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ABSTRACT

Ultrasonic model seismology was applied to a study of scattering of
P-waves by a dry and a fluid-filled crack. Three experiments were con-
ducted. The first provided background information on the model medium
and served to develop experimental techniques. The data from the other
two experiments were used to test the applicability of a number of
seismic techniques to the determination of the crack's size, orienta-
tion, and location by studying the scattered signal.

The technique of wavefront reconstruction was used to analyse a
data set consisting of first arrival times and amplitudes of the com-
bined incident and scattered wavefields. The amplitude distribution of
the reconstructed wavefronts at various depths in the model showed that
the signal scattered by the dry crack resembles that radiated by the
sudden opening of a tensile crack, though the sense of the motion is
reversed.

Differential seismograms were made between signals recorded for the
case of the empty crack and the case of the crack filled with water.
Since it can be shown for the elastic parameters of the model studied
that the model containing a water-filled crack is equivalent to the
homogeneous solid, this technique isolated the signal due to the crack.
These differential seismograms showed that the waveform of the scattered
signal was indistinguishable from that of incident wave, but inverted.
A kinematic model of scattering by a penny-shaped crack was developed
based on elastic solutions for the opening and closing of a tensile
crack, using the stress field of the incident P-wave as the loading
function on the crack face. The tensile crack was replaced with a
Haskell-type model, where the rise time of the displacement discon-
tinuity was given by the rise-time of the first cycle of the incident
wave, and the final displacement was derived in terms of the maximum
amplitude of the incident wave. Using this model a scale factor relat-
ing the ratio of the amplitudes of the scattered and incident signals to
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the size of the crack and the wavelength of the insonifying radiation
was calculated to be:

= 0.125 R\' C
I

where the quantity on the left is the ratio of the amplitude of the
scattered wave, U (u), to that of the incident wave, W (u, at the fre-
quency (u , a = 1.27 cm is the radius of the crack, XA 0.5 cm is the
wavelength of the insonifying radiation, R is the distance to the obser-
vation point from the center of the crack, and C is the scale factor
calculated from the observed data. We found that for our model the
scale factor was 7.3. From this we estimate, for this model, the open-
ing of the crack caused by the P waves propagating along the crack to be
~ 1.5 times the peak to peak displacement of the incident P waves.

We conclude that these techniques can be of value in inferring the
parameters of cracks in the earth made by artificial hydraulic fractur-
ing for geothermal and other purposes as well as those in volcanic areas
made naturally by excess pressure in magma. Further, we conclude that
the method would benefit from additional study. Specifically, different
model geometries and crack size to wavelength ratios could be studied.
We believe our success demonstrates that scattering problems which are
intractable analytically or numerically can be profitably studied using
model seismology. We believe our success in using model seismology
demonstrates its viability as a research tool, and that the technique is
worthy of serious reconsideration.
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1. INTRODUCTION

Hydrofracturing of rock has a variety of applications in both

exploration geophysics and in the development and exploitation of

energy resources. One well known application is the measurement of

in-situ tectonic stress.(Zoback and others, 1977) Two additional

applications of hydrofracturing that are of particular interest in

an increasingly energy conscious world are the stimulation of oil

and gas reservoirs, and the development of geothermal energy

sources (Aamodt,1977). Accurately determining the size, location,

and orientation of cracks produced in any of the above applications

are problems that have yet to be adequately solved. In this thesis

we will report on model experiments which illustrate how seismic

methods might be applied to making these determinations.

Cracks produced by hydrofracturing are often modeled as poker

chip shaped, or penny-shaped cracks. To apply seismic methods to

determining the parameters of such cracks, we will need to develop

a model for the interaction of elastic waves with penny-shaped

cracks. This interaction has been formulated as a diffraction

problem by a number of researchers. Diffraction occurs whenever a

travelling wave encounters an obstacle or geometrical discon-

tinuity. A crack is a very severe form of discontinuity and can

give rise to both scattered P-waves and scattered S-waves of con-

siderable amplitude. The usual treatment of the problem is to

define boundary conditions at the crack (of stress and displace-

ment) and find solutions to the wave equation that match these

boundary conditions for the sum of the incident wave field and the
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scattered wave field. The field observed at the surface is a

superposition of the incident and scattered wave fields. Various

approximations are needed in these solutions which limit their

ranges of validity to the near-field or the far-field. In the

first section of Chapter 2 we will review some of these near- and

far- field solutions which have appeared in the literature.

Mathematical expressions which describe the forward diffrac-

tion problem for a number of cases are certainly useful, but, most

of these formulations are in a form that makes physical interpreta-

tion difficult. What we really need is a good kinematic model that

will allow us to invert our observations at the surface and infer

the source, which in this problem is a secondary scattering source.

Another way to think of this scattering problem is to consider the

incident elastic wave as a source of dynamic loading on the crack.

This allows us to separate the problem into two parts. The first

part of the problem is to estimate the displacement discontinuity

across the crack due to the incident wave. In the second section

of Chapter 2 we will refer to work on dynamic crack propagation and

fracture mechanics for information on how to do this. The second

part of the problem is to calculate the wave-field in the far-field

or the near-field for a source which is a discontinuity in dis-

placement. This corresponds to the familiar and well-documented

problem of kinematic modeling of an earthquake in source mechanism

studies. The second section of Chapter 2 closes with the combina-

tion of the two parts of this formulation of the scattering problem

into a simple model of scattering by re-radiation. If this model

is a good representation of the real world it should offer a
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simple, convenient technique to determine the parameters of the

crack, namely, the size, location, and orientation.

Of course, having formulated a model we need to try it out on

some data set to determine both its validity and its usefulness.

The methodology employed in testing this model was originally

developed by P. Troitskii and J. Scheimer during a joint

U.S.A.-U.S.S.R. experiment to test the application of acoustical

holography techniques to seismic array data. (Vinogradov, and oth-

ers, 1976) Seismic holography is of use in the near-field and in

other applications could provide increased resolution of lateral

structure over ray tracing. The problem with implementing a tech-

nique such as holography is the lack of seismic records from a high

density array. This lack, coupled with the prediliction of Soviet

seismologists to using model seismology, led to a series of model

experiments which were undertaken both at the Institute of Physics

of the Earth, in Moscow, and at M.I.T.

The experiments consisted of trying to reconstruct the ultra-

sonic wavefield inside a block of epoxy just above an obstruction

made of thin sheet aluminum. The experimental set-up and one of

the reconstructions are shown in fig. 1.1 and fig. 1.2. These

results were sufficiently gratifying, that the researchers involved

in the original experiment decided to continue independent experi-

ments at their respective institutes. The process of modeling in

seismolgy is one of judicious simplification and idealisation.

Rather than continue with very simple (actually overly simple)

geometric models, we decided to examine an idealised form of an
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actual earth structure that had immediate interest, but to continue

using the techniques already developed.

During the course of both the earlier experiments and the work

reported in this thesis, we learned a great deal about the inherent

advantages and problems of using physical models. Very little has

been published on the engineering difficulties involved in this

work, so much of our initial laboratory work involved considerable

trial and error. The final solutions may not be the final answers,

but they represent the best compromises we could find. The third

chapter of this thesis outlines the history, advantages, and prob-

lems of model seismology and reviews our solutions to some of the

inherent problems.

In addition, since we used models constructed from a Soviet-

made epoxy, we conducted a number of experiments to determine the

elastic properties of the medium. The experiments which used trad-

itional seismic methods are reported in the latter half of the

third chapter. After the experiments were completed, the blocks of

epoxy were "destructively tested". We machined some small samples

from the larger blocks and measured values for Q, density, and

other parameters using techniques developed in rock mechanics stu-

dies. Since these studies are not directly related to the seismic

experiments, they are reported in the appendix rather than in

Chapter 3. Two more series of experiments were conducted to col-

lect the data for the penny-shaped crack problem. The methods

employed to collect this data and the preliminary results are also

reported in Chapter 3.
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The analyses of the data, using both traditional seismic

methods, and the techniques based on the mathematics developed in

Chapter 2., are reviewed in Chapter 4. Two distinct data sets were

collected in the experimental runs which followed the determination

of the model properties. The first data set consisted of travel-

times and amplitudes of just the first cycle of the signal recorded

on the top of an epoxy block with a penny-shaped crack near its

center and the source attached to the bottom. The measurements

were make over a rectangular grid to model first arrival data from

a dense seismic array. This data set was collected with the wave-

front reconstruction technique in mind, and the first secton of

Chapter 4 recounts the results of using this technique on these

data.

In the final experiments, most of the measureable waveform was

recorded for the case where the crack was dry and the case where it

was filled with water. Three experimental runs were conducted. In

the first and second runs, 80 to 120 microseconds of the signal was

recorded at each observation point for both the dry and fluid-

filled cases. These records were then digitised and examined in

both the time and frequency domains to see what the salient differ-

ences were between the two cases. Referring to fig. 1.3, we can

see how very much alike the records for the dry and wet cases are

at each point. The differences were so slight that another experi-

ment was devised to extract just the differences between the

records.
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The two prior experiments made clear to us that significant

differences between the wet and dry cases occurred mainly in the

first 10 microseconds of the signal. so, only the first 10 to 15

microseconds of the signal were recorded in the last experiment.

Even so, this resulted in over 280 records which had to be digi-

tised and analysed. As will be explained in Chapter 3, differenced

records were derived from the wet and dry records to isolate the

scattering effect of the crack. These differenced records comprise

the final data set. The latter portion of Chapter 4 explains how

this data set was used, along with the kinematic scattering model

of Chapter 2, to infer some of the crack parameters.

In the final, and concluding chapter, we bring together the

results and analyses to see what we have learned about applying

seismic methods to determining parameters of penny-shaped cracks.

Another major question, that of the viability of model seismology

as an investigative tool, can be addressed immediately, however.

