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Abstract

Shale, a common type of sedimentary rock of significance to petroleum and reservoir engi-

neering, has recently emerged as a crucial component in the design of sustainable carbon and

nuclear waste storage solutions and as a prolific natural gas source. Despite its importance, the

highly heterogeneous and anisotropic nature of shale has challenged the theoretical modeling

and prediction of its mechanical properties. This thesis presents a comprehensive microporo-
mechanics framework for developing predictive models for shale poroelasticity and strength.

Modeling is accomplished through a multi-scale approach, in which the experimental evidence

gathered from novel nanoindentation techniques and conventional macroscopic tests informs

the development of a suit of micromechanics tools for linking composition and microstructure
to material performance.
Based on a closed loop approach of calibration and validation of elastic and strength properties
at different length scales, it was possible to deconstruct shale to the scale of an elementary
material unit with mechanical behaviors governed by invariant properties, and to upscale these
behaviors from the nanoscale to the macroscale of engineering applications. The elementary
building block for elasticity is an anisotropic solid characterizing the in situ stiffness of highly
consolidated clay. This intrinsic behavior represents the composite response of clay platelets,
interlayer galleries, and interparticle contacts, yielding an invariant stiffness with respect to clay
mineralogy. The anisotropic nanogranular nature of the porous clay in shale as inferred from
nanoindentation is confirmed through micromechanics modeling. The intrinsic anisotropy of the
clay fabric is suggested as the dominant factor driving the multi-scale anisotropic poroelasticity
of unfractured shale compared to the contributions of geometrical sources related to shapes and
orientations of particles. For strength properties, the micromechanics approach revealed that
the frictional behavior of the elementary unit of compacted clay is scale independent, whereas
a scale effect modifies its cohesive behavior.
Having established a fundamental material unit and the adequate micromechanics represen-
tation for the microstructure, the macroscopic diversity of shale predominantly depends on
two volumetric properties derived from mineralogy and porosity: the clay packing density and
the silt inclusion volume fraction. The proposed two-parameter microporoelastic and strength
models represent appealing alternatives for use in geomechanics and geophysics applications.
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General Presentation



Chapter 1

Introduction

1.1 Industrial Context and Research Motivation

Shale, a sedimentary rock composed mainly of highly consolidated clay particles and some

portion of silt-size minerals, constitutes one of the Earth's most common rock formations. In

many hydrocarbon reservoirs, shale serves as a geological seal that prevents the migration of

oil and gas from source rocks due to its low permeability characteristics (Figure 1-1). Besides

working as sealing formation, some shale layers rich in organic content can be source rocks for

hydrocarbon and natural gas.

The ubiquitous presence of shale in oil fields underscores its importance to many aspects

of petroleum and reservoir engineering, ranging from seismic exploration to well drilling and

production. An adequate understanding of shale's seismic and poroelastic behaviors are piv-

otal to seismic data interpretation, reservoir modeling, design of hydraulic fracturing schemes,

and predictions of flow paths in oil recovery applications. The mechanical characterization of

elastic and strength properties is also crucial for drill bit performance and the prediction of

wellbore stability and failure. It is estimated that wellbore instability problems translate into

significant economic losses of approximately US$ 8 billion per year worldwide [209]. In addition

to petroleum engineering applications, the mechanics of shale may also be important for the

development of sustainable nuclear waste storage solutions.

Despite the mentioned significance of shale to many geomechanics problems, a comprehen-

sive knowledge of its poroelastic and strength behaviors is limited compared to the developments
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Figure 1-1: Schematic of shale as a geological seal for oil reservoirs.

for other reservoir rocks. The challenge of linking material composition and microstructure to

mechanical performance has been accomplished with some success for sandstones and limestones

through the implementation of classical approaches such as fitted empirical relations between

velocity measurements and porosity, clay content, and other statistically significant parameters

[88, 99, 112]. Some more refined methods have taken this approach a step further by linking

porosity and clay content to seismic velocity through the application of effective medium theory

[49, 221, 299]. However, modeling attempts have had a limited success when it comes to shale

mainly due to the fact that shales - in contrast to sandstones, limestones, and synthetic clay-silt

mixtures - are both highly heterogeneous and anisotropic from the micro- to the macroscale of

engineering applications.

Important research efforts have been pursued in the past two decades to improve the un-

derstanding and modeling of shale in view of its growing importance to the petroleum industry

for enhanced oil recovery applications and as major resource of natural gas [3]. Recently, the

MIT-OU GeoGenome Industry Consortium (G2IC) has conducted a pioneering experimental

and theoretical multi-scale investigation aiming at the development of the next generation of

poroelastic and strength modeling of shale. The mechanical testing of shale using advanced in-

strumented indentation techniques, probing length scales never reached before in geomechanics

investigations, and conventional macroscopic experiments form the foundation for the devel-

..................
E



opment of robust predictive models for shale. The work presented in this thesis develops a

multi-scale micromechanics framework that enables translating the learned mechanical behav-

iors at different length scales into effective predictive tools for the poromechanics description

of shale.

1.2 Problem Statement and Approach

This thesis aims at the development of predictive models for the poroelasticity and strength of

shale materials. The macroscopic diversity of shale and its complex composition and microstruc-

ture call for a reductionist approach to the mechanical modeling task. Hence, the challenge to

be addressed in this thesis is:

Is it possible to deconstruct the diverse macroscopic behavior of shale rocks to a scale where

the mechanical behaviors are governed by material invariant properties, and to successfully

upscale those behaviors from microscopic scales to the macroscopic scales of engineering appli-

cations?

Such endeavor is accomplished through a multi-scale modeling approach, in which the ex-

perimental evidence at the various length scales informs the development of a suit of micro-

poromechanics theoretical tools as means to fulfill the material science paradigm for shale;

that is, to link of material composition and microstructure to material performance. Using

independent and comprehensive data sets from shale materials of diverse origins and compo-

sitions, the micromechanics models are calibrated and validated as useful predictive tools of

shale poromechanics.

1.3 Research Objectives

A comprehensive theoretical approach is presented to address the scientific challenge. Five

primary research objectives guide the proposed approach:

* Objective 1 Establish a comprehensive database of mechanical properties of shale at

different length scales of observation. The proposed multi-scale modeling of shale requires

a collection of experimental data aiming at the comprehensive characterization of me-

chanical and compositional properties of shale materials from diverse origins. In addition



to conventional testing approaches at macroscales, recently available data from direct me-

chanical testing of shale at nanometer length scales becomes a crucial element for new

modeling approaches by elucidating the grain-scale mechanics of shale.

* Objective 2 Develop a multi-scale micromechanics framework for modeling shale poroelas-

ticity. The multi-scale behavior of shale poroelasticity is modeled through the implemen-

tation of microporomechanics theory. A comprehensive suit of homogenization techniques

and tools is developed to model its poroelastic and anisotropic properties at different

length scales.

e Objective 3 Conduct hypothesis testing of various micromechanics descriptions of

shale's multi-scale anisotropic elasticity using independent experimental data sets. The

microporoelasticity modeling framework for shale is used for the implementation of sev-

eral configurations of microstructural features and material properties. Through a series

of calibration and validation exercises using independent sets of elasticity data, the dif-

ferent micromechanics descriptions of shale are tested against the multi-scale responses of

shale measured by different experimental techniques. The aim of the hypothesis testing

approach is to establish a set of material invariant properties and effective definitions

for the microstructure of shale that collectively allow for the successful prediction of the

macroscopic diversity of shale's anisotropic elasticity.

e Objective 4 Assess the features and predictive capabilities of the adopted microporoelastic

model for shale. Based on accomplishing our third objective, a thorough assessment of the

modeling features and capabilities of the adopted micromechanics model for shale is nec-

essary. The relevance of the concept of an elementary building block for shale associated

with the proposed multi-scale approach is examined along with the micromechanics de-

scription of the clay fabric, which successfully captures the macroscopic diversity of shale.

The assessment of model capabilities is also crucial for defining its domain of application

for predictions of properties in laboratory and field conditions. The model predictions of

poroelastic parameters, elastic anisotropy, and model extensions are investigated in detail

for potential uses in field applications.

e Objective 5 Develop a multi-scale strength model for shale. Using a similar multi-scale



approach, a strength homogenization framework for geomaterials is presented. Based on

yield design and non-linear micromechanics, the multi-scale strength modeling approach

is implemented for shale in an exploratory work.

1.4 Industrial and Scientific Benefits

Accomplishing the proposed research objectives would translate into various industrial and

scientific benefits:

9 Enhanced understanding of the multi-scale structure of shale, and the effects of grain-scale

mechanics on the overall macroscopic response.

9 Design of a baseline model for shale anisotropy that enables physics-based predictions at

engineering scales based on sensible input parameters easily obtained from logging tools

or standard laboratory measurements.

e Development of a suit of micromechanics tools for poroelasticity and strength upscaling

of heterogeneous microstructures.

1.5 Outline of Thesis

This report is divided into four parts. Part I contains this introductory material and the

presentation of the research topic.

Part II - Experimental Mechanics of Shale - is divided into two chapters that address the

first research objective. Chapter 2 introduces relevant aspects of the nature and composition

of shale rocks and delineates a multi-scale structure thought-model for shale that provides a

framework for introducing experimental information and guiding the theoretical investigation.

Chapter 3 reviews the experimental information gathered in this thesis for modeling shale. A

comprehensive database of mechanical properties for numerous shale specimens investigated by

the G2IC and others obtained from open literature sources is compiled in this chapter, including

experimental data at fundamental scales of minerals, recently developed nanomechanics results

from instrumented indentation techniques, and conventional macroscopic seismic and strength

testing.



Part III - Microporoelasticity of Shale - is devoted to the development of a micromechan-

ics model aiming at the prediction of shale's anisotropic, multi-scale poroelasticity. This part

consists of three chapters. Chapter 4 fulfills the second research objective of establishing a

general microporomechanics foundation for modeling heterogeneous, multi-scale materials. A

particular focus of these micromechanics developments is the treatment of different sources of

anisotropy related to shale, which include structural factors such as particle shapes and ori-

entation distributions, as well as intrinsic anisotropic sources of material phases. Chapter 5

presents a series of calibration and validation exercises involving micromechanics modeling and

the experimental data introduced in Chapter 3, hence implementing the third research objec-

tive. The evaluation of different model configurations of shale's microstructure and intrinsic

properties at multiple scales using original developments of the micromechanics of granular

anisotropic media developed in Chapter 4 leads to determining a baseline modeling approach

for shale materials from different origins and compositions. Chapter 6 examines the predictive

capabilities of the micromechanics model for shale adopted based on the findings of the previous

chapters. This chapter satisfies the fourth research objective by establishing the physical bases

of the developed multi-scale model that underlie its predictive capabilities. Chapter 7 presents

a model extension to kerogen-rich shale and a first assessment of the micromechanics model as

a predictive engineering tool for field applications.

Part IV contains two chapters dealing with the development of a strength upscaling model

for shale, which accomplishes the fifth research objective. Chapter 8 develops the theoretical

formulation of a two-scale strength model using yield design theory and non-linear homoge-

nization approaches. The strength modeling framework is examined in detail, and extended for

the application to dual-porosity geomaterials. Chapter 9 covers the first implementation of the

multi-scale strength model for the prediction of strength properties of shale.

Finally, Part V of this thesis summarizes the findings of this study and its scientific and

industrial contributions, and providing suggestions for future research directions.



Part II

Multi-Scale Mechanical Properties

of Shale



Chapter 2

Multi-Scale Structure and

Thought-Model of Shale

Shale is a complex porous material with heterogeneities (porosities and particulate phases)

that manifest themselves at scales much below the macroscale of engineering applications. The

adequate knowledge of composition, microstructure, and mechanical properties at different

scales of observation is pivotal to any successful modeling endeavor.

The first part of this report is devoted to the compilation of experimental data for a diversity

of shale materials that will assist our multi-scale modeling investigation. Chapter 2 offers a brief

review of shale as a sedimentary rock, its compositional characteristics, and microstructural

features. This information sets the stage for introducing a multi-scale structure thought-model

for shale, which defines the material length scales of relevance to our mechanics modeling

endeavor. The multi-scale structure model guides the theoretical investigation. Chapter 3

assists the objective of this part of the thesis by presenting a comprehensive database of material

properties for various shale materials of diverse origins and compositions. The database offers

the necessary experimental data for our multi-scale investigation of shale by including data at

fundamental scales of minerals, recently developed nanomechanics results from instrumented

indentation techniques, and conventional macroscopic seismic and strength testing.



2.1 Shale and Sedimentary Rocks

Sedimentary rocks constitute a large portion of the Earth's surface. In addition to their ubiq-

uitous presence, their characteristics such as textures, compositions, structures, and organic

content are of importance for the investigation and understanding of past Earth environments,

landscapes, life forms, and their evolution with time. Sedimentary rocks may also contain

minerals and fossil fuels, consolidating their importance with respect to economic reasons.

The origins of sedimentary rocks are related to the deposition of sediments by water, wind,

and ice over extensive periods of time. Their formation is the product of a complex series

of geological processes involving physical, chemical, and biological activities explained by the

following:

" At first, physico/chemical processes disintegrate source rocks, leading to the concentration

of resistant particulates (e.g. silicate minerals, rock fragments), in addition to the creation

of secondary products (e.g. clay minerals, iron oxides) and the release of soluble elements

(e.g. calcium, potassium, sodium).

" The resulting particulates and soluble constituents are removed from land by erosion, and

subsequently transported by various agents (water, wind, ice) to depositional basins. The

transported sediments eventually reach a basin and are deposited.

" At the depositional basin, sediments are buried by younger ones, and diagenesis occurs

at increasing temperatures and pressures. At this stage, dissolution of some constituents

and the generation of new minerals occur. Finally, the consolidation and lithification of

these products result in the creation of a sedimentary rock [29].

Depending on the particular sequence of sedimentary processes, three main types of con-

stituents are generated: terrigenous siliciclastic particles, chemical/biological elements, and

carbonaceous constituents. Their relative proportions determine the fundamental types of sed-

imentary rocks, as displayed in Table 2.1. Interestingly, from the many types of sedimentary

Diagenesis corresponds to a series of physical, chemical, or biological processes affecting sediments after their
deposition and before their final lithification. It encompases processes such as compaction, cementation, leaching,
hydration, and recrystalization. Diagenesis occurs at relatively low pressures and temperatures. Porosity typically
decreases during diagenesis [241].



rocks shown in Table 2.1 in terms of compositions and grain sizes (from a petrology perspective),

three particular rock types constitute the dominant forms of sedimentary rocks encountered in

the rock record from a volumetric perspective: shale, sandstone, and limestone. In what follows,

the most salient aspects of shale petrology are presented.

2.2 Shale Petrology

Fine-grained siliciclastic rocks composed mainly by particles smaller than hundreds of microm-

eters are known by several names such as lutites, siltstones, mudrocks, mudstones, claystones,

and shales. From a historical perspective, the term shale has been used for two particular

cases: 1) as a restrictive definition of laminated clayey rocks, and 2) as a general group name

for all fine-grained siliciclastic rocks [260]. Other geologists instead differentiate the mudrock

and shale groups: the former encompasses fine-grained sedimentary rocks, while the latter is re-

served for laminated or fissile fine-grained rock. Today, the terms shale, mudstone, and mudrock

continue to be employed as group names for fine-grained siliciclastic rocks [29]. In this work,

we investigate shale materials from a geomechanics perspective, in which shale materials are

considered as a sedimentary rock that exhibits high amounts of clay content and whose small

scale layering associated with the bedding direction and a slow sedimentation process dictates

specific elasticity and strength behaviors.

While not an exhaustive description, the following presentations describe some of the most

salient physical characteristics of shale materials including grain sizes, particle shapes and

orientations, mineralogy, porosity, and permeability. These characteristics are critical to the

understanding of the relations between material composition, microstructure and the rock's

mechanical behaviors2

2.2.1 Grain Size

Shale is mainly composed of small-sized grains, which prevent the application of established

methods to characterize the material. As expected, the grain size of sedimentary rocks is highly

2 The presentation of the petrology of shale is organized according to Boggs Jr. [29].



Siliciclastic Rocks
Composition < 50% terrigenous siliciclastic grains

< 15% carbonaceous residue
Particle size (1) > 2 mm

(2) 1/16 - 2 mm

(3) < 1/16 mm
Principal constituents (1) Rock fragments [Conglomerates, breccias]

(2) Silicate minerals, rock fragments [Sandstones]
(3) Silicate minerals [Shales, mudrocks]

Chemical-biochemical Rocks
Composition > 50% chemical-biochemical constituents,

< 15% carbonaceous residues
Particle size Variable

Principal constituents Carbonate minerals, grains, skeletal fragments
[Carbonate rocks (limestones, dolomites)]
Evaporite minerals (sulfates, chlorides)

[Evaporites (rock salt, gypsum, anhydrite)]
Chalcedony, opal, siliceous skeletal remains

[Siliceous rocks (cherts)]
Ferruginous minerals

[Ironstones, iron formations]
Phosphate minerals [Phosphorites]

Carbonaceous Rocks
Composition > 15% carbonaceous residues
Particle size Variable

Principal constituents Siliciclastic/cheinical-biochemical constituents:
carbonaceous residues [Sapropelites (oil shales), impure coals]

Carbonaceous residues [Humic coals, cannel coals,
solid hydrocarbons (bitumens)]

Table 2.1: Classification of sedimentary rocks [29]. The main rock types for each category of
sedimentary rock are presented in brackets.



variable. For some mudrocks and shales, an approximated average grain size distribution 3

consists of 45 percent silt, 40 percent clay, and 15 sand [212].

2.2.2 Particle Shape

Although sediments undergo long processes until becoming rock masses, the shape of fine silts

and clay-size particles found in shale are only slightly modified by erosion and transport. In

contrast to sand-size particles, clays and fine silts tend to keep the original shapes of the detrital4

sources or those of the mineral sources generated during diagenesis. In general, their shapes are

angular, especially for clay minerals. Scanning electron microscopy (SEM) studies reveal that

most clay minerals exhibit flaky structures. Due to the high concentration of clay minerals in

shale, these rocks may display microfabrics with preferred orientations and bedding planes.

2.2.3 Orientation of Clay Minerals and Shale Microfabric

The fabric or microstructure of shale is intimately related to the orientations of clay particles,

which are the results of complex processes during rock formation. During stages of suspension

settling, particles associate in different modes such as a flocculation and aggregation. Several

factors control the dynamics of clay particle settling in suspensions such as pH levels, presence

of electrolytes, mineralogy content, and particle size [272]. At the stages of fresh sedimentation,

clays are not yet subjected to significant compaction, forming sub-microscopic regions in which

particles are structured in parallel arrays or domains [12]. These groups of clay crystals are
O

oriented randomly in the overall clay matrix, and reach up to 700 A in length depending on

the clay type.

Finally, in consolidated shales, clay domains are tightly packed due to compaction. Some

clay sediments develop fissility, the ability of some rocks to split into thin slabs along narrowly

spaced planes parallel to the directions of natural bedding. Important factors such as geochem-

istry are pivotal for the development of fissility in shale [189]. In this perspective, the presence

of dispersing agents in water such as organic substances dictates whether clay precipitates as

"In sieve analysis, clay is considered finer than 4 pm, silt is between 4 and 63 pm, and sand is between 63
pm and 2 mm.

4 Related to rock particles derived from the mechanical breakdown of pre-existing rocks by weathering and
erosion.



dispersed particles or as flocculated structures. The major microstructural changes occurring

during deposition and lithification of clay sediments are displayed in Figure 2-1.

2.2.4 Mineralogy Composition

A list of minerals typically found in shale materials is listed in Tables 2.2 and 2.3. Generally,

shale is composed mostly of clay minerals, fine-grained mica, quartz and feldspars. The partic-

ular mineralogy composition of shale is dependent on various factors such as tectonic settings,

depositional environments, formation age, and diagenetic processes. In particular, diagenesis

provokes important changes in the mineralogy make-up of shale. Smectite is transformed into il-

lite or chlorite at burial temperatures of approximately 70'C to 150'C. Kaolinite is transformed

into illite at similar temperatures. Hence, quantities of illite and chlorite tend to increase with

deeper burial depths and longer time periods [29].

Regarding the main group of minerals in shale, clays belong to the mineral family of phyl-

losilicates, whose unit cells ordinarily have a residual negative charge that is balanced by the

absorption of cations from solution. Common layer silicates are composed by the combination

of two basic structural units: the silicon tetrahedron, and the aluminum or magnesium octahe-

dron. The stacking arrangement of sheets of these units and the way in which two successive

layers are held together determine the different clay mineral groups [187]. The basic structures

of clay mineral groups are shown schematically in Figure 2-2.

Three clay minerals are particularly common in shale: kaolinite, smectite and illite [187].

Kaolinite is a 1:1 clay mineral type as it is composed of alternating silica and octahedral sheets.

The bonding between successive layers, dominated by van der Waals forces and hydrogen bonds,

is relatively strong, inhibiting any interlayer swelling due to the presence of water. Kaolinite

can occur as either well or poorly crystallized particles with lateral and thickness dimensions

ranging between 0.1 - 4 pm and 0.05 - 2 pm, respectively, for well-crystallized kaolinite. Smec-

tite is a 2:1 clay mineral type, consisting of an octahedral sheet situated between two silica

sheets. The bonding between layers provided by van der Waals forces and cations balancing

charge deficiencies are relatively weak, allowing layer separation by cleavage or water/liquid

adsorption. In smectite-rich shale, for instance, a large proportion of water content is to some

degree electrostatically bound to clay particle surfaces [246]. A common smectite-type mineral,
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montmorillonite, occurs as film-like, equi-dimensional structures with particle thickness in the

nanometer range, while the characteristic long dimension can reach 1 - 2 Pm. Illite is another

2:1 mineral type, whose atomic structure is similar to that of muscovite mica. Muscovite fol-

lows the three-layer silica-gibbsite-silica unit structure, with the particularity that some silicon

positions are filled by aluminium creating a charge deficiency that is balanced by potassium

between layers. Illite differs from mica in a few important aspects such as containing lesser

amounts of potassium, exhibiting some randomness in the stacking of layers, and its smaller

particle size. Illite occurs as flaky particles, with characteristic long dimensions in the sub- and

micrometer ranges, while the thickness is of nanometer dimensions [156, 187].

Among the non-clay minerals present in shale, quartz is the most abundant. Quartz in

shale is typically of silt-grade although coarser grains do occur. Compared to the more rounded

quartz in sand, quartz silt tends to be angular and derived from grain collisions in aqueous

media and from glacial grinding. Only a small portion of quartz in shale is diagenetic rather

than detrital [263].

2.2.5 Organic Matter

The most abundant organic matter in shale is sapropel, which consists of phytoplankton,

zooplankton, pollen, and fragments of higher plants. During burial and diagenesis, chemi-

cal/biological processes lead to the dissolution of some part of the organic matter and to the

transformation of the rest into an insoluble substance called kerogen. Kerogen is the solid,

high-molecular weight component of sedimentary organic matter, which is typically identified

by optical or chemical methods. In petroleum chemistry, different types of kerogen (I through

IV) are defined depending on the composition of the organic matter, most of which generate

oil and gas upon burial and diagenesis [184].

2.2.6 Porosity

In general, porosity describes the part of the material that is not occupied by mineral grains.

Porosity is defined as the ratio of the volume of pore space in the sedimentary rock over the

total volume, and it is typically measured by fluid intrusion and density difference methods. In

contrast to this total or physical porosity, petroleum scientists and hydrologists are concerned



Framework Silicates
Quartz Constitutes 20-30% of an average shale, and is most likely of detrital

origin. Other varieties of silica include opal CT, chalcedony, and
amorphous silica.

Feldspar Commonly less abundant than quartz. Plagioclase is more abundant
than alkali feldspars.

Zeolites Commonly present as alterations of volcanic glass. Clinoptilolite and
phillipsite are common zeolites in modern marine sediments.

Clay Minerals

Kaolinite (7 A) Forms in soils developed under abundant rainfall, adequate drainage.
and acid waters. Typically concentrated near shore in marine basins.

Smectite-Illite-Muscovite Members of this structurally complex group form in different ways.

(10 A and greater) Snectite. a hydrated expandable clay, forms from volcanic glass
(bentonites); it transforms to illite during burial. Clite, the most
abundant clay mineral, derives from pre-existing shales and it converts

to muscovite during diagenesis. Muscovite also occurs as detrital
particles in unaltered shale. A iron-rich variety of illite-smectite
is glauconite.

Chlorite, Corrensite, Chlorite forms by burial diagenesis, especially in Mg-rich pore waters.

and Vermiculite 1It is commonly the second most abundant clay in Paleozoic and older
shales. Vermeculite may convert to corrensite and finally to chlorite
during diagenesis.

Sepiolite and Attapulgite Magnesium-rich clays that form under special conditions, such as
saline lakes.

Table 2.2: Principal constituents of shale and mudstones [2191.



Oxides / Hydroxides
Iron oxides Present in shale mostly as coatings on clay minerals. In reducing

and hydroxides environments, they convert into pyrite and siderite. Hematite is another
common iron oxide in shales.

Gibbsite It represents the product of acid leaching. May be associated with
kaolinite in marine shale.

Carbonates
Calcite More common in marine than non-marine shales. As with quartz and

feldspar, little is known about its distribution and form in shale.

Dolomite Common in shale as a cementing agent.

Siderite and Ankerite Occurs in shales commonly as concretions.

Sulfur Minerals
Sulfates Gypsum, anhydrite, and barite occur in shale as concretions and may

indicate hypersalinity during or after deposition.

Sulfides Shale typically exhibits iron sulfides such as pyrite and marcasite.

Other Constituents
Apatite A phosphatic mineral that forms nodules in slowly deposited marine muds.

Glass Found in modern muds associated with volcanism. It converts into zeolites
and smectites during burial.

Organic Materials
Organic particles Mostly either palynomorphs or small coaly fragments.

Kerogen Amorphous organic material of complex chemical characterization that is

present in almost all shales except red ones. It informs about gas and oil
potential of a basin and its thermal history.

Table 2.3: Principal constituents of shale and mudstones [219] (continued).



in the movement and transport of fluids. Hence, an effective or transport porosity is of interest:

VP
effective porosity: #eff - (2.1)

where VIp is the volume of interconnected pore space, and V the total volume of rock. The

effective porosity is commonly less than the total porosity, although their differences may be

relatively small for coarse-grained rocks.

From a length scale perspective, the occurrence of porosity in shale at particularly small

length scales sets the mechanical and transport behaviors of this sedimentary rock apart from

those observed in rocks such as sandstones. The sequence of burial and diagenetic processes

cause the formation of the majority of pore space at nanometer scales. The so-called inter-

domain porosity present between groupings or conglomerates of clays is known to be very low,

with maximum radii at 4.2 nm [228]. From a combination of techniques such as mercury

intrusion porosimetry and small angle neutron scattering, the characteristic pore size in shale

is of some nanometers (e.g. 25 nm [77], 8 nm [111], 20 nm [130]). By way of illustration, Figure

2-3 shows the measured pore size distributions of two shale materials in comparison with a

sandstone specimen. The pore space in shale has a much smaller characteristic length scale, in

contrast to the pore distribution for a common sandstone, which may exhibit a wide range of

pore sizes from the nanometer to the micrometer scales.

The nano-sized pores in shale cause some amount of water or other pore fluids to be ordered

or structured by their association with mineral surfaces. The potential transport or chemical

reactions between solutes and water may be inhibited through some particularly small pore

throats, creating osmotic membrane properties in some shales [207].

2.2.7 Permeability

In sedimentary rocks, permeability, or the ability of the medium to transmit a fluid, is a

complex function of particle size, shape, orientation, and sorting. Shale permeability vary up

to ten orders of magnitude and by three orders of magnitude at a single porosity, which can

be explained by differences in grain sizes. Silt-rich mudstones are more permeable than finer

mudstones, as illustrated by studies of pore size distributions. In addition, the losses of porosity

and permeability with increasing effective stress are related mainly to the collapse of larger pore
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Figure 2-4: Compilation of laboratory-measured permeabilities for various rock types. The
vertical bars display the range of measured values. 1 darcy = 0.97 x 10-12 M2 . The hydrostatic
pressure during testing was less than 10 MPa and the temperature of about 25' C. Adapted
from [411.

spaces [78]. Permeability in shale can be as low as 1 nD (10-21 M2 ) [149]. Figure 2-4 displays a

comparison of the permeability for different rock types as measured in laboratory experiments.

The figure clearly illustrates the known nature of shale as a geological seal due to its extremely

low permeability.

2.2.8 Clay Terminology

The thriving field of grain-scale mechanics of rocks is bringing together research contributions

from a variety of experimental and theoretical disciplines. As this micromechanics investigation

will add to the discourse of nanomechanics of shale, it is important to clearly define certain

terms and concepts in order to minimize any errors in the dissemination of results [303]. Given

the importance of clay mechanics to the present study, definitions of certain terminologies are

provided hereafter [108]:

" Mineral. "A mineral is an element or chemical compound that is normally crystalline and

that has been formed as a result of geological processes."

" Crystalline. "It is considered to be a material with sufficient atomic ordering such that



a (X-ray, electron, neutron, etc.) diffraction pattern containing well-defined maxima can

be indexed using Miller indices."

" On planes, sheets, and layers. "The terms 'plane', 'sheet', and 'layer' cannot be used

interchangeably and they refer to specific parts of the structure, with atomic arrangements

that increase with thickness."

* Plane. "A 'plane' of one or more types of atoms (e.g. a plane of Si (silicon) and Al

(aluminium) atoms, a plane of basal oxygen atoms) can occur."

" Sheet. "A 'tetrahedral sheet' or 'octahedral sheet' is composed of continuous two-dimensional

corner-sharing tetrahedra involving three corners and the fourth corner pointing in any

direction or edge-sharing octahedra, respectively."

" Layer. "A layer contains one or more tetrahedral and an octahedral sheet. There are

two types of layers, depending on the ratios of the component sheets: a 1:1 layer has one

tetrahedral sheet and one octahedral sheet, whereas a 2:1 layer has an octahedral sheet

between two opposing tetrahedral sheets."

" Interlayer material. "Interlayer material separates the layers and generally may consist

of cations, hydrated cations, organic material, hydroxide octahedra, and/or hydroxide

octahedral sheets."

* Unit structure. "A 'unit structure' is the total assembly and includes the layer and

interlayer material."

" Clay mineral. "The term 'clay mineral' refers to phyllosilicate minerals and to minerals

which impart plasticity to clay and which harden upon drying or firing". "Clay minerals

are not defined a priori as fine-grained because clays are fine-grained, but rather they may

be of any crystallite size so that the term 'clay mineral' is consistent with the definition

of 'mineral', which is unrelated to crystallite size."

These definitions are most relevant to our modeling of shale rocks, in which the mechanical

behaviors of the clay-particle scale dominate the macroscopic response. Precision in handling

these terms will enrich the modeling descriptions of the clay fabric in shale.



2.3 Multi-Scale Structure Thought-Model for Shale

Shale is complex, highly heterogeneous geological material, with heterogeneities that manifest

themselves at different length scales. The presence of fine-grained clay minerals, nanometric

porosities, and silt-size detrital grains imply a broad range of heterogeneities at multiple length

scales of observation. In this geomechanics investigation of shale, we establish the macroscopic

length scale to be that of an intact rock specimen at the centimeter length scale and higher.

These length scales correspond to those of laboratory specimens used in standard mechanical

characterization experiments such as acoustic measurements for elasticity and triaxial testing

for strength properties. The intact rock sample should not exhibit macroscopic types of discon-

tinuities such as joints, sheared zones [9].

This micromechanics investigation begins by defining a multi-scale structure thought-model

for shale, which provides a consistent framework for separating the length scales that are most

relevant to the micromechanics of shale. Originally proposed by Ulm et al. [268), the adopted

multi-scale model establishes three characteristic length scales of observation, as displayed in

Figure 2-5. The thought-model spans roughly seven orders of magnitude, from the scale of

elementary clay particles (level 0), to the scale of a macroscopic clay-silt composite (level II).

The rationale for each of the model levels is discussed in the following sections.

2.3.1 Level 0: Elementary Clay Particles

Level 0 is the scale of the elementary clay particles, which constitute the solid clay phase in

shale. This scale has classically been designated as the fundamental scale of clay mineralogy.

While the atomic structures of the clay minerals are well-known, their mechanical properties

are rarely documented in handbooks [175]. The small nature of clay particles in pure solid

form becomes the main obstacle for performing direct measurements of clay mineral stiffness

or strength. For instance, several attempts to assess the elasticity of various clays have been

reported [150, 171, 220, 273, 287]. However, the large range of estimated solid clay stiffness

values emphasize the difficulty to assess the intrinsic properties of single clay crystals.
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Figure 2-5: Multi-scale structure thought-model of shale. The level II and level I images come
from scanning electron microscopy (SEM) imaging. The level 0 image comes from transmis-
sion electron microscopy (TEM) imaging [161], reprinted with the kind permission of Springer
Science and Business Media. Adapted from [202, 265, 267, 268].
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2.3.2 Level I: Porous Clay Composite

Level I is the scale of the porous clay composite, which manifests itself at the sub-micrometer

scale (10-7 to 10-6 m). This scale is classically that of advanced observational methods, which

aim at linking the morphology of the clay fabric to physico-chemical, electro-chemical, bio-

organic, and burial diagenesis processes (see e.g. [18]). In particular, it has been long understood

that the microstructure of the clay phase plays an important role in the macroscopic behavior of

shale and other clay-bearing geomaterials [128, 145, 166, 228]. In particular, three methods of

observing this clay microstructure in shale have provided important contributions to the topic.

The most commonly employed visual observation technique is scanning electron microscopy

(SEM) in secondary electron mode [146, 267]. These images give a visual understanding of the

surface topography of a sample. Figure 2-6a displays a typical SEM image of a shale surface,

which exposes the bedding planes associated with the depositional history of the material. The

SEM image shows a typically observed flaky structure, with characteristic dimensions of clay

platelets of about 500 - 1000 nm and 20 -50 nm thickness. The shape of clay particles typically

has been characterized by approximate thickness-to-diameter aspect ratios of 1/25 - 1/20 [267].

A related technique is transmission electron microscopy (TEM), which gives high resolution

information about the relative atomic density of a very thin section of material. Figures 2-6b

and 2-6c display typical TEM images from Bryant et al. [44], who produced a series of images

of consolidated marine clay5 . Darker regions in TEM images correspond to higher atomic

densities. Hence, the TEM images in Figures 2-6 may suggest a granular microstructure with

equi-dimensional, submicron-sized groupings of aligned clay minerals. Finally, atomic force

microscopy (AFM) has also been used to probe the surface topography of a shale sample. In

AFM imaging, a sharp tip is rastered across the sample surface, and the heights at which the tip

makes contact with the surface are recorded. Figures 2-6d and 2-6e show typical AFM images

of a polished shale surface [32]. These images also may suggest a granular microstructure

consisting of equi-dimensional, submicron-sized structures.

Regarding the porosity in shale, porosimetry testing (Section 2.2.6) has determined that the

space in between clay mineral units accounts for almost the totality of the pore space in shale,

5 TEM images of clay in shale are not found in the open literature due to difficulties with TEM sample

preparation.



b) c)
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Figure 2-6: Visual observations of the microstructure of the porous clay in shale. The scale bar
for each image is 1 pm. a) SEM image of shale G2IC-03 adapted from Ulm et al. [267], showing
well-aligned flaky structures. b) TEM image of consolidated clay from Bryant et al. [44],
showing an equi-dimensional, submicron-sized granular structure consisting of c) aligned clay
minerals. d-e) AFM images of shale G2IC-03 in the normal-to-bedding and in-bedding planes
from Bobko and Ulm [32], showing an equi-dimensional submicron-sized granular structure.
Adapted from [31].



Figure 2-7: Plane polarized light thin-section photomicrographs at 25X magnification for shale
G2IC-02. Courtesy of Chevron. Adapted from [267].

with characteristic pore access radii of some nanometers. Consequently, the porosity in shale

is assigned to length scales of level I.

2.3.3 Level II: Composite of Porous Clay and Silt Inclusions

Level II is deemed as the macroscopic scale of characteristic size in the sub-millimeter and

millimeter range (10-5 to 10-4 m). At this scale, the material is composed of the porous clay

fabric intermixed with an abundant population of poorly sorted detrital grains (mainly quartz

and feldspar inclusions), which are either concentrated into laminations or homogeneously dis-

tributed throughout, as observed in Figure 2-7.

This scale is the designated scale for exploration geophysics and experimental geomechanics.

The material characterization at level II is based on the application of various methodologies,

e.g. acoustic testing (ultrasonic pulse velocity measurements), conventional triaxial testing,

tensile split testing, and inclined direct shear testing [2], in order to determine deformation

and strength behaviors and properties. Laboratory measurements using this different exper-

imental techniques involve the characterization of intact rock specimens with no macroscopic

discontinuities.



2.4 Chapter Summary

This chapter has briefly introduced some of the most relevant aspects of composition and

microstructure of shale. Properties and microstructural features such as the clay mineralogy,

particle shapes and orientations, permeability, and nanoporosity have direct effects on the

macroscopic mechanical response of this type of sedimentary rocks. The discussions in Chapter

3 regarding the mechanical properties of shale materials will quickly reveal the links between

material performance to each of these compositional and microstructural aspects. In particular,

the porous clay phase in shale shall be found to dominate the elastic and strength responses of

shale as assessed through different experimental means.

The complex, heterogeneous nature of shale has been structured through a hierarchical,

multi-scale thought-model, which allows separating the different length scales of relevance to

this micromechanics investigation. This multi-scale structure thought model for shale will

provide the framework for introducing a comprehensive experimental database in Chapter 3

used for model development. It will also guide the theoretical modeling efforts presented in

subsequent parts of this thesis.



Chapter 3

Shale Materials and Multi-Scale

Properties

Despite their ubiquitous presence as sealing formation in hydrocarbon reservoirs or as host

rocks, the knowledge of the poroelastic and strength behaviors of shale is limited compared

to the developments for other reservoir rocks. Well-preserved shale specimens are difficult

to retrieve from the field for adequate mechanical characterization. Laboratory experimental

programs tend to be time-consuming because of the experimental constraints imposed by low

permeability of shale. In addition, one of shale's prominent properties, its anisotropic me-

chanical behavior, requires special suits of theoretical and experimental techniques for valid

assessment. However, in the past two decades, significant research progress has been made in

the characterization of mechanical properties of shale, in particular at the macroscopic scale of

engineering testing. More recently, advances in experimental techniques have also contributed

to the direct assessment of the elasticity and strength at the scale of the clay fabric, the binding

phase in shale.

The aim of this chapter is to establish a comprehensive database of mechanical properties for

shale measured at different length scales of observation. The chapter begins with the descrip-

tion of the different shale samples that will be considered throughout this investigation and the

corresponding information regarding material composition (mineralogy, porosity, bulk density).

This information is vital to our modeling efforts. The chapter then introduces experimental



data on clay mineral properties, recently developed nanomechanics results from instrumented

indentation, and conventional macroscopic seismic and strength testing. In an original devel-

opment, the indentation data gathered by the G2IC Industry Consortium is reanalyzed using

a robust statistical approach, which ensures the accuracy and reliability of the inferred infor-

mation about the nanomechanical response of shale. The database established in this chapter

becomes the experimental foundation for our micromechanics modeling investigation of shale.

3.1 Materials

A set of 47 shale specimens will be used in this investigation to develop the microporomechanics

models for elasticity and strength'. This compilation of shale material information serves as

a comprehensive database which brings together specimens from diverse geological origins,

burial depths, and compositional characteristics. The database is composed of experimental

data developed internally by the members of the GeoGenome Industry Consortium 2 and data

obtained from the open literature on shale. The motivation for developing such comprehensive

database of material behaviors is to advance the multi-scale mechanics understanding and

modeling of shale.

GeoGenome Shales

A total of twelve shale samples were characterized by the G2IC for this study. Their compo-

sitional and mechanical properties cover a broad spectrum of shale formation properties. The

shale samples were provided by Chevron, Norsk Hydro (now StatoilHydro), and the University

of Oklahoma. Although detailed experimental information was disclosed for all samples, infor-

mation regarding their geological origins was not generally provided. Only two shale samples

are known to belong to a Pierre formation and a North Sea formation. The remaining samples

are identified by a reference number (G2IC-OX) or by their physical appearance ("light" and

"dark" shales).

'A total of 28 specimens will be consider for developing the microporoelastic model, whereas 19 specimens
will be considered for the strength homogenization model.

2The dataset of shale materials developed by the G2IC was first presented in Bobko and Ulm [32], although
some experimental information (especially regarding macroscopic measurements) does not appear in that report.



Woodford Shales

The Woodford shale samples were cored from a well in the Woodford formation located at

the Northern flank of the Arbuckle uplift in Pontatoc County, Oklahoma. The Woodford

shale formation, deposited during the lower Mississippian and upper Devonian periods under

anaerobic marine environments, is one of the major source rocks along the US Midwest region.

The five samples of Woodford shale belong to the same single core, and were retrieved from a

total distance of approximately 20 m. Compared to the composition of the GeoGenome shales,

which did not display significant amounts of organic compounds, the Woodford shale specimens

will be used in the investigation of the effects of kerogen (a precursor of hydrocarbon) on the

overall mechanical properties of shale. The Woodford specimens are denoted by their depth of

burial in meters (i.e. Woodford 40, 47, 51, 53, 56 m).

Highly Consolidated Boston Blue Clay

The highly consolidated Boston Blue Clay is a synthetic sedimentary material which can be seen

as an analogue of shale. The raw material is resedimented Boston Blue Clay (RBBC), which

has been well-studied and characterized at MIT for more than four decades [101]. Among the

many advantages of such a material is that samples are derived from a natural material, so

while the behavior of RBBC is similar to what is expected for materials encountered in nature,

inherent variations between samples are largely eliminated. To synthesizing rock-like samples

from RBBC, the samples of RBBC considered here experienced consolidation pressures of up

to 10 MPa [1]. All samples were unloaded to an over-consolidation ratio3 (OCR) of 4. The

Boston Blue Clay samples are identified by their final consolidation pressure (i.e. 2, 4, 6, 8, 10

MPa).

Shales from the Literature

The last component of the database of shale materials is compiled from a literature review

of shale mechanics. Although several research projects have been conducted on shale materi-

3 Overconsolidation ratio (OCR) is a soil mechanics term, referring to ratio of maximum compressive effective
stress to the current compressive effective stress a certain soil deposit has experienced. In the case of OCR = 4,
the soil is unloaded in the oedometer to a compressive stress 1/4 of the maximum consolidation stress.



Source Specimen Location Depth, [in]

G2IC G2IC-01, -02, -03, Not disclosed Not disclosed

-04, -05, -06, -07.
-08, Dark, Light,
Pierre, North Sea Pierre / North Sea

Woodford 40, 47, 51, Woodford formation, Oklahoma 40-56

53, 56

[146] CRE Cretaceous shale, Williston basin, North Dakota 1,524

[129] KIM Kimmeridge clay formation. North Sea 3,750

JUR Jurassic age shale, from reference outcrop -

[138] 3492, 3506, Brage field, North Sea basin 3,492-3,564

3525, 3536, 3564
[81] 108/111 North Sea basin 3,000-4,000

[77] MUD Muderong shale, from Carnarvon basin, Australia 1,0

[226] CO Jurassic-age, Callovo-Oxfordian shale, France 613

[142] 9898, 10151, Travis Peak Formation, East Texas 1,800-3,000

6275, 7053,
6853, 8675

[130] B, D, E, H, J, K North Sea 1,570-4,870

[195] TOU Toarcian massive shale, Tournemire site, France

[68] SH1 Jurassic age. English coast

[1] RBBC-2,-4,-6,-8.-10_______________________________

Table 3.1: List of shale samples considered in this study, their geological origins, and corre-

sponding burial depths.

als, especially at the macroscopic scales of engineering testing, only a few references provide

complete descriptions of the material composition and mechanical properties of interest to this

study. The selected references from the open literature on shale are: Jones and 3Wang [146]

HorMby [129], Jakobsen and Johansen [138], Domnesteanu et al. [81], Dewhurst and Siggins

[77], Sarout and Gueguen [226], Jizba [142], Horsrud et al. [130], Niandou et al. [195], and

Cook et al. [68].

Table 3.1 provides a list of all shale specimens considered in this investigation, their geo-

logical origin and location, and their burial depth. In the following sections, the mineralogy,

porosity, and density information are detailed for these shale samples, as those properties are

critical inputs to the multi-scale modeling efforts.



Sample Inclusions Total clay Kaolinite Illite/Smectite Other clay Amorphous

G2IC-01 22 76 36 38 2 -
G2IC-02 28 72 21 42 9 -
G2IC-03 30 70 9 54 7 -
G2IC-04 40 57 7 44 6 -
G2IC-05 36 60 8 40 12 -
G2IC-06 17 82 42 37 3 -
G2IC-07 31 67 37 21 9 -

G2IC-08(a) 56 15 N.A. N.A. N.A. -
Dark 66 35 20 10 6 -

Pierre 64 36 0 25 11 -
Light 71 30 N.A. N.A. N.A. -

40 53 30 1 26 3 17
47 55 28 0 25 3 17
51 51 31 0 27 4 18
53 52 36 0 31 5 12
56 49 36 3 29 4 15

North Sea 45 55 19 11 25 -

Table 3.2: Mineralogy composition for shale specimens gathered in collaboration with the G2IC,
in mass percents. The mineralogy data was obtained by X-ray diffraction. N.A. (non available)
refers to information not disclosed. Inclusions refers to components mainly of the sand and
carbonate mineral groups such as quartz, feldspar, plagioclase, calcite, ankerite, as well as
other silt minerals such as pyrite, halite, and anhydrite. Other clays refers to minerals such
as chlorite, glauconite, biotite, serpentine, berthierine, and montmorillonite. Amorphous refers
mainly to kerogen content.
(a) Mineralogy in volume percent.

3.2 Mineralogy Data

The characterization of the relative amounts of solid constituents in a composite becomes a

critical input for material modeling. For shale modeling, the assessment of mineralogy compo-

sition is crucial for quantifying the volumetric contributions of clay and non-clay minerals to

the overall mechanical response. The quantitative analysis of the mineralogy composition of

shale specimens is typically obtained through X-ray diffraction measurements (XRD analysis),

although other methodologies are also used, such as infrared spectroscopy and energy dispersive

spectroscopy. Tables 3.2, 3.3, and 3.4 summarize the mineralogy compositions of all considered

shale specimens. Evidently, a wide range of mineralogy make-ups for the different samples

testifies to the diversity of materials included in this investigation.



Sample Inclusions Total clay Kaolinite Illite/Smectite Other clay

CRE 73 27 5 19 4
KIM 41 59 22 35 2
JUR 42 58 0 58 0

3492(a) 69 17 4 9 4
3506 35 53 14 17 22
3525 35 55 23 8 24
3536 31 59 14 10 35
3564 52 38 6 15 17

108/111 59 41 25 16 0
MUD 33 65 15 45 5

CO 52 47 3 31 14
9898() 55 42 - - -

9763 75 20 - - -

10151 43 52 - - -

6275 32 63 - - -

7053 57 38 - - -

6853 64 31 - - -

8675 38 56 - - -

Table 3.3: Mineralogy composition for shale data gathered from the literature sources, in mass
percents. Inclusions refers to components mainly of the sand and carbonate mineral groups
such quartz, feldspar, plagioclase, calcite, ankerite, as well as other silt minerals such as pyrite,
halite, and anhydrite. Other clays refers to minerals such as chlorite, glauconite, biotite, ser-
pentine, berthierine, and montmorillonite. The mineralogy data was obtained by X-ray dif-
fraction, except for the specimens KIM (infrared spectrometry), 3492-3564 (energy dispersive
spectroscopy), and 9898-8675 (clay content determined by thin-section point count).
(a) Mineralogies for specimens 3492 to 3564 are in volume percents. 10-14 percent of solid volume was specified

as Other clay without distinction between clay or non-clay mineral.

(b) Mineralogies for specimens 9898 to 8675 are in volume percents.



Sample Inclusions Total clay Kaolinite Illite/Smectite Other clay

RBBC-2(a) 11 45 - -

RBBC-4 12 48 - - -

RBBC-6 12 49 - - -

RBBC-8 12 50 - - -

RBBC-10 13 51 - - -

B 18 82 - - -

D 44 56 - - -

E 48 52 - --

H 42 58 - - -

I 53 47 - - -

J 35 65 - - -

K 51 49 - - -

TOU 45 55 28 25 2
SH1 51 49 22 18 9

Table 3.4: Mineralogy composition of shale data gathered from the literature sources, in mass
percents. Inclusions refers to components mainly of the sand and carbonate mineral groups such
quartz, feldspar, plagioclase, calcite, ankerite, as well as other silt minerals such as pyrite, halite,
and anhydrite. Other clays refers to minerals such as chlorite, glauconite, biotite, serpentine,
berthierine, and montmorillonite.
(a) Mineralogies for RBBC specimens are in volume percents.

3.3 Porosity and Bulk Density

There are different ways to determine the porosity in rocks. One method consists in the com-

bination of experimental bulk density measurements and mineralogy data (solid constituents):

7sat - [ ( /
-sat _.00 fl

P = Ei'=1 mi/ pi +0P 0'
[E (mi/1pi)

(3.1)
-

I

where ps' is the saturated bulk density and pf the density of the fluid phase saturating the

pore space4 . Another convenient way of determining the porosity is from weighing a saturated

and a dried sample:
Psat jdry

00,d = f (3.2)

4 For most shale specimens, specific information regarding the composition of the pore fluids was not provided.
For shales G2IC-01 through G2IC-05, the saturating fluid was a brine solution (14.2% NaCl), whose corresponding
bulk density is similar to that of water. In most cases, the assumption of compressibility properties of water
assigned to the pore fluid is adequate for our micromechanics modeling efforts.



Sample MIP porosity [%] Drying porosity [%] Bulk density [g/cm 3

G2IC-01 26 26 2.20
G2IC-02 13 17 2.43
G2IC-03 7 13 2.55
G2IC-04 20 21 2.33
G2IC-05 26 29 2.19
G2IC-06 12 16 2.41
G2IC-07 7 11.5 2.51
G2IC-08 29 - N.A.

Dark 4 - 2.57
Pierre(*) N.A. - 2.25-2.40

Light 8 - 2.48
40 13 - 2.21
47 12 - 2.18
51 16 2.18
53 19 - 2.26
56 14 - 2.11

North Sea 13-16 - N.A.

Table 3.5: Porosity and bulk density data for shale specimens gathered in collaboration with
the G2IC. N.A. (non available) refers to information not disclosed. MIP stands for mercury
intrusion porosimetry.
(a) Data from [231].

where 1 8at - Msat/Vo and pdry - MAdry/Vo are the mass densities of the fully saturated and

the oven-dried sample, respectively (Ms" and Mdry are the masses of the fully saturated and

oven-dried samples, respectively). Provided an initially saturated state and adequate drying

of the shale sample, the drying method yields estimates of the total porosity that generally

coincide well with estimate (3.1) based on bulk density measurements. Finally, independent

measurements of the porosity are provided by fluid intrusion or gas expansion techniques, among

which mercury intrusion porosimetry (MIP) is the most prominent test. MIP consists of forcing

mercury (a non-wetting liquid for most porous earth materials at atmospheric conditions) into

a porous solid by means of increasing pressure on the mercury. With increasing pressure, the

fluid is forced into smaller pores, and the mercury intrusion volume is translated into a pore

volume. It is well documented that mercury intrusion porosimetry underestimates the actual

porosity [79], while estimation of porosity by using the bulk density and mineralogy information

provides a higher value of porosity.



Sample Porosity Density Remarks (porosity / density)

[%] [g/cm 3 ]

CRE 11 2.42 Estimated from weight loss experiments /
Measured by immersion in water (after waterproofing samples)

KIM 2 - JUR: weight loss experiments, KIM: Helium expansion test /
JUR 10 - Matrix density was estimated for both shales from mineral

composition and standard set of mineral densities

3492 10 2.43 Standard helium expansion technique /
3506 16 2.44 Measurements of volume and weight of cylindrical specimens

3525 8 2.38
3536 14 2.44
3564 7 2.41

108/111 15 2.38 Helium porosimetry test / Experimental method not specified

MUD 21 2.20 Mercury intrusion capillary pressure / Experimental method

not specified

CO 10 2.45 Mercury intrusion porosimetry (200 MPa mercury pressure)

9898(a) 3.3 2.69 Helium porosimetry at 15-28 MPa confining pressure /
9763 4.8 2.69 Experimental method not specified

10151 4.9 2.68
6275 5.0 2.72
7053 5.2 2.71
6853 5.4 2.62
8675 5.8 2.72

Table 3.6: Porosity and bulk density data for shale specimen data obtained from literature
sources.
(a) Density data for specimens 9898-8675 correspond to grain density values.



Sample Porosity Density Remarks (porosity / density)
[%] [g/cm3

RBBC-2 44 - Porosity estimated from consolidation data.

RBBC-4 40 -

RBBC-6 39 -

RBBC-8 38 -

RBBC-10 36 -

B 41 - Standard helium injection technique

D 34 -

E 31 -

H 10 -

I 17 -

J 15 -

K 3 -

TOU 13 2.72 Mercury intrusion porosimetry

SHI 8 - Mercury intrusion porosimetry

Table 3.7: Porosity
sources.

and bulk density data for shale specimen data obtained from literature

3.4 Volume Fractions

In view of the forthcoming development of multi-scale micromechanics models for shale, the

mineralogy and porosity information for all considered shale samples is transformed into appro-

priate volumetric parameters. The volumetric quantities become critical inputs for mechanics

modeling as they weigh the contributions of the relevant phases to the mechanical response of

the composite material at different length scales. Following the multi-scale structure thought-

model for shale outlined in Section 2.3, we define two shale-specific volumetric parameters:

the clay packing density rq, and the inclusion volume fraction fi"C, which neatly summarize

the porosity and mineralogy information of the material sample into two simply understood

parameters.

At the macroscopic scale, or level II, shale is classically partitioned into three characteristic

components; non-clay minerals, clay minerals, and porosity:

Level II: fif"C + fC + = 1 (3.3)

where finC is the volume fraction occupied by the non-clay mineral (NCM) phases (quartz,



feldspar, plagioclase, etc.) in the macroscopic sample volume, f C is the volume fraction occupied

by the clay mineral (CM) phases (kaolinite, illite, smectite, montmorillonite, etc.) in the

macroscopic sample volume, and #0 is the porosity. The inclusion volume fraction and the clay

volume fraction can be determined from mineralogy data:

finc (1 - #) -CM (mi/pi) (3.4a)

C 1 (mi/ pi)

f = (1 - # (3.4b)
EN I (m,/pi)

where mi are for the mass fractions of the N = NCM + CM shale solid constituents provided

by e.g. X-ray diffraction (XRD) measurements, and pi the corresponding mineral densities

(refer to Table 3.8). The clay packing density of the porous clay phase is obtained from:

f C (1 - #0) E>jjAI (m /pi)
77 - - -i=1(3.5)

1-finc i-CAI (mjt/pi) + 6 0 ZEiJ-!C-1 (T11j/

In contrast to the macroscopic volume fractions in (3.3), the clay packing density is defined

at level I of the clay fabric in shale, composed of the solid clay particles and clay porosity,

<p = #0/ (1 - finc), typically of nanometer size:

Level I: r/ + po= 1 (3.6)

For kerogen-rich shale, such as the Woodford shale, the volumetric characterization of the

kerogen phase is necessary for appropriate modeling. In our multi-scale modeling approach,

kerogen is treated akin to a clay mineral phase, and thus the (relative) volume fraction of

kerogen is calculated as:

f k . (3.7)

where Vk is the volume of kerogen, and Z '_' Vi the total volume of clay mineral phases and

kerogen. For the computation of the clay packing density for kerogen-rich shales is modified

accordingly5 .

5The modeling of kerogen-rich shale (Woodford shale) will be undertaken as a extension of the modeling

of kerogen-free shale (G2IC and shales from the literature), which represents the main target of our modeling



Density, pi [g/cm3 ]
Inclusion Quartz 2.65

Kspar 2.57
Plagioclase 2.68

Calcite 2.71
Dolomite 2.90

Pyrite 5.00
Siderite 3.74

Ankerite 3.00
Hematite 2.90

Clay minerals Kaolinite 2.64
Illite / Smectite 2.65

Chlorite 2.95

Table 3.8: Density information of some minerals present in shale.

Beside mineralogy data, the determination of the clay packing density and the non-clay

inclusion volume fraction requires as input the total porosity #0. There are different ways to

determine the porosity of a rock sample depending on the combinations of experimental tech-

niques. As explained in Section 3.3, traditional methods such as mercury intrusion porosimetry

(MIP), drying experiments, and estimations from density and mineralogy data may yield dif-

ferent estimates for the total porosity. This may lead to some variability in the estimation of

the clay packing density and the inclusion volume fraction.

The determination of the clay packing density and the non-clay inclusion volume fraction

for the shale data considered in this investigation is accomplished through a combination of test

results from mineralogy, porosity, and bulk density experiments. A first set of packing density

and inclusion volume fraction estimates is derived from direct porosity and mineralogy tests. A

second set of estimates is derived from experimental bulk density and mineralogy tests (using

relation (3.1) for estimating the porosity). A third set is obtained from drying porosity and

mineralogy tests. For some shale samples, only a limited set of properties was available.

The derived estimates of clay packing density and inclusion volume fraction for the G2IC

and Woodford shale specimens and the shale data gathered from the literature are presented

in Tables 3.9 and 3.10. By way of illustration, Figure 3-1 displays the comparisons of clay

packing density and inclusion volume fraction estimates obtained by the three methodologies

efforts.



Sample T7max 71min '7dry Jmax fmin fdry f/
G2IC-01 69 65 69 16 16 16 -

G2IC-02 83 78 78 24 23 23 -

G2IC-03 90 90 82 28 28 26 -

G2IC-04 71 68 69 33 32 33 -

G2IC-05 64 58 61 27 26 26 -

G2IC-06 86 80 82 14 13 13 -

G2IC-07 90 85 84 28 27 27 -

G2IC-08 34 - - 56 - - -

Dark 90 79 - 62 59 - -

Pierre(") 65 52 - 52 47 - -

Light 82 75 - 64 62 - -

40 79 70 - 40 37 - 49
47 80 64 - 40 35 - 51
51 75 68 - 36 34 - 49
53 69 70 - 38 38 - 36
56 77 61 - 38 33 - 39

North Sea(b) 79 75 - 38 37 - -

Table 3.9: Volume fractions for the data gathered by the G2IC, in terms of the clay packing
density TI, the inclusion volume fraction fi", and the relative volume fraction of kerogen fk.
Minimum volume fractions were calculated using mineralogy and bulk density information.
Maximum volume fractions were calculated using mineralogy and MIP porosity information.
(a) The variability in volume fractions was calculated using the bulk density data.
(b) The variability in volume fractions was calculated using the range in porosity measured for this specimen.

previously discussed. The figures show a greater variability across estimates of clay packing

density compared to inclusion volume fraction estimates. Furthermore, and as it was expected,

estimates of clay packing density and inclusion volume fraction using porosity and mineralogy

information are higher compared to those obtained from bulk density and mineralogy informa-

tion, which recognizes that fluid/gas intrusion techniques underestimate the actual porosity,

and hence overestimate clay packing density and inclusion volume fraction values.

3.5 Mechanical Properties of Clay Minerals - Level 0

The review of the mechanical properties of shale begins by first focusing at the scale of clay

minerals. The clay phase in shale, which is its dominating material component (see mineralogy

compositions in Section 3.2), dictates the overall rock deformation and strength behaviors. In

clay-rich sedimentary rocks and soils, the extremely small particle sizes in the sub-micrometer



Sample Imax 1 lmin fA'a fin
CRE 69 53 64 58
KIM 96 - 39 -

JUR 84 - 36 -

3492 64 38 72 61
3506 76 76 34 33
3525 88 71 36 31
3536 80 66 30 26
3564 86 67 54 48

108/111 71 65 50 48
MUD 72 62 26 23

CO 81 72 47 44
9898 93 - 55 -

9763 81 - 75 -

10151 91 - 43 -
6275 93 - 32 -

7053 88 - 57 -

6853 85 - 64 -

8675 91 - 38 -

Table 3.10: Volume fractions for the data obtained from the open literature, in terms of the
clay packing density 71, and the inclusion volume fraction fi"e. Minimum volume fractions
were calculated using mineralogy and bulk density information, whenever available. Maximum
volume fractions were calculated using mineralogy and MIP porosity information.

Sample '7max nmin finax fn
RBBC-2 51 - 11 -
RBBC-4 54 - 12 -
RBBC-6 56 - 12 -
RBBC-8 57 - 12 -

RBBC-10 59 - 13 -
B 54 - 11 -

D 52 - 29 -

E 54 - 33 -

H 84 - 38 -

I 70 - 44 -

J 79 - 30 -

K 94 - 49 -

TOU 92 86 40 38
SH1 41 - 79 -

Table 3.11: Volume fractions for the data obtained from the open literature, in terms of the
clay packing density q, and the inclusion volume fraction fi"C. Minimum volume fractions

were calculated using mineralogy and bulk density information, whenever available. Maximum
volume fractions were calculated using mineralogy and MIP porosity information.
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Figure 3-1: Comparisons of clay packing density (top) and inclusion volume fraction (bottom)

estimates obtained from porosity and bulk density tests in addition to mineralogy information.
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range, large specific surfaces (tens to hundreds of m2/g), and unbalanced surface electrical

forces associated with clay particles result in a colloidal behavior at fundamental length scales

[187]. For such configuration, the behavior of the material system is governed by surface forces,

which can act between solid and liquid bodies at distances larger than interatomic spacings in

a crystal, as well as in the presence of a third interacting medium such as water [137]. These

surface forces are related to different physical scenarios of repulsive and attractive interactions

between bodies [105]:

" Electrical double-layer forces rise from the contributions of electrostatic interactions and

an osmotic pressure derived from the confinement of a cationic layer in the interlayer gap

between charged crystals. This type of repulsive force is dominant at large separation

distances.

" Hydration forces at small separation distances occur due to the hydration of crystal sur-

faces and interlayer cations.

* Van der Waals attractive forces originate from dipolar interactions. Although relatively

weak compared to hydration forces, they are non-directional and additive between atoms.

* Capillary attractive forces develop due to the surface tension at fluid/solid interfaces. The

influence of this type of attractive force may be more significant in partially saturated

media.

The combination of ionic and electrostatic forces defines the behavior of clay systems. In

particular, material domains, or quasi-crystals (refer to Section 2.2.3), form from the grouping

of several clay layers held together by short-range attractive forces, depending on the specific

clay group6. These layered arrangements are the bases for the structures of clay particles, whose

morphologies are strongly linked to the development of the signature microfabric in shale.

It is at the level of clay particles where physical chemistry meets the mechanics of clays in

terms of deformation and strength behaviors. Unfortunately, most clay minerals do not exist

as large crystal structures, which has become a recurrent challenge for experimental programs

6 The stacking of clay layers depends on the particular clay group. Layers may be stacked closely together or
water layers in the interlayer gap may occur.



aiming at their mechanical characterization. In what follows, the results of experimental tests

on clay particles are presented. These experimental investigations are aimed particularly at the

characterization of the elastic behavior of single crystals through the use of various methodolo-

gies. Numerical simulations of clay particles are also discussed, which address similar behaviors

as those related to experiments on single clay minerals. In addition, a series of experimental

values for pure clay in shale are discussed. These values have been reported based on extrap-

olations from results of macroscopic experiments on clay-mixtures and shale rocks, with the

specific intent to define the in situ mechanical properties of the clay phase in shale. Indeed,

the results for in situ clay behavior encompass mechanical behaviors such as particle contacts,

crystal deformation, and grain boundaries, in addition to the complex intermolecular and sur-

face behaviors attributed to clay systems. Finally, the discussions about clay mineral behavior

focus on the elastic deformation which is a central aspect of this investigation.

3.5.1 Single Clay Mineral Elasticity

The challenge in the implementation of experimental testing techniques to assess the elasticity

of clay minerals is intrinsically related to their small particle size. Nevertheless, successful ex-

periments have been conducted on certain clay types such as muscovite or rectorite, which can

manifest themselves as crystal structures of adequate size for direct measurements. One of the

earliest direct tests on muscovite was conducted by Aleksandrov and Ryzhova [7] using ultra-

sonic techniques. However, experimental limitations resulted in an incomplete characterization

of its elastic anisotropy, assuming henceforth hexagonal symmetry properties (5 independent

elastic constants). Vaughan and Guggenheim [276] provided new measurements of muscovite

using Brillouin scattering techniques. This type of light scattering technique that measures

Brillouin spectra allows for the measurement of small samples such as a natural crystal of 1

mm characteristic size. The measured elasticity for the muscovite sample revealed a mono-

clinic elastic symmetry (13 independent elastic constants). A similar study and findings were

also presented by McNeil and Grimsditch [183]. In turn, Katahara [148] proposed estimates

of acoustic properties for illite minerals in shale based on muscovite data [7]. Katahara also

provided estimates for chlorite and kaolinite based on acoustic velocity-density trends. A later

review of Chen and Evans [57] confirmed the proposed scaling of elastic properties and density



for silicate materials. Table 3.12 summarizes the anisotropic elasticity values measured through

the acoustic and optical methods here discussed. Isotropized values estimated through the

Voigt-Reuss-Hill average are also listed in Table 3.12. The Voigt-Reuss-Hill (VRH) average is

an empirical estimate based on the arithmetic mean of the Voigt and Reuss averages, both of

which provide rigorous bounds for the elastic properties of an isotropic aggregate of crystals

[123]. The VRH estimates of isotropic elastic properties of an aggregate of crystals can be

calculated using the full elastic tensor of the single crystal and the arithmetic mean of the Voigt

and Reuss averaging schemes. The Voigt and Reuss averages are based on the assumptions

of uniform strain and stress fields, respectively. For transversely isotropic crystals, the VRH

estimates yield (see e.g. [10]):

1 2
Kv = - (2C1 + C33) + (012 + 2C13) (3.8a)

9 9
1 1 1

Gv = (2Cn + 033) - I(012 + 2013) + - (2C44 + C66) (3.8b)
15 15 5

1
KR -= ( 0 0 0 (3.9a)

A (Cul + C12 + 2C33 - 4C13)

GR - 15 (3.9b)
2A [2 (Cii + C12) + 4C13 + C33] + 6 (1/C44 + 1/C66)

1
KVRH - (Kv + KR) (3.10a)

2
1

GVRH - (Gv + GR) (3.10b)
2

where, Kj is the bulk modulus, Gj is the shear modulus, and A = [C33 (CII + C12) - 2C212-

The experimental studies related to the mechanical characterization of clay minerals have

been supplemented by computational modeling. Molecular dynamic (MD) simulations con-

ducted by Seo et al. [237] yielded estimates of the anisotropic elastic properties of muscovite.

