phosphorylation by fully active Lck (kph,act 300), while panel (b) has

low rate of phosphorylation by fully active Lck (kph,actlO10).
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PART III

Chapter 7

A model for genetic and epigenetic regulatory

networks identifies rare pathways for transcription

factor induced pluripotency

7.1 Introduction

Cellular states are plastic, and even terminally differentiated cells (e.g., B-cells)

can be reprogrammed to pluripotency by ectopic expression of selected transcription

factors (Aoi et al., 2008; Jaenisch and Young, 2008; Meissner et al., 2007; Park et al.,

2008; Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Wemig et al., 2007). This

finding raises the possibility of creating patient-specific stem cells for regenerative

medicine (Nishikawa et al., 2008). However, reprogramming efficiencies range from

0.0001 % to 29 % (Huangfu et al., 2008; Takahashi et al., 2007; Takahashi and

Yamanaka, 2006; Yu et al., 2007), with most reports showing that successful induction of

the pluripotent state is rare even if all required factors are present (Brambrink et al., 2008;

Hanna et al., 2008). The genetic and epigenetic regulatory mechanisms that make

reprogramming possible, and determine its efficiency, are poorly understood (Jaenisch

and Young, 2008). Elucidating these mechanistic principles can help define optimal

strategies for reprogramming differentiated cells, and answer fundamental questions

regarding how cellular identity is maintained and transformed.

In spite of recent progress, our knowledge of the identities and functions of the

genes and proteins involved in regulating the transformation of cellular identity is grossly
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incomplete (Jaenisch and Young, 2008; Sridharan and Plath, 2008; Stadtfeld et al., 2008).

Thus, it is not yet possible to construct a detailed molecular mechanistic description of

how epigenetic modifications and expression of master regulatory genes are controlled.

However, ectopic expression of the same transcription factors can reprogram different

cell types (Aoi et al., 2008; Hanna et al., 2008; Takahashi and Yamanaka, 2006), and the

genetic and epigenetic transformations observed during reprogramming of diverse

differentiated cells share many common features (Brambrink et al., 2008; Egli et al.,

2008; Jaenisch and Young, 2008; Maherali et al., 2007; Meissner et al., 2008; Mikkelsen

et al., 2008; Mikkelsen et al., 2007). These common observations can be the basis for

developing a conceptual understanding of the architecture of the genetic and epigenetic

networks that regulate transcription factor induced reprogramming and establish cellular

identity during differentiation.

We have taken a step toward this goal by developing a computational model that

is consistent with, and suggests general mechanistic explanations for, empirical

observations of transcription factor induced reprogramming. The model makes

experimentally-testable predictions. If validated, descendents of this model could also

provide insights into the aberrant de-differentiation events which characterize some of the

most malignant cancers.

7.2 Model Development

Elegant theoretical models for the molecular regulatory networks responsible for

stem cell renewal and differentiation and the population dynamics of these processes

have been created (Cinquin and Demongeot, 2005; Jones and Simons, 2008; Jones et al.,

2007; Qu and Ortoleva, 2008; Winkler et al., 2007). Our goal is different. We aim to

develop a model for the architecture of coupled epigenetic and genetic networks which

describes large changes in cellular identity (e.g., induction of pluripotency by

reprogramming factors). Although the general principles of interactions between genetic

and epigenetic layers of regulation have been described (Goldberg et al., 2007; Loeffler

and Roeder, 2002), no computational model has been developed to study the outcomes of

such interactions and their biological consequences. Such a computational model would

be a useful complement to experiments in understanding the processes that occur during
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reprogramming of differentiated cells, and why reprogramming is rare. Here, we

propose, to our knowledge, the first computational model that describes how cellular

identity changes by creating a mathematical description of interactions between

epigenetic and genetic networks. Our goal is not to describe the details of how specific

regulatory proteins interact, but rather, to understand general principles underlying how

cellular states evolve upon ectopic expression of certain types of genes. The concise

model we have developed explains why reprogramming probability is low, and makes

experimentally testable predictions.

Almost all cells in a multi-cellular organism share the same DNA sequence. Yet,

different cell types express distinct genes and perform different functions. Epigenetic

modifications are major regulators of cell-type specific gene expression. They function

by packaging DNA into configurations that allow only some genes to be expressed, while

other genes are tightly packed into heterochromatin structures that hinder access of most

transcription factors (Henikoff, 2008). Changes in cellular identity during developmental

differentiation or transcription factor induced reprogramming require modification of the

epigenetic state of the cell. The maintenance and alteration of cellular identity is

regulated by a complex set of interactions between developmentally important genes,

chromatin modifiers, transcription factors etc., the details of which remain unknown.

Toward developing a model for the architecture of these complex regulatory networks we

consider only the developmentally important genes. For simplicity, each ensemble of

genes responsible for maintenance of a particular cellular identity (e.g., Oct4, Sox2, etc.,

for pluripotency) is described as a single module (Fig. 7.1 a). Theoretical justification for

treating genes that control the embryonic stem (ES) cell state as a collective unit exists

(Chickarmane et al., 2006). We also carried out some studies with each module

consisting of a small number of genes (see Fig. 7.6 and corresponding discussion below).

ES cells can differentiate in to various lineages. Upon further differentiation,

cells become more restricted. For example, hematopoetic stem cells can differentiate in

to T and B-lymphocytes, but not neural cells. Therefore, in our model, we arrange gene

modules in a hierarchy (Fig. 7.1 a). Although each cell state can potentially differentiate

in to many branches, without loss of generality, we consider two branches to emanate

from each cell state. Thus, the cellular states are arranged on a Cayley tree. In our
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model, a cell state (Fig. 7. 1b) is specified by: i] the state of the epigenome, and ii] the

expression levels of master regulatory genes.

Specification and regulation of the epigenome: The epigenome is specified by chromatin

states. Histones with positive marks (e.g. H3K4me3) promote transcription, and histones

with negative marks (e.g. H3K27me3) repress transcription (Kouzarides, 2007; Orford et

al., 2008). Hypermethylated genes are also silent (Fouse et al., 2008; Meissner et al.,
2008). Genes associated with both H3K4me3 and H3K27me3 simultaneously (bivalent

marks) can recruit promoters, but transcription is suppressed (Bernstein et al., 2006;

Efroni et al., 2008; Guenther et al., 2007). Based on these observations, in our model,
each developmentally important gene module can adopt one of three possible epigenetic

states. It can be silent either due to negative histone marks or DNA methylation (denoted

as the "-1" state), marked positively by histone marks (denoted as the "+1" state), and

marked bivalently (denoted as the "0" state). From the standpoint of gene expression,

each module can be either actively transcribing (denoted as the "+1" state) or not

(denoted as the "0" state).

During interphase, DNA with genes packaged in a way characteristic of the cell's

identity manages gene transcription and protein synthesis. Before cell division, the

chromosomes condense. During telophase at the end of mitosis, the prevailing protein

environment could alter the chromatin states of decondensing chromosomes in a daughter

cell, thereby modifying the epigenetic state of its DNA (Egli et al., 2008; Orford and

Scadden, 2008). We divide the cell cycle in to two parts (Fig. 7.2). During phase one

(termed interphase, for ease of reference), the epigenetic state cannot be modified and

gene expression is subject to this constraint. In phase two (termed telophase, for ease of

reference), the epigenetic state can potentially be altered by the protein environment

established during the preceding interphase.

Chromatin state maps show that the ES state is characterized by an unusually

large proportion of bivalent chromatin marks on developmentally important genes

(Bernstein et al., 2006; Mikkelsen et al., 2007; Pan et al., 2007). Therefore, we define the

ES state as one where the gene module controlling this state (expressing Sox2, Oct4, etc.)

is in the open chromatin state and all other master regulator genes are bivalently marked

(Fig. 7.1b, left panel). Since the identities of all master-regulatory genes are not yet
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experimentally available, it should be noted that bivalency of all master-regulatory

modules in the ES state is an assumption that extrapolates available knowledge to yet

unidentified modules.