The experiments mentioned above, provided data sets in the same

form as field data which were exactly tailored to our needs and

could not have been nearly as easily collected in the field. Some

reasons for the recent disuse of model seismology are discussed in

Chapter 2, but for now, we can say the laboratory technology has

arrived at a point where model seismology is once again a useful

and valuable tool.
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CAPTIONS FOR CHAPTER I

1.1. This figure shows the geometry of the original experiment.

The block of epoxy is shown with measurements in wavelengths of the

insonifying radiation. This experiment used a continuous source

and a highly idealised geometrical model with a very high velocity

contrast. The aluminum cross had a velocity twice the velocity of

the block.

1.2. The data from the continuous experiment were used to recon-

struct the wavefront 1 wavelength above the cross. This figure

shows the intensity (squared amplitude) of the reconstructed wave-

front. The position of the cross is superimposed by the shading.

This figure and fig. 2.1 are reproduced from Nikolaev and others

(1975)

1.3. This figure shows the first 80 microseconds of records at a

number of points for both cases of the crack dry, and the crack

filled with water. It is apparent that any differences between the

respective wet and dry records are very slight. For this reason,

it was necessary to subtract the wet record from the dry record to

extract just the differenced record. Differenced records will be

discussed in Chapter 3.
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Figure 1.2
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2. MATHEMATICAL BACKGROUND

This chapter establishes some of the mathematical background

that will be needed to understand and interpret the results

reported in later sections. In the first section we divide the

discussion of scattering by a penny-shaped crack into a review of

diffraction by cracks and the development of a kinematic model of

scattering by re-radiation. The phenomenon of diffraction is well

known in all fields involving wave propagation and has prompted

considerable work. We will review only a small portion of this

vast body of information which bears directly on our problem. The

kinematic model of scattering by a penny-shaped crack is developed

in terms of re-radiation of energy imparted to the crack by dynamic

loading due to a plane wave impinging on the crack edge. Though

re-radiation by a crack ,per se, is not a problem that has been

widely treated in the literature, we can turn to studies of

response of cracks to impact and to studies of seismic source

mechanisms for background. As a corollary to this the representa-

tion of radiation produced by the opening of tensile cracks will be

discussed. By combining some of these results, we present an

equivalent-source model for scattering by re-radiation by a

penny-shaped crack. These mathematical tools will aid in the

interpretation of the experimental data and in formulating some

simple kinematic models. In the second section we describe the

technique of wavefront reconstruction which can be used, along with

more traditional seismic methods, to examine the scattered wave-

field from such cracks. The mathematics which explain this tech-

nique, while well-established in optics, are not widely used in
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seismology and will require some development.

2.1. DIFFRACTION BY A PENNY-SHAPED CRACK

Work done on diffraction of elastic waves by two- and three-

dimensional cracks of various configurations can be divided into

far-field and near-field studies. Among studies of far-field dif-

fraction problems is the work of Ang and Knopoff (1964 a,b) who

produced far-field solutions for wavelengths X >> (a), where (a) is

the principal dimension of the diffractor. In addition, Sih

(1968) studied the problem of stress waves of arbitrary wavelength

(X) impinging on three dimensional finite cracks. This work

involved the solution of a pair of dual integral equations involv-

ing a function of normalised wavenumber ka, where a is half-

dimension of the crack's principle dimension, and k is the

wavenumber of the incident wave . Results from this work show that

the deviation of the dynamical stress-intensity factor from the

static-loading case is only on the order of 27.5% higher when

crack dimension and X are nearly exactly equal. Otherwise, the

difference between static and dynamic loading is not significant.

Time-domain solutions for the same problem were developed using the

Wiener-Hopf technique by Thau and Lu (1970,1971), but these solu-

tions rapidly become intractable when multiple reflections are con-

sidered. Jain and Kanwal (1972) decomposed the incident wave field

into P and S components and studied the diffraction of each of

these components by a pair of coplanar Griffith cracks. By taking

the limit as the distance between the inner edges of the cracks

tended to zero, they were able to solve the problem of diffraction
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by a single Griffith crack. Though the computational methods dif-

fered, these results agree with those derived by Mal (1973). In

these studies, the far-field approximations which were made make

the results inappropriate for near-field problems.

The near-field problem has been most recently treated by

Fehler and Aki (1978). The success of a number of researchers in

using numerical techniques (i.e. Burridge (1969), Madariaga (1976),

Das and Aki (1977)), inspired Fehler and Aki to use the finite

difference technique of Madariaga (1976) in the analysis of near-

field diffraction. In this work, the crack is modelled as an

infinite strip in a homgeneous elastic medium, occupying 1xi < a

and y=O; the faces of the crack are assumed to be stress-free sur-

faces. The solution to the problem comes from solving two mixed

boundary value problems relating the incident wave and the dif-

fracted wave by the boundary conditions on the crack surfaces. For

a fluid-filled crack it is shown that one of the boundary condition

(for normal stress over the crack face) is given by:

t diff (x,0,t) = -t yyinc(x,0,t) + Cv diff(x,0,t) EQ 1

for the region ixi < a. Where the quantity C is called the crack

stiffness factor and is given by:

C =B 2ad EQ 2

where

d is the thickness of the crack (d << >)

B is the bulk modulus of the liquid
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V is the rigidity of the solid

a is the radius of the crack

And where;

t is the normal stress
yy

and, v is the displacement normal to the crack face.

As the dimensionless quantity C increases, the effect of the

crack on the incident wave will decrease, Fehler and Aki report

that for a crack stiffness factor of 10 there is no longer a shadow

zone due to the crack with a negligible disturbance on particle

motion. When the crack stiffness factor falls to 0 (which

corresponds to an empty crack) the second term in the boundary con-

dition vanishes, and the condition becomes exact for a free sur-

face. These results will be used to estimate the effect of intro-

ducing fluid into our physical models .

2.2. KINEMATIC MODEL OF SCATTERING BY RE-RADIATION

Among the elastodynamic crack problems discussed by Sih (1968)

is the class of problems concerned with the effect of time-

dependent loading of a stationary crack. Sih reports that when the

applied loads fluctuate periodically, the resulting stresses and

displacements will propagate through the medium as waves. Citing

the work of Maue (1954), Ang (1955), and Baker (1962) on the sudden

appearance of a semi-infinite crack in a pre-stressed medium, Sih

points out that the the mathematical formulation of these problems

is equivalent to the specification of a uniform impact loading on
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the crack surfaces. This loading can be described by stress wave

with a Heaviside unit step function time dependence. Chen and Sih

(1976) show, further, that the time dependence of the fluctuations

in the stress intensity factor will have the same form as the time

dependence of the incident wave. Thus, by the principle of super-

position, we can postulate that the wavefield resulting from an

elastic wave interacting with a crack will consist of a wave gen-

erated by the fluctuations of the crack faces superposed on the

incident wave. The amplitude of the fluctuations of the crack

faces, further, can be modeled by the same equations that describe

the sudden opening of a crack in a stressed medium.

2.2.1. FORMULATION OF SOURCE MODEL

The opening of a tensile crack can be expressed in terms of a

set of body forces consisting of the superpositon of an isotropic

dilatation and a dipole source applied normal to the faces of the

crack. (See fig. 2.1) Using the coordinate system shown in the

figure, the components of the equivalent body force are given by:

f (x,t) = -2 6 (x2 x1

2 2) x ,x2 tx2

f (x,t) -4 6(x ) Ox
3 2 a 3

EQ 3

Where X and y are the Lame's constants and U is the the slip or

displacement. The seismic moment tensor for this source is:
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-0XU 0 0
M S 0 (X + 2p)U 0

0 0 -
NU

EQ 4

Where S is the area of a crack face and U is the slip averaged over

the crack surface ( or fault plane ( 5 )). The representation

theorem can be used to derive the far-field SH, SV, and radial

displacements ( u ,u ,u ) from the slip function. ( Burridge and

Knopoff, 1964) In the far-field the P-waves generated by the crack

will contain only the radial component, and the SH and SV waves

will be purely transverse. We will see in Chapter 3 that our

records contain only P-waves, so we can limit our discussion to the

radial component. The radial component of P-waves at a point x in

an infinite homogeneous medium is given by:

U(x,t) = (4" )~(cjkpnj (/ p A)u( ,t- 1)d
jkpqjk pq

EQ 5

Where Au( ,t) is the dislocation source velocity function, 5 is the

area over which the dislocation source acts, (0 is the density, r is

the distance from a point on the source to the observation point,

x - k
Y. = r , the direction cosines normal to 5 are given by (/.,

the direction cosines of the dislocation vector are n , and R is

the distance from a fixed point of 5 to the observation point.

The term involving the direction cosines and the elastic con-

stants can be written in our case as:

) + 2 V sin 2E sin2 6

Where e and 6 are angles measured from the vertical ( x3 ) axis and

the axis parallel to the crack faces ( x1 ), respectively. (See,
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for example, Chouet, 1978) The integrand in eq.5 represents the

displacement waveform for any time dependence or source geometry.

For simplicity's sake we will model our source by a rectangular

fault of length L and width W. The rupture begins on 7 and = 0

and propagates along L with a uniform velocity (G). (cf. Haskell,

1964, Haskell, 1966, Haskell and Thomson (1972), and Thomson and

Doherty, 1977) While more elegant and complex models are possible,

the approximations necessary in the next section to derive the

source parameters will obviate the need for a more sophisticated

source geometry. The paramters which characterise waveforms gen-

erated by this model are the fault dimensions, the rupture velo-

city, the final displacement, and the rise time of the displacement

function. In the next section we will see how we derive these

parameters from a heuristic model of a P-wave loading a penny-

shaped crack. At a given recording location we will record a

superposition of this waveform and the incident signal. If we can

separate the two signals, it will be possible to do the inverse

problem and infer the source parameters of the scattering source

from the scattered signal.