The MD simulations using partial ionic two-body interatomic potentials were carried out under

uniaxial and tensile stress conditions. The estimated monoclinic elasticity for muscovite is also

presented in Table 3.12. High stiffness values of similar order of magnitude as those predicted



Elastic constants [GPa] VRH averages [GPa]
Clay mineral Reference C11 C12 C13 C33 C44 kVR H VRH

Acoustic and optical experiments
Muscovite [7] 178.0 42.4 14.5 54.9 12.2 52.2 31.6
Muscovite [276] 184.3 48.3 23.8 59.1 16.0 59.1 34.4

Acoustic velocity - density scaling
Kaolinite [148] 171.5 38.9 26.9 52.6 14.8 55.4 31.8
Chlorite [148] 181.8 56.8 90.1 96.8 11.4 99.7 24.4

Instrumented nanoindentation
Muscovite [302] 36.9 22.1
Rectorite [302] 10.0 6.0

Molecular simulations
Muscovite [237] 250 60 35 80 35 80 49

Table 3.12: Reported anisotropic elasticity properties of single clay minerals estimated using
ultrasonic, optical, and nanoindentation experiments, as well as calculated through molecular
simulations. Most references report elastic properties corresponding to hexagonal (transverse
isotropic) symmetry of the stiffness tensor, except for the data of Vaughan and Guggenheim
[276] and Seo et al. [237]. The experiments of [276] and the molecular simulations of [237]
characterized muscovite as a monoclinic elastic solid. For clarity, only a subset of elastic con-
stants for those referenced results are presented. The Voigt-Reuss-Hill (VRH) averages for the
bulk kVRH and shear gV RH moduli were calculated assuming a hexagonal symmetry for all the
elastic estimates of clay minerals (the error of this assumption for the data of [237], [276] is
less than two percent). The VRH values for Zhang et al. [302] correspond to isotropic elastic
properties measured by nanoindentation.



for muscovite were also found in MD simulations of single lamella of montmorillonite conducted

by Manevitch and Rutledge [1691.

The collection of results presented in Table 3.12 attest to the highly anisotropic nature of

clay minerals. The results of ultrasonic and optical experiments and molecular simulations

also elucidate the links between particular clay atomic structures and the resulting elasticity

attributes of clay crystals [169, 276]. The particularly stiff response of the minerals noted in

Table 3.12 already hints towards a characteristic behavior of clay particles with well-crystallized

structures. In contrast, the in situ behavior of clay particles in sedimentary rocks, which display

different crystalline structures and interlayer galleries highly modified by aqueous solutions, may

develop a different response. The effective in situ behavior of clay minerals in shale is presented

hereafter.

3.5.2 Consolidated Clay

In contrast to direct measurements and atomistic simulations of clay minerals, the open litera-

ture on shale elasticity provides data on clay properties that correspond to extrapolated values

at zero porosity for some clay samples. This type of clay properties is seen as representative of

the in situ elastic behavior of the solid clay phase in clay-bearing rocks. Due to the different

nature of this clay data compared to mechanical properties of single crystals, we refer to these

effective properties of clay in rocks as compacted or consolidated clay. A summary of elastic

properties for compacted clay reported in the open literature is presented in Table 3.13.

The clay properties reported by Hornby et al. [128] were obtained by extrapolating to zero

porosity the results of core analysis by Marion et al. [171] for a saturated shale specimen with 25

percent porosity. The extrapolation procedure was based on the application of effective medium

theory and an isotropic-elasticity version of the self-consistent scheme of micromechanics. Berge

and Berryman [20] suggested their values to be representative properties of natural clays based

on a compilation of laboratory measurements documented in Castagna et al. [52]. The values

referred by Mavko et al. [175] correspond to clay acoustic properties interpreted by Castagna

et al. [53] for mixed lithologies through extrapolating empirical relations to 100 percent clay

content. The data used by Castagna et al. was gathered by Han et al. [112] and Blangy

[28]. The values presented by Jorstad et al. [147], which are viewed as representative of pure



Bulk modulus Shear modulus
Reference k' [GPa] g' [GPa

Hornby et al. [128] 22.9 10.6
Berge and Berryman [20] 21.4 6.7

Mavko et al. [175] 25 9
Jorstad et al. [147] 26.6 7.5
Vanorio et al. [273] 12 6

Table 3.13: Reported elastic properties of compacted (consolidated) clay.

shale, were derived from an implementation of effective medium theory to the modeling of a

shaley sand formation. Finally, the clay properties suggested by Vanorio et al. [273] were

obtained from acoustic velocity measurements of kaolinite and Na-montmorillonite powders in

dry, compacted form and in water suspension.

The comparison of Tables 3.12 and 3.13 suggests two different types of effective behavior of

clay. The elasticity measured for single clay minerals clearly corresponds to the stiff nature of

highly crystalline stacks of clay layers. This clay particle stiffness is of a different magnitude

- two times larger or more - compared to the elasticity inferred for the solid clay phase in

shale rocks. The extrapolated behaviors of clay in shale define an effective response of both

clay particles and interlayer materials (water, brine solutions). Furthermore, the mechanics

of interparticle contacts and grain boundaries may also contribute to the different behavior of

in situ or compacted clay compared to that of stiff, single clay platelets. Further discussion

of these noted elasticity behaviors will be pursued in Section 6.2, which will also include the

results of the micromechanics model for shale.

3.6 Instrumented Indentation Analysis and Shale Nanomechan-

ics - Level I

Access to the mechanical behavior of shale at nanometer length scales has become possible

through the application of instrumented indentation. Indeed, it is of upmost interest to gain

access to the properties of the porous clay fabric in shale (or level I of the multi-scale structure

of shale) through direct measurements in order to fill in the gap in experimental understanding

of these rocks. The recent application of nanoindentation to shale and other natural compos-



ites (see e.g. [66, 270, 275]) has required extending the experimental and analysis techniques

for homogeneous materials to heterogeneous materials by developing experimental setups and

statistical tools for identifying the properties of material constituents. In this section, brief

introductions of the most salient aspects of instrumented indentation experiments and analyses

are presented7 , followed by a summary of the experimental results for the mechanical properties

of shale at nanoscales developed by Ulm and co-workers [2, 32]. In addition, a recent devel-

opment in the statistical analysis of nanoindentation data is presented, which provides a more

robust interpretation of indentation data for shale. Finally, the relevant experimental data of

shale at nanoscales used for the development of shale micromechanics models are summarized.

3.6.1 Overview of the Indentation Experiment

Instrumented indentation is a surface test that provides access to the bulk properties of the

investigated material using the tools of continuum mechanics for interpreting the measured me-

chanical responses. An indentation test consists in pressing an indenter tip of known geometric

and mechanical properties orthogonally onto the surface of the material of interest. During

such a test, the load P applied to the indenter and the depth h of the indenter with respect

to the material surface are continuously recorded, as shown in Figure 3-2. The resulting load-

displacement curve defines the characteristic mechanical response of the tested material system

and could be used for extracting elastic, strength, and creep properties.

The apparent simplicity of this test belies its complexity when aiming at measuring mechan-

ical responses at sub-micrometer length scales, for which advanced measuring devices based on

electromechanical components have been developed. The development and use of instrumented

nanoindentation has been the target of significant research over the past two decades (see e.g.

[59, 200] for recent reviews). The current and most common applications of this technique are

for homogeneous material samples and thin films. The reader is referred to the works of Ulm

and co-workers [31, 64, 274] for comprehensive reviews of instrumented nanoindentation appli-

cations, details of the experimental procedures, testing equipment, specimen preparation, and

other important aspects relevant to the implementation of the experimental technique. In what

7 The presentation of the principles of instrumented indentation experiments and analysis is inspired from the

works of G. Constantinides, C. Bobko, and M. Vandamme [31, 64, 274].
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Figure 3-2: Schematic illustrations of the indentation loading function (left) and a typical load-
displacement response (right), showing important measured parameters. The loading phases
are: (A) loading, (B) holding, and (C) unloading. S corresponds to the slope of the unloading
curve at the maximum indentation load Pmax, hmax is the maximum displacement or indentation
depth, and hf is the final depth, corresponding to the permanent depth of penetration after
full unloading.

follows, this presentation focuses on the theoretical background necessary to assess the results

from experimental nanoindentation. In particular, the discussions will lead to the presentation

of an extension of instrumented nanoindentation for elasticity and strength characterization of

heterogenous materials and the specific application to shale.

3.6.2 Self-Similarity of the Indentation Test

One important feature in the analysis of indentation experiments that allows linking measured

parameters to material properties is the self-similarity of the indentation test. A time-developing

phenomenon is noted as self-similar if the spatial distributions of its properties at different

times can be obtained from one another by a similarity transformation [13]. As a result,

the self-similarity property of a problem simplifies its investigation. In indentation testing,

self-similarity implies that the displacement fields at any load P can be inferred from the

displacement fields at a different load P0 . A set of three conditions determine the self-similarity

character of an indentation problem [39, 40]. First, the shape of the indenter probe must be

described by a homogeneous function with degree greater than or equal to unity. Second, the

constitutive relations of the indented material must be homogeneous functions of stress and
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Figure 3-3: Indenter probes of different geometries.

strain. Finally, the loading at any point must be increasing during the contact process. These

conditions related to the self-similarity of indentation tests are further detailed in this section.

Indenter Shapes and Geometric Similarity

A series of relevant indenter probes is schematically shown in Figure 3-3. Although rarely used

in indentation testing, the flat punch indenter probe is important from a theoretical perspective.

The related analysis of the indentation contact problem is greatly simplified by the constant

contact surface between the probe and the indented surface during testing. The spherical

indenter probe enables the testing of elastic properties at small load magnitudes, and it is mostly

used for soft materials. In practice, the most used indenter shapes are pyramidal indenter probes

such as the Berkovich, Vickers and Cube-Corner probes. Their sharp geometries allow for the

testing of volumes of material smaller than what other geometries can probe. However, this

same feature generates stress concentrations at the probe tip, which result in plastic deformation

for the material being solicited even at low load magnitudes. The indentation testing of shale

materials involved the extensive use of the Berkovich indenter [32].

8 This section follows the presentation of M. Vandamme [274] of the subject.

M



Axisymmetric probe Non-axisymmetric probe

Figure 3-4: Parameters defining the geometry of an indenter probe, z is the indentation height,
and S the cross-sectional area. For an axisymmetric probe, r is the radius. Adapted from [274].

For a given probe within a Cartesian coordinate system 0 (XI, X2, X3) where the probe tip

is at the origin and the depth of the probe is in the direction xI (Figure 3-4), the height z of

the surface of the probe verifies the following relation:

z (Axi, AX2 ) = Adz (XI X2 ) with A > 0 (3.11)

where d is the degree of the homogeneous function. For axisymmetric problems, (3.11) simplifies

to:

z (r) = Brd (3.12)

where r is the radius of the probe at a given height z, and B a proportionality factor that

represents the radius at r = 1, as shown in Figure 3-4. The degree d and the proportionality

factor B for the probes presented in Figure 3-3 are provided in Table 3.14.

Two objects that can be transformed into each other by dilation or contraction are geometri-

cally similar. Applied to the shapes in Figure 3-3, all flat punch probes are geometrically similar.

Two spherical probes of different radii are also geometrically similar to each other. In contrast,

I



Probe type d

Flat punch - oc

Spherical 2
Conical 1

Pyramidal 1

Table 3.14: Degree d of the homogeneous function
indenter probes.

B

1/(a")
1/(2R)
cot(0)

cot(9eq)

and proportionality factor B for various

Probe type Equivalent half-cone angle, Oeq

Berkovich 70.320
Vickers 70.320

Cube Corner 42.280

Table 3.15: Equivalent half-cone angle 0 eq for various pyramidal probes.

pyramidal indenter probes are invariant when contracted or dilated. That is, pyramidal and

conical indenters are similar to themselves, and hence said to be geometrically self-similar. For

the purpose of indentation analysis and making use of this geometric self-similarity, the non-

axisymmetric pyramidal probes are approximated by axisymmetric cones of same degree d = 1.

Such approximation greatly simplifies the analysis of the indentation experiment. The men-

tioned approximation is achieved by the implementation of an equivalent half-cone angle 0 eq,

whose corresponding cone gives the same projected cross-section area S for a given height z as

the original pyramidal indenter probe. The equivalent half-cone angles of common pyramidal

probes are provided in Table 3.15.

Material Behavior

The self-similarity of an indentation experiment entails that the constitutive relations of the

indented material must be homogeneous with respect to the resulting strains (or strain rates)

or stresses. This condition expresses that the operator of constitutive relations F, and thus the

stress tensor o- (e), must scale as:

F(AE) = A"F(E) (3.13)



where e is the strain tensor, and K the degree of the homogeneous constitutive function F.

Linear and non-linear elasticity satisfy this requirement provided that [38]:

0- = C (e) : e (3.14)

C (AE) = AK-iC (E) (3.15)

where C (e) is the secant stiffness tensor. ' = 1 corresponds to the case of linear elasticity.

Condition (3.13) is also satisfied for the behavior at the rigid plastic limit, for which the stress

derives from the dissipation (or support) function o : e 7r (d) [83]:

- 7 (d) (3.16)
Dd

where 7r (d) is a homogeneous function of degree 1 with respect to the strain rate d, such that:

7 (Ad) - AX (d) (3.17)

Consequently for the rigid plastic limit, yield design solutions applied to indentation analysis

satisfy the self-similarity condition (3.13) with K - 0.

It is worth noting that not all materials satisfy condition (3.13). For instance, consider the

case of linear-elastic, perfectly-plastic materials, for which = 1 within the elastic domain,

and K = 0 at the limit of the elastic domain, corresponding to the strength limit. In this

case, there is no unique value of parameter K for which condition (3.13) holds for all strain

levels eventually present in the indentation test. Consequently, indentation testing performed

on linear-elastic, perfectly-plastic materials are not self-similar. In general terms, whenever the

material response of the indented half-space is not governed uniformly by the same class of

material behavior characterized by the parameter v,, the non-homogeneous stress distribution

within the indented half-space may imply the loss of self-similarity of the indentation test.

Self-Similar Scaling Relations

Provided that conditions (3.11) and (3.13) are satisfied, the loading phase of an indentation

test possesses self-similarity (see Figure 3-2). Hence, given a known indentation response,



Figure 3-5: Geometric description of a conical indentation test. P is the indentation load, h the
indentation depth, he the contact depth, Ac the projected area of contact, and a the contact
radius [274].

represented by load Po, indentation depth ho, contact depth (hc)o, and projected area of contact

(Ac)o (see Figure 3-5), the indentation response (P, h, he, Ac) is obtained from a similarity

transformation [37]:

P hd
(3.18)

Po ho

For the case of elastic behavior (K = 1), P oc h for a flat punch, and P oc h3/2 for a spherical

indenter. In contrast, for a conical or pyramidal indenter probe (d = 1), P oc h2 irrespective of

the material behavior. This scaling relation provides a strong argument in favor of using the

Berkovich indenter, as self-similarity will prevail irrespective of the constitutive relations.

Another relation obtained from the self-similarity of the indentation test is [37]:

d

h (A, ) (3.19)
ho (Ac)o

A combination of the previous two scaling relations readily shows that the average pressure

below the indenter - or indentation hardness H = P/Ac - scales as:

Kd-1

H (h) - (3.20)
Ho ho



Consequently, the hardness H is constant throughout the loading process and does not depend

on the applied load for any rigid plastic behavior (K - 0) or for any pyramidal or conical

indenter shape (d = 1).

Finally, (3.19) can be rewritten as follows by noting that Ac = 7ra 2 , where a is the contact

radius:
ad

cst. (3.21)
h

For axisymmetric probes, in which the contact radius a and the contact depth he are linked by

h_ - Bad, an equivalent expression is given by:

-c= cst. (3.22)
h

Expression (3.22) determines that the contact height-to-indentation depth ratio hc/h does not

depend on the load P, provided the self-similarity of the indentation test. This result is of

critical importance for indentation analysis and forms much of the basis of indirect methods

of determination of the projected area of contact Ac in the contact problem, which is a key

quantity used for linking measured responses to material properties.

3.6.3 Indentation Analysis of Elastic and Strength Properties

The translation of the material response measured in an indentation test into mechanical quan-

tities requires the solution of the contact problem between the indenter and the material surface

using the tools of continuum mechanics modeling. For indentation testing, the measured re-

sponse is condensed into two indentation properties: the indentation modulus Al, and the

indentation hardness H:

Adef S (3.23)
2 A

H d Fc (3.24)

where P is the applied maximum indentation load, S = dP/dh the measured initial slope of

the unloading branch of the P - h curve, and Ac the projected area of contact between the

indenter tip and the indented material (see Figure 3-5). Although elastic indentation solutions



provide direct means to determine the contact area Ac from the contact depth-to-indentation

depth relation hc/h (the Galin-Sneddon solution [94, 244]), the projected contact area for other

material behaviors (e.g. elasto-plasticity) is a priori an unknown of the contact problem9 .

Fortunately, indirect methods have been designed for determining the contact area in terms of

the maximum depth measured in the indentation experiment, hmax. One of the most prominent

methods was proposed by Oliver and Pharr [199], which is based on the determination of the

contact height he from the elastic contact solution involving measurable quantities:

he hmax Pmax (3.25)
S

where the constant c does not vary much for different indenter probes (0.72, 0.75, 1 for cone,

sphere, and flat punch geometries, respectively). Once this estimate is available, the contact

area can be calculated using the self-similar properties of the indentation test, which for the

case of a Berkovich indenter yields:

Ac (hc) = 24.56h2 (3.26)

The next task of indentation analysis is to link the measured indentation parameters (the

indentation modulus and hardness) to meaningful mechanical properties of the indented mate-

rial.

Indentation Modulus

The definition of the indentation modulus M (3.23), introduced by Bulychev, Alekhin, and

Shorshorov [48], derives from the consideration of the contact problem between an elastic half-

space and a rigid axisymmetric indentero. The indentation modulus linked to an isotropic

9It is important to note that definition (3.23) was developed in the framework of elastic media. However,
extensive research has shown that such definition can be applied to the unloading branch for material systems
exhibiting e.g. elasto-plastic behavior, to extract their elasticity content [35, 58, 211].

"'The contact-mechanics problem related to the indentation setup finds its theoretical basis in the works of

Hertz, Love, Galin, Sneddon, and Boussinesq, among others. The form of the BASh formula in (3.23) is the
preferred presentation of the indentation problem in terms of measurable quantities.



medium corresponds to the plane-stress modulus [94, 244]:

M = 
(3.27)

1 -v 2

where E is the Young's modulus, and v the Poisson's ratio of the indented isotropic material.

The solution for the case of anisotropic elasticity is more involved. as the indentation modulus

depends on the direction of the indentation load with respect to the material elasticity sym-

metry. General solutions for anisotropic media have been proposed (e.g. [250, 279]); however,

more compact expressions have been derived for specific material symmetries. Of particular

importance to this investigation is the case of transversely isotropic elasticity, which is an at-

tribute of shale materials (at least from a macroscopic scale perspective). For a transverse

isotropic half-space with the material symmetry oriented in the x3 -direction, the indentation

moduli M1Ii =- (xi) obtained from indentation directed in the principal material axis xi are

related to the five independent elastic constants by [72]:

M1  = (xi) -M (x 2 ) ~ 0 C 0 213 (3.28a)

CnC33 - C2 1 2 -
Al3  =Al (x 3 ) 2 13 _+ _ (3.28b)

Cn C44  vC+ IC33 + C13

where the Voigt notation was used to denote the elastic constants C11 = C111, C12 C1122,

C13 C1133, C33 C3333, C44 = C1313 C2323.

Indentation Hardness

One of the primary intents of indentation testing, from its early applications, was the mea-

surement of hardness as a parameter used for material characterization. Early experimental

observations linked hardness measurements to the strength of metals [42]. Based on a slip-line

field solution for the indentation problem involving a rigid, cohesive plastic solid and a friction-

less rigid wedge, Tabor suggested a hardness-to-yield strength relation of the form H/Y = 3,

which is a well-known rule of thumb for cohesive materials [251]. For frictional materials, a

variability of the hardness-to-compressive strength on the order of H/Yc ~ 20 - 30 has been

observed experimentally [63, 151, 136], which highlights the contribution of the internal fric-



tion to the measured hardness. Numerous studies on a several types of material behaviors

(e.g. elastic-perfectly plastic, work-hardening plasticity) have suggested that hardness is not

an intrinsic material properties, but rather a snapshot of mechanical properties of the indented

material and the influence of the indenter geometry [59, 144].

Recently, the use of yield design approaches have advanced the application of indentation

analysis for linking the hardness measured in indentation testing and strength properties of

the cohesive-frictional materials, which are of relevance to our topic of investigation. Ganneau

et al. [95] developed a dual indentation approach based on the upper bound theorem of yield

design to access the cohesion and friction of a Mohr-Coulomb solid from the dependence of

hardness and cohesion on the indenter cone angle. Cariou et al. [50] and Gathier and Ulm [98]

extended the use of the yield design approach to treat the hardness response of porous solids

with a Drucker-Prager solid phase. In particular, the approach of Gathier and Ulm [98] offers a

robust means for establishing the relations between measured hardness H, porosity (expressed

as one minus the packing density TI), and the solid's cohesion and friction properties (cS, a).

The simulated scaling relations 1 follow the form [98]:

H = h' (c', a) x UH (a, r) (3.29)

where HH (a, 7) is a dimensionless function to be developed, and hS (cs, a) = lime1 H is

the asymptotic hardness of the cohesive-frictional solid phase that obeys the Drucker-Prager

criterion12 . This asymptotic value relates the solid's cohesion cs, and friction coefficient a, by

the function:

hS - c" x a (I + ba + (ca)3 + (da) 10 (3.30)

'The relations between the measured indentation hardness and the material's strength properties correspond
to a simulated indentation experiment on a granular, isotropic porous solid with a conical indenter with equiv-
alent cone angle to a Berkovich tip. This configuration of the simulated indentation experiment is relevant for
applications to shale.

2 The Drucker-Prager plasticity criterion is an isotropic shear-friction strength criterion, which will be used
for the strength modeling of shale in Part IV of this thesis.



with fitted parameters:

a 4.7644

b 2.5934

c = 2.1860

d 1.6777

The dimensionless function 1H E [0, 1] depends on the packing density q and the friction

coefficient a, and it given by a limit development around a:

(3.31)

where the first part of the function is independent of the friction coefficient. The expressions

for 1 (77) and H2 (a, ,) are given by:

H (2(2 -1)-(277- 1 + g ( - ) + h (1 - 7)2 + j(1 -)3
H2Z - 1

112 (a 2) = 2 ( k + m (1 - 71) + p (1- ) a + qa 3)

(3.32a)

(3.32b)

with fitted parameters:

g = -5.3678

h = 12.1933

j = -10.3071

k = 6.7374

m -39.5893

p = 34.3216

q = -21.2053

These smooth, closed-form functional relations between packing density, cohesive-frictional

strength parameters, and indentation hardness have been implemented for inferring the strength

properties of the solid clay phase in shale from nanoindentation data [31].

3.6.4 Grid Indentation Technique for Heterogeneous Materials

The extensive use of indentation testing for material characterization has been related so far

to applications for homogeneous materials and thin films. For heterogeneous materials, the

direct application of the indentation technique is challenged by the occurrence of heterogeneities

manifesting themselves at different length scales, such as in natural composites (e.g. concrete,

UIH III9 =9 (TI) + a (1 -q9) H2 a



rocks, bone). In principle, one approach is the indentation on specific material phases previously

identified through visual means. However, this method clearly becomes not practical for large

scale testing programs. Ulm and co-workers [63, 65, 270] have proposed the so-called grid

indentation technique, which is based on conducting a large grid of indentations over the surface

of the heterogeneous medium of interest. Provided the adequate choices for the indentation

depth and grid size, each indentation experiment could be regarded as statistically independent,

which opens a way for the application of statistical techniques to interpret the indentation results

in terms of mechanical properties of the material phases.

The grid indentation principle can be introduced by considering an indentation test on an

infinite half-space composed of two different material phases with contrasting properties, as

schematically shown in Figure 3-6. Performing an indentation on a random location in the

specimen surface should provide access to the properties of either of the phases given that the

indentation depth is much smaller than their characteristic sizes. In contrast, a much deeper

indentation compared to the size of the phases should probe the composite mechanical response

via mechanical homogenization [65]. Consequently, the adequate choice of an indentation depth

for soliciting the mechanical properties of the material phases involves a more detailed analysis,

because the new length scales added to the indentation problem must meet criteria for statistical

sampling and scale separability conditions from continuum mechanics analysis.

To achieve statistical independence in the sampling process, the grid size L must be much

larger than the imprint of the indentation test. Furthermore, a large number of tests N are

necessary in order to avoid sampling effects, which entails the use of a sufficiently large testing

surface compared to the individual material phases of size D. Keeping in mind the objective of

retrieving properties of the individual phases, the indentation depth h (which is related to the

size of the indentation imprint) should be much smaller than the length scale of the phases.

The previous conditions can be summarized as:

h < D < L vN (3.33)

3 Finite element simulations for indentation testing using a Berkovich probe have shown that the measured

elastic response during testing corresponds to a material volume that is 3 to 5 times the depth of indentation

[157].
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Figure 3-6: Schematic of the principle of grid indentation analysis performed on a two-phase,
heterogeneous material. a) Characterization of intrinsic phase properties from shallow indenta-
tion depths. The dashed circle represents the volume of the material probed during testing. b)
Indentation tests, represented as triangles, provide access to the mechanical properties of either
of the two phases. Indentations are performed in a grid arrangement. c) Resulting probability
density function (PDF) for each of the measured properties. Adapted from [274].
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With regard to the interpretation of indentation results, the length scales involved in the

indentation test must conform to the scale separability condition of continuum mechanics for

the use of continuum scale modeling:

d < l < h (3.34)

where I is the characteristic size of the representative elementary volume, which must be larger

than the characteristic length scale of the largest heterogeneity d contained in the representative

elementary volume (rev), and smaller than the scale of indentation defined by the indentation

depth h. A more detailed discussion about the scale separability condition of continuum me-

chanics will be presented in Chapter 4.

The application of the grid indentation entails performing a large set of indentations as

displayed in Figure 3-6b. Although a few indentations may probe the composite response of the

two material phases (e.g. at phase boundaries or thin layers), enforcing the scale separability

condition will result in a majority of the indentations capturing the intrinsic properties of

the phases. As an illustration, the experimental results are displayed as probability density

functions (Figure 3-6c) of the measured indentation properties: the indentation modulus A

and the indentation hardness H. For the discussed two-phase material, two peaks are present,

whose mean values represent the mean mechanical properties of the phases.

The next challenge for the grid indentation technique is very evident for the case of a

real material specimen that diverges from the discussed two-phase composite. To illustrate this

challenge, Figure 3-7 displays three different nanoindentation responses measured by Bobko and

Ulm [32] for a shale sample. At the length scale of the experiment, the measured indentation

curves characterize the responses of a typical quartz inclusion (curve a) and of the porous clay

composite in different indentation directions (curves b,c). The measured load-depth curves

testify to the contrast of mechanical properties between the stiffer quartz inclusions and the

more compliant clay fabric. In addition, atomic force microscopy (AFM) photo images were

performed on similar material locations, which provide a visual perspective of the indentation

imprints on the material surfaces. Clearly in this case, we can characterize the response of

these two material phases by combining the visual information and the measured mechanical

response for each indentation event. However, for a large array of indentation tests such an

approach is not feasible. Figure 3-8 displays the measured indentation modulus and hardness
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Figure 3-7: Indentation responses on shales indented to a maximum load of 4.8 mN. Curve (a)
is typical of indentation on a quartz inclusion, whereas the curves (b) and (c) are typical of
indentation on the porous clay composite. Curve (b) is from indentation in the xi-direction
and curve (c) is from indentation in the x3-direction. The other three images are AFM photo
simulations after a 4.8 mN indent on (a) a quartz inclusion in the x3-direction, (b) the porous
clay composite in shale G2IC-03 in the x1-direction, and (c) the porous clay composite in
G2IC-03 in the x3-direction. Adapted from [32].
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Figure 3-8: Indentation properties measured for the G-03 shale sample in the normal-to-bedding

(x3) direction. Each experimental point corresponds to a single indentation event.

for a shale specimen in terms of a scatter plot, in which each data point corresponds to a single

indentation test. The standing challenge is to identify and characterize the active mechanical

phases measured by instrumented indentation as in Figure 3-8. With the framework of the grid

indentation testing in place, we turn to the application of statistical tools to extract mechanical

information for each material phase present from the measured indentation properties.

3.6.5 Statistical Analysis of Indentation Data

The analysis of the experimental data collected through the grid indentation technique calls for

the use of statistical methods for identifying the different phases present in the composite ma-

terial. A first development addressing this need was proposed by Constantinides et al. [63]: the

so-called deconvolution technique, which was further developed in subsequent works [65, 66].

In essence, the deconvolution technique seeks to fit a number of probability density functions

to the experimental frequency plot of the measured indentation quantity (indentation modulus

or hardness). Improved algorithms regarding the automatization of the deconvolution proce-

dures using cumulative distributions functions have been later introduced [270]. More recently,



Krakowiak et al. [153] resorted to the use of multi-variate mixture modeling for addressing

the statistical analysis of indentation data. Before the presentations of these methods, a com-

mon issue to both approaches is first discussed regarding the choice of the phase distribution

functions characterizing the material phase data.

Choice of Phase Distribution Functions

The first task in the statistical modeling of the grid indentation data is specifying the form of

the model distributions associated with the properties of each material phase. For simplicity,

the display of the material properties in the forms of probability distribution functions (PDF)

is adopted in this discussion, as shown in Figure 3-9.

A distribution function is uniquely defined by its moments (i.e. mean, variance, skewness,

and higher-order moments). The first assumption in the statistical modeling is that each phase

of the heterogeneous material has its own indentation property values, associated with the

actual properties of the phase. These phase properties correspond to the mean of the model

phase distribution. If the indentation measurements were perfect, the resulting data would be

expected as sharp peaks (Figure 3-9a). However, some spread of the data is anticipated, related

to noise in experimental measurements and the intrinsic variability of the phase properties in a

natural material. The second assumption is that such variability is distributed evenly around

the mean value (Figure 3-9b). Finally, the application of grid indentation on the heterogeneous

surface of the material will invariably result in some measurements probing composite responses

of two or more material phases at a particular grid indentation location. The analysis of such

a composite response is clearly a challenge; although, it is expected that it will be bounded

by the values of the individual phases (Figure 3-9c). The event of a mechanical composite

response measured by grid indentation will result in asymmetries in the modeled peaks. In

a first approach, a symmetric form of distribution (i.e. zero skewness) could be adopted to

characterize all peaks. The previous set of observations and assumptions leads to adopting the

normal, or Gaussian, distribution as a first approximation for modeling the experimental data

of each material phase.
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Figure 3-9: Probability density functions (PDF) for a two-phase material. a) Perfect measure-
ments and materials. b) Imperfect measurements or materials. c) Perfect measurements and
material with some composite responses. Adapted from [274].
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Deconvolution Technique

The implementation of the deconvolution technique [31, 63. 274] for the analysis of indentation

data begins with the generation of the experimental cumulative distribution function (CDF).

Let n be the number of indentation tests performed on a specimen and {Y}=1.. the sorted

values of the measured property to be deconvoluted. The Y parameter can be the indentation

modulus M or the indentation hardness H obtained from the indentation test. The points of

the experimental CDF of Y, denoted by FY, are obtained from:

F (Y) = j I ; for j E [1, n] (3.35)
n 2n

Once the experimental CDFs are known, the form of the model CDFs are specified. For this,

consider the heterogeneous material to be composed of g-material phases with sufficient contrast

in mechanical phase properties. Each phase occupies a volume fraction 7ri of the indented

surface. In an a priori analysis, an adequate choice for the distribution of the mechanical

properties of each phase is a Gaussian distribution, designated by its mean value p and its

standard deviation o-<. The CDF of the i-th Gaussian distributed phase is given by:

F(Y; pr ,0r) =j exp (U > pr) du (3.36)

The unknowns {7i, py , o-} for j E [1, nj are determined by minimizing the difference between

the experimental CDFs and the weighted model CDFs:

Tt 9 2

min( ( (± 7erF(Yj; po-y) - F (Yj)
j=1 Y i=1

s.t. (3.37)

9

i = 1
i=1

where the constraint of the minimization problem requires that the volume fractions of the

different phases sum to one. To ensure that phases have sufficient contrast in properties, and

thus to avoid that two neighboring Gaussians completely overlap, the optimization problem is
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additionally constrained by:
p +Y <;i + (3.38)

The deconvolution methodology can be automated and performed by a non-linear solver in

MATLAB [31, 274].

The deconvolution technique has two important drawbacks. First, the construction of the

probability or cumulative distribution functions from the indentation data relies on the sorting

of measured values for the indentation modulus and hardness. Consequently, an underlying as-

sumption to the method is that the measured properties follow a trend of increasing indentation

modulus - increasing hardness, which may be only appropriate for heterogeneous composites

in which the dominating heterogeneities affect the elasticity and hardness properties in similar

manners. A clear example would be a weakening effect of porosity on the response of a solid

matrix. A second limitation of the deconvolution technique is the a priori choice of the number

of model phases used for the fitting of experimental data. In the next section, the implementa-

tion of a maximum likelihood mixture model is discussed for treating the multi-variate data of

grid indentation.

Multi-Variate Mixture Modeling

An alterative statistical analysis to the deconvolution technique is the application of a mixture

modeling technique for the interpretation of grid indentation data. The maximum likelihood

mixture modeling approach to clustering analysis provides a robust means for identifying the

mechanical active phases in shale and their corresponding elasticity and hardness properties.

In addition to treating multi-variate data, the maximum likelihood mixture modeling approach

identifies the optimal number of constitutive phases and the degree of accuracy for the clustering

of data corresponding to each identified phase. The use of the mixture modeling to resolve the

clustering problem of grid indentation was introduced by Krakowiak et al. [153], who presented

applications of the technique to different data sets of composites (e.g. cement paste, masonry).

Finite mixture modeling is a well-established approach for the statistical characterization

of data derived from multiple populations or components in varying proportions. Mixture

models are also widely adopted in cluster analysis due to their usefulness in identifying groups

(components) for which no prior information is provided regarding their structures or properties.
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In particular, normal mixture models are increasingly used to model multi-variate data based

on efficient iterative solutions by maximum likelihood (ML) via the expectation-maximization

(EM) algorithm [73, 178, 180, 258]. This methodology is certainly well-suited for the analysis

of grid indentation data.

The mixture modeling for grid indentation data begins by considering each indentation event

yj to be a realization of the random, two-dimensional vector Y = (YT, ... , YT), where n is the

total number of grid indentations. The two dimensions correspond to the indentation modulus

and hardness attributes, respectively, that were measured for each of the n tests. For the case

of a mixture of normal components, the probability density function f (yj) of the observed data

yj in Yj with a g-component mixture is:

9

f (y; Q) = 7ric (yj; y , E ) (3.39)
i=1

9

where ri are the mix proportions with 0 < ri < 1 and 7ri = 1, 4' (71, ... , 7 9- 1 , (T)T with
i=1

( containing the (unknown) elements of the group means pi and variance-covariance matrices

Ei, and c (yj; pi, Ej) corresponds to the multi-variate normal density:

C (y); pi, Ei) = (Ei)-2 exp yj - 1 T f I (y -p) (3.40)
2m2

Assuming that indentations y1, ..., y, are independent and identically distributed realizations

from the vector Y, the log likelihood function for xI is [180]:

log L (x) = log f (yj; 4') (3.41)
j=1

An estimate of the likelihood can be obtained from an appropriate root of the likelihood equation

(3.41):
qlogL (4) 0 (3.42)

Mixture models are usually faced with the problem of multiple roots. Fortunately, the EM al-

gorithm of Dempster et al. [73] allows for a consistent and efficient solution of (3.41). Following

the discussion of [181], the EM algorithm proceeds iteratively in two steps, expectation and
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maximization (E and M, respectively), for the solution of the complete-data log likelihood of

the form:
g n

log Lc (%F) = Zij log [7ic (yy; pi, Ei)] (3.43)
i=1 j=1

where zij (i - 1, ..., g; j = 1, ... , n) are denoted as component-label variables, with values of zij =

1 or 0 corresponding to if yj arose or not from the ith component of the mixture model. The

variables zij and the measured data are regarded together as a complete-data vector xc:

xc = (xT, ... , xT) (344)

where x = (yTz T.

In the E-step and (k + 1)th iteration, the conditional expectation of (3.43) given the mea-

sured data yexp and the current fit Xj,(k) of xF is calculated:

Q (*; xp(k)) = Eq,(k) [log Lc () |yexp] (3.45)

Given the linearity of log Lc ('I) with respect to zij, the E-step is accomplished by replacing zij

by its current conditional expectation on yj, namely z (:

Ex,(k) [Zijl yj] = pr*(k) [Zij =y] z (3.46)

where by Bayes Theorem,

z (k) -i Yj q (k) - ric (y3.; pi, Ei) (3.47)
ij__ 9=r7c (yj; ph, Eh)

for (i 1,..., g; j = 1,..., n). Thus, r, (yj; 4p(k)) is the current estimate of the posterior proba-

bility that yj belongs to the ith g-component.

The M-step on the (k + 1)th iteration aims at the global maximization of Q (X; C(k)) with

respect to AF based on the updated estimate 4 (k+1). The current fitting for the mix proportions

and the component means and variance-covariance matrices are calculated explicitly by:

1) E1 n -
T(k)

(k+1_ j=1i72 (3.48)
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n T(k)

(k+1) - 9______(k+1) (349)
nr

fi.

(k 1) _ 3 1 < (k+ -1 k+ 1)

(k+1) (3.50)
n7

for (i =1..,g), where =r (y; (k)). The E- and M-steps are alternated repeatedly until

the difference in likelihoods L (Xi(k+1)) - L (i 1 (k)) changes by a small amount in the case of

convergence. Dempster et al. [73] demonstrated the remarkable feature of the EM algorithm

that the mixture likelihood is not decreased after an EM iteration:

L (XI(k+1)) > L ( i1 (k)) (3.51)

and consequently convergence is attained with a sequence of likelihoods bounded above. The

reader is referred to [179] for a detailed discussion of the EM algorithm. The mixture-likelihood

approach allows for the formal assessment of the mixture order (number of components in the

mixture) based on the application of a likelihood criteria such as penalized likelihood (Akaike's

information criterion (AIC), Bayesian information criterion (BIC)) and likelihood ratios (based

on hypothesis testing and confidence levels). Additionally, it can assess the effectiveness of

the clustering for a particular number of components in the form of individual and overall

allocation rates using the estimated posterior probabilities of component membership [178].

The application of the ML-EM methodology for the analysis of grid indentation data on shale

was accomplished using the EMMIX algorithm developed by McLachlan et al. [181]. The

EMMIX algorithm automatically fits a range of normal mixture distributions with unrestricted

variance-covariance matrices. The optimal number of mixture components is determined using

the BIC criterion.

3.6.6 Results of Grid Indentation of Shale Materials

Bobko and Ulm [32] conducted a comprehensive indentation campaign on shale materials to

characterize the mechanical properties of their clay fabric at nanometer length scales. A total

of fourteen shale samples from different origins and formations were tested at various loads,

ranging between P = 0.3 mN and P = 19.2 mN. These materials belong to the data set
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developed by the G2IC, and were introduced in Section 3.1. Given the transversely isotropic

elastic nature of shale, specimens were tested in the direction of symmetry (normal-to-bedding

or x3-axis) and normal to the direction of symmetry (parallel-to-bedding or xi-axis). These

orientations were related to the macroscopically observed bedding planes for each specimen.

The reader is referred to the works of Bobko and Ulm [31, 32] for detailed explanations of the

experimental aspects of the indentation campaign on shale materials (e.g. surface preparation,

instrument calibration, load and depth selections). In what follows, we recall only the relevant

information from the nanoindentation campaign in the context of the application of the EM-ML

modeling approach for the interpretation of the grid indentation data for shale specimens.

By way of illustration, the implementation of mixture modeling using the maximum like-

lihood approach to the cluster analysis of grid indentation data on shale G2IC-03 is first pre-

sented. Figure 3-10 displays the results of grid indentations on shale G2IC-03 tested in the

x3-direction and subjected to maximum indentation loads of P - 0.3 mN (a,b) and P = 4.8

mN (c,d). For both load cases, four groups were identified through cluster analysis, each of

which is regarded as a mechanical active phase. Figures 3-10a and 3-10c display graphically the

identified phases in the Al - H plane for the two load cases, respectively. Figures 3-10b and

3-10d show the corresponding estimated mix proportions and allocation rates for the different

phases. Conveniently, the results presented in Figure 3-10 provide the appropriate frame of

reference to examine some important trends derived from the EM-ML mixture analysis of all

tested shale materials.

For all load cases (P - 0.3,1.2,4.8, 10, 19.2 mN) and indentation directions (x 1 ,x 3 direc-

tions), two main types of indentation modulus and hardness responses were identified. The first

type corresponds consistently to a phase with large A, H values. This response is expected due

to the presence of a dominant quartz inclusion phase from mineralogy composition data for all

tested shale specimens, including shale G2IC-03. In Figure 3-10 for instance, phase 4 exhibits

mean indentation modulus and hardness values of approximately M ~ 60 GPa, H ~ 8 GPa,

for both load cases. The observations for all shale materials across the different experiments

match in first order the expected properties of quartz (A = 80 - 100 GPa, H = 12 - 14

GPa, [43, 112, 122]). The discrepancies between the measured and expected values for the

quartz phase are attributed to their different nature. Quartz grains in shale are often of de-
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Figure 3-10: Mixture modeling of the grid indentation data for shale G2IC-03 in the X3-
direction. (a-b) correspond to tests with a maximum indentation load of P = 0.3 mN, and

(c-d) to P = 4.8 mN. Plots a) and c) display the identified groupings, which in indentation
testing correspond to active mechanical phases. Plots b) and d) show the values of the mix
proportions and the allocation rates related to the identified mechanical phases.
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trital nature, in addition to occurrences as either single grains or polycrystalline grains. If in

polycrystal form, the expected mechanical properties would be of lesser values compared to

behavior of single grains due to the presence of weak interphases at grain boundaries. A more

refined assessment of this inclusion phase is due in future investigations. The second type of

mechanical response corresponds to the remaining phases found through the cluster analysis, in

addition to the quartz phase. These phases display significantly smaller values of indentation

modulus and hardness compared to those of quartz.

In order to determine the sought porous clay, we recur to the derived mix proportion infor-

mation from mixture modeling and the analysis of indentation load and depth data. Using as

illustration the trends observed for shale G-03, it was observed that mix proportions showed

similar magnitudes when sorted by their A, H values' 5 for tests at P = 0.3 mN (see Fig. 3-10b).

However for deeper indentations (consequently higher loads), the first phase typically displayed

a larger mix proportion, while the subsequent phases displayed smaller ones (see Fig. 3-10d).

For all forthcoming developments, phase 1 corresponds to the phase with the lowest indentation

properties. This finding regarding mix proportions must be supplemented by the conditions of

separability of length scales in continuum modeling. Bobko and Ulm [32] established that the

adequate length scale for indentations on the porous clay in shale is approximately 0.5 < h < 3

pm, based on considerations of particle sizes, surface roughness effects, and the continuum

mechanics analysis used for inferring elastic and strength properties from indentation measure-

ments. For all the shale materials tested, a maximum indentation load of P = 0.3 mN yielded

indentation depths on the order of 250 - 500 nm, while a load of P = 4.8 mN yielded indentation

depths of approximately 1 - 2 pm, which respects the indentation load-depth scaling of P oc h2

for conical indentations (see Section 3.5.1). Shallow indentations, such as those performed at

P = 0.3 mN, may not provide accurate mechanical information since interference with sur-

face roughness effects is likely to occur. Instead, deeper indentations may properly assess the

properties of the indented shale material. These experimental observations may explain the

trends in mix proportions observed in Figs. 3-10b and 3-10d. The knowledge that the tested

4 It is important to mention that the mixture likelihood fitting was implemented for each set of data (i.e. a
grid of indentations for a particular maximum load and material direction) using up to seven components/phases.
Throughout our investigation, the majority of fits were accomplished with four to six phases.

15We observed that the presence of (nano)porosity affected the elasticity and hardness properties in similar
manners: increasing indentation moduli values corresponded to increasing hardness (and viceversa).
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shale materials posses large clay volume fractions (from mineralogy testing), in conjunction

with a proper indentation depth during experiments, implies that the phase with the largest

mix proportion should correspond to the porous clay composite. This phase tends to be the

one with the lowest M, H values for the majority of tested shales. In contrast, experiments

with indentation depths violating scale-separability conditions do not provide coherent infor-

mation between mechanical properties and mix proportions; hence, the mix proportion trends

for shallow indentations exhibit random relative magnitudes. Having determined the porous

clay and quartz phases, the intermediate phases are regarded as composite phases, which may

correspond to indentations at grain boundaries or on collapsed pore spaces.

As a way to synthesize the previous findings, Figures 3-11 through 3-13 compile the mea-

sured indentation modulus and hardness as functions of the maximum indentation load and

depth for all tested specimens in both material directions. For each experimental case, the

indentation properties for the phase with the largest mix proportion were used to build the

figures. Whenever applicable, the mechanical properties measured with maximum indentation

loads of P = 4.8 mN and higher appear relatively stable. It is worth noticing that, for inden-

tation loads of P - 19.2 mN, the maximum indentation depths were of approximately 2 - 3

ptm, which remain within the length scale of validity. The derived properties displayed for ex-

periments with deeper indentations (with load P > 4.8 mN) correspond consistently to phase

1, the porous clay composite, with the exception of a few experiments. The identified porous

clay and quartz phases for the cases of deeper indentations also registered the highest allocation

rates among all identified phases. This suggests that the mixture likelihood approach was able

to cluster the data of the porous clay and quartz values into phases with higher degrees of

certainty.

Among the tested shale materials (nine G2IC specimens and five Woodford specimens), two

of them displayed significantly different experimental trends based on the cluster analysis: the

Light and G2IC-08 (low-clay) shales. For the Light shale and its corresponding tested indenta-

tion loads, the phase with the largest mix proportions corresponded to clusters of indentations

with M, H values much higher than those of the typical porous clay responses, reaching prop-

erty levels of those of quartz (Al ~ 80 GPa, H ~ 10 GPa). This observed behavior is related to

the presence of a large quartz phase (the Light shale has the largest inclusion volume fraction,
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Figure 3-11: Measured indentation modulus M as a function of the maximum indentation load

P in the xi- and x3-directions. The G2IC-series, Light, Dark, and Pierre specimes correspond
to kerogen-free shale. Woodford specimes correspond to kerogen-rich shale.
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see Table 3.2). Thus, the nanoindentation campaign on this shale was not able to accurately

probe the response of the porous clay. The G2IC-08, or Low-clay, shale instead displayed ad-

equate trends in terms of the order of magnitude of mechanical properties for the porous clay

composite for the different experimental cases. However, the identified mix proportions in most

cases displayed similar magnitudes. Another peculiar experimental observation is the indenta-

tion depths ranging from 1 to 4 pm, which correspond to the bounding load cases P = 0.3 and

P = 19.2 mN. Such indentation depths are somewhat larger than the trends of the remaining

shale specimens. These observations from indentation analysis question the value of the inden-

tation data for the Low-clay shale, in addition to the experimental difficulties encountered by

[32] during sample preparation and indentation testing. The Light and Low-clay shales were

dismissed for the forthcoming analyses as they may bring inaccurate information regarding the

mechanical properties of the porous clay in shale.

After reanalyzing the data set of indentation properties for the porous clay composite ob-

tained by grid nanoindentation, it is worth comparing the outputs of the EM-ML method for

cluster analysis and the deconvolution technique. Figure 3-14 displays the comparison of the

inferred indentation modulus and hardness values of the porous clay composite according to

the statistical deconvolution approach used by Bobko and Ulm [32] and the mixture likelihood

approach. In general, an excellent agreement exists between both approaches, with no fixed

trends of under- or overestimation of the indentation properties by either technique. Evidently,

the deconvolution procedure used in [32] and the present approach differ in some key aspects.

While both methods are based on modeling components using normal distributions, the decon-

volution procedure treats the indentation modulus and hardness data as sets of measurements

with no links to specific indentation events. Nevertheless, Figure 3-14 corroborates the conjec-

ture that the deconvolution technique is appropriate for porous composites in which the effects

of porosity affect the elasticity and hardness properties in similar ways, as it is in fact the case

of the porous clay composite. In addition to the multi-variate analysis capabilities, the EM-ML

approach has the advantages of identifying the optimal number of phases and the degree of

accuracy (in terms of allocation rates) of the clustering of data corresponding to each identified

phase. The resulting data set of indentation properties for the G2IC and Woodford shales is

detailed in Table 3.16.
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A/3 [GPa] M1 [GPa] H3 [GPa] Hi [GPaj
Specimen y 0- p p o o-

GeoGenome shales
G2IC-01 4.44 1.66 5.32 1.59 0.06 0.03 0.04 0.02
G2IC-02 10.45 2.26 14.67 3.96 0.30 0.10 0.16 0.07
G2IC-03 13.56 2.50 23.03 6.19 0.44 0.13 0.52 0.18
G2IC-04 9.25 3.20 9.94 3.43 0.14 0.07 0.13 0.06
G2IC-07 11.68 2.95 18.85 6.28 0.28 0.11 0.31 0.14

Dark 10.01 3.73 20.49 7.16 0.12 0.06 0.30 0.15
Pierre 4.58 1.36 4.41 1.23 0.02 0.01 0.03 0.01

Woodford shales
40 8.47 2.35 10.79 3.39 0.30 0.10 0.30 0.11
47 11.95 3.10 9.09 2.69 0.37 0.17 0.18 0.08
51 6.82 2.12 10.24 3.24 0.10 0.05 0.17 0.07
53 9.82 3.06 11.98 4.24 0.23 0.08 0.24 0.09
56 7.14 2.63 7.33 2.57 0.17 0.08 0.10 0.05

Table 3.16: Indentation moduli MVi and indentation hardness Hg properties of the porous clay
fabric of shale materials tested by Bobko and Ulm [32] at maximum indentation loads of 4.8
mN. The grid indentation data was reanalyzed using the EM-ML approach. The indentation
properties in the directions normal-to-bedding (X3) and parallel-to-bedding (Xi,X2) directions
are presented in terms of mean (p) and standard deviation (U) values.

Scaling of Indentation Properties and Clay Packing Density

After reanalyzing the grid indentation data for G2IC and Woodford shale samples using the

mixture likelihood approach, the relation between the measured indentation properties of the

porous clay and the clay packing density is evaluated. Figure 3-15 displays the scaling between

the indentation properties (modulus Mi=1,3 and hardness Hi=1,3) and the clay packing density

,q for the GeoGenome (kerogen-free) shale specimens. The displayed indentation modulus and

hardness values correspond to the measurements at a maximum load of P = 4.8 mN, which

provides stable estimates of elasticity properties that are also compliant with length scale sepa-

rability conditions. Figure 3-15a also shows linear regressions for the experimental indentation

modulus data in the normal-to-bending (X3) and parallel-to-bedding (xi) directions to highlight

some important trends for elastic behavior. It is observed that increasing indentation modu-

lus values correspond to increasing clay packing densities, and that the effective solid phase is

anisotropic, with M1 (7 = 1) = 27.9 GPa, M13 (q = 1) = 15.3 GPa. In addition, an apparent

percolation threshold exists at packing densities between ryAi - 0.54 and 713 = 0.42. The
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occurrence of a percolation threshold hints toward a granular behavior of the porous clay com-

posite in shale. For Woodford shales, differences in indentation moduli are somewhat reduced,

as observed in Figure 3-16a. This reduced elastic anisotropy captured by nanoindentation is

attributed to the presence of the kerogen phase with a pronounced amorphous morphology,

instead of sheet-like kerogen structures that would result in enhanced structural anisotropy

[74, 102].

Regarding the indentation hardness results for GeoGenome and Woodford shales, the trend

of increasing hardness with increasing packing density is also observed in Figures 3-15b and

3-16b. However, the hardness - packing density scaling is more non-linear compared to the

indentation modulus results. The hardness response also exhibits an apparent percolation

threshold at packing densities similar to those observed for the indentation modulus data. A

clear difference between the elastic and hardness behaviors shown in Figures 3-15 and 3-16 is

the less apparent anisotropy for the hardness measurements. Shales G2IC-01, -02, and -04 show

higher hardness values for the normal-to-bedding direction compared to those measured in the

orthogonal direction (Figures 3-15b). In addition, the inspection of Figures 3-15b and 3-16b

reveals that, despite the scatter in the data, the vertical error bars (the standard deviation of

phase properties) in the hardness data are consistently overlapping. These arguments lead to

considering an isotropic strength response for the porous clay phase in shale.

The granular, anisotropic elasticity signature of shale's porous clay solidifies the findings of

Ulm and Abousleiman [265] and Bobko and Ulm [321, who used the deconvolution technique

to interpret the same grid indentation data presented in this study. The remarkable scaling

between nanoscale elasticity (expressed in indentation modulus values) and the clay packing

density becomes the experimental baseline for modeling the anisotropy at level I of our multi-

scale microporoelasticity model for shale. For strength modeling, a more advanced analysis is

necessary for inferring the cohesive-frictional strength properties of shale from nanoindentation

hardness measurements. The next section presents the results of Bobko [31] regarding a back-

analysis of shale indentation hardness data to estimate the average strength properties of the

solid clay phase.
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Figure 3-15: a) Porous clay stiffness Mi and b) hardness Hi versus clay packing density scaling
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Figure 3-16: a) Porous clay stiffness Mi and b) hardness Hi versus clay packing density scaling

,q for the Woodford shale specimens. The vertical bars correspond to the standard deviation of

the indentified phases from mixture modeling. The horizontal bars represent the variability of

clay packing density estimates. The data for G2IC shales is presented in the background.

116

H Hanondentation

*jnanoindentation
. " "

1.0

* pnanoindentationI

,0 m ~nanoindentuionU
3 M

0.4



Inverse Analysis of Clay Strength Properties from Nanoindentation Hardness

The nanoindentation hardness - packing density scalings reviewed in Figures 3-15b and 3-16b

describe an isotropic relation between the average hardness measured in orthogonal directions

for the porous clay phase of several shale samples and their corresponding scaling with packing

density. However, the multi-scale strength modeling of shale to be pursued in Part IV of this

thesis requires the evaluation of the cohesive-frictional properties of the solid clay phase in

shale. The assessment of clay strength properties from hardness measurements was conducted

by Bobko [31], through an inverse analysis aiming at the translation of grid indentation data for

the porous clay composite into information about the local packing densities associated with

each indentation test and the solid strength properties of a particular sample. In addition to

the grid indentation data, theoretical modeling based on linear micromechanics, yield design,

and non-linear homogenization is employed to furnish scaling relations of the form (see e.g.

(3.29)):

MI 3  = m x I., (7) (3.52a)

H = h' (c', a) x IIH (a, 7i) (3.52b)

between indentation moduli M(0-1,3) and hardness H probed for the porous clay composite16,

the packing density r,, and solid clay properties at level 0 of the elementary building block

(anisotropic moduli m' =1,3), cohesion c', and friction coefficient a) [98, 202, 2701. The un-

derlying concept of the indentation modulus-hardness-packing density (Al - H - 77) analysis

approach is to link each indentation experiment, with measured modulus and hardness values

MVI), H7, to the properties of the solid phase m', m', c', a and the local packing density 71'. In

an inverse application, the unknowns of the problem are the solid phase properties, and the N

local packing densities q', for a total of N+4 unknowns. The results from each indentation test,

M' and H', are known, for a total of 2N known quantities. The application of the inverse

analysis relies on a large number of indentation tests, which is the case for grid indentation

data, for the system of equations in (3.52) to be over-determined. However, the actual imple-

"For the implementation of the inverse analysis for shale data, the measured indentation hardness H was
assumed isotropic, as noted in e.g. Figures 3-15b and 3-16b.
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Figure 3-17: Sample of scaling results from the indentation modulus - hardness - packing density
(M - H - 77) scaling approach. The results correspond to shale G2IC-07. From [31]

mentation of the inverse analysis requires an error minimization approach between predicted

and measured indentation data and a statistical analysis for retrieving the solid clay properties

[31, 270].

Bobko [31] conducted the M - H - q analysis for G2IC and Woodford shales, as well as

for resedimented Boston Blue Clay specimens. Figure 3-17 displays the scaling results for shale

G2IC-07, and shows the indentation modulus and hardness values versus the local packing

density associated with each individual indentation test. The model lines correspond to the

expressions in (3.52) with optimized solid parameters identified through the inverse analysis

procedures.

Figure 3-18 shows the M - H - 77 analysis results for the solid contact hardness h' as a

function of the clay packing density determined for each shale sample. This level 0 property is

recovered for the limit case of packing density 7 = 1 for expression (3.29). From the results in

Figure 3-18, the contact hardness and the clay packing density appear uncorrelated. Moreover,

the porous clay phase in shale displays a relatively constant solid hardness despite variations

in clay mineralogy [31]:

hS = 0.69 i 0.09 GPa (3.53)

The solid contact hardness h' is treated as a material invariant property of the solid clay phase

in shale. In contrast to the solid contact hardness, the Drucker-Prager strength parameters, the
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Figure 3-18: Particle hardness as a function of clay packing density from indentation analysis.
Data obtained for G2JC shales, Woodford shales, and resedimented Boston Blue Clay samples.
Error bars represent two standard deviations. From [31].

friction coefficient a and the solid cohesion c', vary considerably for the tested shale specimens

and exhibit strong relationships with the clay packing density. The friction coefficient a, a

measure of the pressure sensitivity of the solid clay, decreases with increasing values of packing

density as shown in Figure 3-19a. In contrast, Figure 3-19b displays the results for the cohesion

CS, which follows the trend of increasing values with increasing packing densities. The inferred

behavior for the cohesion derives from the form of the scaling relation for the solid contact

hardness hS in (3.30). These remarkable trends between the cohesive-frictional properties of

the solid clay and the clay packing density are further discussed in Part IV of this thesis, as

they will serve as crucial inputs to the multi-scale strength modeling of shale.

3.7 Macroscopic Characterization of Shale - Level II

The mechanical behaviors of shale in terms of deformation and strength have been derived

mostly from extensive experimental testing at macroscopic length scales. In view of the different

field applications related to shale such as reservoir modeling, oil recovery, and wellbore stability,
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a variety of logging tools and data interpretation methods have been developed to assess the

mechanical properties of rock formations in situ. The assessment of the complex anisotropic

elasticity attributes of shale, for instance, has been the focus of seismic exploration techniques

[283]. In addition to elasticity attributes, strength characterization has also been derived from

logging data based on empirical correlations between different rock properties. Nevertheless,

the field data developed to assess large rock formation volumes are typically supplemented

with laboratory measurements of core specimens, which provide a more accurate assessment of

physical properties. In this section, a brief introduction to the mechanical testing of shale at

engineering scales is presented. The section is divided into elasticity and strength assessment

of shale, based primarily on laboratory experiments that are recognized as benchmark methods

for characterizing rock materials. The final objective is to compile sets of experimental data for

shale elasticity and strength that will be used for the development of micromechanics models

for shale.

3.7.1 Field and Laboratory Characterization of Rock Mechanics

The advances in the study of the physical properties of rocks have been driven by the progress

in the past 50 years of seismic exploration techniques. In exploration seismology, seismic waves

provide access to the sub-surface information of the rock formation and fluid properties in the

form of wave travel times and reflection amplitude and phase variations. For applications in

reservoir evaluation and enhanced oil recovery, seismic data used for evaluating the mechanical

response of the formation derives from a variety of well logging tools. Sonic logging, for instance,

provides a continuous record of seismic velocities that are used for determining rock elasticity

properties using inversion techniques such as AVO (amplitude versus offset) [127]. However,

log data is typically supplemented by core testing in an effort to improve the accuracy and

reliability of interpretations. Core testing provides a direct means of characterizing the elasticity

and strength properties of rocks, at the cost of sampling a rock formation only at discrete

depths. Nevertheless, core data is instrumental in advancing the understanding of petrophysical

properties of rocks and their relations to acoustic and strength attributes [176].

The elasticity of shale core specimens has been traditionally derived from static and dynamic

laboratory measurements through e.g. triaxial testing and pulse transmission techniques, re-



spectively. Although both static and dynamic data are suitable for determining elastic moduli

of a rock specimen in the laboratory, numerous studies have shown differences between the val-

ues determined by each technique. For dry rocks, the estimated dynamic modulus is of similar

or larger magnitude compared to the static values [90, 242]. Potential sources that explain

the discrepancies between static and dynamic measurements for natural rocks are the presence

of cracks, the stress state of the rock during measurements, and strain amplitude [143, 281].

Experiments in shale specimens have revealed that the ratio of dynamic to static moduli is ap-

proximately constant at large stress levels (pressures up to 200 MPa) [601. Disregarding pressure

sensitivity effects, two main causes for the differences in static and dynamic measurements have

been identified: strain amplitude and frequency [142]. Static measurements derived from stress-

strain experiments are characterized by low frequencies and large strain amplitudes (10-4 or

larger). In contrast, dynamic measurements obtained from both exploration seismology and

laboratory acoustic experiments are related to high frequencies and small strain amplitudes

(10' or smaller). Strain-amplitude mechanisms, which appear to be more a dominant effect

in shale, are attributed to frictional losses at grain boundaries that are especially significant

in static measurements [294]. Mechanisms dependent on frequency are generally linked to in-

ertial and viscous effects associated with the wave propagation in saturated rocks [26]. The

strength characterization of shale has been conducted primarily using the triaxial test method,

although the low-permeability and sample preservation issues inherent to shale have motivated

experimentalists to design special testing programs for achieving their experimental objectives

[130, 245].

In the remaining parts of this section, the macroscopic characterization of shale's elasticity

and strength properties will be presented based on the results of acoustic velocity measurements

and triaxial testing. Dynamic measurements accomplished using pulse transmission techniques

are the primary sources of elasticity data considered in this investigation. In addition to being

a non-intrusive methodology, ultrasonic pulse velocity (UPV) measurements provide access to

small strain-amplitude elasticity, similar to nanoindentation measurements that are used to

probe shale at smaller length scales. Acoustic measurements and triaxial test results provide

the adequate experimental context for understanding the mechanical response of shale at length

scales representative of macroscopic properties.

122



3.7.2 Ultrasonic Pulse Velocity Measurements

For all shale specimens considered in this investigation, the classical ultrasonic pulse velocity

(UPV) technique (see e.g. [27, 176]) has been employed to measure wave velocities and interpret

the corresponding acoustic properties. The pulse-transmission technique consists in measuring

the travel time of a solitary elastic pulse through a rock sample for a known wavepath length.

A typical experimental setup for UPV measurements of rock specimens is displayed in Figure

3-20. Compressional (P-) and shear (S-) waves are generated by piezoceramic elements, with

central frequencies in the MHz range. The piezoceramics are placed at several locations on the

shale specimen in order to capture its anisotropic properties. In particular, shale is generally

agreed to exhibit transverse isotropic elastic properties [145, 228]. Within a Cartesian reference

frame of orthonormal basis [ei, e2, -3] of elastic properties of shale, where the plane [ei, £2]

corresponds to the bedding plane and e3 to the direction normal-to-bedding (symmetry axis),

the transverse isotropic stiffness tensor in matrix form is:

Cu C12 C13 0 0 0

C12 C1 C13 0 0 0

013 C13 C33 0 0 0

0 0 0 2C66=(Cn1-C12) 0 0

0 0 0 0 2C44 0

0 0 0 0 0 2C44

where the Voigt notation is employed: C11 C1111, C12 = C1122, C13 = C1133, C44 - C2323

C1313, C66 = C2121 = i (Cn - C12). Given its transverse isotropic character, common experi-

mental setups for shale specimens include the measurement of a compressional wave velocity at

450 from the axis of symmetry, as shown in Figure 3-20. Single electrical pulses are emitted by

a function generator. After passing through a dynamic amplifier, the amplitude-amplified pulse

is converted into a mechanical vibration by the piezoceramics. This mechanical vibration then

propagates through the rock specimen. A reverse process occurs at the receiving piezoceramics

(the mechanical vibration is converted into an electrical pulse), after which both the emitted

17This section follows the thorough presentation of Sarout and Gu6guen [226] regarding the implementation

of the ultrasonic pulse velocity method.
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Pulse Digital memory

Figure 3-20: Diagram of the transducer arrangements for a shale sample used in UPV testing.
The setup is coupled to a triaxial test apparatus. The rock bedding plane is perpendicular to
the axis of the cylindrical sample. Adapted from [226], and reprinted with the kind permission
of the authors.

and received waveforms are analyzed to determine the time delay between them. The setup for

acoustic measurements is typically coupled with triaxial testing, which allows subjecting the

specimen to various stress states aiming to simulate in situ conditions.

The next task involved in UPV measurements is the data analysis of the travel times.

Improved procedures have been developed for UPV data interpretation to avoid dependencies

on human errors, especially as the data analysis relies heavily on the accurate estimation of

wave arrival times from waveform records (e.g. [129, 300]). Another important aspect of the

data analysis is the treatment of oblique raypaths. In shale testing, the experimental setup is

commonly designed such that raypaths coincide with the material axes of symmetry. For such

scenario, pure wave modes are generated, which result in similar magnitudes for phase and

group velocities [129]. However, the difference between phase and group velocities arises for
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measurements at off-axis angles, such as the 450 measurement typically carried out for shale.