It is known that, as cells differentiate from the ES state, bivalently marked genes

remain bivalent, acquire a positive mark, or are silenced by negatively marked histones or

methylation (Bernstein et al., 2006; Mikkelsen et al., 2007; Pan et al., 2007). Other than

pluripotent ES cells, upon receiving appropriate cues, a cell state can only differentiate in

to other states in the same lineage. Upon differentiation from the ES state positive

histone marks are removed at an earlier stage compared to silencing of genes by DNA

methylation, and reactivation of DNA methylated genes is more difficult than those with

negative histone marks. These facts are encapsulated in our model by the following rules

regarding how proteins expressed by a particular gene module can modify epigenetic

states during telophase (Fig. 7.3b): 1] They favor putting positive marks on the module

that expresses them, which enables stable maintenance of cellular identity. 2] They favor

putting negative histone marks on the modules regulating the immediate progenitor or an

immediate "sibling" in the hierarchy; this hinders differentiation in to cells in competing

lineages and accidental de-differentiation to the progenitor. 3] They favor putting

bivalent histone marks on the modules that regulate immediate progeny, which keeps

cells poised to differentiate. 4] They favor methylation of all modules that regulate cell

states in competing lineages or less differentiated states in the same lineage. This has a

similar effect as the marking of histones in rule 2.

Rules 1-3 are based on experimental facts, and concern how proteins expressed by

a gene module can affect the histone marks of only modules that regulate its immediate

precursor, immediate progeny (see Fig. 7.3b), or other states to which its precursor can

differentiate (i.e., "nearest neighbors" on the hierarchy of gene modules shown in Fig.

7.1 a).

Rule 4 states that proteins expressed by a gene module favor silenced chromatin

state of gene modules that are distal from it in the hierarchy by DNA methylation (Fig.

7.3b). Although there are no experimental measurements showing that methylation of

unrelated lineages is directly caused by master-regulatory genes of current cell state, this

rule is motivated by the global DNA methylation of genes of unrelated lineages observed
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upon cell differentiation (Maherali et al., 2007; Meissner et al., 2008) and the fact that

global DNA hypomethylation blocks differentiation (Jackson et al., 2004). To further

investigate the effect of such long-range interactions, we have perturbed the formulation

of rule 4 in different ways. We find that unless long-ranged nature of rule 4 is included,
the in silico reprogramming trajectories exhibit features which are inconsistent with

experimental observations. In particular, stable expression of protein products of the ES

master-regulatory module becomes possible within the first reprogramming cycle, in

contradiction with the observation that endogenous Oct4 is expressed shortly before

completion of reprogramming after at least 12 days of action of reprogramming factors

(see, for example Fig. 2 in (Jaenisch and Young, 2008) and references therein). Our

computational results are also inconsistent with this observation if we allow proteins

expressed by a module to put bivalent marks on all modules that regulate states in the

lineage that are below it, rather than just the immediate progeny (rule 3 above).

Specification and regulation of gene expression: In our model, gene expression during

interphase is subject to constraints imposed by the epigenetic marks as follows: 1'] if a

gene module is positively marked, its expression is favored. Expression of bivalently

marked gene modules is not favored, but it is not as strongly suppressed as modules that

are negatively marked or DNA methylated (see Eq. 3 in Methods). 2'] Diverse

experimental data (Briscoe et al., 2000; Rekhtman et al., 1999) show that, due to effects

such as feedback regulation, etc., expression of genes from competing lineages is

mutually repressed. For example, GATA-1, erythroid lineage specific gene, and PU-1,
transcription factor for genes of myeloid lineage are among the most studied master-

regulatory genes. They posses typical properties attributed to the master-regulators in this

manuscript: they enhance their own expression (Nishimura et al., 2000; Okuno et al.,

2005) and mutually antagonize each others' activity (Cinquin and Demongeot, 2005;

Rekhtman et al., 1999; Roeder and Glauche, 2006). We thus impose such mutually

repressive interactions to gene modules that regulate directly competing cellular states

(i.e., nearest neighbors in the hierarchy in Fig. 7.3a).

Rules 1-4 noted above are meant to describe how the epigenetic state is

maintained and how it could evolve due to protein products of signaling events or ectopic
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expression of transcription factors. During telophase, there could be a "tug of war"

between the epigenetic state preferred by newly expressed proteins and that preferred by

proteins expressed in accord with the preceding epigenetic state (Orford and Scadden,

2008). Similarly, rules 1' and 2' could lead to a tug of war between expression of

different genes. Our computations reveal possible outcomes of these battles.

The epigenetic modifications during telophase or gene expression patterns during

interphase are simulated on a computer using a Monte-Carlo algorithm, with rules 1-4

and l'-2' represented as effective Hamiltonians (Eqs. 2-3, Methods). We specify the

initial epigenetic state of the cell or the proteins that have been expressed in the previous

interphase (including signaling products and ectopic expression of transcription factors).

If the gene expression pattern is specified, simulation of telophase results in an epigenetic

state that becomes the input for simulation of the next interphase, and so on (see

Methods).

7.3 Results: Differentiation

ES cells are cultured in specific media (e.g., containing LIF/BMP4 for mouse ES

cells) to prevent differentiation (Ying et al., 2008). The medium inhibits a self-induced

differentiation pathway. We represent this feature by assuming that proteins expressed

by the module regulating the ES state favor putting positive chromatin marks on gene

modules regulating immediate progenies if LIF, etc. are absent. Simulations of this

situation show (Fig. 7.4) that, as in experiments (Jaenisch and Young, 2008), ES cells

differentiate randomly to one of their progeny.

Our model exhibits robust differentiation (forward programming) to specific cell

states when the appropriate cues are delivered. Appropriate cues are expression of

proteins (e.g., signaling products) that become available during interphase. In the next

telophase, these proteins favor putting positive histone marks on the gene module

regulating the appropriate progeny of the current cellular state (rule 1). Results from our

computer simulations demonstrate that our model exhibits high-fidelity responses to such

differentiation cues. This is consistent with the experimental observation that

overexression of the master-regulatory genes of desired lineage leads to predominant

differentiation in that direction (David et al., 2008; David et al., 2009). This result is
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relevant because practical use of induced pluripotent cells will involve differentiating

them to desired cell types. We also find an exponential decay of the number of

progenitor cells (with a signal strength-dependent lifetime), as has been noted before

(Johnston et al., 2007).

7.4 Results: Reprogramming

We simulate reprogramming experiments by starting with a terminally

differentiated cell state where genes from other lineages, etc., have been epigenetically

silenced. Our basic premise is that terminally differentiated cells can reprogram because

protein products of the ectopically expressed genes can potentially alter the epigenetic

state of the cell as a cell progresses through the telophase. In our low resolution model,

we identify genes not by names, but rather by their functional properties. We presume

that Klf4 and c-Myc are important ingredients of the reprogramming "cocktail" because

they promote progression through the cell cycle, and this provides more opportunities for

the other reprogramming factors to perturb the epigenome during telophase. This

functional identification of Klf4 and c-Myc makes our model general, and is validated by

experiments showing that shutting down p53 abrogates the need for Klf4 and c-Myc for

reprogramming (only Oct4 and Sox2 required) precisely because this also allows faster

progression through the cell cycle (Banito et al., 2009; Hong et al., 2009; Kawamura et

al., 2009; Marion et al., 2009; Utikal et al., 2009). Oct4 and Sox2 have an enormous

number of binding targets on the DNA, and are responsible for maintenance of the ES

state which likely implies multiple interactions with master-regulatory genes. We

therefore identify the ectopic expression of these genes with the function of being highly

likely to perturb the epigenome during telophase.

Each gene module in our model corresponds to an ensemble of carefully tuned

mutually interacting master-regulatory genes that govern a particular cellular identity. At

the moment, not all of the master-regulatory genes of cellular states are experimentally

identified, thus we use gene modules to represent these ensembles in a general way. Even

though products of ectopically expressed Oct4 and Sox2 have numerous targets (Wilson

and Koopman, 2002), it is unlikely that the epigenetic state of many such sets of genes

will be simultaneously altered. Thus, in order to mimic the effect of reprogramming
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factors, we randomly pick one epigenetically silenced gene module and change its state to

correspond to open chromatin. To examine the effects of overexpression of ectopic

genes, we also study the consequences of multiple epigenetic transformations at a time

(see Fig. 7.6 and discussions below).

