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Mechanical and Oceanographic Engineering

ABSTRACT

Wind waves in the ocean are a product of complex interaction of turbulent air flow with
gravity driven water surface. The coupling is strong and the waves are non-stationary,
irregular and highly nonlinear, which restricts the ability of traditional phase averaged
models to simulate their complex dynamics. We develop a novel phase resolving model
for direct simulation of nonlinear broadband wind waves based on the High Order
Spectral (HOS) method (Dommermuth and Yue 1987). The original HOS method, which
is a nonlinear pseudo-spectral numerical technique for phase resolving simulation of free
regular waves, is extended to simulation of wind forced irregular broadband wave fields.
Wind forcing is modeled phenomenologically in a linearized framework of weakly
interacting spectral components of the wave field. The mechanism of wind forcing is
assumed to be primarily form drag acting on the surface through wave-induced
distribution of normal stress. The mechanism is parameterized in terms of wave age and
its magnitude is adjusted by the observed growth rates. Linear formulation of the forcing
is adopted and applied directly to the nonlinear evolution equations.

Development of realistic nonlinear wind wave simulation with HOS method required its
extension to broadband irregular wave fields. Another challenge was application of the
conservative HOS technique to the intermittent non-conservative dynamics of wind
waves. These challenges encountered the fundamental limitations of the original method.
Apparent deterioration of wind forced simulations and their inevitable crash raised
concerns regarding the validity of the proposed modeling approach. The major question
involved application of the original HOS low-pass filtering technique to account for the
effect of wave breaking. It was found that growing wind waves break more frequently
and violently than free waves. Stronger filtering was required for stabilization of wind
wave simulations for duration on the time scale of observed ocean evolution. Successful
simulations were produced only after significant sacrifice of resolution bandwidth.

Despite the difficulties our modeling approach appears to suffice for reproduction of the
essential physics of nonlinear wind waves. Phase resolving simulations are shown to
capture both - the characteristic irregularity and the observed similarity that emerges from
the chaotic motions. Energy growth and frequency downshift satisfy duration limited
evolution parameterizations and asymptote Toba similarity law. Our simulations resolve



the detailed kinematics and the nonlinear energetics of swell, windsea and their fast
transition under wind forcing. We explain the difference between measurements of initial
growth driven by a linear instability mechanism and the balanced nonlinear growth. The
simulations validate Toba hypothesis of wind-wave nonlinear quasi-equilibrium and
confirm its function as a universal bound on combined windsea and swell evolution under
steady wind.

Thesis Supervisor: Dick K.P. Yue
Title: Philip J. Solondz Professor of Mechanical and Ocean Engineering
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"It seems much more difficult to utilize in truly
constructive ways the methods and techniques of
hydrodynamic simulations than to develop them.
However, the yield from successful numerical
experiments can be very high..." M.P. Tulin, 2003.

Chapter 1. Introduction

Gravity waves on ocean surface are a powerful phenomenon of central importance in

ocean engineering (Mei, Stiassnie and Yue 2005). Surface waves are also a major factor

in ocean-atmosphere interaction with significant implications on weather and climate

dynamics (Csanady 2001). Mechanical energy contained and dissipated in surface waves

is the largest component in the energetics of global oceans (Wang and Huang 2004).

Most of this energy is transferred to waves by the action of wind, and these waves are

known as wind waves (Kinsman 1965).

Study of wind blowing waves is a classical problem in hydrodynamics. Early

standardized descriptions of wind forcing in the sea can be traced back to 1806 when

Beaufort Wind Force Scale was first documented (Kinsman 1969). Theoretical attempts

to explain the process of wind-wave generation (Helmholtz 1868, Thomson 1871) as well

as the general dynamics of surface waves (see Craik 2004, 2005 for a review of early 1 9 th

century progress) attracted considerable attention from the earliest days of study of

physics of fluids. Yet, in 1956 in a widely quoted critical review Ursell concluded that

"the present state of our knowledge is profoundly unsatisfactory". This review inspired

extensive research activity and many profound developments took place in last 50 years.

Nevertheless, in 2006 Donelan, Babanin, Young and Banner reviewed this progress and

concluded that the current state of knowledge is "incomplete and often contradictory",

"no fully consistent and conclusive theory of wave generation by wind exists", the

suggested theoretical mechanisms are "sometimes incompatible", the available

experimental data is "scattered by an order of magnitude and the parameterizations result

in estimates that can differ by more than 100%". Therefore, wind-blown waves appear to



remain a 200 year old unresolved problem, while modem applications provide an

increasing demand for their better understanding and high precision modeling.

Contemporary state of the art wind-wave models (Cavaleri et al. 2007, Komen et al.

1994) are based on statistical formulation. The surface of the ocean is assumed to be a

random wavefield comprised of statistically independent spectral components. The

wavefield is assumed to be represented by a stationary random process and only

statistically relevant properties are being quantified. The description is phase averaged in

the sense that only power spectrum is considered, the phases of the spectral components

are disregarded. Thus, the actual geometry and kinematics of the wave field are not

described and quantitative statements are only of probabilistic nature. These statistical

models do not fully account for the nonlinearity of wind forced wave field. Their

formulation is based on linearized description and superposition principle extended to

only partially account for weak interactions and broadband effects (Kinsman 1965). A

simple example is the fact that they consider only linear estimates of energy and

momentum (Komen et al. 1994). Effects beyond the ability of these models, like

modulations and non-resonant nonlinear interactions start being recognized in the recent

literature (Janssen 2003).

On the other hand, advanced theoretical methods and elaborate numerical wave tanks

have been developed to study the phase resolved dynamics of nonlinear surface waves

(Tsai and Yue 1996, Dias and Bridges 2006). However, application of these models to

the real ocean wind-wave problem is severely limited due to high computational cost and

oversimplifying theoretical assumptions.

The objective of this thesis is to develop a numerical model for direct simulation of ocean

wind waves. Our mechanistic approach is based on basic principles and is set in phase

resolving framework. Unlike the contemporary phase averaged models we do not imply

random phase approximation or ergodic statistical ensembles. Model formulation starts

from the primitive equations and explicitly resolves the dynamics, kinematics and

geometry of nonlinear wave surface. We utilize the High Order Spectral (HOS) method

(Dommermuth and Yue 1987), which is a pseudo-spectral numerical technique for phase



resolving simulation of free regular waves in periodic domain. In this thesis we extend

this technique to simulation of wind forced irregular quasi-periodic wave fields. The two

principal contributions to the HOS method are, therefore, development of suitable wind

forcing model for HOS and development of broadband irregular wavefield simulation

capabilities for the method.

The proposed wind forcing model is physics based. We review the observed physics of

wind waves, focusing on the modem concept of windsea and its similarity properties. We

base the phenomenological framework for development of the model on observed growth

laws of windsea and parameterize the evolution in terms of wave age. Wind forcing

mechanism is shown to be primarily a wave induced form drag due to slope coherent

surface pressure distribution. Linear formulation of the forcing is adopted and applied

directly to the nonlinear evolution equations.

The attempts of extension of the HOS method to simulation of broadband irregular

wavefield encountered the basic limitations of the original method. We examine the

advantages and drawbacks of the proposed phase-resolving model formulation. The

major weakness is identified in the inadequacy of the original HOS approach to

consistently account for the effect of wave breaking when the conservative dynamics of

free regular waves are substituted by the intermittent non-conservative physics of

irregular wind waves. The original low-pass filtering technique is shown to have effects

which are not consistent in the existing theoretical framework and raise concerns

regarding the validity of our modeling approach. Nonetheless, we discover that the results

of our simulations are consistent with the observed similarity laws of wind waves, which

suggests that our modeling approach is sufficient to reproduce the relevant wind wave

physics.

Our analysis of the successful simulations advances understanding of the observed wind

wave physics and contributes to study of wind-wave interaction mechanisms. The

nonlinear non-conservative wind wave simulations lay a basis for development of

advanced nonlinear phase resolving models of wind forcing on waves. The simulations

clarify the observed dynamics of ocean swell and windsea, and explain the process of



their transition under wind forcing. The proposed nonlinear phase resolving simulation

method is shown to have the computational capabilities and basic theoretical coherence

for development of new generation of highly accurate realistic wind wave forecasting

models.



Chapter 2. Background

2.1. Wind wave physics

2.1.1. Modern view of wind waves: Windsea and Swell

Wind waves are the most energetic type of gravity waves on ocean surface if compared to

tides and seismic waves (Kinsman 1965, p. 23). Wind wave category, which includes

gravity waves, capillary waves, infra- and ultra-gravity waves is energetically dominated

by pure gravity waves with periods of 1-30 seconds. Oceanographers distinguish between

two types of these waves - swell and "windsea" (or "sea" in older nautical literature).

Swells are round and smooth. These are regular waves propagating on calm ocean surface

away from regions of strong winds. Wave breaking is relatively rare, turbulence and

white capped regions are limited. Windsea, in contrast, is characterized by steep, rough

and irregular surface waves continuously generated by the action of wind at the air-sea

interface. Wave breaking is frequent, white caps cover significant portions of the surface.

The distinction between the two types is parallel to distinction between free and forced

waves. Indeed, swells have been proved to be reasonably well described as superposition

of infinitesimal spectral components, governed by linear theory and weakly nonlinear

interactions. Windsea, however, is a different more complicated phenomenon inherently

coupled to the forcing of wind. The actual wind waves are "extremely intricate blending

of free and forced waves" (Kinsman 1965, p. 24) and their physics is very complicated -

"Many details are indistinct, and the parts played by the various dynamical processes

involved are clearly not simple, changing constantly as the waves develop. Indeed, a

dynamical kaleidoscope!" (Phillips 1977, p. 170).

Modern view of wind waves (Csanady 2001; Toba 1998, 2003), we will now use this

term to generally refer to "windsea", is different from earlier conceptual model seeing

them as stochastic "assembly of freely propagating gravity waves, independent of and

unaffected by the air-water shear flow" (Csanady 2001, p. 61). That simplification to an

ergodic ensemble of independent infinitesimal linear free waves is the legacy of the

outdated theories of Sverdrup, Munk, Peirson and Newman (see Kinsman 1965). "Wind



waves are very special phenomena, which are generated at a sheared interface between

the air and water, and which connect two turbulent boundary layers of air and water"

(Toba 1998). The coupling of these two different viscous fluids is strong and nonlinear.

Waves are inherently forced by the wind, break intermittently and interact strongly with

surrounding turbulence. This nonlinear non-stationary dynamics is substantially different

from what is described by the theory of free surface waves, the special characteristics of

wind waves may not be expressed merely as a combination of gravity and capillary

waves. However, within all the irregularity and chaotic complexity of the detailed

motions wind waves appear to satisfy simple macroscopic laws.

2.1.2. Wind forced evolution and wave age

Observations of wind waves evolving under the forcing of wind reveal two primary

features: waves grow to become higher and longer. To simplify the description of the

complex evolution observed in the real situations, two idealized settings are customarily

introduced. In fetch limited conditions constant wind is assumed to blow for sufficiently

long time, so that the state of the wave field is only dependent on the length of the

upwind domain. In duration limited conditions the upwind domain is assumed to be

unlimited, constant wind starts to blow waves on a clam water surface and wave field

depends only on the duration of this wind. In these idealized settings the development of

wave field is described by energy growth and frequency downshift. Although for

infinitesimal periodic waves these processes can be straightforwardly quantified within

the framework of linear theory, for the irregular broadband ocean wavefield the measure

of these processes requires spectral consideration.

Energy growth is interpreted geometrically in view of its leading order estimate by the

variance of wave elevation record, or twice potential energy, in other words. The growing

variance is traditionally quantified by significant wave height, which measures the

observed crest to trough distance:

H, ~=4a-(.11



Here o-= $ is the standard deviation of the surface about its mean elevation. The

observed growth of wave elevation amplitude is explained, in principle, by the existing

linear theories of wind-forced wave growth (e.g. Miles 1957), as will be discussed in the

subsequent sections in this chapter.

The other aspect of the observed wave growth - the increase of wave length is not

explained by the linear theory. Neither is it easily quantified for broadband irregular

waves. As waves develop under action of wind, their characteristic horizontal scale

appears longer and their spectrum is shifted to lower frequencies. This frequency

downshift, which by the linear dispersion relation is equivalent to wavelength growth and

phase velocity acceleration, is traditionally quantified in terms of a "dominant" wave.

This wave is typically associated with the peak of the measured power spectrum or,

alternatively, is estimated by zero crossing methods (Sverdrup and Munk 1947). The

concept of dominant wave is not unambiguously defined; its popular definition in terms

of spectral maximum depends on artificial smoothing of realistic spectra and assumption

of their narrowbandedness. Dominant wave is an approximate construct introduced by the

necessity to describe the scale of broadband irregular ocean waves by single parameter.

Nonetheless, the concept was proven to be very useful in many observational studies as

well as in phase averaged spectral theoretical approaches.

The process of frequency downshift of growing wind waves is so ubiquitous in the ocean

that it became a standard for quantifying the stage of wave system evolution.

Nondimensionalized by gravity and strength of the wind, expressed by friction velocity

u., the inverse of peak frequency is equal to nondimensional phase velocity of the peak.

(2.1.2)
u. COPu.

The ratio of peak phase velocity to wind strength is known as wave age. The concept

expresses the fact that older waves propagate faster relative to the wind. In alternative

form (2.1.3) wave age is scaled by wind speed at standard height, typically 10 m over the



mean level. The conversion between definitions is done with drag coefficient

CD = O(10-).

c' C P (2.1.3)
U10  U

This parameterization of wind wave evolution in terms of relative propagation speed

appears to capture the key observed physics. Young waves grow from short capillary

ripples, that appear quickly on a smooth surface when turbulent wind starts blowing.

Young waves are slow, relatively steep and have appearance of local roughness. As they

grow under continuous wind forcing, waves get higher, longer and less steep. They

propagate faster and accelerate until reaching speed a little higher than the wind, i.e.

wave age c, /U10 ~1.14 (Csanady 2001). At this stage waves are considered to be

mature, the efficiency of wind forcing is reduced, waves reach equilibrium of "full

development".

It appears that although the concept of wave age and the process of frequency downshift

are central in observational wind wave studies, their theoretical explanation is an open

and intriguing question. Not only that frequency downshift is not explained by the linear

theory, its actual process is not smooth and gradual but appears to be surprisingly

complex. Wave lengthening process is observed to be discrete and abrupt, and became

known as "crest pairing" or "phase reversal" events (Lake and Yuen 1978, Melville 1983,

Shugan and Voliak 1998). Its physical mechanism is a subject of current controversy,

apparently due to inability to be properly explained in existing theoretical frameworks. It

may be hypothesized that the explanation lies within phase resolving framework, and this

thesis may be regarded as a demonstration of a possible quantitative approach. Further

point to make is that frequency downshift was observed and studied for both free

(Melville 1983, Trulsen and Dysthe 1997) and wind forced (Hara and Mei 1991) waves,

the separate effect of wind on this process is not currently known. This fact undermines

the validity of frequency based wave age parameter as a unique quantifier of wave

evolution under wind. The details of frequency downshift mechanisms have to be better



understood, the roles of nonlinear interactions, wind forcing and dissipation need to be

separated. This thesis is, therefore, a step in resolving this fundamental question.

2.1.3. Dimensional analysis and observed growth laws

Before we turn to a quantitative discussion of the observed energy growth and frequency

downshift we resort to dimensional analysis. We identify six independent quantities of

interest: variance of surface elevation record (or equivalently significant wave height),

characteristic frequency (e.g. frequency of spectral peak), wind speed, gravity

acceleration g, fetch and duration of the wind; and two fundamental dimensions - length

and time. Buckingham n theorem indicates that four dimensionally independent

nondimensional parameters can be combined. These four parameters are (Kitaigorodskii

1962, Young 1999): nondimensional energy, nondimensional frequency, nondimensional

fetch and nondimensional duration

g202 U 1 f _F (2.1.4)
U(4 g U9% U2

Alternatively, if friction velocity is chosen to represent wind strength, a similar

nondimensional group is:

g 242 U0O gx gt
E,. 4 , Pa ' F -- 2 .- (2.1.5)u. g u. u.

Both scaling standards appear in the literature and, for convenience, will be used below.