The off-axis measurement is necessary to determine one of the five elastic constants, C13, of the

investigated shale specimen. Numerical schemes have been developed to quantify the relations

of phase and group velocities measured in UPV experiments [77, 129]. The analysis of UPV

measurements is commonly supplemented by detailed error evaluations of the estimated elastic

moduli. These analyses are based on the uncertainties of parameters involved in the UPV

experimental setup such as the specimen size, the specimen density, and the travel time (see

e.g. [129, 146, 300]).

3.7.3 Acoustic Waves in Transverse Anisotropic Media

Classical results of acoustic waves in solids are presented in this section in order to deter-

mine stiffness from measured velocities in UPV experiments. The acoustic wave equations are

commonly derived by adapting the acoustic field equations and constitutive relations. For a

material with no acoustic energy losses (lossless material) in a source-free region, the acoustic

field equations are [11]:

V-o = p -- (3.55a)
at

Vso = (C)-1 : (3.55b)
at

where a- is the stress field. p the mass density of the material, v the particle velocity field,

C the fourth-order stiffness tensor of the material, and 0/t the time derivative. The symbol

V represents the differential operator V = -1ei + - C2 + -e3, and V, corresponds to the

symmetric gradient of a vector field:

1
V'v = - (Vv + Vt2 ) (3.56)

After manipulations of (3.55a) and (3.55b), the stress field is eliminated and the wave equation

in terms of the velocity field is:
V2V

V -C : V'v =p - (3.57)

125



The propagation of a uniform plane wave along the direction n has fields proportional to

ei(wt~k"'r), which can be used in (3.57) to construct the wave equation as:

k2 (n - C -n) -v = k2L' -V = pw2v (3.58)

where k is the wave number and w the wave frequency. Expression (3.58) is called the Christoffel

equation, and the tensor r represents, in matrix notation, the Christoffel matrix. By inspection,

the elements of the Christoffel tensor are functions of the elasticity constants Cijkl of the solid

and the direction of the plane wave propagation.

In wave acoustics, it is more convenient to consider the slowness surface, that is the inverse of

the phase velocity k/w - 1/V as a function of propagation direction n, rather than the explicit

form in (3.58), which scales with the wave frequency w. Using the previous consideration, the

Christoffel equation is typically rewritten as follows to determine the acoustic wave velocities

of propagation:

det (A - V2 1) - 0 (3.59)

where 1 is second order unit tensor (or Kronecker Delta 6ij), and A the undrained acoustic

tensor,
1

A = -n - C -n; Ajk = -njCijkinl (3.60)
P P

For shale, which is considered a transversely isotropic material at the macroscale, it is common

practice to consider n = (sin 0,0, cos 9), where 0 = 0 corresponds to the material's symmetry

axis. A transversely isotropic of hexagonally symmetric medium contains one axis of rota-

tional symmetry, which throughout this work is denoted as X3. This direction in shale rocks is

equivalent to the normal-to-bedding direction. The material properties in all directions perpen-

dicular to X3 are similar, and thus, the plane of symmetry is defined along the xi, X2 directions.

The stiffness tensor of the solid medium is characterized by five, non-zero, independent elastic

constants (see (3.54)). Using the following (3 x 6) matrix representation of the normal vector

n=(ni, n2, n3):

ni 0 0 7n2 0 n3
[n] =\0 n2 0 'ni / 2 n3 V 0 (3.61)

0 0 n3 0 In2v ni/
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the acoustic tensor (3.60) can be calculated by matrix multiplication - [n] [Ci] [n],

C44+ sin 2 0 (Cni -C44) 0 (C13+C44) sin 6 cos 1
[Ajk] - 0 C44 +sin 2 0 (C66 -C 44 ) 0 (3.62)

p
(C13+C44) sin 0 cos 0 0 C33+ sin 2 0 (C44-C33) J

The wave velocities propagating in the plane of symmetry, that is the x1,X2 plane, are

independent of the propagation direction in that plane. In the symmetry plane, the following

wave modes are found:

VSi = ; pure shear mode polarized normal to the X3-axis (3.63a)
p

VS3 = ;4 pure shear mode polarized parallel to the x3-axis (3.63b)
p

Vp1  = ; pure longitudinal mode (3.63c)

Wave propagation in the direction parallel to the symmetry axis results in the following modes:

VS3 = ; pure shear mode polarized parallel to the X3-axis (3.64a)
p

VP3 = ; pure longitudinal mode (3.64b)
p

The wave propagation (and wave slowness surface) can be proven to be rotationally symmetric,

since the Christoffel equation can be shown to be symmetric with respect to an arbitrary

rotation about the axis of symmetry [11]. In this case, the following modes are determined:

044 cos 2 0 + 066 sin 2 0
VS = pure shear mode (3.65a)

P

1Vqso = (2p)-! (Ci sin 2 0 + C33 cos2 0 + C44 - ; quasi-shear wave (3.65b)

Vgro = (2p)~ (Cn sin 2 0 + 033 cos2 0 + 044 + s) I; quasi-longitudinal wave (3.65c)
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where:

s = j[(C - C44) sin 2 0 + (C44 - C33) cos 2 0] 2 + (C13 + C44)2 sin 2 (20) (3.66)

For convenience, the five elastic constants related to the transverse isotropic elasticity of

shale are expressed in terms of the acoustic wave velocities typically measured in UPV tests:

-v pV) (3.67a)

C Pv pV 3  (3.67b)

1-YP (CUjPV 21~
C PV 2 - Pv ) (3.67c)

CPV = pS3 (3.67d)

C 3Pv -C44 + a (Cnl + C44 - 2pV4
2
5) (C33 + C44 - 2pV4

2
5) (3.67e)

where:

Vp1  pure longitudinal mode in the bedding direction

VP3 = pure longitudinal mode in the normal-to-bedding direction

VSi = pure shear mode polarized normal to the axis of symmetry

V = pure shear mode polarized parallel to the axis of symmetry

VqP45 = quasi-longitudinal a = (+1) or quasi-shear wave a - (-1)

measured at 450 from the axis of symmetry

In the context of acoustic and anisotropic properties, a well-established measure of the

degree of anisotropy is offered by Thomsen [256], who defined the following set of anisotropic

parameters:

E = Cn - C33 (3.68a)
2C33

y C66 - C44 (3.68b)
2C44

* 23 [2 (C13 + C44)2 - (C33 - C44) (CH + C33 - 2044) (3.68c)
6 2C33 -24
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3.7.4 UPV Elasticity Data for Shale

In this section, we introduce ultrasonic pulse velocity (UPV) data measured from a variety of

shale samples. This acoustic data will serve as the reference for the characterization of shale's

elasticity at the macroscopic scale. With characteristic frequencies in the range of kHz - MHz,

the UPV technique is able to quantify the elasticity content of shale at millimeter length scales,

which corresponds to the length scale of level II of our multi-scale structure model presented

in Section 2.3.

The elasticity data for shale specimens investigated as part of the work of the G2IC Industry

Consortium and for those specimens documented in the open literature of shale are presented

as functions of stress state. For simplicity, the values of elastic constants Cij with the largest

and smallest magnitudes and their corresponding applied stresses (confining, axial, and pore

pressures; whenever applicable) are included in our compilation. By way of illustration, the

measured UPV elasticity of shale G2IC-03 as a function of differential pressure (overburden

minus pore pressure) is displayed in Figure 3-21. Additionally, the derived Thomsen parameters

for the same shale are presented in the same figure. The marked elastic anisotropy of shale is

clearly observed in Figure 3-21 and quantified by the large Thomsen parameter values.

Tables 3.17, 3.18, and 3.19 provide the acoustic data for the shale samples that will be

used for model development. The elasticity data is presented in terms of the elastic constants

Cij. In addition, the stress states corresponding to the UPV measurements are presented,

which are related to the levels of confining, axial, pore, or differential pressures used during

acoustic testing (whenever applicable). Finally, Table 3.20 provides a summary of some relevant

details of the experimental procedures followed in the different literature sources. For the data

developed by the G2IC Industry Consortium, limited information has been provided due to

proprietary issues. Nevertheless, the measurements are known to be of very high quality and

reliability.

3.7.5 Macroscopic Strength Data for Shale

Compared to acoustic properties, the strength assessment of shale represents a more challeng-

ing task. Various technical problems arise in shale strength testing because of its extremely

low permeability. Furthermore, well-preserved core samples are difficult to obtain [68]. The
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Figure 3-21: Elasticity constants Cij of shale G2IC-03 as functions of differential pressure
(top). Thomsen parameters derived from measured elastic constants as functions of differential
pressure (bottom). The UPV data was generated by the G2IC.
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Specimen Pressure [MPa] Elastic constants [GPa]
Overburden Pore Differential C11 C12 C13 C33 C44

G-01 19 16 3 18.6 8.5 7.3 11.8 3.6
33 16 17 20.3 9.0 8.3 13.3 3.8

G-02 23 3 20 34.5 12.7 14.0 19.8 4.0
47 20 27 35.4 13.3 14.8 20.6 4.1

G-03 3 1 3 44.9 17.2 21.5 29.6 6.6
69 28 41 47.3 18.4 22.5 31.0 6.9

G-04 47 33 14 23.8 10.6 10.4 17.7 3.9
53 33 21 25.0 11.7 13.8 19.2 4.5

G-05(a) - - 3 14.1 7.9 5.4 10.7 3.1
- - 20 16.2 9.1 6.8 12.3 3.4

G-06 N.A. 38.9 13.8 9.7 20.4 4.5
G-07 N.A. 45.8 17.7 14.1 29.7 8.9
G-08 N.A. 13.8 6.9 7.1 12.8 2.9

40 0 - - 23.1 6.9 8.8 15.7 5.2
47 0 - - 25.6 6.1 7.7 16.0 6.6
51 0 - - 23.8 6.2 7.8 14.9 5.3
53 0 - - 28.0 7.5 8.3 17.3 5.6
56 0 - - 21.2 6.3 7.9 13.8 4.9

North sea(b) 2.5 - - 32.5 - - 23.4 -

Table 3.17: Macroscopic elasticity data for shale specimens gathered by the G2IC. The elasticity
data were obtained from ultrasonic-pulse velocity measurements. The differential pressure
represents the difference between the overdurben and pore pressures applied during testing. For
some specimens, two sets of elastic properties are reported, which are related to the minimum
and maximum elastic moduli and their corresponding stress states. N.A. (non available) refers
to information not disclosed.
(a) The pressure during testing was reported as net pressure.
(b) The pressure during testing was reported as confining pressure. In addition, the elasticity for the North Sea
shale specimen was calculated using the original UPV data and an estimate of the bulk density obtained from
mineralogy and porosity.

131



Specimen Pressure [MPa] Elastic constants [GPa]
Confining Differential Pore C C12 C13 C33 C44

CRE 0.1 - - 34.3 13.1 10.7 22.7 5.4

KIM 5 - - 48.4 14.4 16.4 27.3 7.8
80 - - 56.2 18.4 20.5 36.4 10.3

JUR 5 - - 33.4 14.2 14.8 22.5 5.0
80 - - 46.1 17.5 18.5 32.9 8.8

3492 1.5 0 1 28.8 7.4 3.8 19.9 9.3
13 7 1 34.0 10.6 6.9 26.5 10.4

3506 1.5 0 1 28.0 10.6 3.5 21.8 6.9
13 7 1 31.5 10.9 4.4 26.1 8.5

3525 1.5 0 1 23.7 6.5 4.5 19.6 8.1
13 7 1 27.8 7.0 5.8 25.3 9.8

3536 1.5 0 1 31.8 8.2 4.7 19.3 5.6
13 7 1 33.8 9.8 8.0 21.9 6.0

3564 1.5 0 1 26.9 8.3 3.4 19.0 8.6
13 7 1 31.1 9.9 3.8 23.7 9.6

MUD 5 - - 20.0 6.8 7.6 13.0 3.0
60 - - 27.0 9.5 16.2 18.0 4.5

Table 3.18: Macroscopic elasticity data
The list of specimens and their sources

for shale specimens gathered from literature sources.
were introduced in Table 3.1. The differential pres-

sure represents the difference between the axial and confining pressures applied during triaxial
testing. Except for the CRE specimen, two sets of elastic properties are reported for each
shale specimen, which are related to the minimum and maximum elastic moduli and their
corresponding confining pressures at testing.
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Specimen Pressure [MPa] Elastic constants [GPa]
Confining Differential Cn C12 C13 C33 C44

108/111 (a) 30 10 31.8 13.0 17.8 24.7 7.1
45 40 35.5 13.5 16.5 29.5 8.9

9898() 15 170 - - - 31.9 16.6

9763() 15 230 - - - 57.7 24.2

50 425 - - - 67.7 34.6

10151() 15 250 - - - 44.7 28.4

50 240 - - - 30.0 19.3

6275() 50 202 - - - 35.8 14.6

7053() 15 135 - - - 54.7 18.0

50 230 - - - 54.4 19.0

6853() 50 310 - - - 68.3 28.7

86750) 50 223 - - - 26.6 12.6

CO(c) 0 0 32.2 10.6 2.9 16.3 7.4
15 0 32.9 10.9 3.6 17.4 7.6

(e) - - 34.5 11.5 10.8 23.6 8
CO(d) 0 0 35.3 14.3 10.9 22 7.1

15 0 38.6 16 12.3 26.3 7.8
(e) - - 44.6 19 15 31.9 9.14

Table 3.19: Macroscopic elasticity data for shale specimens gathered from literature sources
(continued). The list of specimens and their sources were introduced in Table 3.1. The dif-
ferential pressure represents the difference between the axial and confining pressures applied
during triaxial testing. For most specimens, two sets of elastic properties are reported for each
shale specimen, which are related to the minimum and maximum elastic moduli and their cor-
responding stress states at testing.
(a) For specimen 108/111, the differential pressure refers to the difference between the confining and pore pres-
sures applied during testing.
(b) For specimens 9898 through 8675 from Jizba [142], only isotropic properties are reported for these specimens.
For the conversion from documented UPV data to elasticity constants, the density of the material was calculated
using a linear combination of the densities of the clay and inclusion phases.
(c) The properties for specimen CO correspond to dry specimens tested at zero pore pressures.
(d) The properties for specimen CO correspond to wet specimens tested under undrained conditions.
(e) The sets of measured elasticity properties correspond to the highest moduli reached during isotropic stress
loading, except for the elastic constants C13, C33 in the dry case (b), which correspond to highest moduli reached
during deviatoric stress loading.
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Experimental procedures related to UPV measurements

[146] Frequency of transducers: 1 MHz
Confining pressure = 100 kPa

Errors in elastic constants vary from +/- 4% for C11,C33 to +/- 50% for 013
[129] Frequency: 500 kHz for P-waves, 250 kHz for S-waves

Confining pressures = 5 - 80 MPa

Redundancy of measurements offers error estimates for all elastic constants

[138] Frequency of transducers: 500-600 kHz

Simulate in situ conditions by combination of:

confining pressure = 1.5-13 MPa, axial load = 1.5-20 MPa

constant pore-fluid pressure = 1 MPa
Accurate estimate of C11,C12,C33,C14.
Less accurate for C13 due to use of only one off-axis receiver

[81] Frequency: 0.75 MHz
Pressure variations:

Normally pressured state: confining = 45 MPa, pore = 5 MPa

Highly overpressured state: confining = 30 MPa, pore = 20 MPa

Differential pressure = difference between confining and pore pressures

Same level of accuracy for all stiffness constants

[77] Frequency: 0.6-1.0 MHz for P-waves, 0.2-0.4 MHz for S-waves

Pore pressure = 5 MPa, Confining pressure = 10-65 MPa

Errors in elastic constants < 1%, with exception of C13 ~2%

[142] Central frequency for P- and S- waves: 1 MHz
Confining pressures: 15, 50 MPa
No assessment of the accuracy of acoustic measurements is presented

[226] Central frequency for P- and S- waves: 1 MHz
Hydrostatic and deviatoric stress paths were used during testing

In situ conditions correspond to 15 MPa confining pressure
Relative errors for elastic constants range between 9 and 19%

Table 3.20: Summary of experimental procedures used during UPV testing of the shale speci-

mens documented in the open literature.
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Figure 3-22: Deviatoric stress and axial strain during triaxial testing with various confining
pressures (noted as o-3). Data for Tournemire shale measured in the normal-to-bedding direc-
tion. From [195].

macroscopic knowledge base for shale strength properties has been developed based on the ex-

tensive use of triaxial testing, which allows the monitoring of pore pressures, hydrostatic, and

deviatoric stresses that are applied independently on cylindrical rock samples [2061.

The strength behavior of shale is certainly complex. Figure 3-22 displays the a typical

deformation response of shale testing under a conventional triaxial setup, in which a radial and

axial stresses are applied to the specimen. For low confining pressures, shale tends to exhibit a

brittle behavior, whereas work-hardening is observed for higher states of confinement. These two

different modes of deformation have been observed consistently for many shale materials [142,

298]. In addition, strength anisotropy has been reported [182, 195], although, the anisotropic

behavior could be relatively small compared to other rock types (e.g. slates) [135].

In view of the exploratory character of the multi-scale strength investigation of shale, the

focus of the strength assessment of shale is the unconfined compressive strength, a commonly

reported parameter for the characterization of rocks [62]. In addition, unconfined compression

is the conventional stress state used in most experimental programs. The review of the liter-

ature for shale strength yielded only a few sets of data which provide simultaneously strength

properties and mineralogy and porosity information required for calculating the volumetric pa-

rameters (namely the clay packing density and the inclusion volume fraction) identified by the

multi-scale model of shale. Unfortunately, macroscopic strength data was not developed yet by
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Sample Unconfined compressive strength
(UCS) [MPa]

North Sea 21
RBBC-2 0.6
RBBC-4 1.1
RBBC-6 1.7
RBBC-8 2.3
RBBC-10 2.7

9898 110
10151 64
6275 98
7053 78
6853 149
8675 78

B 8.2
D 13
E 8
H 27

23
J 13
K 78

TOU 42
SHI 25

Table 3.21: Unconfined compressive strength data for shale samples from the literature, resed-
imented Boston Blue Clay samples, and the North Sea shale sample.

the G2IC, resulting in a more limited data set for strength modeling development compared to

microporoelasticity.

The experimental data gathered from the open literature for shale strength is listed in Table

3.21. The strength data for the resedimented Boston Blue Clay is also employed for strength

model development.

3.8 Chapter Summary

The presentation in this chapter of the database of material and mechanical properties for

several shale samples sets the stage for the development of the multi-scale micromechanics

modeling of shale. For the poroelasticity modeling, the mechanical characterization of shale at

the grain-scale offers an unparalleled opportunity for devising effective mechanical descriptions
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of the clay fabric's complex microstructure and composition. In addition, the multi-scale nature

of the database herein developed complements the novel understanding of shale's nanomechanics

with clay mineral properties at fundamental scales and conventional macroscopic acoustic data.

Although different in nature, nanoindentation testing measurements and acoustic properties

using ultrasonic pulse velocity techniques give access to the small-strain poroelastic behavior

of shale. For shale strength, the interpretation of nanoindentation hardness measurements

will aid our exploratory work of modeling and predicting macroscopic strength parameters by

offering important insight into the nanomechanics interplay between cohesive and frictional

characteristics of the clay phase in shale. The shale data collected in this chapter will be used

in terms of collections or data sets that will assist model calibration and validation efforts.
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Part III

Microporoelasticity of Shale
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Chapter 4

Microporoelasticity of Shale

One of the most challenging tasks of rock physics is to link microstructure and composition

of earth materials to acoustic velocity data that become accessible through increasingly so-

phisticated well logging tools in field applications and accurate laboratory measurements [115].

Classical approaches rely heavily on fitted empirical relations between velocity measurements

and porosity, clay content, and other statistically significant parameters. Such empirical ap-

proaches have been implemented with some success for sandstones [88, 112] and limestones [99].

Some more refined methods have taken this approach a step further by linking porosity and clay

content to seismic velocity through the application of effective medium theory [49, 221, 299].

However, modeling attempts have had a limited success when it comes to shale mainly due to

the fact that shales -in contrast to sandstones, limestones, and synthetic clay-silt mixtures-

are both highly heterogeneous and anisotropic from the micro- to the macroscale of engineering

applications.

In Part III of this thesis, a microporoelastic model for shale is developed using a multi-scale

structure approach. The aim of the model is to offer a universal description of the anisotropic

poroelasticity of shale based on a specific set of material parameters defining the microstruc-

ture and composition. To this aim, Chapter 4 presents a comprehensive microporomechanics

framework to model shale at the different length scales defined by the multi-scale structure

thought model introduced in Chapter 2. In particular, the micromechanics framework allows

for a complete description of the effects of material composition and microstructure on the

poroelastic response of shale. Different sources of anisotropy related to the microstructure of
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shale at microscopic scales such as particle geometries and orientations, as well as intrinsic

elastic properties of the clay phase are incorporated in the model development.

The micromechanics modeling of shale continues in Chapter 5 with the calibration and

validation of the model using a hypothesis testing approach. The different contributions to the

macroscopic anisotropy of shale are translated into hypotheses of an elementary building block

of solid clay, which is at the center of the developed upscaling scheme for poroelastic properties.

The originality of the approach relies on the combination of the multi-scale micromechanics

modeling and the use of extensive experimental data of shale elasticity. Various data sets inform

and validate, independently, the modeled anisotropic elastic behavior of shale at different length

scales. Of particular importance to the model development is the instrumented nanoindentation

data generated by the GeoGenome Industry Consortium, and the inferred granular behavior of

shale at sub-micrometer length scales. An effective description of the complex microstructure

of shale's clay fabric will result from the model calibration and validation exercises, which will

enable predictions of the macroscopic anisotropic behavior of shale based on parameters related

to material composition and intrinsic material invariant properties of the clay phase.

Chapter 6 explores the applicability of the model established through the findings of the

previous chapters. Chapter 6 will review the predictive capabilities of the adopted engineering

model for shale at the different length scales in the context of the effectiveness of the elemen-

tary building block concept used for the modeling of the clay phase, the importance of particle

geometries and orientation functions for the anisotropic description, and the relations of pres-

sure and frequency dependencies to the measured poroelasticity and micromechanics model

predictions. The proposed engineering model for shale will also be evaluated in terms of the

predictions of poroelastic parameters, which are of importance for geomechanics and reservoir

engineering applications. Finally, Chapter 7 presents an extension of the model for treating

kerogen-rich shales and the results of two pilot studies aiming at the application of the model

for characterizing shale formations.
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4.1 Linear Microporoelasticity

Rocks, as many other natural composites, are heterogeneous materials with heterogeneities

that manifest themselves from the nanoscale to the macroscale of engineering applications'. At

sub-millimeter length scales, the rock specimen is composed of a complex fabric of grains and

particles of diverse mineralogy, in addition to the occurrence of porosity. However, standard ex-

perimental techniques probe material samples on the order of centimeters in size. Consequently,

the measured properties of the rock specimen represent the average properties of a heteroge-

neous composite material. If focusing on smaller scales, a similar observation can be made

regarding single crystal grains, which are the result of specific atomic configurations and crys-

talline structures. The description of the transition from atomic scales (described by quantum

and statistical mechanics) to the continuum scale (described by continuum physics) is the sub-

ject of condensed matter physics. In this work, the study of shale as a heterogeneous material

begins at fundamental scales where the elementary constituents (clay minerals, nanoporosity)

can be described using continuum mechanics theory. The natural objective is then to inves-

tigate the dependence of macroscopic properties of the heterogeneous composite based on the

mechanical properties of its constituents and their spatial arrangement or microstructure.

To assist in the objective of modeling heterogeneous material systems, a variety of theoret-

ical and computational frameworks have been developed such as finite element theory, discrete

element theory, and periodic homogenization, among others. An attractive alternative to these

methodologies are analytical and semi-analytical approaches using continuum micromechanics

and random homogenization theory. In particular, the micromechanics approach for hierarchi-

cally structured materials systems has been successfully implemented in recent applications to

natural composites such as concrete [21, 269], bone [93, 117], and shale [128, 267]. In micro-

mechanics theory, not all the details of the complex microstructures and material phases are

considered. Instead, only essential information regarding morphological features such as parti-

cle shapes and their orientations, mechanical properties, and volume fractions is considered in

the homogenization problem.

Within the micromechanics approach, a variety of analytical methods are available for ap-

'This section is inspired in the presentation of Ponte Castaieda [217].
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proaching the computation of homogenized properties of a heterogeneous material. Rigorous

bounding methods have been extensively developed for estimating the effective behavior of het-

erogeneous materials. However in poromechanics, bounds may tend to be far apart and may not

be of practical use for field applications [23]. Such situation requires the use of exact estimates

provided by effective medium (mean-field) theories, which provide homogenization solutions for

particular types of material microstructures.

In the remainder of this section, linear microporoelasticity is introduced as the methodology

to be used for modeling the multi-scale, anisotropic poroelasticity of shale. This theoretical

foundation will enable the development of a suit of micromechanics tools for linking the material

composition and microstructure to the poroelastic material response of a multi-scale material

system.

4.1.1 Elements of Continuum Mechanics and Homogenization Theory

The Representative Elementary Volume and Scale Separability

A critical element in the implementation of the continuum micromechanics approach is the

concept of the representative elementary volume (rev), which is defined as an infinitesimal part

of a three-dimensional structure or material system. The relevance of using the tools of integral

and differential calculus offered by the continuum description are guaranteed when the charac-

teristic length of the rev 1 is much smaller than the characteristic length scale of the structural

system L. Furthermore, the size of the rev should be large enough to be representative of the

material system, capturing the geometrical and physical properties relevant of the mechanical

behavior under consideration. Hence, the rev should be much larger than that of local het-

erogeneities or deformation mechanisms, with characteristic length scale d. In addition, the

scale of heterogeneities has to be compatible with the use of continuum mechanics concepts

(e.g. strain and stress tensors). This implies a fourth length scale do, which serves as a lower

bound below which continuum mechanics is no longer applicable. The previous descriptions are

summarized in the scale separability condition, which serves as the necessary condition for the

concept of the rev to be valid [301]:

d0 < d < 1 < L (4.1)
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Homogenization Methodology

In constitutive modeling, the geometric deformation of a material system due to the application

of forces prescribed from the outside is characterized by a macroscopic constitutive law. This

macroscopic law aims at establishing a relation between the (macroscopic) forces applied to the

system and the (macroscopic) strains, which determine the transformation of the elementary

volume of the material system. The design of such macroscopic law can be typically derived

from a purely phenomenological approach at the macroscale, which is based on the observation

of the mechanical response of the material system to applied forces or displacements. However,

homogenization theory provides an alternative approach to deriving the mechanical response

of the material by solving a boundary value problem at the scale of the rev. Provided the ap-

propriate scale of observation, the macroscopic behavior of the material considers the influence

of the heterogeneous nature of the microstructure present in the rev. The objective of classical

homogenization approaches is to replace the heterogeneous composite material by an equivalent

homogeneous one that behaves mechanically in the same way at the global (macroscopic) scale.

The main components of the homogenization approach are summarized as follows [301]:

Description of the rev The first step in the homogenization approach is to describe the

fundamental geometrical and mechanical features of the rev. Given the heterogeneous na-

ture of the macroscopic material, statistical information is required in order to describe the

relevant features 2. The description of the rev begins with establishing the considered active

mechanical phases and their mechanical attributes. In addition, statistical descriptions of their

spatial distributions, or morphology, are necessary: volume fractions, texture functions, lattice

orientations for crystalline particles, orientation distribution functions of fibers and voids and

their aspect ratios, etc. From a practical perspective, a complete statistical description of the

spatial distribution may be difficult to obtain, which opens the way for utilizing approxima-

tions or estimates based on the most salient morphological features according to the particular

microstructure.

2In this investigation, we only consider materials with random microstructures. Materials with periodic

microstructures can be treated with a different suit of homogenization theories.
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Concentration or Localization The concentration or localization problem refers to the

modeling of the interaction of mechanical phases present in the rev and their corresponding

local stress and strain fields a (z) , e (z) from the prescribed macroscopic stress and strain

quantities E, E. The concentration problem at the rev level is an ill-posed problem since

detailed constraints at the boundary of a rev are not known. In turn, a simpler problem is

defined by considering homogeneous boundary conditions on the rev, also known as Hashin

boundary conditions.

The uniform stress boundary condition represents the case of a rev subjected to a constant

macroscopic stress state:

0' (z) n(z) = E - n (z) (Vz E OQ) (4.2)

where n is unit outward normal at the boundary of the rev &Q. One can prove that E is

equivalent to the volume average of the stress i-' in the rev for any equilibrated, divergence-

free3 stress field er' (z) which obeys (4.2):

-' = j ' (z) dVz =- E (4.3)

In turn, the uniform strain boundary condition represents the case of a rev subjected to a

regular displacement condition at its boundary:

'(z)= E - z (V~z E 8Q) (4.4)

Provided that the length scales of the heterogeneities are much smaller than that of the rev

as prescribed in the scale separability condition (4.1), the macroscopic strain E is equivalent

to the volume average of the strain E' for any strain field e' (z) derived from its corresponding

displacement field, and which obeys (4.4):

F = _'Ie' (z) dVz = E (4.5)

3 The assumption of neglecting body forces in the formulation of the local problem is valid provided that

|3I >> pfI x 1, where pf is a volume force, and 1 the characteristic length scale of the rev. This assumption is

in fact relevant to the homogenization problem [83].
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A remarkable consequence of applying the uniform boundary conditions (4.2) or (4.4) is the

particular result called the Hill lemma, which consists in a similar average formulation for the

case of the strain energy o-': E':

- E : E (4.6)

The Hill lemma states that the microscopic strain energy is equal to its macroscopic counterpart.

With this result at hand, estimates for the stress and strain fields can be reached as functions

of the macroscopically applied boundary conditions:

o-' (z) = B (E) (4.7a)

E' (z) = A (E) (4.7b)

where B and A are the stress and strain concentration operators, respectively.

Homogenization The final step in the process of upscaling of mechanical properties is the

homogenization itself. The objective of homogenization is to determine the appropriate expres-

sion for the macroscopic strain E associated with the microscopic strain field e (z) when the

rev is subjected to a (macroscopic) loading E. Equivalently, the relation between the macro-

scopic stress E and the microscopic stress field o- (z) is sought when the rev is subjected to

a (macroscopic) strain E. Thus, combining the local constitutive relations a- (e) , e (a-), the

average relations (4.3) or (4.5), and the concentration operations in (4.7) yields the following

upscaling relations according to the boundary condition (4.2) or (4.4):

E' (E) e' (a-') = e' [B (E)] (4.8a)

E (E) o-' (e') = a-' [A (E)] (4.8b)

For the particular case of linear elasticity, the microscopic and macroscopic stresses and

strains are related by linear and homogeneous functions with respect to the loading parameters

E and E. Consequently, the concentration operators in (4.7) reduce to fourth-order tensor
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fields:

-' (z) =B (z) :E (4.9a)

SA (z) :E (4.9b)

These two results tend to be equivalent when the ratio d/1 (that is, the ratio of the size of

the local heterogeneities in the rev compared to the size of the rev) tends to zero (Hill-Mandel

theorem, [125, 170]), which is enforced in view of the scale separability condition stated in (4.1).

We extend the result (4.9b) for the case of describing the local stress field. In that case:

o' (z) = C (z) : A (z) : E (4.10)

where C (z) is the material law describing the stiffness content of the material system at location

z. The use of the average rule (4.3) provides the following relation:

E' = o-' (z) =- C (z) : A (z) : E (4.11)

in which we readily identify the homogenized stiffness tensor Chom that estimates the overall

or effective stiffness response of the material system represented as a homogeneous medium:

Chom = C (z) : A (z) (4.12)

In a similar manner, the result for the effective compliance of the heterogeneous medium is

found:

Shom = S :B (z) (4.13)

The determination of the stress or strain concentration tensor is critical to the homogeniza-

tion problem in linear poroelasticity. From a micromechanics perspective, the concentration

tensors carry the relevant micromechanical information about the morphology and interaction

of mechanical phases. With the appropriate estimates of these micromechanics quantities, es-

timates of elastic and poroelastic parameters can be accomplished. The determination of the

concentration tensors is presented in the next section.
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4.2 Localization and Microstructures

From expressions (4.12) and (4.13), the determination of the effective stiffness and compliance

of the heterogeneous material, either as rigorous bounds or estimates, depend on the definitions

of the concentrations tensors. Bounding approaches can be rigorously derived based on the

available statistical description of the heterogeneous medium. The application of variational

principles in elasticity theory yields the following bounds for the homogenized elasticity tensors

(see e.g. [301]):

E : (B :S :B -Shom E 0 (VE) (4-14a)

E : (tA: C :A - Chom : E > 0 (VE) (4.14b)

where 'B is the transpose of the components of B, tBijkI - Bklij. In the simplest case when the

elasticity and the volume fractions of the constituents are known, the use of uniform fields in

(4.9), that is, B I[ and A =I[, gives the well-known Reuss and Voigt bounds, respectively:

E- Shom) E _> 0 (VE) (4.15a)

E : - Chom) : E > 0 (VE) (4.15b)

Note that I is the fourth-order identity tensor (Iijkl = I (6oigji + 3 ojik); 6 ij is the Kronecker

delta). If the microstructure of the material system is statistically isotropic, a tighter set of

bounds can be derived, known as the Hashin and Shtrikman bounds [114]. The incorporation of

more refined statistical descriptions such as two-point correlations (a description of the positions

of particles in a composite) provides rigorous ways for improving the construction of bounding

schemes for e.g. linear elastic random composites , and non-linear composites [215, 248, 253].

In contrast to rigorous bounding methods, approximations for the effective stiffness that

treat specific types of microstructures have also been proposed. These so-called effective medium

theory estimates become suitable approaches as often the solutions of bounding methods may

tend to be far apart [23]. In what follows, we recall a fundamental result of micromechanics,

Eshelby's inclusion problem, which enables the development of a set of upscaling methods for
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linear elastic composites4 . In particular, the Eshelby's solution provides the foundation for

estimating concentration tensors that are suitable for particulate and granular microstructures,

which are of direct interest for poromechanics applications to geomaterials.

4.2.1 Eshelby's Inclusion Problem

In linear micromechanics, Eshelby's problem addresses the strain field in an ellipsoidal inclu-

sion, embedded in an infinite homogeneous medium, with different elasticity, and subjected to

uniform displacement boundary conditions at infinity. The ellipsoidal shape can account for a

large variety of inhomogeneities found in composite materials, such as flat cracks or elongated

needle shapes as extreme cases. The Eshelby's elastic inclusion problem adapted for the case

of an inhomogeneity is depicted in Figure 4-1. The mechanics problem is presented as (see e.g.

[83]):
div =o 0 (Q)

o- (z) = Crnat : e (z) + 0-j (z (W) (4.16)

() E - z (z - 00)

where o (z) is a fictitious stress field in the inclusion that characterizes the deviation from the

homogeneous state induced by the inclusion:

W - 0Cez (Qmat) (4.17)
6C : E (z) (Q1)

where 6C = CI - Cmat is the contrast in elasticity content between the inclusion and homo-

geneous matrix. The remarkable result of Eshelby's inclusion problem (in which the original

stress field o- (z) in (4.16) is assumed constant a' (z) o in QI) is that the strain field is

constant within an ellipsoidal inclusion:

EI = -Sesh : (Cnmat .I + E (Q1 ) (4.18)

4 A comprehensive review of homogenization techniques for linear elastic composites is presented in [186].
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C"'"
a I = 6c: E I

Figure 4-1: Eshelby's problem. Ellipsoidal inclusion of stiffness C' embedded in an infinite
matrix of stiffness Cmat. Adapted from [264].

where Sesh is the Eshelby tensor. Furthermore, the Eshelby tensor is related to the fourth-order

Hill concentration tensor (or P-tensor) P by:

Sesh = p : Cmat (4.19)

In synthesis, the P-tensor carries the information regarding the morphology and the orientation

of the inclusion phase. A detailed description of the Hill tensor will be provided in a forthcoming

section.

The fictitious stress cr1 is also constant in the inclusion, and it is linearly related to the

macroscopic strain by:

01 = [+ 6C : Se"h : (C"a)-] :6C : E (Q') (4.20)

Similarly, the relation between the microscopic strain in the inclusion and the macroscopic

strain is, after manipulation:

S= I + Seh : ((Cmat) : CI - 01)1 : E (Qi) (4.21)

Expression (4.21) can be regarded as a strain concentration relation of the macroscopic strain

prescribed at infinity into the inclusion phase, which in terms of the Hill concentration tensor
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reads:

e1  - X1 : E (4.22a)

XI = [II + P: (CI - Cmat) 1 (4.22b)

4.2.2 Dilute Scheme

The first implementation of Eshelby's solution is for a set of aligned ellipsoids of similar shape

and elasticity content that are distributed randomly in an elastic matrix phase. Furthermore,

the concentration of inclusions is small, or dilute, which implies that the different inclusions

are well separated from each other. Consequently, it is expected that the inclusions will not

interact with each other. Within these constraints, the solution of Eshelby's inclusion problem

is applicable, which expresses the average strain concentration tensor on the inclusion phase as

A' in (4.22b):

Xilte= [ii + IP : (CI - Cmat) (4.23)

For instance, the dilute approximation of the concentration tensor for an empty porous

material, whose solid matrix and pore space have stiffness tensors C' and CP = 0, respectively,

yields:

XP = (I - P : C)-' (4.24)

Note that the concentration tensor satisfies the condition:

A (z) = E (4.25)

from the use of (4.9b) in (4.5). Using (4.24) and (4.25). the dilute estimate of the effective

stiffness of the porous solid is:

Chom =C : I - 0 - P : C-)1] (4.26)

where d0 represents the volume fraction corresponding to the pore space QP = #0Q.

The determination of the effective response of a composite material beyond the dilute con-

centration regime is a challenging task, for which advanced statistical means would be necessary
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to describe the interaction between particles and their specific spatial arrangement within the

material fabric. However, two types of effective medium theory schemes applicable to matrix-

inclusion composites and granular materials account for inclusion interactions through the use

of Eshelby's solution in microelasticity.

4.2.3 Mori-Tanaka Scheme

Within the framework of Eshelby's inhomogeneity problem, the interactions between inclusions

for non-dilute inclusion concentrations can be captured by considering that the average strain

in the homogeneous material surrounding the inclusion is:

rm = Eo (Qm ) (4.27)

In this case, the strain in the inclusion phase is determined using (4.22):

6' - [E+ P : (C - Co)] -1 : Eo (Q,) (4.28)

where C0 is the reference stiffness of the surrounding matrix.

strains E and E0 , which is accomplished by using the strain

E = fIe + ( - f)m

(fI [E PO : (C' - C)] + (1

[I + PO : (C - C)]l : Eo

It is left to relate the macroscopic

average rule e = E:

- fI) ii) : Eo

(4.29a)

(4.29b)

(4.29c)

where f1 = Q/Q, and C represents the material phases (CI, C0 ) involved in the averaging

operation over the volumes (QI, Qmat) respectively. The use of (4.28) and (4.29) entail the

following estimate of the average strain concentration tensor in the inclusion:

X = :-1
[RZ + [1--PO: (CI CO)l : [R +]F 0 : (C -CO)] I (4.30)

The choice of the reference medium in (4.30) determines a particular microstructure of

the heterogeneous material. In the case of a composite with a characteristic matrix-inclusion
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morphology, the reference medium corresponds to the solid matrix with stiffness C' = C'.

The resulting representation is commonly known in the literature as the Mori-Tanaka estimate

[188]:

M= [i + P3 : (C' CS )]: [+ iPS : (C - C)]- (4.31)

For illustration, the application of the Mori-Tanaka scheme for a porous solid material using

the strain concentration estimate (4.31) in (4.12), in addition to the average condition (4.25),

yields the following estimate for the drained stiffness tensor:

Chom = Cs .(Ii -O(I§ - S<1 : [(I - 00) + 0 (i) (4-32)

where S = P' : CS is the Eshelby tensor. The drained response is a consequence of the pore

space being emptied of any pore fluids.

The implementation of the Mori-Tanaka scheme provides useful stiffness estimates for matrix-

inclusion type composite materials, especially for the cases of families of spherical or unidirec-

tional, aligned ellipsoids [19], or a solid intermixed with a single family of randomly oriented

ellipsoids [289]. However, Mori-Tanaka estimates for other configurations may lead to physically

unrealistic predictions or violate rigorous bounds [217, 259].

4.2.4 Self-Consistent Scheme

In contrast to the matrix-inclusion morphology, other materials exhibit random microstructures

in which none of the phases plays the apparent role of a matrix material. In this case, the

self-consistent approximation is known to be a good estimate for polycrystalline materials

and composites with granular microstructures. The self-consistent scheme was introduced by

Hershey [121] and Kroner [154] in the context of elastic polycrystals, and by Budiansky [47]

and Hill [124] for other types of aggregates and composites. The self-consistent approximation

has been also developed by various authors in different contexts other than microelasticity (e.g.

scattering theory [107]).

Within the framework of the self-consistent scheme, the interaction of particles are modeled

by considering that all mechanical phases play the role of grains akin the composite response

of a polycrystalline material. Given that no particular phase serves as a matrix, one can adapt
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the results in (4.30) according to the choice that the reference medium C0 is the homogenized

(self-consistent) material CC:

XI - -1

Ic [I+ P" : (C' - CSc [E + PSC : (C - CSC)]- (4.33)

The self-consistent estimate CSC is derived from (4.12):

CSC = C : [I + PSC : (C - C9)]- : [E + PSC : (C - CSC)]- (4.34)

It is worth noticing that the strain concentration tensor 1sc is applicable to all the mechanical

active phases, since each phase plays the role of an inclusion I.

By way of example, the self-consistent estimate of the drained stiffness behavior of a porous

solid with granular microstructure is developed:

Chom = (1 C' -E [ Psc : (CS sc -)1 (4.35)

#a [I - IP' : CSC]-I + (1 - 40) [I + PSC : (CS - CSC) -

where the self-consistent reference medium stiffness is equivalent to the homogenized stiffness

tensor CS = Chom. The calculation of the P-tensor depends on the homogenized stiffness

Psc - Psc (Chom). By inspection, the solution of (4.35) could be implicit depending on the

complexity of the P-tensor expression, in which case numerical techniques can assist in the

calculations. For completeness, it is worth developing the expression (4.35) one step further for

the case in which both inclusion types (solid particles and pores) exhibit the same geometry and

orientation, which implies that the P-tensors for both phases are identical. Rewriting (4.34) as:

(C - CSC) : [R + IPSC : (C - Csc)]- - 0 (4.36)

it then follows from (4.36) when all P-tensors are identical that:

[]l+ PS : (C - CSc)]- =I (4.37)
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This result provides a simplified form of (4.34):

CSC = C : [E + Psc : (C - CSC)Fi (4.38)

which for the case of the porous solid in (4.35) yields:

Chom = (1 - #0) C' : [E + PSC : (C" - Chom F1' (4.39)

An important feature of the self-consistent scheme for porous materials, although not ap-

parent from expressions (4.33) and (4.35), is the prediction of a percolation threshold at finite

values of porosity. At the percolation threshold, the stiffness of the composite material van-

ishes. This characteristic modeling feature of the self-consistent scheme is most valuable for

granular composites, and it will be used extensively in the development of a micromechanical

model for shale. In forthcoming sections, a detailed analysis of the features of the self-consistent

estimate for porous materials will be offered, in which we relate the predicted stiffness response

of granular material to the percolation threshold and microstructural features such as particle

shape and orientations.

4.2.5 Hill Concentration or P-Tensor

The last component of the micromechanics approach for modeling heterogeneous materials

based on effective medium theory is the evaluation of the Hill concentration tensor. or P-

tensor, IP (4.19). Within the framework of Eshelby's inhomogeneity problem, the Hill tensor

captures the morphology and orientation of the inclusion phases necessary for the estimation

of the overall strain concentration tensors (e.g. see (4.22)).

The solution of the microstrain in the ellipsoidal inclusion (4.18) depends on the computation

of the fourth-order Hill tensor P:

PP [a2 Godl'I 4.0
ijkl - .ZjOZk ( 1  (z- ') dVz () 440)

in which the second-order Green function Go (z - z') expresses the displacement at point z in

a linear elastic solid medium of stiffness C0 resulting from a unit force applied at a point z' in
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the medium. Alternatively for the elasticity problem at hand, the Hill tensor may be expressed

following Laws classical expressions [159], which in a slightly different form read [249]:

1
Pijkl - I(lvikiji + l~kjil + A41ijk + A41jik) (.1

167r

where,

/ ala 2 a 3 1

Mk i j i =] + 3 /2 F' (w) wiwidS, (4.42)

Parameters al, a2, a3 relate to the shape of the ellipsoid, dS (w) is the surface element of a unit

ellipsoid of components W1, w2, w3 , and Fik (W) = C kiwji represents the Christoffel matrix

denoting the stiffness of the matrix. Note that the fourth-order P-tensor is positive definite and

obeys both major (diagonal) and minor symmetries, in contrast to the Eshelby tensor (4.19),

which displays minor symmetry only.

The evaluation of expressions (4.41) and (4.42) depends on the particular stiffness proper-

ties of the reference medium CG and the shape and orientation of the inclusion phase5 . Many

derivations of the Hill tensor are available in the literature for variations of the previously men-

tioned parameters (see e.g. [190, 238, 295]). In what follows, four different forms of the Hill

tensor are presented, which are closely related to microstructures and stiffness properties of

relevance to the micromechanics modeling of shale. These specific forms of the P-tensor are:

spherical inclusions in an isotropic (homogenized) medium, spherical inclusions in a transverse

isotropic medium, aligned spheroidal inclusions in an isotropic medium, and spheroidal inclu-

sions with preferred orientation in a transverse isotropic medium. Clearly, the first three cases

are retrieved under specific conditions from the last, more general case. Nevertheless, more

succinct analytical and semi-analytical expressions are available for the first three cases.

Spherical Inclusions in an Isotropic Medium

The simplest case to be considered is that of the evaluation of the Hill concentration tensor for

a spherical inclusion embedded in an isotropic (homogenized) medium. The resulting P-tensor

5For clarity, the superscript 0 in C0 will be dropped in the subsequent presentations of the P-tensor.
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is readily available from standard micromechanics literature (see e.g. [83, 193]):

a#
P = J + !K (4.43)3k 2g

with,

Z 3k (4.44a)
3k + 4g

6 (k + 2g)
5(3-= g)(4.44b)

where Jijk = (i al) and K - E-.

Spherical Inclusions in a Transverse Isotropic Medium

Integral expressions of the Hill tensor for ellipsoidal inclusions in a transversely isotropic medium

have been developed by Laws [159]. However, the evaluation of the Hill tensor can be specialized

for (aligned) spherical inclusions within a transverse isotropic medium by taking advantage of

the spherical symmetry [116]. The transversely isotropic stiffness of the reference medium is

a function of five elastic constants. Within a Cartesian reference frame of orthonormal basis

[fi, L2' 3], where the plane [f1, £21 corresponds to the plane of symmetry, the transverse isotropic

stiffness tensor for the reference medium C in matrix form is :

C1 C12 C13 0 0 0

C12 C11 C13 0 0 0

[0] C13 C13 C33 0 0 0 (4.45)
0 0 0 2C66=C11-C12 0 0

0 0 0 0 2C44 0

0 0 0 0 0 2C44

The calculation of the Christoffel matrix lik (W) = CiWjlWol can be achieved through the use

of matrix operations of the type [w] [C] [w]T, in which the vector w is represented as a (3 x 6)

6Throughout this work, all matrix representations of second- and fourth-order tensors follow a normalized
tensorial basis [119].
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matrix:

w1
[w] =0

0

[wT =

Furthermore, the unit vector w i

by the following transformations:

0

0

W3 0

0

lw3/2

2

W1 0 0

0 W2 0

0 0 W3

o IW3 \/2 IW2\

W3 V2 0 1WIN

s expressed in spherical

kwav1
0

-w1VU J
(4.46)

(4.47)

coordinates 0 E [0, r]; 0 E [0, 27r]

Wi = sin cos#

W2 sin 0 sin#

W3 - cos 0

(4.48a)

(4.48b)

(4.48c)

The non-zero terms in (4.41)-(4.42) are reduced to line integrals in ( = cos 0, d = - sin OdO,

whose evaluations are achieved numerically using standard software packages. The final expres-

sions of the non-zero elements in Voigt notation of the P-Tensor, which will be heavily used in

the multi-scale model of shale to be developed, are the following (see [116], except for a misprint

corrected in the expressions below, [93]):

1 1 ((2 - 1) (-8(4C33C44 - 3(4C12C33 - 2&4C23 + 3(4C12C44...

16 D
-1

5(4C11C44 + 5&11 C33 - 4(4C 13C44 + 644 - 6(2C24...

Di

+ 4 2013C44 + 3(2C12C33 - 5(2Cn C33 - 6(2012C44 + 2(2C2

Di

..+ 10( 2CnIC44 + 3C12C44 - 5CnlC44) d)
D1

(4.49)
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11 [( - 1)2 (( + 1)2 (C12C44 - &2012C44 + C12C33 + C11C44...

P = 16 Di

- 2Cn C44 + 2Cn C33 - 2(2C23 - 420C13C44 - 2(2C424)

1
P13 = -1 (013 + C44)

4

1
(2 -1)

D2 d

1 (2 (-C11 + Cn( 2 
- C442)

P33 =- d 
2 D23-1

11

f (32 - 26C - Cj1 - 4 6 C C44 - 8(6C13C44 - 4(6 C33C44...

16 D1

.+3(6CnC33 - 3(4C 1+Cn2 + (6C21 - (6CnC1..S3~6~ -3 11 + 011022 I p602 -60

Di

- (C12C33 + 4(4C12C13 - 2(2 C12C13 + 2(11 C13...

Di
.. 2&2~l + (4 C12C33 + 8&1 CC44 - 3&1 1~C33 - 4(2CnC4..

... + 8( 4 C13C44 - 4(110C13 + 3(01C12 - 3(2CnC12 - 2(6C12C13 + 2(2CnC13)d<
Td%

where:

D1 = ( 2C - C11 - 2(2C44 - 20 + C12) (D 2 )

D2 =-(4C33C44 + 2(2C13C44 - 200 C33- 2(4C13C44 + (011 C33 (4.55)

..+ 2(2C1C44 + 23 - (0CC44 - ( 1l3 - CC44

The previous expressions for the P-tensor readily reduce to (4.43) when the stiffness prop-

erties of the reference medium attain isotropic form.
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Spheroidal Inclusions in an Isotropic Medium

The case of the Hill tensor for spheroidal inclusions in an isotropic medium is a classical result

found in the literature. The spheroidal inclusions follow the characteristic equation to account

for particle geometry:
(z)2 + (z2)2  (z3)2

a2 -+ C2 1 (4.56)
a c

where X = c/a stands for the particle aspect ratio, which is defined as the ratio of the length

in the direction of the axis of symmetry over the diameter in the symmetry plane: X < 1 for

oblates, X > 1 for prolates, and X = 1 for a sphere. The isotropic medium is characterized by

the bulk and shear moduli k, g, respectively. Given the symmetry of the spheroidal inclusions,

the P-tensor exhibits transversely isotropic symmetry, so that it follows a similar form of the

tensor C in (4.45) [190, 218]:

P11  P 12 P 13  0 0 0

P 12 P1 P 13  0 0 0

[P] = P 13 P 13 P33  0 0 0 (4.57)
0 0 0 2P 66 = P11 - P12  0 0

0 0 0 0 2P44  0

0 0 0 0 0 2P44

where:

X (26gX 3 e - 20ggX 2 - 35Xcg + 15 k - 33Xck + 29tg + 6X 3 ck + 12X2 )

16 (X 2 - 1)5/2 (3k + 4g) g

+X (-2gX3 +4ggX 2 - Xcg - 3 k - 3Xck - g - 6X3k + 12X 2 k) (4.58b)
16 (X 2 - 1)5/2 (3k + 4g) g

X ({g 3Xcg + 2ggX 2 - 9Xck + 6X 2 k + 3 k)

4 (X 2 - 1)5/2 (3k + 4g) g

P -5X g - 9X 2 Cg + 8X 3 g - 9X 2ck + 6cg + 6X 3  k + 3Xtk (4.58d)
2(X2 _1)5/ 2 (3k +4g) g

P 3X 4ek - 9X 3 k + 9X 2ck + 4X 4 Cg - 6X 2Cg - 9X~k - 6X g + 6ck + 8eg (4.58e)

8 (X 2 _ 1)5/2 (3k + 4g) g
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For the oblate case (X < 1), c v/1 - X2 and ( arccos (X), whereas for the prolate case

(X > 1), E = V/X2- 1 and (= arecosh (X).

Spheroidal Inclusions with Preferred Orientation in a Transverse Isotropic Medium

We now consider the evaluation of the Hill tensor for the situation of spheroidal inclusions

with preferential orientation embedded in a transversely isotropic reference medium. Giraud

et al. [103] recently treated the evaluation of the Hill tensor for this general problem based on

the integration of the exact Green's function provided by Pan and Chou [205] and the use of

intermediate and global coordinate systems.

First, consider spheroidal particles that follow the characteristic equation to account for

particle geometry:
(z)2 + (z)2 ()2 - 1 (4.59)

2 + 2
ac

where x refers to all quantities related to the inclusion . XX = c/a stands for the particle

aspect ratio. It will be necessary to transition from the global coordinate system (zI, z2, z3 ) to

the local coordinate system (z, 4, z). To this end, the rotation operator QX, defined as the

product of two rotation matrices QX = QOX QPX, is introduced:

1 0 0 cos ( ) sin (p) 0

[Q =]0 cos(O) -sin(O) ; Qig = - sin(o) cos(o) 0 (4.60)

0 sin (0) cos (0) 0 0 1

where the Euler angles p (0 < o 27r) and 0 (0 < 0 < 7r) are defined between the zi, zPX axes,

and the z3 , z3 axes. The latter are the axes of symmetry in the global and local coordinate

systems, respectively. The computation of the Hill tensor based on the Green's function solution

of [205], which was originally developed for the coordinate system of a material with symmetry

axis z3, is adapted for computations in a coordinate system with one axis aligned to the axis

of symmetry of the transversely isotropic material, that is zFx = Qs$Xzj. Likewise, the local

coordinate system can be expressed in terms of an intermediate coordinate system z = Qqz X,

and thus only the angle 0 is considered for most computations.

After mathematical manipulations, Giraud et al. [103] provided expressions for the compo-
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nents of the Hill tensor of general form (4.41)-(4.42) in intermediate coordinates and in terms

of the arguments 0 and ffX:

pf ±X p g + pX + g.gx + pPxgP ) dw (4.61)

where the expressions for pfX = pf" (0, x XX) and g = g= X(fX, Cj) are provided hereafter

for convenience 7 :

P1 (0, l X) -

p2 (0,l,X)=

X211

X2 + (13 cos (0) + 12 sin (0))2 + X 2 (12 cos (0) - 13 sin (0))2

1 (1 + X 2) 12 + (1 - X 2) (13 sin (20) - 12 cos (20))
2 X 211

2 + (13 cos (0) + l2 sin (0)')2 + X 2 (12 cos (0) - 13 sin (0))2

1 (I + X 2) i3 + (1 - X 2 ) (13 cos (20) + l 2 sin (20))
2 X211

2 + (l3 cos (0) + 12 sin (0))2 + X 2 (12 cos (0) - l3 sin (0))2

= -2/ 1 Ali 8 2

-2v 2A'2l1 -8 12 /22132

-Dl 1 8V3 2 2 2132 +

= -2v 1 A 1 2 8 l12 132 +

-2V 2A2 2 (8 2 2 11
2l3

2

-Dl 2 -8 12 V3232 + V

- 3122 + 2v12 132)+ 1 21, 13 2

+ V22 2 132
R±

2 - 312 2 + 2v22 132)

_ 1 2 + 2122 - 2v32132)

+21 12 - 22 -

+2 1
2

- 12 -

2 2

322 2 3 

3 2 -

7 For simplicity, the intermediate coordinate system symbols px are omitted from the formulation.
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p3 (0, l, X) - (4.62)

P-4R2

2v2 132) ,

2v 2 2 32 ) P-42 1

3l1 2 + 2v 3 2l3 2) P- 4R31

P W =

9111 (Q, cij)

V3 2 12 2 13 2

R 23

9112 (k, Cij)



2v 1
3A'1 3 2112 - 122 - 1211 2132) p4R-1

+2V2
3A2 3 2112 - 122 02 _4R2

-Dv 3
2

3 v3
21 2 13

2
+ 112 - 2122) p- 4 R3 1

-2v 1 A'1 2 8v1
21,213 2

-2v 2A'2l 2 8 V2 2 132

+ V1212 13 2
2 2 2

+ 22112132R±

+ 2l12 - 122 - 2v132 R-) p 1 4R1

+ 2112 - 122 - 22213 p4R2 1

+D2 8 112313 2 + 112V2132 + 212 12 2- 232132 - 4 R- 1

v 1
3A'1 11213 (3p 2 +21V12 132)

= 2 pR 3

DV3
211 2 13 (3p2 + 2V3213 2)

p4R

- 2 - p R- +
p 1) 1

v2 3A'111213 (3p 2 + 2V2213 2)+ 2 p4 R3

2 A3 1 2 1-2  -2V1 2 A 213 1-2 2----
p2 2)J

9312 (L, Cij) = 2k1 v 1
3A! 1l112 13 (2p 2 + R 2) P- R-1 + 2k2 v 2

3 Al 1 l2 l3 (2p- 2 + R 2) p-2 2 1

9313 ( Cij -2 k1 1 A 1 - 2 k2v3 2A'1
9313R R2'J}R

9331 (, Cij) - k 2 All, +

C~)-k 1 v1
4A1l3 ±

9333 (L, Cij) = i

k2 V2
2A211

RA3

k2v2 4A213

R 3
(4.63)

i + V1i 3

A1 =I C13 + C44
4v1,7 (v2 - v 2) C33C44

Ci - C44

;i k= vI
C13 + C44

A 2 - V1A1
V2
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9121 (L, Cig) -

9123 (L, Cij)

R21

where:

p=

9113 (1, Cij)

9131 (LCi ) =- 112 A113s 1



A 1 C44 - vIC 33  A 1 C44 - u2C33

8 r(v- v2) v/2C33C44 2 8 7r (v - v2) v2C33C44

1 1 1
D - , C*3 = fC1C33 ; C66 = - (CI - 012)

4 rC44v3 2

(*3-_C13) (C1*3 +i Cia + 2044) (C1*3_±_C13) (C0*3 - 013 - 2044)
V1 = 4033044 + 4033044

(*3-_C13) (C1*3 +i C13 + 2044) (C0*3_+ 013) (C1*3 - 013 - 2044)
V2  4033044 4033044

V3 = 0 (4.64)

The remaining non-zero gijk terms are computed by the permutations of indices 1 and 2.

The unit vector fWX is expressed as a function of two angles for a spherical coordinate

notation:

-" =cos (() sin (4), 12X =sin (() sin ($), 3% = cos (4) (4.65)

and the integration over the unit sphere 7 is:

f (0, fX) dw = j f (0, (, 7P) sin (V,) d4,d( (4.66)

For a predetermined value of angle 0, (4.61) can be evaluated numerically using Gauss-Legendre

quadrature in terms of the integration angles V), (. The Hill tensor P has monoclinic symmetry,

and it is characterized by 13 independent constants in the intermediate zwX coordinates, which

in matrix notation reads [103]:

Pi PVI2 PNI 0X 0 v2N3
PIll 1X 1I2 2 11PI330 yP 1 2

P2222 P22X3 3  0 0 P2X3

P = P3333  0 0 v 3 (4.67)
LJ 

2P'2X 2P'I3 0

(sym) 2P{I 3  0

2P) 3  .

From the examination of (4.61)-(4.64), the evaluation of the Hill tensor in the intermediate
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coordinate system depends on the aspect ratio of the inclusion XX, the inclination angle 0 of

the inclusion, and the elastic properties of the reference medium:

P =PX PO (Xk 0, Cijkl) (4.68)

It is important to note that for the case of a perfectly aligned inclusion (i.e. 0 = 0 rad), the

computation of the Hill tensor presented in this section coincides with the analytical solutions

of Withers [295].

4.2.6 Matrix-Inclusion versus Granular Microstructures

As a first application, some of the micromechanics developments presented in the previous

sections are brought together to show classical results of homogenization theory for a porous

solid with two contrasting microstructures: matrix-inclusion and granular. The matrix-inclusion

(or particulate) microstructure represents a porous solid in which one phase clearly serves as

the host or matrix material for inclusions (in this case, pores). The granular or polycrystal

microstructure is instead relevant for composites in which all single grains or inclusions play a

similar mechanical role, and therefore, no single constituent serves as a matrix-type material.

For simplicity, the solid particles are assumed isotropic, with bulk modulus kS and shear modulus

9'. Furthermore, the solid particles and pores are modeled as spherical inclusions.

The implementation of the two given microstructures suits the use of the Mori-Tanaka (MT)

and the self-consistent (SC) schemes of micromechanics. For the given elastic and morphological

features of the solid and pore space, the implementation of expressions (4.32) for the MT scheme

and (4.39) for the SC scheme using the Hill tensor for spherical inclusions in an isotropic

reference medium (4.43) yields the following homogenized stiffness properties for the porous

solid as a function of packing density ry (one minus the porosity #0):

k"T Ayr'hom - (4.69a)
gs 3(1-TI)rs+4

g__ ? (9r" + 8)
3rm (5 4((4.69b)

gS 3rs (5 - 271) + 4 (5 - 3TI)
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Figure 4-2: Homogenized stiffness properties for a porous solid with matrix/inclusion (particu-
late) and granular microstructures. These microstructures are modeled using the Mori-Tanaka
(MT) and the self-consistent (SC) schemes, respectively, of micromechanics. The homogenized
bulk and shear moduli are normalized by the solid shear moduli g', as in expressions (4.69a)-
(4.70b). The displayed homogenization properties were calculated for r' = k"/g = 2.

k_ 4 OmrSg Cgs (4.70a)

g' 4gCI/gs+ 3 (1 -rq) rs

hom 1 5
gs 2 4 16

1 V144 (1 - rs) - 480rq + 400rq2 + 408r/rs - 120r/2rs + 9 (2 + rq)2 (rs)2(4.70b)
16

where r' = k"/g". These homogenization results for the porous solid based on the contrasting

microstructures are displayed graphically in Figure 4-2. The Mori-Tanaka estimates of the

stiffness response of the porous solid yield continuous elasticity predictions for all the range of

packing density values (or porosity, alternatively). In contrast, the composite modeled through

the self-consistent scheme predicts a percolation threshold at a solid packing density rO = 0.5,

which is a well-known micromechanics result for the given configuration of the material system

(i.e. isotropic solid and spherical inclusions). The existence of a percolation threshold is a

trademark attribute of granular media, and the self-consistent scheme and its application in
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micromechanics modeling capture the occurrence of solid percolation thresholds, below which

the stiffness of the porous matrix vanishes. As we will explore in forthcoming sections, the

accurate description of the percolation threshold plays a prominent role in the application of

homogenization approaches to material systems in which the microstructures are intimately

linked to specific particle geometries and orientations.

4.3 Microporomechanics Representation of Shale

The mechanical response of sedimentary rocks is affected by a variety of factors including its

intrinsic rock properties, the properties of the saturating fluids, and the depositional environ-

ment. For shale in particular, its most prominent attribute, the seismic anisotropy (the change

in wave velocity with propagation direction), is affected by numerous factors depending on the

scale of observation. Large features affecting the anisotropy of shale are related to layering or

aligned faults. Small-scale or microstructural features, which are most relevant to this micro-

mechanics investigation, include the variations in spatial distributions of grains and minerals,

particle/grain shape, the preferred orientation of particles, cracks, and pore spaces [168, 283.

However, an assessment of the particular contributions of each of these factors to the overall

anisotropy is still lacking [271].

The success of predicting shale poromechanical and anisotropic behaviors relies on linking

the different mechanical and microstructural attributes from the scale of clay mineralogy to

the macroscopic scale. Multi-scale micromechanics approaches to modeling shale anisotropy,

first pioneered by Hornby et al. [128] and Sayers [228], offered more robust alternatives to more

traditional empirical approaches. In such schemes, microstructural features such as particle and

pore geometries and their preferential alignments were regarded as the main contributors to

the diversity of macroscopic anisotropic attributes of shales. These morphological descriptions

of shale's fabric were derived from advanced visual and imaging techniques. Despite many at-

tempts, progress in developing general micromechanics models that link material composition

and microstructure to macroscopic measurements of shales has been limited due to the lack of

experimental data defining the fundamental elastic properties of the so-called shale elementary

building block [140], and links between those properties, microstructure, and macroscopic prop-
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Porous clay reinforced by
Level II quartz grains:
Porous clay - - Spherical silt-size inclusions,
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------------- spherical nanoporosity
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Clay minerals \ anisotropic elasticity

particle shape
x1 ,x2 preferred orientation

Figure 4-3: Multi-scale structure thought-model for shale and summary of the proposed micro-
mechanics representation for poroelasticity modeling.

erties. Recent progress in nanomechanics and nanotechnology has made it possible to assess

the in situ nano- and micromechanical properties of shales from instrumented indentation ex-

periments. The experiments reported by Ulm and Abousleiman [265] and Bobko and Ulm [32]

offered a first description of the nanomechanics of shale, which could provide a crucial contri-

bution to the design of new mechanics models for shale. The rest of this section is devoted to

the development of a general micromechanics representation of the most relevant mechanical

and morphological features that could contribute to the poroelastic signature of shale materials

at the different length scales. As a reference, we recall the multi-scale thought-model in Figure

4-3.

4.3.1 Level 0

The lowest level we consider is that of the elementary clay particles. From clay mineral chemistry

(see Section 2.2.4), the clays are known to form groupings or packed ensembles of tens of

nanometers in characteristic length during deposition and diagenetic compaction. In addition,
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Clay packing density, r [1]

Figure 4-4: Porous clay stiffness Mli versus clay packing density scaling 'q for the G2IC shale

specimens. The vertical bars correspond to the standard deviation of the indentified phases
from mixture modeling. The horizontal bars represent the variability of clay packing density
estimates. Recalled from Figure 3-15.

the strong chemical affinity between clay surfaces and water molecules or other cationic solutions

creates interlayer structures between clay layers. Nuclear magnetic resonance and infrared

spectroscopy studies suggest, for instance, that the influence of clay surface on water molecules

may extend approximately to 1 nm (194]. These discrete clay layer - absorbed water structures

define the clay phase in shale, which we represent as a continuous solid medium.