Starting with a terminally differentiated state we perturb the epigenome as

described above, and then simulate the next gene expression phase where both the

module regulating the terminally differentiated state and the one which was transformed

to open chromatin status can express proteins according to rules 1'-2' (or Eq. 3). The

protein atmosphere thus generated becomes the input to simulation of the next telophase

according to rules 1-4 (or Eq. 2). This can then potentially establish a new epigenetic

state which becomes input to simulation of the next gene expression phase; i.e., the

genetic and epigenetic states are allowed to come to a new balance. Then, the epigenetic

state of another randomly picked silent gene module is changed to open chromatin

because of the effects of reprogramming factors. This procedure is continued.

We carried out 10, 000 independent replicate simulations of the effects of ectopic

expression of reprogramming factors on a differentiated cell in a model with four levels

in the hierarchy of cellular states. Results from each simulation describe the fate of a

single cell in a population. Only 3 out of 10, 000 "cells" successfully reprogrammed; i.e,

as in experiments, reprogramming is rare. The percentage of cells that reprogram

depends upon the number of levels in the hierarchy (0.0001 % and 2 % of the cells

reprogram successfully for a five-level and three-level hierarchy, respectively). This

suggests that reprogramming efficiency should improve for less differentiated cells. This

remains to be demonstrated directly in a well-defined lineage such as the hematopoietic

system. However, some support for this idea exists. Hanna et al. demonstrated a notable

increase in the efficiency of reprogramming B cells upon Pax5 knockdown (17). Loss of

Pax5 had been previously shown to cause dedifferentiation of B cells to a common

progenitor that upon transplantation allowed T cell development (Nutt, 2008).

We report results for models consisting of 3-, 4- and 5-levels in the hierarchy of

gene modules, but in real organisms the depth of the differentiation tree could be as large

as tens of levels (Matthew and Brian, 2006). Since our results indicate that

reprogramming efficiency decreases quickly with the increase in the depth of the
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hierarchy, it is natural to ask why reprogramming is at all feasible. The reason is that

master-regulatory genes that regulate closely related states are not mutually exclusive sets

of genes. The difference between genes that regulate closely related cellular states can be

as small as one or two genes (Nutt, 2008). However, genes that regulate cellular states

distal in the hierarchy are not correlated in this way. As our model does not treat

correlations between genes that regulate closely related states, in effect, each gene

module in our model represents master regulatory genes that control the identity of a

number of cellular states that have many master regulatory genes in common. Thus, a 5-

level hierarchy in our model might represent a 50-level depth of differentiation in a real

organism.

The results reported above were obtained for specific values of parameters (Table

1) which represent rules 1-4 and l'-2' (Eqs., 2-3 in Methods). Our simulation results are

consistent with diverse experimental observations (see Table 2 and discussion below)

only if the methylation constraints (rule 4) and mutual repression of expression of gene

modules (rule 2') are relatively strong effects (i.e. H>G and J>F, see Table 1 and

parameter sensitivity in SI for further details). As long as these two conditions are met,
the specific choice of parameter values only alters the quantitative value of the number of

successfully reprogrammed cells, but reprogramming to the ES state remains rare.

Our simulation results suggest a mechanistic explanation for why reprogramming

is so rare. When reprogramming factors attempt to change cellular identity by altering

the epigenetic state of a previously silenced gene module, the probability of success

depends upon the position of this module relative to the one that regulates the terminally

differentiated state. We find that the position of the module whose epigenetic state is

altered can belong to one of three categories (Fig. 7.5a).

Suppose this gene module regulates a cellular identity in a different lineage from

the terminally differentiated state. In the next interphase, both modules can express

proteins as there are no mutually repressive interactions between them. In the subsequent

telophase, proteins expressed by each module would favor epigenetic silencing of the

other (rule 4). Expression of proteins characteristic of a cell type from a different lineage

does not favor reprogramming because it leads to cell death or arrest in our model. Cell

death could be mediated by various mechanisms including genetic instabilities if the two
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open gene modules send conflicting instructions to housekeeping genes. Of course, there

is also the chance that the cell will be rescued by stochastic expression of some master-

regulatory gene, or that the cell will assume an "intermediate" cell state without master

regulation that could be viable, but does not reprogram, such as some arrested

states(Mikkelsen et al., 2008); finally, there is a possibility that two master regulators will

not repress each other in full, but some minuscule amount of expression of both will

remain thus, arresting the cell. Within the framework of our model we do not distinguish

between these possibilities, and classify cells in all these unusual, dead, or arrested states

to be dead/arrested.

The gene module whose epigenetic state is altered by reprogramming factors

could be in the same lineage as the differentiated cell, but not be its sibling or progenitor.

In the following interphase, this module and the one that regulates the terminally

differentiated state can both express proteins. In the subsequent telophase, according to

our model, protein products of the gene module regulating the terminally differentiated

state will favor epigenetic silencing of the module that was turned on by the action of

reprogramming factors (rule 4). But, the opposite is not true because the cellular state

regulated by the gene module whose epigenetic state was altered by reprogramming

factors could potentially differentiate to the terminally differentiated cell type. Thus, the

altered gene module will be silenced again, and the cell remains terminally differentiated.

Reprogramming factors could also change the epigenetic state of a previously

silenced gene module which regulates an immediate sibling or the progenitor of the

terminally differentiated state. In the subsequent interphase, these two gene modules with

open chromatin status will not simultaneously express proteins at high levels. This is

because gene modules that are "nearest neighbors" in the hierarchy mutually repress each

other (rule 2'). If the dominantly expressed gene module (determined stochastically) is

the one which regulates a sibling or the progenitor of the terminally differentiated state,

then during the next telophase its products will establish epigenetic marks consistent with

a new identity (rule 1). Thus, with a probability determined by stochastic effects, a step

toward reprogramming can occur via trans-differentiation or de-differentiation.

These arguments suggest that a step toward reprogramming occurs with

significant probability only if the epigenetic state of a gene module regulating a sibling or
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progenitor of the differentiated cell is. changed to open chromatin status by

reprogramming factors. This is a rare event in our simulations where the set of master

regulator genes that determine a cellular identity are considered to be one gene module.

In reality, this is even less likely because it requires reprogramming factors to orchestrate

changes to a set of master regulator genes synchronously. For successful reprogramming

to the ES state, a sequence of such rare events must occur in a particular cell. This is

because after a step toward reprogramming occurs, the partially reprogrammed cell is

subject to all the constraints discussed above. Therefore, although cellular identity is

plastic, reprogramming a terminally differentiated cell to the ES state is rare and requires

many cell cycles.

Two examples of how states evolve under the influence of reprogramming factors

in our simulations are shown in Fig. 7.5b. The first example shows a "cell" that does not

successfully reprogram, as after a successful trans-differentiation, ultimately the cell is

arrested/dead. In the second example reprogramming to the ES state occurs successfully,

and it shows an interesting feature. At an intermediate time point, before the ES state is

realized, reprogramming factors have turned on expression of the endogenous gene

module that regulates the ES state. But this is transient, as this module is quickly

silenced. We find that, unless proteins expressed by each gene module can DNA

methylate genes that are distal in the hierarchy of states (rule 4), expression of

endogenous genes that regulate the ES state can occur early and prior to the temporal

increase in the number of bivalently marked genes observed during reprogramming. In

other words, our model recapitulates the observation that endogenous expression of Oct4

and Sox2 is the last step toward reprogramming only if the DNA methylation constraint

is "long-ranged". Thus, the model suggests that transient blocking of de novo

methyltransferases might allow endogenous expression of Oct 4, Sox2, etc., at

intermediate time points. This is consistent with the observation that DNA

methyltransferase and histone deacetylase (HDAC) inhibitors, such as valproic acid

(VPA), an HDAC inhibitor, improve reprogramming efficiency (Huangfu et al., 2008).

Our model predicts that reprogramming occurs via a sequence of trans-

differentiations to immediate siblings or de-differentiations to immediate progenitors in

the hierarchy of cellular states. Note, however, that our results do not imply that pure
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differentiated states will be observed as reprogramming occurs. Oct4, Sox2, etc., have

numerous targets, and so genes from unrelated lineages will transiently be expressed

during reprogramming to the ES state (22). But, the entire set of master regulatory genes

for a cellular state from a different lineage will not be expressed.