Conversion between the groups is done with drag coefficient, defined
2

CD u*J =O(10-3) (2.1.6)

The great progress in observational studies of wind waves was achieved by

parameterizing the measured energy growth and frequency downshift in idealized fetch

limited conditions

e = f, (F), y =f2(F) (2.1.7)

f, and f2 are empirically determined universal functions. Theoretically, in idealized

duration limited conditions the evolution equations would be



e= f3 (r), v= f 4(r) (2.1.8)

However, such conditions are rare in the real oceans and consequently the amount and

quality of available duration limited evolution parameterizations is limited.

Many observational studies of fetch limited growth laws appear in the literature (see

Young 1999, p. 101), most frequently cited is the JONSWAP experiment (Hasselmann et

al. 1973). JONSWAP fetch limited energy growth and frequency downshift are given by

e = 1.6x 10-7 F, v = 3.5F- 3 3  (2.1.9)

Duration limited growth laws are hard to observe; typically conversion from fetch to

duration is reported. A simple parameterization was proposed by CERC (1984)

r = 68.8F0 .67  (2.1.10)

It should be noted however, that the scatter of measurements is large and the above

parameterization is useful mainly for order of magnitude estimates.

The inhomogeneity of wind wave evolution conditions in the real ocean limits the

applicability of the idealized fetch and duration limited parameterizations. To overcome

these limitations Donelan et al. (1985) chose to report their measurements using "local

scaling" in terms of wave age. Their growth law appears in following form:

-3.3

E=0.00274 (2.1.1 1)

The observed relation between fetch and inverse wave age is reported as

'-0-=11.6F- 2 3  (2.1.12)
CP

Combination of (2.1.11) and (2.1.12) leads to Donelan et al. (1985) version of fetch

limited growth laws, which are only generally consistent with JONSWAP

parameterization (2.1.9).

e = 8.4x 10-7F 0 .76, v = 1.85F- 23 (2.1.13)



Duration limited growth estimates can be obtained from Donelan et al. (1985) data by

combining (2.1.10) with (2.1.12) and then (2.1.11)

e=7x10-9r113, v =8r-0. (2.1.14)

Duration-wave age relation for CERC parameterization with Donelan et al. (1985) data is

U= (2.1.15)

This approximate result may be utilized to estimate the required evolution time for

duration limited numerical simulations. Rewritten, for convenience, in terms of scaled

simulation time (see Chapter 4) (2.1.15) becomes

- = TV =1.4 x104

T, u.)

(2.1.16)

The estimated evolution of wave age is plotted versus scaled duration on Figure 2.1. We

conclude that the time scale relevant to wave age parameterized wind wave evolution is

O(10 3T,).

6.

0 2000 4000 6000 8000 10000 12000 14000 16000
VT

Figure 2.1 Wave age evolution vs. scaled simulation time based on CERC (1984) and Donelan et al.
(1985) parameterizations.

1111F n. .......................... .................. . ............. .......................... ... ....................... .. .........



2.1.4. Observed spectral parameterizations

In previous section we discussed empirical growth laws in terms of 2 integral parameters

- wave energy and characteristic frequency. Here we consider empirical evolution of

power spectra that resolve the details of energy distribution between the different

frequencies of the growing wave field. Application of similarity theory and dimensional

analysis (Kitaigorodskii 1973, p. 126) for wave spectra governed by gravity and wind

suggests the nondimensional scaling #(w)g' and a similarity law for the asymptotic
5

state of "fully developed" windsea u,

= func. . (2.1.17)

Observations of Pierson and Moskowitz (1964) confirm this analysis as

nondimensionalized spectra collapse on a single universal curve (Kitaigorodskii 1973, p.

129).

For developing seas no single universal curve exists, but rather evolving nondimensional

spectra have self-similar structure which can be parameterized by a single evolution

parameter like the fetch. The form of similarity law becomes, under constant wind and in

absence of swell,

0ag3= func. U, 2 . 21.8
u, g u.

The primary properties of the universal evolving spectra are downshift and integral

energy growth.

Earlier, Phillips (1958) used dimensional analysis to argue that since spectral saturation

range" is governed only by gravity, the power spectrum should be nondimensionalised as

O(c and the universal shape of the spectral tail should have -5 power form. This
92g

1818
* In the original Phillips' 1958 paper the term "equilibrium range" was erroneously used to refer
to "saturation range". This discrepancy was later clarified by Phillips in 1985 paper, were an
improved description of "equilibrium range" was provided.



spectral form was considered a standard in the earlier years and experimental studies

were forced to fit this power law. The widely cited JONSWAP parameterization

(Hasselmann et al. 1973) is an example of such approach.

Toba's observations of 3/2 power law (see Section 2.1.5. ) led him to propose on

empirical grounds an alternative -4 power law for the spectral tail (Toba 1973). The

consistency argument is based on integration of the spectral tail, that would suggest -3

power variation of the total energy with the lower bound of integration - i.e. the spectral

peak. This form was justified dimensionally by modifying Phillips (1958) argument,

assuming equilibrium range dependence on both gravity and wind stress, such that

scaling law becomes . Theoretically -4 power law is supported by works of
u~g

Zakharov and Filonenko (1966), Kitaigorodskii (1983) and Phillips (1985). More modern

observations confirmed the validity of Toba spectral form (e.g. Donelan et al. 1985) and

it was even shown to better fit the original JONSWAP data (Battjes et al. 1987).

In current work the above three types of observed spectral parameterizations were applied

and utilized for initial conditions. Pierson and Moskowitz (1964) spectrum at the

asymptotic fully developed limit has the older -5 power tail. Converted to wavenumber

nondimensional form it is given by

-3 /\-2

SPM (k)k , = exp (2.1.19)
P2 (kP 4 kP

Here k, is the wavenumber of the spectral peak. The parameter a is known as Phillips'

constant (Phillips 1958) and has the interpretation of the total spectral energy level of the

wave field. For mature Pierson-Moskowitz (hereafter PM) windsea its value is fixed to

a=0.0081.

The fetch limited parameterization for growing windsea of JONSWAP experiment

(Hasselmann et al. 1973) is given by



Sj kk a k ep-5 k2a
S,(k)k,= e P -7, - - (2.1.20)

a =0.033v 0 .67

7j= 3.3

0.09; k > k,
0.07 k- k

The difference from PM spectrum is multiplication by a peak enhancement factor and

parameterization of the spectral level by the evolving characteristic frequency.

A modification to JONSWAP parameterization to account for Toba spectral form was

given by Donelan et al. (1985):

-25-2 [ -p

is, (k)k, = exp -I-- -D (2.1.21)2 (kP L (k

#= 0.0165v0 5 5

rD ={6.489+6logv; 
v ; >0.159

1.7 ; v < 0.159

a =0.08+1.29 x10-3V-3

This parameterization is based on wider range of characteristic frequencies and smaller

experimental scatter. The parameters are chosen such that the spectrum broadens with

wave age and approaches PM spectral form at the limit of full development. The choice

of Toba form k-2 5 allowed lower values of spectral level coefficient than those that were

forced to conform to Phillips (1958) form k 3 .

The above parameterizations are compared on Figure 2.2. The nondimensional plot

shows that younger waves are steeper with more pronounced narrow spectral peak.

JONSWAP spectrum at full development follows exactly PM curve, except near the

peak. This results in higher overall energy of JONSWAP form at PM limit. Donelan's

spectrum has same higher energy but due to the broadening resembles better PM form.

The different slopes of Toba and Phillips tail forms are evident in the high frequency



range. The dimensional plot highlights the frequency downshift and energy growth of the

evolving spectra. The corresponding values of wave age and characteristic frequency are

indicated on the plot. The conversion between the two is done with

v = ~2fr. (2.1.22)V = 24 CDu.

Power spectra (nondimensional)

Power spectra (dimensional, e10lOri/s, CD=0.0012)

-2
10 10 10 10 102

k

Figure 2.2 Nondimensional and dimensional plots of Pierson-Moskowitz, JONSWAP and Donelan et al.
(1985) spectra. The values of drag coefficient and wind velocity are indicated in the bottom plot title.



2.1.5. Emergence of Similarity and Toba 3/2 law

Application of similarity theory by Kitaigorodskii (1962) revealed self-similar structure

(details in previous section) of measured power spectra. When scaled by gravity and wind

friction velocity, spectra of mature sea states collapse on a universal curve, whereas for

developing seas the spectra are self-similar functions of an evolving representative

parameter such as the spectral peak frequency. A simplified two parameter description of

sea state can be obtained by integrating the power spectrum. The resulting estimate of

total energy must remain a function of the characteristic frequency and cannot obtain

arbitrary values. Thus, windsea energy and characteristic period are not independent, but

are constrained together under wind forcing as expressed by the scaling with wind

friction velocity. Toba (1972, 2003) interprets this local balance of wave field with wind

as a "local equilibrium" of windsea, which is achieved by strongly nonlinear wind wave

interaction processes. A special self-adjustment mechanism emerging from nonlinear

"microphysical" (Toba 1998) dynamics appears to establish macroscopic similarity laws.

This self-adjustment mechanism is clearly associated with continuities of surface

velocity, turbulence structure and momentum transfer between the turbulent boundary

layers above and below the wind-wave surface, but the details of it are not presently

understood. In particular, no theoretical explanation of the observed scaling of windsea

properties with wind friction velocity appears to exist (Toba 1998).

The integral similarity law for windsea energy and characteristic frequency was

originally derived by Toba (1972) in terms of significant wave height and significant

wave period (Sverdrup and Munk 1947) by eliminating fetch dependence in the empirical

growth parameterizations. The primary advantage of the direct relation between windsea

characteristics is its applicability to real ocean conditions, where inhomogeneities of wind

field and complex fetch geometry rarely satisfy the idealized fetch limited conditions.

Toba (1972) expressed this similarity relation in terms of significant wave height and

period scaled by wind friction velocity



H. = BT 3 / 2  (2.1.23)
where

H. = gH, /u, T- gT/u., B = 0.062 (2.1.24)

B is an empirical constant showing perturbations of about ±20% due to wind fluctuation.

This empirical similarity relation is known as 3/2-power law. Toba found that this

relation is a universal constraint in wide range of sea states when swells are weak.

Since the significant wave period is approximately the period of the spectral peak, which

is related to wave age by the linear dispersion relation

=T - (2.1.25)
21ru, u.

Toba's 3/2 law is conveniently expressed in terms of wave age

3/2
gHS = 0.98( . (2.1.26)

2 1
t4 KU*}

The characteristic wave steepness evolves as

H =0.156 -'- (2.1.27)

Or equivalently, in terms of root mean square amplitude a, = c0- = H, / 2,r2

a,,skp =0.35 ( P (2.1.28)

Younger wind waves are steeper than the mature ones.

The stochastic form of 3/2 law was proposed by Toba (1978) in terms of the total energy

and spectral peak frequency as

E. = 0.05 1&3 . (2.1.29)



This law is supported by many measurements, in particular by JONSWAP experiment

(Hasselmann et al. 1973) as can be seen from (2.1.9). Toba (1978) combined these with

CD = 1/1000 to give

E.= 0.053 03 (2.1.30)

The original Toba (1972) form (2.1.23) can be obtained with the typically used

CD = 1/282 such that E. = 0.061" 3 03 . Alternatively, the expression provided by

JONSWAP group itself is (Hasselmann et al. 1976) e = 5.3x 10-6 V-13. More modern

measurements were reported in terms of wave age as (2.1.11) (Donelan et al. 1985) or

(Donelan et al. 1992)

-3.2

e = 0.0023 U10  (2.1.31)
(CP

It can be noted that the power law is rather consistent and compatible with (2.1.23),
although the proportionality coefficient varies up to factor of two from case to case. Toba

(1978) explained that the absolute values of these numerical factors are not expected to

be universal and the emphasis has to be given to the "basic forms of the equations", i.e.

the power laws. Therefore, this will be our interpretation of Toba similarity law.

The similarity argument of Toba (1972) and his hypothesis of nonlinear self adjustment

mechanism and local balance of wind and wind waves apply strictly to pure windsea

under steady wind and free of swell. Figure 2.3 displays compilation of experimental data

(Kawai et al. 1977) for pure windsea conditions in good agreement with Toba 3/2 law.

One point falls right and below Toba law line, which corresponds to lower height then

expected for pure windsea of same period. This point was measured in open sea

conditions, where background swell contaminated the local windsea data. The deviation

from Toba law is explained by bias of the averaged characteristic properties of sea state

due to superposition of windsea and swell. To confirm this point, in later experiment

Ebuchi et al. (1992) observed many combined swell and windsea conditions, their data is

presented in Figure 2.4. A consistent picture emerges: all the points fall to the right and



below of Toba law curve. It is seen that Toba law can be interpreted as an upper bound

on evolution of realistic sea state, which is always a mix of windsea and swell. As swell

adjusts to wind forcing it is expected to grow and approach Toba equilibrium line from

below. Then, under steady wind, wave system is expected to continue growing along

Toba power law line in quasi-equilibrium with wind forcing. This balanced growth

corresponds to idealized duration and fetch limited evolution.

Figure 2.3 3/2 power law and composite data set of Kawai et al. (1977). (Cited from Toba 1997.)



10'-

id md 1s o0 (

Figure 2.4 3/2 power law and mixed windsea and swell measurements of Ebuchi et a]. (1992).



2.2. Mechanism of wind forcing on waves

2.2.1. Physics of wind wave interaction

Physics of wind wave interaction is very complex and the modem literature on the

subject is very rich. Following a famous critical review (Ursell 1956), which invalidated

earlier explanations by Kelvin-Helmholtz instability (Helmholtz 1868, Thomson 1871)

and Jeffreys (1925, 1926) sheltering "theory", two complementary theories appeared in

1957: a resonance theory of Phillips and shear instability theory of Miles. Phillips

mechanism explains wave generation by a resonance of water surface with preexisting

turbulent pressure fluctuations advected by air motion. The generated wavelets propagate

with the velocity of wind and growth is linear in time. Miles applied concepts of linear

instability theory of inviscid shear flows (Lin 1955) to logarithmic atmospheric profile

and showed that air flow may become unstable to perturbations induced by infinitesimal

water wave at its lower boundary. These perturbations are coherent motions correlated

with the wave and they generate pressure on the wave surface that is in phase with its

slopes. Since this pressure is induced by the wave and is, due to linearity of the theory,

proportional to its amplitude - wave growth is self amplified and exponential in time. A

crucial aspect of Miles mechanism is the existence of a matched "critical layer" where the

mean air flow velocity is equal to the phase velocity of the surface wave. The physics of

Miles mechanism was further clarified by Stewart and Lighthill. Stewart (1961) clarified

the energetics of momentum transfer from wind to waves by Miles' "highly organized

motions" and explained the constraint this transport imposes on the wind flow. Lighthill

(1962) provided the physical interpretation of Miles mathematical model and explained

the mechanism of energy extraction from the mean air flow in terms of negative work of

mean vortex force on air oscillating in vicinity of the resonant critical layer.

The two 1957 theories were soon combined (Miles 1959a,b, 1960; Brooke Benjamin

1959). The unified theory explained that initially small wavelets are excited on water

surface by the resonant Phillips' mechanism, growth being linear and slow. Then, the

powerful mechanism of Miles kicks in and exponentially accelerates wave growth by



positive feedback due to wave induced pressure forcing. This later stage of continuous

growth is responsible for transfer of most of the energy to the waves and is, therefore, of

the primary interest for applications.

Although these mechanisms established the conceptual framework for understanding

wind wave generation, experimental data did not support them quantitatively. Phillips

mechanism was disproved because the measured turbulent fluctuations were found much

weaker than what his theory assumed. Miles theory was supported experimentally only to

order of magnitude. Nonetheless, the linear instability mechanism was proved to be valid.

Extended to account for effects of viscosity and capillarity (Valenzuela 1976, Kawai

1979, Van Gastel et al. 1985), shear instability mechanism was shown to explain the

exponential growth of short regular waves generated on initially calm water surface and

was confirmed experimentally. The mechanism of continuous growth, however, is still a

subject of open scientific debate.