2.2.2. DETERMINATION OF DISPLACEMENT DISCONTINUITY

Some of the earliest work on opening of cracks under static

loading was done by Sneddon (1944,1945). Sneddon examined the

distribution of stress in the neighborhood of a circular ,or

penny-shaped, crack in a homogeneous elastic solid under normal

tension. The mathematical theory of elasticity which he employed

gives a good representation of the components of stress in the
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vicinity of the crack for all points not near the edge of the

crack. The crack is assumed to be in the interior of an infinite

elastic medium and is located within the circle defined by:

r2 x +y2 a2 in the plane z = 0. The boundary conditions on

the plane z 0, are :

trz 0 for all values of r,

a = -p(r) (r<c), u = 0 (r>c),

where p(r) is the pressure applied to the crack faces as a

function of r. Now, if we let = - , we get the normal component
a

of displacement of the crack surface for ( 0 < 1):

2 1 1
Ua4(- )a udy xD(xpa)d

z z= E ' 2 2 ' 2
\| a 1\1-x EQ 6

Where p is the radial variable.

If p(r) is a constant over the crack face and we call this

constant pressure (p), eq. 6 becomes:

Uz=0 Eo l...a a \I1-P2 p

EQ 7

This expression gives us an estimate of the displacement

discontinuity due to static loading of the crack. We know from the

work of Chen and Sih (1976) that the difference in crack response

to dynamic and static loading is very slight, so we propose a

quasi-static model wherein we will use the static response result

of eq.7 to estimate the dynamic displacement. This approximation

will limit the range of valid wavelength to crack size ratios. As
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the wavelength of the incident wave becomes shorter and shorter

compared to the crack size, the rise-time of the first arrival, and

, therefore, the onset of loading, will become more and more impul-

sive. In the limit as the first arrival approaches a delta func-

tion, the loading will approach non-linear shock loading, which

cannot be treated with classical elasticity. On the other hand, as

the wavelength becomes longer and longer, the loading rapidly

approaches the static case. Chen and Sih (1976) have done a number

of numerical calculations which indicate that the dynamic stress

intensity factor equals the static stress intensity factor when the

normalised wavenumber (ka) is slightly less than 1, and will remain

at or very near the static value for all ka > 1. From their

results we can put a tentative lower bound on ka of .1. So, if the

wavelength of the incident wave is of the order of the radius of

the crack, we can use the static solution to estimate the discon-

tinuity in displacement without incurring too much error.

To estimate the magnitude of the applied stress we need to

evaluate the magnitude of the component of stress normal to the

crack face due to an incident plane wave. In our experiment the

k-vector of the incident P-wave is parallel to the faces of the

crack. (See fig. 2.2a) The component of stress normal to the crack

face is t . Assuming that the incident wave can be locally
yy

described as a plane wave:

Wz
I I Z 1

W(z 0 W expliut - e
o o 1 , 1 ,I 1 , i

EQ 8

The normal stress is given by:
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t EQ 9

Where X and y are the Lame's constants. Since W is a plane wave,

av.vanishes, giving:

yy EQ 10

A is given by

au au aw

EQ 11

But only a is non-zero, so we get:

yy z 0
EQ 12

Where W is the amplitude of the incident wave at the depth z .
0

This analysis gives only the functional dependence of the normal

stress on the elastic paramaters and does not purport to give the

exact value. However, replacing (p) in eq.4 with this expression

for (t ), and rewriting ) in terms of Poisson's ratio (a) and

Young's modulus (E), we get:

1 2
-4 '1 2 (1-a) Ea ui

U a \1-( E (1+a-)(1-2a) C z0

or,

4 I 2 a(l a2) i
U ~ a \ 1-(0 --1oA W

I (1+a)(1-2a) ( z0
EQ 13

This equation can be further simplified by noting that

' 2 '1
Sp and 2w

p

which gives:



- 35 -

U ~ \a a(1-a)
1 1-2a z
p 0

EQ 14

where 1p is the wavelength of P-waves. This expression, again, is

not intended to give the exact value of the displacement discon-

tinuity, but to indicate the functional dependence of the displace-

ment discontinuity on the crack parameters and the incident wave

parameters.

Before we can proceed with formulating the second part of the

source model, calculating the wavefield produced by this displac-

ment discontinuity, we need to finish defining the source parame-

ters. What remains is to determine the area over which this dis-

placement is applied. To do this we need to decide just how we

expect the incident wave to interact with the crack. In order to

simplify the problem we will consider only first arrivals from the

crack. We postulate that the maximum amplitude of the first

arrival will occur when the incident wave has traveled one-half

wavelength into the crack. (For 1 < a ) This is a reasonable

assumption since at this point the crack surface will be experienc-

ing its greatest deflection, since, as the wave propagates further

into the crack region, we must sum up contributions from the nega-

tive portion of the cycle. This means that the segment of the

crack that will actually be deflected will be defined by the pro-

jection of onto the crack surface. (See fig. 2.2b) The area of

this segment is given by

2 1a-- 11 1 1
K = a 2cos -1 - (a-a) \'2a--(--) 2

a 2 2 2 EQi1
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From these derivations we can now define the parameters of the

source model. The source dimensions are determined by the area K,
1

we will let the length of the source L be . This means that the

width W remains to be determined. The slip velocity function we

can determine directly from the incident waveform. The final dis-

placement we will take to be the quantity U given in eq. 13, and

the rise time of the source is just the rise time of the first

positive peak of the incident wave. Thus, the amplitude of the

scattered signal will be proportional to the product of L x W x U x

the displacement waveform x a constant of proportionality. Since

we will know, for our model, the exact dimensions of the source, we

can determine experimentally the value of the proportionality con-

stant. With this constant in hand, we can determine the dimensions

of other sources for similar geometries. In Chapter 4 we will use

our experimental parameters to make the final formulation of this

source model, and solve for the constant.

2.3. WAVEFRONT RECONSTRUCTION

Wavefront reconstruction , or downward continuation, is known

under a number of different names and can be derived in many vari-

ant fashions. All of these derivations stem from the work of

Huygens, Fresnel, and Kirchoff. These early researchers

represented a wave in space as a summation of spherical wavelets

radiating from every point on a prior wavefront. Most solutions of

wave propagation problems which make use of Huygen's principle rely

on the Fresnel-Kirchoff or Rayleigh-Sommerfeld diffraction

integrals. Most of the work done in this area has involved calcu-



- 37 -

lating the diffraction pattern due to some obstacle in a wave's

path ( as in the work cited in section 2.1). We are interested in

formulating the inverse diffraction problem, that is, given the

diffraction pattern of an object, we wish to recover an image of

that object. We will recover this image by directly computing the

wavefront amplitude and phase at a given depth from the amplitude

and phase recorded at the surface. First we will present a

straight-forward space-domain representation based on Huygen's

principle and then will show the derivation of the angular spectrum

representation and show that these formulations are essentially

equivalent.

2.3.1. SPACE-DOMAIN WAVEFRONT RECONSTRUCTION

The forward problem consists of expressing the propagation of

a complex wave-field defined in the (x,y) plane at a depth of z0 to

a new (x,y) plane at a depth of z1>z0>O. We start with a mono-

chromatic scalar wave-field in the half-space z > 0

c(xpygz,t) = C(x,y,z)e- iu~t

EQ 16

where it is assumed that C(x,y,z) obeys the Helmholtz equation

throughout the half space:

(7? + k2 ) = 0.
EQ 17

C(x,y,z,t) obeys the homogeneous wave equation and will sim-

plify to a spherical wave at large distances from the source, fal-

ling to zero at infinity. This is just the Sommerfeld radiation

condition. Ignoring the time dependence, we need to formulate an

expression relating the wave field at a depth z0
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C(x,y,z 0) C0 (x,y,z) to the same wave field evaluated at another

depth z C(x,y,z) = C1 (x,y,z) which is unconstrained to any set

values of z - z . (See fig. 2.3)

Mathematically, the inverse problem of reconstruction can be

solved by means of the following integral relation which is a form

of the Rayleigh-Sommerfeld diffraction integral. (Sommerfeld

(1954))

B( ,g) = i -(A(x y)Tz(x,y, ,I)dx dy
z EQ 18

where:

A(x,y)- are the measured values of the complex amplitude sam-

pled on the x-y plane.

1 11
T exp -ikr1 cos(nr1) is the kernal of the integral.z r 12  12 1  12

n - is the normal to the x-y plane.

1 is the ratio of the amplitude of the insonifying radiation

to its wavelength.

The classical approach to the solution of this integral is to

expand r12 in a power series about z. The choice of terms retained

in the series determines whether the solution is the Fraunhofer or

Fresnel approximation. Since we are working with spatially band

limited data, we will retain the explicit representation for r12 '

Also, since the data are sampled at discrete points, we re-

represent the integral in terms of summations.
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Bk i A(x ,y) Tz j k'1 EQ 19

We can make the following substitutions:

2 )2 + q i2
r12 = \fz +( k i + -y2)

k =W

cos(nr12  z
2  2  2

z + (ki) + (1-y b)

And we can express the full complex amplitude as:

I I

A(x.,y.) = a(x.,y.) exp ia(x.,y.)

Plugging these expressions into eq. 18 we get the full summa-

tion representation of the integral:

.a1 > z
Bk a 3 2 2

I I k i 1I

I 2W1exp i (x~ ,y, )- \z 2+6k~ iI+I y)

EQ 20

We can separate eq.20 into real and imaginary parts. This

will be somewhat simpler to implement on a computer.

L > z I'
Real(B)=- a(x ,)zsin((xy )-kr 2 13 12

r12 2EQ 21

z I
Im(B)=- a(x ,y ) cos ((x.,y )-kr2xAy

31 1 Y r1 2 1 y 12 1 Q 212 EQ 22

a1
Where we have removed the constant term

This is the brute-force form of wavefront reconstruction used

The mathematical derivation is essentially thein this thesis.
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same as that given by Vinogradov and others (1977), but the actual

computer implementation has been slightly modified since that work.

The major advantages of this form are its stability and the fact

that the data can be irregularly sampled in space. The major

disadvantage is the extreme slowness of the algorithm. Typical

reconstructions of 50 x 50 arrays required 55 to 60 minutes on a

PDP-11 computer. An alternative method might be used which takes

advantage of the speed of the Fast Fourier transform algorithm.