We illustrate this point by showing computer simulation results from a model

where we consider each gene module to be comprised of three individual genes (Fig.

7.6). Reprogramming factors can attempt to change the epigenetic state of the individual

genes randomly as before. However, in this more complex model, if we allow only one

gene's epigenetic state to be modified in every telophase, reprogramming becomes so

rare that we cannot observe it in a realistic computer simulation time. So, we allowed a

larger number of transformations per cycle. Choosing this number to be too large

corresponds to overexpression of reprogramming factors, and this severely hinders

reprogramming (supplementary information, section 3). For the results shown in Fig.

7.6, we randomly pick 12 genes and change their epigenetic states during each simulated

telophase. We assume that the entire set of genes comprising a module must be

expressed for its products to regulate the epigenetic or genetic network. This is

consistent with combinatorial control of regulation.

Fig. 7.6a shows two examples of in silico cells that successfully reprogram to the

ES state. Reprogramming takes place via a sequence of trans-differentiation and de-

differentiation events wherein the entire set of genes that regulate a progenitor or sibling

of the previous cellular state is expressed. But, the intermediate states are not pure

differentiated states as some genes from unrelated lineages are also turned on at the same

time (as observed in experiments (Mikkelsen et al., 2008)). If the terminally

differentiated state in our simulations is analogous to a B cell, our simulations predict that

all successfully reprogrammed cells must transit through an impure state where all the

genes regulating the hematopoetic stem cell state are turned on (as in Fig. 7.6a).

Although beyond the scope of this work, it would be reasonable to test this

prediction by applying a cre-lox based lineage-tracing approach. Using one or more

stem/progenitor specific promoters that are inactive in the terminal state (e.g., B cell), in

combination with a lox-STOP-lox reporter, one could retrospectively determine whether

all the resulting iPS cells are labeled and hence have transiently expressed markers of
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earlier stages within the same lineage. An unrelated cell type, such as fibroblasts, should

generate unlabeled iPS cells because it would not be expected to transition through

hematopoietic progenitor stages and hence serve as an appropriate control.

The results depicted in Fig. 7.6 could also potentially be assessed quantitatively in

experiments where the temporal evolution of the gene expression patterns of a number of

successfully reprogrammed cells is observed. Consider a state where the master regulator

genes corresponding to a particular cellular identity are all expressed. One could then

ask: when these genes are subsequently silenced during reprogramming, which complete

set of master regulatory genes start expressing proteins? One could ask this question at

various times during reprogramming and in various successfully reprogrammed cells.

This would enable calculation of the following four point correlation function (C):

CQi, j; t, t + At) = (5si,o (t + At),5su(t + At).osa~ (t)oso (t)) (1)

where 6 is the Kroenecker delta, t is time, t+At is a later instant in time during

reprogramming (a cycle in our simulations), i and j are labels of two genes, and Si is

either 1 or 0 depending upon whether the ith gene is expressing proteins or turned off.

Our computer simulations predict (Fig. 7.6b) that, at each stage of

reprogramming, the correlation function would have high values for genes from lineages

related to the terminally differentiated starting point and low values for genes of

unrelated lineages. We hope that this prediction can also be assessed in future

experiments. This could involve permanent labeling as mentioned above, or possibly, in

the long-term, real-time monitoring of cell state transitions.

7.5 Discussion

To the best of our knowledge, we have developed the first computational model

that describes how terminally differentiated cells may be reprogrammed by expression of

ectopic genes. This is achieved by a mathematical description of interactions between

epigenetic and genetic networks of master-regulatory genes that govern specific cell

states. The model also describes differentiation in accord with experiments. Our model

describes cellular states as attractors on a generalized landscape of all possible

genetic/epigenetic configurations. Cellular states are stable, self-renewing states unless a

perturbing signal (either differentiation cue or reprogramming factors are introduced).
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As summarized in the table 2, major features of the reprogramming process are

explained by our results and the mechanism of reprogramming it suggests. For instance,

different cell types can be reprogrammed with the help of the same set of factors(Aoi et

al., 2008; Hanna et al., 2008; Maherali et al., 2007) because ectopic expression of genes

that have many targets (e.g., Oct4 and Sox2) can perturb the epigenetic state regardless of

the identity of the starting differentiated cell type. The importance of fast progression

through the cell cycle (due to cMyc, Klf4, or p53 knockdown) is because this offers more

opportunities for epigenetic transformations during telophase. The important

experimental observation that endogenous Oct4 and Nanog expression (Jaenisch and

Young, 2008) occurs just prior to complete reprogramming is also recapitulated by our

model. The stochastic nature of the reprogramming process(Hanna et al., 2009) and its

low yield (Jaenisch and Young, 2008) are because only a few types of trajectories can

lead to successful reprogramming, and they are realized rarely by stochastic perturbation

of the epigenome by the reprogramming factors. Our model predicts the nature of these

rare trajectories to be those that progress through reprogramming via de-differentiation to

closely related cell types (immediate progenitors or siblings in the hierarchy). Ways to

directly test this prediction are suggested. However, any feature that involves a specific

molecular interaction between specific molecules is not described by our model.

In our current model, we consider states with genes that express proteins with

conflicting demands to die/arrest. In reality, some of these situations can give rise to

steady states that do not arrest or reprogram (such as the recently studied BIV1, MCV8,

etc., cell lines) (Mikkelsen et al., 2008). The ideas emerging from our model are

consistent with observations made by manipulating these trapped states.

For example, consider the observation that removing reprogramming factors

allows cells from the BIVI cell line (isolated during reprogramming of B lymphocytes)

(Mikkelsen et al., 2008) to reprogram to the ES state. This suggests that overexpression

of reprogramming factors prevents these cells from reprogramming to the ES state. Our

model suggests that this could be due to two reasons. First, over expression of

reprogramming factors (which have many targets) could simultaneously change the

epigenetic states of a number of silenced genes to permissive chromatin status. Our

simulations of the model shown in Fig. 7.6 with a large number of such simultaneous
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transformations (e.g., 22 at a time, rather than 12 at a time used for Fig. 7.5) prevents

successful reprogramming because of the large probability of obtaining dead or arrested

states. As noted above, one of these states that cannot reprogram could correspond to the

BIVI cells.

Secondly, our model describes how lowering expression of reprogramming

factors in BIVI cells could enable reprogramming. In our simulations, we consider

proteins expressed during each interphase to act on the epigenome to reach a new balance

which then leads to a corresponding protein expression pattern before another epigenetic

transformation can occur due to the action of reprogramming factors. This is analogous

to assuming that the reprogramming factors can act to change the epigenetic state of a set

of master regulator genes rarely. If reprogramming factors are grossly overexpressed,

this would not be true. So, before a new protein expression pattern could be expressed

consistent with a newly acquired epigenome (say, de-differentiation to a progenitor),

another epigenetic transformation would occur, and the whole cycle would start again.

Simulation results showing this effect upon overexpression of reprogramming factors are

depicted in Fig. S7.4b. Removing reprogramming factors could potentially allow

reprogramming of cells trapped in such an infinite loop.

Our low-resolution model for the architecture of genetic and epigenetic regulatory

networks that determine how cellular identities change is consistent with diverse

observations (Table 2). In formulating this model, we ruled out many models that were

inconsistent with known experimental results, but we cannot rule out all other possible

models. Therefore, the predictions of the model (noted earlier) need to be experimentally

tested (perhaps in ways that we have suggested) to either falsify it or encourage studying

it further. If tested positively, the suggestions emerging from our model regarding ways

to enhance reprogramming yields should be further explored. It would also be interesting

to study other transcription factor induced cell state conversions (Davis et al., 1987; Xie

et al., 2004) within the conceptual and computational framework we have developed for

how cellular identity is transformed. In particular, recent results of direct conversion

between exocrine and endocrine cells through ectopic expression of three alternative

transcription factors (Zhou et al., 2008) should be examined.
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It would be interesting to further investigate several assumptions adopted in the

model for the lack of specific information about individual master-regulatory modules.