Various linear and nonlinear extensions to Miles theory were suggested (see review in

Janssen 2004), but none have been established as sufficient explanation of the scattered

experimental data. It was suggested (Toba 1978) that the measured growth of energy

containing waves is dependent strongly on the nonlinearity of wave hydrodynamics. In

experimental study Plant and Wright (1977) have shown that the measured growth is

often dominated by nonlinear wave-wave interactions and is different from the initial

growth due to direct wind input. Toba (1972, 1978) compiled experimental data from

different sources and have shown that energy containing waves in state of active growth

under wind forcing satisfy universal similarity law. Toba proposed to explain this

macroscopic similarity by hypothesis of local balance of growing waves with the wind,

which must be governed by a nonlinear mechanism. Toba's analysis predicts that the

characteristic height and period of growing waves should satisfy a simple power law

relation, which means that as waves grow in height they also grow in wave length. This is

principally different from growth governed by linear instability, where waves grow only

in height, the wave length remains constant. Experiments confirm this difference between

linear and nonlinear stages of growth, which correspond to initial generation and



continuous growth processes. Figure 2.5 displays laboratory data showing gradual

transition from initial growth, when wave length remains constant as wave height

increases, to balanced continuous growth of both wave height and wave length. In this

thesis we show numerical simulations that reproduce this transition from direct wind-

induced growth, governed by linear find forcing mechanism, to balanced growth due to

quasi-equilibrium of wind input, nonlinear wave-wave interactions and wave breaking

dissipation.
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Figure 2.5 Nondimensional characteristic wave height vs. wave length scaled by viscosity and wind
friction velocity. Kunishi (1963) wave tank data, reproduced from Toba (1998).



2.2.2. Primary wind forcing mechanism: form drag

In consequence of the complexity of the actual find forcing mechanism and its

incomplete understanding, in this thesis we follow a simplified heuristic approach to

model the principal energetics of the continuous growth phase. A concise and

authoritative overview of the primary effect of wind forcing is given by Donelan (1999,

see also Young 1999).

Quoting Donelan (1999) - "Inasmuch as surface water waves are nearly irrotational, the

energy flux from wind to waves is brought about mainly by surface pressure fluctuations

in phase with the wave slope". Stewart (1961) intuitively explained that water surface is

believed to be aerodynamically "rough" with respect to the air motion above it, so that

the mechanism of momentum transfer is form drag due to correlation between local

pressures and roughness elements. Since in homogeneous fluid pressure forces can

produce only irrotational motion and by principle of action and reaction - irrotational

wave motion can only support normal stresses on the interface, the only mechanism of

momentum transfer can be form drag.

Mechanisms by which tangential stresses could contribute to momentum transfer were

suggested by Stewart (1967) and Longuet-Higgins (1969a) based on the idea of

differential thickening of the shear boundary layer on the water side. However, these

effects are considered to be one-to-two orders of magnitude smaller (Donelan 1999).

Recently, the interest in the effects of tangential stresses was revived (Peirson and Garcia

2008) in context of nonlinear waves of finite height, but these new findings are beyond

the scope of this thesis.

Form drag enters the equations of wave motion through the dynamic boundary condition

PW
p,+r/t~-V w- i"n| (2.2.1)

The momentum transferred to the wave is given by integration of the horizontal

components of the forces exerted by the normal stress



(2.2.2)S= f1,,,ifdhds.
S

wind
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Figure 2.6 Schematic illustration of the forces by normal stresses and the asymmetry of surface pressure
distribution.

In two dimensions the mean momentum flux is expressed by

"D= q (2.2.3)

Energy flux is the work done by the pressure on moving particles on the surface.

Application of the nonlinear kinematic boundary condition

w = 1,+ uq,

allows to express the mean energy flux in the simple form

E =-PW + Pu = -P,

(2.2.4)

(2.2.5)

Here the quadratic quantities are averaged over the whole horizontal domain

[ ] dA
A.

(2.2.6)

The geometry of the forcing is detailed in Figure 2.7, where S is the actual surface area

and A is its projection on the horizontal plane.

Orthogonal components Area geometry Forces per unit horizontal area dA

dS I dS sina

P dS sina
dA=dS cosa

V
P dS cosa

tan a = )7x
P dS V 'dS

P P-
dA

Figure 2.7 Geometry of the forces exerted by normal stress on inclined surface. Surface pressure P,
surface elevation Ti, the angle of surface incline a, the area of the surface segment dS, the projected surface
area dA.



Since mean momentum flux is a correlation of pressure with surface slope (2.2.3) only

slope coherent pressure component contributes to momentum transfer. Slope coherent

pressure is surface pressure distribution in phase with the slope. It is asymmetric with

respect to the elevation profile, higher pressure on wind side and lower on lee side. The

decomposition of surface pressure distribution to slope coherent component and

component in quadrature with the slope can be explained in linear framework. When

superposition principle applies, the signals of pressure and elevation can be decomposed

to separate sinusoidal modes. Modes with different wavenumbers are uncorrelated

(formally on an infinite or periodic domain) and the quadratic forms reduce to sums of

products of signals of same wavenumber. In the reduced monochromatic framework only

pressure components in phase with the slope contribute to momentum transfer. In other

words, only pressure in quadrature with the elevation constitutes form drag. If the wave

propagates without change of its form or if phase velocity can be defined for each mode,

then

- = -+ C - =0 (2.2.7)
dt C at 3x

holds and energy flux due to form drag can be expressed by

ED = -P17, = P7Tc . (2.2.8)

This expression stresses again the importance of pressure-slope correlation and is

consistent with the relation between leading order estimates of wave momentum M and

energy E for single sinusoidal wave (Stewart 1961, Longuet-Higgins 1969b)

E=Mc (2.2.9)

If a slope-coherent pressure component is expressed by

p = a*q, (2.2.10)

then energy flux from wind into the associated linear wave is SD = amq c. For linear

energy given by E = pgq2 , the fractional energy transfer rate is

1 = k 3 (2.2.11)
E at pJV

or in a nondimensional form



-- -E -- k (2.2.12)
a>E at pg

Here, the dispersion relation for linear free wave c=g was assumed. If the

coefficient a, is independent of time and the linear wave absorbs all the supplied energy,

then the growth is exponential and independent of time. Note, that shorter waves grow

faster in both dimensional and nondimensional forms.

In the above heuristic derivation growth of linear monochromatic wave was calculated

based on assumptions formally valid only for free linear waves. The consistency of this

derivation for forced nonlinear waves is not obvious a priori and has to be verified for

linear and nonlinear forced waves. In the Appendix the heuristic derivation above is

verified analytically for linear forced waves, the errors are shown to be small. In a

nonlinear broadband framework the validity of the above assumptions and

approximations needs to be substantiated either analytically or with a numerical model.

In particular, the applicability of superposition principle, the dispersion relation and

phase velocity concepts require further discussion.



2.2.3. Wind forcing parameterization

Wind force on waves is assumed to be scaled by the turbulent shear stress in the air

boundary layer flow r = puf . The normalized pressure on water surface is defined by

p 2 ind (2.2.13)
PaU*

This choice of forcing scale is consistent with scaling wind-wave parameters by friction

velocity (Janssen et al. 1987). If empirically based parameterization approach of Banner

and Song (2002) is adopted and only slope coherent surface pressure distribution is

considered, it is given by

p,(x,t) = aq,(x,t) (2.2.14)

Here a is an empirical nondimensional constant to be specified from observations.

Further, following Banner and Song, we can define surface pressureforcing level as

a. =apau2, Pwi. =a*., (2.2.15)

The coefficient a. has units of pressure or shear stress and is assumed a function of

different wave age conditions. In the above form the parameterization of wave induced

pressure is similar to the sheltering theory of Jeffreys (1925, 1926)

P = Spa(U -C)2 q,. (2.2.16)

Where S is the empirical "sheltering coefficient", (U-c) is relative wind speed, i.e. minus

phase velocity. If friction velocity in our formulation is replaced by the relative wind

speed, then coefficient a may be regarded as a modified sheltering coefficient.

Miles (1957) linear theory expresses the slope coherent wave induced wind pressure by

2

P = $p Ju* )', (2.2.17)

Here K-0.4 is von Karman constant and the nondimensional Miles' growth coefficient #

is evaluated numerically for different wavenumbers by solution of a shear instability



problem in the air (Conte and Miles 1959). Our empirical coefficient is related to Miles'

by

a=A.p- (2.2.18)

Empirically, the value of a can be estimated either by direct measurements of the wave

induced surface pressure or from the observed growth rates (Plant 1982). Following

Banner and Song (2002) we implement the latter approach and estimate the magnitude of

pressure forcing by relating the expression for the effective wind input growth rate to the

growth rates observed for ocean wind waves.
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Figure 2.8 Observed nondimensional wind wave growth rates against the inverse wave age. Open circles
and squares are field data, other symbols represent laboratory data. Solid line is the numerical solution
based on Miles theory. Note, the vertical axis is scaled by factor 2a compared to (2.2.19). Cited from
Komen et al. (1994).

As discussed in the previous section, in linearized framework of slowly growing free

waves forced by (2.2.14) the nondimensional spectral wind growth rate is given by



E2
E a " (2.2.19)

o)E p, (c )

Values experimentally observed in the oceans are presented in Figure 2.8 for wave ages

5< c /u. < 20. Taking

P, / Pw = 0.001225 (2.2.20)

Banner and Song deduce that a ~ 32.5 for c /u. ~ 5. The above data was originally

compiled by Plant (1982), who obtained the empirical estimate

F (u2
E = (0.04 ±0.02) . 2o (2.2.21)

E (c

for waves propagation along wind direction. With (2.2.20) it is equivalent to

E P=(32.7 ± 16) u* (2.2.22)
o)E pa (c )

For typical Miles theory value for younger ocean waves 0=3.3, or equivalently a=21.

This is on the lower side of Plant's estimate but is well within the scatter bounds. The

predictions of Miles theory for the full range of wave age is graphically compared to the

observations on Figure 2.9 and Figure 2.10. Miles growth rates are given as calculated for

4 different values of Miles' wind-profile parameter, or equivalently Charnock constants

(Komen et al. 1994). The values on Figure 2.9 are obtained directly from Figure 2.8,

while on Figure 2.10 they are converted using (2.2.19). It can be seen that although the

best fit is provided by Janssen's evaluation of Miles theory (Komen et al. 1994), the

simplified estimate based on constant forcing level (a=32.5) fits the experimental data

reasonably well within the measured scatter. The original calculations of Conte and Miles

(1959) show weaker growth rates but are also acceptable within the scatter. This large

scatter, that is somewhat inhibited by the logarithmic scale of presentation, is better seen

on the transformed data plot on Figure 2.10. The scatter spans one order of magnitude

and is one of the known reasons for the critique on the insufficient quality of data and the

poor level of understanding of wind waves (Donelan et al. 2006).
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In this thesis the forcing of the wind is estimated empirically from the above data. The

pressure is specified in terms of the surface pressure forcing level .. The

nondimensional form is obtained by use of the expression for the growth rate of single

linear wave

E mk (2.2.23)
wE pg

The effective growth rate is read from Figure 2.11, which shows same data as Figure 2.9,

only with linear vertical axis scale, given here for convenience of graphical reference. As

leading order approximation a, can be assumed constant for all wave ages in range

relevant for growing energy containing ocean waves, 5< c / u. <20. The corresponding

growth rates are different for different wave ages, but all can be represented by a = 32.5.

For example, for wave age cIu. =10 the nondimensional growth rate and forcing level

are a.k /pg =0.0004.
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Figure 2.11 Nondimensional forcing level against wave age. Plant (1982) data compared to constant
a=32.5 estimate.



Chapter 3. Direct simulation model

3.1. Theory and mathematical formulation

3.1.1. Overview

The nonlinear wavefield is simulated with a numerical model based on the Higher Order

Spectral method, hereafter HOS. The method is based on the mode coupling idea

(Dommermuth and Yue 1987) generalized to resolve the nonlinear interactions to an

arbitrary high order M in wave steepness. The treatment of the nonlinear boundary

conditions of water surface is pseudo-spectral - spatial derivatives are evaluated in

spectral (wavenumber) domain while nonlinear products are calculated in physical space

at a discrete set of points. Large number (N=O(1000)) of modes is transformed between

physical and wavenumber domains with FFT routine, which grants the model its superior

computational properties. Namely, for space periodic boundary conditions the number of

operations required at every time step is reduced to O(MNlog N) from typical O(N 3 )

required by alternative methods. The algorithmic structure of the method makes it highly

scalable, the nonlinear order is straightforwardly extended and serial computational time

can be significantly reduced by multi-processor parallelization.

Superiority of the HOS method is not limited to computational advantages. It has been

proved analytically (Onorato et al. 2007) that, at least to the third order, the method

exactly coincides with a discretized solution of the integro-differential Zakharov equation

(Zakharov 1968). This fact strategically links the HOS method to the Hamiltonian

description of surface waves and imposes its conservative properties and fundamental

symmetries (Krasitskii 1994). In view of this equivalence, HOS method can be regarded

and utilized not only as an efficient numerical solver and practical simulation tool, but

also as a fundamental computational method for theoretical study of surface wave

problem.



The HOS method relies critically on validity of Taylor series expansion of velocity

potential about the mean waterline. For moderately steep regular waves the validity of the

method was established by Dommermuth and Yue (1987) by demonstration of

exponential convergence with respect to N and M. For broadband irregular wavefields the

question of method's validity is a nontrivial one and is the subject of current active

research, as discussed at the end of this chapter.

3.1.2. Nonlinearity

The major advantage of HOS scheme over alternatives like mode-coupling and Zakharov

equations is the convenience of extension to arbitrary orders of nonlinearity

(Dommermuth and Yue 1987). Although full nonlinearity of surface waves has been

investigated by various methods (e.g. Schwartz 1974, Longuet-Higgins and Cokelet

1976), their theoretical limitations and prohibitive computational requirements have

prevented applications to the problem of real ocean waves. Practical progress was

achieved with only lowest orders of nonlinearity considered. The nonlinear interactions

underlying the nonlinear transfer in Hasselmann's kinetic equation, that are taken into

account in third generation wave forecasting models, are four-wave resonant interactions

(Komen et al. 1994, Dyachenko and Lvov 1995). In phase resolving framework these

quartet interactions are described by terms of cubic order in steepness (Benney and

Newell 1967). The nonlinear evolution of spectral modes that is governed by these

interactions is effective on time scale O(Te-2 ). The statistical properties evolve on time

scale O(Te~4) if random phase is assumed (Janssen 2003). Modulational instability in

2D domain is well described by quartet interactions (Phillips 1967). Next order

nonlinearity leads to quintet interactions that effect evolution on longer time scales and

are important mainly for 3D instability (Stiassnie and Shemer 1984) and formation of

directional spectrum (Kalmykov 1998). Since in this study we limit the discussion to 2D

configuration, it is consistent to consider only leading order nonlinearity. Consequently,

in simulations shown below the discussion is limited to third nonlinear order. Note, that

the analytically proved equivalence of third order HOS scheme to the cubic Zakharov



equation (Onorato et al. 2007) implies additional level of theoretical validity for such

simulations in the sense of their comparison to Hamiltonian framework based studies of

nonlinear wind waves (Kalmykov 1996).

3.1.3. Assumptions

Consider material surface separating an infinitely deep, homogeneous, incompressible

and inviscid water body from air above it. We assume that this surface is single-valued,

i.e. its height can always be described by a single valued function z = 7(x,t). By this

assumption we exclude occasional multilayer configurations, like overturning waves and

plunging breakers. Further, we assume water motion to be irrotational, since in absence

of initial vorticity no force in inviscid Navier-Stokes equations can generate vorticity in

simply connected domain. We do not consider the effects of surface tension by focusing

the discussion on larger spatial scales, i.e. we neglect effects of capillarity on energy

containing waves. In this work we consider only the case of long crested waves

propagating in one direction limiting the derivation to one horizontal dimension or 2D, in

other words. The horizontal coordinate perpendicular to the crests is x, the vertical

coordinate z is positive upward and its origin is set at the undisturbed water level. In

order to apply the regular FFT algorithms a regular equally spaced grid is assumed in the

spectral domain, which implies spatial periodicity in the horizontal direction. It must be

noted that three major simplifying assumptions made here - infinite depth, neglect of

surface tension and two-dimensionality, are not limitations of the HOS method (e.g. Wu

et al. 2006) and are imposed in this study with the aim of focusing on the wind-wave

interaction problem and keep the physical configuration similar to that on which Miles

theory is based (e.g. Miles 1957).