This technique is known as the angular-spectrum reconstruction

technique.

2.3.2. ANGULAR SPECTRUM REPRESENTATION

The angular spectrum representation of a wavefield has been

widely used in antenna theory (Bracewell,1965). The Fourier

transform pair of aperture distribution and its angular spectrum is

directly analogous to the the transform pair of a waveform and its

spectrum. This analogy allows interpretation of the angular spec-

trum representation in terms of well-known signal processing

theorems and provides considerable insight into the process of

solving the inverse diffraction problem. The general formulation

of the angular spectrum representation as a solution to the inverse

diffraction problem was developed by Sherman(1967,1968,1969), Wolf

and Shewell (1967) , Shewell and Wolf (1968), and Lalor (1968,a,b).

Following the derivation of Shewell and Wolf (1968), we can

express the wave field in eq.14, U(x,y,z), as a superposition of

plane waves :
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U(x,y,z) = A(Vx,V ) e
i(V x + V yy + Yz)

where:

2
=- j ,, 2

2 x
c y

EQ 24

In the case:

2
W > 2 2
2 x y

,the waves

will be homogeneous

within the region

positive z-axis and

i(V x + I y + Yz)
A((/ ,( ) e

plane waves propagating in all directions,

-_ <6 0 , where 6 is the angle between the

the direction of propagation.

Alternatively, when

2
< V 2 V 2

c2 x y
, the waves:

i(V x+ ( y+ Yz)

will be inhomogenwous waves which propagate in all directions per-

pendicular to the z-axis and attenuate exponentially in the +z

direction. We can express the field U (x,y.,z.) in the x-y plane

at any arbitrary depth z.> 0 in terms of eq.22 as:

co i(V x.+ V y.+ Yz.)
U (x. ,y. ,z.) A((/ ,(/ )e x 1 y 1 1 dV dV

EQ 27

This equation has the same form as a 2-dimensional Fourier

dV dV

EQ 23

EQ 25

EQ 26
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transform of the function A((/ ,(/ )eiYz . If we replace (i) with a

dummy variable (j) and transform back, we will recover A((/ ,(/ )

which can then be substituted back into eq. 26 to give:

-iyz j 11 '2 x( j+ (/ y.)
A((/ ,( ) =2 e U x ,y ) e dx dy

-oJ
EQ 28

Substituting eq. 27 into eq. 26 gives the full integral representa-

tion relating the wavefield U. at any z.>0 with the same wavefield
3J

evaluated at any other depth z.>0 ( U.):
1 1

U1(x1 ,y1 ,z1 )=

12 ( x i+V y Y+YZ) o
12e 1U2 (

-o2Y -

-i(( xt +(/ y +Yz )

When z.> z.> 0 eq. 28 is the solution to the forward

problem. In the case 0 < z. i< z. eq. 28 corresponds to
1 3

diffraction problem, or backward propagation problem.

this integral as written is a very difficult task, so

it a bit more tractable by interchanging the order of

This gives:

dx dy d(/Z d(/

EQ 29

diffraction

the inverse

Evaluating

we will make

integration.

U 1 (x,y 1 ,z1 ) = KC(x - xj,y 1 - yj) U(xj,yj) dxjdy.
-o~

EQ 30

where;

K ij(x - x ,y - Y )=_K ij(x i- x ,y - y ,z i- z )

1_|2 C i((/ (x.- x .)+(/ (y .- y )+Y( z.- z .)
12W! 3 e ad/i( x y

EQ 31

K.. is the kernal of the linear transform relating the field U. at
13 1

z=z. to the field U. at z~z.. If we limit ourselves to discussion
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of two planes, z=z 0 and z=z 1 , then, K10 is called the forward wave

propagator, and K01 is the inverse, or backward, wave propagator.

In the next section we will examine the form of these propaga-

tors and use the angular spectrum representation to gain some

insights into the physical meaning of our wavefront reconstruction

technique. But before we can do this we need to establish that the

space-domain and angular spectrum reconstruction techniques are

equivalent. The forward wave propagator can be rewritten in a sim-

plified closed form by comparing eq. 30 with the Weyl integral.

The Weyl integral expresses spherical waves as a superposition of

plane waves:
I I

ikr .x ox x+ 1~Oy 1 0)+Y, z -z0
e i_( ie9d(/ d(/

r 2W Y x y

EQ 32

where;

2 2 2
r = \f(x -x0 )2+(y -y0 +( z 0

Comparing eqs. 31 and 32 shows that:

) 1 i k r '

10  1 0 y 1y 0  2naz ' r
01

EQ 33

So, eq. 29 can be rewritten as:

1 3 eikrl
U 1(x,y1 ) =2 U 0x y0 z r 0dxdy0-Co

EQ 34

This is the Rayleigh diffraction formula of the first kind. It can

be shown (Sommerfeld, 1954) that this is equivalent to the

Rayleigh-Sommerfeld diffraction formula given in eq. 17. Since the

space-domain reconstruction technique was derived directly from eq.
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17, the space-domain and angular-spectrum reconstruction techniques

can be seen to be two sides of the same coin.

2.3.3. PHYSICAL INTERPRETATION OF WAVEFRONT RECONSTRUCTION

Given a complex wavefield such as that in eq. 15, we can form

a two-dimensional Fourier transform of V(x,y,z):

A((V y z) = iU(x,y,z)eid(xyz) x y dxdy
EQ 35

The back transform will be given by:

2Wi((/ x+(/ y)
V(x'y'z) = A( ,V ,z)e 2f( xVyy)dV dV

3 X' x yEQ 36

We can give a physical interpretation to the frequencies V and V

by considering a unit plane wave in three dimensions:

B(x,y,z) = e ik(x+jy+Yz)
EQ 37

where GZ, p, and Y are the direction cosines of the wavenumber vec-

2wi
tor k-- . The direction cosines are related to one another by

2_2
Y = \ 1-2 -P

and are related to the spatial frequency domain by:

X y EQ 38

Substituting for ( and P in eq. 36, we get:

2 2
x y x y

B(x,y,z) = e e
EQ 39

Comparing this with the back transform in eq. 35, we can see the

eq. 35 can be thought of as a superposition of plane waves over all

azimuths, with complex amplitude given by:
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ikz\1-(& ) 2 2Q 4

xy OxyEQ 410

We can see from the condition given in eq.36 that as the spatial

frequencies get lower and lower, they correspond to plane waves

more and more parallel to the z axis. Conversely, as the spatial

frequency increases it approaches one cycle per wavelength ), which

corresponds to a wave propagating parallel to the surface. As the

spatial frequencies increase beyond this point, Y becomes ima-

ginary, so the first exponential in eq. 38 becomes an attenuator

with respect to z. This is the case defined by eq.25, which means

these values of spatial frequency correspond to inhomogeneous

waves. Except in the very near field, these waves will not be

observed due to the strong z-dependent attentuation. These waves

carry information about details smaller than a wavelength in size,

which we can't resolve.

Going back now to eq.19 which expresses the space-domain

inverse propagator, we find that this propagator has preforce lim-

ited the range of spatial frequencies to much less than those which

would give rise to inhomogeneous waves. This becomes more apparant

by referring back to fig 2.3, where we see that the range of angles

of plane waves used in the reconstruction (as given by the angle

between n and r ) is limited by the relative sizes of the observa-

tion and reconstruction grids and the distance between them. This

accounts for the extreme stability of the method. It also shows

that including terms corresponding to higher spatial frequencies

would only bring information into the reconstruction from sources



outside the region of interest.

2.3.4. SOURCES OF ERROR

The three major sources of error in reconstructing wavefronts

at depth are due to errors in phase measurement, errors in ampli-

tude measurement, and sampling effects. Errors in phase measure-

ment have been quantitatively examined by Goodman and Silvestri

(1969) ,as reported by Boyer (1971). Given a function g(x) with a

Fourier transform G(V),

G(V) = g(x)e29ixV dx

EQ 41

G(V) will have amplitude given by IG(V) and phase 6(V). Since we

measure the phase digitally , we defacto divide the range of phase

2W
angles from 0 to 2W into N cells each of width -. Neglecting,

for the moment, effects due to amplitude quantization, this results

in a quantized phase function (C), which takes on the values of

the cells' midpoints. This phase function, rather than being a

smooth curve ends up being a summation of rectangle functions. The

width of each rectangle is determined by the number of phase points

that we have put into the cell. So what we reconstruct is a super-

position of sinc functions:

Ow 1
g (x) 5 sinc(m+ )gM(x)

m=-cO
EQ 42

where m is the order of the reconstructed image and the gm are a

set of coefficients determined from the quantization interval and

the actual phase spectrum of the data. The spectrum phase-

- 46 -
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quantized function g(x) consists of the primary image (from the m=O

term) summed with false images due to each of the higher order

terms in (m). Each of these images is attenuated by the factor

sinc(m+I). Also, each of the images is displaced in the space
N~

domain due to a term in the quantized spectrum that goes as eiNm

As m and N increase, the higher order terms are displaced further

away from the primary image. Thus, the primary image is not dis-

placed in space and is attenuated by a factor sinc(l). The inten-
N

sity of the false images goes as:

I ~-1
m 2N2

EQ 43

So, the accuracy with which we can quantize the phase will deter-

mine the number of out of focus false images which will interfere

with our desired primary image.

To see what happens because of errors in amplitude measure-

ment, we refer to eq. 19. If the measured amplitude a(x.,y.) con-

tains errors 6 a, each of these errors will be propagated back to

the reconstruction plane with the same attenuation as the

corresponding amplitude. This means that the total error in

B(%k'91) will be in the same ratio as the mean measured amplitude &

to the mean error 6a.