For example, maximum expression levels of different master-proteins within different

modules could differ, as well as coupling between genetic and epigenetic networks could

be different for different modules. Also, we assumed that every simulated cell (as

represented by a simulated trajectory) has the same level of expression of reprogramming

factors while in reality cells can be transfected in a heterogeneous fashion. Also, the

difference in viral integration sites in different cells could lead to the different expression

levels of exogeneous genes thus making effect of reprogramming factors heterogeneous

across the population. In a sense then, we have studied those cells which have expressed

reprogramming factors at levels above a threshold. It would be interesting to further

explore the consequences of such heterogeneity. Another avenue for further exploration

lies in defining the notion of time during the reprogramming process, in this work cell

cycling has been adopted as a measure of time required for reprogramming while in

reality cells cycle with non-equal rates determined from some form of cell division rate

distribution (simplest form would be an exponential distribution). It would be interesting

to see applicability of the 4-point correlation function based analysis for the situation

when cell cycling rates are not identical. Finally, de-silencing action of reprogramming

factors is assumed to be distributed randomly. It would be interesting to consider

situations when de-silencing distribution is not uniform across the hierarchy. It is possible

that non-uniform distributions can improve the reprogramming efficiency.

From the standpoint of statistical physics, our model couples a Potts model with

short and long-ranged interactions in external fields (Eq. 2) with an Ising model with

short-ranged interactions in an external field (Eq. 3). It may be fruitful to develop a

deeper field-theoretic understanding of such models.

7.6 Simulation Methods

All simulations are carried out with the help of two hierarchical lattices because

two lattices are required to properly describe the cell state as shown in Fig. 7.1b. In the

simulation code provided in supplement, we consider 4 levels in the hierarchy (such as

the one in Fig. 7. 1b). Other possibilities (3 and 5 levels) have been considered also.
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The epigenetic lattice has a discrete epigenetic state associated with each node (-

1,O,+1). SePigen - _1 corresponds to closed chromatin, SePien = 0 corresponds to bivalent

chromatin and Sepie = +1 corresponds to open chromatin. Genetic lattice describes

expression of proteins from master-regulatory modules. It has discrete gene expression

states associated with each node (0, +1). Sen = 0 corresponds to the absence of any

protein expression from the given gene, Sgen = + 1 corresponds to the maximum protein

expression from the gene.

In order to initialize simulations one has to specify either the epigenetic or genetic

state of the lattice (see Fig. 7.7). If we start by specifying the protein expression pattern,

computer simulations are carried out to determine the epigenetic state that is realized in

telophase. A Monte-Carlo simulation algorithm is used in accord with the following

Hamiltonian, with its four terms representing rules 1-4 (see Model development),

respectively:

H[{S|'}]=-G <Si" >S,'+G ><S" >.Sj +G j<S >| Se '|
ij Esibling ,progeny of i 1, jeparent of i

+H (< Sj "" > -a)Siep (2)
j,ioprogeny of j
and i j

Si"P denotes the epigenetic spin state of the ith module, and Sigen specifies the protein

expression level of the ith module. The angular brackets denote the average expression

level of the jth module obtained during the preceding interphase, and could include

protein products of ectopic genes or signaling events. ISj*PI represents the absolute value

of Siep. The quantity G is a positive parameter that represents the strength with which the

protein atmosphere can modify the epigenetic state by altering histone marks. H is a

positive parameter that represents the strength of the DNA methylation constraint. The

quantity, a, is a positive constant that favors values of Siep < a if proteins expressed by

gene, j, are present. As detailed in the supplementary information (section 2), the results

of our simulations are inconsistent with experimental results if H is not greater than G.

As long as H > G, our qualitative results do not depend upon the specific values of these

parameters. The specific value of a does not affect qualitative results. Results presented

in the main text are for a = 0, and G = 25, H = 40 (in units described below).
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During simulation of the telophase, the epigenetic state S*Pep" of each module

fluctuates. The output of the telophase simulation is < SePige>, an average of these

fluctuating values for each node of the lattice (i.e. for each module). Because we have a

discrete representation for the epigenetic marks (+1, 0, or -1) while actually each gene

bears multiple marks, using the average allows us to reflect intermediate levels of

positive and negative histone marks on a gene. For example, an average value near zero

for the epigenetic state of a gene module implies that both positive and negative marks

are present on histones associated with it, a value close to one represents an open

chromatin state, etc.

Average values of epigenetic state serve as input for simulation of interphase. If

<epign> ~1 (gene is epigenetically available), than it will favor protein expression during

the interphase in accord with the rules depicted on Fig. 7.3a. Similarly, if two

neighboring states are epigenetically available, only one protein will be expressed due to

mutual repression of neighboring master-regulators. Separate Monte Carlo simulations

are carried out to establish gene expression patterns during interphase. The following

Hamiltonian, with the two terms in it corresponding to rules 1' and 2' (see Model

development), respectively, is used:

H ({S'en }] = -Fj (< Sep > -b)Sen + j S,"en S "en (3)
SitjEnearest neighbors

The angular brackets denote the average value of epigenetic state of the ith module

obtained during the preceding telophase. F is a positive constant that represents how

strongly a protein is expressed or repressed if it is in open chromatin state or in

heterochromatin, respectively. The parameter, b, is a positive constant; protein

expression is favored if <Siep> > b. Note that the form of the first term in Eq. 3 implies

that protein expression is more strongly repressed if a gene is packaged in

heterochromatin compared to if it is bivalently marked. J represents the strength of

mutual repression by other proteins. As detailed in the supplementary information

(section 2), our results are inconsistent with experiments if J is not greater than F. As

long as J >F, the specific values do not affect qualitative results. As long as the

parameter b is larger than the typical size of fluctuations in <Si*P> (- 0.1), the specific
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value of b does not affect qualitative results. Results presented in the main text

correspond to b = 0.3, and F = 2000, J = 3000 (for units, see below).

Values of Sigen fluctuate during this Monte-Carlo procedure. The output of the

simulation of the interphase is <Sien>, which represents the average expression level of

the regulatory protein in the interphase. These averages are further used in the next

telophase simulation, thus, completing the cycle.

The Monte-Carlo algorithm is standard (Frenkel, 2002): the lattice spins (+1/0/-i

on epigenetic lattice; +1/0 on genetic lattice) are initialized randomly. The move consists

of 1) randomly choosing the node on the lattice; 2) randomly deciding on the choice of

new value of Si for this node (i.e. if Si*pigen was 0 then it can become -1 or +1 with equal

probability; 3) energy for this configuration is computed according to the appropriate

Hamiltonian; 4) attempted changes in state are accepted with probability equal to min [1,

exp {[- /AH{S,}] ]. The parameter, p, is analogous to inverse temperature used in

simulation of thermal systems, and sets the scale for the parameters, F, G, H and J. If we

pick this effective temperature to be too high (P << F, G, H, J), the system is disordered;

specific cellular identities are not established and the model has no biological

significance. We use P 1 for results reported in the main text.

A computer code written using the C++ language is provided in the supplement

allows calculation of all the results we report. For details regarding the output and input

formats see the supplementary information.
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Table 7.1: Parameters used to obtain the simulation results reported in the main text.

Results do not change qualitatively as long as the parameters lie in the following ranges:

H>G, J>F, 0.1<b<O.5 and O<a<0.6

Value of the
Parameter of the model

parameter

Protein action on epigenetic lattice G=25

Mutual suppression by two proteins J=3000

Action from epigenetic to genetic lattice F=2000

Methylation strength H=40

Minimal protein expression level required to actively a=0

affect epigenetic state of the gene

Minimal epigenetic availability of the gene required
b=0.3

to allow protein expression

Table 7.2: Experimental features of reprogramming explained by the proposed model

Experimental reprogramming features explained by the model

Reprogramming takes at least 12 days of continuous cell

transformation (Brambrink et al., 2008)

Low yield of reprogramming process(Jaenisch and Young, 2008)

Stochastic nature of reprogramming(Hanna et al., 2009)

The fact that the same gene cocktail can reprogram different

terminal cell types(Aoi et al., 2008; Hanna et al., 2008)

The fact that immortalizing the cells should improve

reprogramming, e.g. by knock-down of p53 gene(Hong et al., 2009;

Kawamura et al., 2009; Marion et al., 2009)
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7.6 Appendix to Chapter 7

7.6.1. Parameter sensitivity studies

Here we discuss how changes in the six parameters in our model (Eqs. 2 and 3 in

the main text) affect the results of our computer simulations. The results shown in the

main text correspond to the following parameter values: F=2000; J=3000; G=25; H=40;

a=0; b=0.3

The effective temperature used in the simulations is T=1. For any other choice of

the temperature, T"**, the parameters F,J,G,H have to be linearly scaled; i.e.,

Fnew=F*Tnew , etc, for the simulation results to be invariant.