3.1.4. HOS equations

The irrotational and incompressible water motion satisfies the Laplace equation for

velocity potential qp(x, z,t)

AVp=0 |, 3..1



and is termed - potential flow. The nonlinear kinematic and dynamic boundary conditions

on a single-valued free surface are expressed by

V, = )7, +(P,)7, , (3.1.2)

opt+lgq -2(P Vl Iz=17 (3.1.2)
P

Zero vertical motion is postulated at the lower boundary

P = 0 |=- (3.1.4)
HOS equations are defined in terms of the two canonical conjugate variables from

Zakharov Hamiltonian theory (1968): surface elevation q(x,t) and surface velocity

potential

yf(x, t) P(x,7(x, t), t) (3.1.5)

Using partial differentiation chain rule we introduce the relations

-=--a(P+ aVL7(3.1.6)
at at az at

-= -- + .V 7 (3.1.7)
ax a3x z ax

Substitution of (3.1.6) and (3.1.7) into the kinematic and dynamic boundary conditions

(3.1.2) and (3.1.3) transfers them to Zakharov form

= =-y=z (1+y( +M1,)O- , |q (3.1.8)

P,

For conciseness, subscripts have been used interchangingly with the standard notation to

denote partial differentiation.

3.1.5. HOS method

Given that steepness of surface wave is always bounded (e < 1) and usually is a small

number, the 2D velocity potential is expanded in perturbation series with steepness as

ordering parameter



M

V(x, z, t)= p(M)(X, z, t) (3.1.10)
m=I

V(')(x, z, t) is assumed to be a quantity of order O(em), M is the order of approximation

of nonlinearity. Note that the surface elevation is not explicitly expanded in orders of

steepness in HOS method. The key idea of the method is combination the perturbation

expansion with Taylor expansion over reference vertical level:

M M-m k k

(x, t) = (x,7,t)= k !f 5 'M)(x,0,t) (3.1.11)

The double summation is conveniently presented in matrix form which exhibits a

diagonal structure of increasing orders of steepness:

~ox~a ~1 2 3 3

Ox,17, t)= P()(x, 0,t) ++ 7-22((x,0,t)+-I2 ()x,0,t)+-q 17D3V<)(X,0,t)+
Dz 2 Dz2 3! Dz3

+ (m(x, 0,t) +g 17 mV(x,0,)-2 az2 (<>x0,)..3.1.12)

+ P(X,0,t)+ (3)(X,0, t) ...
aJz

For any given distribution of surface potential p(x,q,t)=(x,t) the volume potential

p(x, z, t) is reconstructed by collection of terms of same order. The values of potentials

p(M) are obtained through a sequence of boundary conditions on z =0:

(01 "(x, 0, t) = V(x, t)

(x) , 0, t) = -7 VA (1)(x, 0, 2

(x,0,L0 t)= - (x, 0, t) 12 a2 < 0(x,, t) (3.1.13)
az 2 az2

m-1k k

''"'(x,0,kt) k ! az (-(x0t) m=23.,M

Thus, the solution is achieved by transforming the original problem for q(x, z,t) on the

complex boundary z = q(x, t) to a sequence of M problems for (tM) (x, z, t) on the



boundary z =0. Each VW'" (x, z, t) is expanded in finite number N of spectral modes, in

deep water given by

N

V '" (x, z, t) = b fm) (t)ekze'knx (3.1.14)
n=1

The modal amplitudes (m)(t) are determined by (3.1.13) in pseudo-spectral manner for

any given y(x,t) and q/(xt). Note, that direct substitution of spectral expansions in

(3.1.13) does not reduce to simple relations between the modal amplitudes (except for the

leading order), summations are not commutative. The nonlinear products lead to

hierarchy of convolutions of amplitudes if (3.1.13) is expressed explicitly in the spectral

domain, which is the source the Zakharov structure in HOS equations as shown to the

third order by Onorato et al. (2007).

Eventually, the vertical velocity at the surface is found as function of y(x, t) and 17(x, t)

from (3.1.11) in form

M M -k Nk+1

((x, , t)= M '"7k(t) , en ikn x (3.1.15)
m=1 k=O - n=1 z

The vertical velocity is substituted into the governing equations (3.1.8), (3.1.9) which are

integrated in time by a standard finite difference scheme.



3.2. Numerical method

Here we describe mainly the extensions of the original method developed by

Dommermuth and Yue (1987). The reader is referred to the original for the description of

the basic implementation, treatment of truncation, round-off, aliasing and time integration

errors, numerical convergence tests and integral accuracy checks. Some of these issues

are further discussed below in the context of application to broadband irregular wavefield

simulations.

3.2.1. Nonlinear order

Dommermuth and Yue (1987) selected the order of perturbation M to satisfy the desired

level of accuracy o for required steepness c such that 6~ M . Then the minimum

number of modes N was chosen to satisfy convergence requirements. By reversing the

convergence argument, for fixed number of modes N the order of nonlinearity M should

be small enough to achieve convergence. Consequently, we experimented with values

M=3-6 and set M=3 for final simulations, which is also in accordance with the discussion

in the previous section.

3.2.2. Model discretization

We define physical, spectral and time resolution in terms of a characteristic (or principal)

monochromatic wave:

Rph = (3.2.1)

k
Re = T (3.2.2)

At



Where Ax, Ak, At are the discrete grid sizes of horizontal coordinate, wavenumber and

time. The spatial domain is assumed to be periodic, its length D defines the smallest

resolved wavenumber

Ak k --. (3.2.4)
D

The spatial domain is resolved by finite number of discrete points, denoted NN, which

define the shortest resolved distance

D
Ax = . (3.2.5)

NN

The shortest wavelength captured by discrete Fourier analysis is Nyquist wavelength

ANQ = 2Ax, the corresponding wavenumber is kNQ = O / Ax = k0NN /2. The aliasing filter

(Dommermuth and Yue 1987), however, removes half of the spectral components. The

largest remaining wavenumber is

kN =Nko, N =NN/4 (3.2.6)

The shortest resolved wavelength is, therefore,

AN = 2*= (3.2.7)
kN

We define the wavenumber of the principal wave

k, = n~kO (3.2.8)

The principal wavelength is correspondingly

A- - - -- (3.2.9)
k, n,

The number n, defines the number of the principal waves in the domain and corresponds

exactly to the definition of spectral resolution. The physical resolution is given by the

ratio Rph= 4N / n,. Note, that the total number of points in the physical domain is the

product of the resolutions: NN = RP, . It is seen that 2 independent nondimensional

numbers are required to uniquely define the discretization in physical and wavenumber

domains. The configuration of the discretized domains is illustrated in Figure 3.1.
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Figure 3.1 Spatial and spectral domains configuration. The aliased area is marked by yellow ribbon. The
rightmost tick on the wavenumber axis (NN/2-1) is not the Nyquist wavenumber (NN/2).

3.2.3. Model scaling

The length scale is introduced such that Ak" =1, i.e. the scaled nondimensional

wavenumbers are whole numbers k: = n =01,±2,..., N . The length scale is L =1/ko,

the scaled domain size is 2;r,

x = x#L = x# -
2)r

k = k*ko = nkO

Steepness is conveniently expressed in dimensional and scaled variables

ka = nkoa =na" (3.2.11)

Time is scaled such that the acceleration due to gravity is 1 in the nondimensional

variables:

g=1 g= g#L T = j f= I

The linear angular frequency is given by the linear deep water dispersion relation

21= = -,g
T

The linear period of the longest wave is

T* = 21r

In our implementation of the code, it is discretized by integer r timesteps

TO = = ;

-- =---= r
At At* At*

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.10)

T = 2x ,9



Each timestep, At# = 2r / r long, is split to 4 substeps by fourth order Runge-Kutta

integration scheme. Time resolution is, therefore, expressed by

T 2xr/ gk T 1 r
Rtime = - = " 1----- --- (3.2.16)

At At At

The shortest mode period is resolved by TN 0 ' timesteps, a number which in our
At At 1K

simulations is fixed to 32 for smoothness of time integration. Alternative ways to

determine time discretization and the related Courant conditions are discussed below.

The Nyquist frequency associated with time resolution is

a)= ) (3.2.17)
At

It should be used in evaluation of Courant conditions. Dommermuth and Yue (1987) set

the linear Courant condition to

At 2  8/N (3.2.18)

As seen in Figure 3.2 this time resolution is not sufficient to capture the oscillations of

the bound harmonics that propagate with the phase velocity of the principal component.

Therefore, we propose to define a nonlinear Courant condition to resolve the bound

harmonics of the principal and adjust the Nyquist frequency accordingly:

a~g= c kN 'T'NkN -kN, TN =2 N (3.2.19)
WNQCpN kP At np
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Figure 3.2 Dispersion plane: solid blue line - linear dispersion relation, dashed green - dispersion relations
for bound components, grey solid - Dommermuth and Yue (1987) linear Courant condition. Space
harmonics of the principal mode marked by red circles.

Pressure is the only variable in the model which depends on the scale of mass. It is scaled

such that the density of water is 1 in scaled variables.

P= p#P = p g (3.2.20)
ko

This specifies the scaling of wind forcing trough the wave induced pressure.

3.2.4. Convergence

Convergence tests with respect nonlinear order (M) and physical resolution (N) are

presented in Dommermuth and Yue (1987) for spectral resolution np=1. Exact Stokes

wave solution (Schwartz 1974) was used as a standard benchmark. In Chapter 4 we

report convergence experiments with respect to increasing spectral resolution. Complete

set of convergence tests for broadband configurations including random phase effects is

under development and is not reported here, since no standard benchmark seems to exit

for the general case.



3.2.5. Initial conditions

Initial values of elevation and surface potential can be specified for arbitrary wave field

conditions, constrained by model assumptions and discretization. An attention is required

to ensure dynamic consistency of the specified elevation and surface potential. In this

thesis the initial values of elevation and surface potential are specified in the spectral

domain based on linear theory. The nonlinear consistency is achieved by a "warm start"

of the simulations - the model is assumed to evolve to a dynamically consistent state after

few linear periods of the principal spectral component. For further discussion and an

alternative approach the reader is referred to Dommermuth (2000).

Regular periodic waves are specified by superposition of Airy waves, given in model

nondimensional form by

q = A: cos(nx# + ), rp = sin(nx" + 0). (3.2.21)

Broadband irregular wave field is initialized by superposition of the linear components

with uniformly random phase.

7 = Ak cos(kx - qt +), (b = U[0,2yr] (3.2.22)
k

The amplitude of each mode is obtained by discretization of the observed power spectra

(see Section 2.1.4) in wavenumber domain

i A2 = S(k)dk . (3.2.23)

Example of elevation field reconstructed from Donelan et al. (1985) spectrum is shown

below in Figure 3.3.
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Figure 3.3 Surface elevation, standard deviation, RMS equivalent amplitude and significant wave height
for Donelan et al. (1 985) random sea state with wave age 10. Spectral resolution n,= 10.



3.2.6. Filtering and breaking dissivation

Dommermuth and Yue (1987) considered accumulation of numerical round-off errors

and showed that it is manifested by instability of highest wavenumber modes which grow

as O(N M ). They suggested smoothing to stabilize the HOS simulations and applied

different low-pass filters. It was found that such filters also allow simulations to continue

beyond the moment of wave breaking, when a singularity in physics and equations

invalidates the expansions on which HOS method is based. It was proposed that

application of a low-pass filter can effectively simulate the energy loss due to breaking

and be used as an efficacious numerics-based breaking dissipation model in absence of

any conclusive theoretical alternative (Melville 1996).

Our wave breaking model is based on the observation that steep wavefields on verge of

breaking posses higher spectral components that are necessary to express the finer spatial

variation of the sharp crests. A low-pass filter models the dissipative process of wave

breaking by removing these high spectral components when they appear. Different

functional forms of filters were tried in course of the research; best results (in simulation

duration sense) were obtained with

A'filered = Akexp -{k fJ (3.2.24)
k fscalek p)

applied at every time step (including Runge-Kutta substeps) to all the computed

variables. Here scale is the nondimensional scale of breaking, interpreted as scaling of

the cutoff wavenumber. ,power describes the sharpness of the filtering curve and may be

associated with the intensity of breaking. Figure 3.4 illustrates the application of the filter

in the spectral domain.

-NN2+1 -N -np 0 np N NN/2-1

Figure 3.4 Wavenumber domain configuration of aliasing and wave breaking filters. See Figure 3.1.



Unfortunately, detailed examination of filtering process revealed fundamental difficulties.

It was found that the energy removal is accompanied with volume inconsistencies.

Spurious mass losses occurred at the intermittent wave breaking events and accumulated

to 5-10% of the total displaced volume, when the simulations inevitably crashed. Figure

3.5 illustrates this process, see also Section 4.3.4. To allow progress despite this

difficulty, it was circumvented by removal of the mean terms at every time step of the

simulations. This numerical procedure forced artificial satisfaction of mass conservation

principle. The physical consistency of the results obtained in this ad-hoc manner is still

subject of investigation.
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Figure 3.5 Nonlinear estimates of energy growth rate, wind energy input and total volume. Wind forcing
is on at t=50OT,.

Another manifestation of the non-conservative effect associated with the spurious mass

loss was intense oscillation of the nonlinear kinetic energy that followed wave breaking

events. The kinetic energy deviated strongly from equipartition with potential energy and

its growing irregular oscillations seemed to accompany simulation crashes. It may be

speculated that the intense oscillations of the volume and the kinetic energy are related to

wave breaking induced oscillations of mean surface and mean flow through a radiation

stress mechanism; the oscillation of the kinetic energy is related to the vertical

accelerations of the simulated system through Longuet-Higgins and Stewart (1960, p.

579) formula: KE = KEO (1+ 0.5g * / g), where g* is the induced acceleration. To

summarize, wave breaking appears to be inherently linked to violation of mass and

energy conservation principles. Modeling of this non-conservative process requires

further investigation.



3.2.7. Open questions

HOS method is an established and capable means for simulation and analysis of

nonlinear waves. Its application for large scale simulation of realistic ocean wind waves

requires, however, resolving the fundamental incompatibility of its energy conserving

formulation and the ad-hoc non-conservative implementation. The key problem appears

when wind energy input is added to a model that is stabilized by energy removal. The

delicate balance of filtered out instabilities is disturbed, growth that was considered only

a numerical artifact is now blended with a valid response to supplied forcing. Insufficient

theoretical grounds of the subject contribute to the confusion, theory of non-conservative

nonlinear waves appears to be lacking. As this thesis reports, the model can be

restabilized by trial and error adjustment of computational parameters and numerically

successful simulations can be produced. The mathematical validity of such simulations,

however, has to be carefully examined and physical properties of the obtained solutions

have to be understood. A proper analysis of the nonlinear response of wind forced wave

system is required for correct application of HOS method to the realistic problem and in

the process will necessarily advance the method itself.

Development of the theory behind the model is not finished. There are no rigorous

bounds on computational parameters or theory for its convergence. There are no definite

guidelines how to prevent simulation crash. The model was found to be unstable and by

inspection this was attributed to spuriously growing round-off errors. More careful

analysis may be required to trace the exact nature of these instabilities. Currently, the

only way to stabilize the simulations is by removal of energy from the unstable modes.

For each particular simulation configuration a set of computational parameters has to be

found and details of the filtering adjusted.

Beyond the question of wind forcing, the general concept of phase resolved modeling for

real ocean waves is not fully understood. Fundamental questions exist with regard to

ergodicity, randomness and deterministic predictability of irregular broadband non-

stationary wavefields (Huang et al. 1999, Liu 2000, Liu et al. 2002) and validity of their



representation in discrete spectral models (Bretherton 1964, Rasmussen and Stiassnie

1999, Tanaka and Yokoyama 2004, Lvov et al. 2006). Another question crucial for the

HOS method is the effects broadbandedness, scale separation and long-short wave

interaction (Brueckner and West 1988, Zhang et al. 1993). Effects of slow viscous

dissipation also have to be included in a consistent theory supported way (Wu et al.

2006).