Errors due to sampling a continuous wavefield can be under-

stood in light of the Whittaker-Shannon sampling thorem. This

theorem states that a band-limited function can be exactly recon-

structed if it is sampled at a rate greater than twice the highest

frequency component. This reconstruction is done by constructing a
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sinc function about each sample point:

cO

f(x) = . f(jx) sinc( - j)
j=X LEQ 44

So, if the highest frequency component of f(x) is W, then eq. 35

1
holds true for Lx< 2. If, however, f(x) (or our wavefield a

(x. y )) contains components of order n+mN, these will be propa-

gated back like those of order n. So, aliased high frequency com-

ponents will be propagated back like low frequency components and

added to the the desired wavefield, degrading the image we obtain.

Closely allied to the problem of aliasing is the generation of

Moire' patterns by superposing geometrical patterns. Superposing a

rectangular sampling geometry on a circularly-symmetric pattern

such as the measured phase will result in the generation of Moire'

zone plates. These zones in the phase distribution can be approxi-

mated by a Fresnel zone plate. The zones in a Fresnel zone plate
2

are generated at distances - from the origin, where r is the

radius of the first zone, Lx is the sampling interval, and n =

1,±2,... .Each of these zone plates can produce a second image,

since they appear to be phase distributions of weaker sources. To

avoid interference of these images with the primary image, we must

image objects smaller than half the distance between the primary

pattern and the first higher order pattern (El Sum (1967)). Since

the phase distribution is not binary, the secondary and higher

order zone plates are produced at 450, 220 ,.. and their inten-2

sity decreases with increasing order (Van Rooy, 1971). All of

these sources of error will be evaluated for our particular experi-

ment in Chapter 4.
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CAPTIONS FOR CHAPTER II

2.1. The source geometry and the equivalent body force representa-

tion is shown here for the opening of a tensile crack. The body

waves produced by this source will be superposed on the incident

wave recorded at the receiver.

2.2. (a) The applied stress t on the faces of the crack is pro-
yy

duced by a plane wave incident along the x-axis.

2.2 (b) The area over which the stress is applied is assumed to

be the area K. This is the source region for the first arrivals

model.

2.3. The x-y plane is the surface of the model and is referred to

as the observation plane. The reconstruction plane ('-i plane) is

at a depth (z) in the model. The normal to the observation plane

is represented by the unit vector n. The vector connecting a point

in the reconstruction plane and a point in the observation plane is

r12 '
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3. THE EXPERIMENT

In order to test the effectiveness of the downward continua-

tion technique and make use of this technique along with more trad-

itional seismic methods to examine the energy re-radiated from a

penny-shaped crack in the near-field it is necessary to obtain a

useable data set. In using real-earth field data, we are hampered

by the low spatial sampling density of most seismic data and the

lack of precise fore-knowledge of the structure under study. As

early as 1927 Terada and Tsuboi used laboratory models to overcome

these diffculties in their studies of surface waves. From this

time on a great number of researchers have resorted to model

seismology in order to obtain data that was more tractable than

real-earth data yet provided some insight into actual propagation

effects. With such a long history of model seismology extant, it

was not unreasonable to turn to small scale models in the evalua-

tion of our problem.

This chapter begins with a discussion of the background and

history of model seismology and some of the problems inherent in

using models. The first (and most time-consuming) experimental

task was to evaluate and refine model seismology techniques. The

second section of the chapter begins with the description of the

problems encountered in this task and the solutions we developed.

The final section will discuss the actual experiments conducted on

the penny-shaped crack problem.

- 53 -
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3.1. MODEL SEISMOLOGY

3.1.1. HISTORY

The history of model seismology can be divided into two eras;

work prior to 1951, and developments following 1951. As noted

above, the first recognised work in the field was that done by

Terada and Tsuboi(1927). The techniques and materials use in this

work, and all work up until 1951, were rather different than those

used today. Terada and Tsuboi used agar (a gel used in the cultiva-

tion of bacterial cultures) as their medium and excited a layered

model with a continuous vibrational source. Their data consisted

of photographs of surface standing waves. While this provided a

good qualitative picture of surface waves, it did not provide any

quantitative information that could be directly applied to the

interpretation of conventional seismic records. Nonetheless,

Terada and Tsuboi concluded that model seismology could be used to

provide an intermediate step between the elegance and simplicity of

mathematical models and the complexity of real earth data.

The next major work in model seismology was that of Rieber

(1936,1937) who used a spark source to study wave propagation as

applied to reflection sesmology. Again the data consisted of pho-

tographs but in this work a Schlieren technique was used to record

the position and shape of wavefronts reflected and diffracted by

screens of various shapes. As with the earlier work, little quan-

titative information was gleaned ,but the results gave great

impetus to the development of frequency-wavenumber techniques in

exploration seismology. At about the same time Schmidt (1939)
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reported for the first time an experimental observation of head

waves. This work made use of Schlieren techniques to record wave-

fronts in layered media.

All of these workers and their contemporaries made use of pho-

tographic techniqes. While they suceeded in providing striking

visual representations of wave propagation phenomena, their results

were not easily applied to the interpretation of seismic records.

Obviously, some change in technique was required to make model

seismology more directly applicable to the interpretation of

seismic records.

The usefulness of model seismology took a great step forward

at the beginning of the 1950's with the advent of readily available

piezoelectric transducers. The year 1951 ,in particular appears as

a watershed in the history of model seismology with the publication

of work by Kaufman and Roever (1951) and Riznichenko and others

(1951). In both of these cases the experimenters used transducer

receivers coupled with oscilloscopes to record the surface motion

of the models. Though some experiments have been undertaken since

1950 using photographic recording techniques and other forms of

sources,by far the bulk of model seismic studies have used trans-

ducers both as sources and receivers.

Subsequent to 1951 a great number of researchers turned to

model seismology to aid in the interpetation of real data. The

number of yearly contributions in the field continued to climb

through the 1960's until (according to O'Brien and Symes (1971)) a

peak of over seventy papers were published in 1966. About this
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time, however, seismologists outside of the Eastern European coun-

tries began to turn away from model seismology and concern them-

selves with more sophisticated processing of real earth data.

The decline of interest in model seismology could be traced to

the increased capabilities of digital computers,the inherent limits

of the model recording systems, and limitations in the complexity

of possible models. Since model data consisted of oscilloscope

traces , the model data did not lend itself to digital processing.

These records could only be photographed, and due to the thickness

of the traces, could not be digitized accurately. Further, the

records became more and more complex as the models became less

simplistic, until a point was reached where model seismograms

rivaled real earth data in their complexity. With faster and more

powerful computers allowing the processing of vast amounts of data,

exploration seismologists, in particular, began to feel their time

could more effectively be spent analysing field sections than data

from idealised analog models. In Eastern Europe and the U.S.S.R.,

however, high technology digital equipment was not as readily

available, with the result that, as Western contributions to model

seismology have markedly declined since 1966, Soviet work has con-

tinued at a high level.

Only recently have new advances in recording technique renewed

Western interest in model seismology. The availability of new

interface electronics has generated a resurgence of interest in

model seismology among exploration geophysicists. In particular,

high speed analog to digital converters now make it possible to
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obtain digital records of model seismograms. These records can be

directly compared to real earth data and can be directly processed

with existing programs. This allows a quick comparison of ideal-

ized models and real structure. Hilterman (1971,1974) has dis-

cussed a number of possible applications to exploration and within

the last year a consortium of exploration companies has been formed

to undertake extensive model studies at the University of Houston.

This new recording and processing capability finally allows

models to be used in the way Tsuboi an Terada forsaw fifty years

ago. It is now possible to construct simple analog models and

obtain digitised records of surface motion that closely match the

form of real field data. This allows one to test new processing

techniques on idealised,known structures, and to compare these

results with inferred real strutures. To make the results of model

seismology experiments meaningful, however, one must carefully

examine the shortcomings of models, and fully understand the

assumptions and approximations made in modeling.

3.1.2. ASSUMPTIONS AND APPROXIMATIONS IN MODELING

The most obvious difference between model seismolgy and real

earth seismolgy is the vast disparity in scales. If one were able

to construct an exact scale model of some structure using real

earth materials, the records obtained would be every bit as complex

as field data. Obviously, if laboratory experiments are to provide

additional insight into interpretation of seismic records, some

approximations in complexity of models will have to be made.

Furthermore, there would be great difficulties in using real earth
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materials for models because of problems in bonding layers and in

scaling physical properties. Thus, it is necessary to decide

beforehand what simplifications to make in modeling the structure

and to determine which parameters must be scaled accurately and

which can be more or less ignored.

Parameters which must be carefully considered in elastic wave

propagation models are largely dimensional. That is, the veloci-

ties of seismic waves and the ratio of the wavelengths of these

waves to the linear dimensions of structures in the medium are

parameters which must be scaled accurately. In addition, density,

Poisson's ratio, bulk modulus, and Q should all be similar to these

quantities in the earth. Other physical properties, such as

microinhomogeneity, and stress amplitude are nearly impossible to

model and are taken to be of relative unimportance. Table 3.1 sum-

marizes the quantities considered in three-dimensional modeling and

lists commonly used scale factors.

TABLE 3.1

SCALE FACTORS FOR 3-D MODELS

QUANTITY

Mass

Length

Time

Density

Velocity

Elastic Modulus

Poisson's ratio

DIMENSIONS

M

L

T

M/L3

L/T

M/LT
2

SCALE FACTOR

10-15

10-5

10-5

0.5 to 3

1

0.5 to 3

1
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Q - 0.2 to 100

Wavelength L 10-5

Frequency 1/T 105

Strain - not scaled

Stress M/LT 2  not scaled

Viscosity M/LT not scaled

3.1.3. SOME PROBLEMS IN MODELING

The two most important problem areas encountered in model

seismology have to do with interfaces and sources and receivers.

The interface problem involves both bonding and material selection

in its resolution. Current source and receiver problems center

around the response of piezoelectric materials to both electrical

and mechanical boundary conditions. These difficulties constitute

the only non-standard problems in model seismology investigations .