Assume that the effective solid clay exhibits linear elastic behavior. We now turn to the

results of nanoindentation (see Section 3.6.6) to inform the appropriate characteristics of the

level 0 elasticity modeling. The elasticity content of the porous clay composite (level I) ex-

hibits a characteristic increasing anisotropy with increasing clay packing density (or decreasing

nanoporosity) as shown in Figure 4-4.

This trend tends asymptotically to a solid clay phase (with packing density r7 --+ 1) with

intrinsic elastic anisotropy. For simplicity, the clay building block exhibits (at least) transverse
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isotropic behavior, defined by the stiffness tensor C' with five non-zero stiffness components.

Within a Cartesian reference frame of orthonormal basis [ei, e2, L3] of elastic properties of shale,

where the plane [fl, e2] corresponds to the bedding plane and e3 to the direction normal-to-

bedding (symmetry axis), the transverse isotropic stiffness tensor for the solid clay in matrix

form is:

CI C12 Cf3 0 0 0

C12 Cfi C13 0 0 0

CS3 CS3  C$3 0 0 0
[C ] (4.71)

0 0 0 2C66=(C{1 -CI 2) 0 0

0 0 0 0 2C14  0

0 0 0 0 0 2Cl4

The corresponding compliance tensor is Ss = (Cs)-l. As a working assumption, Cs is unique

to all shale materials, irrespective of the clay mineralogy; that is, C' is a material invariant

quantity characterizing the in situ behavior of clay in sedimentary rocks. Nanoindentation

results already hint toward this material invariant character of the clay phase elasticity. This

follows from the observed scaling relation between indentation moduli and packing density

(Figure 4-4) for an array of shale minerals with varying mineralogy and porosity composition.

We shall prove the relevance of this assumption through the calibration and validation of the

model at different scales.

Finally, the elasticity content of in situ solid clay encompasses the interparticle contacts and

the effects of the absorbed water in addition to the elasticity of clay layers. As noted in Section

3.5, the determination of the stiffness values for clay minerals remains a scientific challenge.

Only limited data for certain clay minerals (e.g. muscovite) are available in the literature of

clay minerals. Consequently, we establish the elasticity content of this elementary building block

of in situ solid clay in shale as a degree-of-freedom to be resolved through this micromechanics

investigation.

4.3.2 Level I

Level I of the multi-scale model of shale corresponds to the porous clay composite, the load

bearing phase in shale. The solid clay and the nanoporosity form a poroelastic composite,
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whose stiffness response depends on the contributions of the elasticity of the clay phase C' and

the (nano) porosity. The parameter that determines the mechanical contributions of the solid

clay and the nanoporosity is the clay packing density 77 (refer to expression (3.5)), which neatly

synthesizes the mineralogy and porosity information into one parameter at level I.

The additional ingredient to defining the poroelasticity of the porous clay is the character-

ization of the microstructure. For this, we turn to the mechanical behavior of shale assessed

through nanoindentation, which offers a formidable window to the microstructural character-

istics of the porous clay. In particular, the experimental finding of a clay packing percolation

threshold as observed in Figure 4-4 hints toward a granular behavior of the porous clay at

the nanoscale [32, 265] in view of the identified percolation threshold. Below the percolation

threshold, the material exhibits no appreciable stiffness (at least in the GPa range probed by

nanoindentation), as a continuous force path may cease to exist.

The nanogranular nature of the porous clay is captured in micromechanics by the self-

consistent scheme. This homogenization scheme has the ability to replicate percolation thresh-

olds. In addition, the self-consistent scheme is well suited for capturing the mechanical behavior

of highly disordered composites, as it is the case of the porous clay in shale. Advanced observa-

tional techniques (e.g. SEM micrographs, refer to Section 2.3.2) have depicted the microfabric

of shale as spatially highly-disordered media, which justify the use of the self-consistent scheme

as a homogenization approach. However, it will be important to also consider microstructural

features such as particle shapes and their preferred orientations, which are clearly visible in

the SEM images. These geometrical parameters have been the foundation for most multi-scale

modeling attempts for shale. Fortunately, the self-consistent scheme and its ability to model

percolation thresholds is directly related to factors such as geometry and orientation distribu-

tions of particles. Finally, the nanoporosity at level I will be modeled as spherical inclusions in

order to avoid introducing further sources of anisotropy.

4.3.3 Level II

At level II, the material is composed of the porous clay fabric intermixed with detrital grains,

which are mainly quartz. The size of the quartz grains is typically above the micrometer size,

thus satisfying the scale separability condition required for the application of micromechanics
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theory. From SEM observations, quartz and other silt-size inclusions seem to be poorly sorted

throughout the porous clay fabric. In addition, their occurrence as monocrystal and/or poly-

crystal solids is accompanied by a highly variable morphology. In a first approach, the silt

inclusions are represented as spherical particles with linear elastic stiffness. Their disordered

spatial location in the porous clay composite motivates the use of the self-consistent scheme

to model the interaction between these two phases. The parameter that assists the quantifica-

tion of the mechanical contributions of the porous clay and the silt inclusions is the inclusion

volume fraction f"nC. Finally, the anisotropic elasticity content of the porous clay phase will

result in overall anisotropic properties for the composite material at level II, which represents

the macroscopic shale material at the sub-centimeter length scale of laboratory testing.

The micromechanics representation of shale is schematically summarized in Figure 4-3. The

proposed representation will serve as the baseline for developing the poroelastic homogenization

model for shale. Clearly, the suggested micromechanics representation of shale is reductionist

in nature. The highly complex microstructure at different levels and the contributions of the

different material phases in shale are characterized by a handful of micromechanics represen-

tations. Nevertheless, the objective of this investigation is to delineate a general multi-scale

poroelastic model that reduces the macroscopically observed diversity of shale to a few material

parameters of clear physical and/or chemical significance.

4.4 Multi-Scale Homogenization Model

We seek to develop a multi-scale model for upscaling the poroelastic properties of shale from

the fine scales of clay particles to the macroscopic scale of engineering applications. The model

development will follow the multi-scale structure thought-model presented here above. For

each considered length scale, the relevant mechanical and microstructural features discussed

in the previous section are translated into micromechanics quantities, which will then enable

the determination of the poroelastic properties of shale at each scale based on the constitutive

properties and microstructure of the scale below.

The primary tools for developing the multi-scale model for shale poroelasticity are those

of continuum micromechanics theory. In particular, we will rely on the application of micro-
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mechanics to porous material systems, or microporomechanics, developed by Dormieux and

co-workers [54, 82, 83]. For all forthcoming micromechanics developments, the deformation of

a rev at a particular scale is infinitesimal. Furthermore, small displacements in the rev are

assumed to avoid introducing geometrical non-linearities due to prescribed mechanical loading.

4.4.1 Level I: Porous Clay Composite

The solid clay particles and nanoporosity form a porous clay composite, whose mechanical

properties follow the classical relations of anisotropic poroelasticity, linking the strain average

E =e (z) and the pore pressure p to the overall stress average E = 0- (z) and the change of

nanoporosity o - 9-o [71]:

CIOM : E - ap (4.72a)

-
1 h '

Np - O a: E + (4.72b)

where the superscript I indicates that the quantity is defined at level I, C'om is the homogenized

stiffness tensor, a, the second-order tensor of Biot pore pressure coefficients, and NI the solid

Biot modulus of the porous clay composite. Note that the variation O - p0 of the (nano)

porosity is defined in terms of a Lagrangian description, which proves useful for characterizing

the pore volume changes. Linking the poroelastic properties (CIom, a', N') and microscopic

mechanical and morphological properties requires defining the appropriate mechanical problem

on the rev of volume Q, composed of the solid clay domain Q' - (1 - po) Q and the pore space

P =-: ooQ. Alternatively, the volume fraction used for the homogenization process at level I

is the clay packing density q = 1 - po, defined in (3.5). A convenient way to homogenize the

behaviors of the linear elastic solid and the uniform microscopic stress field in the fluid is in the

form of a continuous description of the stress field in the heterogeneous rev [83]:

o-()=C (z):e()+ 0' (_ (V_ E Q) (4.73)
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together with the distribution of elastic properties and eigenstresses:

C 0 (QP) a T {-P1 (QP)
CS (0S) 0 (QS)

where Cs is the stiffness tensor of the solid clay phase.

The response of the rev characterized by the microscopic stress, strain, and displacements

to the two loading parameters (the macroscopic strain E and the microscopic eigenstress 0 T)

conform to the following relations:

diva = 0 ()

o C(z): e + oT (z) (Q) (4.75)

E - z (&Q)

Given the linearity of the problem with respect to the loading parameters (E, UT), the problem

is conveniently separated into two particular load cases.

1. The first load case corresponds to the application of the macroscopic strain E only, while

the eigenstress is zero:

div ' - 0 ()

o' C (z) : e' () (4.76)

' E - z (OQ)

This boundary value problem is the well-known micromechanics problem of an empty

porous medium subjected to uniform boundary conditions. Following the classical micro-

mechanics result (see expression (4.9b)), the local strain field is related to the macroscopic

strain through the fourth-order concentration tensor

e' (z) = A (z) : E (4.77)

The corresponding macroscopic stress tensor is derived from the use of (4.77) in (4.73)
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together with (4.74):

E' = o' (z) = C : A (z) : E (4.78)

where the homogenized stiffness tensor of the porous medium emptied of a saturating

fluid phase is identified:

C C: A(z) (4.79)

Thus, the stiffness tensor CIom corresponds to a drained condition. It is important to

recognize that expression (4.79) is a particular case of the general result presented in

(4.12).

2. The second load case corresponds to the application of the eigenstress field only, while the

macroscopic strain is zero. The former condition implies zero microscopic displacements

on the boundary of the rev:

div o" = 0 ()

a" =C (z) :eI + U (z) () (4.80)

" =0 (DQ)

The corresponding macroscopic stress for this second load case E" is the average of the

stress field o" over the rev volume Q. The application of Hill's lemma to the strain field

e' (4.77) and to the stress field o" assists the derivation of the macroscopic stress as a

function of the eigenstress:

a" : E" : E (4.81)

Combining (4.80) and (4.81), we obtain:

a/" : E' =- e"l : C(): E' + O-T (z) : E' (4.82)

A second application of Hill's lemma to the strain field e" and o', noting that e" = 0

for this load case, yields e" : C (z) : E' = 0. As a result, the combination of expressions
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(4.81), (4.82), and (4.77) yield:

E" - U-T (z) : A (z) (4.83)

which corresponds to the classical Levin's theorem [164] (see also [54, 301]). Hence, the

macroscopic stress E" represents the pressure variation under zero macroscopic strain

conditions. Using the definition of the microscopic eigenstress (4.74), we obtain:

E"l = ET = -Ppol : XP (4.84)

The comparison of the microscopic eigenstress to its macroscopic counterpart allows recog-

nition of the second-order tensor of Biot pore pressure coefficients a1 .

a1 = 001 : ?? = (1 - ) 1 : 1P (4.85)

Finally, the macroscopic stress resulting from the combination of both load cases yields

expression (4.72a).

The latter results are used to derive the micromechanics basis of the second state equation

of poroelasticity at level I (4.72b). The variation of the Lagrangian porosity is a function of the

strain field in the pore space:

P - PO = PotrE (4.86)

Recall that the strain field solution e of (4.75) is the sum of the sub-problem solutions E' and

e". The first solution is readily derived from (4.77) and (4.85):

ool : i =_ ool : 1P : E = a- : E (4.87)

The solution to the second case satisfies the condition e"= 0, which implies:

POPP =- (1 - po) (4.88)

where e"s is the mean strain field in the solid phase. The objective is to derive the strain field
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in the pore space for the second load case as a function of the pore pressure p. Using the state

equation in the solid domain, we obtain:

(1- po)e" = (1- S: (4.89)

In return, 011s is derived from the average rule E" = -= -pa 1 and the definition 7 = -p1:

(1 - Po" =-p (pol - a') (4.90)

This result is used in (4.88) and (4.89) to deliver the expression for the strain field PP:

Finally, the total change in porosity (4.72b) is obtained by the superposition of the results

(4.87) and (4.91), where the solid Biot modulus is defined as:

-1 : S : ( - 01) = 1:S : (aS - (1 - q)1) (4.92)

Expressions (4.79), (4.85), and (4.92) define the homogenized poroelastic properties of the

porous clay composite at level I. These expressions depend on the clay packing density 'q (a

volumetric parameter) and the fourth-order strain concentration tensor A (z) (the microme-

chanics representation of the morphology and mechanical interaction between phases). The key

feature in the application of the self-consistent scheme to modeling the poroelastic response

of the porous clay in shale is the prediction of a percolation threshold. The evaluation of the

strain concentration tensor within the framework of the self-consistent scheme is presented in

detail hereafter. In particular, we show the explicit development of the drained stiffness tensor

CI in view of the self-consistent scheme for different microstructural configurations.

Evaluation of the Drained Stiffness Tensor at Level I

Given the importance of the strain concentration tensor in the self-consistent formulation of the

level I modeling of shale, a detailed presentation of the explicit forms of the homogenized drained

stiffness tensor (4.79) is appropriate. Following the proposed micromechanics representation of
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shale for level I, the porous clay composite, the general form of the granular structure of

shale could display different material and microstructural configurations. The solid clay phase

may exhibit different elasticity contents (isotropic or anisotropic elasticity), as well as different

morphologies represented by particle shapes and orientation distributions.

The most general micromechanics description for the porous clay composite using the self-

consistent scheme can be derived for the case of preferentially aligned inclusions (solid particles

and pores) in a transversely isotropic medium. The two different families of inclusions (solid

particles and pores) and their morphologies lead to the use of different forms of the Hill con-

centration tensor for the efficient implementation of the self-consistent scheme. The Hill con-

centration tensor for the pore space depends on its spherical morphology and the transversely

isotropic elastic properties of the reference medium, that is, the homogenized medium itself.

Consequently, the P-tensor for spherical inclusions in a transverse isotropic medium is used for

this evaluation. The clay solid particles with preferential alignment are recognized by the Hill

tensor for spheroidal inclusions with preferred orientation in a transversely isotropic reference

medium. Anisotropic properties for the solid particles CS are considered for the evaluation of

the homogenized stiffness of the porous composite. As a result, we consider transverse isotropic

properties for the solid particles that are aligned with their symmetry axes. The symmetric

plane (e, e) in the oblate spheroids with local coordinate system (zI, zS, zs) coincide with the

plane of symmetric elasticity properties, as in (4.71). The rotated configuration of the local

stiffness properties of the solid particles resulting from their preferential alignment is expressed

using the rotation operator QX=S (4.60):

C jkl ((P, 0)= Q ,Q iCpQsqQkrQsCqrs (0, 0) (4.93)

The effect of the particle orientation as described by an orientation distribution function

(ODF) enters the micromechanics formulation through the evaluation of the strain concentration

tensor A. The information about the particle alignment and shape in terms of inclination angles

0, o and aspect ratio XX=" (for the solid inclusions) is carried in the homogenization scheme

through the Hill tensorTP,. (, (6 , ' C ). For the application of the self-consistent scheme to

the porous clay composite with preferentially aligned solid particles, the homogenized properties
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(4.35) at level I read in expanded form:

CIom = TIC' (p, ) : [Ri P+I (y, 0, X8, CIom) : (Cs (p, 0) - Ciom

(1 - r7) ([I - IP, (XP, CIom) : Ciom (4-94)

+r/K [l[ ± PS (P, 0, X8 , CIOM) : (CS (, 0) - Cfom

where the operator () on any quantity Y represents:

(Y) 1 = p 2 7 r j W (0) Y sin (0) d~dp (4.95)

The term W (0) in (4.95) represents an orientation distribution function, which defines the type

of preferential alignment of the solid inclusions in the homogenized medium. The Hill tensor

characterizing the solid clay particles Ps', (, 0, XS, Chom) is evaluated using (4.61) and its

associated expressions. The Hill tensor characterizing the pore inclusions P"X, (XP = 1, ChIOM)

is evaluated using expressions (4.49)-(4.55).

Given that all the tensors involved in (Y)-type operations in (4.94) are only a function

of the inclination angle 0 in the intermediate coordinate system, the evaluation of (4.94) can

be further simplified. A first integration can be performed analytically in the intermediate

coordinate system as any quantity YW is independent of angle o [103]:

YP -()) 1 j 2 r Q(P () QX y) QS$ ( o) Q'X (p) YGpX (0) dp (4.96)

The quantity YP (0) is then integrated numerically as a function of one variable, the incli-

nation angle 0:
1 f1=i 0

(Yijkl) = - W (0) k 6 sin (0) dO (4.97)

Another relevant configuration of the porous clay composite modeled through the self-

consistent scheme is introduced for the case of spherical inclusions (both solid particles and

pores) in a transversely isotropic medium, which results from the intrinsic transversely isotropic

elasticity of the solid clay. Although being spherical, the particles are perfectly aligned so that

the material symmetry of the clay particles is aligned with the overall (resulting) transverse

178



isotropic material. This particular configuration of the porous clay yields a more compact

formulation compared to the result in (4.94). The similar morphologies of clay particles and

pores allow the use of the same form for the P-tensors describing their mechanical interactions.

Consequently, the evaluation of the drained stiffness properties of the porous clay follows the

simplified form for the self-consistent estimate given in (4.39):

Com h (4.98)

where P" - Pc (C~om) is the Hill tensor for spherical inclusions embedded in a transverse

isotropic medium (see Section 4.2.5).

4.4.2 Level II: Porous Clay - Silt Inclusion Composite

At the macroscopic scale, shale is composed of porous clay and (mainly) quartz inclusions

of approximately spherical shape and that are randomly distributed throughout the medium.

Using the tools of microporomechanics, we aim to develop the homogenization scheme for a two-

phase material composed of a porous solid phase governed by the poroelastic state equations

(4.72) and elastic inclusions. The porous clay and silt inclusions occupy the volumes QPC -

(1 - fi") Q and Q"" - fi""Q at the macroscopic scale. The non-clay inclusion volume fraction

fif"C was introduced in (3.4a). A convenient way to homogenize the level II behavior is in form

of a continuous description of the stress field in the heterogeneous rev [83]8:

-(z) =C(z) :e(z)+oT(z) (VzE ) (4.99)

together with the distribution of elastic properties and eigenstresses:

CU %C -al p (QP')
C~_= hom (QC rT ( 410

C (in (inc) 
0 (inc)

where Ciom and al are respectively the level I stiffness tensor (4.79) and the second-order

tensor of Biot pore pressure coefficients (4.85), which characterize the poroelastic behavior of the

8A similar derivation has been previously presented in [267], in which the authors treated the homogenization
problem for a two-phase material composed of a porous solid and elastic inclusions.

179



porous clay phase, while Ci"c - 3 ki"cJ + 2ginK is the stiffness tensor of the (assumed isotropic)

quartz inclusion phase. The macroscopic counterpart of those micromechanical stress-strain

and eigenstress relations is recognized from classical micromechanics results:

E = O' (z_ =C11m E + E T (4.101)

We proceed in a similar fashion as developed for the homogenization problem at level I, in

which we decompose the problem into two particular load cases:

1. The first load case corresponds to the application of the macroscopic strain E only, while

the eigenstress is zero. This is equivalent to a drained condition, for which the macroscopic

strain tensor is related to the local strain field through the strain concentration tensor:

e' (z) = A (z) : E (4.102)

The combination of the concentration expression (4.102) and the strain averaging (4.5)

for the two-phase composite under consideration yields the following condition for the

concentration tensor:

A (z) - fif"inc? + (1 - fin) XPC - (4.103)

The macroscopic stress is derived from the use of (4.102) in (4.99) together with (4.100)

and the application of volume averaging:

E' = o' (z) - C', : E (4.104)

where CjIm is the drained macroscopic stiffness of shale:

Chm = C : A (z) = Ciom + fi"e (Ci"" - C (4.105)

2. The second load case corresponds to the application of the eigenstress field only, while

the macroscopic strain is zero. Based on Levin's theorem, the macroscopic eigenstress
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ET and the microscopic eigenstress 0 -T (z) are related by:

E" = ET -T (z): A () = -alIp (4.106)

where a,' is the second-order Biot coefficient tensor of the macroscopic composite:

al - a l -( - fiinl in) (4.107)

Finally, one can derive the second macroscopic poro-elastic state equation for level II using

the latter results. The change of porosity for the first subproblem is readily derived as:

(# - #a)' = a" : E (4.108)

For the second load case, we use the result for the porosity variation at the nanoscale and the

volume fraction relation go = #0/ (1 - fi""):

# - #)" = (1 - fine) (O - Po)" (4.109a)

= (1 - fin) (a:PC + (4.109b)

The objective is then to substitute for the average strain in the porous clay P"" a suitable

expression in function of the eigenstress. For this, we make use of the zero strain condition

- 0 used in the second load case to express the macroscopic stress:

E" = fln".li" + (1 - fine) C (4.110a)

(1 - fine) (Clom - cinc) : j"- (1 - fin) alp (4.110b)

The last result is combined with the expression for the macroscopic eigenstress (4.106):

(1 - finc) pC = (C'om - Cinc) : [-a" + (1 - fine) al] p (4.111)

Finally, combine (4.111) with (4.109). Together with the solution of the first load case (4.108),
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we so obtain the second poroelastic state equation for level II:

N" - =a: E + N (4.112)

where N" is the macroscopic solid Biot modulus:

1 N 1 fi"eai : (C"" - Ciom) : a : - n") (4.113)
N" - N' IcI Cn ~-ho

Expressions (4.105), (4.107), and (4.113) define the homogenized poroelastic properties of

the porous clay - silt inclusion composite at level II. These expressions depend on the inclusion

volume fraction f " (a volumetric parameter) and the fourth-order strain concentration tensor
flc (the micromechanics representation of the morphology and mechanical interaction be-

tween the porous clay and the silt inclusions). For this homogenization step, the self-consistent

estimate is also used to approximate the average strain concentration tensor in the inclusion

Ac , which is readily obtained by considering the heterogeneous stiffness distribution (4.100) in

(4.33) while letting CSC - CIom. The evaluation of the concentration tensor I 21" also involves

the use of the P-tensor for spherical particles in a transverse isotropic medium, whose elements

are detailed in expressions (4.49)-(4.55).

4.4.3 From Drained to Undrained Poroelastic Properties

We next rewrite the poroelastic state equations at levels I and II in a form that allows the

comparison with acoustic measurements of shale specimens. Indeed, the application of acoustic

measurement techniques to saturated shale corresponds to the case of undrained conditions due

to the high frequencies employed in testing, which ensures that saturating fluids do not leave

the pore domain [70]9. Undrained estimates are achieved by first considering the mass content

m - lP" (p) or in" - p"f (p) together with a linear state equation for the fluid density in

function of the fluid pressure [70, 71]:

pf f -= fI O 1 + (4.114)

9 A thorough assessment of the prediction of acoustic properties of shale using poroelasticity theory will be
presented in Chapter 6.
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where p/fl. is the reference fluid density and kf1 the fluid bulk modulus. The substitution of

(4.114) in the drained form of the poroelastic state equations yields the classical form of Biot's

poroelasticity state equations:

E = C : (E B - ) (4.115a)

(m-mo/ = aj: E+ P(4.115b)
p f ,0 Mi

where Ch"m is the undrained stiffness tensor (at level J = I,11), BJ the second-order tensor of

Skempton coefficients, and AJ the overall Biot modulus, given by:

C Ciom + (Mja o a) J (4.116)

BJ = I-SJ'" : a (4.117)

1 1 #;b2
--- - J+k (4.118)
M J N J kf1

with #6= o =_ 1 - rq at level J = I, and #01 = oo (1 - f "') at level. J =HI.

4.4.4 Intrinsic Materials Invariant Phase Properties

One characteristic of our modeling approach is to assign material properties to elementary

phases present in shale that could be, in first order, invariant across different material specimens.

The first set of material invariant properties is composed of the five independent constants of

the elementary building block of clay CS, as introduced in expression (4.71). The determination

of the properties of in situ clay is a primary focus of this work, and will be pursued in subsequent

chapters.

In turn, for the non-clay inclusions, the mechanical properties for natural quartz have been

documented in the literature, showing that a single quartz crystal possesses trigonal symmetry

(thus having, in addition to the five elasticity constants of transverse isotropic materials, a non-

zero C14 = C1123 term) [122]. On the other hand, since it is unlikely to encounter a single quartz

crystal in shale microfabric, and since those crystals are expected to be randomly oriented, a

first approach considers quartz inclusions with quasi-isotropic elastic properties defined by the
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bulk modulus k0" and shear modulus glnl, which can be found in handbooks [175]:

ki" = 37.9 GPa; g" = 44.3 GPa (4.119)

The properties of quartz grains made out of polycrystals may differ from the values (4.119)

due to the existence of weak crystal interfaces. Such occurrence may have some effect on

sedimentary rocks such as sandstones, in which quartz and other sand-minerals alike constitute

the load-bearing phase. Nevertheless, these effects might be of second order for the case of

shales, which show moderate contents of quartz minerals.

Finally, the bulk modulus of the fluid phase saturating the pore space depends on the type of

fluid (as well as on the fluid saturation). For all remaining developments, we shall consider shale

as fully-saturated. In addition, the mechanical properties of the pore fluid are approximated

by those of waterh):

k -' = 2.3 GPa (4.120)

4.5 Discussion of the Microporomechanics Representation of

Shale

A general framework for the micromechanics modeling for shale has been established in the

preceding sections. The foundations of the model rest in a multi-scale structure model and in the

experimental observations of the mechanical response of shale at various length scales. In this

discussion, we compare the present modeling approach with previous micromechanics models

for shale and their approaches to modeling its microstructure and mechanics behaviors. This

section will also focus on extended discussions of the important modeling aspects, assumptions,

and clarifications related to our representation and micromechanics treatment of shale.

4.5.1 Comparisons with Existing Models

Research efforts in multi-scale modeling of shale anisotropic elasticity owe much to the pio-

neering work of Hornby et al. [128] and Sayers [228]. Hornby et al. introduced the concept

"For a few shale specimens considered in this study, the pore fluid is characterized as a brine solution with
moderate salt concentrations. Hence, the compressibility of the pore fluid can be approximated by that of water.
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of a 'perfect' shale at the smallest scale of relevance to mechanics. This elementary unit, or

building block, represents the response of a bi-connected clay-fluid composite modeled through

a combination of self-consistent and differential effective medium (DEM) theories [239]. The

main feature of this modeling scheme for porous composites is the connectivity of phases over

the entire range of relative concentrations, which ensures a finite stiffness for the composite

material for all porosity values. Given the lack of elasticity data for clay minerals, isotropic

elastic properties were assigned to the clay phase based on the combination of experimental data

from clay-sand mixtures [171] and mechanics modeling. The anisotropic effective properties of

the clay-fluid building block originated from considering inclusions as perfectly aligned, oblate

spheroids. In addition to the geometric source of anisotropy linked to the particle shape of

the clay-fluid unit, the model also recurred to the use of preferred particle orientations. Sayers

pioneered the use of particle orientation distribution functions (ODF) to characterize shale's

elastic-anisotropy measured by acoustic tests. The input for establishing the distributions of

particle orientations is data extracted from advanced imaging techniques such as SEM micro-

graphs. The final step in Hornby's model was to include the mechanical contribution of roughly

spherical quartz inclusions at larger length scales compared to the clay fabric.

The multi-scale, micromechanics approach of Hornby et al. inspired several other models

for shale. Jakobsen et al. [140] extended the model for an application to clay-rich, hydrate-

bearing sediments. Draege et al. [85] combined Hornby et al.'s model to mechanical/chemical

compaction models to predict effective elastic properties of cemented shales after diagenetic

and temperature changes. Ulm et al. [267] also considered a similar multi-scale micromechanics

approach, with the incorporation of mechanical behaviors of shale materials identified through

nano- and microindentation testing. This model shares some essential features of previous

attempts such as assigning the sources of anisotropy to shape and orientations of particles. In

addition, Ulm et al. [267] consider the effects of layering on the response of the clay fabric at

length scales comparable to those relevant to the silt inclusions. The model of Ulm et al. [267]

has served as a reference framework for more recent modeling attempts such as Giraud et al.

[103, 104] and the work herein presented.

It will be illustrative to summarize the key features of previous modeling attempts for char-

acterizing shale in the perspective of the influential factors affecting the macroscopic response
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of sedimentary rocks, as detailed in Table 4.1. Besides compositional aspects such as lithology,

clay content, and bulk density, the most important attributes affecting the seismic responses

of rocks are morphological features such as pore shape, fractures, and texture (understood as

the shape of solid particles, sorting of particles, and grain-to-grain contacts). The traditional

modeling of sedimentary rocks has assigned the most prominent role to geometrical aspects for

defining macroscopic seismic attributes. The modeling of shale has indeed heavily relied on the

effects of particle shape and orientations of particles to explain the macroscopically observed

anisotropic elasticity. However, the elasticity of the clay phase and the mechanical response

of the porous clay composite at nanoscales are the latest pieces of information to be added

to the multi-scale approach for modeling shale. The nanomechanics of shale as measured by

indentation testing hints towards the importance of an intrinsic anisotropy proper to the clay

phase. Lastly, the models following the approach of Hornby et al. of using effective medium

theory for modeling the micromechanical response of shale support the bi-connectivity of phases

as an integral part of the approach. This connectivity of mechanical phases is regarded as a

main characteristic of sedimentary rocks [128]. Clearly, the use of Biot's poroelasticity as the

framework for our modeling approach is in line with the view of a connected pore space [239].

However, it is the microporomechanics approach of Dormieux et al. [54, 82, 83] and the ex-

perimental nanomechanics data of Ulm and co-workers [32, 265] that enrich the poroelastic

description of shale through offering a physics-based link between the grain-scale properties

and macroscopic behaviors of shale.

4.5.2 About the Microporomechanics Model of Shale

The general framework of the micromechanics model for shale poroelasticity has been devel-

oped throughout this chapter. In particular, Sections 4.3 and 4.4 outline the representation of

shale for the application of a micromechanics modeling approach and the corresponding formu-

lation for determining estimates of shale poroelasticity at different length scales. This section

is devoted to supplementing those detailed presentations with additional notes regarding the

applicability of the model and clarifications of modeling assumptions 1 .

"This presentation has been enriched by the comments and suggestions made by the reviewers and editors of
the journal publications [202, 203], for which the authors are very grateful.
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Rock properties Fluid properties Environment
Compaction Viscosity Frequency

Consolidation history Density Stress history
Age Wettability Depositional environment

Cementation Fluid composition Temperature
Texture Phase Reservoir process

Bulk density Fluid type Production history
Clay content Gas-oil, gas-water ratio Layer geometry

Fractures Saturation Net reservoir pressure
Porosity

Lithology
Pore shapeP

Table 4.1: Factors influencing the seismic properties of sedimentary rocks. Factors are listed
with increasing importance from top to bottom. From W'ang et al. [2831.

Mechanical Representation of Porous Clay Composite at Level I

The micromechanics modeling for shale poroelasticity follows a reductionist approach, as we aim

to simplify the complex mechanics of shale to a convenient set of parameters and descriptions.

A crucial component of the model corresponds to the poromechanics description of the clay

fabric in shale composed of the clay phase and the nanoscale porosity. The present approach

assumes that there is a single porosity type that is entirely included in the clay fabric. We

base this assumption on experimental observations from fluid-intrusion porosimetry results

of shales, which show that the pore size distribution in highly compacted shales exhibits a

single characteristic length scale (refer to Section 2.2.6, Figure 2-3). Typically, the pore throat

radius is on the order of tens of nanometers, which is characteristic of the inter-clay grain size.

Consequently, the poroelastic state equations (4.72) are valid for a single fluid phase saturating

the pore space, which interacts purely mechanically with the assumed linear elastic solid clay.

Thus, the case of partial saturation and chemical interactions at solid/fluid interfaces [71, 84]

is not developed in this poroelastic study. The assumption of a single, fluid-filled porosity does

not exclude the existence of an intra-particle porosity, whose size should be smaller than the

interparticle porosity (i.e. in the sub-nanometer range, which is not accessible by conventional

porosity testing). At the sub-nanometer length scale, the water molecules or liquids present

in this sub-nanoporosity cannot be considered as a pore space filled by bulk water, as surface

effects dominate this behavior. This bounded or structural water is instead part of the in situ
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stiffness we consider at level 0.

Another modeling feature related to the pore space in shale is the treatment of the mor-

phology of pores as spherical inclusion. The visual information provided by advanced imagining

such as SEM micrographs depicts the various morphologies of solid particles. In contrast, the

characterization of the pore space morphology is a more challenging topic. Computational

approaches based on finite-element simulations have been developed to predict the mechani-

cal behavior of rock, whose primary input are microstructural descriptions of the pore space

obtained from tomographic images (see e.g. [76]). However, these expensive geometrical de-

scriptions of the microstructure, and in particular of the pore space, are only restricted to small

rock masses of millimeter length scales. Within the micromechanics approach, our modeling

choice is justified by the need to reduce the different potential sources of anisotropy affecting

the overall poroelastic response of shale to only a few relevant parameters.

Level II

One of the main challenges involved in the modeling of shale elasticity has been the identification

and representation of the relevant sources of anisotropy. Earlier works on shale micromechanics

(e.g. [128, 139]) assigned geometrical features of the clay fabric (particle shapes and orienta-

tions) as the sole sources of the anisotropy observed in laboratory testing of these materials.

In addition, significant research in the area of elasticity of porous rocks has been developed

based on the treatment of fractures and cracks as dominant factors controlling the anisotropic

behavior [109, 131, 132, 257]. In our modeling effort, structural sources of anisotropy are not

considered. Instead, we focus our model developments on advancing the understanding of the

anisotropy of the clay fabric with the outlook of developing a baseline model for shale anisotropic

poroelasticity for unperturbed (unfractured), in situ conditions. From a modeling perspective,

the determination of the amount of cracks, usually quantified in terms of crack-like or soft

porosity, represents a challenging task. Estimates of crack porosity, which is typically an ex-

tremely small fraction of the total porosity, are usually obtained from the difference between the

measured total porosity and the extrapolation of high-pressure porosity versus pressure trends

established from deformation experiments (see e.g. [173]). Being consistent with the treatment

of unfractured media, the input parameters to our model, namely the clay packing density and
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the silt inclusion volume fraction, are calculated based on the so-called equant or hard porosity

[109]. This type of porosity is deemed to be pressure-insensitive, and it is equivalent to the

total porosity #0 measured in experiments in the absence of crack porosity. Model predictions

of acoustic properties at level II do not consider stiffening effects due to squirt-flow phenomena

as a result of our treatment of shale as unfractured porous media. These topics will be further

analyzed through the model validation work to be presented in forthcoming chapters. By focus-

ing on the intrinsic anisotropic response of shale, the present modeling work may delineate the

contributions of the different sources of anisotropy to the observed overall anisotropy of shale.

In so far related to the micromechanics representation of the contributions of the silt-size

inclusions to the overall mechanical response of shale, our treatment of inclusions as quartz-

like, isotropic elastic solids is shared by most other micromechanics models. Their relatively

smaller volume fraction compared to the clay phase does not impose severe restrictions on their

micromechanics representation. The assumed spherical shape corresponds, in context of the

self-consistent scheme, to a morphology useful for describing random contact between particle

surfaces. Furthermore, it precludes the silt inclusion phase from contributing to the overall

anisotropic elasticity of shale, highlighting instead the commonly accepted primary role of the

clay fabric on anisotropy. Finally, the underlying micromechanics formulation for the mechan-

ical interaction between the silt inclusion and the porous clay composite assumes perfectly

bonded phases. Any contributions from weak interfaces and partial transfer of forces resulting

in reduced stiffness properties are not considered in the present poroelastic formulation.

4.6 Chapter Summary

In this chapter, a general micromechanics modeling framework has been established for the

poroelastic assessment of shale. Based on linear micromechanics theory, the poroelastic re-

sponses of shale at the different length scales prescribed by our multi-scale structure thought-

model can be properly estimated based on the microstructure and material properties at an

scale below. The homogenization model has all the ingredients to characterize the multi-scale,

anisotropic poroelasticity of shale, as it incorporates:

9 Material composition information through volumetric parameters: the clay packing den-
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sity, and the inclusion volume fraction.

" Mechanical properties of the relevant material phases: the clay fabric, the silt inclusions,

and the saturating fluid. In particular, the mechanical behavior of the solid clay in shale

is an unknown in the modeling problem, and it will be resolved through calibration and

validation exercises.

" Microstructural features such as particle shapes and preferred orientation of particles.

All these modeling elements take root in the results and observations gathered from experi-

mental testing on shale by means of advanced imaging techniques, nanoindentation testing, and

conventional macroscopic acoustic experiments. In the following chapter, the micromechanics

model will be tested against a series of hypotheses of the contributions of intrinsic material

properties and microstructural features to the overall anisotropic, multi-scale behavior of shale

elasticity. Through a series of calibration and validation exercises, the expected outcome of the

hypothesis testing is a quantitative assessment of the different sources of anisotropy in shale,

and to effectively predict the poroelastic behavior of shale at different length scales.
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Chapter 5

Model Calibration and Validation

The microporomechanics framework developed in Chapter 4 provides a comprehensive me-

chanics description of various compositional and microstructural elements contributing to the

multi-scale, anisotropic poroelasticity of shale. Structural sources of anisotropy, which have

been traditionally regarded as the main sources of elastic anisotropy, are considered in the

micromechanics formulation in the form of geometrical descriptions of particle shape and orien-

tations. The nanogranular response of shale inferred from instrumented nanoindentation is also

incorporated into the micromechanics developments through the contribution of the intrinsic

anisotropy of the clay phase and the modeling of the percolation threshold.

The goal of this chapter is to establish a micromechanics model for the prediction of shale

anisotropic poroelasticity based on a physics-based, effective descriptions of the microstructure

and intrinsic material properties of shale. Particularly, we seek to determine the effective me-

chanical behavior of the clay fabric in shale, which governs its complex anisotropic behavior.

The presentation of this chapter begins with the study of the relation between the percolation

threshold, as observed for the porous clay at nanoscales, and the microstructure of granular

media. The findings of that study will shed light on the effective ways to model microstructural

features such as particle shape and orientation which would enable replicating the observed per-

colation threshold and the experimentally measured elastic response of the porous clay in shale.

Armed with this understanding of granular micromechanics, the micromechanics model is then

calibrated based on different hypotheses of the effective intrinsic properties and microstructure

configurations of the porous clay, which are directly linked to the elasticity and morphology



of the elementary building block of shale at level 0 of the multi-scale structure model. These

hypotheses represent sensible combinations of the different sources of anisotropic elasticity that

ultimately define the macroscopic anisotropic behavior of shale. The different model hypotheses

are then validated (or disproved) at the different length scales of the multi-scale approach using

independent data sets of elasticity. The focus of calibration and validation exercises involved

in model development is on shale with minimum organic content (kerogen-free shale)'. The

expected outcome of the calibration and validation exercises is the systematic identification,

from the pool of modeled elasticity attributes, of those that dominate the macroscopic diversity

of shale's anisotropic poroelastic behavior.

5.1 Effects of Particle Shape and Orientation on the Mechanics

of Granular Media

The results from nanoindentation experiments on shale materials presented have revealed a

granular behavior of the clay fabric at nanometer scales through the identification of an appar-

ent percolation threshold (refer to Figure 3-15). This distinct mechanical attribute unfolds a

wealth of information regarding the link between the microstructure of the clay fabric and its

effective mechanical response, within the framework of micromechanics modeling. More explic-

itly, morphological features such as particle shapes and their orientations dictate the specific

packing of a granular ensemble and the potential occurrence of a percolation threshold packing,

below which the material loses its ability to develop an elastic or strength response. Conse-

quently, it is worth as a first application of the microporoelastic model to investigate the effects

of particle shape and orientation on the percolation threshold of a porous solid representing the

clay fabric in shale. For this application, some of the micromechanics developments introduced

in Chapter 4 are implemented.

The micromechanics model will be extended for the treatment of kerogen-rich shale. The corresponding
model development and formulations will be presented in Chapter 7.
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5.1.1 Percolation Threshold for Randomly Aligned Particles

The first case to be considered is the relation between percolation threshold and particle shape

for material systems with randomly aligned particles. This random packing of particles has

been a focus of attention in the granular physics community, and several researchers have

investigated the effect of particle shape on packings of ellipsoids. Onoda and Liniger [201]

determined that the random-loose packing fraction of uniform spheres (Xs = c/a = 1) at the

limit of zero gravitational force is 0.555 + 0.005, which corresponds to a sphere packing at its

rigidity-percolation threshold. Buchalter and Bradley [46] performed Monte Carlo simulations

of the pouring of oblate and prolate ellipsoids, and showed that increased asphericity yields lower

percolation thresholds. Similar results have been obtained by Coelho et al. [67] and Sherwood

[240] using sequential deposition algorithms for rigid particles of different shapes. These results

become intuitive by recognizing that larger disk-like or needle-like particles may come easier

into contact and create networks that percolate at smaller packing densities. Qualitatively,

these results from granular physics for disordered media hint toward the correspondence of

higher percolation thresholds to nearly spherical shapes, as observed in Figure 5-1.

The self-consistent scheme of continuum micromechanics (refer to Section 4.2.4) recognizes

the percolation threshold associated with disordered granular materials. The original formu-

lation of the scheme considered a perfectly random distribution of contact surfaces between

particles [154]. This averaged random contact may be represented, mechanically, by a sphere.

Irrespective of the elasticity of the particle, the percolation threshold of the polycrystal model

for spherical particles is r/0 = 0.5, in close agreement with the random-loose packing fraction of

spheres. While a sphere itself is a 'perfectly disordered' particle shape in the context of the self-

consistent model [301], it will be of interest to review the results on the effects of non-spherical

particles on the percolation threshold. For this, we summarize in this presentation the works

of Fritsch et al. [91] and Sanahuja et al. [225].

Consider a porous medium composed of empty pores and aspherical solid particles, which

are represented as spheroids of revolution of aspect ratio X' (see expression (4.59)). Oblate

spheroids correspond to X' < 1 and prolate spheroids to X' > 1. For simplicity, the pore space

is represented as spherical inclusions. Given the different morphology and the orientation of

the solid phase, the definition of the strain concentration of the solid particles (see expression

193



0.7 -

0.6 - * 0 Onoda&Liniger(1990)

0 Buchalter & Bradley (1994)
0.5-

* Coelho et al. (1997)
0.4 A Sherwood (1997)

Sanahuja et al. (2007)
- (self-consistent scheme,

S 0.2 A random orientation)

0.1
o .1 0. - - -

0.01 0.1 1 10 100

Particle aspect ratio, XS [1]

Figure 5-1: Percolation threshold r/0 for a porous solid modeled through the self-consistent
scheme as function of solid particle aspect ratio X' (< 1 oblates, > 1 prolates). Data points
corresponds to selected results from granular physics simulations [46, 67, 201, 240]. The solid
line corresponds to the implementations of the results of Fritsch et al. [91] and Sanahuja et al.
[225] for a self-consistent model of a porous material with random particle orientations.
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(4.28)) is modified accordingly to accommodate for the present situation. The uniform strain

in the solid sphere depends on the orientation of the inclusion:

e8 (p, 0) - [ff + Psc (p, 0, Xs) : (Cs - Cscm)]j : Eo (Qs) (5.1)

where Psc (p, 0, Xs) is the Hill tensor for a spheroid defined by the Euler angles 0, 0. The

Hill tensor also depends on the elastic properties of the (yet to be determined) self-consistent

medium Csm and the aspect ratio of the spheroidal particles X'. The random arrangement of

particles is modeled by a uniform distribution of orientations, which yields the following average

strain estimate for the solid phase:

iff = L: Eo (5.2a)

-7 (I J r [I + P'" (a, 0, X") : (C' - Csc m)] sin (0) d~do) : Eo (5.2b)
47r 0_o 0=0

In contrast, the average strain in the pore space is given by:

EP LP : Eo (5.3a)

= [I - IPS (X =1) : C1m] : (5.3b)

where the Hill tensor corresponds to the case of a spherical inclusion in an isotropic medium, as

in (4.43). With these results, the effective stiffness of the porous solid given by the self-consistent

scheme (4.33) is given by:

Chm = 7C' : Ls : [(1 - n) LP + Ls]-1 (5.4)

where I = 1 - #0 is the solid packing density (one minus the porosity). For the implementation

of these results in Ref. [225], the symmetry of isotropic tensors (both stiffness and Hill tensors)

is exploited. The computation of the Hill tensor for arbitrary orientations PS' (p, 0, Xs) is

accomplished using the expressions for the Hill tensor for aligned spheroidal inclusions in an

isotropic medium (4.57)-(4.58), in combination with the rotation transformations in (4.60). The

use of the Hill tensor expressions (4.57)-(4.58) for an isotropic reference medium are justified by
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the a priori knowledge that an uniformly distributed set of particles will yield isotropic elastic

properties for the homogenized medium.

The evaluation of (5.4) provides the relation between the effective elasticity of the porous

solid to the packing of the material, characterized by the solid packing density 71 and the particle

aspect ratio X'. Moreover, the percolation threshold predicted by the self-consistent scheme

for randomly oriented spheroids is found by identifying the critical packing density at which

the homogenized elasticity of the material vanishes, i.e. C'l,hom -) 0. Figure 5-1 displays

the predicted percolation thresholds as functions of the particle aspect ratio. The findings

of Fritsch et al. [91] and Sanahuja et al. [225 are qualitatively in good agreement with the

granular physics results. That is, more pronounced oblate or prolate shapes tend to lower

percolation thresholds as less quantities of solid are needed to offer a continuous force path

for developing rigidity in the porous material. In the limit case, the percolation threshold

attribute disappears (,qo -> 0) for extreme shapes: X' -+ 0 in the oblate case, and X' -> oc in

the prolate case. It is also observed in Figure 5-1 that the percolation threshold - aspect ratio

relation is asymmetrical, supporting the intuitive understanding that an ensemble of needle-like

particles (prolates) percolates with less volume fraction of solid compared to one of flattened

disks (oblates). It is worth noting that the discussed results are independent of the elastic

characteristics of the solid phase.

The results from granular physics and micromechanics modeling presented in Figure 5-1

confirm that the self-consistent scheme of linear micromechanics recognizes the percolation

threshold associated with granular materials.

5.1.2 Percolation Threshold for Preferentially Aligned Particles

The next step in this survey of the effects of particle morphology and orientation on the perco-

lation threshold of granular media is to address the case of aspherical particles with preferential

alignment 2. The implementation of the self-consistent scheme for this particular morphology

requires a different methodology compared to the one presented in the previous section. For

the case of partial alignment of particles, the resulting homogenized (self-consistent type) stiff-

ness properties will exhibit anisotropic symmetry. In fact, the resulting transverse isotropic

2The work presented here has been published in [204].
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symmetry is intimately related to the modeling of the inclusions as spheroidal particles.

The implementation of the self-consistent scheme for the case of preferentially aligned parti-

cles begins by defining a fictitious porous solid composed of aspherical solid particles and empty,

spherical pores, akin to the model presented in Section 5.1.1. This porous solid emulates the

porous clay composite in shale. Thus, we recall the derived expression for the homogenized stiff-

ness response of the porous clay solid (4.94) for this examination of the percolation threshold

behavior for preferentially aligned particles:

CSm = uC' (( , 0) : [E + P", (W, 0, X", CC m) : (C8 (W, 0) - CS m)]

(1-g [f - PF, (X o Chm): om] (5.5)

+ ff ( + PX (9, 0, X8 , Clm) : (C" ((P, 0) - Chom)]

where the operator () on any quantity Y:

(Y) j W (0) Y sin (0) d~dW (5.6)
47 _o Oo

involves the evaluation of a particular function describing the orientation distribution of par-

ticles. Following the work of Sayers [230], the term W (0) in (5.6) represents an orientation

distribution function, which defines the type of preferential alignment of the solid inclusions in

the homogenized medium. The ODF considered here is of the form:

k cosh [k cos (0)]
W (0, k) = ih k (5.7)

sinh (k)

The parameter k quantifies the degree of alignment with respect to the axis of symmetry: k = 0

corresponds to the case of a random orientation of particles, and k -+ 00 represents a perfect

alignment of particles with the axis of symmetry, as depicted in Figure 5-2.

We run simulations with the model described above to determine the percolation threshold

from a vanishing elasticity (C"hom -+ 0) for different degrees of alignment, monitored through

the alignment factor k in (5.7), ranging from a random orientation (k = 0) to a perfect alignment

of particles (k -+ o). The simulation results are presented in Figure 5-3, in which a selected set
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Figure 5-2: Orientation distribution function (ODF) used to characterize the preferential align-
ment of particles. The single parameter k defines the level of alignment, with limit cases k = 0
for a uniform distrubution of particle orientations (random alignment), and k -+ oo (large

k-value) for a perfectly aligned set of particles.

of data was generated within the validity of the application of the prescribed model3 . For the

purpose of validation, note that the case of random distributions of spheroidal particles (k = 0)

is quantitatively in good agreement with granular physics results, as it perfectly matches the

self-consistent solutions developed by Fritsch et al. [91] and Sanahuja et al. [225] for randomly

oriented particles. In contrast, as one increases the degree of alignment (k = 10, 100), the effect

of particle shape on the percolation threshold begins to vanish, and it approaches in the limit

case of perfect alignment (k -+ oo) a percolation threshold of 'r0 = 0.5, irrespective of particle

shape. The numerical implementation of the latter case was accomplished for a large alignment

parameter value (k = 700). This particular morphology of perfectly aligned, spheroidal particles

in a transversely isotropic medium corresponds to the elastic field solution of Withers [295] in

the context of Eshelby's inhomogeneity problem. As in the case of the solutions of Fritsch et

al. [91] and Sanahuja et al. [225] for randomly oriented particles, the percolation thresholds

3In some special cases during the numerical iteration process required for solving the implicit equation (5.5),

the resulting self-consistent estimates Cchom violated the relation C11C33 - C13 - 2C44 > 0 in the expressions

(4.64). This situation yields complex-number values in the evaluation of the P-tensor [205]. Recently, Tavara

et al. [254] developed advanced numerical schemes for handling the cases of solving Eshelby's problem for

transversely isotropic materials that follow the relation VC11C33 - C13 - 2C44 < 0.
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Figure 5-3: Percolation threshold ro for a porous solid modeled through the self-consistent

scheme as function of solid particle aspect ratio X' (< 1 oblates, > 1 prolates). The solid lines

correspond to the implementation of the micromechanics model based on the self-consistent
scheme for different cases of particle alignments. A random orientation corresponds to k = 0,
while the case of perfect alignment corresponds to k -+ oo.

found for preferentially aligned particles are also independent of the elasticity content of the

solid constituent.

5.1.3 Relation between Mechanical Percolation and Microstructure

The findings related to the mechanical percolation of granular ensembles modeled through the

self-consistent scheme in micromechanics and its relation to particle geometry open new venues

for modeling the complex microstructures of clay-bearing rocks. The numerous interpretations

of micrographs taken for the clay fabric in shale through advanced imaging techniques have

suggested arrangements of particles with geometries represented as spheroids with varying de-

grees of orientation (e.g. [128, 139, 267]). This knowledge about the microstructure of shale laid

the foundation for developing the first micromechanics models, in which the primary sources

of anisotropy were intimately related to the geometrical descriptions of particles. Based on

the micromechanics approach presented in this section, the percolation threshold, identified
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through the nanoindentation experiments of Ulm and co-workers [32, 265], is explicitly linked

to specific microstructures. From the analysis of the results presented in Figure 5-3, a suitable

micromechanics model could consider spheroidal particles with a practical range of aspect ra-

tios of 0 < X < 1 with high degrees of alignment. Such effective morphology could reproduce

adequately the percolation behavior of the porous clay of approximately ro = 0.5 measured

in nanoindentation experiments. The quest for an effective micromechanics model for shale

poroelasticity has begun here with the assessment of effective microstructures linked to the

identified percolation threshold at nanoscales. The task at hand is to supplement these findings

with forthcoming model developments to effectively link the microstructure and material intrin-

sic properties of constituents for the prediction of the mechanical response of shale at different

length scales.

5.2 Model Calibration

In the previous section, the implementation of the microporomechanics model based on the

self-consistent scheme established a link between the microstructure of the granular, porous

clay in shale and the percolation threshold determined from instrumented nanoindentation

experiments. This new nanomechanics understanding complements the information furnished

by advanced observational techniques regarding geometrical details of shale's microstructure.

Both structural sources of anisotropy and intrinsic properties of the clay phase in shale are

incorporated into a hypothesis testing approach, which intends to establish an effective mechan-

ical description for the microstructure and mechanical properties of material constituents useful

for predictions of the macroscopic anisotropic poroelasticity of shale. This task is equivalent,

within our micromechanics approach, to defining the elasticity and morphological characteris-

tics of the elementary building block of shale, or level 0 of our multi-scale structure model. The

elasticity content of the elementary building block represents the intrinsic elasticity of the clay

phase, whose effective contribution to the overall anisotropy of shale has eluded many decoding

attempts [227, 284]. In contrast, the morphological attributes are intimately related to the

microstructural description of the porous clay phase at level I.

The different hypotheses of the elementary building block will be used for calibrating the mi-
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cromechanics model developed in Chapter 4 for the specific attributes (elastic content, particle

shape, particle orientation) considered by each hypothesis. The results of the model calibration

exercises will be used in a forward implementation of the model, whose results will then be com-

pared to experimental elasticity data at different scales to validate (or disprove) the different

hypotheses.

5.2.1 Reverse Analysis Approach

The micromechanics developments established in Chapter 4 provide a robust framework for

modeling the different contributions from material composition, microstructure, and intrinsic

mechanical properties to the overall anisotropic poroelastic response of shale. In particular, the

effects of particle shape, particle orientation distributions, and anisotropic elastic properties

of the clay phase are considered explicitly in the application of the self-consistent scheme for

the postulated granular porous clay. In a forward application, the model requires the following

parameter as inputs to predict level I properties:

* The elasticity tensor of the (solid) clay phase C' (4.71).

* The clay solid particle and pore aspect ratios X' and XP (4.59).

" The alignment factor k (5.7).

" The solid clay concentration or packing density r (3.5).

For predicting properties at level II, the model requires, in addition to some level I results:

* The inclusion elasticity constants C"" (4.100).

* The inclusion aspect ratio X"' (4.59)

" The fluid bulk modulus kf1 (4.114).

* The volume fraction fi"C (3.4a).

Following the suggestions presented in Section 4.4, the properties of quartz (kC = 37.9 GPa,

g" =_ 44.3 GPa, see (4.119)) are assigned to the inclusion phase in view of the large presence
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of this mineral in all investigated shale samples. For undrained elasticity predictions, the pore

space is considered to be fully saturated with water (kf' = 2.3 GPa, see (4.120)). In addition,

the pore and inclusion geometries are assumed as spherical (XP = X" = 1), which focuses our

analysis on the well-documented importance of the morphology of the clay particles and restricts

further sources of structural anisotropy. Finally, the clay packing density and the inclusion

volume fraction (Ti, fin'), which can be obtained from mineralogy and porosity measurements for

shale materials, become the input parameters that synthesize the compositional characteristics

of a shale specimen.

From the previous account of model parameters, only the full anisotropic tensor of elasticity

constants of the solid phase CS has not been assessed through experimental means. Thus,

a reverse analysis approach is proposed, which seeks to determine or calibrate the elasticity

constants C of the level 0 - solid clay phase for different clay particle aspect ratios Xs and

degrees of particle alignment k. This reverse analysis approach is schematically shown in Figure

5-4. For its implementation, a calibration data set (CDS) is used. which provides a well-defined

set of macroscopic measurements for various shale materials, that is the macroscopic elasticity

CUPV and calculated volumetric parameters T1 and fi"'.

The reverse analysis of C properties is accomplished by minimizing the spectral norm

of the relative error between experimentally measured values C Pv and undrained estimates

CQ""m defined by (4.116) and generated for a given set of , Xs properties:

min ( ( un CUPv : (CUPV)-1 (5.8)
(kxC)(CDS)2

subjected to:

CI + Cs2 + C 3 + > 0

C-1- C{2 + C$3 - C > 0

CTi- C12 > 0 (5.9)

C 4 > 0

+(C2)2 + 8 (Cf3 )2 + (C$3)2 + 2CliCf2 - 2C{1C$3 - 2Ci2C$3
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Micromechanics model

Homogenized
porous clay and

silt size grains

Silt grains

Homogenized
porous clay

composite

Nanoporosity

Elementary x
clay particle

x'q,

min C - CUPV UP -

(kXs (CDS)2

f inc

k, XS, C"

Figure 5-4: Schematic of the approach followed for the implementation of the reverse analysis.
For a specific set of particle shape XS and orientation distribution of particles defined by the
parameter k, the elastic properties of the elementary building block at level 0 are optimized
with regards to the resulting predictions at level II and the comparisons with experimental
data. The calibration data set (CDS) facilitates the macroscopic elasticity data CPv for eight
shales measured in ultrasonic pulse velocity (UPV) experiments, as well as the porosity and
composition data necessary to derive the clay packing density and inclusion volume fraction
values.
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The constraints in .the minimization problem (5.8) ensure the positive definite character of the

stiffness matrix C' [247]. The numerical implementation is accomplished through the use of a

sequential quadratic programming optimization routine available in Matlab [255]. It should be

noted that the minimization problem is well-posed. The calibration data set will offer 8 (shale

specimens) x 5 (elastic constants measured for each specimen) = 40 experimental values, which

are used to determine 5 model parameters.

5.2.2 Calibration Data Set

A first data set is used for calibration of the microporoelastic model. The calibration data set

(CDS) is composed of eight shales, for which the macroscopic elasticity constants and material

composition properties are available. The choice of those materials for calibration purposes was

based on the following considerations:

* The shale materials represent a large range of representative shale material compositions,

varying in mineral compositions, porosity, and macroscopic elasticity properties. The

macroscopic transversely isotropic elasticity was determined from ultrasonic pulse velocity

(UPV) measurements translated into elastic constants using the classical velocity-stiffness

relations for transversely isotropic materials (see expressions in Section 3.7.3).

* The mineral composition is available from XRD measurements, and porosity measure-

ments are available from both MIP and drying porosity tests, and show consistent esti-

mates.

" For each shale in the calibration set, the difference in clay packing density obtained by

using respectively MIP and bulk density measurements in addition to the mineralogy is

smaller than 5% on average.

Those considerations led to the CDS data set of eight shales listed in Table 5.1. The

estimates for volumetric parameters (clay packing density and inclusion volume fraction) and

measured UPV elasticity for the CDS shale samples are presented in Chapter 3.
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Data set Samples

CDS G2IC-01, G2IC-02, G2IC-03, G2IC-04, G2IC-05, G2IC-06, G2IC-07, G2IC-08

Table 5.1: List of shale samples considered in the calibration data set, CDS. The experimental
data for these samples were gathered by the G2IC.

5.2.3 Hypothesis Testing for Elementary Building Block of Shale

Performing the reverse analysis approach for model calibration requires first establishing dif-

ferent sets or combinations of elasticity content and morphologies for the elementary building

block of clay. The intrinsic elasticity of this elementary unit at level 0 is associated to the effec-

tive stiffness properties C;. of the solid clay phase in shale. In turn, the morphological features

of the building block, its particle shape and orientation (characterized by parameters X8 ,k),

supplement the description of the microstructure of the porous clay at level I of the multi-

scale structure of shale. The experimental observations presented in Chapter 3 contribute to

generating meaningful hypotheses of the form of the elementary building block of clay and its

effects on the effective mechanical representation of the porous clay fabric. From visual analy-

sis, different methods of observation (e.g. SEM, TEM) of the structure of the shale provide

important insight into the microstructural arrangements of the clay fabric. To supplement these

observations, indentation testing and micromechanics modeling of the mechanical properties of

the porous clay composite furnish new means for understanding the links between mechanical

behavior and particle geometries and alignments.

Four hypotheses about the structure and properties of the elementary building block will

be tested:

9 Hypothesis 1. The elementary building block is a preferentially aligned, oblate particle

with anisotropic elasticity. Secondary electron micrographs (Figure 2-6a) provide evidence

in favor of this hypothesis as individual clay platelets are apparent. Hornby et al. [128]

championed this hypothesis, although the solid clay phase was assumed isotropic due to

the lack of supporting experimental evidence. Furthermore, researchers have calibrated

orientation distribution functions (ODFs) using data from digital analysis of SEM images

[128, 230] and X-ray diffraction techniques [145, 166]. The macroscopic anisotropy of shale

is introduced by considering some shape and preferred orientation of the solid particles.
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The oblate particles posses an aspect ratio of Xs = 1/20, which has been considered as

representative of some clay particles [128, 139]. The preferential alignment of the oblate

particles is described by the parameter value 0 < k < oc, corresponding to a certain degree

of alignment. The micromechanics analysis of nanoindentation experiments (Section 5.1)

associates high degrees of particle alignment to the observed percolation threshold at

clay packing densities of about 0.42 < qO < 0.54 (see Figure 3-15). The lower bound

of the percolation threshold behavior is considered for the implementation of hypothesis

1, for which an alignment parameter k = 100 replicates the percolation threshold of

n7o = 0.42 for X - 1/20 oblate particles. The proposed anisotropic elasticity for the solid

clay phase displays transversely isotropic symmetry. In summary, hypothesis 1 combines

all modeled effects: geometric factors (oblate particles with preferential alignment) and

intrinsic particle anisotropy.

" Hypothesis 2. This hypothesis explores the effects of a purely geometric source of

anisotropy through modeling the elementary unit of clay solid as perfectly aligned (k

o), oblate particles with intrinsic isotropic elasticity. The perfect alignment implies

that the axis of symmetry of all clay particles is oriented in the normal-to-bedding, or

x3-direction. Hypothesis 2 combines the geometric observations from image analysis re-

garding particle shape, while the perfect alignment reproduces the percolation threshold

of 77 = 0.50 from micromechanics modeling.

" Hypothesis 3. The elementary building block is a perfectly aligned, oblate particle with

transversely isotropic elasticity. This intrinsic anisotropy is assumed to be intimately

related to the structure of the solid particle, so that the axes of symmetry for shape

and for elasticity properties coincide. Macroscopic anisotropy is a result of the combined

effects of particle shape, preferred orientation, and intrinsic anisotropy. The material

symmetry and the particle itself are oriented in the x3-direction, which corresponds to

the normal-to-bedding direction. The implementation of this hypothesis will consider

three variations of the particle shape: XS = 1/100, 1/20,1/2.

" Hypothesis 4. The elementary building block is a spherical particle with transversely

isotropic elasticity. While SEM images suggest platelet-like particle shapes, TEM images
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Hypothesis XS k Elasticity

1 1/20 100 Transverse isotropic
2 1/20 700 Isotropic

3 - 1 1/100 700 Transverse isotropic
3 - 2 1/20 700 Transverse isotropic
3 - 3 1/2 700 Transverse isotropic

4 1 700 Transverse isotropic

Table 5.2: Hypothesis of the form of the elementary building block of clay used for reverse
analysis its elasticity properties. k = 100 represents the case of partially aligned particles.
k = 700 represents the case of (almost) perfect alignment.

from the literature and AFM images suggest lumped particle arrangements with little

apparent preferred orientation (Figure 2-6b and c). In contrast to hypothesis 3, modeling

based on hypothesis 4 discards any effects of particle shape by assigning a spherical

morphology to the solid particles (XS = 1). Modeling with spherical particle shapes also

reflects the idea of a random orientation of particle-to-particle contact surfaces over which

forces are transmitted in a spatially disordered material. The spherical particle cannot

give rise to macroscopic anisotropy, so transversely isotropic elasticity (oriented in the

x3-direction) intrinsic to the solid particle is required.

The four hypotheses regarding the geometric and intrinsic elasticity contributions to the

anisotropy of the porous clay in shale, which synthesize an array of combinations of particle

aspect ratios, orientations of particles, and elasticity forms for the clay phase, are summarized

in Table 5.2.

5.2.4 Implementation of the Micromechanics Model using the Reverse Analy-

sis Approach

The implementation of the four hypotheses about the form and properties of the elementary

building block of shale in the micromechanics multi-scale model begins by recalling the input

values for the clay particle aspect ratio Xs and the degree of alignment k. Four specific aspect

ratios were chosen for model implementation, covering a practical range for oblate spheroids

and the particular case of the sphere: Xs = 1/100, 1/20, 1/2, 1. Two forms of particle alignment

are also considered: preferential orientation (k = 100) and perfect alignment (k -- oc). The
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partial alignment with k = 100 corresponds to a degree of orientation in which the majority

of particles are within ±7r/6 rad from the axis of symmetry. The case of perfect alignment is

implemented using a large value for the alignment parameter, k = 700. Finally, two forms for

the elasticity content of the solid clay phase are considered: isotropy (two independent elastic

constants) and transverse isotropy (five independent elastic constants).

For each hypothesis, the elastic constants CG are computed using the reverse analysis scheme

from macroscopic elasticity data, as displayed schematically in Figure 5-4. The forward imple-

mentation of the micromechanics model to develop estimates of undrained elasticity Cijii" at

level II, and which are compared to UPV measurements CfPV, requires first the estimation

of the (drained) properties of porous clay composite at level I, that is Cih. The stiffness

tensor for the porous clay under drained conditions (refer to Section 4.4.1) is evaluated using

the self-consistent homogenization scheme (4.33). For hypotheses 1 through 3, the explicit form

of Com has been detailed in (4.94) (see also (5.5)). Additionally, the form of the orientation

distribution function (ODF) is similar to (5.7). Expression (4.94) contains all the modeling

dependencies: particle shape, orientation of particles, and anisotropic elasticities. For compu-

tational efficiency, the evaluation of hypothesis 4 is achieved using the more succinct formulation

provided in (4.98), for the case in which the P-tensors for the solid and pore phases are identical

(that is, perfect alignment and spherical morphologies).