Chapter 4. Simulations and Numerical Results

4.1. Windforcing scheme

The effect of wind forcing is modeled by wave induced slope coherent pressure

The constant a. is assumed a function of wave age in particular simulation. The forcing

term is calculated in the spectral domain as

wind *_. (4.1.2)

and substituted into model's dynamic boundary condition equation (implemented

numerically in the spectral domain with pseudo-spectral transformation for the nonlinear

terms):

Vy = -/ -- 2 xV+ -(1+ 7yx )<pV - '"ind | (4.1.3)

The constant a. has dimensions of pressure, in model scaling it is

a ko _ a.k 1 (4.1.4)
pwg pwg n

By linear theory it is related to the nondimensional growth rate

E 1
* = F!(4.1.5)

wE n

For n = 1 (4.1.5) reduces to the scaled form of "surface pressure forcing level" (Banner

and Song 2002). We generalize it for varying spectral resolutions and scale by the

principal component. Explicitly, the applied forcing term in model units is

P )# a~kP Iikin a"ik#*g = iko" -r^*(4.1.6)
Wn n pwg n,



Since we assume constant . for all modes, it is simply expressed in terms of the growth

rate of the principal component

ckp= 
(4.1.7)

p~g wp EP

Alternatively, if a.(k)=pau.a(k/k,) is a known spectral function, same scaling is

applied and forcing can be expressed in terms of wave age of the primary mode

a c, 1 ax(n / n,)cak, 1a"(n)=a(nl/np)Pz-{ - -= a(- p (4.1.8)
pn t u. n, a(1) p g n,

In the following simulations the first alternative is applied.



4.2. Validation of modeling

Within the validity of the linear theory the amplitude is expected to grow exponentially

=Ak a* k3/2 (4.2.1)
at 2p,,1

Energy input rate is estimated directly

Ewind = -Pwind y, (4.2.2)

The full nonlinear energy balance is given by

-wPins = , +g (4.2.3)2 dt["'

The first term on the right hand side is the average kinetic energy, the second - the

average potential energy. Twice potential energy is the usual linear estimate of the total

energy. In the following figures a simple forward Euler scheme time derivative of total

energy is compared to the theoretical nonlinear energy input by the modeled wind-

pressure distribution. The quadratic products are calculated in the physical domain, the

vertical motion of the surface is taken directly from the nonlinear kinematic boundary

condition equation

7, = Vz(1+y)7)-)7Yy, |=,, (4.2.4)



4.2.1. Linear monochromatic growth

First, the consistency of modeling is verified for a single periodic linear wave. Figure 4.1

displays simulated surface elevation and amplitude spectrum after 25 periods. The

simulated nondimensional growth rate is compared to the one expected for exponential

growth in response to the applied forcing according to (4.2.1). The simulated exponential

growth rate is constant as expected from linear theory, the relative error is 0 (1 0 -).
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Figure 4.1 Top panel - surface elevation as function of horizontal coordinate; bottom panel - discrete
amplitude spectrum as function of nondimensional wavenumber in model scaling and the wavenumber
scaled by the characteristic wavenumber of interest k,; middle panel - nondimensional growth rate $/ Em
as function of time, red dashed line - the theoretical expectation or the forcing level, blue line - simulated
value.



The computational parameters: nonlinear order, space, spectral and time resolutions are

A
M=1, Rh = -' =102.4,

k
R - -'- -l0,sp k

The physical parameters: steepness, forcing level and implied wave age in this simulation

are given by

a~k, =0.1, = 0.001, -L-= 6.3
g p, u.

(4.2.6)

The corresponding dimensional simulated wave length, wave height, friction velocity and

wind speed (10m above the surface) are, for example:

A, =9m, H=0.3m, u.=0.6m/s, U10 =17 m/s (4.2.7)

The conversions are calculated with following relations, given here for convenience of

reference,

Hak, =--

, u. = -I-
u. u, 2r u.

2

10

amk p 
-- agkp ,E, p,

U, 2

(4.2.8)

(4.2.9)

(4.2.10)

(4.2.11)

U1o =u./5

CP = a-Pa-/ k
p gp,

with typical values 1/ -= 28, pa /pw =0.001225, a= 32.5.

T
Rtim =- -80.95Ame (4.2.5)



4.2.2. Nonlinear monochromatic growth

Nonlinear simulation is compared to the linear result from the previous section. All

simulation parameters are kept the same except for the nonlinear order set to M =6.

Inspection of amplitude spectrum evolution reveals that harmonics of the principal

component appear and enter recurrent oscillation pattern with period O(5/3T,). The

nonlinear growth rate (4.2.2), nondimensionalized as E /Ew,, oscillates between the

linear implied growth rate to up to -4% higher. This nonlinear modulation of wave

growth is clearly the effect of the nonlinear harmonics that induce additional slope

coherent pressure and enhanced energy and momentum flux from the wind. The

comparison of the growth of the amplitudes of the principal harmonics between the linear

and nonlinear simulations highlights the modulated growth of the nonlinear wave, which

appears bounded from above by the linear amplitude. Comparison of the elevation

profiles displays higher amplitude and faster phase velocity of the nonlinear wave.
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4.2.3. Linear broadband growth

Observed wind waves are irregular and have broadband spectra. Before proceeding to the

nonlinear simulations of irregular waves, we examine a linear simulation of irregular

wave field forced by wind. The linear growth of broadband spectrum is verified and is

shown in Figure 4.3 below. Shorter waves are clearly growing faster by faster absorption

of supplied wind energy in accordance with the linear theory (4.2.1). The overall growth

rate is modified by the growing shorter components and gradually increases by an order

of magnitude. Although this is clearly an unphysical situation, because real waves do not

grow independently and nonlinearly interact, the understanding of this broadband effect

may be valuable on smaller time scales. When nonlinear interactions are weak, shorter

waves are expected to overgrow the longer waves before substantial nonlinear transport

occurs in the spectrum.

The initial conditions in the examined simulation are Pierson-Moskowitz (1964)

spectrum with steepness a.k, = 0.0569. The forcing level is

= 0.0004 (4.2.12)
gp,

simulating wave with wave age -=10. The computational parameters are

2, k TM=1, Rph =-L=102.4, R -=L=10, Rtj =-=80.95. (4.2.13)
Ax Ak At
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Figure 4.3 Linear simulation of broadband Pierson-Moskowitz wave field under steady wind. Upper panel
- initial amplitude spectrum, middle panel - amplitude spectrum after 25 principal periods, bottom panel -
integral nonlinear growth rate (blue) compared to the linear forcing level (red dashed).
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4.2.4. Nonlinear broadband growth

When nonlinear interactions are allowed the picture of the growth is dramatically

different. Spectral modes interact nonlinearly and growth of the shorter components is

significantly reduced. The components at the spectral tail never grow to be of comparable

magnitude with the principal components, as was the case in linear simulations. The

combined integral growth rate oscillates erratically and simulations crash after short time

0(10T,). Figure 4.4 illustrates the striking difference of a nonlinear simulation from the

linear growth shown in Figure 4.3. The parameters of the simulation are kept the same,

only the nonlinear order is set to M=5. We can notice the rough appearance of the

elevation profile as well as of the amplitude spectrum. Oscillations of the total nonlinear

growth rate are order of magnitude stronger than the forcing level and are negative during

significant portion of simulation time. The simulation breaks in few time steps after

t=5T,, shown in the figure. It is hypothesized that it is wave breaking which appears to

prevent the simulations to continue and therefore must be accounted for. It was found that

a low-pass spectral filer successfully stabilizes the simulations and allows longer runs.

The following sections describe development of these simulations. They demonstrate

calibration of wave breaking filter and other simulation parameters for generation of

longer wind coupled runs.



Figure 4.4 Nonlinear broadband Pierson-Moskowitz wave field. Top panel - surface elevation, bottom
panel - amplitude spectrum, middle panel - nondimensional growth rate: nonlinear integral (blue), linear
forcing level (red dashed).
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4.3. Simulation development

4.3.1. Calibration of wave breaking filter

The key challenge in producing meaningful and lasting simulations with HOS method is

to account for the non-conservative effect of wave breaking. The method originally was

developed for simulation of swell conditions, i.e. free regular waves uncoupled with the

wind. To account for the occasional breaking of free regular waves Dommermuth and

Yue (1987) suggested to apply a simple low-pass filter, effectively assuming that high

frequency components are unessential to description of energy containing wind waves.

Continuous removal of shorter components was shown to conserve energy throughout the

simulation except during isolated incidents of wave breaking, when the abrupt loss of

energy is the expected effect. As will be seen throughout this Chapter, such simplified

model of wave breaking performs reasonably well also for broadband simulations of

irregular free waves. The breaking is mild and occurs in isolated bursts. However, when

wind forcing is added waves start breaking intensely and continuously. A significant

fraction of external energy supplied by the wind is not absorbed by the wave field but is

lost to wave breaking. This non-conservative dynamical regime is principally different

form the setting in which the original low-pass breaking filter was justified and

calibrated. Delaying the theoretical discussion of the applicability of Dommermuth and

Yue (1987) method to simulation of non-conservative irregular wind wave systems, in

this Chapter we focus on development of the numerical simulations to run under wind

forcing, starting with calibration of the breaking filter in this Section.

In Section 4.2.4. it was shown that nonlinear simulations of irregular broadband wave

field under wind forcing result in erratic oscillations of the growth rate which are difficult

to compare with the theoretical expectations. Application of low-pass wave breaking

filter described in Section 3.2.6. significantly reduces these irregular fluctuations and

smoothes the rough appearance of the simulated elevation profile. The performance,

however, noticeably depends on the chosen values of filter parameters as well as the level



of simulation discretization. Many simulations with different choice of parameters were

examined in process of model calibration, few principal simulations are demonstrated and

discussed below.

An adaptive low-pass filter was considered as a modification of the original rigid wave

breaking filter to account for the evolving spectrum. The idea is to continuously monitor

the properties of the evolving wave field and adjust the breaking model to better represent

the underlying physical process. In the example shown in Figure 4.5, the adaptive filter

calculates a power weighted average wavenumber every time step, which is substituted

for the peak wavenumber in (3.2.24). The resulting filter adjusts its band-pass scale to the

bandwidth of the evolving spectrum and generates smoother dissipation then the rigid

filter. In Figure 4.5 and Figure 4.6 two otherwise identical simulations are compared after

100 characteristic periods, in Figure 4.5 the adaptive filter is applied while Figure 4.6

presents simulation filtered with a rigid filter. Wind forcing is applied after 10 Tp, the

nonlinear wind energy input is shown by the red line in the middle panels. The striking

difference between the simulations is seen comparing the growth rate response (blue line)

of the broadband wave fields. The adaptive filter produces smoother growth, as the

energy supplied by the wind is absorbed by the wave field. With the rigid filter the

growth rate is more intermittent, the more violent wave breaking causing an order of

magnitude stronger volume inconsistencies O(10-3) vs. O(10-4) for the adaptive filter.

Comparison of elevation fields shows that adaptive filtering generates smoother profile,

but retains qualitative similarity of the phase resolved features.

Effect of large breaking scale and higher spectral resolution (np=20) is illustrated in

Figure 4.7 and Figure 4.8. Relatively strong discrete wave breaking event at Tp=32 is

correlated with clear volume loss (green line). On longer time scale volume inconsistency

reaches -5% of the total displaced volume, then simulations fails. The amplitude of

fluctuations of the integral growth rate (blue line) grows one order of magnitude over the

integral wind input rate (red line), masking the direct comparison between the two.

Qualitatively inspecting the spectrum we conclude that no downshift is observed and no

subharmonic components develop even after several hundreds Tp.
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Figure 4.6 Same as in Figure 4.5 only for rigid filter.
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To allow simulations the time to properly adjust to the initial conditions, wind forcing

was applied only after 500 Tp of wind free propagation. In simulation shown in Figure

4.9 and Figure 4.10 the computational parameters were calibrated to allow long evolution

0(10' Tp). The spectral resolution was set to np=20, total number of simulated modes was

4096, with N= 1024 physically significant modes, time resolution was 115 and nonlinear

order set to M=7. Wave breaking filter was applied with [#,,,,ae ,Power ]=[20,8]. The fine

resolution allowed detailed inspection of the transition from wind free propagation to

wind forced wave growth. It is seen that during 500 periods of wind free propagation

energy growth rate is close to zero and negative fluctuations are localized, allowing

quantitative framing of wave breaking events. Volume inconsistency is perfectly

correlated with discrete wave breaking events.

Volume inconsistency highlights the transition between two qualitatively different states

of the wave field. When wind forcing is abruptly turned on, the growth rate initially

follows it very closely. The waves absorb all the energy supplied by the wind. Gradually,

wave breaking appears, seen in the negative bursts and deviation of the growth rate curve

from the wind input curve. Volume loss is correlated with wave breaking and helps

indicate the transition from isolated breaking events to the intermittent state of continuous

growing and breaking. Eventually, the fluctuations of the growth rate grow 2 orders of

magnitude stronger than wind input, which complicates the direct comparison but

indicates the turbulent intermittent state of irregular growth. Volume conservation

deteriorates monotonically, reaching -10% of the total displaced volume after 1000Tp.
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Additional illustration of wave breaking and wind forced growth appears in Figure 4.11

there kinetic and potential energies are plotted to display the correlation of energy drop

with growth rate bursts and volume drops around times 40 and 430 T, and the fast

smooth growth of energies during the initial growth under wind, when wave breaking is

still mild. This figure illustrates the energetic balance expressed by equation (4.2.3),

where the red curve corresponds to the left hand side and the blue curve to the right. The

zoomed view in Figure 4.12 allows a detailed inspection of the wave breaking process. It

is seen that the wind free burst at time 430 T, is not immediate and spans 0(5 Tp) which

takes hundreds of time steps to simulate. The good alignment of growth rate with wind

input during the first 50 T, of wind forced growth validates our modeling approach for

the case of nonlinear growth of irregular wave field. This direct comparison of nonlinear

wind input with nonlinear growth highlights the transition from initial smooth growth to a

qualitatively different stage of evolution after intermittent wave breaking appears.
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Figure 4.12 Same as bottom panel of Figure 4.11 zoomed in time. Highlights the details of the transition
from wind free localized breaking, to smooth growth and to intermittent breaking response to wind forcing.
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4.3.2. Energetics of filters

An attempt to examine the numerical details of the inconsistency between the nonlinear

wind input and the nonlinear response of the wave field is presented below. In previous

section it was implicitly assumed that the inconsistency in wave response to the supplied

energy is fully due to the coinciding loss to wave breaking, which is simulated by a low-

pass filter. Additional explanations of inconsistency might be, in principle, numerical

inconsistency and loss to the aliasing filter. Direct calculation of energy loss in wave

breaking filter (yellow line) is compared in Figure 4.13 to the integral nonlinear growth

rate (blue). The net expected growth (brown), which is the breaking loss added to the

nonlinear wind input (red), appears closer to the simulated growth but still does not

coincide for the lower spectral resolution on Figure 4.13. In the higher resolution

simulation, see Figure 4.14, the consistency is better, indicating convergence with

increasing spectral and physical resolution. In the long run, however, (Figure 4.15) wave

breaking intensifies and the negative growth rate bursts still appear stronger than rates of

energy removal by the wave breaking filter. This indicates that the inconsistencies are

still unresolved.

The forcing level in both displayed simulations was

ckp = 0.0004 
(4.3.1)

gp,

For lower resolution simulation shown in Figure 4.13 computational parameters are

A, k T'M =5, R - =102.4, R - P =10, Rtim, = p =80.95 (4.3.2)
AX' Ak At

The initial conditions are Pierson-Moskowitz spectrum. Wave breaking filter is fixed

with parameters [#e,#o, ]=[ 14,16].
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For high resolution simulation, shown in Figure 4.14 and Figure 4.15 the computational

parameters are

M = 7, R =--= 204.8,ph

k
R =--= 20,spk

T
Rim =?-114.5 (4.3.3)

Initial conditions are JONSWAP spectrum for wave age 10. Adaptive low-pass wave

breaking filter was applied with parameters [ fsa,,,iIpowr ]=[12,10].
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4.3.3. Estimation of frequency downshift

Multitude of spectral components included in HOS phase resolving simulation contain

large amount of information, analysis and presentation of which is a nontrivial task. Time

plots of amplitude evolution of the spectral components is a typical means of analysis in

theoretical studies of nonlinear waves (Yuen and Lake 1982) as well as in qualitative

discussions of simulated wind wave evolution (Hara and Mei 1991). Typical amplitude

evolution plot for HOS simulation, top plot in Figure 4.16, contains too much information

to be useful directly. Qualitative conclusions can be drawn, however, regarding the

transition from wind-free propagation to wind-forced growth. A qualitative change in

dynamics is evident after wind forcing is applied (at 500 Tp) - the evolution is clearly

more hectic, the nonlinear energy exchange between modes is faster, single components

dominate the spectrum for shorter periods than for free nonlinear waves. Reducing the

amount of information by averaging allows drawing more quantitative conclusions.