The simulations results reported in the main text do not change qualitatively as

long as the parameters lie in the following ranges: H>G>>T & J>F>>T, b lies between

0.1 and 0.5, and a between 0 and 0.6. Below, we provide a detailed description of why

these parameter ranges are appropriate.

la. Parameters involved in simulation of the epigenetic network (Eq. 2). H, G, and a.

The parameters, G and H, describe the coupling between genetic and epigenetic

networks. For example, G is the strength with which a value of <Sigen> = 1 (i.e., high

protein expression by the ith gene module) favors a value of + 1 for <Sieggen> (i.e., open

chromatin) during simulation of the epigenetic network. H is the strength of the

methylation constraint. It determines the strength with which proteins expressed by a

gene module favor methylation of another gene module according to rule 4 in the main

text. We have carried out simulations with H>G, H~G, and H<G. The simulation

results reported in the main text correspond to H>G. The other two parameter regimes

lead to results that are inconsistent with experimental findings as described below.

Consider situations where G and H are approximately of the same magnitude, H -

G. Now, when proteins expressed by two distal gene modules are expressed

simultaneously (for example, as a result of reprogramming factors' action), this leads to a

tug-of-war which is resolved in several (typically, 2-3) cell cycles. Because H~G,
stochastically, only one of the modules will be silenced when cell will achieve

epigenetically/genetically balanced state. When H=G and two proteins are expressed at

exactly the same level, the methylation (H) and self-support (G) will exactly cancel each
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other and in the next cycle two protein will be expressed at exactly the same levels as in

the previous cycle. However, due fluctuations, proteins never have exactly same

expression levels. And the slightest differences in protein levels is amplified in the next

cycle because H-G is positive for one protein (hence, this protein is more suppressed) and

negative for the other protein (hence, it will be epigenetically more available in the next

cycle).Thus, in several cycles balanced epigenetic/genetic state with only one master-

protein expressed is achieved. (in the simulations reported in fig. S7.2a we perform

epigenetic perturbation every 4 cycles in order to allow for cell state equilibration time).

If we allow epigenetic perturbations to be more frequent, in this circumstance, each

expressing gene module experiences methylation constraint from multiple other modules

which results in silencing of all genes (death/arrest).

Therefore, in this parameter regime, random lineage switches occur during

reprogramming and no specific path for reprogramming trajectories can be identified (see

Fig. S7.2a). For example, lineage switches can occur from a fully differentiated state to a

state in a different lineage that is almost fully reprogrammed. This corresponds to sudden

changes in epigenetic patterns of the cell, rather than a continuous evolution of the

number of bivalent domains. For G=H, we find that such cross-lineage jumps are

dominant in our simulations, occurring 21 times more frequently than gradual evolution

of epigenetic patterns in successfully reprogrammed trajectories. Thus, when H-G,

"shortcuts" are dominant during simulations of reprogramming, leading to large and rapid

"jumps" from a differentiated state to a nearly reprogrammed state. This is inconsistent

with experimental observation of timelines of reprogramming with distinct changes in

cell appearance and cell markers (Jaenisch and Young, 2008). Note that sudden jumps of

the sort we see in our simulations with G-H have been observed upon treating fibroblasts

with a drug called AZA (Meissner et al., 2008), which causes global demethylation (i.e.,

removes the methylation constraint). These large jumps do not lead to reprogramming.

Based on these considerations, we believe that our simulation results for G-H are not

consistent with experimental observations.

If H<G, because the methylation constraints are weak, we often see stable

expression of the endogenous gene module regulating the ES state after one or two

cycles, and without transitioning through intermediate states. For example, even if H is
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only 3 times smaller than G, 8% of trajectories exhibit stable induction of the gene

module regulating the ES state after the very first cycle of epigenetic perturbations. This

is inconsistent with experimental results showing that endogenous expression of Oct4,

Sox2, etc., never appears before at least day twelve, and that reprogramming is associated

with a gradual evolution of cell appearance and markers (1). For these reasons, we

focused on the parameter regime H>G, for which the results reported in the main text are

qualitatively robust. For example, if H = 60 and G = 35, rather than H = 40 and G = 25

as in the main text's figures, the reprogramming efficiency for a 4-level hierarchy is -5

out of 104 cells and the qualitative pathways followed by successfully reprogrammed

cells remains the same as discussed in the main text.

The parameter, a, describes the minimal level of gene expression that allows a

particular gene module to exert methylation constraints on other genes. In our

simulations, a=O, which means that, as long as protein is expressed, it can methylate

other gene modules with a strength related to its expression level. Changing the

parameter a between 0 and 0.6 does not alter qualitative results. For example, if a = 0.5,

rather than 0 as in the main text, the reprogramming efficiency for a 4-level hierarchy of

states is -6 out of 104 cells, and the qualitative pathways followed by successfully

reprogrammed cells remain the same as discussed in the main text.

1b. Parameters involved in the simulation of the genetic network: F, Jand b.

Parameters F and J describe the coupling between the epigenetic and genetic

network. Parameter F is the strength with which open chromatin (positive <SiePi'e">)

favors gene expression (positive Si*gn) during the simulation of the genetic network.

Parameter J describes the strength with which proteins expressed by two neighboring

gene modules in open epigenetic states mutually repress each other. The choice of F and J

is dictated by our assumption that two neighboring genes with open chromatin should

with high probability express only one out of two proteins. This is to be consistent with

experimental evidence that genes modules responsible for the competing lineages are

mutually repressive (Cinquin and Demongeot, 2005). For this to be true, the parameter J

needs to be larger than F.

Stochastically, during simulation of the genetic network, transitions can occur

from a state where one of two mutually repressive gene modules is expressed to one
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where the other is expressed. F and J must be much larger than the effective temperature

of the simulations (T) in order to minimize such transitions during the simulation time as

this would result in both proteins being simultaneously expressed. If the two gene

modules thus expressing proteins are immediate siblings in the hierarchy of states, then

rules 3 and 4 in the main text would result in silencing of both gene modules, leading to

cell death/arrest. If the two gene modules were progenitor and immediate progeny, then

the cell would remain in a terminally differentiated state because of the asymmetry of the

methylation constraint for states in the same lineage. Fig. S7.3 shows an example of the

latter situation for simulations carried out with values of F and J that are too small. Thus,

if F and J are not sufficiently large, reprogramming is not possible. For intermediate

values of F and J we find that reprogramming probability decreases (for F= 1000 and

J=2000 only about 4 cells out of 105 cells reprogram successfully), but the qualitative

nature of the temporal pathways followed by successfully reprogrammed cells remain the

same.

Protein expression by gene module i is favored when the value of <SePigen>

representing the chromatin state of this gene is greater then b. The value of b has to be

more than zero to ensure stability of the stem cell state in the absence of self-induced

differentiation (e.g., when LIF, etc., are present in the medium). Typical simulations

show that, in the ES state, <SePien(ES gene module)> -1 and <SPien(all other gene

modules)> fluctuates between -0.1 and +0.1. The parameter, b, must be larger than the

size of these typical fluctuations in order to prevent spontaneous differentiation. Our

qualitative results do not change if b lies between 0.1 and 0.5. For example, if b = 0.4,

rather than 0.3 as in the main text, the reprogramming efficiency for a 4-level hierarchy

of states is -6 out of 104 cells, and the qualitative pathways followed by successfully

reprogrammed cells remain the same as discussed in the main text.