5.2.5 Results of Model Calibration

The results of calibration of the micromechanics model using the reverse analysis approach

and the different hypotheses of the elementary building block of clay are presented in Table

5.3. In addition to the elastic constants C, the equivalent indentation moduli Msf, A3 and

isotropized elasticity values Mis 0 , kyse, gj 0s (indentation modulus, bulk modulus, and shear

modulus, respectively) for the elementary unit of solid clay are presented. The equivalent

indentation moduli were calculated using expressions in (3.28). The isotropized values were

calculated using the Voigt-Reuss-Hill (VRH) average (3.10), an empirical estimate based on the

arithmetic mean of the Voigt and Reuss averages, both of which provide rigorous bounds for the

elastic properties of an isotropic aggregate of crystals [123]. Both the equivalent indentation

moduli and isotropized moduli will be useful quantities for comparisons with experimental
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Hypothesis Ci1 C1S2 CiS3 C33 C4  MI MiMso kiso gIso
1 39.1 20.9 19.6 27.9 4.2 16.2 23.2 20.1 24.7 6.2
2 31.5 20.8 20.8 31.5 5.4 17.8 17.8 17.8 24.4 5.3

3 - 1 38.9 20.7 19.9 27.8 4.6 16.5 23.3 20.5 24.7 6.3
3 - 2 39.2 20.8 19.5 27.6 4.4 16.5 23.5 20.5 24.5 6.3
3 - 3 42.6 21.6 18.2 25.6 3.9 15.4 25.1 20.8 24.1 6.5

4 44.9 21.7 18.1 24.2 3.7 14.8 26.4 21.2 24.0 6.7

Table 5.3: Results of the reverse analysis of stiffness properties for the different hypotheses of
the elementary building block of solid clay in shale (level 0). All elastic constants are in GPa.

values pursued in the model validation work.

In addition to the calibration results for each hypothesis, Table 5.4 presents the mean and

the standard deviation of the relative errors, 6 and e, [118]:

8 =1 Xi - Yi (5.10)
n n yi

eS = ( )2 (5.11)

where the summation is performed over n number of shale specimens of the data set under

consideration, xi and yj correspond to model predictions and experimental measurements, re-

spectively. These statistical estimates quantify the errors involved in the results of the min-

imization algorithm (5.8) for the different elastic constants. Another metric that is used to

quantify comparisons between predicted and experimental values is the correlation coefficient,

r 2
n

S: (Xi - X) (yi - )
r =(5.12)

where = xi is the mean value. The correlation coefficients for each set of calibrations are
n

also included in Table 5.4. Figure 5-5 shows graphically the results of the calibration procedure

for, e.g. hypothesis 3 (with particle aspect ratio Xs = 1/20) by comparing the model stiffness

properties Cho" of the eight shales with the experimental UPV stiffness. In general, the good

agreement between the undrained model elasticity predictions and UPV elasticity measurements
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Relative error [%]
Hypothesis CS C, Cis C33 Cr r2

1 -3 20 -3 ±7 -7 ±21 -6 ±19 -3 ± 39 0.93
2 -18 22 -5 ± 7 -6 ± 21 -3 ± 21 -3 ± 46 0.86

3-1 -2 20 -3 ± 8 -9±21 -8 ± 22 -9 ± 47 0.93
3-2 -3 19 -3 ± 7 -8 ±20 -7 ± 20 -6 ± 43 0.93
3-3 -4 16 -3 ± 7 -7 ± 21 -2 ± 16 -1 ± 35 0.95

4 -4 14 -4 ± 7 -7 ± 21 -2 ± 17 0 ± 35 0.95

Table 5.4: Relative error statistics of the reverse analysis of stiffness properties for the different
hypotheses of the elementary building block of solid clay in shale (level 0). The relative error
values are presented in terms of the mean +/- the standard deviation of the relative error.

testifies to the good performance of the reverse analysis implementation.

In order to check the sensitivity of the calibration of a hypothesis with respect to the

number of shales considered for calibration, a parametric study is conducted in which various

combinations of shale samples from the CDS data set were selected for the calibration procedure.

By way of illustration, Figure 5-6 shows the rapid convergence of the clay stiffness values with

increasing number of shale samples for the calibration of hypothesis 4. The error bar in this

figure represents the standard deviation from the specific combination of shales specimens. The

parametric study shows that adequate convergence for all solid clay phase stiffness values is

provided for five or more shale specimens used in the calibration procedure.

An interesting outcome of the calibration exercises is the similar order-of-magnitude of the

elastic content for the effective solid clay at level 0. Although individual elastic constants

CiSj may vary by as much as 13 GPa, the equivalent-isotropic values compare closely across

all calibrated cases, with equivalent indentation moduli of Aso ~ 20 GPa, bulk moduli of

kIsO 24 GPa, and shear moduli of gjse ~ 6 GPa. It appears that the elasticity content

of the elementary building block of shale, at least from an isotropic representation, displays a

characteristic magnitude. In addition, the review of the relative errors tabulated in Table 5.4

shows that the worst set of calibrations or fitting of CG constants corresponds to hypothesis

2 (clay building block with isotropic elasticity). The remaining calibrated hypotheses show

comparable levels of relative errors between predicted and experimental elasticity at level II.

In the next section, the different hypotheses of the elementary building block will be tested

using the predictions of the micromechanics model in conjunction with independent data from
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Figure 5-5: Comparison of model predictions based on hypothesis 3 (with particle aspect ratio

X= 1/20) and experimental UPV elasticity measurements from the CDS data set for level II.
Vertical error bars represent the variability of UPV stiffness as function of confining pressure.
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Figure 5-6: Convergence of calibration results for the elastic constants Cs of the elementary
building block of solid clay with increasing number of shale specimens considered from the CDS
data set.

nanoindentation and acoustic experiments.

5.3 Model Validation

The different hypotheses of the elementary building block of clay are tested in this section

against experimental data of shale elasticity at different scales; namely, macroscopic elasticity

data (complete sets of transversely isotropic elastic constants), and instrumented nanoindenta-

tion data, which condense the elasticity content of the clay fabric into two elasticity constants,

Mi and M 3, as defined by expressions (3.28a)-(3.28b). Note that each data set alone is not able

to provide a unique solution for the validation of the model. In fact, the indentation moduli

M 1 and M3 , obtained from probing the clay fabric respectively into the bedding plane and

normal-to-bedding plane, are functions of the five elasticity constants of the clay fabric stiffness

CI. Moreover, for each shale sample, the five macroscopic elasticity constants cannot be

matched to the clay stiffness constants C' without an intimate knowledge of the mineralogy

and the porosity through the clay packing density and the silt inclusion volume fraction. The
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Figure 5-7: Schematic of the model validation process. At level 0, the stiffness properties of
the calibrated modulus tensor C' through the different hypotheses are compared with clay data
from the literature. At level I, the model predictions for porous clay composite based on the
different hypotheses of the clay elementary building block (with particle orientation k, shape X1,
and stiffness C8 ) are compared with nanoindentation data. At level II, macroscopic predictions
for the porous clay - silt composite are compared with acoustic data for shale specimens not
used for calibration.

approach for the validation of the micromechanics model is shown schematically in Figure 5-7.

In addition to the model comparisons with anisotropic elasticity data at levels I and II, a first

order-of-magnitude check is presented for the elastic properties of the elementary unit of clay

at level 0. The elasticity content Ca of the different clay building block hypotheses is compared

to data available in the open literature of clay minerals. The model validation exercises assists

in achieving one of the key objective of this thesis, which is the definition of an effective micro-

mechanics representation of the porous clay fabric that allows capturing the diverse anisotropic

poroelastic behavior of shale at macroscopic scales.

5.3.1 Validation Data Sets

The model validations at levels I and II of the multi-scale structure model for shale are accom-

plished using independent sets of elasticity data. The nanoindentation experiments of Bobko,
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Data set Samples

VDS-1 G2IC-01, G2IC-02, G2IC-03, G2IC-04, G2IC-07, Dark, Pierre

VDS-2 CRE, KIM, JUR, 3492, 3506, 3525, 3536, 3564, 108/111, MUD, CO, North Sea

Table 5.5: List of shale samples considered in the validation data sets, VDS-1 and VDS-2. The
experimental data for these samples were gathered by the G2IC, as well as obtained from open
literature sources.

and Ulm [32], which were reanalyzed in this thesis, form the first validation data set (VDS-1).

The model validation at the macroscopic scale is accomplished using shale data collected from

the open literature. The selected references offer complete descriptions of macroscopic elas-

ticity and material composition. Table 5.5 displays the shale samples that constitute each of

the validation data sets. The estimates for clay packing density and inclusion volume fraction

and elasticity data for the VDS-1 and VDS-2 shale samples (nanoindentation moduli and UPV

elastic constants, respectively) are detailed in Chapter 3.

5.3.2 Level 0 - Order of Magnitude Check

The concept of the clay elementary building block synthesizes the elasticity behavior of the

solid component of the porous clay fabric in shale in the form of an effective mechanical phase.

This first scale, or level 0 in our multi-scale micromechanics approach, can then be compared

to the fundamental scale of clay minerals and their elastic properties.

The different hypotheses of the clay building block were calibrated using the reverse analysis

approach, yielding different sets of stiffness properties as detailed in Table 5.3. The calibrated

clay stiffness values CG exhibit significant anisotropy (except for the stiffness properties associ-

ated to hypothesis 2 which is modeled as an isotropic solid). Table 5.6 provides the calculated

Thomsen parameters (expressions (3.68a)-(3.68c)) for various clay minerals and the anisotropic

properties of the different calibrated hypothesis of C.. The Thomsen parameter values for

quartz are also included for comparison. From the values listed in Table 5.6, only quartz

qualifies as having elastic anisotropy in the weak-to-moderate range, i.e. E, Y, P* < 0.2 [256],

whereas the elastic behavior of clay minerals and our calibrated clay values display considerable

anisotropy.

A first order comparison of the different sets of CG elastic constants can be made with quasi-

isotropic experimental values of clay elasticity introduced in Section 3.5. For the purpose of

214



Thomsen parameters [1]
Material Reference E 7 j
Quartz [122] -0.09 -0.15 0.26

Muscovite [7] 1.12 2.28 -1.24
Kaolinite [148] 1.13 1.75 -0.70
Chlorite [148] 0.44 2.24 -0.07

Hypothesis 1 0.20 0.57 -0.16
Hypothesis 3 - 1 0.20 0.50 -0.09
Hypothesis 3 - 2 0.21 0.54 -0.13
Hypothesis 3 - 3 0.33 0.86 -0.26

Hypothesis 4 0.43 1.04 -0.26

Table 5.6: Thomsen parameters calculated for quartz, different clay single minerals, and for the
calibrated clay stiffness properties associated with the different hypotheses of the elementary
building block of shale. The data for muscovite, kaolinite, and chlorite was chosen due to
their assumed transversely isotropic elastic properties, for which the computation of Thomsen
parameters are applicable.

comparison, we resort to the equivalent bulk and shear moduli obtained through the application

of the Voigt-Reuss-Hill averaging scheme. The comparison between the stiffness properties

based on the different hypotheses of the clay elementary unit and those reported in the open

literature is given in Table 5.7. The table is organized into two categories of elastic properties:

elasticity of single clay minerals and elasticity of compacted or consolidated clay. The data

obtained for single clay minerals through direct testing and numerical modeling (kS > 50 GPa,

g' > 20 GPa) are clearly of a different magnitude compared to the properties inferred from

actual rock testing and laboratory-made clay mixtures. The difference in behavior is directly

attributed to the effects of confined absorbed water or other solutions in the interlayer and

interparticle spaces and the mechanics of interparticle contacts. These effects undoubtedly

reduce the otherwise stiff response of single clay layers. The range of averaged stiffness values

for the different hypotheses of the clay elementary unit (k' ~ 24 GPa, g' ~ 6 GPa) are in

agreement with clay data inferred from actual testing of clay-bearing rocks [20, 128, 147, 175].

The discrepancy with the bulk modulus of Vanorio et al. [273] may be attributed to the

particular test methodologies used in that study, in which the clay powders were compacted

into aggregates or diluted into water suspensions for experimentation. The good agreement of

the VRH average of C' with extrapolated data from rock testing is a first indication that our

calibrated clay stiffness values are suitable representation of the in situ elastic behavior of clay
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Material Technique Reference k' [GPa] g' [GPa]

Single mineral
Muscovite Ultrasonic Aleksandrov & Ryzhova [7] 52.2 31.6
Muscovite Brillouin scattering Vaughan & Guggenheim[276] 59.1 34.4
Kaolinite Velocity-density scaling Katahara [148] 55.4 31.8
Chlorite Velocity-density scaling Katahara [148] 99.7 24.4

Muscovite Molecular dynamics Seo et al. [237] 80.5 49.3
Compacted clay

Data extrapolation Horuby et al. [128] 22.9 10.6
Data extrapolation Berge and Berryman [20] 21.4 6.7
Data extrapolation Mavko et al. [175] 25 9
Data extrapolation Jorstad et al. [147] 26.6 7.5

Acoustic measurements Vanorio et al. [273] 12 6
VRH average of Cn [ 24.0 - 24.7 5.3 - 6.7

Table 5.7: Comparison of clay properties for single clay minerals and compacted clay in shale.
Data for single clay mineral elasticity was presented in Table 3.13. Data for compacted clay
in shale was presented in Table 3.12. The Voigt- Reuss- Hill (VRH) average of the elementary
building block of clay with elasticity C' corresponds to the range of values found throught the
hypothesis calibration process.

in shale and clay-bearing rocks. It is worth noticing that this adequate agreement between these

so-called compacted clays using quasi-isotropic, VRH averages does not imply the accuracy of

the five transversely isotropic components of the stiffness tensor C'. The relevance of the full

anisotropic properties of the elementary building block of shale will be tested at levels I and II

of the multi-scale model.

5.3.3 Level I - Comparison with Nanoindentation Experiments

After performing an order- of-magnit ude check for the elasticity properties of the elementary

building block of shale at level 0V the next stage of comparisons between experimental results

and theoretical predictions of shale elasticity corresponds to nanometer length scales, or level I

in our multi-scale structure approach. The elasticity measured by grid nanoindentation provides

a novel mechanics context for investigating the elastic content and the different combinations

of geometric and intrinsic elasticity factors affecting the anisotropy of the porous clay phase in

shale. According to the methodology displayed in Figure 5-7, the various hypotheses of the clay

elementary unit based on combinations of particle orientations (controlled by the alignment pa-

rameter Z-), particle shapes (with aspect ratios X"), and different intrinsic elasticities (calibrated
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C values listed in Table 5.3) are implemented in a forward application of the micromechanics

model to obtain estimates of drained elasticity at level I. Nanoindentation on geomaterials such

as shale is deemed as a drained-type test, because the associated nanometer length scales in

mechanical experiments allow for almost instantaneous dissipations of pore pressures.

The nanoindentation used for model validation at level I corresponds to the validation

data set 1 (VDS-1). This data set provides the complete mechanical characterization of seven

shale samples in terms of their indentation properties. In addition, the VDS-1 provides the

mineralogy, porosity, and density information necessary to determine the clay packing density,

which is the key upscaling parameter for the homogenization modeling at level I. The stiffness

properties of the porous clay for drained conditions, C'om (4.79), are calculated using the

microporomechanics formulation outlined in Section 4.4.14. Figures 5-8 and 5-9 display the

elasticity predictions for the porous clay modeled via the different hypotheses for the elementary

unit of solid clay. The stiffness predictions Ciom = Chom Cs, k, Xs) are constructed as

continuous functions of clay packing density T7, and recasted into equivalent indentation moduli

A - 3 using (3.28a) and (3.28b). Horizontal error bars represent the variability of clay packing

density depending on the combination of tests used for its estimation: left-most 1 values were

calculated using mineralogy and bulk density data, and right-most 77 values were calculated using

mineralogy and porosity data; solid data points represent the mean value of these two estimates.

The solid data points in the figures and their corresponding vertical error bars represent the

mean and standard deviation of the experimental indentation modulus data compiled in the

VDS-1. A degree of anisotropy expressed as the difference of indentation moduli AM = A 1 --A 3

is also displayed in Figures 5-8 and 5-9.

The model indentation curves for hypothesis 1 (partially-aligned, transversely-isotropic,

oblate particles) seem to follow the trends of nanoindentation data as shown in Figure 5-8a,

especially for shale materials with large packing densities. An important feature of the model

results for hypothesis 1 is the percolation threshold at Io = 0.4. Such a predicted attribute

is related to the micromechanics response of the ensemble of oblate particles with particle

aspect ratio Xs = 1/20 and partial alignment described by the parameter k = 100. The

4 The described implementation of the micromechanics model for predicting level I properties follows a similar
approach to that described in Section 5.2.4
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modeled percolation threshold at qo = 0.4 matches the lower range of percolation behaviors

(r771 = 0.42) identified by the linear scaling between the measured indentation moduli and

the clay packing density shown in Figure 3-15. Hence, a combination of geometric factors and

intrinsic anisotropy such as that of hypothesis 1 appears adequate for capturing the overall

nanoelastic response of the porous clay in shale. The results for the degree of anisotropy

displayed in Figure 5-8b predict large AM values for packing densities in the range of j < 0.7;

although, small anisotropies are measured for shale samples in that packing density range.

The modeling of the porous clay via hypothesis 2 (perfectly-aligned, oblate particles with

isotropic elasticity) yields poor predictions of nanoscale anisotropy as shown in Figures 5-8c

and 5-8d. The geometric factors of an oblate particle shape and a perfect particle alignment

generate significant elastic anisotropies for packing densities near the percolation threshold,

0.50 < q < 0.65. The increasingly reduced anisotropy predicted by the model for increasing

values of clay packing density contradicts the observed nanoindentation trends (Figure 5-8d).

Asymptotically, the anisotropic behavior of the solid clay phase inferred from nanoindentation

for packing densities r -+ 1 cannot be replicated by isotropic clay properties, irrespective of

particle shapes and orientation distribution. Consequently, geometric factors alone could not

be the sole source of the nanoscale anisotropic behavior in shale.

The results for modeling a porous clay in shale through perfectly-aligned, oblate particles

with varying aspect ratios and transversely isotropic elasticity are presented in Figure 5-9. The

predicted scalings between indentation moduli and clay packing density for the different vari-

ants of hypothesis 3 adequately follow the trends of nanoindentation data. However, inspection

of Figure 5-9b reveals some mismatches in trends for the degree of anisotropy AM between

experimental data and model predictions for oblate aspect ratios Xs = 1/100, 1/20. Inter-

estingly, the modeling approach based on hypothesis 4, which resorts to intrinsic anisotropic

elasticity and to aligned, spherical particles (Xs = 1) as the sources of anisotropy of the porous

clay, provides an optimal prediction of nanoelastic behavior, as shown in Figures 5-9c and 5-9d.

Quantitative comparisons of the model's predictive capabilities based on the four hypotheses of

the solid clay phase are given in Table 5.8, which emphasizes the observation that hypothesis 4

provides the most accurate modeling of the anisotropic elastic behavior of the porous clay.

The adequate comparisons between nanoindentation data and model predictions based on
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Figure 5-8: The nanoscale elasticity content of the porous clay in shale as a function of clay

packing density. The elasticity is expressed in terms of indentation moduli Mi=1 ,3 . The degree

of anisotropy is expressed as the difference in indentation moduli AM = Mi - M 3 . Modeling

curves are presented for (a-b) hypothesis 1, and (c-d) hypothesis 2. The nanoindentation data

corresponds to shales included in the validation data set VDS-1.
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Relative error [%]
Hypothesis II M1  M3

1 -2 26 -26 i 32
2 -29t18 -26+39

3-1 -10 27 -32 + 39
3-2 -5 25 -29 ±36
3-3 -3 22 -18 ± 24

4 -4 21 -15+i-21

Table 5.8: Relative error statistics of the model validation at level I for the different hypotheses
of the elementary building block of solid clay in shale (level 0). The relative error values are
presented in terms of the mean +/- the standard deviation of the relative error.

aligned, spherical clay building blocks with intrinsic elastic anisotropy (captured in hypothesis

4) confirm the nanogranular nature of the porous clay phase in shale and highlight the prominent

role of the intrinsic anisotropy of the in situ clay compared to structural sources such as particle

shape and orientation. The comparisons between model predictions for level I and data from the

VDS-1, which was not used for calibration, also validate independently the elastic content of the

proposed elementary building block of shale at level 0, which was calibrated using the reverse

analysis approach through macroscopic acoustic shale data. The final step in the validation

process is to compare the model predictions based on the four hypotheses of the solid clay

phase or elementary building block of shale with macroscopic experimental data.

5.3.4 Level II - Comparison with UPV Experiments

The final stage of testing and validating the different approaches to modeling the elastic

anisotropy of shale based on the postulated four hypotheses of the clay elementary building

block corresponds to comparisons between model predictions for level II of the multi-scale

model and acoustic properties for several shales. The different hypotheses representing the

effects of structural and intrinsic elastic anisotropies inherent to the clay building block trans-

late, through model implementation, into different sources of the anisotropy observed in shale

at macroscopic length scales. The acoustic measurements represent the customary laboratory

testing used for the characterization of shale samples at the macroscopic scale. The data used

for model validation at level II is gathered in the validation data set 2 (VDS-2). This validation

data set provides a comprehensive characterization of acoustic properties for numerous shales
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documented in the open literature, in addition to some data gathered by the G2IC. The VDS-

2 also provides the mineralogy, porosity, and density information necessary to determine the

clay packing density and inclusion volume fraction, which are the two volumetric parameters

involved in the homogenization model for determining the properties of levels I and II.

Following the methodology displayed in Figure 5-7, the different hypotheses of the elemen-

tary building block of shale are implemented in a forward application of the micromechanics

model to deliver estimates of undrained elasticity at level II. The first step in the two-scale ho-

mogenization model is to estimate the drained elastic properties for the porous clay composite

at level I based on the proposed four hypotheses for the clay building block. These are im-

plemented in the micromechanics model through the evaluation of CIom CIom(T,CSXSk)

using expressions (4.94) for hypotheses 1 through 3 and (4.98) for hypothesis 4. The second ho-

mogenization step is accomplished by first calculating the drained stiffness tensor of the porous

clay - silt composite at level II, C[Im, expressed in (4.105). The input parameters for this

homogenization step are the drained stiffness properties for the porous clay at level I C'om and

the inclusion volume fraction f4c. The assumed material invariant properties for the quartz

inclusion and the fluid phase saturating the pore space were discussed in Section 4.4.4. Finally,

undrained elastic properties are derived for the porous clay - silt composite using the expressions

detailed in Section 4.4.35.

Figure 5-10 displays the comparisons between the macroscopic elasticity modeled via the

four hypotheses listed in Table 5.2 and the measured ultrasonic pulse velocity (UPV) elasticity

in terms of elasticity constants CV for shales in the VDS-2 data set. The horizontal error bars

in Figure 5-10 correspond to the range of predicted elasticity values depending on the particular

set of input parameters used for model implementation. Clay packing density and inclusion

volume fraction estimates obtained from mineralogy and porosity information yielded higher-

value elasticity constants, whereas estimates obtained from mineralogy and density information

(used to derive an alternative porosity value) yielded lower-value predictions. The vertical

error bars represent the range of UPV elasticity as a function of different levels of pressure

(confining or triaxial) used during testing. The average values between elasticities at minimum

5 The implementation of the model is accomplished using a similar approach to the reverse analysis approach
presented in Section 5.2.1.
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Relative error [%]
Hypothesis CUPv7 C Pv CPV C3U3PV C4Pv r 2

1 11±20 15±34 48±90 13±30 15±49 0.84
2 -5±20 14±34 52±93 15±29 12±45 0.78

3-1 11±19 14±34 46±89 10±30 10±47 0.84
3-2 11±19 14±34 46±89 12±30 12±47 0.84
3-3 11±19 15±34 47±89 15±29 16±47 0.85

4 11±19 14±34 47±89 16 ±29 16±47 0.85

Table 5.9: Relative error statistics of the validation of stiffness properties for the different
hypotheses of the elementary building block of solid clay in shale (level 0). The relative error
values are presented in terms of the mean +/- the standard deviation of the relative error.

and maximum pressure or stress states are used for comparison with model predictions, and are

represented by the solid data points6 . Table 5.9 shows the corresponding means and standard

deviations of the relative errors in the predictions of elasticity properties.

The general trend inferred from Figure 5-10 and Table 5.9 reveals a uniform performance

of the different variations of the micromechanics model in predicting the anisotropic elasticity

of the shale materials in the VDS-2 data set. The mean relative errors between predicted and

measured UPV elastic constants are on the order of 16 percent or less, with the exception of

C13 with an associated mean relative error of approximately 50 percent. This is not surprising

given that the experimental determination of the elastic constant C13 is generally recognized

to suffer from higher uncertainties compared to the rest of the elastic constants as a result

of standard practices in the inversion of elasticity data from UPV laboratory measurement

[129]. Indeed, less accurate estimates for C13 compared to those of the remaining four elastic

constants are reported for three of the studies included in the VDS-2 data (see Table 3.20).

6As reported often for shales, acoustic measurements could be sensitive to discontinuities such as cracks
and elongated pores. Given our treatment of shale as uncracked porous media (refer to Section 4.5.2), it may
be relevant to draw comparisons between model predictions and acoustic data at high pressures in view of
the hypothesis of closere of cracks. For completeness, properties at low and high stress states are reported
because we cannot guarantee the validity of assuming the complete closure of cracks at high pressures for all
experimental data gathered for model validation. In addition, the choice of comparisons with the average of
velocities at different pressure conditions is justified given the variability in experimental setups used for the
deformation experiments gathered in the VDS-2 data set. Finally, the inspection of Figure 5-10 reveals that the

effects of the pressure dependency of UPV elasticity are of similar magnitude compared to the range of model

predictions caused by the variability in input parameters (namely the clay packing density and the inclusion

volume fraction). A more detailed discussion of the pressure dependency and applicability of our model will be

presented in a forthcoming section. Lastly, similar arguments justify the comparisons between model predictions

and acoustic data for shale involved in the model calibration reported in Section 5.2.
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Furthermore, the calibration of the Ci3 for the different hypotheses herein tested proved to

be less accurate compared to the remaining elastic constants. From Table 5.4, the mean and

standard deviation of the relative errors for C calibrations were among the highest of the set.

The experimental uncertainties inherent to the assessment of C13 and its challenging model

calibration may partially explain the scatter in relative errors for this parameter.

Given the overall favorable statistics for the comparisons between experimental and modeled

UPV elasticity, it appears that the different combinations of geometric and intrinsic elasticity

factors used for modeling the porous clay composite in shale translate into adequate modeling

frameworks for capturing the macroscopic anisotropy of shale materials. The case of modeling

the shale anisotropy based on purely geometric factors (hypothesis 2) exhibits the lowest ac-

curacy in predictions compared to the rest of the cases considered in this set of comparisons.

This observation highlights the importance of considering the intrinsic anisotropy of the clay

phase in modeling the overall anisotropy of shale. Predictions based on the cases resorting to

combinations of anisotropic sources (hypotheses 1 and 3) satisfactorily capture the measured

macroscopic anisotropic behavior. Interestingly, optimal predictions are found for the case of

purely intrinsic anisotropy (hypothesis 4), in which the only parameters specified for the elas-

ticity upscaling using the proposed multi-scale micromechanics framework are the clay packing

density and the inclusion volume fraction, in addition to the material invariant properties of

the solid clay C that were calibrated based on the given hypothesis. The perfect alignment

and spherical morphology (k -> oc, X' = 1) reduce the number of model parameters to be

measured or determined independently for an application of the model.

For completeness, a closer inspection of the validation results at level II is presented for the

remarkable predictions of the micromechanics model based on hypothesis 4, which resorts to a

compact set of model parameters: the (calibrated) stiffness of the solid clay phase C, at level 0,

and the clay packing density and inclusion volume fraction obtained from material composition

and mineralogy data. In Figures 5-11 and 5-12, model predictions for specific shale specimens

in the VDS-2 are compared directly to the UPV velocities measured through acoustic tech-

niques. The elastic constants CI um are converted into acoustic velocities using expressionsi7j hom

(3.67a)-(3.67e). The displayed acoustic velocities are reported based on the customary compres-

sional (P-) and shear (S-) wave velocities in the normal-to-bedding (x 3) and parallel-to-bedding
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(Xi, X2) directions. In addition, the (quasi) P-wave velocity at inclination angle 0 - 450 is

reported. Similar to Figure 5-10, the horizontal error bars in Figures 5-11 and 5-12 represent

the range of predicted elasticity values given the two different input sets of estimates of clay

packing density and inclusion volume fraction. The vertical error bars correspond to the range

of reported UPV elasticity values resulting from varying pressure conditions. In addition to the

comparisons in Figures 5-11 and 5-12, a summary of the relative errors between the measured

and the predicted UPV elasticity is displayed graphically in Figure 5-13.

Excellent agreement between measured and predicted macroscopic acoustic properties is

observed for the data obtained from the open literature: Hornby [129], Domnesteanu et al.

[81], Dewhurst and Siggins [77], and Sarout and Gu6guen [226], as well as the data for North

Sea shale gathered by a G2IC member. For the shale data of these references, the relative errors

are on the order of 10%, which indicates a very satisfactory comparison. The least satisfactory

comparisons found are with the literature data from Jones and Wang [146] and Jakobsen and

Johansen [138], displayed in Figures 5-11a and 5-11c. The discrepancy with the measurements

by Jones and Wang could be attributed to the small confining pressures used during testing.

In fact, the hydrostatic pressure applied during testing is in the sub-MPa range, which may

not resemble the stress state of the rock formation. In fact, the application of the model would

predict elastic properties related to some stress state relevant to the in situ behavior. A more

detailed assessment of the pressure dependency of acoustic properties of shale with relation to

the developed micromechanics model is due in a forthcoming chapter. The discrepancy with

the measurements by Jakobsen and Johansen could be attributed to the relatively large volume

fractions of unidentified minerals. For the implementation of the model, the so-called 'other'

minerals (see Table 3.3) were assumed to belong to the clay type. Although the model captures

the overall anisotropic behavior for this data set, only complete mineralogy information could

help determining the sources for discrepancy between model predictions and measurements.

The present finding related to the effectiveness of treating the complex microstructure of

the porous clay as a granular composite with an isotropic morphology and intrinsic anisotropic

elasticity (hypothesis 4) agrees with the results of model validation at level I. The comparison

of model predictions against nanoindentation data yielded an optimal match for the implemen-

tation of hypothesis 4. It appears that the nano- and macroelasticity of shale is dominated by
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the response of the intrinsically anisotropic clay phase, whereas structural sources of anisotropy

such as particle geometries and orientations play a second-order role in defining the overall

anisotropic behavior.

5.4 Chapter Summary

Conventional predictive models for the anisotropic elasticity of shale rely on the faithful trans-

lation of microstructural features such as the geometry and orientation of particles into mod-

eling parameters. However, do these features represent the best descriptions of the origins

of anisotropy in shale? In this chapter, a comprehensive micromechanics model for shale

anisotropic poroelasticity was implemented. The model incorporates the elements of two schools

of thought regarding the anisotropic mechanics of shale: the conventional approach, relying

mostly on geometrical/structural sources of anisotropy, and the novel mechanics understanding

inferred from nanoscale testing that underscores the prominent role of the intrinsic anisotropy of

the clay fabric in shale. Using a hypothesis testing approach, the different sources of anisotropy

in shale were quantified through a series of model calibration and validation exercises. The

learned granular, anisotropic response of the clay fabric at nanoscales precludes any modeling

attempt based on geometrical anisotropic sources alone. In contrast, combinations of structural

sources such as particle shapes and orientation distributions and intrinsic anisotropic properties

of the solid clay phase yield adequate descriptions of shale at different length scales.

Remarkably, the modeling of the porous clay scale based on intrinsic material anisotropy

only yields an effective scheme for reproducing its poroelastic response and enabling the pre-

diction of macroscale anisotropy. This intrinsic elasticity is represented through an elementary

building block of solid clay, which appears to be in first order unique, or invariant, for shale

materials. Also, the complex microstructure of the porous clay is translated into a microme-

chanics description rooted in the self-consistent scheme, in which the granular nature of shale

is linked to the micromechanics response of highly aligned clay elementary building blocks with

isotropic morphology. With the effective micromechanics description of the porous clay phase

at hand, the material science paradigm for shale is fulfilled by relating the material composi-

tion to the mechanical response of shale at different scales. More specifically, the multi-scale
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homogenization model for shale materials effectively predicts their anisotropic elasticity based

on two shale-specific, volumetric parameters related to materials composition: the clay packing

density and the inclusion volume fraction. The extensive data used for model development and

the success of the validation process corroborates a posteriori the adequacy of the proposed

multi-scale structure model for shale presented in Chapter 2.

In Chapter 6, the developments and findings of the micromechanics investigation presented

thus far are translated and consolidated into an engineering model for shale multi-scale poroelas-

ticity. The implications of the proposed effective definition of an elementary building block for

shale and its success in enabling the prediction of shale anisotropic elasticity will be discussed

in detail. In addition, the domain of applicability of the model as a predictive engineering

tool will be further explored, especially in view of potential implementations of the model for

laboratory and field applications.
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Chapter 6

Microporoelastic Engineering Model

The challenge of developing predictive engineering models for complex heterogeneous materials

such as shale rests in successfully establishing the relations between material microstructure,

composition, and performance, while maintaining an acceptable balance for the number and na-

ture of modeling parameters describing such interactions. In Chapter 5, a microporomechanics

modeling framework aiming at the prediction of the multi-scale anisotropic elasticity of shale

was evaluated based on a series of configurations of anisotropic factors arising from structural

sources (particle shapes and particle orientation distributions) and intrinsic material properties

(clay anisotropy). The main outcome of the evaluation was establishing the prominent role of

the intrinsic anisotropic elasticity of the clay phase in shale. It was also found that the mod-

eling of the complex microstructure of shale can be effectively undertaken without recurring

to structural anisotropic attributes such as prescribed particle geometries or orientations. The

porous clay composite is instead characterized using the self-consistent scheme of micromechan-

ics, in which the concept of an elementary building block for the solid clay phase with isotropic

morphology and intrinsic elastic anisotropy becomes the driving factor behind reproducing the

granular nature of shale as measured by nanoindentation, as well as the diverse anisotropic

poroelasticity of shale observed at macroscopic scales of engineering testing.

In this chapter, we synthesize the results from the calibration and validation exercises of

Chapter 5 into a working engineering model for shale poroelasticity. The chapter begins with

a presentation of the key features of the adopted micromechanics homogenization model, in-

cluding the effective form of the elementary building block of shale and the upscaling model
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parameters, which rely on material composition and porosity information. The presentation of

the chapter continues with a detailed discussion of the physical basis of the elementary building

block, which enables capturing the multi-scale mechanics of shale through the adopted ho-

mogenization scheme. Particular considerations are given to the intrinsic and invariant elastic

properties of the elementary unit and its effective morphology, which define the properties of

levels 0 and I in our multi-scale structure model. This chapter then explores the predictive

capabilities and the applicability of the micromechanics model as an engineering tool for pre-

diction of shale macroscopic properties. The predictive capabilities of the model in terms of

anisotropic elasticity and poroelastic parameters are reviewed. The topics of stress dependency

of macroscopic elastic properties and the effects of frequency on measured acoustic responses

of shale are discussed in view of potential laboratory and field applications.

6.1 A Micromechanics Engineering Model for Shale Anisotropic

Poroelasticity

The main finding from the calibration and validation exercises in Chapter 5 was the identifica-

tion of a relevant and effective micromechanics approach for modeling the multi-scale anisotropic

elasticity of shale materials from diverse origins and compositions. The key features of 'the'

engineering model for shale elasticity are schematically summarized in Figure 6-1.

The multi-scale anisotropic elasticity of shale appears to be governed (in first order) by

the intrinsic elasticity of the porous clay phase, which is represented by the properties of level

0 of the multi-scale structure model. The corresponding elementary building block of solid

clay, with intrinsic, invariant elastic properties, is sufficient for modeling the nanomechanical

response of shale at level I, without resorting to structural factors such as particle shapes

and orientations. The nanogranular response of shale as sensed by nanoindentation and the

complex microstructure of its clay fabric are typed into the model through the use of the

self-consistent scheme of micromechanics of granular media, in which the elementary unit of

clay is characterized by a spherical morphology. The scaling parameter for obtaining the

poroelastic response of the porous clay composite at level I is the clay packing density r, which

neatly synthesizes mineralogy and porosity information specific to a shale material. A second
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Figure 6-1: Engineering model for shale poroelasticity.

application of the self-consistent scheme facilitates determining the mechanical properties of

the homogenized porous clay composite intermixed with silt inclusions at the macroscopic scale

of shale. The homogenized poroelastic properties of the porous clay - silt inclusion composite

depend on the second shale-specific parameter, the inclusion volume fraction fn. With the

appropriate information regarding the compressibility of the fluid phase saturating the pore

space, the micromechanics model yields predictions of the undrained poroelastic characteristics

of shale materials. The features previously discussed of the adopted engineering model for shale

anisotropic poroelasticity correspond to the implementation of hypothesis 4 (refer to Chapter

5).

Given the shale-invariant properties of the fundamental building block of shale, which had

been appropriately calibrated and validated against independent data sets, it is recognized

that the multi-scale poroelastic response of shale predominantly depends on the two shale-

specific quantities: clay packing density and non-clay inclusion volume fraction. The clay

packing density is recognized to be at the very origin of shale poroelastic sensitivity, while the

presence of inclusion at larger scales weighs this sensitivity in proportion to the macroscopic

porous clay volume fraction. The fact that those two parameters delimitate shale macroscopic
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diversity makes the proposed two-parameter microporoelastic model an appealing alternative

for geophysics and reservoir engineering applications. The remaining sections of this chapter

are devoted to exploring the relevance of the proposed micromechanics model for shale, as well

as its domain of application and its predictive capabilities.

6.2 Elementary Building Block of Shale - Level 0 Properties

Does a unique set of clay deposition stiffness values suffice to describe shale anisotropic elastic-

ity? One of the scientific challenges presented in this thesis is the question whether is possible

to identify a fundamental scale in shale rocks where the mechanical behaviors are governed

by material invariant properties. Chapter 5 presented ample experimental evidence from in-

strumented nanoindentation and theoretical developments from microporomechanics to devise

a multi-scale homogenization model capable of predicting the anisotropic elasticity of shale at

different scales of observation. One of the key elements to achieve a predictive capability was

the consideration of an elementary unit of clay. This so-called elementary building block at

level 0 of our proposed multi-scale structure model with material properties that are unique

or invariant (in first order) for shale materials across lithologies and formations answers the

scientific question of identifying a fundamental mechanical unit for modeling. The rest of this

section takes a closer look at the intrinsic and invariant nature of the elasticity content ascribed

to the elementary building block of shale, which enables the successful modeling of the diverse

macroscopic anisotropy of shale1 .

To guide the present discussion, Figure 6-2 recalls the results of nanoindentation on shale

materials and the predictions of indentation moduli using the micromechanics engineering model

for shale. The figure displays many of the important ingredients to examine the elastic proper-

ties of the elementary unit of solid clay.

The increasing anisotropic scaling of the porous clay stiffness with the clay packing density

tends to a particular set of elastic properties, which in the asymptotic case r/ -> 1 corresponds

to the stiffness tensor of elastic constants C. It is worth recalling that the stiffness tensor

was calibrated using a reverse analysis approach of macroscopic elastic properties of various

'The presentation of this section benefits from the fruitful discussions with C. Bobko, which translated into

a recent journal comment [34].
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Figure 6-2: Stiffness of the porous clay composite as a function of clay packing density. The stiff-

ness properties are expressed in terms of indentation moduli Mi=1,3. The degree of anisotropy

is expressed as the difference in indentation moduli AM = M1 - M 3. The nanoindentation

data corresponds to shales included in the validation data set VDS-1. The modeling curves
correspond to the micromechanics engineering model adopted in Section 6.1.

shale samples. Consequently, this good agreement between the micromechanics model and the

results from nanoindentation verifies the definition of a mechanical phase of solid clay, initially

assumed for model development. The elastic properties C', in terms of elastic constants and

corresponding indentation moduli (in GPa):

= 44.9 C2 = 21.7 C3 = 18.1 0 0 0

C2=21.7 Cfi = 44.9 C3 = 18.1 0 0 0

10.= Cj3 = 18.1 Cf3 = 18.1 C33 = 24.2 0 0 0 (6.1)
0 0 0 2Cs6 = 23.2 0 0

0 0 0 0 2C44 = 7.4 0

0 0 0 0 0 2C4= 7.4

Mi = 26.4, MI = 14.8 (6.2)

or in the isotropized form (in GPa):

ksO = 24.0, gjso = 6.7 (6.3)
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offer an estimate of the response of the clay fabric in shale in the absence of nanoporosity (one

minus the packing density). In fact, the specific type of response of this calibrated C' is in

excellent agreement with data extrapolated from rock testing results, as noted in the discussion

of Table 5.7. This so-called compacted or consolidated clay behavior represents the effective,

in situ response of the solid clay phase in clay-bearing rocks, which is of a smaller order-of-

magnitude compared to the measured elastic properties of single clay crystals. These contrasting

behaviors could be reconciled in the light of some recent results from nanoindentation testing.

Zhang et al. [302] recently deployed nanoindentation techniques to measure elastic proper-

ties of two different clay minerals: muscovite and rectorite. The main differences between these

two clay minerals are the bonding strengths in their layers and their interlayer spacings. Mus-

covite exhibits strong bonding in its 2:1 layer structure and small interlayer spacing, compared

to rectorite and its weaker interlayer bonding and large interlayer spacings making it prone to

water penetration. The highly crystalline, millimeter-sized samples were assumed to represent

the properties of single minerals due to their crystal structure and the repeatable unit arrange-

ment of clay layers and interlayer galleries. Compared to the acoustic and optical experimental

techniques, which can assess the full elasticity tensor of the measured crystals, the nanoinden-

tation approach of Zhang et al. provides quasi-isotropic elasticity values for the muscovite and

rectorite specimens. The indentation results for these minerals yield the following indentation

modulus properties2

Almuscovite = 59 GPa (6.4a)

Alrectorite = 16 GPa (6.4b)

However, an in-depth analysis of Bobko et al. [34] argues that only the indentation measurement

on muscovite may represent a meaningful estimate of the well-crystallized particle elasticity. The

associated indentation depths in these experiments, in the micrometer range, probe the tested

clay materials at characteristic length scales much larger than the individual unit structures

(i.e. clay sheets plus interlayer material, on the nanometer range). However, in the case of

2The indentation properties correspond to the 'uncorrected' results of Zhang et al. [302], where pop-ins were
smallest for both measured crystals. The indentation loads used for testing were on the order of 10 mN to 100
mN.
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Figure 6-3: Schematic of the crystal structures of a) muscovite and b) rectorite. Adapted from
[302].

muscovite, the relatively small interlayer gallery with little absorption of water or hydrated

cations, as schematically shown in Figure 6-3, diminishes the mechanical contribution of a

compliant interlayer to the otherwise stiff clay layers. In contrast, the indentation measurements

on rectorite are seen as encompassing the responses of the clay layers and interlayer gallery,

whose weak bonding and high absorption capacity for interlayer materials (e.g. water) may

contribute significantly to the difference in elastic behavior as measured by nanoindentation.

These preliminary results from direct testing at the scale of clay minerals help to complete

the understanding of the type of mechanics that is being modeled through the elementary

building block concept. Rather than considering the stiff elastic properties of the clay layers

or crystallized forms at the particle level such as muscovite crystals, the elementary unit of

clay represents the combined response of agglomerated clay particles, an arrangement which

encompasses the mechanical contributions of the clay platelets, the interlayer materials (ab-

sorbed water, hydrated cations, etc.), and the interparticle contacts. This elementary unit of

'solid' clay becomes the first continuum mechanics phase embodying the highly compacted, in

situ elastic response of the clay phase in shale. Within this framework, the physical chemistry

behavior at the sub-nanometer scales is not considered explicitly, such as double layer effects

due to the presence of interlayer absorbed water or swelling pressures. Furthermore, the effects
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of confined water residing in the interparticle spaces may prove difficult, at this moment, to

be modeled or incorporated into a multi-scale continuum mechanics approach [17]. In loosely

packed clays, those phenomena may play an important role, and even strongly influence the

elasticity, as shown recently by Dormieux and co-workers [84].

An important attribute of the elasticity of the elementary building block of solid clay is its

apparent insensitivity to clay mineralogy, at least in first order. This observation is inferred

from the extensive validation of the micromechanics model with nanoindentation and acoustic

data for shale materials of diverse compositions and origins. Although different clay minerals

may exhibit contrasting properties (see Table 3.12), their direct contributions to the in situ

mechanical response of shale at sub-micrometer length scales seem to be modulated by the

compliant nature of interlayer and interparticle contact forces. Hence, the invariant character

of the elastic properties of the elementary unit of clay may be intimately linked to the role

of the interlayers in clay particles and the interparticle contacts. Clearly, this description is

restricted to the elastic behavior only. The clay mineralogy is key to the description of other

physical phenomena such as swelling and permeability.

Regarding the anisotropic nature of the elementary building block, those origins are inti-

mately related to the depositional history of clay platelets and the ensuing stress history of

buried shale. These processes lead to the alignment of clay minerals within local conglom-

erates. Furthermore, the atomic structure of clay, as it is clearly seen for muscovite, exhibit

strong elastic anisotropic characteristics. Both the aligned structure and the anisotropy of the

clay minerals lead to intrinsic (at least) transverse isotropy of the elementary building block.

Previous modeling attempts that consider groupings of clay minerals tend to assume, for conve-

nience, that these effective particles are elastically isotropic [128]. For shale materials, however,

where the depositional history implies a certain overall alignment of individual clay particles,

the anisotropy of the clay particle grouping must be considered.
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6.3 Effective Form and Shape of Building Block - Structural

Form at Level I

Apart from the intrinsic anisotropy of the elementary building block of shale, another crucial

result from the calibration and validation exercises of Chapter 5 is its effective spherical morphol-

ogy within our application of micromechanics and the self-consistent homogenization scheme.

This raises the valid question of: does clay particle shape really matter for shale modeling? In

this section, we present a series of arguments that consolidate the proposed effective mechanical

representation of the porous clay microstructure through adopting a spherical morphology for

the elementary clay unit.

The measured indentation moduli of porous clay at nanometer length scales through nanoin-

dentation, as shown in Figure 6-2, furnish crucial information regarding the nanomechanical

response of shale, which was not available to previous modeling attempts. To illustrate this

point, Figure 6-4 displays the degree of anisotropy, in terms of Thomsen parameters, computed

from the classical model results of Hornby et al. [128] for the elastic constants of the fully-

aligned clay-fluid composite (see Figure 8, [128]). Their approach was based on an anisotropic

formulation based on the self-consistent and the differential effective medium schemes to model

the response of a bi-connected clay-fluid pseudo particle that controls the anisotropic response

of shale. In addition, particle orientation distributions derived from SEM imaging analysis were

incorporated into modeling to determine the effective elasticity of shale without the contribution

of silt minerals.

The Thomsen parameter values displayed in Figure 6-2 are functions of packing density,

which in this case is equal to one minus the fluid-filled porosity. The anisotropic response

of the clay-fluid composite, which is analogous to level I of our multi-scale structure model,

illustrates the ability of a continuum mechanics approach to model the sources of anisotropy

in shale based solely on geometric parameters. However, a close comparison with indentation

data, as illustrated in Figure 6-2 clearly establishes that geometric factors alone (i.e. shapes and

orientation distributions of particles) cannot describe fully the nanoscale anisotropic elasticity

of shale. A similar conjecture was derived from the hypothesis testing of case 2 (see Chapter 5),

whose design followed a similar configuration for the porous clay composite: isotropic, oblate
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Figure 6-4: Thomsen parameters calculated from the elastic constants of the clay-fluid compos-
ite in shale modeled by Hornby et al. [128]. The numerical values for the elastic constants Cij
were obtained through digitizing the model results presented in Figure 8 [128]. The clay-fluid
composite corresponds to an inclusion with aspect ratio of 1/20.

clay particles and nanoporosity. One must emphasize this particular shortcoming of previous

modeling attempts, which certainly might have lacked the necessary evidence from small-scale

mechanical testing such as e.g. nanoindentation. The work of Hornby et al. [128], for instance,

has been referenced as a theoretical confirmation of experimental trends of decreasing anisotropy

with decreasing porosity (see e.g. [129]). However, such assertion is a natural consequence of the

asymptotic elastic behavior at zero porosity and irrespective of particle shape: the solid phase is

isotropic. Having established that geometric arguments such as particle shape and orientation

cannot alone predict the anisotropic response of shale at the scale of the clay fabric, the next two

arguments drawn from micromechanics developments and advanced nanoindentation analysis

address the importance (or not) of clay particle shape in the engineering modeling of shale.

The role of particle shape in the elastic anisotropy of the porous clay in shale is examined in

Figure 6-5. The figure shows the normalized indentation stiffness Mi=1,3 /Ml=1,3 as a function

of packing density r/. The modeling curves correspond to the implementation of the engineering

model for estimating the homogenized properties at level I. For simplicity, the normalized

model lines correspond to the results for indentation modulus in the direction x1 and for oblate
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Figure 6-5: Normalized indentation modulus versus average packing density data for shale
materials in the VDS-1. The indentation data was normalized by the solid indentation modulus

Mi 3 displayed in (6.2). The modeling lines correspond to the self-consistent modeling of
porous solid with isotropic particles with different oblate aspect ratios (from left to right):
X5 = 1/100, 1/10, 1/4, 1/2, 1.

particles with random alignment 3. A very similar set of normalized model lines could be found

for the indentation modulus in the direction X3. The experimental data corresponds to the VDS-

1, which is also normalized by the solid clay values provided in (6.2). Most of the shale data

belongs to a range of packing densities higher than r; > 0.6, in which the effects of particle shape

are not significant. It appears that for shale materials, with intrinsically high packing values,

the micromechanics approach cannot resolve the order of the particle shape when predicting the

mechanical response of shale's clay fabric. For other materials such as gypsum, which exhibit a

broader range of packing densities (one minus porosity, at the appropriate length scale), particle

shape may represent a first-order parameter for predictive modeling [225].

Another important piece of evidence, related to the relevance of considering particle shapes

for understanding the nanoelasticity of the porous clay in shale, is drawn from advanced nanoin-

3Micromechanics results for partially aligned ensembles are not of added value to the discussion, as they would
only modify the percolation threshold behavior for a particular particle shape.
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dentation analysis [31, 270]. Ulm and co-workers investigated the scaling of elasticity and

strength data generated from nanoindentation experiments for three nanocomposites (cement

paste, bone, and shale) in order to identify intrinsic and structural sources of anisotropy. The

indentation modulus-hardness-packing density (M - H - r) analysis employs each experiment

from grid indentation on a material sample in combination with micromechanics modeling in

order to infer distributions of packing densities and mechanical properties of the solid clay

phase (refer to Section 3.6.6). The packing density distributions can be considered as mechan-

ical assessments of the microstructure of the material. For each material system, orthogonal

indentation measurements were conducted, and Figure 6-6 displays the indentation analysis

results for apatite, the binding phase in bone, and the porous clay composite in shale, both

of which materials are considered as macroscopically anisotropic. Figures 6-6a and c show the

packing density scaling relations of indentation modulus M obtained from nanoindentation in

orthogonal directions (Xi, X3). Isotropic elastic properties are observed for apatite, whereas

the porous clay in shale shows a marked anisotropic response. Figures 6-6b and d show the

packing density distributions for the two materials inferred from indentation analysis in the

two orthogonal directions. Apatite exhibits dissimilar packing density distributions for the two

orthogonal directions. The porous clay composite of shale shows instead similar packing distri-

butions. The finding that packing density distributions for the clay fabric are almost identical

in orthogonal directions, as observed in Figure 6-6d hints towards an intrinsic anisotropy of the

clay solid and an isotropic packing of particles, and thus an isotropic morphology sensed by

nanoindentation, which contrasts the structural anisotropy observed for bone specimens, which

exhibited different packing distributions in orthogonal directions.

The previous arguments highlight the apparent second-order effect of the particle shape

in the nanomechanics of the clay fabric as sensed by instrumented indentation, compared to

the first-order importance of the intrinsic elasticity of the clay phase. Mechanically, the role

of particle shape is better understood by the overall behavior of clay conglomerates with high

local alignment. The consideration of the elementary unit of clay as a spherical shape in a mi-

cromechanical morphology representation, which is able to replicate the percolation threshold

behavior ofTrO = 0.5 inferred from nanoindentation, effectively reveals that particle-to-particle

forces are transmitted over randomly oriented particle-to-particle contact surfaces. This gran-
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ular behavior is directly linked to the implementation of the self-consistent scheme in our mod-

eling framework. Figure 6-7 displays and summarizes the conceptual framework for effectively

modeling the microstructure and anisotropic elasticity of the porous clay in shale.

6.4 Domain of Model Application at Macroscopic Scales - Pre-

dictions at Level 2

The thorough comparisons between experimental measurements and model predictions at mul-

tiple length scales validate the use of the micromechanical model of shale as a tool for linking

material composition (synthesized into volumetric parameters) to acoustic properties. In what

follows, we explore the predictive capabilities of the engineering model through a detailed graph-

ical representation of its domain of application. The resulting isoparametric plots delineate the

acoustic signature of shale as function of the two model input parameters: the clay packing

density and the inclusion volume fraction. The elastic anisotropy of shale, quantified in terms

of Thomsen parameters, is also investigated using model results. The review of the macro-

scopic model predictions provides a context for later discussing important aspects of the use

of the micromechanics model as a tool for engineering applications. The effects of frequency

and pressure conditions on the predictions of acoustic properties, as well as the links between

confining pressure, intrinsic anisotropy, and stress-induced anisotropy are presented. This series

of discussions will help establish the domain of application and effectiveness of the model as an

engineering tool for predicting the baseline anisotropic poroelasticity of shale rocks.

6.4.1 Isoparametric Plots for Acoustic Velocity Predictions

In this section, the engineering model for shale poroelasticity is examined through the display

of predictions of acoustic velocities in the form of dimensionless isoparametric plots to visualize

the wave velocity behaviors at the macroscopic scale in terms of the model input parameters.

Figures 6-8 and 6-9 display the predicted compressional (Vp) and shear (Vs) velocities for

the normal-to-bedding (x 3) and parallel-to-bedding (x 1 , X2) directions, respectively. For each

plot, a form of the specific wave propagation velocity normalized by the corresponding velocity

through the solid clay phase and a ratio of mass densities is displayed as a function of the
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Figure 6-7: a) SEM image of shale G2IC-03, displaying the complex clay fabric in shale.
Adapted from [267] b) Multi-scale illustration of the micro-, meso-, and macroscale of shale.
Adapted from [227]. The groupings of clay particles, or clay domains, could be represented
through the concept of an elementary building block of solid clay. The intrinsic elasticity is
the result of the local degree of alignment. The spherical morphology recognizes, in a micro-
mechanics framework, the randomness of the orientation of contact surfaces between particles
and particle domains.
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clay packing density for fixed values of inclusion volume fraction. The isoparametric curves

are presented for inclusion volume fraction values ranging from fi"' = 0 (the case of no silt

inclusions present in the shale material, i.e. the porous clay composite) to fi"c = 1.0 (the case

of a pure silt solid). The saturating fluid used for the construction of the isoparametric plots

was water, with a bulk modulus k' - 2.3 GPa. By way of example, the isoparametric curve

corresponding to f"c - 0 is described hereafter to highlight the effects of the nanogranular

nature of shale on the acoustic properties. Below the percolation threshold of r/O = 0.5, which

relates to the absence of a continuous force path in the granular clay ensemble, the mechanical

behavior is dictated by the response of the fluid saturating the pore domain. This is clearly

observed by the hydraulic stiffening present in the compressional wave behavior, but it does not

affect the shear wave propagation. For clay packing densities above the percolation threshold,

a monotonically increasing, non-linear scaling is observed for both compressional and shear

waves. The addition of (stiffer) silt inclusions increases the magnitude of acoustic velocities,

tending to the maximum value of wave propagation in pure quartz (the case of f"c = 1.0).

For all isoparametric plots displayed in Figures 6-8 and 6-9, the UPV experimental data for

kerogen-free shales compiled in the CDS, VDS-1, and VDS-2 data sets have been superimposed

to the model prediction curves to visualize the predictive coverage of the model. It is worth

noticing that isoparametric plots such as those presented in Figures 6-8 and 6-9 could be

generated for any direction of wave propagation, provided the identification of the angle of

inclination from the bedding plane (i.e. information about angle 0, see Section 3.7.3). Having

validated the predictive accuracy of the microporomechanics model, the isoparametric plots of

acoustic velocities become useful tools for the seismic characterization of shale materials using

strictly material composition information; and vice versa: velocities could be used to infer the

rock composition (only in terms of clay type and non-clay (silt) type minerals).

6.4.2 Shale Anisotropic Behavior

Using the model results developed for constructing the isoparametric plots of acoustic velocities,

the anisotropic seismic behavior of shale materials is now explored. The quantitative measures

of anisotropy are the well-known Thomsen parameters (see expressions 3.68a, b, c). Figure 6-10

displays the model predictions for the P-wave anisotropy (E), the S-wave anisotropy (-y), and the
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* parameters as functions of clay packing density 7. Each Thomsen parameter-clay packing

density curve is plotted for a fixed value of inclusion volume fraction f"C. The largest shale

seismic anisotropies for all Thomsen parameters are clearly those for the case of the porous

clay composite alone (f"' = 0). In particular, the maximum anisotropy corresponds to that

of the compacted clay, which is found for the asymptotic case of clay packing density equal

to unity. As the clay packing density decreases (porosity increases), the seismic anisotropy is

reduced. No anisotropy (i.e. e = - 0) is observed below the percolation threshold

r/O = 0.5, irrespective of the silt inclusion volume. This behavior results from the uniform

hydraulic stiffening provided by the fluid saturating the pore space and the (assumed) isotropic

stiffness of the silt inclusions. Finally, the increase in silt inclusion volume fraction decreases the

seismic anisotropy for all Thomsen parameters for clay packing densities above the percolation

threshold.

The elastic anisotropy trend of decreasing anisotropy with increasing porosity is consistent

with experimental observations of elastic anisotropy across shale specimens of different origin,

porosity, and mineralogy composition [146, 277, 284]. It is worth noticing that those trends

for shale were inferred based on total porosity information. In contrast, some authors have

reported an opposite trend for anisotropy-porosity inferred from deformation experiments on

shale . Higher confining pressures applied in the experiments have been related to reduced

elastic anisotropies caused by a type of porosity that is pressure-sensitive. The so-called crack

or soft porosity tends to close with increasing pressures. Although the trend of decreasing

anisotropy with increasing confining pressures was clearly observed in [227], with anisotropy

reductions at high pressures of half of the initial values, other authors have reported lesser

amounts of reduction in anisotropy or even mixed trends in the relations of anisotropy and

confining pressure [77, 138, 145]. The quantification of differences between structural anisotropy

(due to the presence of crack porosity, which is typically only a very small fraction of the total

porosity), and intrinsic anisotropy (under the assumption of complete closure of cracks at high

pressures) in shale will require further investigation.

In addition to the model predictions, the experimental data on Thomsen parameters for the

shale specimens from the CDS, VDS-1, and VDS-2, are displayed in Figure 6-10. In general,

the microporomechanics model captures the main trends of elastic anisotropy for shale mate-
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Figure 6-10: Model predictions of Thomsen parameters as functions of clay packing density
for various fixed values of inclusion volume fraction. Squares correspond to the data from
the CDS data set. Diamonds correspond to the VDS-1 and VDS-2 data sets. Each Thomsen
parameter value corresponds to the average of two estimates, which are related to the minimum
and maximum confining pressure conditions used for testing (if applicable). The variability of
Thomsen parameters due to the effect of different confining pressures is relatively small for most
shale specimens included in this study.
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rials. For P-wave and S-wave anisotropies, the model covers the majority of the experimental

values of Thomsen parameters. For the 6*-parameter., the variability of experimentally mea-

sured values is significant, and the model can only predict a fraction of the observed range of

3* anisotropies. The micromechanical model, as observed in Figure 6-10, predicts negative 3*

values for all clay packing density and inclusion volume fraction values. These results origi-

nate as a consequence of the particular stiffness properties of the compacted clay C', especially

the value for Ci'. Experimental data has shown that shale materials indeed show positive

and negative * values, which also applies to the weak-anisotropy estimate of 3* [256]. These

experimental results have received significant attention from the geophysics community [229];

although, a conclusive understanding of the origins of * anisotropy and correlations to shale's

mineralogy or microstructure are still topics of ongoing debate. Moreover, the inherent difficul-

ties and uncertainties in the determination of the elastic constant C13, resulting from standard

practices in the inversion of elasticity data from laboratory measurements [129], strongly affect

the accuracy of measured C13 values and the derived Thomsen parameter 3* values. Neverthe-

less, the contribution of the micromechanics model to the still open debate is that the intrinsic

anisotropic elasticity of the in situ clay is not at the origin of positive 3* values. Thus, posi-

tive 3* values and the experimental data of E and -y situated outside the modeling curves may

originate from other sources of anisotropy that may well be structural such as the presence of

microcracks [227, 257, 277], the existence of specific compliance conditions at contacts between

clay particles, and the misalignment of clay particles [230].

6.4.3 Pressure Dependency of Shale Acoustic Properties

In addition to the previously discussed effect of stress-induced anisotropy, the magnitude of the

acoustic properties of rocks is also affected by the imposed stress state or pressure condition.

Figure 3-21 already showed the dependency of the measured elastic constants for shale G2IC-

03 on the confining pressure state, whose general trend of increasing elasticity (inferred from

the measured acoustic velocities) with increasing pressure is generally observed in the seismic

assessment of reservoir rocks such as shale and sandstone. This well-known mechanics effect has

been the focus of theoretical modeling for non-linear elasticity, in which higher-order constants

must be defined and calibrated in order to capture the elasticity - confining pressure dependency
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[296, 297]. The engineering model for shale, being rooted in linear microporomechanics theory,

does not consider explicitly the link between acoustic property predictions and a prevailing

stress state in the material. In a first approach, the development of the model through the

calibration and validation exercises presented in Chapter 5 has been conducted considering for

each shale sample its entire range of acoustic properties as function of pressure condition. That

is, the comparisons between model predictions have involved the minimum and maximum values

of acoustic/elastic properties, as displayed in Figure 5-10. The presented vertical error bars for

experimental UPV data are directly related to the confining pressures used during testing:

typically smaller acoustic property values correspond to lower confining pressure conditions,

whereas higher acoustic property values correspond to higher pressures4. The convention of

comparing model predictions and average acoustic properties from minimum and maximum

pressure conditions was adopted in view of the variability in experimental setups used for the

deformation experiments and related data considered in this study, as well as the diversity in

shale samples with different origins and burial depths. From the results presented in figures

such as Figure 5-10, it was observed that the magnitude of the pressure dependency of UPV

properties was of similar or second-order compared to the range of modeled acoustic predictions,

whose variability is caused by the estimation of the input parameters, namely the clay packing

density and the inclusion volume fraction. Nevertheless, a refined discussion about the effect of

pressure on model predictions is presented hereafter.

Since the engineering model is based on linear micromechanics, the link between pressure

dependency of acoustic properties and model predictions is the definition of the stiffness proper-

ties of the solid clay phase, represented by the elementary building block at level 0 with stiffness

tensor CS. The calibration of the C; elasticity constants, as presented in Chapter 5, involved

the use of the calibration data set (CDS), which compiles the shale data on a series of samples

provided by the G2IC. In addition to being a consistent set of data (e.g. the difference in

clay packing density and inclusion volume fraction estimates are smaller than 5% on average),

the shale samples were assumed to be representative of a diverse spectrum of shale properties.

Furthermore, the stress states used for UPV testing of these materials should be representative

4In some cases., certain elastic constants such as C13 might exhibit a different behavior, in which higher
magnitudes of stress result in lower acoustic properties. This opposite type of trend is rare, and only found in a
few instances throughout the entire database of acoustic shale properties.
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of their in situ conditions'. As a result, the calibration of the engineering model ensures, at

least implicitly, that the clay phase properties are representative of shale for in situ conditions.

This assertion is corroborated using the data presented in the studies of Hornby [129], Jakobsen

and Johansen [138], and Sarout and Gu6guen [226]. In these studies, the assessment of in situ

stress conditions has been explicitly documented.

Jakobsen and Johansen [138] simulated in situ stress conditions in their UPV experiments

using horizontal and vertical stress components of -11 = 13 MPa, and 9 33 = 20 MPa, respec-

tively. Sarout and Gu6guen [226] estimated an in situ hydrostatic stress using depth information

of 15 MPa . Using a similar approach, the in situ hydrostatic stress for the Kimmeridge shale

sample tested by Hornby [129] correlates well with the maximum confining pressure of 80 MPa

used during UPV testing. Based on these specific stress states, Table 6.1 shows the calcula-

tions for the relative errors between measured acoustic properties at specific pressure conditions

(minimum, mean, maximum, and in situ) and model predictions. The acoustic properties asso-

ciated with the mean pressure condition correspond to the arithmetic mean of those measured

at the minimum and maximum pressures, and it has been used throughout this report for

model comparisons. The relative errors were calculated using the five conventionally reported

acoustic velocities (Vp1. Vsi, VP3, Vss, VqP45) for each individual shale sample. With the ex-

ception of samples 3506 and 3536, the comparisons between model predictions and acoustic

properties measured at in situ stress conditions yield the most optimal values. For the data of

Hornby [129] and Jakobsen and Johansen [138], the in situ stress corresponds to the maximum

stress condition used during testing. For Sarout and Gu6guen [226], the comparison with mean

acoustic properties relates well to that with in situ stress conditions.

The results presented in Table 6.1 support the value of the engineering model as a predictive

tool for acoustic properties for shale under in situ conditions. This characteristic of the model

could explain, for example, the overestimation of acoustic properties of the Cretaceous shale

measured by Jones and Wang [146] and displayed in Figure 5-11. The set of acoustic properties

for this shale sample was measured at very low confining pressure (0.1 MPa), which does not

'As it was already mentioned in this report, data originated from the G2IC consortium is sensitive to propri-
etary restrictions.

"The authors recognize that the assumption of hydrostatic overburden stress neglects any deviatoric stress
contributions due to tectonic stress build-up.
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Mean relative error [%]
Reference Sample Min Mean Max In situ

[129] KIM 9 3 -2 -2
[138] 3492 23 17 13 13

3506 3 -1 -5 -5
3525 6 1 -4 -4
3536 -11 -13 -15 -15
3564 22 17 13 13

[226] CO 10 3 -3 2

Table 6.1: Comparisons between measured and predicted UPV elasticity for specific shale
samples. The terms min, mean, max, and in situ correspond to the type of UPV data used
for the comparison as they are to different pressure conditions. The mean relative errors for
each pressure condition (min, mean, max, in situ) were calculated using the individual relative
errors of velocity components Vp1, Vsi, VP3, Vs3 , VP45 corresponding to each shale sample.

replicate the stress conditions of a rock sample retrieved from a 1.5 km depth.