Different estimates of spectral moments and averages are presented in bottom plot of

Figure 4.16. From theoretical perspective it is not straightforward to decide which is the

most suitable for a simplified description that will capture most of the physics. The peak

mode index - the direct equivalent of the peak frequency traditionally examined in

observational studies, seems to jump sporadically prohibiting the usual interpretation.

Some higher moments have magnitudes close to it (clearly biased to max mode due to the

high power averaging), but their detailed dynamics are not easy to interpret at this stage,

although they may become valuable for deeper theoretical examination. Amplitude

weighted average and second moment in amplitude convey additional information

because both capture the temporary increase in higher frequency components during the

strong breaking event around 430 Tp. The power weighted average wavenumber (black

line) has the smallest scatter and allows convenient interpretation as the wave number of

the dominants waves. Therefore we choose it for representation of the characteristic

wavenumber, instead of the peak wavenumber, for estimation of simulated frequency

downshift.



Examination of all the presented spectral statistics in Figure 4.16 adds to understanding

of the simulated transition from wind free evolution to wind forced growth. During the

first 500 Tp of free propagation the simulation adjusts to the unbalanced initial conditions

(a known unresolved issue with HOS method). Significant downshift is observed in all

the averaged statistics during the first 100 Tp. The maximum discrete wavenumber (the

mode), however, starts from the low initial value (in model scaling - 20) and jumps

sporadically during the first 200 Tp of adjustment between wavenumbers 20 and 40

before settling at 25. The transient period (100-200 Tp) and the established swell state

(200-500 Tp) are also evident in the amplitude evolution plot, where the 2 5*t wavenumber

dominating the swell system is seen to rise from the turbulent chaos of nonlinearly

interacting spectral components. The strong wave breaking event around 430 Tp is

captured by some spectral moments, but is completely unnoticed by the maximal mode

and the higher power spectral averages. When the wind is applied at 500 Tp, all the

spectral statistics display upshift of the spectrum during first 200 Tp of adjustment to the

wind. Since many simulations crushed during this unbalanced stage - i.e. this opposite

trend of upshift which contradicts the observed and expected downshift, it was a major

question of validity of HOS to be applied to simulation of realistic wind waves. The

success of extending the simulations beyond this transient period was crucial to allow the

expected downshift to be obtained. This simulated downshift will be shown in the

following sections to be in reasonable accordance with observations. Additional insight

about the established wind forced dynamics can be obtained from the large scatter of the

high frequency sensitive moments. This scatter is comparable to the large breaking event

at 430 Tp and suggest domination of wave breaking during wind forced growth as

opposed to the localized breaking during wind free evolution.
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4.3.4. Volume loss and elimination of mean term

The major challenge of wind wave modeling with HOS method is generation of long

enough simulations to verify observed evolution on time scale of 103-10 4 Tp, see Section

2.1.3. This appeared to be a nontrivial task since the original method was calibrated for

simulation of wind free waves, for which wave breaking is mild and the accumulating

round-off errors were successfully removed by a simple low-pass filter. Wind forced

simulations appeared to be more susceptible to numerical failure because energy supplied

by the wind interfered with the fragile balance between nonlinear interactions and energy

removal from high frequency spectral components. Physically, the dynamics of windsea

are inherently non-conservative; the balance of simulated nonlinear interactions, energy

input and loss should be consistent with physics of the system and should not be spoiled

by application of artificial numerical dissipation. As it was reported in previous sections,

long wind forced simulations and intense wave breaking resulted in large volume

inconsistencies. Simulation failure appeared to always be associated with volume loss

order of 5-10% of the total displaced volume. Detailed examination of wave energetics

revealed that while the linear estimate of wave energy maintained limited fluctuations,

the nonlinear estimate developed wild fluctuation order of magnitude stronger than the

linear energy, see Figure 4.17 and Figure 4.18. Further, it was noticed that the

fluctuations appeared only due to the kinetic energy, which is obvious, since the linear

energy estimate is just twice the potential energy. Detailed examination of wave breaking

events showed that volume loss and energy instability are correlated, which lead to the

hypothesis that the simulated kinetic energy fluctuation may be explained by Longuet-

Higgins and Stewart (1960) formula for wave energy in vertically oscillating frame of

reference. As an alternative to the detailed investigation of the nature of energy

fluctuations and volume loss, in this Thesis we choose to simply eliminate these effects

numerically by continuous removal of the mean terms.

Figure 4.17 and Figure 4.18 below illustrate the effect of this numerical procedure. It is

shown that fluctuations of kinetic energy are removed with negligible effect on energy
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Figure 4.17 Left panel - no mean term removed, right panel - mean term removed. Top panel - energies: kinetic (green), potential (brown), total
nonlinear (black) and total linear (brown dashed). Middle panel - surface elevation (green), local slope (blue dashed). Bottom panel - amplitude
spectrum (red stem), initial amplitude spectrum (blue), breaking filter (green), diagnostic parameters in right corner: maximal cross scale steepness,
amplitude weighted mean wavenumber, power weighted mean wavenumber. Time 1150T,.
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containing spectral components, O(10-4) after 3000 Tp. Spurious volume losses are

maintained at 10-14 level throughout the simulation, not explicitly shown in the figures.

Although the above figures showed no difference in other simulated properties except for

the kinetic energy, a highly detailed comparison of amplitude evolution (Figure 4.19)

shows that removal of the mean component does modify the simulation. The difference,

however, is completely negligible in the examined time scales.
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Figure 4.19 Amplitude of the peak harmonic without mean term filtering (red), difference between filterd
and non-filtered peak harmonics multiplied by 3.e+4 (blue). Difference is observable after 2500 T,.

The presented simulations were initialized with Donelan et al. (1985) spectrum for wave

age 10 with low wavenumber components below kp/2 removed. This was done to

minimize the initial low frequency spectral content in attempt to isolate the mean term

from long wave part of the spectrum. The forcing level was fixed to

= 0.0004 (4.3.4)
gp,

The computational parameters chosen

A, k TM=3, R,--- -102.4, R,- -- 10, Rime=-=161.9 (4.3.5)
AX Ak At

Wave breaking filter was rigid with parameters [ fiscae fpower ]=1[6,40].



4.3.5. Comparing phase resolving simulations of free and wind forced irregular waves

To demonstrate the developed phase resolving simulation method for irregular ocean

wind waves in stage of strong coupling with the wind, we compare wind forced and wind

free simulations starting from identical initial conditions describing young windsea of

wave age 10 based on Donelan et al. (1985) parameterization. The objective is to

elucidate the importance of wind forcing in phase resolving simulations of realistic wind

waves in intermediate scale domains 0(10km). The question rises because the observed

growth rates are small 0(10-4), such that a typical wave of length 125m and period 9sec

will grow only by 0(5%) in amplitude as it propagates with group velocity O(7m/s)

through domain of interest. How different phase resolved profile would be if simulated

with and without wind forcing?

Figure 4.20 shows the output of both simulations after 10 T,, before wind forcing was

applied, so that both panels are identical. The bottom plot displays the discrete amplitude

spectrum (red stems) vs. the initial amplitude spectrum (blue line), which was generated

by discretization of Donelan et al. (1985) power spectrum in wavenumber domain and

chopping the lowest np/2 sub-harmonics in addition to the high frequency modes removed

by the low-pass filter (shown by green dashed line). Some diagnostic parameters are

displayed in the right corner: the maximal cross scale term - Aiongkshort, the amplitude

weighted mean wavenumber and power weighted wavenumber. The middle panel shows

the phase resolved elevation profile and its slope, calculated by forward Euler finite

difference scheme. The top panel displays the total nonlinear wave energy (black) and the

linear estimate - twice potential energy (brown dashed). The kinetic (green) and potential

(brown) energies are plotted with artificial shift of 0.4 for graphical convenience. The

near equipartition of energy is evident, the kinetic and potential energies deviate only

0(1 %) from each other. Their fluctuations are nearly in anti phase, leading to smooth

evolution of the total nonlinear energy. The difference between the linear and nonlinear

energy estimates is clearly displayed, consistent with the small deviation from

equipartition.



Figure 4.20 Same panels as in Figure 4.17. Time 10 T,. Initial conditions and computational parameters as
in Section 4.3.4.
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Figure 4.21 Left panel displays same information as Figure 4.20. Right panel shows in addition the nonlinear wind input (red line in top plot). Left
panel - simulation without wind forcing, right panel - wind forcing is applied after 10 T,. Both panels displayed at time 60 T,.



Wind forcing is applied after 10 characteristic periods. 50 Tp later, Figure 4.21, the first

differences between wind free and wind forced simulations can be discussed. The

original peak component grows faster under wind forcing, although most of its growth is

clearly due to the nonlinear interactions as captured by both simulations. The nonlinear

energy grows smoothly while wind free energy continues to drop under dissipating action

of wave breaking filter. Phase resolved surface profile shows no difference between two

simulations.

As seen in Figure 4.22, O(150Tp) after wind was applied the system evolved to state of

recurrent modulation. This is evident by the vanishing amplitude of the spectral peak,

while its sidebands grew above their initial values. This modulation is noticeable in both

simulations although some difference is clear - under wind forcing the upper sidebands

grow faster, which is consistent with the linear theory predicting faster response to wind

forcing of the shorter waves. Energy growth continued but seems to have reached a

plateau characterized by some undulatory bursts. The profile of surface elevation has

clearly different features on the right side of the domain, although demonstrating overall

qualitative similarity. This is roughly the scale of the difference predicted by our analysis

for 100 m long wave propagating through 10 km domain.

After 500 characteristic periods, Figure 4.23, the simulations evolved to different states.

The spectrum and elevation profiles are different. The energy of wind forced wave

system is twice of that of wind free wave. This is evident even in the local slopes of the

surface, which are 0(0.2) for growing wave and 0(0.1) for free wave. Energy history of

the growing wave shows few intermittent breaking events, the strongest one at 360 Tp

lasts for 0(10 Tp). It can be noticed, that this breaking event of the growing wave

corresponds to significant wave breaking of the free wave at 340 Tp. Another

simultaneous breaking event occurs at 150 Tp in both simulations. This consistency

suggests that even that phase resolved details of these simulations are quite different after

long enough evolution, some internal dynamical properties may remain similar for some

longer time even is not visible by the direct phase resolving observation.
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Evolution of amplitudes of 5 spectral components near the original spectral peak are

shown in Figure 4.24. Since at 0(150 Tp) both simulations seem to have evolved to

modulated state of sideband instability induced recurrence, we expect to observe a pattern

resembling of Fermi-Pasta-Ulam recurrence. We see, however, that for broadband

simulations it is hard to quantify the difference between the two nonlinear simulations.

Peak of modulation is still noticeable at 150 Tp in both simulations as the amplitude of

the peak component (red) reaches its minimum value. Another qualitative observation to

be made is that under wind forcing the oscillations of amplitudes are qualitatively

rougher.
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Figure 4.24 Amplitudes of dominant spectral components: peak harmonic (red), 2 upper and 2 lower
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4.4. Verification of observed parameterizations and laws

4.4.1. Duration limited evolution

Simulation of irregular wind wave field in periodic domain under steady homogeneous

wind forcing corresponds to the idealized configuration of duration limited growth. In

Figure 4.25 simulated duration limited growth is compared to the experimental estimates

obtained in Section 2.1.3. Energy growth and frequency downshift are parameterized in

fetch limited configuration by Donelan et al. (1985). Fetch to duration conversion is

based on "Shore protection manual" (CERC 1984).

Linear energy estimate is compared to the observed duration limited growth

parameterization (2.1.14) and to the exponential growth curve with the simulated forcing

level

exp C a)tJ. (4.4.1)

The exponential growth, which strictly applies to one linear monochromatic wave,

appears to match closely the total broadband energy growth before the onset of the

intermittent wave breaking. As wave field grows and evolves to certain saturation it starts

breaking intermittently and part of energy supplied by the wind is lost making the overall

growth rate slower, which corresponds to the duration limited growth. These two

different growth laws demonstrate the difference between the fast time scale of

exponential response to wind forcing, which appears to correspond to linear instability

mechanism (Miles 1957), and the slower time scale of empirical laws of windsea

evolution.

In the second plot the simulated wavenumber downshift, expressed by the power

weighted average wavenumber, is compared to the observed estimate (2.1.14). After

initial upshift period, which is correlated with the initial smooth instability growth, wave

breaking begins to remove energy from the higher frequency part of the spectrum leading

to intermittent downshift.
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Figure 4.25 Upper plot - simulated energy growth (brown), exponential growth corresponding to the
forcing level (green dashed), power law growth corresponding to duration limited growth. Lower plot -
simulated wavenumber downshift (blue), duration limited parameterization (red). Time line is shifted to
such that time zero corresponds to beginning of duration limited evolution.
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4.4.2. Toba 3/2 law

Linear theories of wind forced growth by slope coherent pressure predict exponential

growth of wave amplitude and steepness. Observations, however, show that for irregular

wind waves steepness doesn't increase with the growing amplitude, but decreases in

accordance with Toba 3/2 law. Toba empirical law (1972, 1978, 1997), see Section 2.1.5.

, expresses growth of pure wind waves, i.e. actively growing windsea free of swell, by a

power relation between wave energy and characteristic period

E cc T 3/2 A (4.4.2)

Equivalently, in terms of elevation variance or significant wave height the form of the

law is

H, C T CX A3 (4.4.3)

Thus, growing windsea grows both in height and length as it evolves, which is not

explained by linear instability theories of wind wave generation (e.g Miles 1957). Toba

explains this deviation from linearity by hypothesis of a local quasi-equilibrium of waves

with wind, where a nonlinear self-adjustment mechanism governs the balanced growth.

The hypothesized nonlinear quasi-equilibrium of growing windsea is simulated with our

simple linear model of wind forcing and highly simplified model of wave breaking. With

properly resolved nonlinear wave-wave interactions, this approach appears to suffice for

simulation of realistic wavefields satisfying Toba law. The simulations clarify the

nonlinear mechanism of irregular wavefield response to wind forcing, showing a gradual

transition from wind free swell to the growing quasi-equilibrium of windsea. The key

process governing the transition appears to be onset of intermittent wave breaking of

much higher frequency and strength compared to the mild breaking of swells. The

exponential growth, predicted by the linear theory, is confirmed for the broadband

wavefield at the transient state of weak wave breaking. Toba's hypothesized nonlinear

self-adjustment mechanism is explained by nonlinear wave-wave interactions in

dynamical balance with energy supply by wind and energy loss by wave breaking.



The above understanding is established by ensemble of simulations initialized with

Donelan et al. (1985) spectrum of wave age 10. Correspondingly the forcing level is fixed

to 0.0004, see Section 2.2.3. Rigid wave breaking filter was applied with parameters

[/#waie ,fipowe, ]=[6,40]. Simulation results are shown in Figures 4.23 to 4.28. Lower right

plots show the simulated discrete amplitude spectrum vs. the initial spectrum. Smoothed

continuous representation of the spectra appears in lower left plots. The smoothing

method is a non-periodic running average over half spectral resolution, i.e. np/2, which

was chosen arbitrarily to standardize comparison between different spectral resolutions. It

is evident that averaging conceals distinct features of the discrete spectra, but is necessary

for concise graphical presentation, especially when spectral resolution is high. Both,

simulated and model scaled wavenumbers are shown in the lower axis of the spectra for

convenience of visualization of the discretization effect. Wave breaking filter curve is

outlined over the spectra, arbitrarily scaled by maximum of each plotted spectrum.

Left panel shows the nonlinear estimate of wind energy input. No wind work is done in

first 500 periods. Wind forcing is applied at 500 Tp and kept constant throughout the

simulation. The nonlinear wind input fluctuates around mean trend of gradual decrease.