(All other problems that arise in model seismology are similar to

those which arise in any seismic investigation.) In this section we

will discuss some of the general considerations in the resolution

of these problems and describe the specific remedies found in our

own experimental work.

3.1.3.1. INTERFACES AND BONDING

Many models are constructed of materials that pose severe

bonding problems when multi-layer models are needed. Metals, such

as aluminum,brass, or steel, are desirable for model studies since

they are very low loss and are easily machined. A problem arises

when two dissimilar materials , modeling different velocity layers,
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must be fused together to model a welded interface. If we consider

a bonded contact to be made up of three layers (see fig. 3.1) we

can express the reflection and transmission coefficients as
I I

r t exp'12iurh
12t12 2iu

R =r12 +
1 - r r expl2iu='

12 23 1 :

EQ 1
1 I

t12t 2 3 exp iu

Th
1 - r1t2exp12iu12 23 1

EQ 2

for a normally incident harmonic wave.

O'Brien and Symes have calculated these values for a bond

between brass and aluminum using Ardalite as the bonding agent

(Ardalite is an adhesive commonly used in bonding metallic

models.). Their results show that the bond (if perfect) will have

to be less than .0025 times the wavelength of the incident wave in

thickness to have a 1% or less effect on R and T. This would

require a perfect bond less than 0.1 mm thick in most models.

Another result, reported by Toksoz and Schwab (1964) used a steel

and brass model bonded with epoxy. The assumption of perfect bond-

ing gave errors of up to 20 % in Rayleigh wave phase velocity cal-

culations as compared to experimental results for a bond 0.2 mm

thick and waves with X = 2-3 cm. These and other model results

have shown that the thickness of the bond,even assuming perfect

bonding, is of paramount importance for waves propagating parallel

to the interface, and of less importance for waves arriving normal

to the interface.
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The assumption of perfect bonding,however, is seldom justi-

fied. Schwab and Burridge (1968) used an epoxy resin bond 0.7 mm

in thickness to join together two identical steel plates. The

transmission and reflection coefficients for a wavelength to thick-

ness ratio of 200-to-1 were measured to be 0.97 and 0.05, respec-

tively. In addition, they examined the frequency dependence of the

partition coefficients and found that it was necessary to model the

bond as consisting of patches of perfect bonding interspersed with

patches of total non-bonding.

The bonding problem can be solved only by using adhesives with

acoustic impedances close to the impedance of the model material.

O'Brien and Symes report that such adhesives will reduce the neces-

2
sity of bond thinness by over 102. That is, the bond can be as

much as .1 times the wavelength in thickness and still produce less

than a 1% error in the partition coefficients if the acoustic

impedance of the adhesive is within 5 % of that of one of the

model layers. Additionally, extreme care must be exercised in

machining the interface surfaces and evenly distributing the

adhesive. In our experimental work the model was cast out of

epoxy in the first place, so that any subsequent bonding with epoxy

adhesive would have the absolute minimum effect on wave transmis-

sion. Also, faces to be bonded were carefully machined to toler-

ances better than 0.1 mm and the epoxy adhesive was distributed as

evenly as possible. The precautions were sufficiently successful

that attempts to obtain reflection from the glued interface with

nearly normal incidence proved fruitless.
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3.1.3.2. SOURCE AND DETECTOR

As mentioned above, most work in model seismology since 1951

has been done using ultrasonic transducers as sources and

receivers. Even with this long experience, very little theoretical

work has been done on transducer source design. This means that

the design and construction of the source and receiver will depend

more on ingenuity and mechanical ability than any other part of the

experiment. With this in mind, let us review the major require-

ments we have for model sources and receivers.

The source must be capable of being "fired" every few mil-

liseconds since we obtain our record by stacking repetitive signals

on an oscilliscope. Further, the source dimensions should be

fairly small with respect to pulse wavelength so that it models a

point source. The last requirement (and the bottom line in source

construction) is that the source be able to produce pulses which

are as short as possible and still produce enough radiation to be

well above the noise level. The last two requirements tend to be

mutually exclusive and require some judicious compromises. The

receiver shares with the source the need to be of small physical

dimensions (in order to sample a small area of the model). This is

at odds with the other primary requirement,which is the need for

high sensitivity. Also the receiver should be easy to position on

the model and should give easily reproducible results. The final

requirement for the receiver is that it have the minimum effect on

the model when it is in use. With some design criteria esta-

blished, let us now review some of the characteristics of transduc-
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ers to see how we can best achieve these goals.

A number of single crystals , such as quartz and Rochelle

salt, exhibit the phenomenon of piezoelectricity. That is, when

strained, these crystals develop electrical charges on certain of

their faces, and, conversely, when electrical potentials are

applied to these faces, the crystal's dimensions will change. In

addition to naturally occurring crystalline piezoelectric materi-

als, two artificial piezo-ceramics are commonly available based on

lead zirconate-titanate or barium titanate. The transducers used

in our experiment were made from the former of these two piezo-

ceramics (The commercial name for this ceramic is PZT4 or PZT5

depending on the Q of the material.). These transducers were discs

cut from plates polarised in the direction of their thickness.

This means that a voltage applied to the two parallel surfaces will

correspond to a strain in the direction perpendicular to these sur-

faces.

The electromechanical response of such plates has been treated

using equivalent electrical circuits by Mason (1948) Lavergne and

Chauveau (1961), Redwood (1961,1962,1964), Belincourt and others

(1964), and O'Brien and Symes (1971). These treatments can be

used to predict some of the problems we can expect from our trans-

ducers and give some insight into their treatment. Fig. 3.2 shows

a representation of a plate transducer in welded contact with two

homogeneous media , and the lumped parameter equivalent circuit

that is valid for frequencies below resonance as given by O'Brien

and Symes (1971). The mechanical impedances of the materials are
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given by Z = 0 c LW. Fig. 3.3 shows the response of such a system

to a voltage impulse at time t=O. The plate will expand or con-

tract depending on the polarity of the voltage, and will generate a

uniform force with magnitude NV at each interface. This force

will generate elastic waves into both media and back into the

transducer itself. The wave transmitted into medium 1 will have an

amplitude proportional to -NVZ /(Z + Z ) and the wave transmitted

into medium 2 will have an amplitude proportional to

-NVZ2 /(Z0 + Z ) Each interface will also generate a wave back

into the transducer with amplitudes given by NVZ /(Z 1 + Z ) and

NVZ0 /(Z0 + Z2 ), respectively. The waves reflected back into the

transducer will transmit a portion of their energy through the

interface on each bounce, as shown in the figure, the end result

being a decaying train of successive pulses.

Fig. 3.4a shows an experimental record that exhibits just such

behavior. This record resulted when the the transducer was

cemented to the sample but nothing was attached to the back of the

transducer, making it a free surface with r2 = -1. Obviously, such

a source is of little use, since the train of source pulses will

drown out any signal we are trying to study. The model, however,

suggests that by welding a medium to the back of the transducer

with acoustic impedance equal to that of the transducer (Z0 = Z2 '

making r2 = 0, we can eliminate the internal reflections. Fig.

3.4b shows an experimental record which was obtained under the same

conditions as 3.4a but the back of the source transducer in this

case was cemented to a short column of epoxy. The epoxy column was

loaded with powdered lead to bring its density near to that of the
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transducer. This record shows that most of the internal reflec-

tions have been removed, giving us a source with a sufficiently

short time function to be used in subsequent experiments.

When the plate is used as a detector, the impulse response is

slightly different. Fig. 3.5 shows the open circuit voltage

response of the equivalent circuit to an impulsive mechanical force

applied at the interface with medium 1. If the receiver is unbacked

r2 = -1 and the impulse response will be a train of doublets decay-

ing with time. In the case where r1 is small, only the first doub-

let will be significant, and the receiver will act as an accelerom-

eter. In the case where the receiver is backed such that Z2 = ZO'

then r2 = 0, and, the impulse response will become one half cycle

of a square wave. If the period of this half cycle is small with

respect to the period of the observed signals, the output voltage

of the transducer will be directly proportional to the force of the

incident signal, or the particle velocity. In the case of our

experimental work, the receiver was backed in the same way as the

source. The duration of the square wave pulse is given directly by

the resonant frequency of the transducers, in our case all trans-

ducers have 1 MHz. resonant frequencies. Since the predominant

energy in the recorded signal was .5 MHz or lower, our receivers

acted as velocity recorders. The final form of the receivers and

sources constructed for our experiment will be described in the

next section.
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3.2. EXPERIMENTAL APPARATUS

Since the source and receiver were the most intractable parts

of the apparatus to fashion, we begin the description of the exper-

imental set-up with these components. We have given ,in the

preceding section, a list of the desired qualities of the source

and receiver. We will now see what compromises were necessary in

the actual construction of the source and receiver. As mentioned

above, all of our transducers were compressional disks cut from

PZT4 or PZT5 sheets. The transducers were chosen in three diame-

ters : .125 inch, .25 inch, and .5 inch. The resonant frequency of

all of the disks (determined by their thickness) was 1 MHz. The

first problem confronted was getting sufficient pulse amplitude

from the source so that the signal at the receiver would be above

the noise level. While the smaller disks would have been prefer-

able in terms of modeling a point source, it was found that only

the .5 inch disks could provide sufficient signal levels.

The second problem to be solved was the problem of the source

"ringing". The solution to this was suggested by the equivalent

circuit models as described above. The difficulty here arises in

affixing both the backing material and the connections for the

electrodes to the back of the disk. Since it would be very diffi-

cult to fabricate a solid backing plate that would provide access

clearance for the electode wires, it was decided to use loaded

epoxy as described above. The amount of lead powder to include in

the epoxy was arrived by at attempting to match the density of the

hardened loaded epoxy to that of the transducers. A lucite tube
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was machined to accept the transducer as shown in fig 3.6, and the

epoxy mixture was poured into this tube. The problem with this

fabrication scheme is the difficulty of guaranteeing repeatability.