7.6.2. Effect of increasing the frequency of action by reprogramming factors

Fig. S7.4a details the events that occur during one-level de-differentiation in our

simulations with parameters that are consistent with experimental observations (see

above). In our simulations, it takes two cell cycles to complete a successful de-

differentiation or trans-differentiation. During the first cycle, reprogramming factors

cause a new perturbation to the epigenome in the telophase and the perturbed epigenome
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controls protein expression in the subsequent interphase. The resulting protein

expression profile may not be in balance with underlying epigenetic state. During the

subsequent telophase (which begins the second cycle), a new balance between the

epigenetic and genetic states of the cell is established. Hence, in the subsequent

interphase, the protein expression reaches accord with the prevailing epigenetic state.

Note that in experiments, it is likely that more time (cell cycles) is required in order to

balance the genetic and epigenetic states. For example, in nuclear transfer experiments it

takes 12 to 20 cycles to achieve global demethylation of somatic DNA (Jaenisch and

Young, 2008; Simonsson and Gurdon, 2004).

If the reprogramming factors are overexpressed, they will have a higher

probability of altering the epigenetic states of gene modules more frequently than once in

two cell cycles. In this situation, our simulations predict that reprogramming is not

possible because cells will never be able to balance their genetic and epigenetic networks,

as is shown on Fig. S7.4b. Any endogenous expression of Oct-4 or Nanog will only be

observed transiently, because further epigenetic perturbations occur before the ES state

can be stably established.

Overexpression of reprogramming factors should also lead to an increase in the

number of genes that can be epigenetically altered in every cell cycle. In our simulations,

this means that a greater number of genes would be epigenetically modified during each

perturbation of the epigenome. The effects of this can be evaluated in a model where

each module consists of three individual genes (Fig. 7.6 in main text). If only 12 genes

are altered in a cycle (as in main text), 15 out of 100, 000 "cells" reprogram. But if 15,
20, or 22 genes are altered per cycle, out of 100, 000 "cells", only 5, 2, and 0 cells

reprogram. Thus, overexpression of reprogramming factors hinders reprogramming.

7.6.3. C++ code that illustrates reprogramming process

C++ code is provided as supplementary file "reprog.cpp". The code allows one

observe reprogramming trajectories. (Simply compile and then run the code after

compiling).

Simulation shows progression of the cell states starting from terminally

differentiated state under the action of reprogramming factors (they are turned on in the

second cell cycle after stability of the terminal state by itself is illustrated).
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The simulation outputs the average values of the genetic and epigenetic variable

at each cycle in accord with the simulation flow chart.

So, for fully differentiated state genetic and epigenetic networks will look like:

GENETIC

1 0 0 0 0 0 0 0

EPIGENETIC

+1 -1 -1 -1 -1 -1 -1 -1

Terminally differentiated state

The GENETIC diagram indicates that only proteins of "bottom left corner" master-

regulatory gene module are expressed. And EPIGENETIC diagram indicates that

chromatin open only for "bottom left corner" master-gene, while the rest of master genes

are in the closed chromatin state.

Note that this state is stable state of the cell, "attractor" in the space of the cellular states,

because it will renew itself, provided that cell is forced to proliferate.

Fully differentiated state will be recognized in the program output as having the

following genetic/epigenetic structure:

GENETIC

1

0 0 0 0 0 0 0 0
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EPIGENETIC

0 0 0 0 0 0 0 0

ES state

Simulation begins in the fully differentiated state of the 4 levels hierarchy of cell states.

Beginning from the second cell cycle reprogramming factors start acting. They randomly

perturb epigenetic structure of the terminally differentiated cell. In the output one can see

that randomly chosen epigenetic module will have its "-1" state flipped to "+1" state.

Then, during the next cell cycle epigenetic and genetic will find assume balanced state,

which in the majority of cases results in the completely silenced, unviable state such as

follows:

GENETIC

0 0 0 0 0 0 0 0

Dead/arrested

EPIGENETIC

-1 -1 -1 -1 -1 -1 -1 -1

This is indicative of cell arrest/cell death situation.

In order to start new reprogramming trajectory, one can simply restart the compiled code.
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In the few cases one will observe one-level de-differentiation and in about 5-10 out of

10,000 cases one will see the complete reprogramming from terminal fully differentiated

state to the ES cell state.

7.6.4. Population behavior of the cells

On Fig. S7.5 the diagram depicting transitions between stable cell populations

under the action of reprogramming factors is presented. The starting point is terminally

differentiated state depicted on the bottom of the picture. Possible transitions from this

state are indicated by arrows. Probability to experience a particular transition is indicated

by the % value on top of the corresponding arrow. For example, starting from the

population of terminally differentiated cells, only -7 % of cells successfully de-

differentiate one level, while 67 % of cells either die or get arrested in the intermediate

state. Further, one sees that out of one level de-differentiated cells only -7%

dedifferentiate one level further etc, thus giving very low total yield of reprogrammed

cells at about 0.04%.

Table S1. Summary of efficiency of reprogramming in different parameter regimes.

G<H G~H G>H

Efficiency of reprogramming 4 84 0

(out of 104 cells)

Table S2. Dependence of reprogramming efficiency on number of genes perturbed

during action of reprogramming factors for the model where each master-regulatory

module consists of 3 genes.

Number of genes perturbed during action
8 10 12 15 20 22

of reprogramming factors

Efficiency of reprogramming 6 10 15 5 2 0

(out of 105 cells)
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7.8 Figures for Chapter 7

Fig.1b lb6

ES cell state

Genetic Network (protein expression)
0 Protein expressed fully
0 Protein not expressed at all

Epigenetic Network (genes availability)
* Open chromatin
o Bivalent chromatin
P Heterochromatin

Pluripotent progenitor

Fig. 7.1 Specification of the genetic and epigenetic states that describe cellular states

(a) Only the master-regulatory genes that govern cell state are arranged in a hierarchy

(house keeping, stress-response and many other genes are not considered). Each node of

the hierarchy represents an ensemble of master-regulatory genes that govern a particular

cellular state. For example, genes in the top node are known master-regulators of the

embryonic stem cell state (e.g. Oct4, Sox2, Nanog). When a cell is in the ES state, only

these three genes will be expressed while other genes will not. Similarly, when a cell is

fully differentiated, genes in one of the bottom modules will be expressed but not any

other gene in the network. Each master-regulatory ensemble can contain many genes,

only three are shown in each node.

(b) Fig. la has been coarse-grained such that only master-regulatory modules (nodes

in fig. I a) are shown. Cellular identity is determined by both epigenetic (chromatin

marks, DNA methylation) and genetic (expression profile) states. Examples of two states

(ES state and "left" pluripotent progenitor) are shown. For each example, two lattices are

needed to describe the state of gene expression and the epigenome: top lattice reflects the

expression levels of master-regulatory proteins in the ES/progenitor state and bottom

lattice reflects the epigenetic state of master-regulatory genes in the ES/progenitor state.
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Fig. 7.2 Simplified model for progression through the cell cycle. The cell cycle is

divided into two generalized phases: called interphase and telophase for simplicity. Gene

expression occurs during the interphase, while cell division and associated processes

occur in the telophase. In the interphase gene expression profile is governed by the stable

epigenetic marks on the master-regulatory genes. In the telophase, however, protein

environment can change the epigenetic marks of the master-regulaory genes, particularly

when DNA is decondensing after cell division. Differentiation signals (newly expressed

proteins) determine future epigenetic marks created during telophase due to the action of

the new protein environment. The color code representing genetic and epigenetic states is

the same as in Fig.1.
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Fig. 3a
Mutual repressivityof the nearest neighbores proteins:

A"A 
10 JAr orA1

Fig. 3b
Protein atmosphere

c

0

Methylation of genes
Negative epigenetic marks

Positive epigenetic marks

Bivalent marks

Fig. 7.3 (a) During interphase, gene expression profiles of master-regulatory modules are

established. Gene expression is influenced by epigenetic marking of the corresponding

gene and interactions between expressed proteins. Two rules reflect this in our

simulation: 1) when master-regulatory gene is in epigenetically marked positively, it

favors expression of the corresponding protein; 2) when two (three) neighboring genes

are in epigenetically open states, they all favor expression of corresponding proteins, but

due to their mutually repressive action (see text) only one of two(three) genes are

expressed. Which gene is expressed is chosen stochastically. The color code representing

genetic and epigenetic states is the same as in Fig. 1

(b) During the telophase, the protein environment can alter the epigenetic marks on the

master-regulatory genes. Epigenetic marks on both neighboring and distant genes in the

hierarchy can be altered. Long-range effect is typically mediated through DNA

methylation which epigenetically silences all of the master-regulatory genes of unrelated

lineages and also ancestral states (see text). Short-range interactions affect nearest-

neighbors differentially: progenies master-regulatory genes are preferentially put into

bivalent states while progenitor and competing lineage modules are epigenetically

silenced. The color code representing genetic and epigenetic states is the same as in Fig. 1
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Fig. 7.4: Changing cellular identity during self-initiated differentiation of the ES cell-

state is shown in detail. Process begins with cell division where regulatory modules of

progenies are put into epigenetically open states. In phase 2 only one of the three

neighboring proteins can be actually expressed in accord with Fig. 3a. Thus, one of three

possibilities is realized: self-renewal, and differentiation to the "left" or "right" lineages.