The fluctuations diminish with increased spectral resolution, suggesting convergence if

the model. The gradual decrease of wind work is the effect of the nonlinear broadband

response of the wavefield, in other words it is the actual rate of wind energy extraction by

all the spectral components combined. The forcing level, which is the expected

exponential nondimensional growth rate of a single mode, is set to 0.0004 in this

simulation. Each of the individual components induces energy flux from the wind with

this rate. However, due to nonlinear interactions the effective growth of each component

is different. The nonlinear interactions modify the rate at which wind energy is absorbed

by the waves. Thus, our numerical model allows estimation of the nonlinear response of

waves to wind forcing. The nonlinear work is the rate at which energy is extracted by the

wavefield. The rate of energy absorption is this work minus the energy lost to the

intermittent wave breaking. We note that, during the transient state of fast exponential

energy growth all the energy extracted from the wind by the waves is absorbed. At the



intermittent quasi-equilibrium, however, although the wavefield extracts similar amount

of energy from the wind, it does not absorb it all and intermittently grows with slower

rate. The transition from the linear stage to the nonlinear quasi-equilibrium growth is

associated with the gradual onset of the intermittent wave breaking.

The characteristic frequency, quantified by power averaged wavenumber (see Section

4.3.3. ) and displayed on top of the growing energy in right panels, downshifts during the

initial wind free propagation. The rate of downshift slows down as wavefield adjusts to

the low-pass wave breaking filter. After wind forcing is applied, some upshift is observed

in all simulations and is clearly associated with the smooth exponential growth. Since at

this stage all the supplied wind energy is absorbed, the upshift can be understood (see

Section 4.2.3. ) by faster growth of the shorter components, which tilt the spectral

average to the high frequency side. As the wavefield saturates and deviates from the

exponential growth, the mean wavenumber stops increasing and gradually starts

downshifting, what marks the transition to the stage of balanced duration limited growth.

Fluctuations of the average wavenumber around its mean trend shrink with increased

spectral resolution, suggesting spectral convergence. Occasional events of strong wave

breaking during the equilibrium growth stage are accompanied by temporary upshifts,

which may be explained as fast response to wind forcing. These short time response

events appear dominated by the linear mechanism required for fast reconstruction of the

spectral tail.

The growing energy is shown plotted versus the evolving period in upper left plots. The

parametric plots graphically present wavefield evolution in Toba's parametric space. In

first stage of the evolution, without wind forcing, energy drops a small fraction of its

initial value and frequency downshifts quickly while the spectrum adjusts itself to the

wave breaking filter. Then, when wind turns on, the energy starts to grow quickly,

corresponding to the regular exponential growth predicted by the linear theory. The

characteristic frequency estimate upshifts 0(5%), corresponding to the saturation of the

high frequency spectral range which responses faster to find forcing. The evolution

appears to be cluttered by strong oscillations of the characteristic frequency, plotted
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curves deviate from the general trend mainly in the horizontal direction. Nevertheless, it

is visible how the growth curve transitions from the fast exponential growth to an

equilibrium corresponding to Toba's similarity law and continues evolving, although

with vigorous fluctuations, along curves of Toba similarity law and Donelan et al. (1985)

"local" growth parameterization. The evolution continues for 0(1000) periods with local

fluctuations being a significant fraction of the overall trend. These fluctuations

significantly reduce with increasing spectral resolution, suggesting convergence in

discretization of the spectra.

Parametric plots of significant steepness, upper right plots, show that all the simulations

start at certain steepness. Then in "swell" stage of evolution the steepness drops down

with fast energy loss and downshifting. During the smooth exponential growth the

steepness quickly restores to its original level. The system transitions to Toba quasi-

equilibrium and continues evolving as steepness gradually decays. The similarity of

steepness evolution for all the simulations examined suggests its universality as the

underlying physical mechanism, details of which invite further clarification.

Eventually simulations fail. The numerical crush appears to be related to large local

steepness 0(1). Evolution towards the crush can be visualized on the parametric plots

(Figure 4.32). The trace of the curve reveals that the process is gradual. It is accompanied

by energy growth and upshift, which indicates that growth of shorter components

dominates the spectrum. Thus, tracing wave system trajectory in Toba parametric domain

may be a convenient tool for investigation of numerical details of simulation. This is in

addition to the direct physical interpretation as Toba 3/2 law.

Different random phase realizations with different resolutions are shown in Figures 4.23

to 4.28. Same principal qualitative features appear in all the simulations. This may be

interpreted as validation of consistency of our modeling approach and confirmation of

our physical understanding.
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Twid=500T. np=10. Forcing level=0.0004

Energy evolution estknate
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Figure 4.26 Output of simulation as described in the title on this page. Current page plots: (a) - Linear
energy estimate vs. characteristic period, compared to Toba 3/2 law and Donelan et al. (1985)
parameterization. (a') - Characteristic steepness vs. characteristic period.
Facing page plots: (b) - Linear (brown) and nonlinear (black) energy evolution, exponential growth (dashed
cyan), nonlinear wind input (red). (b') - Energy growth as in (b) and power weighted average wavenumber
downshift (blue). (c) - Surface elevation (dark green), significant wave height range (dashed gray). (c')
Surface elevation (dark green) and local slope (dashed blue). (d) Averaged amplitude spectrum: initial
(blue), at time indicated (dark green), breaking filter (dashed green). (d') Discrete amplitude spectrum
(green stem), initial spectrum (blue line), breaking filter (dashed green). Time is indicated in left lower
corner: number of characteristic periods t/T, , number of time steps t/At.
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Twind=500T , np=20 (random phase realization 1), Forcing level=0.0004

Energy evolution estimate
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Figure 4.27 Same as Figure 4.26 for simulation described in the title.
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wi=5T00T, np=20 (random phase realization 2), Forcing level=0.0004

Energy evolution estimate

2.5 F

1.5 F

0.5'
0.9

0.12

0.11

0.09-

0.08-

0.07-

0.06 -
1

1 1.1 1.2 1.3

Tcio(0)

Steepness evolution estimate

1.05 1.1 1.15 1.2 1.25
Tc/TcT()

Figure 4.28 Same as Figure 4.26 for simulation described in the title.
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T 1 =500Te, np=40, Forcing level=0.0004

Energy evolution estimate
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Figure 4.29 Same as Figure 4.26 for simulation described in the title.
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T.si.=500T,. np=80, Forcing level=0.0004
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Figure 4.30 Same as Figure 4.26 for simulation described in the title.
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Twind=500T, np=160, Forcing level=0.0004
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Figure 4.31 Same as Figure 4.26 for simulation described in the title.
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Figure 4.32 Same simulation as in Figure 4.26. Showing the same plots as (a) and (a') in Figure 4.26 for
longer simulation time. Displaying the gradual evolution to simulation crash.
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The sensitivity of the results to the length of the initial adjustment period is examined in

Figure 4.33 and Figure 4.34. Shorter swell simulations show that the reasonable

agreement with Toba law obtained in all the simulations above, which had swell

adjustment periods of 500 Tp, is not achieved with shorter adjustment times. The

simulated macroscale evolution characteristics are different in both presented cases. The

200 Tp case does capture the initial exponential growth with the supplied forcing level,

but does not strictly correspond to Toba 3/2 law in the equilibrium growth stage.

Although downshift is correlated with intermittent growth, in Toba configuration space

the growth is too fast or equivalently the downshift is too slow. The significant steepness

is nearly constant during the downshifting stage and does not decrease as implied by

Toba law. The 10 Tp case doesn't capture the regular exponential growth stage at all, the

growth is slower than expected from the linear theory for the applied forcing level. Wave

breaking seems to start influencing the dynamics right away by removing the energy

supplied by the wind to the wave field. This does not allow the transient linear growth

stage when all wind work is absorbed. There is no upshift stage and simulation breaks

after 1000 periods, not allowing enough evolution time for confirmation of quasi-

equilibrium adjustment. We conclude that simulation adjustment time cannot be

neglected. The simulation cannot adjust to the unbalanced initial conditions under wind

forcing, simultaneously with wind adjustment. Separate adjustment times have to be

allowed.
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Twid=20OTn. np=20, Forcing level=0.0004
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Figure 4.33 Same as Figure 4.26 for simulation described in the title.
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Tyi=1i, np=20, Forcing level=0.0004

Energy evolution estimate
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Figure 4.34 Same as Figure 4.26 for simulation described in the title.
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For additional validation of our modeling approach we checked the above results with a

modified forcing level in the simulations. Different forcing levels were applied within the

scatter of the measured growth rate, consistently with our forcing parameterization

approach, see Section 2.2.3. The results for forcing levels 0.0003, 0.0002, and 0.0005 are

compared to the simulation shown in Figure 4.26 with forcing level 0.0004. All the other

computational and physical parameters are kept the same. The figures show that reducing

the forcing level allows to generate longer lasting simulations, 4000 and 6000 Tp

respectively, which confirm Toba 3/2 law. The simulation with stronger forcing level

crashes after 2000 Tp, but still conforms to Toba law constraints. In all the cases the

simulations reproduce the smooth exponential growth with nondimensional growth rate

exactly corresponding to the different forcing levels. The deviation from Toba curve of

the initial swell evolution, the exponential fast adjustment in the linear regime and the

nonlinear quasi-equilibrium - are all reproduced in the simulations, confirming our

modeling approach. Nonetheless, these results should be considered preliminary since

failure of the simulations is not controlled at this stage. Moreover, the simulations with

forcing levels 0.0002 and 0.0003 continued running beyond time displayed in the plots

and developed instabilities in 4h harmonic of the initial peak wavenumber. These

instabilities as well as the details of phase resolved evolution and simulation crash are not

examined in this Thesis, but do suggest further work.
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Twd=500T,. np=10, Forcing level=0.0003
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Figure 4.35 Same as Figure 4.26 for simulation described in the title.
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4.4.3. Toba law as upper bound on mixed windsea and swell evolution

Simulations presented in the previous section examined wind wave evolution in three

stages observed in the real ocean. Figure 4.38 summarizes these three stages, displaying

the evolution curve of simulation from Figure 4.28 in log-log plot. The swell,

corresponding to evolution from point A to point B, propagates free of wind forcing

slowly downshifting and decaying away from Toba equilibrium curve. Pure windsea, C

to D, slowly grows in intermittent quasi-equilibrium with the wind following the 3/2 law.

The transition between swell and windsea, B to C, is fast and governed by linear growth

mechanism resulting in exponential growth. Note, that although in this graphical

presentation the exponential transition leg appears longer that the path along Toba curve,

it is the equilibrium growth that takes an order of magnitude longer time in the

simulation.

Understanding of the three stages of evolution allow qualitative comparison to real

observations obtained in mixed windsea and swell conditions. Figure 4.38 shows the

simulated data on the same scale as data of Ebuchi et al. (1992). Although the simulated

swell conditions deviate a little distance from the equilibrium curve and the simulated

equilibrium growth spans only a small portion of the measured range, the model explains

the observations. The asymmetry of the measured data, which appears only on one side of

Toba curve, is explained by simulated decay of swell and the fast exponential growth

under wind forcing. The simulation shows that wind forced waves do not grow

arbitrarily, but are constrained by Toba law. Toba 3/2 law is confirmed by both

observations and simulations as the universal upper bound on evolution of irregular wind

waves under steady wind forcing.
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line) and Donelan et al. (1985) parameterization (red dash-dotted line). Right plot - simulation data scaled and compared to observations of Ebuchi et al.
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4.4.4. Nonlinear wind forcing

The goal of this Thesis is modeling wind forcing for phase resolving simulation of

nonlinear wind waves. Analysis of the available experiments and the existing linear

theory suggested implementation of a simple linear forcing model as the leading order

approximation of the real forcing mechanism. Because the exact nonlinear mechanism of

wind forcing is not currently understood, application of the linear forcing mechanism in

nonlinear simulation allows a plausible model of the nonlinear wind forcing mechanism

by simulation of the nonlinear wind-wave interaction process. The nonlinear irregular

wave field interacts with wind described by the simplified model, each spectral

component induces some energy transfer from the wind. The integral flux of energy to

the broadband nonlinear wave system is the estimate of the nonlinear wind forcing. The

nonlinear work of wind is given by (4.2.2) and is calculated at every time step of the

model. Example of such nonlinear energy flux calculation is shown in Figure 4.39

nondimensionalized by the changing energy and mean frequency

S(4.4.4)

Wind work is zero in the first 500 periods of this simulation. During the smooth linear

response to wind forcing the integral nonlinear wind work increases slightly 0(10%),

which is also the scale of the intermittent fluctuations in this simulation. After the system

reaches quasi-equilibrium growth stage the nonlinear wind work decreases gradually.

Interesting to note that both the increase and the decrease of the normalized wind work is

observed despite the opposing effect of the mean wavenumber, which is used to

normalize the wind work and grows during the exponential growth and downshifts during

the equilibrium stage.

The simulated nonlinear wind input function is compared to the experimental data on

Figure 4.40. The calculated wind work is plotted against the measured growth rate due to

direct wind input. It is compared to the linear parameterization of growth rate and is

found to follow a similar trend, but is about 20% stronger in magnitude. The stages of
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simulation from the previous Section are shown for convenience. The abrupt start of wind

forcing corresponds to point B (yellow circle). Then wave age decreases slightly,

corresponding to the slight upshift during the linear response of the wave system (B to

C), and wind input increases. After the simulation transitions to the balanced growth state

(C to D), wind input is reduced along with wave age increase. This dynamics reproduces

the observed evolution of wind waves and is consistent with the conceptual framework of

developing wind wave system.

-4
x 10

4-

2-

0-
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Figure 4.39 Normalized nonlinear wind work in simulation data from Figure 4.28 as function of
simulation time.
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Chapter 5. Summary and Discussion

5.1.1. Approach

The goal of this thesis was to develop a direct phase resolving modeling methodology for

simulation of nonlinear wind waves. The motivation for high resolution phase resolving

simulation capability is driven by modern applications' demand and increasing

computational power opportunity. Contemporary wind wave forecasting models resolve

only phase averaged power spectra and statistical parameters, which do not provide

detailed hydrodynamic information on complex wave fields. On the other hand, the

existing phase resolving hydrodynamic simulation techniques are computationally

intensive and are not scalable to realistic scales of geophysical interest. The method

developed in this thesis overcomes the limitations of both alternatives. The model is

scalable and computationally efficient. It resolves the detailed kinematics and geometry

of complex irregular wave fields. Model formulation is based on primitive equations and

Hamiltonian formalism, which allow it to resolve the governing nonlinear dynamics with

high level of theoretical validity.

The developed model is based on the High Order Spectral (HOS) method (Dommermuth

and Yue 1987), which is a pseudo-spectral numerical technique for phase resolving

simulation of free regular waves in periodic domain. In this thesis the HOS method is

discussed in detail and modified for simulation of irregular wind waves. The

modifications required development of wind forcing and wave breaking extensions for

the method. They also required development of methodology for simulation of broadband

irregular non-stationary wave field in a discrete numerical grid. A principal challenge

encountered was consistent resolution of the observed non-conservative dynamics with a

conservative numerical scheme dependent on numerical dissipation for stabilization of

computational instabilities.

The model of wind forcing developed in this thesis is physics based, consistent with

Miles' linear theory and calibrated by available experimental data. Wind forcing is
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assumed to be primarily a form drag mechanism acting on the surface through a wave-

induced slope-coherent distribution of normal stress. The mechanism is parameterized in

terms of wave age in linearized framework of weakly interacting spectral components of

the wave field, and its magnitude is adjusted by the observed growth rates. Linear

formulation of the forcing is adopted and applied directly to the nonlinear evolution

equations.

To model the effect of wave breaking we adopted the low-pass filtering approach which

was developed originally as numerical stabilization technique. The low-pass model of

wave breaking is justified phenomenologically by associating the fine structure of

breaking crests with high wavenumber variability, dissipation of which is assumed to

represent the energy lost in distinct wave breaking events. In our simulations the small

scale energy content is removed continuously by a smooth zero-phase low-pass filter.

The undesirable effect of this constant filtering is blending the physical mechanism of

wave breaking with artificial numerical dissipation. The high frequency spectral

components are effectively assumed unessential to dynamics of energy containing waves.