Local concentrations of the lead powder can greatly affect the

reflectivity at the interface with the transducer. Though the

sources constructed all provided very similar signals, there was

some unavoidable variation from source to source. We attempted to

alleviate this problem by using one source for all experiments,

though five sources were constructed in all as possible back-ups.

Fig. 3.7 is a photograph of the source and receiver used

throughout most of the experiment. The construction of the

receiver posed many different problems than the construction of the

source. It can be immediately seen that the source is signifi-

cantly larger than the receiver. As with the source, we would

prefer to use as small a transducer as possible. The rationale in

this case,though, is that we want to sample the signal at a point

rather than averaging over a large contact area. An attempt was

made to use a commercially available probe called a pinducer which

has a diameter of .8 mm. The signal levels with this probe were,

unfortunately, of the same amplitude as the noise for all but the

highest input voltages. We reluctantly abandoned this approach

since high input voltages could quickly destroy our source trans-

ducers. Early attempts to use a larger transducer with a small

probe attached to one face resulted in undesirable ringing in the

probe-transducer system. The final solution was to affix a small

drop of epoxy to one of the .125 inch transducers. The epoxy used

was a fast-setting type which hardened in 7 to 10 minutes. By
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dipping the receiver probe into this material shortly before it

hardened, it was possible to form a droplet hanging from the trans-

ducer which hardened before it dropped off. The droplet, upon har-

dening, forms an almost perfect half-sphere. This half-sphere has

an impedance close to that of the model and provides excellent cou-

pling with the receiver transducer. As with the source construc-

tion technique, there is a great deal of difficulty in making

identical receivers and we ,again, used only one receiver for all

experiments, though three were constructed. Also, like the

receiver, the support tube was bonded only around the edges of the

transducer to minimize its interaction with the transducer, and the

tube was filled with lead-loaded epoxy.

The next requirement is a method of attaching the source and

receiver to the model. The source can be quickly and firmly

attached to the model by using any of a host of heat-sensitive

adhesives which polymerize on cooling. The source is then well cou-

pled to the model, but can be removed with gentle heating. We would

prefer, however, not to attach the receiver quite so permanently

since we would like to record model seismograms at many points on

the model. To do this we constructed a mechanical stage from com-

mercially available components. The entire stage assembly is shown

in fig. 3.8. The base of the stage is a screw-fed dovetail slide

attached to a rigid aluminum plate. The slide can be positioned

with an accuracy of + .002 inch over a range of 4 inches along the

x-axis. On top of this slide is attached another set of three

orthogonal micrometer controlled slides. This upper stage can be

moved in the x,y,or z directions with +.002 inch accuracy over a
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range of 1 inch in each direction. This stage allows us to posi-

tion the receiver above any point on the surface of the block

within a 4 inch by 4 inch area, to an accuracy of + .005 inch or

better, which fulfills our requirement of easy positioning of the

receiver. The requirement of minimal effect of the receiver on the

model is met by isolating the model from the receiver support

apparatus with layers of neoprene rubber. This requirement is

further answered by the very small area of contact.

The last requirement for the receiver we must deal with is

repeatability. We can overcome much of this problem by placing the

receiver at one spot and making as many observations as possible

before repositioning. To make meaningful comparisons between

records from different spots on the surface, we need to ensure that

the contact pressure between the model and receiver is a constant

as possible. To this end, a spring support system was devised that

allowed the receiver to be lowered onto the model with highly

repeatable contact pressure. Cross-sectional and exploded views of

this spring system are shown in fig. 3.9. In the experimental runs,

the probe was positioned ~ 5 mm. (.25 inch) above the block using

the vertical adjustment of the positioning stage. The probe was

then lowered to contact the model surface by rotating the lever at

the top of the mechanism. In an automated system this hand-

operated lever could be replaced with a remote-controlled

stepping-motor.

Having solved our mechanical problems, we now turn our atten-

tion to the electronics required to power our source,record the
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waveforms, and measure travel times. A block diagram of the entire

system is shown in fig. 3.10. All of the electronics consists of

off-the-shelf commercial equipment with the exception of the time

delay circuit. This circuit is a simple TTL time delay which has

proven to be stable to within .05 microsecond. The most important

piece of equipment, though, is the x-y scanner. This device is the

interface between the oscilliscope and hard-copy. The trace on the

oscilliscope screen is divided into 1024 points and then scanned.

Each point is converted to a pair of voltages corresponding to the

x-y position, and these voltages are applied to a servo-controlled

x-y plotter which traces the curve onto a sheet of paper. These

paper records can then be digitised with a manual digitiser.

Theoretically the output of the x-y scanner could be directly digi-

tised and recorded in digital format. The figure indicates where

these components could be included in the recording system. Unfor-

tunately, the expertise in digital electronics necessary to suc-

cessfully implement this was unavailable to us.

The input to the source transducer was provided by a Velonix

pulse generator which was capable of producing pulses up to 2 kV.

The Velonix pulse generator was triggered by a Dumont pulse-

generator which could provide very stable repetition rates on the

order of milliseconds. The output of this generator was split to

trigger both the Velonix generator and the sweep generator of the

oscilloscope. Thus, the scope scanned every time a pulse was gen-

erated, and each pulse was stacked on top of the previous pulse. So

each recorded waveform actually consisted of the average of many

hundreds of pulses. Likewise, the timing circuit averaged the
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travel times for 100 to 1000 pulses for each measurement. All of

the equipment proved to be very stable and reliable through most of

the experiment. In the latter stages of the experiment some

instrumental drift began to set in, but this could be ameliorated

by recording certain records at nearly the same time, as will be

explained in the next section.

3.3. EXPERIMENTAL RESULTS

Once the problems of determining the optimum source and trans-

ducer configurations had been solved, and a recording and timing

system had been developed, three model experiments were conducted.

The models were constructed of a casting resin obtained in the

Soviet Union and consisted of two blocks with nominal dimensions of

15 cm. x 15 cm. x 30 cm. The resin used in the models had much the

same properties as a commercially available resin used in the

United States (See Appendix), nonetheless, the first experiment was

a determination of some of the acoustical properties of the casting

resin. In the second experiment, the homogeneous block used in the

first experiment was sawed in half and a penny-shaped crack was

machined into the center and the block was re-cemented together.

The second experiment consisted of examining the total wavefield

produced by a P-wave vertically incident on this dry crack. The

third experiment consisted of introducing a fluid (water) into the

dry crack and recording the differences in signals recorded at the

surface resulting from a vertically incident P-wave on both the wet

crack and dry crack.
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3.3.1. FIRST EXPERIMENT

In the first experiment, two sources were attached to the

block. (see fig.3.11). The sources were attached on opposite sides

to model a refraction geometry and a reflection geometry. The

source on the top of the block was positioned .5 cm. outside of a

10.16 x 10.16 cm (4 in. x 4 in.) grid inscribed on the top of the

block with a carborundum scriber. (See fig. 3.12) This grid pro-

vided a visual reference for positioning the recording probe, and

allowed accurate positioning when re-occupying a recording loca-

tion. The grid was marked out in rectangular coordinates with the

origin of the grid located at the center of the block's top sur-

face. Since the micrometers used in the positioning stage were

calibrated in inches, the grid was scribed in inches. The x,y coor-

dinates measured in inches were then converted to metric values,

with the positive x direction taken to point toward the micrometer

stage, this convention put the reflection source at point

(x,y)=(-5.58,0.0) (measured in cm.). The transmission source was

located on the opposite side of the block directly beneath the

center of the reference grid. Typical records for the direct and

reflection experiments are shown in figure 3.13.

Waveforms were recorded every 5 mm (.2 inches) in the x and y

directions. Along the x axis, recordings were made every 2.5 mm

(.1 inch). Time picks were made of the first arrival and two sub-

sequent arrivals for the reflection experiment, Time picks for the

direct experiment were only made for the first arrival. Plotting

the arrivals as a function of position along the x-axis for the
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reflection experiment and fitting a line through the points using a

least-squares fit gives a velocity of 2.4 km. per second for the

first arrival. (See fig. 3.14)

The second arrival velocity works out to be 1.03 km. per

second. Looking at the record shows this arrival to be very high

amplitude, the question was whether this arrival corresponded to an

S-wave arrival or a Rayleigh wave arrival. Fortunately, the model

used corresponded well to a physical representation of Lamb's Prob-

lem. The medium can be considered a homogeneous half-space with

both source and receiver on the surface. Bullen (1965) shows that

in the case of a free-surface on a homogeneous half-space when:

212 1 2 1 21-
12 - = 411 - 2 -

-P

EQ 3

then c will have a real root lying between 0 and . This real

root corresponds to the velocity of the Rayleigh wave that is

realisable in the medium (cf. Bullen eq. 5.1).

Thus, given a shear velocity (P) and a P velocity (C) we can

solve for possible Rayleigh wave velocities (c) and, alternatively,

given the P velocity (Q) and the Rayleigh wave velocity (c), values

of (p) which satisfy Eq. 3. correspond to realisable S-wave veloci-

ties.

Assuming first, that the observed second arrival is a shear

wave we can easily solve for the Rayliegh wave velocity . If we

let the left side of Eq. 3. be A and the right side be B we can

plot values of A and B for a given (G ) as a function of (C). The



- 74 -

points where A = B correspond to roots of (C). Referring to fig.

3.15 we see that the value of (C) which falls between 0 and (P) is

.97 km. per second. In this case, we can solve for Poisson's

ratio:

2(X+p) EQ 4

since;

K =\ \+ 2 u

EQ 5

and,

EQ 6

we get:

212

21I' = - 1
2P 2

EQ 7

which gives a' .400 for our block.