In the absence of external stimuli, in our simulations, there is an equal chance to observe

each outcome. Simulations are performed with parameter values F=2000; J=3000; G=25;

H=40; a=O; b=0.3. The color code representing genetic and epigenetic states is the same

as in Fig.1.
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Fig. 5a

Fig. 5b

iPS cell
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Fig. 7.5: Reprogramming is a consequence of random perturbation of epigenetic state of

the cell. In our model, reprogramming factors can change the epigenetic state of

randomly chosen regulatory modules (for reasons, see text).

(a) Starting from a fully differentiated state, reprogramming factors can perturb any

of the remaining 14 positions (for the case of a 4-level hierarchy). Four outcomes

are possible depending on the perturbation site: death/arrest, trans-differentiation,

de-differentiation or return to the initial cellular state. These outcomes are

determined by simulating the system in accord with the rules described in the text

and Figs. 2 - 3. The color code representing genetic and epigenetic states is the

same as in Fig. 1

(b) Examples of real trajectories observed in simulations illustrating different

temporal evolution of epigenetic and genetic states. Complete cell reprogramming

appears as a consequence of several successful de-differentiation events as seen in

the second example trajectory. Simulations are performed with parameter values

F=2000; J=3000; G=25; H=40; a=O; b=0.3. The color code representing genetic

and epigenetic states is the same as in Fig. 1
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i--.- -- Fig. 6a Fig. 6b

Examples of successful trajectories:
fastest observed pathway including one transdifferentiation

Fig.7.6 (a) Simulations of a model where each gene module regulating a cellular identity

consists of three different genes. In this (similar to the previous) model, individual genes

do not interact with each other. Rather modules interact with each other when all of the

proteins in a module are expressed. Since reprogramming factors change the epigenetic

state of randomly chosen individual genes, several (here: at least three) genes have to be

changed to open chromatin status at the same time in order to allow a whole module to be

able to express proteins. Examples of simulated trajectories show activation of genes of

unrelated lineages during successful reprogramming. Simulations are performed with

parameter values F=2000; J=3000; G=25; H=40; a=O; b=0.3.

(b) If population averaged expressions of genes during reprogramming can be measured,

one can compute a 4-point correlation function (see Eq. 1). This correlation function

describes the probability of activation of a given gene after the master regulatory gene

module, i, was silenced. Then all the genes can be grouped in three groups as our

simulation indicates. Thus, the genes defining the most likely paths to reprogramming

can be identified as the ones with the highest magnitude of this correlation function. The

correlation function was computed by averaging over all successfully reprogrammed

trajectories. The colors correspond to the magnitude of the correlation function (as shown

on the left)
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Choose initial epigenetic state
i.e., fix {<Siq'">}IS11M1

Run simulations of genetic network
with {<siem">}

taken from the previous step

Calculate average values of the set {<s?" }

Run simulations of genetic network
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taken from the previous step
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Fig.7.7:Flow chart of the simulation procedure. The simulation essentially mimics

progression through the cell cycle in accord with Fig. 2. In each phase of the cell cycle,

interactions within and between genetic and epigenetic lattices are enforced through the

Hamiltonians of Eq. 2 and 3. Mathematical structure and choice of parameters are such

that rules depicted in Fig.3 are obeyed. For analysis of sensitivity to parameter variations

see supplementary information.
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Supplementary figures

epigenetic perturbation
by reprogr. factors

Fig. S7.1a: Example of a part of a simulation trajectory for H=G illustrating large and

fast cross-lineage jumps from a terminally differentiated to an almost reprogrammed

state. As noted in section 2.a, such jumps are dominant when H-G. (This simulation was

carried out with F=2000; J=3000; G=25; H=25; a=O; b=0.3). The color code

representing genetic and epigenetic states is the same as in Fig. 7.1.

epigenetic perturbation action of methylation
by reprogr. factors constraint

Fig. S7.1b: Example of a part of a simulation trajectory for G>H (in this case G>3H).

The gene module regulating the ES state is turned on stably during the first epigenetic

perturbation. This simulation was carried out with F=2000; J=3000; G=25; H=8; a=O;

b=0.3. The color code representing genetic and epigenetic states is the same as in Fig. 7.1
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No reprogramming
possible

epigenetic perturbation action of methylation
by reprogr. factors constraint

Fig. S7.2: Example of a part of a simulation trajectory with small values of F and J. The

simulation was carried out with F=200, J=300, G=25; H=40; a=O; b=0.3. The color code

representing genetic and epigenetic states is the same as in Fig. 7.1.
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Fig. S7.3a: Example of a typical

trajectory obtained from our

simulations showing that it takes

several cell cycles (in our simulations,

2 cycles) to achieve one level of

reprogramming in a stable manner.

This simulation was performed with

parameter values: F=2000; J=3000;

G=25; H=40; a=O; b=0.3. The color

code representing genetic and

epigenetic states is the same as in

Fig.7.1.
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Fig. S7.3b: Example of a typical

trajectory from our simulations

where, because reprogramming

factors are overexpressed, they

can act at every cycle, as opposed

to the every two cycles (as in

panel (a)). This renders

reprogramming impossible for

reasons described in the main

text. This simulation was

performed with parameter values:

F=2000; J=3000; G=25; H=40;

a=O; b=0.3.
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Fig.S7.4:Dynamics of cell differentiation upon receiving cues of different strength. Our
simulations show that the progenitor cells differentiate in accord with first order
kinetics, with the lifetime of progenitor cells depending on the signal strength.
The blue curve describes the behavior of a cell population which received a signal
that is twice as weak as the population represents by the black line. Simulations
are performed with parameter values F=2000; J=3000; G=25; H=40; a=O; b=0.3.
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Fig.S7.5: The diagram depicting transitions between stable cell populations under the

action of reprogramming factors. The starting point is terminally differentiated state

depicted on the bottom of the picture. Possible transitions from this state are indicated by

arrows. Probability to experience a particular transition is indicated by the % value on top

of the corresponding arrow.
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Chapter 8

Concluding remarks

In conclusion, I would like to reiterate the premise of this thesis that was stated in

Chapter 1. Biology offers a broad spectrum of problems ranging from fundamental

studies of chemical networks and application of stochastic chemical networks to signal

processing all the way to the application of coarse-grained statistical mechanical model

for phenomenological description of cellular behavior. Some of the problems have been

explored in this thesis.

Innumerable amount of problems was not covered in this thesis and it is my hope

as a future professional scientist to explore connections between post-translational

modifications and changes in transcriptional program of the cell in more details. Novel

chip-based experimental technics allow one to trace expression of thousands of genes at a

time. The wealth of connections and interdependences in the transcriptional networks

create enormous problem when trying to recover underlying network structure based on

the expression data alone. Additional level of complexity is put in due to non-linearity of

"interactions" between different genes since these interactions are mediated by post-

translational networks such as the ones studied in this thesis.

Unified view of transcriptional and post-translational networks, even on the crude

coarse-grained level could provide a new paradigm for looking at the biological network.

The need for such a novel paradigm is nicely referred to as "Need for a New Mechanics"

by Bill Hlavacek and Jim Faeder (Hlavacek and Faeder, 2009)*

*Hlavacek, W.S., and Faeder, J.R. (2009). The complexity of cell signaling and the need
for a new mechanics. Sci Signal 2, pe46.
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