Clearly, the intended application of the model for assessment of in situ elasticity will require

further refinements, as in situ conditions could be sometimes difficult to characterize in field

applications and to replicate field conditions for laboratory setups [77, 129]. Furthermore, the

relations of pressure sensitivity due to crack or microfracture closure are not part of our modeling

framework for shale as unfractured media. In its present form, the proposed engineering model

captures the elastic anisotropy of shale resulting from geologic compaction and burial, in which

case the stress states of the rock define the resulting mineralogy and porosity configuration.

6.4.4 Effect of Frequency on Acoustic Predictions

Velocity dispersion, a daunting aspect of geophysics, is a generally accepted cause for the varia-

tion of measured acoustic velocities with frequency in fluid-saturated rocks . This phenomenon

is known to affect the three frequency bands of interest in exploration geophysics: seismic

(10-100 Hz), sonic (1-10 kHz), and ultrasonic (0.1-1 MHz) [292]. An assessment of the ef-

fects of frequency on the accuracy of acoustic properties of shale is presented in this section.

Having gained a thorough understanding of the poroelastic drained and undrained responses

of shale through micromechanics (Section 6.1), the assessment of frequency effects on seismic

and ultrasonic velocities is necessary, especially in view of the potential implementation of our

engineering model predictions of undrained elasticity for laboratory and field applications.
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Velocity dispersion in fluid-saturated rocks is attributed to several mechanisms, each of

which can dominate depending on the conditions of frequency, strain amplitude, and saturation

[293]. Frictional mechanisms, related to the sliding between grains, are associated with the

dependency of velocities on strain amplitudes, and are of significance in the near field of seismic

sources (e.g. earthquakes, explosions), where large strain amplitudes are present. Acoustic

scattering occurs in heterogeneous materials, in which the acoustic wavelengths are of similar

characteristic length scale as the material heterogeneities. The acoustic scattering reduces the

velocity of the primary pulse, which results in a velocity reduction with increasing frequency.

However, the effect in fluid-saturated rocks has not been clearly observed due to competing

fluid-flow effects. These fluid flow mechanics appear to dominate the dispersion phenomena

in rock at various scales: Biot-type dispersion at the macroscopic flow scale, and local-flow

dispersion at the grain scale.

The macroscopic flow, or Biot mechanism [26], corresponds to the response of the solid

frame 'dragging' the pore fluid during wave propagation. At low frequencies, the viscous skin

depth is much larger than the characteristic pore size, and the solid-fluid composite behaves

as a 'locked' system [291]. The poroelasticity theory of Biot for low frequencies corresponds to

the expressions presented earlier by Gassmann [97], which allow the rigorous computation of

undrained properties of a fluid-saturated composite from the properties of the dry frame and

the fluid (see Section 4.4.3). In contrast, the viscous skin depth is small for high frequencies,

causing the fluid to lag behind the response of the solid frame due to inertial effects. The result

of the Biot mechanism is the increase of acoustic velocity with increasing frequency. Another

dispersion effect due to fluid flow is the so-called local-flow. In this case, the heterogeneous

nature of the pore space in rock causes the material system to respond unevenly during wave

propagation. Pore pressure gradients are formed due to the low induced pressures in the so-

called stiff pores (or equant porosity) compared to the high induced pressures in compliant

pores (or crack-like porosity) upon wave compression. The generation of pore pressure gradients

causes the rock to display a stiffer response at high frequencies, compared to the instance of

low frequencies in which pore pressures are assumed equilibrated (see e.g. [87, 173, 174, 197]).

The contribution of local-flow to the overall dispersion is significant at low pressure states, and

it drastically decreases to almost Biot-type dispersion levels at high frequencies [291].
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Figure 6-11: Schematic of the compressional wave velocity Vp as a function of frequency for

a typical sandstone. Velocity in dry rock is generally assumed to be unaffected by dispersion.

Dot-like data points correspond to ultrasonic laboratory measurements. The triangle-like data

point corresponds to the extrapolated low frequency dry velocity. The square-like data point
represents the velocity in saturated rock calculated dry rock velocity and zero-frequency theory.
The total dispersion in saturated rock refers to the fractional increase of the high-frequency

velocity compared the low-frequency velocity. Adapted from Winkler [2921.

Figure 6-11 shows a schematic of the velocity dispersion phenomena as a function of fre-

quency. The figure illustrates the total velocity dispersion attributed to flow dispersion mech-

anisms that is expected from extensive measurements on sandstones. From testing of many

reservoir rocks, especially sandstone and granite, velocity measurements carried out at ul-

trasonic frequencies tend to be higher than velocities measured at seismic frequencies (see e.g.

[152, 191, 292]) as expected due to the velocity dispersion across frequency bands. Furthermore,

the frequency effects incorporated in Biot's theory do not account for the overall dispersion in

rocks [285], and hence the theory of local-flow adequately complements the explanations of the

observed acoustic behaviors. Interestingly, most of the knowledge of the velocity dispersion

effect has been derived from measurements and analyses of sandstone rocks. In geophysics

practice, the low-frequency Biot theory or equivalently Gassmann results are applicable only

for seismic data for high-porosity, high-permeability rocks saturated with low viscosity fluids.

For low-porosity, and low-permeability rocks, measured data at seismic frequencies are assumed

to be similar to laboratory data [282].
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Reference Liu [165] Sarout et al. [227]
Porosity, 0 [1] 0.04 0.10

Fluid viscosity, y [Pa.s] 1 x 10-3 1 x 10-3
Fluid density, pf [kg/m 3] 1 x 103  1 x 103

Rock permeability, K [M2] 1 x 10-20 1 x 10-21 - 100 x 10-21
Biot-type frequency, fBIOT [GHz] 6 x 102 2 x 102 - 2 x 104

Table 6.2: Estimates of the Biot-type frequency for data gathered from the open literature of
shale.

Given the different nature of shale as a sedimentary rock with low permeability and low

porosity, an assessment of the effects of frequency on acoustic properties is due at this point. For

this, we consider the differentiation between the practical limit between (relative) low and high

frequencies. Focusing first on the Biot-type dispersion mechanism, the characteristic frequency

separating low and high frequencies is [26]:

4ov
fBIOT = r' (6.5)

where #0 is the porosity, v the fluid viscosity, p/f the density of the pore fluid, and K the rock

permeability. Two estimates of (6.5) are calculated using data obtained from the open literature

of shale. The first study corresponds to Liu [165], who compiled shale data for several shale

materials from different formations. The second study of Sarout et al. [227] of the dynamic

properties of Callovo-Oxfordian shale is similar to the one considered in this thesis (specimen

CO [226], see Table 3.1). The data presented in these studies and the calculated characteristic

Biot dispersion frequency are displayed in Table 6.2.

The calculated frequency is significantly larger than the frequency used for UPV experi-

ments, typically carried out in the MHz range. The high value is directly related to the high

permeability of shale, compared to other sedimentary rocks (see Figure 2-4).

A similar computation for the local-flow mechanism proves to be challenging. The charac-

teristic frequency for local-flow requires estimating the squirt-flow length R [87]:

KF
flocal-flow = 2 R (6.6)
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where:

1 1 )-1

F = + (6.7a)

k3
Q =I (6.7b)

1 -0- kks

are functions of the fluid bulk modulus kf', the solid (mineral) bulk modulus ks, and the

drained rock modulus k. Fortunately, Liu [165] offered a first order estimate of the characteristic

dimension of the local flow length, R = 100 pm. Together with some rock and fluid properties

(kf' = 2.3 GPa, ks 33 GPa, k = 28 GPa), Liu reported an estimate for the local-flow

frequency of flocal-fow 5 Hz. For a squirt-type of dispersion mechanism, which is an equivalent

assessment of the dispersion at the grain-scale, the assessment of the pore (crack) aspect ratio

is necessary to establish the characteristic frequency [175, 197]:

squirt = kX (6.8)

where X the pore aspect ratio. For a characteristic microcrack in shale X = 1 x 10-3, the

squirt-flow frequency given by Liu [165] is fsquirt = 33 kHz. To summarize the calculations for

characteristic dispersion frequencies, Figure 6-12 displays a schematic of the estimates for Biot

and local-flow dispersion regimes with a focus on the different frequency bands of interest for

geophysics applications.

Although the proposed estimates are only rough approximations given the complexity of

shale rocks, the results in Figure 6-12 offer some insight into the applications of the engineering

model for shale for laboratory and field applications. Figure 6-12 suggests that sonic log data

and ultrasonic measurements in laboratory conditions might yield similar acoustic estimates

without the necessity of frequency-dispersion corrections. However, the preliminary assessment

presented in Figure 6-12 also suggests that local-flow dispersion may affect acoustic properties

of shale across all frequency bands of interest, including that of UPV testing. As a result,

the implementation of undrained poroelasticity theory to predict ultrasonic acoustic velocities,

which is perfectly fit for shale because of the high-frequency dispersion threshold at the GHz

range, may still be linked to velocity dispersion due to local flow.
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Figure 6-12: Schematic of the frequency range for the three frequency bands of interest in
geophysics applications. The results for velocity thresholds corresponding to the low (V) and
high (Voo) frequencies estimated for shale are also displayed. The estimates correspond to data
from [165, 227].
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Certainly, the engineering micromechanics model for shale herein proposed considers shale as

an uncracked medium. Consequently, the analysis of the anisotropic response of shale is entirely

based on the properties of shale's microstructure and intrinsic elastic properties, and any effects

of crack-like porosity or fractures are not included. This precludes the use of any additional

theoretical tools that could incorporate corrections for local-flow dispersion. In fact, local-

flow models are recognized to be of poorly predictive capabilities because they are extremely

dependent on microstructural features that are difficult to quantify [283, 2931. Nevertheless, it

is certainly important to quantify the expected dispersion effects of velocity prediction based

on our (zero frequency) undrained poroelasticity.

The task of quantifying the true magnitude of dispersion that might affect our model pre-

dictions is a challenging task. Fortunately, its magnitude in relation to acoustic measurements

of shale could be of second-order importance given the typically significant magnitude of in situ

states of stress, which are also emulated in laboratory testing. Although dispersion analysis is

still lacking for shale materials, data for other reservoir rocks shows that dispersion between

zero and ultrasonic frequencies is on the order of 10% at low confining stresses, and tends to

only a few percent at higher stresses [292]. Another component of the dispersion phenomenon

is the type of fluid saturating the specific rock. Oil saturated rocks exhibit significantly more

dispersion compared to brine-saturated, which is the case of most shales considered in this

study [291]. The effects of high confining pressures and low-viscosity saturating fluids relate

well to the shale data sets used for model development, for which most specimens are saturated

by low-viscosity fluids, and tested at effective stresses typically larger than 10 MPa. In order

to verify these arguments, Figure 6-13 displays the velocity predictions for the data of Sarout

and Gusguen [226] for dry and wet shale specimens. Among all shale literature references, this

particular one presents one of the most complete and rigorous experimental programs on shale

characterization.

The figure includes the cross-comparisons of measured and predicted drained and undrained

acoustic properties for similar shale specimens. The drained case is of significance as acoustic

properties of dry rocks are generally known to exhibit no dispersion [175, 292].

The model predicts very accurately the anisotropic acoustic properties for undrained con-

ditions, as it was already noted in Section 5.3.4. The average relative error for the different
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Figure 6-13: Comparisons between predicted and measured a) drained and b) undrained
acoustic properties obtained from UPV testing [226].

compressional and shear wave velocities was found to be approximately 3%. The comparisons

between measured and model predictions for drained (dry) conditions yield an average over-

prediction of 10%. Without more data available for directing a more rigorous verification, the

results from Figure 6-13 could shed some light on the effects of dispersion on the predictions

of acoustic properties. Provided that the model calibration efforts of section 5.2 were based on

comparisons between undrained poroelastic predictions and UPV measurements, the consistent

overprediction observed in Figure 6-13 is in line with the expected behavior as in Figure 6-11

if local-flow dispersion were to be present. The relative errors involved in this comparison are

encouraging for the application of the engineering micromechanics model to predict sonic and

ultrasonic wave velocities. However, caution must be necessary for potential implementations

for field applications, in which issues related to poor consolidation, presence of gas phases, and

most importantly, partial saturation conditions, could significantly alter the magnitude of the

dispersion phenomena affecting the measured acoustic properties.
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6.5 Prediction of Poroelastic Constants

The nanogranular behavior of shale has some important consequences on the poromechanical

properties of shale materials at different scales. Poroelastic parameters defining the intrinsic

behavior of the rock formation are critical input parameters to reservoir engineering and drilling

applications [5, 6]. To illustrate their importance, it is good practice to combine the undrained

form of Biot's state equation (4.115b) with the mass balance equation (Om/&t = -V -w) and

a Darcy fluid conduction law (w/p = -k/Tf -Vp), which yields for the single fluid saturated

case (see, for instance, [4]):

Op&E kJ
t= M j - : O + l : H (p) (6.9)

or equivalently, using (4.115a):

= -Bj: O + Mj (1 - eaj: BJ) : H (p) (6.10)
at at 7 ll

where kj is the intrinsic permeability of the porous material (of dimension [kj] = L2 ), 77f1 is

the dynamic viscosity of the fluid (of dimension [ri!1] - L- -MT--1), and H (p) - V (Vp) is the

Hessian function of the pressure p. These two classical relations of flow through (saturated)

deformable porous media show the importance of the Biot pore pressure coefficients af., and

the Skempton coefficients B!.. Due to the application of strain or stresses, the fluid pressure

locally increases, which sets the fluid in motion until the fluid pressure is re-equilibrated. The

focus of the next three sections is to shed light on the effect of the nanogranular nature of shales

at two different scales on these two poroelastic properties and their combination in the term

(1 - aj: Bj), all of which affect the fluid flow through the highly anisotropic microstructure

of shales.

6.5.1 Biot Pore Pressure Coefficients

The Biot pore pressure coefficient a is a key parameter in reservoir engineering and wellbore

drilling applications, as it weighs the influence of pore pressures within the context of (elastic)

effective stress analysis of rocks. Specifically, the Biot coefficient quantifies the compressibility
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of the skeleton of the porous material with respect to its solid phase, and provides a sense of

the overall compressibility of the rock structure [8]. In the isotropic case, the expression for this

pore pressure coefficient was first obtained by Gassmann in 1951 [97] for the case of a micro-

homogeneous porous media, and by Brown and Korringa in 1975 [45] and Rice and Cleary in

1976 [222] for general porous media with multiple minerals as constituents (see also [22, 236]):

#K a = 1 - 1 (6.11)

where K is the drained bulk modulus of the porous material, and k' is the bulk modulus of

the solid phase. The generalization of the isotropic micromechanics relation (6.11) to general

anisotropic two-phase solid-pore space composite materials is due to Dormieux et al. [54, 82, 83];

and it is used in our approach at level I of the porous clay composite, i.e. relation (4.85), which

can be rewritten with the help of (4.79) in the form:

1o < al =_ 1: (E - SS : Com) < 1 (6.12)

where oo - 1- q is the nanoporosity of the porous clay phase. The lower bound of the pore

pressure coefficient in (6.11) and (6.12) corresponds to the Voigt bound, whereas the upper

bound corresponds to the case of a (generalized) incompressible solid phase, which forms the

backbone of Terzaghi's soil mechanics theory. In the particular case of a transversely isotropic

solid phase and a transversely isotropic porous clay phase with similar axis of symmetry (in this

case X3), the tensor of Biot coefficients reduces to a diagonal form al = diag (a(1, al 1, al),

where ail = al 2 is the pore pressure coefficient characterizing the in-bedding plane porome-

chanical coupling behavior, and al characterizes the normal-to-bedding behavior:

al 1 - (Sil1 + S112) (Chi + C12) - S13 (C 1 + C12 + 2Cf 3) - S$3 Cf3  (6.13a)

a 33 = 1 - 2SsiCf3 - 2Sl2Cf3 - 2SI3 (Cf 3 +- C33 ) - S3C3(6.13b)

) -1C.
where S = are the components of the clay deposition compliance tensor, and C =

C (,q) are the components of the porous clay stiffness tensor (4.79). In contrast to the isotropic

expression (6.11), which is recovered from (6.13) in the form a 1 = als = ira' = 1 -
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(Sfi + 2S12) (Cfi + 2C12) for a micro- and macro- isotropic material, an experimental approach

to the determination of the pore pressure coefficients of the transversely isotropic material

would require the experimental determination of four components of C!. As an alternative,

the micromechanics model provides a means to estimate C' = C!. (77) for any shale material

from the sole knowledge of the clay packing density q, and to determine the Biot pore pressure

coefficients as continuous functions ail (7j) and al (7) of this clay packing density. The result,

which is displayed in Figure 6-14 as ai (, fic = 0), faithfully translates the polycrystal or

granular structure of the porous clay phase into Biot pore pressure coefficients, with aci = as =

1 below the solid percolation threshold, q < = 0.5, for which C! = 0; and al= a, = 0

for the asymptotic pure solid state, 7 = 1. In between those asymptotic values, ai (rI) and

a 33 (I) follow unique scaling relations, with a,, being marginally greater in magnitude than

C33 for the range of clay packing densities 0.5 < j < 1. This quasi-isotropy of the Biot

pore pressure coefficients can be explained by recognizing that although shale macroscopic

anisotropy originates from the transversely isotropic nature of the elementary building block,

the transverse isotropy (almost) cancels out in the tensor contraction SS : CIom in (6.12). As a

result, a33 () and a4s (71) take almost the same values in Figure 6-14. In fact, if C' = C' (77)

scaled perfectly linearly with the packing density, ail (I) and al (7) would take exactly the

same values. Indeed, using Cfiom = (2,q - 1) C' for the range 0.5 < 77 < 1 in (6.12) (which

is a good first approximation), the corresponding tensor of Biot pore pressure coefficients is

a' = 2<p 0 1.

Figure 6-14 also displays the macroscopic (level II) Biot pore pressure coefficients ai{ (q, finc)

and a1I (q, finc) determined from (4.107) in the form of isoparametric curves for various in-

clusion volume fraction values, as well as data points corresponding to shale-specific volume

fractions defined in the CDS, VDS-1, and VDS-2 data sets. From the very definition (4.107)

of all, it is readily understood that the macroscopic Biot coefficients are situated between the

following bounds defined by the level I Biot coefficients:

(1 - fic) a, (77) al (1 fi"c) < al (TI) (6.14)
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Figure 6-14: Model predictions of the Biot pore pressure coefficients aij, as continuous functions

of clay packing density for level I (finc = 0) and level II (fine > 0). Data points correspond

to the level II model predictions for shale-specific volume fractions defined in the CDS, VDS-1,
and VDS-2 data sets. Clay packing density and inclusion volume fraction estimates for the

shale data were obtained from mineralogy and bulk density information.
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where f n' is the (non-clay) inclusion volume fraction. Those bounds are confirmed in Figure

6-14: At the level of the porous clay-silt composite (level II), the pore pressure coefficients

all, all are all smaller in magnitude compared to those from level I due to the presence of the

silt inclusions. Furthermore, the difference in magnitude between a I (n, finc) and ail (, fi"c)

is even smaller than the difference between ali (,) and a (j), due to the isotropy of the added

silt inclusions.

In summary, despite the pronounced anisotropy of shale macroscopic elasticity, there is some

evidence that the macroscopic pore pressure sensitivity of shale is close to isotropic. That is,

in a strain-driven drilling situation carried out under undrained conditions, the fluid pressure

variation induced by strain (see expression (6.9)) is expected to be (almost) independent of the

direction of strain application.

6.5.2 Skempton Coefficients

In contrast to the Biot pore pressure coefficient, which specifies the coupling between strain

application and pore pressure variation, the Skempton coefficient (or Skempton's pore-pressure

build-up parameter) specifies the link between stress application and pore pressure variation.

Originally introduced by A.W. Skempton in 1954 [243], it is a common quantity employed in

poroelasticity to quantify the pressure build-up under undrained conditions as a consequence

of a macroscopic stress application (see, for instance, [24, 25, 70]). In the linear elastic isotropic

undrained case, the Skempton coefficient quantifies the fraction of the macroscopic mean stress

Em = itr (E) carried by the fluid pressure, and is defined by [70]:

Skun (6.15)

where Al is the overall Biot modulus, a the pore pressure coefficient, and ku = k + Ma 2

the undrained bulk modulus of the porous material. In the general anisotropic case, the pore-

pressure build up under undrained conditions is governed by the second-order tensor of Skemp-

ton coefficients (4.117) [118]:

B =p -lm-mo =MSI :a (6.16)
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Figure 6-15: Model predictions of Skempton coefficients Big as continuous functions of clay
packing density for level I (fine = 0) and level II (finc > 0). Data points correspond to
the level II predictions for shale-specific volume fractions (from mineralogy and bulk density)
defined in the CDS, VDS-1, and VDS-2 data sets.

where Sho = (Chomn + Ma 0 a)- 1 is the undrained elastic compliance tensor, and a the

second-order tensor of Biot pore pressure coefficients. In the transversely isotropic case, the

previous expression reduces to a diagonal form B = diag (Bu, Bu, B33), with:.

Bu = M [(Sh"~ + S1"') au + Sfa33] = M 3 3 -3 1 3  2 .
C (C{" ± C ) - 2 (C01 a

B3 3 = M [231"gan + Sgg0 3 3 ] = M 3 2'~ u)- aC' (6.17b)
CMs (Ch" + C{'7) - 2 (C")2

where S"are the components of Sh m (hunm)-1. Note that the isotropic case (6.15) is

recovered from (6.16) and (6.17) by letting Bs = tr (B) = 3Ma (S"+ 2SI]). The focus of

this section is to quanitively assess the Skempton coefficients at the two scales where shale

manifests itself as a porous medium; namely at the scale of the porous clay composite (level I)

and at the macroscopic scale of porous clay-silt inclusion composite (level II).
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Figure 6-16: Behavior of Skempton coefficients expressed in terms of tr(B ) and the ratio
Ba/BJI'. Level I predictions are displayed as continuous functions of clay packing density.
Level II predictions correspond to shale data.

At level I, the Skempton coefficients Bfi (T7) and B 3 (TI) are readily determined as continuous

functions of the clay packing density q, from the sole knowledge of the solid stiffness tensor

C' and the fluid bulk modulus kf'. The results are displayed in Figure 6-15 as B, (7I)

Big (, ft nl 0): Below the percolation threshold q < ro= 0 .5, where Cjhom - 0 and a = 1,

the Skempton coefficients take a unique value B' = 11. As expected, in the absence of the solid

phase contributing to the (drained) stiffness, any stress applied is entirely carried by the fluid

phase, i.e. Bs = tr (BI) = 1. Above the percolation threshold, Ba (77) is consistently greater

than Bf1 ( 7) for the range of clay packing densities 0.5 < 7j < 1; a trend which is contrary

to the tendency of Biot pore pressure coefficients observed in Figure 6-14. To examine this

behavior, we remind ourselves that the pore pressure coefficients in Figure 6-14 are comparable

in magnitude, so that one can let ail ~ls in (6.17) to obtain the following simplified form of

the ratio of Skempton coefficients:

B 3  C 'u" + C l,"" - 2C I " 1

B11 C 01" 13 (6.18)Bf 1 "3 Ju 13Iu
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Furthermore, since Cun and CI" are of similar magnitude (see for instance Figure 5-10),

B 3 (TI) > Bf1 (,q) appears in the first place as a consequence of the intrinsic anisotropy of shale

materials: the ratio B13/B 1 increases with the packing density from the percolation threshold,

where B33/B_ - 1, to the asymptotic solid state, 77 -+ 1, where B33 /B 1  3 (Figure 6-16). In

all cases, tr (B') < 1 as shown in Figure 6-16.

A second factor that affects the Skempton coefficients is the fluid compressibility. To il-

lustrate this dependency, Figure 6-17 shows a parametric study of the behavior of Skempton

coefficients at level I (the porous clay composite) predicted by the microporomechanical model

for different fluid compressibility values (expressed alternatively in terms of fluid bulk modulus

units). In addition to the compressibility of water (kf0 = 2.7 GPa at p = 40 MPa and 30'C),

a compressibility of oil (kfl = 1.8 GPa at p = 20 MPa and 31'C [286]) and a large, arbitrary

compressibility value were considered in Figure 6-17a. While the values of both Skempton co-

efficients, B13 and Bf1 , tend to become larger with increasing fluid bulk modulus (i.e. more

incompressible fluids), as it is expected due to the higher hydraulic stiffening of the composite

material, the ratio B, 3/B 1 displayed in Figure 6-17b is unaffected by the fluid's compressibil-

ity, which confirms the point that the anisotropy of the pore pressure build up in the porous

clay of shales is directly related to the solid's intrinsic anisotropy. Finally, the values of the

Skempton coefficients for all three cases comply with the condition tr (BI) < 1 for all clay

packing densities.

Lastly, Figures 6-15 and 6-16 also display the macroscopic (level II) Skempton coefficients

Bjf (q, finc) and BIj (7, finc), predicted by the poromechanical model in the form of isopara-

metric curves for various inclusion volume fraction values, as well as data points corresponding

to shale-specific volume fractions defined in the CDS, VDS-1, and VDS-2 data sets. As ex-

pected, the addition of isotropic silt inclusions to the porous clay phase reduces the Skempton

coefficients, so that:

BI" ( " fiC) < B' (r) (6.19)

The differences between Bfi and B{{ appear to be minimal for shale materials with clay

packing densities above the percolation threshold q > mO = 0.5. Another effect of the silt

inclusions is observed in Figure 6-16 for the ratio BfJ/Bff, which is smaller than B33 /B 1 for

all clay packing densities above the percolation threshold. This behavior is attributed to the
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level II homogenization of the transverse isotropic porous clay composite at level I and the

added isotropic silt inclusions. Nevertheless, the Skempton coefficient B"j is generally greater

than Bff by at least 40% for the shale materials presented in Figure 6-15 with clay packing

densities above the percolation threshold. As a consequence, any change of stress normal to

the bedding plane affects the pore pressure more than a change of the in-plane stresses. This

behavior contrasts the strain-driven undrained situation, which is (almost) independent of the

direction of strain application.

6.5.3 Gassmann-Berryman Poroelastic Coupling Parameter

Thus far, a1 and Bj show different scaling with the packing density of the porous clay phase,

and the non-clay volume fraction. A convenient way to combine those two poroelastic constants

is in form of the Gassmann-Berryman poroelastic coupling parameter, 1 -- a: Bj, which scales

the fluid transport term in (6.10). In the isotropic case, this scalar factor expresses the ratio of

drained-to-undrained bulk modulus (see [22, 51, 97]):

k
1 - aBs - k (6.20)

where k" is the undrained bulk modulus, k the drained bulk modulus, a the isotropic pore

pressure coefficient (6.11), and Bs the Skempton coefficient (6.15). The Gassmann-Berryman

coupling parameter (6.20), which is used in reservoir engineering along with other derived results

from Gassmann's work [97] as tools for fluid identification, estimates the strength of the coupling

between mechanical and hydraulic effects within the framework of poroelasticity analysis [304].

Indeed, for aBs < 1, there is little difference between drained and undrained conditions,

for which reason the hydraulic stiffening of the porous medium under undrained conditions

becomes negligible. From available water-saturated rock data, Zimmerman [304] showed that

the poroelastic coupling parameter ranges from (1 - aBs) = 0.43 to (1 - aBs) = 0.90; thus

testifying to the considerable hydromechanical coupling in rocks. The focus of this section is

to quantitatively assess this coupling parameter for shale, both at the scale of the porous clay

composite and at the macroscopic scale (levels I and II of our multi-scale structure model) by

using the developed microporomechanics model.

To start with, the generalization of (6.20) to the anisotropic case yields:
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1 a1 : Bj = Su :: Chom - 5 (6.21)

where the operation :: represents a fourth-order tensor contraction operation. Since both S jm

and Cihom (J = I,11) are accessible by the microporomechanics model, the coupling coefficient

1 - aj: Bj is obtained as a mere application of our model, based on the knowledge of the solid

stiffness tensor C' and the fluid bulk modulus kf' as the shale invariant input parameters, and

the clay packing density 77 and the inclusion volume fraction fi"l as shale-specific data.

The resulting curve for level I (denoted by f"' = 0) is displayed in Figure 6-18. Below

the percolation threshold 71 < 7o = 0.5, where a' - 1 and tr (BI) = 1, the coupling scalar

is zero due to the zero drained elastic stiffness of the porous clay phase below the percolation

threshold. Above the percolation threshold, the value of the coupling factor monotonically

increases towards lim., 1 (1 - a,: B') = 1 which is reached for the asymptotic solid state,

77 -* 1, for which obviously all hydromechanical coupling cancels out.

The effect of the addition of silt-inclusions (of volume fraction f "c) on the coupling coef-

ficient 1 - al: BI" at the macroscopic scale (level II) is also shown in Figure 6-18. Because

a, (77) > ail (1, fi") and B' (,q) > B' (q, finc) (see expressions (6.14) and (6.19)), it is readily

understood that:

1 - al: BI 1  - a': B (6.22)

In particular, below the percolation thresholds of both the clay phase and the inclusion phase,

77 < 0.5 and fi"e < 0.5, where neither clay nor silt contribute to the drained stiffness, we

observe that 1 - all: BI" = 0, which is a consequence of the self-consistent model applied

on both level I and level II. In turn, when the clay packing density is below the percolation

threshold, 71 < 0.5, and fi"C > 0.5, so that the load bearing phase is the non-clay inclusion

phase (representing de facto a 'clean' sandstone), the coupling coefficient quickly increases, as

shown by the isoparametric curves at level II in Figure 6-18 (curves labeled finc = 0.6 and

finc = 0.7). On the other hand, when the load bearing phase is the clay phase (,q > 0.5), the

hydromechanical coupling 1 - all: BI" is recognized to be dominantly driven by the level I

properties. This is the case of most shale materials of the CDS, VDS-1, and VDS-2 data sets

considered in this study, displayed as data points in Figure 6-18. The computed values for

273



1.0

0.8 0.6

0.6-

~0.4 f iflC05

0.2 - f'"l=0.3

0.0 1f'" I

0.00 0.25 0.50 0.75 1.00

Clay packing density, rq [1]

Figure 6-18: Model predictions of the Gassmann-Berryman poroelastic coupling parameter

1 - a: Bj, as continuous functions of clay packing density for level I (fin = 0) and level

II ( finc > 0). Data points correspond to the level II model predictions for shale-specific

volume fractions (obtained from mineralogy-density and mineralogy-porosity) defined in the

CDS, VDS-1, and VDS-2 data sets.
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the Gassmann-Berryman parameter for most shale materials range between 0.39 to 0.97, an

observation which is in very close agreement with the values reported for water-saturated rock

data by Zimmerman [304]. This finding justifies a posteriori the use of the microporomechanics

theory for shale; that is, the poroelastic coupling in shale is of critical importance for the

accurate prediction of shale's transversely isotropic poroelastic behavior.

6.5.4 Sensitivity to Model Input Parameters

The present discussion cannot be closed without a sensitivity study of the model with respect to

the two shale-specific model input parameters, the clay packing density, 7, and the (non-clay)

inclusion volume fraction, fi"c. Both 71 and fife exhibit some variability depending on the

particular experimental means for assessing the porosity of shale (see Figure 3-1).

Figure 6-19 displays the comparison between two sets of model predictions of the Biot pore

pressure coefficients aij, and the Skempton coefficients Bij, at the macroscopic scale (level II) for

all shales in the CDS, VDS-1, and VDS-2 data sets. The first set of model predictions (displayed

in Figure 6-19 on the y-axis) was calculated using input parameters derived from bulk density

information (namely qmi, fmi ). The second set of model predictions (displayed in Figure

6-19 on the x-axis) was calculated using input parameters derived from porosity information

(namely 77max, fmfx; refer to Tables 3.9 and 3.10). The general trend found in the cross-plots of

Figure 6-19 is that the use of the bulk density for porosity determination (using relation (3.1))

yields greater values for the Biot and Skempton coefficients than the use of direct porosity

measurements. This trend translates into poroelastic constants the well-known observation

that direct porosity measurement techniques (like MIP) underestimate the actual porosity (and

thus overestimate the clay packing density and the inclusion volume fraction) compared to

indirect measurements using e.g. bulk density values [79]. Since the poroelastic coefficients

W![ BIJ scale inversely proportional with the input parameters 7), fr"C (see Figures 6-14,6-

15), it is therefore not surprising that lower (aff, Bff) values are obtained with (T7max, fAix)
compared to the (aff, BJI) values obtained with (77mm, fi). As Figure 6-19 shows, this trend

is more pronounced for the Biot pore pressure coefficients than for the Skempton coefficients.

The results of a quantitative analysis of the sensitivity of the poroelastic coefficients (a, BJ)

are presented in Table 6.3. The table shows how the variability of the model input parameters
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Input parameters Model prediction

77in all a33 Bi B33
e e e e, e e e e es e e

CDS 5 3 4 2 -14 10 -15 10 -11 7 -8 4
VDS(') 22 18 12 7 -37 19 -37 19 -28 15 -24 15

Table 6.3: Sensitivity of model predictions of Biot pore pressure coefficients and Skempton
coefficients due to the variability of input parameters q and f"C.
The mean and the standard deviation of the relative errors (variability), 8 and e, for the input
parameters were calculated between their minimum and maximum estimates obtained from
mineralogy-bulk density and mineralogy-porosity information, respectively. The mean and the
standard deviation of the relative errors for the model predictions were calculated between
model results obtained from minimum qfj"c values and those obtained from maximum 7fiflc

values. The reference values for relative error calculations are the input parameters obtained
from mineralogy and bulk density information. Relative errors are presented in percent units.
(1) The VDS data set encompases the information from the VDS-1 and VDS-2 data sets. Repeated shale speci-
mens in the CDS and VDS-1 data sets are only considered in the CDS data set for relative error computations.

(j, finc) translates into the variability of model output parameters (alf, Bf). The variability

of both input and output parameters is expressed in the form of relative errors between different

estimates: one using bulk density information, the other, porosity information. It is found that

the variability in (71, fi") entails a variability of the same order of the Skempton coefficients

B!!, while it is twice (for CDS) and three times (for VDS) higher for the Biot pore pressure

coefficients aff. This underlines the importance of an accurate determination of the porosity

of shale as a prerequisite for a successful prediction of poroelastic properties.

6.6 Chapter Summary

This chapter has presented an extended discussion of the microporoelastic engineering model

for shale and its critical elements. A fundamental building block of shale elasticity behavior

has been identified. This elementary unit of solid clay is (at least) transversely isotropic, and

characterized by a set of unique in situ stiffness properties. These stiffness properties appear

to be little affected by the specific shale mineralogy, and are well below reported stiffness

values for pure clay minerals. The orientation of the building blocks is governed by the shale

deposition direction; and it is thus a consequence of the burial diagenesis of this depository rock.

This intrinsic anisotropy of the elementary building block is at the core of shale macroscopic

anisotropy. At the level of the porous clay fabric, the oriented clay particles in shale behave
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at the microscale like a nanogranular material, transmitting forces over randomly oriented

contact surfaces that activate the intrinsic elastic anisotropy of the elementary building block.

The nanogranular nature of shale and the randomness of the contact surface orientation are

typed into our approach through the application of a self-consistent micromechanical model of

spherical fundamental building blocks of transversely isotropic properties, which mimics well

the experimentally found clay packing density threshold qo = 0.5. The 'effective' porous clay

properties, therefore, are governed by both the shale-invariant properties and the shale-specific

clay packing density. This packing density neatly summarizes the porosity and clay mineralogy

information about the material into one simply understood parameter. In contrast to previous

approaches, there is no need in our model to consider additional orientation functions of the clay

particles to enhance the intrinsic anisotropy. The second parameter relating to mineralogy that

affects shale macroscopic behavior is the (non-clay) silt inclusion volume fraction. While the

addition of silt inclusions obviously stiffens the effective porous clay properties, the essence of

shale macroscopic behavior originates from the transversely isotropic nature of the clay fabric.

This multi-scale micromechanical picture of shale elasticity translates into a unique poroelas-

tic signature of shale materials, which is critical for the accurate prediction of shale acoustic

behavior: Due to the intrinsic anisotropy of the elementary building block and the scaling of

this anisotropy with the clay packing density, the Biot pore pressure coefficients a are almost

isotropic. By contrast, the Skempton coefficients, which quantify the pore pressure build-

up under undrained conditions in consequence of a macroscopic stress application, are highly

anisotropic, with an anisotropy that scales with the packing density. Finally, the Gassmann-

Berryman parameter, which neatly summarizes both Biot coefficients and Skempton coefficients

into one single parameter that characterizes the hydromechanical coupling, provides clear ev-

idence that such coupling in shale is of considerable magnitude that cannot be neglected in

poroelasticity analysis of shale. Moreover, given the shale-invariant properties of the fundamen-

tal building block of shales, it is recognized that the poroelastic response of shale predominantly

depends on the two shale-specific properties: clay packing density r, and non-clay inclusion vol-

ume fraction f "'. More specifically, the clay packing density is recognized to be at the very

origin of shale poroelastic sensitivity, while the presence of inclusion at larger scales weighs

this sensitivity in proportion of the macroscopic porous clay volume fraction. The fact that
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those two parameters, q and f nC, delimitate shale macroscopic diversity, makes the proposed

two-parameter microporoelastic model even more appealing for geophysics and exploitation

engineering applications, although issues related to pressure and frequency dependencies of

acoustic properties would still require further investigation.
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Chapter 7

Microporoelastic Model Extension

and Field Applications

The micromechanics model developed in Chapters 4 through 6 was validated as a predictive

engineering tool for the multi-scale anisotropic poroelasticity of shale. Its original development

focused on kerogen-free shales, i.e. shale rocks with minimum organic content. In this chapter,

the realm of the microporoelastic framework is extended to the modeling of kerogen-rich shale,

in which the presence of kerogen results in a more compliant elastic response. The chapter

continues with the presentation of two pilot studies related to the application of the model for

the poroelastic characterization of shale formations. The microporoelastic model, which has

been implemented in a software package, uses as inputs the mineralogy and porosity information

from state-of-the-art logging tools employed in petroleum industry operations. These sample

field applications of the model highlight its potential as an engineering tool and bring forward

several aspects of its implementation that will require further investigation.

7.1 Microporoelasticity of Kerogen-Rich Shale

7.1.1 Model Extension to Kerogen-Rich Shale

The importance of hydrocarbon source rocks as major oil and gas plays has increased in the

past decades [2]. The presence of kerogen, a precursor of oil and gas, significantly alters the
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mechanical response of source rocks in terms of their acoustic response and anisotropy [277, 278].

The microporoelastic engineering model for shale is extended to accommodate the prediction of

acoustic velocities for kerogen-rich shales by modifying the homogenization treatments at levels

0 and I of the multi-scale structure thought-model.

Advanced observational methods have shown kerogens in hydrocarbon-bearing shales as

aggregates of various sizes, ranging from sub-micrometers to tens of micrometers. TEM obser-

vations revealed that kerogen manifests itself as lamellar structures with nanometer thicknesses

forming sheets [102] or as amorphous organic matter with granular and homogeneous mor-

phologies [74]. At micrometer scales, SEM images of the microstructure of kerogen-rich shales

characterized it as a dispersion of kerogen in the form of microlayers among clay phases, as well

as layers containing clay particles [278] (Figure 7-1). Given the similar length scales, the intro-

duction of the kerogen phase and its effects on the mechanical response of shale are modeled

through the homogenization of elastic properties of the kerogen and solid clay phases at level

0, with resulting properties:

Chom Ck -|- (I - fk) (Cs - Cs ) : s (7.1)

where Ck is the stiffness tensor of the kerogen phase and fk the relative volume fraction of

kerogen. The homogenized clay/kerogen stiffness Csom enters the multi-scale formulation at

level I by substituting C'om instead of the compacted clay stiffness C' in (4.98). With this

proposed upscaling methodology, kerogen is treated akin to a clay mineral phase, and thus the

relative volume fraction of kerogen is calculated as (see Section 3.4):

fk = Vk (7.2)
i=CAI vii=1

where Vk is the volume of kerogen and E C" V' the total volume of clay mineral (CM) phases

and kerogen. The computation of the clay packing density in (3.5) also is modified accordingly.

The stiffness of the solid kerogen phase is given by data available in the literature: bulk modulus

kk = 6.8 GPa, and shear modulus gk - 3.6 GPa [278], which in tensor notation reads as:

'The work presented here has been published in [203].
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Figure 7-1: SEM micrograph of black shale. Kerogen (shown in black) is distributed in the

microstructure in the form of microlayers among the clay matrix, as well as layers containing

numbers of clay particles. Image from [278].

Ck = 3kkJ+ 2gkK (7.3)

The choice of modeling kerogen as a solid phase is in accordance with laboratory exper-

imental conditions during ultrasonic pulse velocity measurements on various Woodford shale

specimens used for model validation. In situ mechanical characterization of kerogen-rich shales

might require incorporating temperature effects, because organic materials are viewed as amor-

phous composites prone to liquefaction with increasing temperature [278]. The mechanical

interaction between the clay and kerogen phases is modeled using the self-consistent scheme

(refer to Section 4.2.4). In addition, we model the kerogen phase with a spherical morphology.

Although simplifying the complex morphology of the kerogen phase, these modeling choices

recognize the disordered nature of the kerogen-rich clay fabric in shale and do not introduce

structural sources of anisotropy resulting from particle shapes. The relevance of these assump-

tions shall be assessed through comparisons with experimental data at levels I and II. This first

approach to modeling the effect of kerogen, namely, the homogenization of clay/kerogen at level

0 and the introduction of porosity at level I, includes the necessary elements for the prediction

of nano- and macroscopic elasticity of kerogen-rich shale. The low stiffness properties of kero-
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gen are expected to reduce the acoustic properties at micro- and macroscales. In addition, the

model is equipped to yield predictions for kerogen-rich shales with non-negligible porosities, in

contrast to previous modeling attempts [278]. Finally, the present model extension does not

quantify the effects of kerogen maturation on elastic anisotropy.

7.1.2 Comparisons with Nanoindentation and UPV Experiments

The microporoelastic model extension for kerogen-rich shales is validated at levels I and II of the

multi-scale structure model through comparisons with nanoindentation and UPV measurements

gathered for five Woodford shale specimens. The clay packing density, inclusion volume fraction,

and relative kerogen volume fraction values for the Woodford shale samples are detailed in

Chapter 3, and represent the input parameters to generate model predictions at the different

length scales.

For validation at level I, the model is implemented in a forward application to develop

drained stiffness estimates Cfj,hom (4.98 using as inputs the clay stiffness properties (7.1) and

the clay packing density calculated for each shale specimen. The stiffness values are then

compressed into equivalent indentation moduli A 1 , M 3 using the expressions (3.28a)-(3.28b),

which represent the elasticity content sensed by an indentation test in the direction normal

to the axis of material symmetry (x1, X2 axes) and in the direction of material symmetry

(x3-axis), respectively. The resulting continuous functions are displayed in Figure 7-2. Two

sets of predicted moduli are displayed for different relative volume fractions of kerogen fk -

0, 0.4. The indentation modulus curves for fk = 0 correspond to kerogen-free conditions,

whereas the curves for kerogen-rich shale were generated for an average value of fk = 0.4

which is characteristic of the Woodford samples considered in this study. The solid data points

and vertical error bars correspond to the mean and standard deviation of the experimental

indentation moduli measured for the porous clay phases of the Woodford shale specimens.

The horizontal error bar denotes the variability of the clay packing density depending on the

information used for computation (either mineralogy/porosity or mineralogy/bulk density). In

addition to the Woodford shale data, indentation data for G2IC shales is displayed in Figure 7-2.

The predicted indentation response for Woodford shale samples tends to slightly underpredict

the measured nanoindentation moduli. Compared to G2IC shales, the differences in elastic
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Figure 7-2: Comparison between model predictions (lines) and nanoindentation results (data

points) for level I - the porous clay phase in shale. The predicted indentation modulus curves

are displayed for two values of the relative kerogen volume fraction fk = 0,0.4. The curves for

fk = 0 correspond to kerogen-free conditions. The curves for fk = 0.4 are representative of the

Woodford shale samples. Vertical error bars in the experimental data represent the standard

deviations of indentation results. Horizontal error bars represent the variability of clay packing

density estimates. The Woodford shale indentation data was provided in Table 3.16.

moduli are also somewhat reduced for Woodford shales. This reduced anisotropic response

captured by nanoindentation is attributed to the presence of a kerogen phase with pronounced

amorphous morphology, instead of sheet-like kerogen structures that would result in an increased

structural anisotropy.

The performance of the model extension for kerogen-rich shale as a predictive tool for macro-

scopic elasticity is tested by comparing acoustic predictions at level II to UPV measurements.

The model is implemented in a forward application to develop undrained stiffness estimates in

the form of acoustic velocities for the composite of porous clay and silt inclusions (see Section

4.4). Predicted acoustic velocities are reported in the customary compressional- and shear-wave

velocities in the normal-to-bedding and parallel-to-bedding directions. In addition, the (quasi)
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Figure 7-3: Comparison of predicted acoustic velocities and experimental UPV measurements
for Woodford shale data. Horizontal error bars represent the variability of model predictions
depending on input volume fraction values.

P-wave velocity at 450 is reported. The input data for the implementation of the model are

the clay packing density 'r and inclusion volume fraction ffe, which are calculated for each

shale specimen from reported mineralogy and porosity measurements, and alternatively from

mineralogy and density measurements. Figure 7-3 displays the comparisons between experi-

mental and predicted acoustic velocities for the Woodford shale data. The horizontal error bars

represent the range of predicted elasticity values given the two different sets of clay packing

density and inclusion volume fraction estimates. Based on the results presented in Figure 7-3,

predicted acoustic velocities compare adequately to UPV measurements for the kerogen-rich

Woodford shales.

7.1.3 Effects of Kerogen

The presence of kerogen has long been recognized as a significant factor modifying the physical

and mechanical properties of shale. In particular, kerogen-rich shales exhibit low porosities and

bulk densities, and high acoustic anisotropies [278]. After validation of the model predictions

for kerogen-rich shales using the Woodford shale data, the focus of this section is to assess
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quantitatively the effects of kerogen on the anisotropic acoustic behavior of shale.

Figure 7-4 displays isoparametric curves of acoustic velocities in the normal- and parallel-to-

bedding directions as functions of clay packing density for two characteristic values of inclusion

volume fraction: fn"' - 0 (the porous clay composite) and fn' = 0.4 (a representative value

for shale materials). In addition, isoparametric curves for relative kerogen volume fractions,

fk = 0,0.1,0.3,0.5 are presented in the figure. Although there are minor differences in the

plotted scales between the compressional- and shear-wave velocity graphs, the softening behav-

ior of kerogen is observed to have a larger effect on the parallel-to-bedding acoustic properties

compared with normal-to-bedding. In addition, the stiffness softening appears to have similar

magnitudes for both cases of inclusion volume fractions.

Figure 7-4 also shows the parametric curves of Thomsen parameters (3.68a)-(3.68c) for the

two cases of inclusion volume fraction, fi"" = 0,0.4, and different kerogen volume fractions.

The overall trend emerging from the analysis of these plots is the decrease in anisotropy values

for all Thomsen parameters. The observed predictions are a direct consequence of the assumed

isotropic elasticity and morphology of the kerogen phase at level 0 of the multi-scale model.

The acoustic properties of isolated kerogen have been characterized, at best, by quasi-isotropic

values, as used in our model (see (7.3)). This available isotropic description of kerogen translates

into a decreasing degree of elastic anisotropy at levels I and II. In addition, the modeling choice

of treating the kerogen phase as polycrystal grains with spherical morphology does not enhance

the anisotropy of model predictions. The model predictions for kerogen-rich shales, represented

by the Woodford shale specimens, display very good agreement with UPV elasticity data as

observed in Figure 7-3. Consequently, there is an adequate agreement between the experimental

data shown in Figure 7-4 a-d and the isoparametric curves, i.e. most experimental data are

situated close to the curves with fifnc = 0.40 and fk - 0.3-0.5. For Thomsen parameters, it

seems that the model predictions compare well for only the S-wave anisotropy (-y parameter).

The poorest comparisons are observed for the 3* parameter, and may hint to the existence of

structural sources of anisotropy in these kerogen-rich materials.
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Figure 7-4: Effects of kerogen on (a-d) the acoustic properties in the form of isoparametric
curves, and (e-g) the elastic anisotropy in terms of Thomsen parameters of shale materials.
Triangles correspond to experimental data on Woodford shale, which have been plotted based
on the calculated mean clay packing density and measured acoustic wave velocities.
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7.2 Field Applications

7.2.1 Industrial Motivation

The increasing importance of many shale formations as prolific sources of natural gas in the U.S.

has challenged the oil and gas industries to develop improved solutions for their exploitation.

The profitable production from gas shale, due to its intrinsically low permeabilities, rests on

the success of horizontal well drilling and hydraulic fracturing operations [172], which in turn

depend on the adequate characterization of the anisotropic poromechanics of the formation [89].

Current technologies used for the estimation of mechanical properties of sub-surface formations

such as advanced sonic logs are primarily designed to assess elastic properties parallel to the

borehole axis. In contrast, laboratory testing of core samples can reliably estimate the full

anisotropic characteristics of shale at the costs of time-consuming and expensive core retrieval

operations. A pressing need exists for the real-time assessment of the anisotropic poroelasticity

of shale formations.

The microporoelastic engineering model detailed in this thesis is proposed as a potential

solution for the field characterization of shale. Based on input parameters related to mineralogy

and porosity, the model has been adapted to predict the anisotropy and poroelastic parameters

of shale formations in real-time applications through the use of recently developed geochemical

logs [208]. The rest of this section showcases the first field applications of the microporoelastic

model for shale. The MIT-OU GeoGenome Industry Consortium has conducted two pilot

studies in which a shallow well (70 m) in a Woodford shale formation (Arkoma basin, Oklahoma)

and a deep well (2.5 km) in a Barnett shale formation (Fort Worth basin, Texas) have been

cored and logged. The objectives of these field tests, complemented by core data analyses, were

to compare sonic log and ultrasonic pulse velocity data with model predictions and to evaluate

the applicability of the model as a tool for petroleum engineering applications2

2 The work presented here has been published in [2, 3, 261]. The field studies and the implementation of the
model in a software package for the real-time characterization of shale formations have been conducted by M.
Tran and S. Hoang from the University of Oklahoma.
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7.2.2 Implementation of the Microporoelastic Model in Pilot Studies

The microporoelastic model for shale has been implemented into a software package called Quan-

titative GeoGenome Mineralogy Simulator 3 , QGGMS@. The software analyzes mineralogy and

porosity data obtained from logging tools, and provides estimates of the anisotropic, poroelastic

properties of the investigated shale formation. Recall that mineralogy and porosity constitute

the information necessary for calculating the two input parameters for the microporoelastic

engineering model: the clay packing density and the inclusion volume fraction. For the inves-

tigations of the Woodford and Barnett formations, a suite of logs including Element Capture

Spectroscopy (ECS), log porosity, and Sonic Scanner was run for each well. The ECS sonde

(developed by Schlumberger [233]) targets the mineralogy evaluation of a formation by measur-

ing and processing gamma ray spectra. Tran et al. [3] determined good correlations between

the mineralogy estimates obtained from ECS logs and laboratory measurements performed on

selected core sample using X-ray diffraction (XRD) analysis. Figure 7-5 displays graphically

the mineralogy composition of the Woodford and Barnett shales as obtained from ECS logging.

In contrast to comparable measurements between ECS and laboratory-derived mineralogies,

the assessments of porosity in field and laboratory setups may yield different results. Data

obtained for the Woodford shale formation showed relative differences of approximately 24%

between log-porosity and porosity measured by mercury intrusion porosimetry (MIP) in labo-

ratory conditions [261]. Before its use for modeling, the log-porosity was calibrated using MIP

values, as shown in Figure 7-6. The use of porosity estimates based on the MIP method is

considered more relevant for the application of the microporoelastic model, which treats the

porosity in the composite medium as interconnected. The mineralogy compositions provided

by ECS logs and the calibrated log-porosities served as the inputs for generating predictions of

poroelastic properties for the Woodford and Barnett formations.

The results of the implementation of the model for the characterization of the Woodford

formation along with the poroelastic properties measured in sonic logging and UPV experiments

are shown in Figure 7-7. The acoustic properties measured by the Sonic Scanner log (developed

by Schlumberger [232]) were only available for the normal-to-bedding direction, which coincides

3The software package is property of the PoroMechanics Institute, University of Oklahoma.
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Figure 7-5: Summary of mineralogy results obtained from Element Capture Spectroscopy (ECS)
logs for a) the Woodford formation, and b) the Barnett formation. Adapted from [3].
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Figure 7-6: Porosity estimates for the Woodford formation: log porosity #1og, calibrated log
porosity, #log,calibrated, and MIP porosity #Hg. Adapted from [3].
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with the borehole axis. The elastic properties are given in terms of engineering moduli, which

are related to the elastic constants Cj by:

ClIC33 + C12C.33 - 2C23
E3 = 13 + 12 13 (7.4a)

G3 - C44 (7.4b)

V13 = (7.4c)
C11 + C12

In addition to the elastic constants, the sonic log also provides an estimate for the Biot pore

pressure coefficient a3 in the direction normal-to-bedding (see Section 6.5). The UPV data

displayed in Figure 7-7 corresponds to core samples analyzed in laboratory conditions. In

general, the simulated elastic properties using the microporoelastic model compared adequately

to the UPV data at selected intervals. This finding was already presented in Section 7.1, as

the UPV data generated for some of the core samples was employed for the validation of the

microporoelastic model extension to kerogen-rich shale. The model predictions and UPV data

corresponding to the Young's modulus E3 and shear modulus G 3 shown in Figure 7-7 tend to

be larger than the responses measured through sonic logging. Improved comparisons are found

for the Poisson's ratio V13 and the Biot pore pressure coefficient a3-

The results for the characterization of the Barnett formation are presented in Figure 7-8.

Unfortunately, core samples were not available for laboratory characterization. For this shale

formation, a similar suite of logs as that obtained for the Woodford formation was run. The

sonic data and the model predictions are displayed for two geological intervals that are separated

by the Forestberg calcite lense [3]. A good agreement between sonic data and simulated Young's

and shear moduli is observed in Figure 7-8. The mean relative errors for the engineering moduli

corresponding to the Upper Barnett section are approximately 15%, whereas those estimated

for the Lower Barnett section are less than 7% [3].

These two pilot studies represent the first implementations of the model for the field charac-

terization of shale formations. The better quantitative comparisons reached for Barnett shale

are attributed to the calibration of the microporoelastic model using shale data obtained at

moderate confining pressures. As discussed in Section 6.4.3, the pressure sensitivity of acoustic

properties is not explicitly considered by the microporoelastic model. There are also several
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Figure 7-7: Comparison of engineering elastic constants in the normal-to-bedding direction
estimated by Sonic Scanner, UPV measurements, and model predictions for the Woodford
formation. The Biot pore pressure coefficient is also reported. Adapted from [3, 261].

293

Shear modulus, G3 [GPa]
0 5 10 15

- -------- - .........



21o 2180

- Sonic - Sonic
- Model - Model

2100 2200

2220 - 2220 -

2240 2240

2260 2260

22eO - 2280

2300- 2300

2320 - 2320

2340 -2340

2350 2360

Figure 7-8: Comparison of engineering elastic constants in the normal-to-bedding direction
estimated by Sonic Scanner and model predictions for the Barnett formation. Adapted from

[3}.

294

Young's modulus, E3 [GPa]
10 30 50 70 s>

Shear modulus, G3 [GPa]
0 10 20 30 40



aspects that require further investigation in order to ensure the use of the microporoelastic

model as an engineering tool for field applications. The assessments of porosity in field and

laboratory setups tend to differ depending on the techniques. Consequently, correlation studies

between different methods should be developed as porosity is a key parameter for estimating the

clay packing density and the inclusion volume fraction. For the characterization of deep forma-

tions, temperature variations could have considerable effects on the predictions of poroelastic

properties. The model extension discussed in Section 7.1 considers kerogen as a quasi-solid in

view of laboratory conditions associated to UPV experiments. A different scenario could be en-

countered in deep shale formations, in which the kerogen phase at elevated temperatures could

behave as a more compliant mechanical phase. The presence of different pore fluids and unsat-

urated conditions are common occurrences in shale formations, and are not supported by the

model. The mechanical properties of water and fully saturated conditions are assumed as rep-

resentative for these field implementations of the model. The dependency of acoustic properties

on frequency also requires further experimental studies, although the preliminary calculations

presented in Section 6.4.4 suggest that dispersion effects for the sonic and ultrasonic frequency

ranges may be of similar magnitudes. Nevertheless, the quantification of dispersion effects in

acoustic measurements is crucial for appropriate field characterization. Finally, the applica-

tion of the microporoelastic model to large formations neglects any large scale discontinuities

such as fractures or dislocations. The original development of the model is restricted to intact

shale rock. Such configuration is associated with laboratory testing (e.g. UPV experiments)

of bench-size rock specimens. However, the results from the two field applications described in

this chapter encourage the potential use of the microporoelastic engineering model as a baseline

characterization of the intrinsic anisotropy of shale formations.

7.3 Chapter Summary

In this chapter, the engineering model for anisotropic poroelasticity was adapted for the pre-

diction of properties of kerogen-rich shale materials. The decrease in stiffness induced by the

addition of the kerogen phase at the porous clay composite level allows the micromechanical

model to predict effectively the macroscopic elastic behaviors of hydrocarbon bearing rocks.
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The model has been implemented in two pilot studies of actual shale formations in an effort

to investigate its applicability for formation characterization. Using only on mineralogy and

porosity information, the model appears to capture the trends of acoustic properties for the

Woodford and Barnett formations as estimated by sonic logging tools. These pilot field appli-

cations represent the first steps toward extending the model originally developed for laboratory

bench-scale samples to in situ formation characterization. Further studies will be needed for the

satisfactory evaluation of the effects of formation pressures, frequency dependence of acoustic

properties, fractures, and high temperatures on the in situ poroelasticity predictions for shale

rocks.
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Part IV

Strength Predictability of Shale
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Chapter 8

Strength Homogenization of Shale

The modeling and prediction of the strength properties of geomaterials such as rocks, soils, and,

concrete continue to be challenging research fields for the mechanics community. The current

knowledge of the cohesive-frictional behaviors of geomaterials has been derived mainly from

macroscopic testing, and the modeling pursued from a purely phenomenological perspective.

Typically, the macroscopic strength is characterized by a criterion defining the onset of plastic

deformation (the elastic limit or yield strength, [56]). The simplest forms of strength criteria for

geomaterials are linear relations such as the well-known Mohr-Coulomb [69] and Drucker-Prager

[86] criteria, which capture a pressure-dependent strength development. Other yield criteria

follow non-linear envelopes such as elliptical forms proposed for clay plasticity models (e.g. the

Cam-clay model [234]), and hyperbolic forms proposed for strength of rocks (e.g. Hoek-Brown

model [126]). All these criteria depend on strength parameters that must be calibrated for the

specific material under investigation. As an alternative to purely phenomenological approaches,

developments in micromechanics have enabled the prediction of macroscopic strength criteria

for composite materials based on the strength behaviors of material constituents.

Part IV of this thesis is devoted to an exploratory work aiming at the implementation of

the micromechanics approach to the modeling of the cohesive-frictional properties of shale.

Similarly to the microporoelastic model developed in Part III, the objective of the strength

upscaling model is to determine the macroscopic behavior of shale based on compositional and

microstructural information. Chapter 8 is dedicated to the presentation of the micromechan-

ics framework for the upscaling of strength properties of shale, which follows the multi-scale
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structure thought-model used in the microporoelasticity investigation. A non-linear homoge-

nization approach based on the linear comparison composite (LCC) theory [98] is employed in

the development of the strength model. Given the novelty of the adopted theoretical frame-

work, the multi-scale strength model is analyzed in detail to define its domain of application for

predictive purposes. The assessment of the model includes detailed comparisons with existing

micromechanics models and studies of the effects of material composition and microstructure

on predicted strength domains. In an original development, the model is extended to treat

a cohesive-frictional solid with dual-porosity, a material configuration of relevance to many

geomaterials.

The implementation of the strength upscaling model for the characterization of strength

properties of shale is pursued in Chapter 9. The strength model is calibrated and validated

using independent data sets of strength properties. Hardness measurements obtained through

instrumented nanoindentation experiments define the behavior of shale at grain-scales, and elu-

cidate important trends of the cohesive-frictional response of the clay fabric. These learned

behaviors are linked, through the application strength homogenization model, to the macro-

scopic strength response of shale materials as measured by conventional methods. Based on

the results of the calibration and validation exercises, the ability and limitations of the model

in delivering strength predictions of shale are finally discussed.

8.1 Elements of Strength Homogenization

The application of micromechanics theory has been largely devoted to the determination of

elastic properties of material systems. Part III of this thesis attests to the extensive use of linear

microporomechanics as a modeling framework for dealing with complex geomaterials like shale,

which exhibits multi-scale properties, highly heterogeneous microstructures, and structural and

intrinsic sources of anisotropy. In contrast, the development and application of micromechanics

techniques to non-linear composites is a more recent and emerging research field [301].

A particular branch of non-linear micromechanics addresses the problem of upscaling strength

properties. The objective of strength homogenization is to derive the macroscopic strength

domain for a heterogeneous material from the specific microscopic strength responses of the
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material constituents. The first contributions to strength upscaling schemes focused on com-

posite materials with constituents governed by purely cohesive strength behaviors (see e.g.

[141, 162, 248]). Strength upscaling schemes have been extended to the modeling of composite

materials with cohesive-frictional strength attributes, which pertain directly to the behavior of

rocks. The characterizations of strength domains for cohesive-frictional materials intermixed

with porosity [83] or reinforced with rigid grains or inclusions [16, 163] have been recently

derived. Important applications and extensions of the micromechanics approach have been

also pursued. Cariou et al. [50] employed the strength homogenization approach for the as-

sessment of cohesive-frictional properties of porous materials from nanoindentation hardness

measurements. Maghous et al. [167] developed an extension of the mnicromechanics approach

for strength properties within the framework of non-associated plasticity. Gathier and Ulm [98]

have further advanced the modeling of cohesive-frictional materials through the implementation

of the linear comparison composite (LCC) theory of Ponte Castafieda [214, 215, 216], which of-

fers an improved treatment of the non-linear behavior inherent to the strength homogenization

problem.

The multi-scale strength upscaling model for shale presented in this chapter follows the

theoretical developments of Gathier and Ulm [98]. Meticulous analyses of the domain of appli-

cation and predictive capabilities of the multi-scale theoretical framework are also developed.

The presentation of the strength homogenization model for shale begins with the introduction

of yield design theory, which forms the foundation for the strength modeling approach. The

variational formulation rooted in the linear comparison composite theory is then presented as a

means for addressing the non-linear strength homogenization problem. This theoretical back-

ground sets the stage for the introduction of the multi-scale strength model for shale, which

is then compared to existing strength homogenization solutions for benchmark microstructural

configurations. Finally, the predictive capabilities of the model are detailed, with emphases on

the different strength regimes (elliptical and hyperbolic domains) and on the effects of rigid

inclusions, interface conditions, and underlying microstructures on homogenized strengths. In

an original development, the multi-scale model is extended to address the strength behavior of

a two-scale porosity composite.

300



8.1.1 Yield Design Theory

The problem of strength homogenization is framed within the mechanics theory of plastic limit

analysis or yield design. The objective of yield design is to determine the load-bearing capacity

of a plastic material system. In the limit of plastic collapse, the material has exhausted its

capacity to store any additional external work SWet into recoverable free energy W. The

formal expression of this process is given by the Clausius-Duhem inequality, which at the

material system level and for isothermal evolutions is expressed as [266]:

D = 6We - W > 0 (8.1)

where D refers to the rate of energy dissipation. At plastic collapse, the recoverable free

energy reduces to W = 0, and consequently, the additional external work rate 6Wet is entirely

dissipated into heat form through plastic yielding:

D = 6wee > 0 (8.2)

Yield design focuses on the critical work increment leading to plastic collapse for a given geome-

try and set of prescribed loads without referring to specific energy states of the material system

prior to failure, thus obviating the need to perform a complete elasto-plastic analysis.

The implementation of the yield design approach is intimately related to the following

concepts [55, 224, 266]:

1. Plastic collapse occurs once the material or structure has exhausted its capacity to develop,

in response to prescribed loads, stress fields that are statically compatible with the external

loading and plastically admissible with the strength behavior of the material system.

This stress-strength approach refers to the capacity of the material system to sustain

additional loading through developing stresses that satisfy equilibrium considerations and

that comply to the local strength of the material.

2. At plastic collapse, the external work supplied to the material system is dissipated through

plastic yielding in the material bulk and/or along plastic slippage planes. The failure

mechanisms, which cannot be controlled from outside of the system, follow the kinematics

301



of plastic flow developing in the material or structure. This kinematics approach evaluates

how the plastic collapse occurs by determining the capacity of the material system for

plastic dissipation along failure mechanisms.

The combination of these two concepts define the plastic collapse load in yield design, and

consequently, the sought strength of the material system1 .

8.1.2 The Stress-Strength and Dual Approaches

The stress-strength approach focuses on the evaluation of stress fields that are statically com-

patible with prescribed forces and simultaneously compatible with the strength capacities of

the material constituents. Consider the application of the stress-strength approach to the rev

of a heterogeneous material system. The microscopic stress field 0' (z) is statically admissible

(s.a.) with a given macroscopic stress state E provided it satisfies:

div o' -0 () (8.3)

t (z) = E- n (z) (c'))

where t is a uniform traction condition. Additionally, the material strength must sustain every-

where in the rev the stress fields induced by the macroscopic stress:

c'(z) E G(z) (Vz E Q) (8.4)

where G (z) denotes the local, ultimate domain of plastically admissible stress states2 . The

strength domain G (z) is assumed to be strictly convex, and it is described by means of a

convex strength criterion F (o'):

G= {o',.F (o') < 0} (8.5)

The introduction of the yield design theoretical framework for strength homogenization follows the presen-
tations of [83, 98, 167, 266].