This thesis presents detailed derivation of our nonlinear phase resolving model and tracks

the procedure of simulation development and calibration. The model is validated versus

linear theory expectations and established experimental parameterizations. The successful

simulations provide new insight into the physics of energy containing wind waves. The

theoretical hypothesis (Toba 1998) of nonlinear quasi-equilibrium of waves with wind as

the governing mechanism of intermittent turbulent growth is confirmed numerically and

shown to satisfy the observed parameterizations. The simulations resolve the transition

from initial growth, due to direct wind input, to the equilibrium growth in non-

conservative balance of wind forcing and wave breaking dissipation. Observed duration

limited evolution is explained by the balanced growth, which satisfies Toba 3/2 law and

acts as the upper bound on development of mixed windsea and swell sea states under

steady winds.
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This study is limited to two dimensional system of deep long crested waves. This is the

natural setting for extension of the linear wind-wave interaction theory (Miles 1957),

which is also formulated only for deep long crested waves. Also, there is sufficient

experimental evidence that generation and initial growth of wind waves is a two

dimensional process (Kawai 1979, Veron and Melville 2001), which justifies our

modeling approach. Nonetheless, the observed wind waves in the ocean are three

dimensional. Full account for the nonlinearity of irregular ocean waves may require three

dimensional considerations. It is therefore an interesting open question to extend this

study to three dimensions and examine the applicability of our potential flow framework

to real ocean waves. It must be noted that doubts regarding such extension appear since

the observed transition of two dimensional waves to three dimensional irregular wave

fields must be coupled to additional three dimensional processes like Langmuir

circulations and water side turbulence, which are beyond the applicability of our potential

flow based approach. Another extension of current study is the effect of finite depth on

growth of long wind waves. This is within the applicability of potential flow framework

and is relevant in coastal areas.

5.1.2. Challenges

HOS method is an established and capable means for simulation of regular nonlinear

waves free of wind forcing. Its application to large scale simulation of realistic ocean

wind waves requires, however, resolving the principal limitations of HOS theoretical

formulation and current numerical implementation. In the context of adding wind forcing,

the key challenge is the fundamental incompatibility of HOS energy conserving

formulation and the ad-hoc non-conservative implementation. The problem appears when

wind energy input is added to a model that is stabilized by energy removal. The delicate

balance of filtered out instabilities is disturbed, growth that was considered only a

numerical artifact is now blended with a valid response to supplied forcing. Insufficient

theoretical grounds of the subject contribute to the confusion, since theory of non-

conservative nonlinear wave dynamics appears to be lacking. A detailed analysis of the

nonlinear response of nonlinear wave system to wind forcing would illuminate the
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underlying dynamics and necessarily contribute to application of HOS method to the

problem of realistic wind waves.

Development of the theoretical foundations of the model is not finished in several

aspects. There are no rigorous bounds or guidelines for choice of computational

parameters and theory of model convergence has not been established, except for specific

demonstrations for few idealized cases (Dommermuth and Yue 1987). There are no

definite guidelines how to prevent simulation crash. The model was found to be

numerically unstable and by inspection this was attributed to growing round-off errors.

No specific stability analysis or tracing of the exact nature of numerical instabilities was

published. The simulations are stabilized by filtering out of high frequency components,

which may violate the dynamical consistency as was demonstrated in the case of volume

conservation violation. Wave breaking dissipation routine is based on same low-pass

filtering idea. Existing physics based wave breaking theories were not implemented yet.

The problem of consistent initial conditions and simulation initialization procedure is not

solved, ad-hoc "ramp up" and "warm start" techniques (Dommermuth 2000) are

implemented for no theory based alternative was established.

Beyond specifics of HOS method, the general concept of phase resolved modeling for

real ocean waves is still a subject of ongoing research. Fundamental questions exist with

regard to ergodicity, randomness and deterministic predictability of irregular broadband

non-stationary wavefields (Huang et al. 1999, Liu 1999, Liu et al. 2001) and validity of

their representation in discrete spectral models (Bretherton 1964, Rasmussen and

Stiassnie 1999, Tanaka and Yokoyama 2004, Lvov et al. 2006). Another weak point of

the HOS method is resolution of long-short wave interactions and the effects

broadbandedness and scale separation (Brueckner and West 1988, Zhang et al. 1993).

Effects of slow viscous dissipation have been partially addressed (Wu et al. 2006) and are

in the focus of current active research.

The key technical challenge in developing nonlinear wind wave model was generation of

simulations of sufficient length. Given the basic questions above, which provide a basis
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for further theoretical investigation and expose the insufficient theoretical foundation of

the model, the development of nonlinear simulations was based on random optimization

of computational parameters. The main challenge was wave breaking. Although the

stabilizing effect of the low-pass filter was confirmed, different wave breaking filters

were found to have competing effects on length and quality of the simulations. On the

one hand, stronger filters with lower cut-off wavenumber allow longer simulations. But

this is achieved by removal of meaningful spectral content. In other words, longer

simulations are potentially less meaningful. Stronger filters limit the bandwidth

resolution of the simulations. Also, on the other hand, the narrower bandwidth

simulations appeared rougher with more intermittent fluctuations of the output, which

suggests opposite of convergence. The wider bandwidth simulations appeared smoother

and converged, but crushed earlier due to wave breaking. No direct solution to this

conflict was found, and the progress was achieved by choosing the stronger filtering

approach. Although the mathematical convergence of the narrowband strongly filtered

simulations is questionable, their longer extent revealed qualitatively different dynamics.

The longer simulations evolved from the smooth response to wind forcing to a rough and

intermittent state of growing and breaking chaotically. It is this irregular dynamics that

was interpreted to be the proper representation of the natural process.

An explanation for the abandonment of the smooth converged simulations in favor of the

intermittent irregular ones may be found by understanding the disparity between the

turbulent non-conservative nature of the actual phenomenon of irregular wind waves and

our modeling approach based on the conservative HOS scheme. HOS model was

developed for regular waves, propagating free of wind forcing, interacting nonlinearly

and breaking occasionally loosing only small fraction of their energy. Thus, HOS model

is consistent with nearly conservative dynamics of free waves, the minor energy losses of

which are successfully simulated by artificial numerical dissipation. Modeling of wind

waves, however, required development of non-conservative simulations which capture

the irregular dynamics due to wind forcing and breaking dissipation, which is the

mechanism explained by Toba as local quasi-equilibrium. It was discovered that as the
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waves grow, their breaking characteristics change from isolated weak discrete events to

continuous intermittent and violent energy loss. When the length of simulations was

O(103 Tp) the simulations remained smooth and reproduced only exponential growth

consistent with the linear theory. Only the success to generate longer simulations, 0(1 04

Tp), allowed capturing the transition to the intermittent growth and breaking balance,
which we interpreted as the local quasi-equilibrium of growing windsea.

5.1.3. Contributions

Both stages of simulated wave growth in response to wind forcing can be interpreted in

terms of established observations. The initial smooth exponential growth, which

corresponds to linear instability mechanism, is interpreted as initial growth measured in

laboratory conditions (Larson and Wright 1975, Kawai 1979, Veron and Melville 2001).

Wave breaking is weak. All the energy supplied by the wind is absorbed in the wave

field. As the wave field grows and saturates, it transitions to the intermittent non-

conservative regime, when a significant fraction of energy supplied by the wind is

continuously lost in wave breaking. The balance of energy supply and loss appears to be

in equilibrium with the applied wind forcing, which is consistent with Toba's explanation

(1978, 1998) of this regime as a local quasi-equilibrium of windsea, governed by a

nonlinear adjustment mechanism. We show that this regime is consistent with Toba 3/2
law and the observed parameterizations of duration limited evolution.

During the wind free evolution the trajectory of sea state diverges from Toba equilibrium

curve corresponding to simulation of swell conditions. As soon as wind is applied wave

field responds fast and adjusts back to the equilibrium curve and continues to evolve

slowly along it. This confirms Toba hypothesis of fast equilibrium adjustment to wind

forcing. The equilibrium curve, or equivalently Toba 3/2 law or duration limited

evolution, act as an upper bound on development of mixed windsea and swell sea states

explaining the data collected by Ebuchi et al. (1992).
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The three stages of simulated wind wave evolution: swell, windsea and fast transition

have been also seen in evolution of the significant steepness as function of the

characteristic period. The evolution starts from a value that corresponds to the observed

Donelan et al. (1985) spectrum, goes down during wind free evolution and restores

quickly to the initial value as wind forcing is turned on. Then it slowly decays as the

downshift overwhelms the energetic growth corresponding to Toba similarity law.

Eventually, we can quantitatively answer the key modeling question: How much energy

does wind transfer to waves for broadband nonlinear spectrum. The model allows direct

nonlinear calculation of the integral nonlinear wind work. Initial broadband growth is

superposition of separately growing spectral components each independently satisfying

the linear theory. The integral growth rate is dominated by the strong characteristic

modes and the total growth rate is consistent with linear estimates for the peak mode.

Gradually the growing wave field saturates and transitions to intermittent breaking

equilibrium, when fraction of energy supplied by the wind is lost to breaking and the total

growth rate is in accordance with the observed duration limited parameterizations.

5.1.4. Conclusions

Interesting practical conclusion can be drawn from this study regarding to the approach to

simulation of complex turbulent systems. It appears that when the goal is to simulate an

irregular non-stationary system, the desired result doesn't lie in the smooth and ordered

balanced evolution, but in the rough intermittent apparently chaotic disorder, where the

validity of the method itself might be questionable. Surprisingly this chaotic variability

provides valuable insight about the nature of the complex turbulent phenomena and is in

accordance with the established experimental metrics.

We have shown that our simple model was sufficient to resolve the apparent complexity

of the coupled wind-wave system. It appears that with proper account for nonlinearity,

with even simple parameterizations of the non-conservative source functions, our phase

resolving approach succeeds to capture both the characteristic irregularity and ordered
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similarity of the non-stationary evolving system. Our simple model of wind forcing,

which does not account for air turbulence, appears sufficient to induce realistic irregular

wind-wave field, which can be explained solely by the nonlinearity of wave

hydrodynamics with only crude account for wave breaking dissipation. This suggests that

the complex properties of the observed wind waves may be reproduced in a deterministic

model that properly resolves the inherent properties of the nonlinear waves and no resort

to randomness or air turbulence models is required. Thus, our phase resolving nonlinear

method for wind-wave simulation may be sufficient to capture the essential physics of

ocean wind waves and may be the basis for development of new generation of highly

accurate wave forecasting models. Therefore we conclude that our modeling approach

provides a feasible computational basis for development of novel phase resolving

systems for simulation and forecasting of realistic ocean wind waves.
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Appendix A. Linear theory of response to wind forcing

In Section 2.2.2. the model of wind forcing on linear monochromatic wave was derived

heuristically. External slope coherent surface pressure distribution was applied on the

surface of a linear wave. The work done by this pressure on surface particles moving as

prescribed by the solution of free linear wave was calculated and assumed to be fully

absorbed by the wave. Energy balance was utilized then to quantify the growth of the

linear wave, i.e. the amplitude of the wave was assumed to grow in accordance to the

increase of its linear energy estimate. This approach does not appear fully consistent. The

motion of the particles on the surface of a growing wave may not be exactly the same as

for a free wave. Thus the work done by the prescribed surface pressure on a growing

wave may be different from the work that was calculated. Further, the assumption that

linearized energetics compel the dynamic response of the system requires substantiation.

It is not obvious a priori that all the work done on the wave can be absorbed in

dynamically consistent manner.

Below we describe an alternative approach. We solve directly the original linearized

equations of motion for forced surface wave. We compare this solution to the free wave

solution and to the result of the heuristic argument. We will show that the exact

properties of the growing linear wave are different from the approximate result of the

heuristic approach. However, in the observed range of parameters relevant to the energy

containing waves in the ocean the differences are small. This justifies the heuristic

approach in linear and almost linear studies. Nonetheless, in higher order nonlinear study

these differences may have important effects and have to be considered.
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A. 1. Linear solution and free wave

Consider the standard linear solution for surface wave. The nonlinear equations of motion

'Ap= 0 |z

(z= )t+ VPPx I?1

Vt+g IV V P (A=1)2 ~ PW

reduce to

AVp = 0 z5

(Pz = ), |z=0o

P.
O~+ q (A.2)

(ot 97 W - =
I(O = 0 |z

Combining the kinematic and dynamic boundary conditions the governing equation is

P

For given wavenumber k the relevant solution of Laplace equation is

V= Re y,(t)ekekz] Iz 7,, (A.4)

The governing equation in terms of surface potential amplitude is

V,, + gky = e-"" (A.5)

The solutions are obtained from the standard ansatz

y(t) = en (A.6)

For free wave it is
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y2+gk =0

+j= i gk ± io

p = Re [Ae±''te iek) (A.7)

7= A sin(kx k (t)

A is an arbitrary amplitude. The wave oscillates and propagates with phase velocity

according to the linear dispersion relation.

A.2. Forced wave: elevation coherent pressure

For linear wave forced by elevation coherent surface pressure

-= by7 (A.8)

the governing equations are

{P = 77t
P,+ g7 = -by

p,,+ g(O =-bpz (A.9)

y,, + gkyf = -bky

The eigenvalue equation

r2+ gk + bk =0 (A.10)

can be expressed in terms of a modified gravity

g'=- g+b

r2+g'k=0

The solution is similar to the free wave case only with modified dispersion relation

>=± g +b)k

F Ak x 1 (A.12)
77= Re [i -Ae""*xiox"
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We note that when surface pressure is in anti-phase with the elevation and is strong

enough

b< -g (A.13)

the forced wave does not propagate but grows exponentially. This instability mechanism

is briefly discussed by Lighthill (1962), who highlights that it is not a mechanism of wave

growth. This mechanism is known as aerodynamic suction and is equivalent to the

Kelvin-Helmholtz instability at the sheared interface of two uniform flows. Physically,
this mechanism is responsible for generation of spray over high waves in strong wind. Its

direct effect in wind wave generation is not typically recognized.

A.3. Forced wave: slope coherent pressure

For linear wave forced by slope coherent surface pressure

P
-- = aq, (A.14)

the governing equations become

(t+ g7=-aq,
(O,,+ g(Z =-a(. ( A. 15)
y,+ gky = -aik 2yV

The quadratic eigenvalue equation is

r2+ gk +iak 2 = 0 (A.16)

Its solutions are

y= i(a 2 k+ gk2)La (A.17)

To clarify the presentation of the solution we define

F = ak / g (A.18)
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The eigenvalue equation is written as

2, = -gk (1+iak /g)= -gk (1+ir)

The solution as

y= gk(F 2 +l)1) (ei2at)r = i2 +1-1-i +1 +1

Where trigonometric identities were used

sin (-atan F
2

Cos -atan F=
(2

1 Ji2+1-I1

1 +1+1I

JF 2 +1

The solution for elevation should be obtained from

77(t) = fpedt'
to

Up to arbitrary initial conditions the solution is

A= Re[ e"+*]

which up to arbitrary amplitude and phase may be written as

q = exp (+wGt) -cos(kx T ax)

where

a)=(a4 r +1+1/-,r2

G= J2 +1 -I1
F 2 +1+1

F
r-~o 2
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Note the alternating signs - right propagating wave is growing exponentially. The linear

energy growth rate is

E
-- =2G r--* yF (A.27)
Ew

It can be seen that in the limit of small forcing level F the solution recovers exactly the

result of the heuristic argument: the wave oscillates and propagates according to the

linear dispersion relation, its nondimensionalized growth rate is equal to the forcing level.

However, it must be noted that in the general case the response of the wave to the slope

coherent forcing is more complex. The dependence of the actual frequency and amplitude

growth rate on the forcing level is plotted in Figure A. 1 and Figure A.2. We can see two

asymptotic regimes. In the limit of weak forcing we recover the slowly growing free

wave in accordance with the intuition of the heuristic argument. The growth rate

asymptotes the straight line of constant forcing level. The plot shows that the exponential

growth rate of the linear response to forcing deviates from the supplied forcing level for

forcing 0(1) and higher. Strongly forced wave responds such that its growth is slower

that the forcing level. In the asymptotic limit of strong forcing level the nondimensional

growth rate is bounded by value 1. The frequency and phase velocity of such strongly

forced wave is much faster than the free wave.
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Figure A.1 The normalized frequency of response against nondimensional forcing level.
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Figure A.2 Amplitude growth rate against nondimensional forcing level.

The presented discussion is set in a linear framework, the demonstrated deviations from

the simple result of the heuristic argument are not due to nonlinearity of the wave. These

linear effects highlight the difference between free and forced waves. Similar effects have

been recognized in the literature (Donelan et al. 1985, see references therein). However,

the magnitude of these effects on scale of realistic ocean waves is negligibly small to the

leading approximation. For largest measured laboratory growth rates of 0.28, which

correspond to wave age 0.4 the relative error from the estimated forcing level is only

0(2%). Nonetheless, in higher order nonlinear studies these linear effects may be

comparable to higher order nonlinear effects. This suggests further investigation.
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