2The term ultimate precludes any hardening effects since the material system has exhausted its capacity to
store additional external work into recoverable free energy, including hardening energy [266].
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A combination of conditions (8.3)-(8.4) defines the set of admissible stress states:

G {', El ' s.a. with V', a' (z) E G (z) (Vz E Q)} (8.6)

Alternatively, the strength of a material can be expressed by a dual definition within the

context of yield design theory. This dual definition is based on the premise that, at plastic

collapse, the material system has exhausted its capacity to store external work into recoverable

energy, and hence it is plastically dissipated into heat. The external work rate supplied to the

rev is obtained by the application of the Hill Lemma (4.6) for the uniform traction condition

in (8.3):

We (z)-(z)dS = o (z) : d (z) = E : D (8.7)

where d (v' (z)) is the microscopic strain rate field related to the macroscopic strain D:

d (v' (z)) = (grad v' + 'grad v') (8.8a)

D d (z) (8.8b)

The velocity field v' is kinematically admissible in the sense of yield design theory. Given that

plastic collapse cannot be prescribed by constraining the velocity to non-zero values, the velocity

field v' is only left to satisfy a zero-velocity boundary condition. The prescription of uniform

stress boundary conditions (8.3) imposes no restrictions on the velocity field v'. Nevertheless,

the only restriction of the dissipated work rate at plastic collapse is that it must remain finite, as

the material cannot sustain infinite stresses locally. These considerations lead to the definition

of a support function 7r (d), which denotes the maximum possible plastic dissipation capacity

of the material:

7r (d) = sup {' : d} (8.9)
o'(z)EG(z)

The support function has the characteristic of being a homogeneous function of degree 1:

7 (td) = t (d) (Vt E R+) (8.10)
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Figure 8-1: Geometrical interpretation of the support function (from [83]).

Furthermore, differentiating (8.10) with respect to t > 0 yields:

(d) : (d) = ir (d)
Od

(8.11)

It follows that if a stress o- is on the boundary of the local strength domain G and maximizes

the local work rate, that is 7r (d) = o- : d, then the stress and strain rates are uniquely related

by:
87r

- = (d)(9d
(8.12)

Expression (8.9) represents the dual definition of the local strength domain of the material

system based on its maximum plastic dissipation capacity. A geometrical interpretation of the

support function is provided in Figure 8-1.

The dual definition of the local material strength is implemented in the strength homoge-

nization problem of the heterogeneous rev. By noting that the stress field o-' (z) in definition

(8.9) is strength compatible with the local response G (z), it follows:

o-' : d (e (z)) < 7r (z, d ())
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The substitution of this expression into the volume average operation (8.7) gives:

W = E : D < r (z, d (v')) (8.14)

which provides an alternative characterization of the macroscopic stress that can be potentially

supported by the material system in terms of a dissipation capacity.

8.1.3 Limit Analysis

The elements of yield design are a statically and plastically admissible stress state and a kine-

matically compatible velocity field subjected to the normality rule of plastic flow. Limit analysis

focuses on determining bounds to the plastic collapse problem by relaxing either condition. The

underlying idea of a stress-strength approach is the compatibility between conditions (8.3) and

(8.4), without evoking the compatibility of the stress field and the kinematics of plastic flow

associated with the actual stress field solution. Assume that the macroscopic stress E, the

corresponding microscopic stress field o-(z), and a velocity field v (z) satisfy:

E : D - o(z) : d ( (z)) = r (z, d (v)) (8.15)

It can be shown from convex analysis that [224, 266]:

o (z):d(z)= sup {o- : d} = 7r (d(z)) (VzQ E ) (8.16)
a(z)EG(z)

and that:

E' : D < E : D (VE' E) (8.17)

Inequality (8.17) shows that any macroscopic stress E' that is compatible with definition (8.6)

underestimates the maximum dissipation capacity of the material system at plastic collapse,

given by:

Uhom (D) = sup {E : D} (8.18)

with G = Ghom from the duality between the strength and dissipation capacity definition of yield

design. Expression (8.18) represents the macroscopic counterpart of local material dissipation
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(8.9), and hence, the solution to the yield design problem:

E : D = 1hom (D) , E = hom (D) (8.19)
OD

In contrast to the stress-strength approach, a kinematics approach offers an upper bound

to the estimation of the maximum plastic dissipation of the material. At plastic collapse, the

material undergoes free plastic flow. The corresponding strain rate is purely plastic, and its

orientation is specified by the normality rule:

d - dP = A (a) (8.20)
00o

where A is the plastic multiplier, which expresses the intensity of the plastic flow. The appli-

cation of the associated plastic flow rule entails that the material is assumed to dissipate the

externally applied work at the highest (yet finite) possible rate. From the convexity of the

strength domain F (o-), it follows for a given strain rate d' and its associated stress field o-':

o- : d' < sup {-' : d'} = 7r (d'=j, (o-') (8.21)
a'(z)EG(z)

Let us define a set of velocity fields:

U (D) = {v', D = d (v' (z)) (Vz EE Q) (8.22)

and establish that the macroscopic stress E is the solution to the yield design problem with

associated velocity field v. Considering a velocity field v' E U (D), the application of (8.14)

yields:

6West = o- d E : D < 7r (_, d( (V' E U (D)) (8.23)

whereas for the actual velocity field solution (8.15), we obtain:

6Wet =- o- (z) : d ( (z)) = E : D = 7r (z, d ()) - Hhom (D) (8.24)
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The combination of (8.23) and (8.24) yields:

Uhom (D) = r (d (v),) r(z, d (v')) (Vov' E U (D)) (8.25)

This result shows that any kinematically admissible velocity field v' delivers an upper bound

to the actual dissipation capacity of the material system:

Hhom (D) = inf -r (z, d (v')) (8.26)
v'EU(D)

It is worth noting that the derivations herein presented were based on the application of

the uniform stress boundary condition (8.3) and the intrinsic average (8.8b). More generally,

the velocity field v' can be restricted by the application of a homogeneous strain rate boundary

condition complying to:

U (D) = {v', v' (z) = D - z (Vz E 0Q)} (8.27)

which directly satisfies the condition (8.8b). In addition, this kinematic boundary condition

does not alter the expression of the external work rate (8.7), which is assumed to be entirely

dissipated into heat form at plastic collapse. However, instead of serving as a true boundary

condition to the otherwise unrestricted plastic collapse, the homogeneous strain rate condition

in (8.27) serves as a constraint to the optimization problem (8.26) [98].
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8.2 Non-Linear Homogenization

8.2.1 Variational Formulation

The homogenization problem of the heterogeneous rev composed of i - 1, N material phases

consists in solving the following set of equations3

divo-= (0) (8.28a)

&ir2
o-0(z) = (d(z)) (z)) (8.28b)

Od

d = (grad v + 'grad v) (Q) (8.28c)
2

v(z) = D - z () (8.28d)

From convex analysis, the boundary value problem (8.28) can be alternatively formulated as a

variational problem of the form [217]:

1
fUhom (D) inf f 7 (, d (v')) dV = inf 7 (z, d (v_)) (8.29)

' EU(D) JQ Q V'EU(D)

where U (D) is the set of kinematically admissible strain rates defined in (8.27). Expression

(8.29) is in fact associated with the kinematic approach to limit analysis (see (8.26)). At first

glance, the problem in (8.28) may appear similar to the linear elasticity problem (see e.g.

(4.75)) by replacing the strain rate d by the strain e, and the dissipation function ir (d) by

a strain energy function. e.g. w (e, z) -E : C (z) : e. However, the dissipation function

7r (d) = sup {o- : e} is a homogeneous function of degree 1, whereas the strain energy function

w (e) of linear elasticity obeys a quadratic form. Consequently, the non-linearity introduced

in (8.28b) precludes the use of conventional linear homogenization techniques. Methodologies

such as the effective strain rate approach (see e.g. [16, 248]) have been proposed to address the

non-linearity of the boundary value problem (8.28). In this work, the solution to the strength

homogenization problem resorts to the linear comparison composite (LCC) theory introduced

by Ponte Castafieda [214, 215, 216], which aims at approximating the non-linear behavior by a

linear elastic one with suitable model parameters.

3 The condition o- = 0 must be added to the set if the heterogeneity is porosity, with reference volume QW.
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8.2.2 Linear Comparison Composite Approach

Variational Problem Based on the LCC

The linear comparison composite (LCC) approach estimates the effective behavior of a non-

linear composite in terms of an effective modulus tensor for a suitably chosen linear elastic

comparison composite with a similar underlying microstructure as the non-linear composite.

For the strength homogenization problem, the LCC method frames the determination of the

dissipation function of the material system Hhom (D) as the solution to an elastic problem with

an infinite number of phases [213].

The formulation of our variational problem using the LCC approach begins by considering a

strain rate energy density function (or potential function) associated with a linear heterogeneous

comparison composite material with non-uniform, positive-definite modulus tensor Co (z) 4:

1
wo (z, d) = -d: Co (z) : d (8.30)

2

The weaker-than-quadratic character of the dissipation function 7r (z, d) (i.e. 7r (z, Ad) =

A7r (z, d) compared to wo (z, Ad) = A2Wo (z, d)) implies that 7r (z, d) - wo (z, d) -> -oc for

infinitely large strains. This suggests the following definition [217]:

v (z, Co) = sup {7r (z, d) - wo (z, d)} (8.31)
d

Noting that v (z, d) is a convex function of Co (z), it follows that:

r (z, d) wo (z, d) + v (z, Co) (8.32)

It is then concluded by taking the minimum over Co (z):

7r (z, d) inf {wo (z, d) + v (z Co)} (8.33)
Co >0

where the notation Co > 0 denotes the positive-definite character of the modulus tensor. The

4The term modulus, within the context of the LCC theory, refers to the set of parameters that characterize
the linear elastic comparison composite.
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result (8.33) is used in (8.29) to reformulate the variational problem:

Ilhom (D) = inf inf {wo (z, d (v')) + v (z, Co)} (8.34)
V'EU(D) Co>o

or equivalently, after interchanging the order of infima [214]:

Uhom (D) inf {VVO (D) + V (Co) (8.35)

where:

Wo (D) inf wo (z, d (v')) (8.36a)
V'EU(D)

V (Co) v (z, Co) (8.36b)

The expression for the macroscopic dissipation function Hhom (D) in (8.35) is now expressed in

terms of a variational principle for a linear comparison heterogeneous material, whose properties

are given by the strain rate energy of a suitably chosen linear comparison composite Wo (D)

and the function V (Co) measuring the non-linearity of the original material.

LCC Approximation for a N-Phase Composite

It is worth noting that the modulus tensor for the LCC material Co (z) in (8.35) is a varying

quantity over the heterogeneous rev, which makes the solution of the variational problem as

cumbersome as the original one. Fortunately, the formulation in (8.35) can be extended for

discrete forms of Co (z) that allow for a simplified implementation of the method [215, 216].

First, consider a comparison composite in which the behavior of each material phase is given

by:

o-= C' : d + r1  (8.37)

where C' is the positive-definite modulus tensor and -ri an eigenstress, which becomes instru-

mental for subsequent model developments. The corresponding piecewise-constant strain rate
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energy of the composite materials is:

wo (z, d) = X () w (d)

x (Z)

w?(d)

= 1 if z Qi

S=0 if z $Q

2d : C' : d+' : d
2

The pursued reformulation of (8.35) in a discrete form will yield an upper bound for the true

dissipation capacity. Then, recalling the classical inequality [216]:

inf {f (x) -+- g()} inf {f (x)} + inf {g (x)}
xx x

(8.40)

and applying it to wo =r + (wo - 7r), it follows that:

inf Loo (, d (v')) i> inf (,d + inf wO (z,d(v')) - 7r (z,d(v')) (8.41)
v'weU(D) v eU(D), v' eU(D)

where we recognize the term I~hom (D), which then yields:

fUhom (D) < inf wo (z, d())}
VreU(D) f

- inf wo(z, d(v'))-
v'EU(D)

The first term of the right hand side of (8.42) is the macroscopic strain rate energy of the LCC:

Wo (D) = inf WO (z, d (v'))}
v'EU(D)

(8.43)

The second term in (8.42) can be overestimated by:

- inf {oo (z, d (v')) - d f Vi (8.44)
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where V' is constant in each phase of volume fraction f':

Vi = sup {7 (d) - w' (d)} (8.45)
d

Finally, the following upper bound is obtained for the macroscopic dissipation capacity of

the comparison composite material:

"'hom (D) < Wo (D) + 5fi Vi (8.46)

The goal is to find the modulus parameters of the comparison composite that lead to the lowest

possible upper bound for (8.46), therefore yielding the best possible estimate of Uhom- However,

as discussed in [216], preserving an upper bound status may prove to be a difficult task. Instead,

it is of interest to consider a generalized version of (8.46) by replacing the extremal points by

stationary points. The resulting estimates are then stationary estimates and not bounds, in the

sense of (8.35). The stationary estimate of Uihom (D) is:

Ihom (D) stat Wo (D) + Ef Vi (8.47)

with:

V= stat {ir7 (d) - w' (d)} (8.48)
d

There are usually different points of stationarity, hence each particular case must be analyzed

separately [216].

Steps for Determining Homogenized Strength Properties based on the LCC Ap-

proach

The LCC methodology is used to determine the macroscopic strength criterion for a composite

material through the following steps [98]:

9 Compute the expression for the macroscopic strain rate energy Vo (D) of the LCC com-

posite. Relevant results from linear micromechanics are used to furnish the macroscopic

strain rate energy.
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" Compute the function V for each phase. This function measures the non-linearity of the

original material and contains the information about the local strength capacities through

the material dissipation functions r1 (d).

* Generate the system of stationarity equations (8.47)-(8.48) and solve the system in terms

of the modulus properties C' and the eigenstress -r.

" Use the estimated dissipation capacity Nhom (D) to derive the macroscopic strength do-

main through the yield design definition (8.19).

8.3 Multi-Scale Homogenization Model

8.3.1 Micromechanics Representation of Shale

Following the microporoelasticity model development presented in Part III, we adopt the multi-

scale structure thought-model for shale (Section 2.3) as the reference for building the strength

homogenization model. The micromechanics description of shale for modeling its strength

properties also benefits from the results gathered from microporoelasticity, especially in terms of

the treatment of the microstructure through effective particle morphologies and homogenization

schemes for granular media.

At level 0, the scale of the elementary clay particles is represented by an elementary building

block of solid clay. The strength modeling of shale begins by assuming that this elementary unit

follows isotropic strength properties, as suggested by nanoindentation hardness measurements

(see Figure 3-15). Similarly to the elementary building block for elasticity, the properties of

the elementary unit for strength modeling are assumed to be material invariant quantities. The

characteristic cohesive-frictional properties of the solid clay used for model development will be

further explored in Chapter 9, in which model calibration and validation exercises will link the

grain-scale strength of shale to macroscopic measurements.

The porous clay composite or level I is characterized by the strength properties of the solid

clay phase and the weakening contribution from the nanoporosity. The granular microstruc-

ture of the porous clay is modeled through the self-consistent scheme, in which the effective

morphologies of the elementary units of clay and nanoporosity are represented as spherical in-
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clusions. The parameter that quantifies the mechanical contributions of the two phases at level

I is the clay packing density.

Finally, the macroscopic scale of shale formed by the porous clay composite intermixed with

silt inclusions is modeled as a two-phase composite consisting of the cohesive-frictional porous

clay and rigid inclusions. The premise of rigid inclusions implies their unbounded strength,

and it constitutes a first approach to the homogenization problem herein development. To

enhance the description of the strength behavior at the macroscale, the interface behavior

between porous clay and inclusion phases considers two limit conditions: perfectly adherent

and slip (non-frictional) interfaces. In an original development, a second configuration for

the level II homogenization step is investigated, in which the rigid inclusions are replaced by

pores. The corresponding material system is a two-scale porosity medium, with a nanoporosity

assigned to level I and a macroporosity assigned to level II. The proposed variation of the

multi-scale model represents a model extension of interest to the modeling of geomaterials

such as sandstones, in which the pore space manifests itself at different length scales. The

micromechanics representation of shale for strength upscaling and modeling is schematically

summarized in Figure 8-2.

8.3.2 Level 0 - Cohesive-Frictional Solid Clay

The lowest level we consider is that of the solid clay phase with cohesive-frictional strength

properties. It is generally recognized that the clay phase in shale and soils, in general, display a

pressure-sensitive response in which the shear (or deviatoric) strength increases with increasing

confinement [187]. This pressure-sensitive behavior of the solid is captured by the Drucker-

Prager criterion, which depends on two invariants of the stress state sustained by the material:

the mean stress o-m = -Ii = 1tr (o-), and the deviatoric stress s = O--ml. The Drucker-Prager

failure criterion is expressed as:

FJ (-) = V/2 + ao-m - c' < 0 (8.49)

where J2 = is : s, and a, c' are the Drucker-Prager friction coefficient and cohesion that

characterize the intrinsic strength properties of the solid phase. It is important to notice that
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Porous clay - silt inclusions:
Spherical, rigid inclusions
self-consistent model

Level II
Porous clay - (Model extension:
silt inclusion Dual-porosity model:
composite -- Macroporosity)

Level I Disordered nanogranular

Porous clay composite:

composite 
self-consistent model

--- spherical nanoporosity
E

Elementary building block:
Level 0 isotropic, cohesive-frictional strength
Clay minerals spherical morphology

Figure 8-2: Summary of the proposed micromechanics representation of shale for strength
homogenization modeling.

the Drucker-Prager friction coefficient is limited to a < V'5/2, which corresponds to a Mohr-

Coulomb friction angle of 90' [75]. Recent results of micromechanics modeling have shown that

the continuum Drucker-Prager criterion can represent the strength behavior of a polycrystalline

solid with Coulomb-type failure prescribed at crystal interfaces [92]. These results encourage

the choice of the Drucker-Prager model to describe the strength properties of the elementary

building block of solid clay, which from the microporoelasticity investigation is understood as

a conglomerate of clay units composed of platelets and compliant interlayers.

The dual definition of the Drucker-Prager strength domain prescribed for the clay solid

phase (8.49) is given by the support function 1r8 (d) [224]:

dv if dv > 2add
o- E G' (z) x "r5 (d) = sup {a : d} = a (8.50)

oo else

where dv = tr (d) and dd = j1 : 6 = 2 are the strain rate invariants of the strain rate

tensor d = 6 + 1d1. It is convenient for upcoming developments to formulate expressions
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Drucker-Prager
criterion

-4 -3 -2 -1 0 1 2

Figure 8-3: Approximation of a Drucker-Prager strength domain by a set of hyperbolic domains.

(8.49) and (8.50) as strictly convex functions for the application of the LCC variational ap-

proach to strength homogenization. Consequently, the following regularized strength criterion

that asymptotically tends to the Drucker-Prager criterion and also circumvents the- point of

singularity (J 2 = 0, om cf/a) is considered:

F (a-) = 1 -- 0m So < 0 (8.51)

where od = J2 . The set of hyperbolas in (8.51) are defined by the scalar quantities A, B,

and So. The Drucker-Prager criterion (8.49) is retrieved as a special limit case for the following

conditions:
B = a A

so 0=- (8.52)
a

A -0

The regularization of the Drucker-Prager strength criterion is shown schematically in Figure

8-3.

Similarly, the regularized dual definition of the strength domain in terms of the support
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function ir(d) is obtained from the following set of conditions [266]:

d = A- (8.53a)
00-

F (o) = 0 (8.53b)

o- : d = r (d) (8.53c)

The 6+ 1 +1I = 8 equations enable the determination of the unknowns: 7r (d), A, and 6 x o-j at

the boundary of the strength domain DF (o-). For the regularized hyperbolic criterion (8.51),

we make use of:
DY 1DF 1 DY

(() = T (o m,y Ud) + (-m, O-d) S (8.54)
Do- 3 Bo-m 2 o-d Dod

Thus, expression (8.53a) gives:
0 rn = A

2
d,

o7-1 - so =

2A (8.55)
Ud o~d

A

0

while the value of A is given by (8.53b):

()2 (Adv - (Bdd) 2  (8.56)

It then follows:

(d) = (d,, dd) = Sod, - (Adv) 2 - (2Bdd) 2  (8.57)

The Drucker-Prager support function (8.50) is exactly retrieved when (8.57) is subjected to the

set of conditions (8.52).

8.3.3 Level I: Porous Clay Composite

The homogenization step at level I establishes the strength behavior of the porous clay com-

posed of the pore space and the solid clay phase that follows the Drucker-Prager model. The

application of the LCC methodology to deliver the homogenized strength domain for the porous

clay composite follows the approach formulated in Section 8.2.2. For reasons of convexity, the

regularized dual form of the Drucker-Prager criterion (8.57) is preferred for the forthcoming

developments.
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Strain Rate Energy Function WJ (D) of the Porous Clay Composite

The first step for solving the strength homogenization problem of the porous clay composite is

determining the strain rate energy function W (D) of the linear elastic comparison composite

at level I. A convenient way to homogenize this behavior is to apply a continuous description

of the microscopic stress field:

o- (z) = C (z):d (z) + r(z) (Vz E Q) (8.58)

where the microscopic modulus tensor C (z) and the eigenstress r (z) have the following spatial

distributions within the rev:

C (z) = C8 3kJ + 2gsK (Qs) T (QS) (8.59)
0 (QP) 0 (QP)

and Q' = (1 - o) Q, QP = oQ are the domains occupied by the clay phase and the nanoporosity,

respectively. The volume fraction used for the homogenization at level I is the clay packing

density 5 7 = 1 - o. Using Levin's theorem [83], the corresponding macroscopic stress equation

of state reads:

EC om : D +T' (8.60)

where CIom and TI are the macroscopic modulus tensor and eigenstress given by:

Chom = C (z) : A (z) = qC' : X = 3kLomJ + 29 00mK (8.61a)

TI r (z) : A(z) = 71: 1 1 : (C') : CIom =T or 1  (8.61b)h ks

kfom = 7 ksJ:A =g8IC Ik I)(8.62a)

ghom = ]g"K :A"- g 1M7) (8.62b)

51n contrast to the microporoelastic case, the formal development of the strength criterion considers the pore
volume fraction <p to correspond to the current configuration of the microstructure, which is in fact the relevant
configuration for the analysis of failure [83].
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with A (z) the forth-order strain (rate) localization tensor, and Xs the volume average of A (z)

over the solid phase. The second parts of the expressions in (8.62) are readily obtained from di-

mensional analysis, where the dimensionless functions IC' and M' are the inclusion morphology

factors for level I. These dimensionless functions depend on the bulk-to-shear modulus ratio,

the clay packing density, and the morphological features of the microstructure. They will be

presented in a forthcoming section.

The general strain energy function in terms of strain rates for a two-phase composite Wo (D)

is given from classical thermoelasticity [158, 164]:

Wo (D) = D : Chom :D [Qr - 2 ) : (C - C27K : (Chom C 2 ) + r2 :D (8.63)

+ ( \1 - _2 l _ C2) (Chm _ 2) f] 1 2V - 1 r_ 7 2 )

For our purposes, the strain rate energy function adapted to the porous clay configuration and

in isotropic form simplifies to:

Wo (Dr, Dd) = kj' D + 2gj 0 Di + khom TDV + (kom _ ) (8.64)

= g"ID2 + 2gM'D2+ r KDo+ 2 - 2

where Dv = tr (D) and Dd = A : A, with A = D - }Dvl.

V Function or Measure of Non-Linearity

The second step in the strength homogenization of level I consists in determining the VS function

(8.48), which provides a measure of the non-linear behavior of the solid phase (the value of VP

for the nanoporosity domain is zero). For its implementation, the expression of the rs function

(8.57) is required, along with an expression for the strain rate energy of the solid:

1
w8 (d) -- ksd2 + 2g'dd + Td, (8.65)

2
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The application of the stationarity condition to the V' function yields:

OVS 0 (7r - W") A 2 d
-So - - - ksdV - T = 0 (8.66a)

Od Od, (Adv )2 
- (2Bdd) 2

OS & (r8 - W) 4B 2 dd - 4g'dd = 0 (8.66b)
Odd Odd (Ad) 2 - (2Bdd) 2

The introduction of the eigenstress provides a means for ensuring that the microscopic moduli

k8, g8 are positive by manipulating (8.66):

S- o- 2A 2d, (8.67a)
(Adv) 2 - (2Bdd) 2

kA > 0 (8.67b)
( Adv) 2 - (2Bdd) 2

B = , > 0 (8.67c)

V(Ad,) 2 - (2Bdd) 2

Consequently, only two parameters are independent for the behavior of the comparison com-

posite, namely g' and T, since:
k8 A2

-s - B2  =cst. (8.68)
g 8 B2

For the Drucker-Prager case (8.52), the previous expression reduces to:

ks A2  1-- B2  -- (8.69)
gS B2 a2

These results yield the sought expression of the non-linearity function V5 for a hyperbolic

criterion as a function of the independent parameters gS and T:

1 [B (So - T ) ]2 B 2
[ S =](8.70)

Ags A 2g"

which for the Drucker-Prager case (8.52) simplifies to:

1 2
V =4 (c - aT (8.71)

g2
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Stationarity of the Dissipation Function 5hom

The third step consists in evaluating the stationarity of the homogenized dissipation function

for the porous clay coniposite Bhom (8.47). The result in (8.68) reduces the degrees of freedom

from three (k', g', r) to two (g8 , T), such that the evaluation of (8.47) takes the form:

hNom = stat {W (DvD Dd) +rVs} (8.72)

This condition is expressed explicitly as:

aft, Oks OWo OW' OVS
hom - g + 0 + 7 = 0 (8.73a)

ogs ogs Oks ogs ogs

hom _ 0W V =0 (8.73b)

Using (8.64) and (8.70) in (8.73b), while making use of (8.68) yields:

A 2 (2gsKID, - 7SO)
T A 2 - 2CIB2

Substituting (8.74) into the solution of (8.73a) gives:

(gs 2 
- rB 2 [77A 2 (S2 - A 2 ) + IC'B2 (2A 2 _ 02)] (8.75)

A2 [q 1 A 2D2 + 4 (71MIA2 - 2/CIMIB 2) Dd]

Finally, using the expressions of (g', r) corresponding to the stationarity of BLom in (8.72)

provides the following estimate for U1orn

1om (D) = f.m (Dv, Dd) - om,0Dv - sign (2C'B2 - ,A 2 ) (Alo Dt)2 + (2B Dd)2

(8.76)
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where:

hn 2 _ 2 B 2ICV [77A2 (S2 - A 2 ) + B 2K' (2A 2 _ sd) (8.77a)
(77A 2 - 2B2CI) 2

hr )2 _ r1B
2 M1 [qA 2 (S2 - A2) + B 2 1C' (2A 2 _ S2)] (8.77b)hB A2 (rIA2 - 2B 2/1C)

r|B 2 C'
Zhom,O 2B 2 1C' - rA 2 SO (8.77c)

The comparison of expressions (8.76) and (8.57) reveals that 11o is the support function of ahorn

hyperbolic criterion provided that 21CIB 2 - qA 2 > 0. In return, the support function for the

case 21CIB 2 - r/A 2 < 0 corresponds to an elliptical strength criterion.

The expressions in (8.77) for the Drucker-Prager case reduce to the following homogenization

factors:

A' 2 7/2/I (F/ - a 2 kC1) (8.78a)
Cs (r) - 2a21C)2

B' m 2 _ M (r/ - a2K 1) (8.78b)
cs r; - 2a2jC1

hom,0 _ a0iaK - (8.78c)
CS 2a 2 1 - rc

The class of criterion is determined by the sign of p = 2a2r - rI: p > 0 for a hyperbola, p < 0

for an ellipse.

Strength Criterion for Porous Clay Composite

With the homogenized support function for the porous clay composite 1iom at hand, the

strength criterion is derived using the yield design definition (8.19):

Em = -tr (Y) = hom (8.79a)
3 D

1 8 1 or
Ed = hom (8.79b)

2 D a

where Es = S :S, and S =_ E - Em1. The application to (8.76) yields the sought homoge-
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Figure 8-4: Schematic of the different strength criteria: elliptical (Bom) 2 > 0, limit parabola

(BIom) 2 = 0, and hyperbolic (BhIom) 2 < 0.

nized strength criterion for level I:

F (- m A- hom,O
hom

( d2
+ (B' 1 < 0

hom/

By inspection of (8.80), the homogenized criterion can be either a hyperbola or an

depending on the sign of the term (BI om) 2 , as displayed schematically in Figure 8-4.

(8.78b), the sign of the term (Bhjom) 2 for the Drucker-Prager case depends on:

(8.80)

ellipse

From

77 - 2a 2c 1

< 0 Hyperbolic criterion

= 0 Limit parabola

> 0 Elliptical criterion
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Inclusion Morphology Factors for Level I

The only terms missing for the evaluation of (8.80) are the inclusion morphology factors for the

porous clay composite:

kV k"hom (8.82a)

9 om M((8.82b)

Their definitions in expressions (8.61) and (8.62) enable the use of linear micromechanics for

their determination. The morphology of the porous clay composite follows a similar configu-

ration as the one adopted for the microporoelastic engineering model for shale, in which the

elementary building block of clay and the nanoporosity are represented as spherical inclusions.

In addition, the isotropic strength behavior assumed in the linear comparison composite ap-

proach for level I enables the use of the Hill concentration tensor for spherical inclusions in an

isotropic medium (refer to Section 4.2.5). The upscaling strength model for shale, akin to the

microporoelastic model, requires the implementation of the self-consistent model to describe

the granular microstructure and mechanics of the porous clay composite. For completeness, the

estimates for IAI, M' based on the Mori-Tanaka homogenization scheme are presented.

The evaluation of the morphology factors for the porous clay composite using linear micro-

mechanics theory (see e.g. expressions (4.32) and (4.39) for the Mori-Tanaka and self-consistent

estimates, respectively) yields:

KIT = 4r (8.83a)3(1 - I)+4a 2

IM =(9+8a2)

15 - 6q + (20 - 1277) a 2

Kc = 49 sc (8.84a)
4a 2 MSC + 3 (1 -rq)
1 5 3

Ms =2 (1 - 7) - 2 (2 + I) + (8.84b)

16 2 1144 (a4 - a 2 ) - 480a 477 + 400a 4T2 + 408a 271 - 1200a2 2 + 9 (2 + q)2
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in which the solid clay bulk-to-shear modulus ratio is replaced by (8.69). Similar to stiffness

homogenization, the application of the Mori-Tanaka scheme exhibits a percolation threshold

at qo = 0, hence offering a continuous development of strength for the entire range of packing

densities. In contrast, the application of the self-consistent scheme to spherical morphologies is

characterized by the percolation threshold at qo = 0.5.

The application of either description of microstructure defines a critical packing density 7,cr,

which separates the elliptical and hyperbolic strength domains:

> 0 Hyperbolic criterion
- cr (a) 0 Limit parabola (8.85)

< 0 Elliptical criterion

For the Mori-Tanaka type of morphology, substitution of (8.83a) in (8.81) delivers:

0 < r = 1 - a2 (8.86)
3

where the lower bound corresponds to the limit case a = v5/2. For the self-consistent scheme,

substitution of (8.84a) in (8.81) delivers:

2 </1216a 4 + 432a2 + 81 - (16a 2 + 9) 1 (8.87)
3 SC2 (3 + 20a 2 )

The critical packing densities for both homogenization schemes are displayed in Figure 8-5.

The figure shows that the effect of microstructure is more significant for higher friction values

of the solid phase.

8.3.4 Level II: Porous Clay - Silt Inclusion Composite

The macroscopic scale of shale corresponds to the porous clay composite intermixed with silt-

size inclusions such as quartz. For the homogenization step at level II, the aim is to derive the

strength behavior for the two-phase material composed of the porous clay phase governed by

the strength criterion (8.80) and rigid silt inclusions. The model development follows a similar

procedure to that used for level I.
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Figure 8-5: Critical packing density 77cr as a function of the friction coefficient a. The mi-
crostructure of the porous clay is modeled by the Mori-Tanaka (MT) and self-consistent (SC)
schemes.

Strain Rate Energy Function WF' (D) of the Porous Clay - Silt Inclusion Composite

Consider the composite formed by the porous clay phase and rigid inclusions and occupying

the volumes Pe - (1 - finc) Q and Gjne fic7, respectively, at the macroscopic scale or

level II. For convenience, a continuous description of the stress field in the heterogeneous rev is

assumed:

c- (z) = C(z): d (z) + -r(z) (Vz E Q) (8.88)

together with the following spatial description of the modulus tensor and the eigenstress:

CPc = 3kPJ + 2gPcK (QPc) U { TPC1 ()PC) (8.89)
oo (inc) o (Qinc)

where CPC and rPC are the modulus tensor and eigenstress of the porous clay at level I given by

the LCC approach. The corresponding macroscopic stress state equation for a solid reinforced

with inclusions is:

E =Cm: D+TII (8.90)
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with:

C[Im C (z) : A (z) 3kiimJ + 2gimK (8.91a)

TI1 =-r ():A (z) = rP'l (8.91b)

Similar to (8.62), the homogenized moduli are presented in a dimensionless form:

k" tkPC.

kIr = gP... Vgc , fi"c (8.92a)
hom (PC

9m - IIcM ~c , f inc (8.92b)

where the inclusion morphology factors II",MI will be detailed later on. With this informa-

tion, the general expression of the strain rate energy (8.63) is adapted to the case of the porous

clay reinforced with rigid inclusions:

1
W01' (Dv, Dd) = -gPciIDv + 2gPcMI'Dd + TPCDv (8.93)

2

V Function or Measure of Non-Linearity

The next step consists in determining the VPC function for the (homogenized) porous solid phase

(the value of Vmc for the rigid inclusion phase is zero). The support function of the porous clay

composite 7rPC (d) is adapted from (8.76):

rPC (d) = Il'om (D -+ d) =Eom,odv - sign (g) (Alod 1 )2 + (2Bomdd)2  (8.94)

where p = 2a 2 VC - rq distinguishes the hyperbolic (p > 0) and elliptical (p < 0) strength

domains, and the morphology factors ELom0 Alom, BLm are specified in (8.78). The strain

rate energy function for the porous solid phase is akin to (8.65):

1
wPC (d) = -kPcd2 + 2gPcd2 + TPCdv (8.95)

2

Given the familiar forms of rPc (d) and wP (d) when compared to their counterparts at level

I, previous developments can be used for deriving the VPc function provided that the form of
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the support function IIomn is associated with a hyperbolic strength criterion. Recall that the

derivation of (8.70) began with a hyperbolic criterion that included a minus sign and B 2 > 0

(see (8.57)). Therefore, one can adapt the result (8.70) to the form of (8.76) for the case when

the strength criterion of the porous clay at level I is a hyperbola by replacing (Blom)2 by

hon m)2:
-ir 2  o o- T 2

(B 2 B 1 ~l , El 2?

Vpe (g> 0) h (8.96)
2gP" 4994 AI

together with:
kP" A' 2k~ in( hor = cst. (8.97)
gPC -sign (g) B'

hom

where - sign (p) accounts for the fact that (BIom) 2 < 0 in the hyperbolic case.

In contrast, the general procedure for calculating the stationarity condition of the VPC func-

tion is followed for the case when the support function filom is associated with an elliptical

strength criterion (o < 0):

=C E ,0 + (Ahon)2 d* , kPcd, - TPC 0 (8.98)
Od+ (AL dv )2 + (2B dd) 2

8VP" 4 (B'O )2 dho _ 4gPcdd 0 (8-99)

Odd I(Alhomdv)2 + (2Bhordd)s

The consideration of the eigenstress ensures the positivity of the moduli kPc, gP":

TPC = Efom,O (8.100a)

kPc _hom > 0 (8.10b)

"( AldJ) 2 + (2B'Omdd) 2

- sign ()(B 
2

9pc _ hom > 0 (8.100c)

V(Alodi;)2 -+ (2BLOdd 2

and consequently:

e =- sign (p) m 2 = cst. (8.101)
g PC Bhorn
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The expression for the VPC function for the elliptical case is therefore:

(BO ) 2
Vpc ( < 0) = h (8.102)

2gPc

Stationarity of the Dissipation Function fo and Hyperbolic Strength Criterion

The macroscopic strength related to the case of a hyperbolic strength criterion governing the

behavior of the porous clay composite at level I is first considered. The two degrees of freedom

for the application of the stationarity condition are gPC, 7PC:

FJUom =stat {wJ' (Dv, Dd) + (1 - fiC) VP'} (8.103)gpc p

Using (8.93) and (8.96), the stationarity condition with respect to TPC yields:

2gPCDv (A 2.PCE l om( +hom (814)'TP hon,O 1 - finc B/im(814
B hom

In addition, the stationarity condition with respect to gPc delivers the following expression:

8hom 1 2 1 - fi 1 [Bom (omo - 7 ) 22
h2m_ IID +(2M1D)+ 2 - (BLO)2 =0

BgPC 2 2(g) 2 Ahom

(8.105)

The strength domain for level II can be found by replacing the macroscopic strain rates Do, Dd

in the stationarity conditions (8.104) and (8.105) by their corresponding expressions provided

through the state equations of the linear elastic comparison composite (8.90):

Dv- k" (8.106a)
hom

Dd - (8.106b)
2g['

yielding:

FrII/ -(m hom,O + - 1 2 ; 0 (g > 0) (8.107)
horn horn

329



where:

(A[ m) 2  2 (A'om) 2 + (1 - fifc) KI" (Blom)2 (8.108a)

(B[lm) 2  1 f ) MI (Blom)2 (8.108b)

hom,O = hom,O (8.108c)

The strength criterion in (8.107) corresponds to the porous clay - silt inclusion composite

whose porous clay phase is governed by a hyperbolic strength domain (i.e. (Blom) 2 < 0).

Furthermore, it is evident that the macroscopic composite is also described by a hyperbolic

criterion at level II since (Blm)2 < 0.

Stationarity of the Dissipation Function 5[Im and Elliptical Strength Criterion

The macroscopic strength related to the case of an elliptical strength criterion governing the

behavior of the porous solid at level I is now considered. Given that expression (8.100a) fixes the

value of the eigenstress TPC, the stationarity condition for 5[lm depends solely on gPC, yielding

the following relation:

ahrl 1(1 - fi) (BI )2
hom _ _,cIID2 + 2MID - hom) 0 (8.109)

OgPC 2 2 (gPC)
2

In a similar development as for the evaluation of the hyperbolic strength criterion, the solution

to the stationarity condition for fim and the substitution of the strain rates Do, Dd by their

corresponding expressions provided through the state equations of the linear elastic comparison

composite (8.90) deliver the macroscopic strength criterion for the case of the porous clay

governed by an elliptical strength criterion:

E - E1 ) 2 ( 2

hom (hom
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where:

(Af/om) 2  (1 f) (Bom)2  (8.111a)

(B(m) f") M411 (BIom2 (8.111b)

omI o omI (8.111c)~hon,O Zhon,O (.lc

It is found that the macroscopic composite with a porous clay phase governed by an elliptical

strength domain (i.e. (Blom) 2 > 0) is described by an elliptical criterion at level II since

hBom > 0.

Inclusion Morphology Factors for Level II

The evaluations of the homogenized strength criteria (8.107) and (8.110) at level II require the

definition of the inclusion morphology factors KII, MII. Following a similar configuration as

proposed for the microporoelastic engineering model, the microstructure of the porous clay -

silt inclusion composite is represented as spherical inclusions with isotropic properties. The me-

chanical interaction between the two material phases is described by the self-consistent scheme

for granular materials. For completeness, the case of a matrix-inclusion type of microstructure

modeled by the Mori-Tanaka scheme is also presented.

The determination of the inclusion morphology factors resorts to the results from linear

micromechanics for a two-phase linear comparison composite with modulus properties as defined

by (8.89), i.e. the porous clay is characterized by the moduli kPc, gPC while the consideration of

rigid inclusions imply (kne, gfC -> 00). In particular, the ratio of bulk-to-shear moduli kPC/gPc

is expressed in view of (8.97) (or (8.101)) and the homogenization results for level I (8.78) as:

kp' A' 2
# Pc sign () horn 2 (8.112)

gPe (BI M AI |q - 20,2jC1|

The linear micromechanics solutions for a two-phase material description in the context of the

Mori-Tanaka and self-consistent schemes (refer to Section 4.2) provide the following KIC,M"
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morphology factors for the case of perfect adherence between interfaces:

4fir" +3
IfT,A - (8.113a)

3 (1 -f in)

(9 fc + 6) f3 + 8fic + 12
MA4 =1 (8.113b)MAT,A 6 (1 - finc) (2 + F )

-C1 [18 - 42f flC + 15 (fin")2 /3 + 4fifl (3 - fi"c) - fiinc A

SC,A 18 (1 _ fine) (1 - 2finc) (8.114a)

(15 f"c - 6) 0 + (12 - 4f f"c) + KA (8.114b)
SC,A 24 (1 - 2finlc)

with:

KA V9 (5fine - 2)2 02 - 24 (finc + 2) (5 fine - 3) / + 16 (fine - 3)2 (8.115)

The inclusion volume fraction associated to the self-consistent estimates and perfect bonding

between interfaces is bounded by fin < 1/2. In contrast, the slip or non-frictional interface

condition is characterized by a purely normal stress vector acting on the interface. Hence, the

classical solution of Eshelby's problem has been adapted for rigid inclusions with non-frictional

interface conditions [16, 61]. The corresponding expressions of the inclusion morphology factors

for the Mori-Tanaka and self-consistent estimates are [14]:

33 +- 4fif*e
KIjT,S- 3= finc (8.116a)

AITS 3 (1 - f in)

MA 1( 9 f inc + 15) / + 8f fle + 24 (8.116b)
IT,S 3 (5 - 2fine)# / + 12 (2 - fine)

3 [12 - 23finc + 8 (finc) 2 /3 + 8fif" (3 - 2filc) + f incs

SC,S 18 (1 - fine) (2 - 3finc)

24 - 16 f"ne - (15 - 24f in) / + hS (8.117b)
SC'S =24 (2 - 3fine)
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with:

KS = 9 (8finc - 5)2 32 [720 - 1392finc + 528 (finc) # + 64 (2finc - 3)2 (8.118)

The volume fraction of rigid inclusions associated to the self-consistent estimates and slip inter-

face conditions is bounded by f "C < 2/3. It is worth noting that the relevance of the solutions

for slip interface conditions may be physically questionable for tensile stress conditions. For

the purpose of this study, the validity of expressions (8.116)-(8.117) is restricted to scenarios of

macroscopic compression loading.

8.3.5 Level II (Model Extension): Porous Clay - Macroporosity Composite

The level II of the multi-scale structure model for shale is modified to accommodate for an

extension to the strength upscaling of a two-scale porosity medium. The rigid inclusion phase

considered in the model development for shale is substituted by a second pore space, which

is denoted as macroporosity. Consequently, the macroscale volumetric partition of the dual-

porosity material system follows a similar form as the one considered for shale (see (3.3)):

Level II: #5 +I + fc = 1 (8.119)

where #0, # 6 represent the nano- and macroporosity, respectively. In addition, the clay packing

density j is modified accordingly:

- = 1 - (8.120)
1 0 1 - 0

Strain Rate Energy Function Well (D) of the Dual-Porosity Composite

Consider the composite formed by a porous solid phase (with nanoporosity) and a macroporosity

with volumetric domains QPC = (1 - #,I) Q and Q'P = #5'Q., respectively. A continuous

description of the stress field in the heterogeneous rev is assumed:

o- (z) =- C (z ) : d (z) + -r (z) (V~z E Q) (8.121)
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together with the following spatial description of the modulus tensor and the eigenstress:

CPC = 3kPcJ + 2gPCIK (QPc) Pc1 (QPC) (8.122)

0 (QmP) 0 (Q'P)

where CPc and rPC are the modulus tensor and eigenstress of the porous solid at level I. The

macroscopic stress state equation governing the behavior at level II is:

EC m: D + T" (8.123)

with:

Chm = C (z) : A (z) 3kimJ + 29gjmK (8.124a)
k"

TI r (z) : A (z) TP horm 1 (8.124b)
_ _ kPc

where the homogenized moduli in dimensionless form are:

kjam = gPc\ $c) (8.125a)

Yom = 9C9cM gpc, ' (8.125b)

With this description of the macroscopic composite, the corresponding expression of the

strain rate (8.63) for the porous solid intermixed with macroporosity is:

W'IIP 1P P PC
'' (Dv , Dd) = gPc KIDV + 2gP M Dd + T c' Dv (8.126)

1 F PC

2 kgpc kgI I(cT

V Function or Measure of Non-Linearity

This step consists in determining the VPC function for the (homogenized) porous solid (the

value of Vmp for the macroporosity is zero), whose calculation can take advantage of previous

developments. The results derived for the case of a porous solid reinforced with rigid inclusions

are relevant to the present formulation given the similar inputs: the support function for the
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porous solid rP1 (d) = fiom (D -+ d) (see (8.76)), and the strain rate energy function of the

porous solid phase wPC (d) akin to (8.65). Consequently, for the case of the support function

associated with a hyperbolic criterion governing the porous solid at level I, the following function

is obtained (see (8.96)):

(B'r) 2  ~Bom (om - T7 C
VPc( > 0) hh (8.127)

2gPc 4gPc A'om

Similarly for the case of the support function associated with an elliptical criterion at level I,

we obtain (see (8.102)):
(Bom) )2

Vpe (g < 0) 8hm
2gPC

For both expressions, the results (8.97) and (8.101) also apply:

# = sign (g) m = cst. (8.129)
gPC ~ \Bhorn

Stationarity of the Dissipation Function ilom - Hyperbolic/Elliptical Strength Cri-

terion

First, consider the case of a hyperbolic strength criterion governing the behavior of the porous

solid at level I. The macroscopic dissipation function is computed using (8.126) and (8.127). In

addition, the two degrees of freedom related to the estimation of the macroscopic dissipation

function are gPC, TPC:

fUll = sta {Wo' (D,, D) + (1 - <1') VPc} (8.130)

The stationarity conditions are expressed explicitly as:

oIr - kPc gWII OWII gypc
ogPC m gPc &kPc + 0 ( I -+ ( ) = 0 (8.131a)

Ope c OgPC ogPc

hom _0
O T o r _ _ _ _ + - 0 ( 8 .1 3 1 b )
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with a similar approach to that used in the strength homogenization for the porous clay -

rigid inclusion composite, the results of the stationarity conditions (8.131) and the macroscopic

state equations for the linear comparison composite (8.123) are used to deliver the homogenized

strength domain at level II of the dual-porosity medium:

m 1 
2  2

Fom, A h B 1 < 0 (g > 0) (8.132)
hom hom

where:

(AIrn)2  (1 - #J4' 2 B2 IC" [A 2 (1 - 0"I') (A2 _ S2) + B2 1C" (2A 2 
- s2)1

ho1 _ 4') A 2 + 2B2C11]2

(BjI n) 2  (1 - #v1) B 2 I11 [A 2 (1 - I ) (A2 - S0) + B 2 1c" (2A 2 
- S 8.)

-10M A 2 [(1 - 05') A 2 + 2B 2 11"])

(1 - $1) B 2 1c"

hom,0 (1 I) A2 + 2B 2 CII s (8.133c)

with A = Aom, BB= BIom, so = Eom,0 The strength criterion (8.132) is applicable to the

case of the porous clay composite at level I governed by a hyperbolic strength domain (i.e.

(Bom) 2 < 0 or g > 0). The particular shape of the macroscopic criterion (8.132) depends on

the sign of w = A2 [(1 - ) A2 + 2B 2KC"]: w < 0 for a hyperbola, w > 0 for an ellipse.

Stationarity of the Dissipation Function fiom - Elliptical Strength Criterion

Expressions (8.126) and (8.128) are implemented in a similar development as followed in the

previous section to determine the strength criterion for the dual-porosity material for the case of

the porous solid governed by an elliptical strength domain. The derived macroscopic criterion

is:
SI 2 2

FTII (E - hom,0 d I<0 <0 814

hom hom/
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where:

(A,' 24B 2 VI [A2 (1 _ 01') (A2 _ S02) + B 2S211"] (8.135a)

( B 2 A 11 [A2 (1 _ 4') (A2 _ S02) + B 2S02C1] (8.135b)

B2 I1"
homO A2  So (8.135c)

with A - A, B=Bom, So = Zlom0. The macroscopic criterion (8.134) corresponds to the

case of the porous solid governed by an elliptical criterion (i.e. (Bom) > 0 or g < 0). By

inspection, it is determined that the criterion (8.134) is also defined by an elliptical shape since

(Bm)2 > 0.

Inclusion Morphology Factors for Level II - Dual-Porosity Material

The definition of the morphology factors IC, MII used for the evaluation of the homogenized

strength criteria (8.132) and (8.134) takes advantage of previous results. The dual-porosity

solid at level II is composed of a (homogenized) porous solid at level I and a second type of

porosity (macroporosity), both of which are modeled as spherical inclusions. This configuration

resembles the modeling at level I of the porous clay composite. The main difference for the

implementation of (8.83)-(8.84) is the definition of the effective properties of the linear com-

parison composite, namely the bulk-to-shear moduli ratio. For level I, the solid clay properties

used for the computation of the morphology factors were related by (see (8.69)):

k8- 1 (8.136)
g 8 a2

Instead, the properties for the homogenized porous solid correspond to (see (8.129)):

V3 - sign (p) horn (8.137)
gPC Bio
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The Mori-Tanaka and self-consistent estimates for the inclusion morphology factors used for

the level II homogenization of the dual-porosity solid are:

4 (1 - #I) #
I- = (8.138a)

4I +O3HO

(1 - #'1) (8 + 9,3)
"-Mf = (8.138b)AT 8 + 90 + 6#', (2 + 0)

(1 -0$1) #
KIC- = 4 0 sc (8.139a)

4MIs +3#'/3

1 3 3 5
Msc =2 1+ (8.139b)

1 64 + 1440 + 81/32 - 0'1 (542 + 1680 + 320) + (#b,) 2 (932 - 1203 + 400)

The consideration of particular microstructures at the material levels I and II defines a

critical macroporosity, which separates the elliptical and hyperbolic strength domains associated

to the macroscopic material for the case of a hyperbolic criterion governing the porous clay at

level I:
< 0 Hyperbolic criterion

# - (#)cr = 0 Limit parabola (8.140)

> 0 Elliptical criterion

For the Mori-Tanaka and self-consistent schemes defining the microstructure of the macroscopic

material at level II, the critical macroporosity factors are:

( I YA-4 m) (8.141)

16 (Bom)2 - 9 (A om) 2 + V81 (Alom) 4 - 432 (Aom) 2 (B'om) 2 + 1216 (Blom)4

2 [3 (A'om) 2 - 20 (Bm )2

(8.142)

For a particular microstructure at level II, the critical macroporosity depends, through the

homogenization factors A, Bom, on the packing density r/, the friction coefficient a, and the

microstructure at level I. Figure 8-6 displays graphically the predicted critical macroporosities
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Figure 8-6: Critical macroporosity (#0I)Cr as a function of the packing density ry and the friction
coefficient a. The microstructures at levels I and II of the dual-porosity material are modeled
by the Mori-Tanaka (MT) and self-consistent (SC) schemes.

for different microstructural configurations.

8.4 Analysis of the Strength Upscaling Model for Shale

The novelty of the strength homogenization approach established by Gathier and Ulm [98] calls

for a thorough analysis. Before its application to shale, it will be instructive to assess the pre-

dictive capabilities of the multi-scale strength upscaling model by first comparing it to existing

strength homogenization solutions. The predictive capabilities of the strength model are then

investigated at the length scales of the porous solid (level I) and of the porous solid reinforced
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with rigid inclusions (level II). In particular, the model review focuses on the two types of

strength domains predicted by the model (elliptical and hyperbolic domains), the effects of

inclusion reinforcement, and the two types of interface conditions defining the interactions be-

tween phases. In these studies, the matrix-inclusion and granular morphologies are considered

in order to highlight the strength behaviors predicted for different modeled microstructures.

Finally, the theoretical predictions of the strength model for a dual-porosity material are pre-

sented.

8.4.1 Comparisons with Existing Models

Gurson's Hollow Sphere Model

The first case considered is the classical result of Gurson's hollow sphere model [110]. The

model describes the yield criterion for a porous ductile material, in which the matrix is treated

as rigid-perfectly plastic obeying a von Mises yield criterion. Based on the kinematic approach

of limit analysis, Gurson's model is known to be an upper bound solution to the described

homogenization problem [106, 160, 262]. The Gurson's yield criterion is expressed as:

.F(Em, Eeqv = VEd) = 2 (1 - j) cosh (p)-- + 2 _ 2 <0 (8.143)

where Y' = V/cs is the uniaxial strength of the von Mises solid phase with solid concentration

or packing density T1. A suitable comparison with Gurson's model is the matrix-inclusion

morphological representation of the microstructure for level I. The non-frictional behavior of

the solid phase corresponds to the limit case a -+ 0, for which the strength domain of the

porous solid in (8.80) results in an elliptical form. The corresponding homogenization factors

(8.78) are:

Aom (a =0) 2 (8.144a)

ca3 (1 - 1)

(Bom (a = 0)) 2  
- (8.144b)

cS 5 - 2,q

EI o(a=0)
hom,0 =a 0 (8.144c)

cS
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Figure 8-7: Comparisons between micromechanics results and Gurson's model for a von Mises
porous solid.

The result in (8.144) for the strength homogenization of a von Mises porous matrix is a

well-established micromechanics solution (see e.g. [213, 248, 252]). A graphical comparison

between the model results and Gurson's predictions is presented in Figure 8-7. The elliptical

strength domain (8.144) improves the upper bound solution of Gurson's model for the deviatoric

loading. However, the elliptical criterion offers a poor prediction for purely hydrostatic stresses,

especially for low porosity values (or alternatively, large packing densities). The inadequate

predictions are attributed to the inability of high-order averages of the deviator strain rate

(within the framework of the effective strain rate approach) to capture the heterogeneous strain

fields around the cavity of the hollow sphere [15, 83].

Effective Strain Rate Approach for Cohesive-Frictional Composites

The effective strain rate method developed by Dormieux and co-workers [15, 16, 83, 163] ap-

proaches the homogenization problem (8.28) akin to a viscous flow problem, in which the

behavior of the solid phase is described by a viscous state equation:

Olr"
o-(z) = (d(z)) =C (d(z)) : d (z) (Vz E Q) (8.145)

(9d
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This material behavior differs from classical linear elasticity as the strain rate d (z) and the

modulus tensor C' (d (z)) are heterogeneous within the material domain. Furthermore, the

modulus tensor CS (d (z)) also depends on the load level. The nature of this problem has been

addressed by the so-called secant methods of non-linear homogenization, which aim to represent

the load dependency of C' (d (z)) through reference strain rate fields6 . The reference strain rate

dr approximates the true heterogeneous tensor by a uniform tensor in the solid material domain:

C (z) = C' (d (z)) ~ Cs (d') (Vz E Qs) (8.146)

The practical implementation of (8.146) differs in the type of the reference strain rate [248]. The

suitable choice of quadratic averages of strain rate fields has been proven to deliver adequate

approximations for effective strain rates in the solution of strength homogenization problems.

The effective strain rate approach has been successfully applied to the strength homogenization

of two representative material systems: a porous solid, and a solid intermixed with rigid inclu-

sions. In this section, the solutions based on the effective strain rate approach are compared to

the LCC model results.

Porous Solid Configuration The strength homogenization of a cohesive-frictional porous

solid has been addressed by Barth616my and Dormieux [15] (see also [50, 83]). Based on the

effective strain rate approach, the predicted strength domain for a porous medium with a

Drucker-Prager solid phase follows an elliptical form. Using a similar form of the strength

domain derived in (8.80), the homogenization factors for the elliptical criterion are [50]:

(A 3 2 (814ahom 147a)

A' 2 1732)1 (8.147b)

(l - 2 I( hom)2 aK

CS _ 2  
- (8.147c)

6This strategy has been proposed for extensions of Darcy flow problems involving power-law fluids (see e.g.

[83]).
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where Z - KV (a = 0), AM', M' (a = 0) are the inclusion morphology factors (8.82) eval-

uated for an incompressible solid (k' -+00 4-> a = 0). The incompressible character of the

fictitious viscous solid is an inherent trait of the effective strain rate homogenization approach.

The LCC strength homogenization approach offers a less restrictive solution to the non-linear

homogenization problem as the linear comparison composite moduli are defined by the relation

kS/g = 1/a 2 (see (8.69)).

Figures 8-8 and 8-9 offer quantitative comparisons between the predictions generated by

the LCC and effective strain rate models, as functions of the two variables involved in the

homogenization problem: the packing density 'r and the friction coefficient a. The comparisons

are developed for three specific stress states:

* Unconfined compressive strength (UCS): This stress state is associated with the failure of

a material under uniaxial compression in unconfined conditions. The unconfined compressive

load EUCS is related to the mean and deviatoric stress invariants as follows:

Em 1 EUCS - E - 3EUCS (8.148)
3 3

The predicted UCS strength is obtained by substituting the particular stress state (8.148) into

the elliptical strength domain (e.g. (8.80)):

E3(4-23 ( )2 -EllmO (Blm)2 + (8.149)
3 (AlIm)2 + (BlIm) _ OO h

(A Im)2 (Blim)4 + 3 (Alrm)4 (BlIm)2 - 3 (A[ J)2 ()

o Pure deviatoric stress: This stress state is represented in the invariant stress space as:

Em = 0 ; Ed = +E dev (8.150)

The prediction of the deviatoric failure stress based on the elliptical strength criterion is:

Zdev - o B' [YA [(Alom) (EOM'O) 2 (8.151)
hom I
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* Hydrostatic tension: This stress state is represented in the invariant stress space as:

EM = Ehy ' Ed= 0 (8.152)

The prediction of hydrostatic tension based on the elliptical strength criterion is:

Ehyd =Zhom,O + Atom (8.153)

These stress states offer practical reference points in the invariant stress space to quanti-

tatively compare the predicted strengths by the two models. In addition, the matrix-inclusion

and granular microstructures, modeled by the Mori-Tanaka and self-consistent schemes, respec-

tively, are implemented for the comparisons. The contour plots in Figures 8-8 and 8-9 represent

the absolute difference between normalized predictions of the LCC and the effective strain rate

(ESR) models:

- 1 EEsR - ELCC (8.154)
cs

where J - UCS, dev, hyd. The inspection of the figures reveals that the differences between

the strength predictions obtained by the two models are relatively small. The largest difference

between predictions is observed for the unconfined compressive strength case, which can reach

values of |A = 0.10 for the self-consistent morphology. It is worth noting that the comparisons

in Figures 8-8 and 8-9 were established only for the elliptical strength regime, which is in

accordance to the applicability of the effective strain rate model [50].

In summary, the LCC homogenization model improves upon the effective strain rate model,

allowing the consideration of a larger range of frictional values. In return, the difference may

only be substantial in specific cases related to strong deviator states and large values of the

solid's friction coefficient.

Solid Reinforced with Rigid Inclusions Solutions for the case of a Drucker-Prager solid

intermixed with rigid inclusions have been proposed by Lemarchand et al. [163] and Barth6l6my

and Dormieux [16]. The strength criterion for level II is adapted for the case of a solid phase
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Figure 8-8: Comparisons between predictions of the LCC and effective strain rate models for

specific strength types: unconfined compressive strength (UCS), and pure deviatoric stress

(dev). The microstructure of the porous solid is modeled by the Mori-Tanaka scheme. The
contour plots of the absolute difference between predictions JAI are generated as functions of
the friction coefficient a and the packing density r. The case of hydrostatic tension is not shown
given that both models offer equivalent predictions (the homogenization factors Eom A'hom,Q1 horn

are identical in both modeling approaches).

in level I, which implies:

(BIom) 2 = -a 2 (AIom) 2

c"9 (8.155)
hom,O - a

(A om 2 -> 0Ihor)2

The resulting macroscopic criterion (8.107) yields:

FI() =Ed+ahom Em l) <0 (8.156)

which corresponds to a Drucker-Prager criterion with a homogenized (macroscopic) friction

coefficient:
(1 - finc) M"I

ahorn = a(817ahm a 2 - a2 )I" (1 _ finic) (8.157)

The solution by Lemarchand et al. [163] for the homogenized friction coefficient based on a

mixed-secant method is:

ahom = a 1 inc (8.158)
F+2
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Figure 8-9: Comparisons between predictions of the LCC and effective strain rate models for
specific strength types: unconfined compressive strength (UCS), pure deviatoric stress (dev),
and hydrostatic tension (hyd). The microstructure of the porous solid is modeled by the self-
consistent scheme. The contour plots of the absolute difference between predictions JAI are
generated as functions of the friction coefficient a and the packing density r/.
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Figure 8-10: Predictions of the homogenized friction coefficient for a Drucker-Prager solid
reinfored with rigid inclusions. The microstructure is modeled by the Mori-Tanaka scheme and
considers perfectly adherent interface conditions.

whereas the solutions by Barth6l6my and Dormieux [16] based on adherent and slip conditions

read:

MT,A 1 + ifinc
ahom = a 2 (8.159a)

hom 1 - 4 2fine

MT,S (1 - finc) (1± ifinc)
hom (1 - finc) (1 - Aa2finc) (8.159b)

These micromechanics solutions were derived based on a matrix-inclusion morphology, which is

properly modeled by the Mori-Tanaka scheme. Figures 8-10 and 8-11 display the homogenized

friction coefficient predictions by the LCC and effective strain rate models, showing adequate

comparisons between them. A strict comparison between the model of Lemarchand et al. and

the two remaining models cannot be formulated. The mixed-secant method does not consider

the local flow rule associated with the Drucker-Prager criterion of the solid phase [16].

8.4.2 Strength Predictions - Level I

The assessment of the strength model begins at level I of the multi-scale structure thought
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Figure 8-11: Predictions of the homogenized friction coefficient for a Drucker-Prager solid
reinforced with rigid inclusions. The microstructure is modeled by the Mori-Tanaka scheme
and considers non-frictional (slip) interface conditions.

model. As noted in Section 8.4.1, the model based on the effective strain rate approach predicts

an elliptical strength domain for the case of a porous solid [50]. The form of the strength

criterion (8.80) derived through the LCC approach yields a smooth transition between a closed

ellipse (q < 71") and an open hyperbola (,q > ,q). Note that the critical packing density 7er is

strictly defined by the friction coefficient a and the modeled microstructure. The limit case of

a parabolic domain, which serves as a transition between the elliptical and hyperbolic regimes,

is not supported by the strength criterion (8.80). An example of the parabolic domain (i.e.

7 = 7cr) is developed here to illustrate the smooth transition between domains predicted for

level . For this application, the matrix-inclusion microstructure, by through the Mori-Tanaka

scheme, is used for analytical derivations. The parabolic strength domain is obtained from

the expression of the homogenized dissipation function (8.76) for the limit case q -+ q". The

resulting function limr o (D) is used in conjunction with the yield design definition

(8.19) to deliver the strength domain for the parabolic limit case:

(E = -d 2 ;
ar(~~)AI < B' 1 0 (8.160)

pr par/
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where:

A' 3 42 (8.161a)
par 6a

2 _ 128a 6 - 48a 4 - 144a2 + 81 (8.161b)
ar) 9 (16a4 + 16a 2 + 9)

Figure 8-12 illustrates an implementation of the parabolic domain (8.160). The figure also

shows sample elliptical and hyperbolic domains obtained for packing density values close to the

critical packing density defining the parabolic domain. To verify the smooth transition between

elliptical and hyperbolic domains, the particular case of unconfined compressive strength (akin

to (8.149)) is developed as a function of packing density. Figure 8-13 displays UCS predictions

based on the general strength criterion for level I (8.80) and the particular estimate for the par-

abolic domain (8.160). The figure also displays the predictions for a granular material modeled

by the self-consistent scheme7 . The evolution of the predicted strength for the self-consistent

scheme displays a percolation threshold at /o = 0.5, whereas the Mori-Tanaka predictions cover

the entire range of packing densities. As shown in Figure 8-13, the smooth transition between

the elliptical and hyperbolic regimes is verified by the application of the results associated with

the parabolic domain. The micromechanics model based on the LCC formulation offers strength

predictions for the entire range of packing densities, depending on the modeled microstructure.

8.4.3 Strength Predictions - Level II

This section examines the effects of rigid inclusions on the strength predictions of the multi-

scale model for level II. The type of homogenization scheme, interface condition, and volume

fraction of inclusions modify the strength behavior of the macroscopic composite.

Effect of Homogenization Scheme

The reinforcing effect of rigid inclusions on the strength properties of the porous solid is de-

scribed graphically in Figure 8-14. The porous solid at level I is modeled by the self-consistent

scheme. At level II, the macroscopic material (porous solid and rigid inclusions) is modeled by

7 The UCS value corresponding to the transition between domains in view of the implementation of the
self-consistent scheme was computed numerically.
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Figure 8-12: Illustration of the different types of strength domains predicted by the LCC

strength model for level I. The porous solid is modeled by the Mori-Tanaka (MT) scheme. The

friction coefficient for the solid phase is a = 0.3, which results in a critical packing density

r = 0.88.
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Figure 8-13: Predictions of the normalized unconfined compressive strength (UCS) as a function

of packing density 7 for a porous solid modeled by the Mori-Tanaka (MT) and self-consistent

(SC) schemes. The solid friction coefficient is a = 0.3. The solid lines correspond to the predic-

tions associated with the elliptical strength regime (r/ < r/'), whereas the dashed lines to those

associated with the hyperbolic strength regime (rq > r;). The solid data point corresponds to

the prediction from the limit parabolic criterion.
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the Mori-Tanaka and self-consistent schemes describing matrix-inclusion and granular media,

respectively. In addition, perfect bonding is assumed between material interfaces. Different

amounts of inclusion volume fraction f"C = 0.2, 0.4 are used for the strength predictions dis-

played in Figure 8-14. As observed in the figure, the granular microstructure tends to amplify

more significantly the reinforcing effect of rigid inclusions compared to the matrix-inclusion

microstructure. The disordered nature of the granular material, modeled through the self-

consistent scheme, appears to strengthen the composite response of the macroscopic medium.

Effect of Interface Condition

A similar set of comparisons as presented in Figure 8-14 is developed for the case of slip (non-

frictional) interface conditions between the two material phases at level II. Figure 8-15 shows

the predicted strength domains for implementations of the Mori-Tanaka and self-consistent

homogenization schemes modeling the microstructures at level II, and for different amounts of

inclusion volume fraction f fc = 0.2, 0.4. As expected, the predicted strength domains for level

II based on slip interface conditions are smaller in magnitude compared to those obtained for

perfectly bonded interfaces. The self-consistent predictions display an overall increase in the

size of the strength domain. Instead, the increase of the inclusion volume fraction related to

the Mori-Tanaka predictions translates into a decreased strength capacity for some deviatoric

stress states and an increased strength for mostly hydrostatic stresses. As noted in Section

8.3.4, one should interpret the strength predictions for slip interface conditions for tensile stress

states with caution given the modeling of the interface based on assumed transmission of loads

only through normal stresses.

Transition between Elliptical and Hyperbolic Strength Domains

The analysis of the elliptical and hyperbolic strength regimes for the porous clay composite

revealed a smooth transition between them as a function of the clay packing density. The

objective of this section is to study such transition at level II, which incorporates the strength

reinforcement due to the addition of rigid inclusions. Although not crucial to the modeling

of shale, which is characterized by the implementation of the self-consistent scheme at levels

I and II, the multi-scale model can accommodate different combinations of microstructures
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Figure 8-14: Effect of rigid inclusions with perfect adherence on the homogenized strength at
level II. The porous clay at level I (fine = 0) is modeled by the self-consistent scheme, with a
packing density 'r = 0.7 and friction coefficient a = 0.3. The level II properties are predicted
for a Mori-Tanaka (MT) and self-consistent (SC) estimates.
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Figure 8-15: Effect of rigid inclusions with slip interface on the homogenized strength at level
II. The porous clay at level I (fi" = 0) is modeled by the self-consistent scheme, with a
packing density r7 = 0.7 and friction coefficient a = 0.3. The level II properties are predicted
for Mori-Tanaka (MT) and self-consistent (SC) estimates.
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at the different levels. The two types of microstructures, namely the matrix-inclusion and

granular microstructures modeled by the Mori-Tanaka (MT) and self-consistent (SC) schemes,

yield a total of four combinations of structural configurations for a two-scale homogenization:

MT-MT, MT-SC, SC-MT, and SC-SC. These different microstructural configurations exhibit

particular homogenized strength properties. For instance, Figure 8-16 displays the evolution

of the predicted unconfined compressive strength for a material with MT-MT configuration

and inclusion volume fraction f"_ = 0.4. As observed in the figure, the development of the

predicted UCS strength follows the expected trend of increasing values with increasing packing

densities for a fixed value of the inclusion volume fraction. It can be shown that such consistent

trend is observed for the MT-MT and SC-MT configurations and perfectly adherent interface

properties8 . The trend of increasing strength with increasing packing density for a fixed value

of the inclusion volume fraction is also attained for MT-SC and SC-SC configurations in the

elliptical strength regime. However, the strength modeling of level II based on the self-consistent

scheme presents particular cases in which inadequate transitions between the elliptical and

hyperbolic domains are observed. To illustrate such behavior, a sample study is presented

hereafter that sheds light on the effect of rigid inclusions on the transition of strength regimes

at level II. For the purpose of illustration, only perfectly-adherent interface conditions are

considered in the study.

Consider the strength domains for a macroscopic composite presented in Figure 8-17. The

hyperbolic domains correspond to two different levels of inclusion volume fraction (fifC -

0.20,0.34). In addition to the hyperbolic domains obtained for a packing density q = 0.90,

the limit cases of the parabolic domains (, - fc (a)), which mark the transition between the

elliptical and hyperbolic strength regimes, are also included in Figures 8-17a and 8-17b 9. The

microstructure at level I is defined by the Mori-Tanaka scheme. For the strength domains

corresponding to finc = 0.20 in Figure 8-17a, the effect of increasing the packing density from

77 = qo (a = 0.3) = 0.88 to 1 = 0.90 yields the expected behavior of an enlarged strength

domain for the macroscopic material. For the case of a larger inclusion volume fraction value

(fY"c = 0.34), the strength domain for a packing density of 71 = 0.90 delivers lower strengths

8The microstructural configurations MT-MT and SC-MT with slip interface are not considered, given that
the macroscopic UCS predictions decrease in magnitude with increasing inclusion volume fraction values.

9The derivation of the parabolic limit case is achieved numerically using a standard software package.
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Figure 8-16: Predictions of the normalized unconfined compressive strength (UCS) for levels I

(fine = 0) and II (fin, = 0.4) as functions of the packing density r/ for a MT-MT microstructural
configuration. The solid friction coefficient is a = 0.3. The predicted UCS values for the
elliptical regime are displayed in solid lines, whereas those corresponding to the hyperbolic
regime are displayed in dashed lines.
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Figure 8-17: Predictions of strength domains for level II modeled by the self-consistent scheme.
Two values of inclusion volume fraction are considered: a) finl = 0.2, and b) fine = 0.34.
The properties of the porous solid at level I are: Mori-Tanaka microstructure, and friction
coefficient a = 0.3. For each case, two strength domains with different clay packing density
values (1 = T' = 0.88, and T i 0.90) are shown.

than predicted by the parabolic domain (7 = Tie = 0.88) for a particular range of stress states

as observed in Figure 8-17b. Clearly, such behavior violates the expected strength development

for the composite material.

To investigate this behavior, we return to the yield design framework in which the material

strength is directly related to its plastic dissipation capacity. Figure 8-18 displays the cor-

responding normalized dissipation capacities fII1 ( = Dd/D,) of the material configurations

analyzed in Figure 8-17b. The results from Figure 8-18 show that for the range of strain rates

(' < ( i") one verifies:

1 m (7 = 0.88, fin = 0.34) > I (a = 0.90, fi"0 = 0.34) (8.162)

which clearly violates the expected dissipation behavior of a material. The increase in packing

density (or decrease of porosity) should result in an increased capacity of the material for plastic

dissipation. The range of strain rates [I', "] for which the decreased dissipation capacity is
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Figure 8-18: Normalized maximum dissipation capacity for the strength response at level II,
Iom/ (c8D,), as a function of the ratio of strain rates ( = Dd/D,. The dissipation functions
correspond to the strength domains displayed in Figure 8-17b.

observed are transformed into stress states using the yield design definitions (8.19):

Oli=homE011k (8.163a)
oDv

Ed= _- hom( (8.163b)
2 (9Dd

The results are displayed in Figure 8-19, which define the stress range [E', E"] over which the

strength predictions are not valid. This stress range encompasses the previously identified

domain in which the strength predictions for 7 = 0.90 are of lesser magnitude compared to

those generated for 77 = 77' = 0.88.

From the results of this sample study, it is recognized that specific amounts of rigid inclusions

(quantified by fi') cannot be modeled by the LCC strength homogenization approach in view

of a granular microstructure represented by the self-consistent scheme. A series of parametric

studies were conducted in order to delineate the ranges of inclusion volume fraction for which

the strength homogenization model deliver sensible strength predictions. Figures 8-20 and 8-

21 display the critical inclusion volume fraction values for different strength measures (UCS,

pure deviatoric stress, hydrostatic tension) as functions of the friction coefficient a. The friction
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Figure 8-19: Domain of strength predictions [E', E"] over which the evaluation of the macro-
scopic dissipation capacity is altered by the effect of rigid inclusions.

coefficient determines the characteristic packing density separating the elliptical and hyperbolic

strength domains. The critical inclusion volume fraction establishes the characteristic amount of

rigid inclusions below which strength predictions remain valid for the entire range of admissible

packing densities (0 < q < 1 for the Mori-Tanaka scheme, and 0.5 < 7 < 1 for the self-consistent

scheme). Strength predictions are otherwise restricted to packing densities below the critical

packing density n < ro (see (8.85)). The range of packing densities 7 < 77" corresponds to

strengths at level I defined by an elliptical domain.

8.4.4 Strength Behavior of a Dual-Porosity Material

The development of the dual-porosity model offers a theoretical context for investigating the

effects of pore spaces at two different length scales in a cohesive-frictional solid on the macro-

scopic strength response. Recall that the macroscopic partitioning of the composite material

accounts for a nanoporosity #1 and a macroporosity #11, in addition to the solid (clay) volume

fraction f', with #, + #" + fc = 1. The solutions presented in Section 8.3.5 satisfy the two

limit cases for distributions of the pore space:

. In the case of zero nanoporosity #5 0, the packing density at level I is 7 = 1, and
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Figure 8-20: Critical inclusion volume fraction fr as a function of the solid friction coefficient
a, for MT-SC and SC-SC configurations at levels I and II, respectively, and perfectly adherent
interfaces (A). Below the critical values , the strength homogenization model for level II
adequately predictics strength properties for the complete range of admissible packing densities.
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Figure 8-21: Critical inclusion volume fraction fft as a function of the solid's friction coefficient
a, for MT-SC and SC-SC configurations at levels I and II, respectively, and slip (non-frictional)
interfaces (S). Below the critical values fnt, the strength homogenization model for level II
adequately predictics strength properties for the complete range of admissible packing densities.
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the homogenization step at level I retrieves the Drucker-Prager strength domain (8.49).

The homogenization step at level II in the dual-porosity model is then equivalent to the

solution for a level I homogenization step as detailed in Section 8.3.3.

* In the case of zero macroporosity #i4 = 0, the result of the homogenization step at level

II is equivalent to the solution of the level I homogenization.

However, in the case of finite values of nano- and macroporosities, the strength predictions

for the composite material display particular trends, which depend on the type of microstructure

of the material as modeled by the Mori-Tanaka and self-consistent schemes. To investigate the

effects of a two-scale porosity, a fictitious material system is established with characteristic

values of the friction coefficient a and total porosity 40 = # + #". The distribution of porosity

is monitored by the variable fm"P, the relative volume fraction of macroporosity, defined as:

fmp _ o - 0 (8.164)
# 0 # 0+

The values fmP = 0 and fP = 1 correspond to the limit cases of pore space distributions

between length scales that were previously described. The specific types of strength predic-

tions used for model implementation are the unconfined compressive strength, pure deviatoric

strength, and hydrostatic tension (see e.g. expressions (8.149),(8.151),(8.153)).

Figure 8-22 displays the different predicted strengths as functions of the relative volume

fraction of macroporosity fmP. The microstructure is modeled by the Mori-Tanaka scheme.

The total porosity for the fictitious solid is 60 = 0.4, and two friction coefficients are considered

a = 0.2, 0.6. The predicted strengths E* in Figure 8-22 represent normalized values involving

the result for the limit case fmP -= 0 (or equivalently fm"P 1):

E J (fmp)
E* = f (8.165)

EJ (frnP = 0)

where J = UCS, dev, hyd. The results in Figure 8-22 reveal that a distribution of the pore space

between different length scales, modeled by 0 < fmfp < 1, tends to weaken the strength response

of the composite material with matrix-inclusion microstructure. However, this weakening effect

appears to be relatively small (approximately 5 -8% for the considered total porosity 0 = 0.4,
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and tends to be smaller for lower porosity values).

A similar analysis is also presented in Figure 8-23 for the case of a granular microstructure

modeled by the self-consistent scheme. The occurrence of a two-scale porosity in the granular

medium shows a significant contrast compared to the model predictions for a matrix-inclusion

microstructure. For all cases considered in Figure 8-23, the distribution of the pore space be-

tween the nano- and macroscale yields an enhancement of the strength response of the material.

Figures 8-23a through 8-23c display strength predictions for a similar value of the solid fric-

tion coefficient a = 0.2, whereas the total porosity varies by #0 - 0.2, 0.3, 0.4. The increased

strength effect is more significant for larger values of porosity, reaching levels of 20 - 30% for

#0 = 0.4 compared to 5% for #0 = 0.2. Clearly, these results are understood in the perspective

of relative strength increases due to dual-porosity effects. The absolute strength of the mater-

ial, as quantified by the definitions of UCS, pure deviatoric stress, and hydrostatic tension, is

approximately 46% for a total porosity #0 = 0.4 compared to the strength associated with a

porosity of 0 = 0.2.

Figures 8-23c and 8-23d offer information regarding the role of the friction coefficient on

the dual-porosity strength behavior. The figures are generated for a similar total porosity

#0 = 0.4, while two friction coefficients are considered: a = 0.2,0.6. The increased friction

capacity of the solid modifies the different strength definitions dissimilarly:. the UCS behavior

is further enhanced, whereas the hydrostatic tension capacity is diminished. The deviatoric

stress capacity is only slightly modified with increased friction. Finally, the maximum levels

of strength enhancement recognized for the granular, two-scale porosity composite correspond

to a relatively even distribution of pore space (with a relative macroporosity volume fraction

of f"P ~ 0.57). The results presented in Figures 8-22 and 8-23 provide a first micromechanics

analysis of the strength of dual-porosity systems. This theoretical framework will have to be

rigorously validated against experimental data in future studies.

8.5 Chapter Summary

A multi-scale micromechanics model for the upscaling of strength properties of shale has been

presented in this chapter. Based on the linear comparison composite theory, the non-linear
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Figure 8-22: The effect of dual-porosity on the strength response of a cohesive-frictional solid
with matrix-inclusino microstructure modeled by the Mori-Tanaka scheme.

homogenization approach of Gathier and Ulm [98] offers a general methodology which allows

the consideration of a larger range of frictional behaviors in strength upscaling problems. This

represents an improvement upon more restrictive strength homogenization models. The domain

of application of the strength model was thoroughly analyzed. For the homogenization step

related to the porous clay composite at level I, the model shows a smooth transition between

elliptical and hyperbolic strength domains. For the homogenization step at level II, the addition

of rigid inclusions representing silt minerals to the granular porous clay composite is limited to

specific volume fractions. In addition to the development of the strength upscaling model for

shale, a theoretical extension of the model was presented to address the effects of a dual-porosity

on the strength of a cohesive-frictional solid. Parametric studies showed that the homogenized

strength response of a granular composite is enhanced for the case in which the total porosity

is allocated at two different length scales. In contrast, the presence of a two-scale porosity

distribution on a composite with matrix-inclusion morphology has a small impact on its overall

strength response.

In the following chapter, the strength upscaling framework is implemented for the model-

ing of shale, aiming at the link between grain-scale measurements from nanoindentation and

macroscopic strength properties derived from conventional experiments.
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with granular microstructure modeled by the self-consistent scheme.
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Chapter 9

Strength Upscaling Model for Shale

The development of a micromechanics model for shale strength began in Chapter 8 with the

presentation of a theoretical framework directed at the homogenization of strength properties

at different length scales. The strength homogenization approach followed the multi-scale struc-

ture thought-model for shale introduced in Chapter 2, and incorporates some of the solutions

developed through the microporoelasticity investigation in Part III of this thesis. The strength

modeling framework recognizes the granular nature of the clay fabric assessed by nanoinden-

tation, and employs an effective micromechanics description for the microstructure of shale.

These features, in conjunction with the appropriate definitions for material invariant properties

at the grain-scale of the clay fabric, were found to delineate the macroscopic diversity of shale's

poroelastic behaviors.

The objective of this chapter is to implement the multi-scale strength homogenization model

for the prediction of shale strength properties. Similar to microporoelasticity modeling, the

prediction of strength properties of shale requires linking material composition, microstructure,

and an adequate set of material invariant properties at the fundamental scale of the load-

bearing clay phase. This chapter first focuses on the review of the cohesive-frictional behaviors

of the clay phase as inferred from nanoindentation measurements and scaling analysis. The

fundamental strength behaviors of the highly consolidated clay in shale are analyzed using

a fractal packing model [32], which elucidates the relations between cohesion, friction, and

packings of particles. The nanomechanics understanding of shale's strength behavior sets the

stage for the implementation and validation of the strength upscaling model. The cohesive-
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frictional properties of clay at level 0 of our multi-scale structure thought-model are used for

constructing macroscopic predictions for shale samples gathered for an independent data set.

From the results of validation procedures, we evaluate the predictive capabilities of the strength

upscaling model. The chapter concludes with discussions of the nature of multi-scale strength

behaviors of shale, and the domain of application and limitations of the proposed strength

model.

9.1 Model Calibration

The implementation of the multi-scale homogenization model for the prediction of shale strength

properties follows a different format compared to the microporoelasticity modeling presented

in Chapter 5. A challenge for the latter investigation was the appropriate representation of

the microstructure of shale at the scale of the clay fabric. Based on a thorough calibration

and validation of the poroelastic model, the visually complex porous clay phase in shale was

effectively characterized as a nanogranular composite, in which the intrinsic properties of the

solid clay dominate the grain-scale mechanical response compared to the contributions from

geometrical aspects of the microstructure and varying clay mineralogies. This micromechanics

representation of the microstructure of shale was assumed to be relevant to the solution of the

strength homogenization problem. The identified nanogranular nature of shale was typed into

the strength upscaling model developed in Chapter 8 through the considerations of isotropic

particle morphologies (spherical elementary units of clay and nanoporosity) and of the self-

consistent homogenization scheme of micromechanics.

The standing challenge for the development of the strength predictive model for shale rests

on the definition of the cohesive-frictional properties of the load-bearing clay phase. These

properties enter the multi-scale formulation at level 0, that of the elementary building block.

The lack of extensive data and the complex nature of the strength assessment of shale at

macroscopic scales negate a back-analysis calibration approach for strength properties emulating

the one pursued for the microporoelasticity model. Instead, the fundamental strength behavior

of the elementary unit of clay is derived from grid nanoindentation hardness measurements. The

rest of this section is devoted to the review of results from Chapter 3 regarding the cohesion
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and friction behaviors of the solid clay inferred from nanoindentation scaling analysis. The

section then introduces a fractal packing model [31] which provides an appropriate framework

for understanding the relations derived from nanoindentation between friction and cohesion

properties and the packing of clay mineral aggregates. The knowledge of the strength responses

of shale at the scale of clay aggregates serves as the baseline for attempting the prediction of

properties at macroscopic scales of engineering testing.

9.1.1 Review of the Cohesive-Frictional Properties of Clay in Shale

Scaling Relations of Cohesion and Friction Properties with Clay Packing Density

The indentation scaling analysis of Bobko [31] provided further insight on grid indentation

results for shale materials. The so-called indentation modulus-hardness-packing density (M -

H - i7) analysis combines the measurements from individual indentation tests probing the

porous clay in orthogonal directions and micromechanics scaling relations between intrinsic

material properties (level 0) and measured indentation quantities (level I) to infer packing

density distributions (see discussion in Section 3.6.6) and strength properties of the solid clay

phase. The latter results are of particular importance to the strength modeling of shale as they

provide a first means for characterizing the cohesive and frictional behaviors of the elementary

material unit at level 0 of the multi-scale structure model.

Recall the form of the scaling relation derived from yield analysis and non-linear homoge-

nization between the indentation hardness H, the solid's cohesion c' and friction coefficient a

(for a Drucker-Prager type solid), and the clay packing density 71 (see (3.29))

H = h' (c' a) x UH(a,r) (9.1)

where h' (c', a) = lim, 4 1 H is the asymptotic contact hardness of the solid clay phase, and

HH (a, Tj) is a dimensionless function provided in (3.31). A remarkable result from the M- H -

scaling analysis is the apparent constant value of h0 = 0.69 GPa for the tested shale samples

with varying mineralogy compositions. This finding presents the solid hardness as an intrinsic

parameter characterizing the clay strength response in shale. In contrast to the invariant

character of the solid hardness, an interplay between the solid's cohesion and friction with the
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clay packing density was identified from the M - H - 7 scaling analysis. Figure 9-1 displays

the trends between the cohesion and friction behaviors of the elementary unit of solid clay and

the clay packing density (see also discussion in Section 3.6.6). The significant dependency of

the strength behavior of the clay phase on the packing density for individual shale specimens

differs from the elastic behavior, which is characterized by a constant and invariant set of

anisotropic properties at level 0. The solid clay friction coefficient decreases with increasing

values of packing density, and tends towards a minimum value for packing densities close to

q = 1 (Figure 9-1a). Alternatively, the cohesive behavior scales proportionally with the packing

density, from a minimum value close to the percolation threshold at q = 0.5 to larger values

with increasing packing densities (Figure 9-1b).

The relationship between the cohesion and friction properties and the clay packing density,

which synthesizes porosity and mineralogy information, is an intriguing attribute ascribed to

the elementary building block of shale in the context of its strength properties. The knowledge

derived from the nanoelasticity of the elementary unit as the collective response of conglomerates

of clay particles encompassing clay mineral layers and interlayer galleries offers the appropriate

context for the understanding of strength behaviors at the fundamental scales of shale. Bobko

[31] suggested that the interface and interparticle behaviors may indeed modulate the cohesive-

frictional properties of the solid clay phase. The underlying physical mechanisms related to the

cohesion-friction-packing density dependencies were explained by linking experimental evidence

to concepts of coordination number, bond distances, friction models, and fractal packings.

Particularly, the framework of space-filling bearings and fractal packing models provided a

rational basis for establishing a scaling relation between the frictional response of the solid clay

phase as a function of the clay packing density.

Cohesion, Coordination Number, and Bond Distance

Coordination number, which denotes the average number of contacts for a particle, was proposed

as the geometrical parameter for explaining the relation of cohesion and packing density [31].

In essence, the coordination number for a particle assembly offers a quantification of its degree

of packing. Figure 9-2 shows the mean coordination numbers determined experimentally for

randomly packed mono-sized and two-sized spherical assemblies as functions of packing density,
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Figure 9-1: Scaling of clay strength properties with packing density (recalled from Section
3.6.6). The experimental data corresponds to G2IC and Woodford shales and resedimented
Boston Blue Clay samples. Uncertainties represent two standard deviations. From [31].
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Figure 9-2: Mean coordination numbers determined for theoretical packings of particles and
for experiments on random packings of mono-sized and two-sized glass beads. Data from [198],
replotted in terms of packing density values.

as well as theoretical results for packings of spheres. The trend between coordination number

and packing density is relatively linear, and compares qualitatively with the cohesion-packing

density trend displayed in Figure 9-1. Bonding forces resulting from cementations between

particles or combinations of ionic and electrostatic forces at the grain-scale may be linked to

the concept of coordination number. These attractive forces lead to the development of cohesion

in clay depending on bonding distances, which highlights a potential relation between cohesion

and the spacing or packing between particles in the highly compacted clay fabric of shale.

Friction and Particle-Pore Interactions

The physical origins of friction in granular media remains a challenging research endeavor

[155, 223]. Adding to the discourse, the experimental data and mechanics interpretations for the

frictional behavior of shale were explored in context of interactions between particles and pore

spaces at nanoscales [31]. Among the different theoretical models for understanding friction,

a classical perspective is given by the Amontons-Coulomb law for the contact between two

solids (see e.g. [96]), which denotes a linear relation between the friction force and the load
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pushing the solids together, while remaining independent of the contact surface. This definition

of friction is entirely based on a geometric argument relating the frictional behavior to the

presence of asperities between contiguous surfaces. More sophisticated theories have explored

the phenomenon of friction with relations to the effects of absorbed mobile molecules on material

surfaces [192] and to the propagation of self-healing cracks [100]. A crucial notion in these

theories is the requirement for space between particles in order to generate a frictional response.

A relationship between the frictional behavior of clay and interactions between particles and

pore spaces was postulated in [31] based on the experimental indentation investigation of shale

materials. Figure 9-3 shows the trend between the average pore throat radius obtained from

mercury intrusion porosimetry and the clay packing density determined for G2IC and Woodford

shales. The observed trend of decreasing packing density with increasing pore throat radius is

used in Figure 9-4 to redisplay the relation between the friction coefficient behavior (see Figure

9-1a) and the pore throat radius. The friction coefficient scales with the characteristic size of

the pore space, which hints towards a generation of frictional mechanisms upon the availability

of interparticle space understood in the sense of porosity. Consequently, this observation seems

to agree with the postulates from the theoretical models previously reviewed, in which looser

arrangements of particles could potentially allow for the activation of asperities in the classical

friction model and the necessary space for mobile molecules or microcracks to enhance the

frictional behavior [100, 192]. The inferred frictional behavior for the solid clay in shale from

advanced grid indentation analysis and the concept of particle-pore interactions motivate the

use of a fractal packing model to formally explain the relationship between the clay friction and

packing density.

9.1.2 Fractal Packing Model

Bobko [31] developed a model based on space-filling bearings and fractal packings as a means

to derive a relationship between the frictional behavior of the elementary unit of solid clay and

the packing density as inferred from nanoindentation scaling analysis. The development was

motivated by the nature of the highly compacted arrangement of clay particles in shale, which

could translate into packing densities beyond the maximum packing of y - 0.74 corresponding

to a face-centered cubic packing [80]. From clay mineralogy, the varying characteristic sizes of
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Figure 9-3: Relation between the average pore throat radius obtained from mercury intrusion
porosimetry r, and the clay packing density obtained from indentation scaling analysis 'r. Data
corresponds to G2IC and Woodford shales. Uncertainties for experimental data are represented
by one standard deviation. The solid line is a power-law fit, underscoring the decrease in packing
density with increase in pore throat radius. From [31].
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Figure 9-4: Friction coefficient determined from indentation scaling analysis as a function of
the pore throat radius determined from mercury intrusion porosimetry for G2IC and Woodford
shales. Uncertainties for experimental data are represented by one standard deviation. From
[31].

371



clay crystals hint towards highly dispersed arrangements in shale. In this sense, a limit case of

dense packings with disperse grain sizes is the space-filling bearing [120], an arrangement which

almost perfectly fills a three-dimensional space'. A particular case relevant for quantitative

analysis is the Apollonian packing of spheres, which represents a perfect space-filling packing

starting with a tetrahedron arrangement of mutually touching spheres. Solid spheres then fit

recursively the existing pores by maximizing the occupied volumes. Such recursive filling is

associated with the concept of fractals.

In fractal packing, the number of spheres with radii larger than E follows an asymptotic

relation [36]:

N (c) ~ C-D (9.2)

in which D is the packing fractal dimension, which can also be determined from other quantities

such as the sum of perimeters s (c), the sum of surface areas p (E), and the sum of volumes v (c)

of spheres:

s (c) ~ e-D (9.3a)

p(C) ~ 2-D (9.3b)

v (e) ~ 3-D (9.3c

For the Apollonian packing of spheres, the fractal dimension has been rigorously computed

to be D = 2.474 [36]. The fractal packing model of Bobko [31] targeted the identification of

the fractal dimension for the packing of clay particles as a potential link between clay packing

and the space-filling bearing using two different types of available experimental data for shale

samples. The first approach consisted in deriving a relation between clay porosity and the

pore throat radius. Figure 9-5 redisplays the data presented in Figure 9-3 in terms of the clay

nanoporosity oo = 1 - q, which is used to compute a power function representative of a volume

fractal of the form:

( = ) 3-D = 168 nm (9.4)

where co is the characteristic size or correlation length. The corresponding fractal dimension

'The property defining a bearing is the allowed slipless rotation around an arbitrary axis.

372



po =0.087r
0 -4766

'R2 =0.74

0.3-

o 0.2
0

"4C3 0.1 -
0. m G2IC

+ Woodford

0.0
0 5 10 15 20

Pore throat radius, r [nm]

Figure 9-5: Clay porosity determined from nanoindentation scaling analysis Vo as a function of
pore throat radius r for G2IC and Woodford shales. The solid line represents the power-law fit
given by the displayed equation. Uncertainties for experimental data represent one standard
deviation. From [311.

for the porosity-pore size relation is D = 2.523.

The second approach in determining a fractal dimension for the packing of clays in shale

is to establish a scaling between friction and packing density. From the classical Amontons-

Coulomb law for friction, the frictional force is proportional to the normal loading applied to

the two surfaces while remaining independent of the contact surface. The Coulomb-type friction

coefficient is given by:
|Ft|

p = t (9.5)Fn

where Ft, Fn are the tangential and normal forces, respectively. The analysis of the frictional

behavior is pursued through dimensional analysis in an extended base dimension system in

order to derive a link between the different length dimensions involved in the problem. Consider

an extended LnLtMT base dimension system [133], where Ln refers to the length dimension

measured in the normal direction, and Lt to the length dimension in the contact plane of the

two surfaces, such that the dimension function of any quantity Q can be expressed as:

[Q] = LaLMT (9.6)
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Figure 9-6: Schematic of the friction behavior between two spheres, which suggests the use of
an extended base dimension system for the dimensional analysis of the contact problem. The
normal length scale e is much larger than the tangential length scale a.

The extended base dimension system is appropriate for describing the friction problem, where

the magnitude of the length associated with the normal dimension is larger than that of the

contact area. Figure 9-6 presents a schematic of the distorted system related to the friction

problem. The dimension functions for the normal and tangential forces in the extended base

dimension system are:

[Ft] = LtMT~-2  (9.7a)

[F,] = LAMT 2  (9.7b)

and consequently:

[ Ft - Lt (9.8)
{Fn) Ln

The length dimensions in (9.8) can be related to the asymptotic relations in (9.3) defined

by fractal packing. In particular, consider the perimeter of a sphere measured along any circle

s= 27rc whose normal passes through the center of the sphere. In the extended base dimension

system, the perimeter depends on the dimension Ln, without requiring a tangential measure:

[s] - L(9.9)
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The surface area of a sphere corresponds to the measurement of a tangential area with dimension

Lt along tangent planes:

[p] = L (9.10)

These dimensional considerations are used in the dimension function for the friction coefficient

(9.8), yielding:
1

Lt [[ =2 
(9.11)

L71  [s]

The substitution of the fractal relations (9.3a) and (9.3b) in (9.11) provides an asymptotic

scaling relation for the friction coefficient:

. p (C) \/_C e2 -D
p () = e-D 2 (9.12)

s (E) C

The development of the relation (9.12) was based on the packing of solid particles, whereas (9.4)

considered the porosity and pore throat radii. Based on a generalized pore-solid fractal modeling

approach, the combination of the fractal friction coefficient and fractal porosity scalings yields2

9 ~ jo} = ; = 6 -D2D (9.13)

which allows determining the fractal dimension from the relation between friction and porosity.

The friction coefficient p is computed from the experimental data for shale by converting the

Drucker-Prager values a using the relation between the Mohr-Coulomb friction coefficient y =

tan # and the internal cone of the Drucker-Prager criterion [235]:

sin # = 2 (9'14)
3 - a,

Figure 9-7 displays the relation between the friction coefficient p and the clay porosity ro,

and the data fitting using a power-function with coefficient x = 2.0769. Consequently, the

use of (9.13) provides an estimate for the fractal dimension from the friction-porosity scaling

of D = 2.418. This estimate of the fractal dimension compares well with the result derived

2The generalized pore-solid fractal model features symmetry of fractal scalings and equivalent fractal dimen-

sions for pore and solid size relations. However, fractal symmetry may not exist between pore and solid sizes

when a cutoff on fractal scaling exists [210].
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Figure 9-7: Scaling between the Mohr-Coulomb friction coefficient [t and the clay porosity go
for G2IC shales, Woodford shales, and resedimented Boston Blue Clay samples. The Mohr-
Coulomb type friction coefficient was derived from experimental data using expression (9.14).
The solid line represents the power-law fit given by the displayed equation. Uncertainties for
experimental data represent one standard deviation. From [31].

from the porosity-pore throat radius scaling. Bobko [31] suggested that the apparent friction

coefficient at the scale of clay particles in the elementary building block exhibits fractality, with

a fractal dimension similar to that of the Apollonian packing. This implies that the packing

of the porous clay in shale may come close to a perfect packing as a result of sedimentary

and diagenetic processes. Compared to the perfect packing with zero porosity and frictionless

conditions, the presence of nanoporosity yields instead an imperfect space-filling mechanism

that introduces a frictional behavior as noted from considerations of particle-pore interactions.

9.1.3 Fractal Scaling Relations for Friction, Cohesion, and Packing Density

The development of the fractal packing model by Bobko [31] offers a quantitative relation

between the frictional behavior and packing density for the fundamental scale of shale materials.

The scaling relation between the Mohr-Coulomb friction coefficient and porosity derived from

the fractal packing model (9.13) can be expressed in an alternative form. Considering the

internal cone equation for the Drucker-Prager criterion (9.14) and the clay porosity in terms of
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the packing density 77 = 1 -<Pa, a relation between the friction coefficient a and packing density

is obtained:

sin_1 ( = ) tan- [3.8277 (1 - q)2.0769 (9.15)

The cohesion of the elementary building block can be calculated using the result for the friction

coefficient from fractal scaling (9.15) and the function (3.30) derived from yield design and

non-linear homogenization considerations:

hScS = hs(9.16)
a [1 + ba + (ca) 3 + (da)1]

where hs is the solid hardness, and

a = 4.7644
b = 2.5934

c = 2.1860

d = 1.6777

An estimate for the solid hardness of hs = 0.69 GPa was determined from nanoindentation

analysis (refer to Section 3.6.6). Figure 9-8 shows the data inferred from indentation scaling

analysis for the friction coefficient and cohesion as functions of packing density, as well as

the results from fractal scaling. The conversion of the fractal scaling relation (9.13) into a

Drucker-Prager type friction - packing density form fits the experimental data adequately, as

seen in Figure 9-8a. A similar observation is made for the cohesion-packing density scaling

shown in Figure 9-8b. The scaling relation (9.15) derived on the basis of the fractal packing

model of Bobko [31] and the corresponding determination of the cohesion from expression

(9.16) constitute the cohesive-frictional material properties describing the strength behavior of

the elementary building block of solid clay at level 0 of the multi-scale structure model for shale.

9.2 Model Validation

The definition of material properties for level 0, the elementary unit of clay, represents a crucial

component for the implementation of the strength model in a predictive mode. The nanogran-

ular nature of shale and its microstructure have already been addressed through effective de-
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a, and b) the cohesion cs. The experimental data corresponds to G2IC and Woodford shales
and resedimented Boston Blue Clay samples. The fractal scaling relations derived for both
strength properties are also displayed [31]. Uncertainties represent two standard deviations.
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finitions deduced from microporoelasticity modeling. Hence, the validation of the strength

upscaling model for shale depends on the confirmation of the cohesion-friction-packing density

relations discussed in Section 9.1. The developed understanding of the cohesive-frictional be-

havior of shale at the scale of the elementary unit of solid clay is tested in this section through its

implementation in the multi-scale strength homogenization model presented in Chapter 8. The

objective of the model validation is to compare the model predictions for level II (the porous clay

- silt inclusion composite) with macroscopic strength data for a set of shale samples gathered

in this exploratory work of strength modeling. An independent validation of the model at level

I (the porous clay composite) is not viable given that the experimental nanoindentation data

generated by the G2IC [31] served as the baseline for developing the cohesion-friction-packing

density scaling relations for level 0 properties.

9.2.1 Validation Data Set

The validation data set for strength modeling corresponds to shale data collected from the

open literature, as well as data for one shale sample from the G2IC and several resedimented

Boston Blue Clay samples. The selected literature references furnish complete descriptions

of mineralogy composition, porosity, and unconfined compressive strength (UCS) values for

several shale materials of diverse origins. Table 9.1 displays the list of shale samples included

in the validation data set for strength modeling (VDS-S). The estimates of clay packing density

and inclusion volume fraction and strength data for the VDS-S shale samples are detailed in

Chapter 3. Figure 9-9 displays graphically the volumetric parameters estimated for the shale

samples in the VDS-S data set. The broad range of packing densities and inclusion volume

fractions ensure the adequacy of the VDS-S for model validation.

9.2.2 Level II - Comparison with UCS Experiments

The validation of the strength upscaling model is accomplished through its implementation in a

forward approach to generate unconfined compressive strength (UCS) predictions for the shale

samples considered in the VDS-S data set. The material properties for the elementary unit of

solid clay at level 0 correspond to the scaling relations between cohesive-frictional properties

and packing density summarized in expressions (9.15) and (9.16). The key elements in these

379



Data set Reference Samples

VDS-S [142] 9898, 10151, 6275, 7053, 6853, 8675,
[130] B, D, E, H, J, K,
[195] TOU
[68] SH1

G2IC North Sea

[1] RBBC-2, RBBC-4, RBBC-6, RBBC-8, RBBC-10

Table 9.1: List of shale samples considered in the validation data set for strength modeling,
VDS-S. The experimental data for these samples was gathered from open literature sources.
The data for the resedimented Boston Blue Clay (RBBC) was generated at MIT. The North
Sea sample was investigated by the G2IC.
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Figure 9-9: Clay packing density r; and silt inclusion volume fraction fmc estimated for the
shale samples considered in the VDS-S validation data set. The displayed volume fractions are
calculated based on mineralogy and porosity data.
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relationships are the explicit dependency of the solid's cohesion and friction coefficient on the

clay packing density and the order-of-magnitude of the intrinsic cohesion of the solid clay phase

scaled by the solid hardness, h' = 0.69 GPa. In addition to the properties of the elementary

building block, the other model parameters involved in strength upscaling are the clay packing

density and the inclusion volume fraction, determined from mineralogy and porosity information

for each shale sample in the VDS-S. The volumetric parameters and material behaviors at level 0

represent the complete set of input parameters necessary for the prediction of strength domains

at level II, whose expressions are detailed in Section 8.3.4. The parameters defining the strength

domains (EIs, Al" B{1m) are then used to calculate the modeled UCS strengths (see e.g.

expression (8.149)):

EUCS 3 _ II (Bii ) 2 + (9.17)
3 (AI'm 2 + (BI'm 2 (_hom,0 hom)

hom hom

(AIjm)2 (B[Im)4 + 3 (AIlm) 4 (B im)2 - 3 (AIm) 2 (Bi1m)2 ( m)

The predictions of UCS properties for level II are generated for two different interface condi-

tions between the (rigid) silt inclusions and the homogenized porous clay phase; namely perfect

bonding and slip (non-frictional) conditions. These modeling features enhance the mechani-

cal description of the macroscopic composite by delineating two limit conditions for interface

behaviors. The comparisons between predicted and measured UCS strengths for the VDS-S

data are presented in Figure 9-10. The horizontal error bars for the Tournemire and North Sea

shale samples are related to the alternative sets of volumetric properties (y, fq"C obtained from

mineralogy-porosity and mineralogy-density information) used for model implementation. The

remaining shale samples in the VDS-S are characterized by volumetric properties obtained ex-

clusively from mineralogy and porosity data. Three shale samples (9898, 7053, 6853) cannot be

modeled assuming perfectly bonded interfaces as their corresponding inclusion volume fractions

exceed the limit value of fuc = 0.5 associated with such interface condition (refer to Section

8.3.4). The case of slip-type interfaces restricts the range of inclusion volume fraction values to

ffl"C < 2/3, which allows the modeling of all shale specimens in the VDS-S data set.

The analysis of Figures 9-10a and 9-10b readily reveals an overprediction of UCS strengths

associated with modeling results. Interestingly, the observed overprediction for both types
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Figure 9-10: Comparisons of unconfined compressive strength (UCS) between experimentally
measured values and model predictions. The modeling results correspond to macroscopic (level
II) predictions for two types of interface conditions: a) perfectly adherent interfaces, and b)
slip-type interfaces.

of modeled interface conditions displays a somewhat consistent trend, except for three shale

samples (B,D,E) which exhibit relatively low strengths compared to others in the particular

set [130]. The observed overprediction is verified for the strength predictions based on slip

interface conditions with a correlation coefficient r 2 = 0.88. The correlation coefficient for the

set of comparisons based on model predictions assuming perfect interface conditions is r 2 = 0.45.

Nevertheless, the results in Figure 9-10 suggests that the strength upscaling model for shale

based on the cohesion-friction-packing density relations (9.15)-(9.16) and scaled by the solid

cohesion h' from nanoindentation analysis cannot be applied for the prediction of macroscopic

strength properties. Yet, the apparently consistent overprediction of properties furnished by

the present form of the multi-scale strength homogenization model deserves further analysis.

9.3 Discussion of the Multi-Scale Strength Behavior of Shale

Although the comparisons between model predictions and macroscopic strength data presented

in Figure 9-10 invalidate the use of the strength upscaling model for shale in its present form,

the consistent overprediction of properties is analyzed in this section. The aim of this extended
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investigation is to delineate the potential causes for such overpredictive tendency of the model,

which otherwise seems to capture the macroscopic strength response for shale samples of distinct

origin and compositional characteristics.

9.3.1 Adjusted Contact Hardness

The consistent overestimation in UCS strength properties hints towards a difference between

experimental and predicted values that scales by a proportionality factor. From the review of

model input parameters, the variable modulating the order-of-magnitude of predicted strength

behaviors is solid hardness h', which enters the formulation through the solid's cohesion c' in

(9.16). The estimate for the solid hardness of h' = 0.69 GPa was determined from the scaling

analysis of grid indentation data obtained at nanometer length scales in shale [31]. Although

established as a material invariant property, its order-of-magnitude represents a potential source

for the mismatch between strength measurements and predictions.

In order to define an effective value for the solid hardness, we pursue a back-calculation

analysis to determine an adjusted parameter hS, which in turn could enable adequate macro-

scopic strength predictions. The back-calculation approach is similar to the reverse analysis of

anisotropic elasticity properties for the elementary unit detailed in Section 5.2.1. The strength

model is implemented in a forward application using the clay strength properties derived from

fractal scaling analysis (9.15)-(9.16), while keeping the value hs as a degree-of-freedom. The

parameter calibration is accomplished by minimizing the relative error between the experimen-

tal UCS strength values for the VDS-S data and the corresponding model predictions generated

for a given hs value: (UCS _ UCS
min predicted measured (9.18)

h (VDS-S) measured

The back-calculation of the adjusted solid hardness hs was conducted for both types of interface

conditions (perfect bonding and slip interface) used in modeling of the strength response at

level II. Figures 9-11a and 9-11b display the new sets of comparisons between predicted and

measured UCS strength properties for the VDS-S shale samples based on the following adjusted
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Mean relative error [%]
Interface condition [142] [130] [195] [68] North Sea RBBC r 2

Perfect adherence -48 -23 -12 6 -12 -16 0.45
Slip interface -48 -31 -7 0 8 55 0.88

Table 9.2: Mean relative error statistics for the comparisons between measured unconfined
compressive strengths (UCS) and model predictions for the VDS-S shale data. For each interface
condition, the correlation coefficient is calculated for the complete set of data.

solid hardness values for perfectly adherent (A) and slip (S) interface conditions, respectively:

I 0.06 GPa (9.19a)

h = 0.12 GPa (9.19b)

These values represent 9% and 18% of the solid hardness h' determined from nanoindentation.

Table 9.2 reports the relative errors involved in the UCS strength predictions based on the

adjusted values for the solid hardness.

The results presented in Figure 9-11 and Table 9.2 suggest that the strength upscaling model

for shale can capture the strength behavior of shale samples over two orders of magnitude in

UCS strengths provided the solid hardness hs is adjusted properly. Encouraging results are

obtained for the majority of shale samples considered in the VDS-S data set, especially for the

data of Niandou et al. [195], Cook et al. [68], and the RBBC and North Shale specimens.

In general, the strength model considering a slip-type interface condition delivers improved

predictions, with an overall relative error es = -5 ± 56%, compared to the modeling based on

perfectly bonded interfaces with eA = -23 t 48%. Although an acceptable predictive capability

of the shale strength model has been verified based on the use of an adjusted cohesion c' (h8) for

the clay solid, an important question remains: are the nanoscale cohesive-frictional behaviors

(9.15)-(9.16), established for the elementary building block of shale, the factors enabling the

predictions of UCS strengths observed in Figure 9-11? The next section addresses this question.

9.3.2 Validation of Nanoscale Cohesive-Frictional Properties of Shale

The strength upscaling scheme for shale achieved a predictive status with the adjustment of the

solid hardness h' in the expression of the solid cohesion c' (9.16). However, the apparent ability

384



a) 1000 b) 1000

100 100

* U J

10 T10
m Horsrud et al. m Horsrud et al.

O* * Jizba *' + Jizba

GrNiandou et al. &1 Niandou et al.
n Cook et al. . Cook et al.
o RBBC o RBBC
A North Sea A North Sea

0.1 0.1

0.1 1 10 100 1000 0.1 1 10 100 1000

Predicted UCS-(A) [MPa] Predicted UCS-(S) [MPa]

Figure 9-11: Comparisons of unconfined compressive strength (UCS) between experimentally
measured values and model predictions. The modeling results correspond to macroscopic (level
II) predictions for two types of interface conditions: a) perfectly adherent interfaces, and b)
slip-type interfaces. The results in this figure differ from those in Figure 9-10 due to the use of
adjusted properties for the solid contact hardness h" as given in (9.19a).

of the strength model to capture the macroscopic behavior of shale materials deserves further

scrutiny. The focus of the analysis presented in this section is to determine the relevance of the

cohesion-friction-packing density scaling relations to the multi-scale strength modeling of shale.

Recall from the microporoelasticity investigation that the development of the engineering

predictive model was based on the successful specification of an elementary building block of

solid clay with material invariant properties. For strength modeling, the equivalent approach

relies on the characterization of the cohesive-frictional character of the load-bearing clay phase

from nanoindentation data and scaling analysis. Section 9.3.1 explored the order-of-magnitude

of the solid clay cohesion c' as modulated by the solid hardness h'. The remaining key aspect

of the cohesive-frictional properties at level 0 of shale is their marked dependency on the clay

packing density, as established in expressions (9.15) and (9.16). It will be instructive to probe

these functional relationships using the strength upscaling model and the macroscopic strength

data provided by the VDS-S data set as an alternative means for validating their relevance to

the description of the multi-scale strength behavior of shale.

The proposed alternative analysis of the cohesive-frictional properties of the elementary
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building block is accomplished using a similar approach to that presented in Section 9.3.1. In

a forward application of the model, the material properties at level 0 are calibrated in order

for the model to deliver optimal macroscopic predictions when compared to the experimental

data gathered in the VDS-S data set. The cohesion of the solid clay c' is derived from the

indentation hardness relation for a Drucker-Prager material (see (3.30)), which was obtained

from yield design and non-linear homogenization theory. The cohesion behavior remains equiv-

alent with the form used thus far for model development (see (9.16)), and which is dependent

on the solid hardness and the friction coefficient. Based on the analysis of the nanoscale solid

hardness, the adjusted value h' = 0.12 GPa is used in the expression of the cohesion (9.16)

to avoid the overprediction of UCS properties as analyzed in Section 9.2 3. The degree-of-

freedom to be monitored in this alternative approach to the properties of clay building block is

the Drucker-Prager friction coefficient a, whose calibration is accomplished by minimizing the

relative error between experimental and predicted UCS strengths for each shale sample in the

VDS-S generated for a given - value:

min predicted measured (9.20)
measured

The estimation of - values is accomplished using the strength upscaling model assuming slip

interfaces when modeling the interaction between silt inclusions and the porous clay composite.

This type of interface condition appeared to yield slightly improved predictions compared to

those associated with perfectly bonded interfaces. The objective of the calibration of the friction

coefficient behavior is to verify its dependency on the clay packing density corresponding to

each particular shale sample.

Figure 9-12 displays the friction coefficient behavior as a function of the clay packing density

determined from nanoindentation scaling analysis for G2IC shales, Woodford shales, and RBBC

samples, as well as the relationship derived from fractal packing analysis (9.15). Figure 9-12

also displays the results of the back-analysis of friction coefficients - from macroscopic data for

shale samples in the VDS-S, except for six samples: B, D, E [130] and 9898, 7053, 6853 [142].

3The value for the solid hardness hs = 0.12 GPa was allowed to vary within a range of ±10% for the numerical
implementation of the back-analysis algorithm.
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The first three samples correspond to specimens with low UCS strengths that the strength

model cannot capture (see e.g. Figure 9-11). The latter three samples exhibit the largest in-

clusion volume fractions in the VDS-S. A potentially excessive reinforcement effect due to large

amounts of rigid inclusions might obliterate the modeled contribution of the clay phase to the

composite strength behavior, hence not allowing any sensible results from the back-analysis

of clay friction properties. The trend of decreasing friction coefficient with increasing packing

density is retrieved for the back-calculated values from macroscopic measurements associated

with the remaining shale samples in the VDS-S. This finding may confirm the nanogranular be-

havior assessed through nanoindentation, micromechanics, and fractal packing considerations,

and could establish the friction behavior of the elementary building block of solid clay of the

form (9.15) as a scale-independent property for shale rocks. In addition to the clay packing

density and inclusion volume fraction, which weigh the contributions of the porous clay and

(rigid) inclusions to the macroscopic strength, the cohesion-friction-packing density relations

for level 0 may represent important factors for capturing the multi-scale strength behavior of

shale using the micromechanics framework herein proposed. However, the order-of-magnitude

of the cohesion, scaled by the solid hardness, becomes a material property which cannot be

implemented directly for strength upscaling.

9.3.3 Scale Effects for Hardness and Cohesion of the Elementary Building

Block

The micromechanics modeling investigation of the multi-scale strength properties of shale sug-

gests that the particular descriptions of the cohesion-friction-packing density relationships for

the elementary unit of solid clay obtained from nanoindentation analysis could be instrumental

for the prediction of macroscopic strength of shale. However, the successful implementation

of the model depends on the appropriate estimation of the order-of-magnitude of the cohesive

behavior ascribed to the clay phase. At the core of such determination is the value of the solid

hardness h' described by the functional relation (9.16), which for a first application of the model

corresponded to the experimental evidence gathered from nanohardness experiments (refer to

Section 9.2). The use of h' - 0.69 GPa, determined from nanoindentation, in the upscaling

model led to an overprediction of the unconfined compressive strengths of shale samples. A sub-
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Figure 9-12: Scaling between the Drucker-Prager friction coefficient a and clay packing density
rq. The experimental data for G2IC shales, Woodford shales, and resedimented Boston Blue
Clay samples was derived from nanoindentation scaling analysis. The fractal scaling relations
correspond to the results of a fractal packing model by expression (9.15) [31]. The results of
the back-analysis of friction properties for the elementary unit of solid clay from macroscopic
data are also presented in the figure. These results follow the friction-packing density trends
observed for experimental data and fractal scaling.
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sequent implementation of the model using adjusted values of the solid hardness (and hence the

solid cohesion) e.g. h' - 0.12 GPa for slip interface conditions, yielded adequate comparisons

with experimental data. The difference between the experimental and adjusted solid hardness

values hints towards a potential size or scale effect. The existence of a scale effect affecting

the hardness behavior of shale may explain the deviation of its macroscopic strength behavior

from the one predicted by the strength upscaling model based on yield design and non-linear

homogenization theory.

Size effects in indentation testing have been extensively documented for many materials

including metals, ceramics, and polymers (see review in [59]). In metals, the size dependence

is attributed to large numbers of dislocations governing the plastic deformation at micrometer

length scales. These dislocations result in strain gradients modifying strongly the stress response

of the material system [134]. The measured hardness values generally tend to decrease with

increasing indentation load or depth [59]. Phenomenological models have been developed to

characterize the indentation size effect. The depth dependency of hardness for crystalline

materials, for instance, follows the form [196]:

H h* (.1
H0 = 1 +(9.21)
Ho + h

where H is the hardness for a given indentation depth h, HO the limit constant hardness, and

h* a characteristic length scale related to the depth dependence of hardness. Figure 9-13 shows

an application of the model (9.21) for the depth dependence of hardness in copper. Charac-

terizations of the indentation scale effect have been implemented in strain gradient plasticity

models, which attribute the strengthening effects to large strain gradients. Consequently, these

effects are more significant when the material system is plastically deformed in small volumes

[196]. In addition to indentation size effects related to specific materials, size effects are also

attributed to measurement-related issues such as surface roughness, surface films, and indenter

tip configurations [59].

In applications of instrumented indentation to cohesive-frictional materials such as cements

and shale, scale effects associated with hardness have not been fully characterized. From the

experimental perspective, the issues of surface roughness and intender geometries have been
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Figure 9-13: a) Dependence of indentation hardness on indentation depth for copper (from
[177, 196]). b) Depth dependence for (111) single-crystal copper plotted according to equation
(9.21). Adapted from [196].

carefully addressed given their effects on the quality and accuracy of indentation modulus and

hardness data [64, 185]. Discarding any size effects related to surface roughness considerations

in view of adequate surface preparation procedures, a first assessment of the potential influ-

ence of size effects on the indentation response of cohesive-frictional materials was presented

by Vandamme [274]. The study aimed at deriving estimates of the composite response of a

heterogeneous material in the form of homogenized indentation modulus and hardness values

Mhom, Hhom on the basis of grid indentation data Mi, Hi generated at smaller scales. The

so-called self-consistent indentation technique for multi-phase materials employed linear mi-

cromechanics and yield design theories to determine the homogenized indentation properties

for heterogeneous granular materials. For the indentation modulus, the modeled homogenized

response of a virtual heterogeneous composite is given by [274]:

N 1 N Mi/Mhom (9.22)
=11 + -1 (Mi /Mhom - ) ii1 + " (Mi/Mhom - 1)

The proposed estimate depends on the set of indentation moduli {Mi}i=1,N measured through

a grid of indentations. Similar expressions, although mathematically more complex, were also

derived for the homogenized indentation hardness estimate Hhom.

The application of the self-consistent indentation technique for multi-phase materials was
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directed at the cement paste in concrete materials, which is composed of hydration phases,

residual clinker phases, and capillary porosities. In particular, the grid nanoindentation ex-

periments targeted the individual C-S-H (calcium silicate hydrates) phases, which represent

the main products of hydration. Average indentation depths of approximately h"" 200 nm

were used in the grid nanoindentation experiments. The homogenized indentation modulus and

hardness estimates Mhom, Hhom from grid nanoindentation were compared with microindenta-

tion experiments, for which the average indentation depths were approximately h'C" 20

pm. The microindentations probed the cement paste at a scale in which its behavior tends to

be homogeneous. The contrast in length scales probed by nano- and microindentations satisfy

the scale separability condition necessary for the application of micromechanics methods (see

Section 4.1.1).

Figure 9-14 shows a comparison between the measured microindentation modulus and hard-

ness values for three cement pastes with different water-to-cement ratios (w/c = 0.15, 0.30, 0.40)

and the corresponding homogenized estimates obtained from grid nanoindentation experiments

and micromechanics analysis. The microindentation values correspond to the means and stan-

dard deviations for sets of 50 measurements, whereas the homogenized properties were com-

puted for grids of hundreds of nanoindentations experiments. The average difference between

measured and estimated microindentation modulus values is 6%. This adequate comparison

for the indentation modulus properties (Figure 9-14a) shows the validity of the homogenization

scheme proposed by Vandamme [274] for the elastic behavior. In contrast, the measured and

estimated hardness properties showed large differences of approximately 50% on average. As

observed in Figure 9-14b, the homogenized hardness estimates tend to significantly overpredict

the composite response of the cement pastes as assessed by microindentation. The decrease

in hardness properties with increasing indentation depth is a clear manifestation of size effects

influencing the strength response of cement pastes at different scales. Although not directly

assessed by experimental means such as microindentation, the indentation hardness response

for shale appears to exhibit similar size effects. The larger value for the solid hardness h' in

shale compared to the adjusted value hs obtained from micromechanics modeling was indeed

determined by grid indentations at nanometric length scales corresponding to the porous clay

composite.
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Figure 9-14: Comparisons for indentation modulus and hardness of cement pastes obtained
from microindentation experiments M"ro, Hmero and estimates of homogenized properties
Mhom, Hhom derived from grid nanoindentation data and micromechanics analysis [274].

As noted for metallic materials, strong size effects are directly related to non-uniform plas-

tic deformations at the micrometer and sub-micrometer length scales [134, 288]. The enhanced

strengths associated with larger indentation hardness values for shale (as well as cement-based

materials) at nanoscales testifies to the presence of characteristic length scales affecting the

strength response in cohesive-frictional natural composites. In the proposed multi-scale struc-

ture thought-model for shale, the homogenization of elastic properties was viable between the

scales of the elementary building block of solid clay, the nanoscale of the porous clay, and the

macroscale of the porous clay - silt inclusion composite. For strength upscaling, a character-

istic length scale at the sub-micrometer level may exist, for which the strength behavior is

controlled by an alternative mechanism such as microfracturing that is not considered in the

yield design approach. The appearance of size effects in shale opens a new research area, in

which the understanding of the physical phenomena driving the strength properties of cohesive-

frictional composites would require more exhaustive experimental testing and the extension of

homogenization approaches considering scale-dependent variables such as fracture properties.
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9.3.4 Model Limitations

The multi-scale prediction of strength properties for shale within the framework of yield design

as proposed in this micromechanics investigation is a first attempt to address such a challeng-

ing endeavor. The modeling approach resorted to important simplifications in order to keep

the strength homogenization problem for a cohesive-frictional, multi-phase composite tractable.

The well-known anisotropic strength response of shale is not considered, which also becomes an

imposed assumption in view of the isotropic data commonly reported in the literature of shale.

The finding of size effects defines the need to identify intrinsic material scales and incorpo-

rate alternative mechanisms such as fracture and interface conditions in the strength upscaling

schemes, at least when considering material behaviors at sub-micrometer length scales. The

strength behavior assigned to the elementary building block of clay requires further scrutiny.

While adding to the discourse about the potential origins of friction and cohesion in clay-bearing

rocks from the experimental nanoindentation and micromechanics perspectives, the material

model for clay used for strength upscaling must be further validated by experimental means

or atomistic simulations. Finally, the experimental evidence of strength responses coming from

hardness measurements at the porous clay level and from conventional compression tests at the

macroscopic level should be properly categorized. The hardness measurements, obtained from

nanoindentation, and unconfined compressive experiments involve different types of stress fields

and plastic deformation patterns. The consideration of extensive data from indentation exper-

iments at different scales and triaxial data will help solidify the development and improvement

of strength homogenization solutions.

9.4 Chapter Summary

In this chapter, the multi-scale strength upscaling model developed in Chapter 8 was imple-

mented for the prediction of macroscopic strength properties of shale. In addition to the clay

packing density and the inclusion volume fraction derived from mineralogy and porosity infor-

mation, the remaining key element to the strength upscaling problem is the cohesive-frictional

behavior of the elementary building block of solid clay. These grain-scale properties, originally

determined from indentation analysis and modeling of fractal packings, were confirmed to be
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strongly dependent on the packing density of shale materials. A series of comparisons between

macroscopic strength data for various shale samples and model predictions showed that the

frictional behavior of the elementary unit of clay represents a scale-independent material prop-

erty. In contrast, the cohesive response of the elementary building block is modified by scale

effects. The hardness parameter associated to the clay cohesion appears to be magnified for

measurements at nanometric length scales, which is consistent with observations made for other

cohesive-frictional composites. While recalling the different simplifications and limitations of

the proposed model, this multi-scale investigation of strength properties of a complex geoma-

terial such as shale represents a leap forward in the advancement of strength homogenization

schemes.
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Part V

Conclusions
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Chapter 10

Summary of Results and Future

Perspectives

The overall objective of this thesis was the development of a microporomechanics framework for

translating the grain-scale mechanics sensed by nanoindentation experiments into macroscopic

predictive schemes for the poroelastic and strength properties of shale. This chapter presents a

summary of the knowledge generated through the development and validation of the microme-

chanics models. Based on the findings and contributions, some limitations and future research

directions are proposed.

10.1 Summary of Main Findings

This study revealed the following scientific findings about the links between microstructure,

material composition, and mechanical performance of shale:

9 Based on a closed loop approach of calibration and validation of elastic and strength

properties at multiple scales, it was possible to deconstruct shale to a scale of elemen-

tary material units with mechanical behaviors governed by invariant properties, and to

upscale these behaviors from the nanoscale to the macroscale of engineering applications.

The identified building block of shale represents the effective mechanical response of clay

conglomerates encompassing clay platelets, interlayer galleries, and interparticle contacts.

The stiffness of the elementary building block is invariant with respect to clay mineralogy.
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* The nanogranular behavior of the porous clay fabric in shale as sensed by nanoindentation

is confirmed by means of microporomechanics modeling and the inversion of poroelastic

properties from comprehensive macroscopic data. This signature behavior of shale at

nanoscales, characterized by a percolation threshold in the poroelastic and strength re-

sponses at packing densities close to q - 0.5, is mechanically representative of a highly

aligned, granular ensemble of particles.

" The intrinsic anisotropy of the porous clay fabric is the dominant factor driving the

multi-scale anisotropic elasticity of unfractured shale compared to the contributions of

geometrical sources related to shapes and orientations of clay particles. This intrinsic

anisotropy is intimately related to the local alignment of clay conglomerates resulting

from depositional processes and to the anisotropic nature of individual clay minerals.

" Having established the material invariant properties of the elementary building block and

the adequate micromechanics modeling of the microstructure of shale, it is demonstrated

that its poroelastic diversity predominantly depends on two shale-specific properties: the

clay packing density and the silt inclusion volume fraction. These volumetric parameters

neatly synthesize the mineralogy and porosity information of individual shale samples.

" The nanogranular and anisotropic behaviors of shale translate into a unique poroelastic

signature. Due to the intrinsic anisotropy of the solid clay and to the scaling of the porous

clay elasticity with the packing density, the Biot pore pressure coefficients are almost

isotropic. By contrast, the Skempton coefficients, which quantify the pore pressure build-

up under undrained conditions in consequence of a macroscopic stress application, are

highly anisotropic, with an anisotropy that scales with the packing density.

" The frictional behavior of the solid clay phase is found to be an invariant, scale-independent

material property defining the multi-scale strength properties of shale. In contrast, scale

effects modify the cohesive properties of the elementary building block determined from

nanoindentation hardness measurements. The scale effect associated with nanohardness

measurements for shale materials is consistent with similar phenomena observed for metals

and cement-based composites.
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10.2 Research Contributions

Progress in micromechanics modeling for the predictions of poroelasticity and strength proper-

ties of shale materials required the following developments:

9 A suit of microporomechanics analytical and modeling tools was generated to properly

characterize the multi-scale mechanics of shale. Novel developments in poroelasticity were

related to the modeling of anisotropy based on geometric descriptions of the underlying

microstructure of shale (particle shapes and orientation distributions of particles) and

intrinsic elastic properties of material constituents.

9 The yield design approach for the homogenization of strength properties based on the

LCC theory is fully developed in this work. This homogenization method offers an im-

proved framework for the modeling of strength properties for cohesive-frictional materials

compared to existing formulations. The predictive capabilities of the model in terms of

supported strength regimes and the effects of inclusion reinforcement and material inter-

face conditions are systematically characterized. The extensive analysis of the LCC-based

strength homogenization model ensures a well-defined domain for its application.

e The multi-scale microporomechanics approach developed in this thesis represents a com-

prehensive modeling framework that could be extended to other geomaterials such as sed-

imentary rocks, soils, and cement-based composites. In particular, the implementation

of microporomechanics theory for the characterization of nanoscale mechanical behaviors

advances the true objective of multi-scale modeling of linking grain-scale and engineering

properties.

10.3 Industrial Benefits

The micromechanics approach for the prediction of poroelasticity and strength becomes a novel,

physics-based alternative for industrial applications. Departing from purely empirical methods,

the modeling framework pursued in this thesis demonstrates the significance of incorporating

grain-scale behaviors probed by nanotechnologies into engineering predictive models. The mi-

cromechanics analysis of the poroelastic response of the clay fabric measured by nanoindentation
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experiments enabled the appropriate modeling of the otherwise visually complex microstruc-

ture of shale. By resolving the contributions of microstructural features, a link is established

between compositional information, readily available from advanced logging tools in petroleum

and reservoir applications, and material performance. The resulting microporoelastic model

for shale represents a baseline model for the prediction of anisotropic properties of unfractured

samples. In addition, the model offers a suitable theoretical framework for incorporating other

relevant aspect affecting mechanical behavior such as multi-scale porosities, morphological de-

scriptions of microstructure, and fracture mechanisms.

10.4 Current Limitations and Future Perspectives

The developments of the microporomechanical models for shale poroelasticity and strength

recognize some limitations. From these limitations and other considerations, potential directions

for future research are identified.

At the center of the modeling efforts presented in this thesis, the successful definition of an

elementary unit of solid clay common to all shale materials represents the foundation for the

multi-scale prediction of poroelastic and strength properties. Although the continuum mechan-

ics understanding of this fundamental scale of clay agglomerates has been validated in this work,

the precise natures of mechanisms encompassed by the effective response of this elementary unit

are yet to be established, such as the roles of interlayer galleries and interparticle interfaces in

the deformation and strength responses. The postulated local alignment of clay particles yield-

ing the overall anisotropic behavior of the solid clay phase is a first-order approximation, which

may not be representative for shale materials in certain depositional environments. Regarding

mineralogy, the significant presence of clay minerals such as smectite can modify the elastic

response of shale materials, highlighting the need for a chemomechanical approach to better

delineating the properties of the elementary unit of solid clay. The extension of nanoindentation

techniques for probing individual clay crystals and the use of atomistic simulations have the

potential to assess fundamental mechanisms at the level of the elementary building block that

are not accessible to the continuum micromechanics approach.

The complex, multi-scale mechanical behaviors of shale called for a reductionist approach
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to modeling, and many mechanisms of relevance to the poroelastic behavior were not directly

addressed by the proposed micromechanics model. The well-known pressure dependency of

elastic properties in shale cannot be captured by the linear micromechanics approach herein

developed, and will require the use of non-linear poroelasticity methods. In addition, the pre-

dictions for acoustic properties were developed for fully saturated conditions. Depending on

the frequency of acoustic measurements, the effect of partial saturation may be significant and

should be incorporated in predictive models to deliver accurate estimates of velocity dispersion.

Finally, the baseline predictions for anisotropic elasticity are associated with unfractured shale

materials. The presence of microcracks and crack-like porosity, which are often difficult to char-

acterize or quantify, introduces structural sources of anisotropy that could significantly alter

the macroscopic response of shale. While experimental techniques such as X-ray tomography

are advancing the microstructural assessment of shale, future developments related to micro-

mechanics modeling may include fracture formulations in order to fully simulate and predict

the behaviors of shale rock masses at scales relevant to engineering applications.

Although the micromechanical frameworks were shown to be relevant alternatives for pre-

dictive modeling, the treatment of shale strength is limited compared to the comprehensive

microporoelastic approach. The known anisotropic nature of shale was not considered in the

strength investigation, since the present formulation is bounded to isotropic behaviors. The

consideration of rigid inclusions with unbounded strengths for the description of silt-size parti-

cles in shale represents a first approach. Furthermore, the strength homogenization approach

based on yield design cannot capture size effects potentially associated to the strength response

of the clay fabric at sub-micrometer length scales. The field of strength homogenization is still

emerging, and this particular application to shale represents a first step towards developing

micromechanics-based predictive models. Improvements for the strength modeling of shale will

also require the generation of more comprehensive data sets, including multi-scale strength

measurements and complete characterizations of mineralogy and porosity.
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