Alternatively, if the second arrival is assumed to be the Ray-

leigh wave, we are given (c) and (T) , and we plot A and B as func-

tions of (P) . The results of this calculation are shown in figure

3.16. For this case we get p = 1.1 km per second. This gives a

Poisson's ratio of .379. So, in either case, Poisson's ratio is

slightly less than .4 . Furthermore, in either case, the Rayleigh

and S-wave velocities are so similar that, within the dimensions of

the models, we will never be able to get sufficiently far from the

source to observe separate Rayleigh and S arrivals.
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The transmission, or direct, experiment gives similar values

for the P-velocity. Figure 3.17 shows the arrival times for the

first arrival as a function of x, along the x-axis. If the thick-

ness of the block is (Z) and the source is positioned exactly

underneath the origin of the reference grid, then, the distance

from the origin to the source will be just (Z). Then the direct-

line distance from the source to a given receiver position (X,Y)

will be given by

'2 2 2
S = \"X + Y + Z

EQ 8

so the travel-time for this path will be:

T =1 S
V EQ 9

We have recorded the arrival times every 5 mm over the grid, which

gives us a total of 441 observations. We can solve for the best

(1) in a least-square sense. The resulting line is shown in fig.
V

3.18. This corresponds to a velocity of 2.38 km per second, which

is in very good agreement with the value obtained from the reflec-

tion geometry.

These velocities indicate that, in the case of a direct exper-

iment, the S-waves would arrive at (0,0) 50 - 60 microseconds after

the first P. Also, referring back to fig 3.13 we can see that the

period of the first arrival is about 2 microseconds. This period

corresponds to a wavelength for the P-waves of about 5mm. Thus,

the spatial sampling interval (A) is about equal to the wavelength

(X) of the insonifying radiation.
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Summarizing the results of the first experiment:

K - 2.4 km.
sec.

R - 1.0 km,
y sec.

a ~ .397

X - 5 mm.

3.3.2. SECOND EXPERIMENT

The second experiment required sawing the block into two

pieces. This was done using a DoAll band saw. The rough surfaces

left by the band saw were machined on a milling machine to an accu-

racy on the order of .01 mm. After this was done, a circular

depression was machined into one half of the block. This depres-

sion was 2.54 cm in diameter with a depth of 1.5 mm. Two grooves

were then machined into the surfaces to provide access for intro-

ducing fluids into the crack. The dimensions of the crack in terms

of the wavelength determined in the first experiment were: diameter

~ 5 X, thickness ~ .3 X. (See fig. 3.19). The grooves for fluid

transport had a width and depth on the order of .25 X. These

dimensions were a compromise between the need to provide adequate

fluid flow and the desire to minimize diffraction by the fluid

transport channels. To further reduce possible diffraction effects

by the fluid transport channels, PVC tubing was epoxyed into each

channel. The acoustic properties of PVC are almost identical to

the epoxy used to make the model (See Appendix). If the epoxy

joining the tube to the model fills any voids completely, only the
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internal diameter of the tubing will give rise to diffraction. The

internal diameter of the tubing was .5 mm which is much less than

), indicating that diffraction effects due to this space should be

slight. Alternatively, if the glue joint is spotty, there might be

small voids between the tubing and the machined channel. The tub-

ing is a tight press-fit in the channels, so these voids, if they

exist should also be much smaller than X in size.

After the machining was completed, the block was glued

together using an epoxy similar to the material used to originally

cast the block. It was necessary to re-scribe the reference grid,

since the block's dimensions were changed by loss of material in

the sawing operation. This placed the crack center about .75 mm to

the plus x side of the y-axis. The source was again attached

directly beneath the origin of the reference grid. Between the

first and second experiments, the first transmission source

developed an internal short and was replaced. Thus, there is no

guarantee that the source functions would be identical. This pre-

cluded direct comparison of waveforms recorded in the first experi-

ment with those recorded in this experiment.

Qualitatively,however, the waveforms are very similar and show the

same major arrivals. Actual waveforms were recorded at 1 inch

spacing (2.54cm) but arrival time and amplitude of the first posi-

tive peak were recorded every .2 inch (5mm).

Figure 3.20 shows the amplitude and arrival times of the first

positive peak, recorded every 5 mm. There is a great deal of noise

in the amplitude data, which is due to the presence of a viscous
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oil applied to the surface of the block to enhance coupling between

the model and receiver. The use of oils or greases to increase

coupling is a common practice in model seismology. However, due to

the fact that the receiver probe in our work had a spherical shape

the coupling between the block and probe depended on the thickness

of the oil film, this determined how high up the probe the grease

coupled and ,thus, the amplitude of the signal. Nonetheless, a

major feature is visible, there are two distinct peaks in amplitude

centered around (+3.0,0.0). The travel time data, on the other

hand, shows no discernable effect due to the presence of the crack.

The data recorded in this experiment were later used in con-

junction with that recorded in the third experiment in order to

locate the crack. All subsequent experiments were conducted

without the use of any oils on the surface. In order to obtain suf-

ficient signal levels in these runs, the input voltage to the

source transducer was increased from 600v. to 10OOv. The resulting

records were, on the average, 1/2 the amplitude of the records in

the first and second experiments, but still well above the noise

level.

3.3.3. THIRD EXPERIMENT

The final experiment consisted of a number of runs to examine

differences between waveforms recorded above the crack when it was

dry and when it was filled with water. The waveforms for these

runs were collected by recording the waveform with the crack dry,

and without moving the probe, filling the crack with fluid and re-

recording the waveform. By recording in this fashion, we are
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assured of maintaining the same contact pressure, and, therefore,

the same gain. Also, by recording both the wet and dry waveforms at

nearly the same time, instrumental drift is reduced to a minimum.

The wet and dry records were almost identical but exhibited

some slight differences. (See fig. 3.21) The source of these

differences can be explained by referring to the work of Fehler and

Aki (1978) described in chapter II. Plugging the elastic parameters

of the block (See sec. 3.3.1 and Appendix) into eq. 2.2 we find

that the crack stiffness factor for a water-filled crack is - 20.

This means that the wet (or water-filled) crack will have minimal

effect on the passage of the incident P-wave. We can, therefore,

consider the wet records to be a good representation of the primary

signal. On the other hand, the dry records contain a superposition

of the primary signal and any signal due to the presence of the

crack. This means we can recover the signal due just to the pres-

ence of the crack by subtracting the wet waveform from the dry

waveform.

The records resulting from this differencing scheme were then

filtered with a 3-pole butterworth lo-pass filter which had a

high-frequency cutoff of 1 MHz. Since the cutoff of the analog

recording system was 750 KHz, the filter cutoff was comfortably

above the frequency range of the data. The wet waveform and the

difference between the wet and dry waveforms at the origin are

shown in fig. 3.22. It can be seen that the differenced record has

the same form as the wet waveform, but is 180 degrees out of phase.

Referring back to fig. 3.21 we can see that the scattered signal is
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moved out in time with respect to the incident signal as we move

away from the origin. Travel times for the first arrivals of the

scattered signal are consistent with a signal originating at the

depth of the crack. The scatter in the data is sufficiently bad

that we can not localise the source to a particular portion of the

crack. Fig. 3.23 shows the geometry which can give rise to such an

arrival.

Armed with this piece of information we can return our atten-

tion to the result of the second experiment. That result showed a

large amplitude peak around x= ±3.0 cm. These two peaks could

arise in the case where the differential in travel time between the

direct waves from the source and the re-radiated waves from the

crack is equal to 1/2 the period. This would make the first up-

pulse of the re-radiated signal arrive in phase with the first up-

pulse of the direct wave, resulting in a peak in the amplitude.

According to the theoretical analysis of energy re-radiated by a

dry crack, the peak energy should be re-radiated normal to the

faces of the crack. Therefore, by just looking at the amplitude

distribution of the first complete cycle at the surface, we can get

a rough estimate of the depth and orientation of the crack. In the

next chapter we will use the downward continuation techniques

described in chapter 2 to reconstruct the complex amplitude at the

depth of the crack using the results from both the second and third

experiments. This will provide a check of both the rough estimate

just described and the phenomenological model of re-radiation by a

crack described in the second chapter.
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FIGURE CAPTIONS FOR CHAPTER III

3.1. Eq. 3.1 and 3.2 express the transmission coefficient (T) and

the reflection coefficient (R) for a plane wave (e iut) normally

incident on a bonding layer of thickness (h), with a velocity in

the layer of (c2 ). The three sets of transmission and reflection

coefficients for this geometry are designated by the arrows (r .)

and (t..).

3.2. The transducers used in our experiment can be approximated by

a piezoelectric plate welded between two different media. The

acoustic impedances of the media (Z ) are given by Z = LWc . The

approximate equivalent electrical circuit is shown for this system

when the transducer is vibrating in thickness at a frequency below

resonance.

3.3. This figure shows the approximate mechanical response of a

piezoelectric plate to an impulsive voltage source as derived by

Redwood (1963). (a) shows the amplitude of the waves transmitted

and reflected at each interface. The waves reflected back into the

transducer by medium 1 and medium 2 are designated P and Q, respec-

tively. (b) shows the generation of multiple reflections. (c) shows

the pulses generated by these reflections that will be transmitted

T
into medium 1. The time delay between pulses is given by t = -

c0

3.4. (a) This experimental record shows the decay time of source

ringing when the source is cemented to the model and the back of

the transducer is a free surface. The signals we will be examining

from the crack model are expected to arrive in the first 10-15
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microseconds, which would be totally obscured by continuing radia-

tion from the source. (b) Loading the back of the transducer with

lead-impregnated epoxy reduces the ringing time to less than 5

microseconds, giving a much cleaner source time function that will

not obscure scattered signals.

3.5. This is the exact electrical response of a flat-plate trans-

ducer to a mechanical impulse arriving from medium 1 , as derived

by Redwood (1964). (a) shows the amplitudes of the transmitted

waves. (b) shows the internal reflections of the stress pulse. (c)

T
shows the voltage response of the transducer. Again, t = i-. If

c0

t is very short with respect to the period of the incident pulse,

and the transducer is backed such that r2 = 0, the receiver will

have an output voltage proportional to the incident stress.

3.6. This figure shows a cross-sectional view of the source

holder. The transducer is cemented to the backing tube only at the

very edge to reduce interaction. The electrodes and connecting

wires were coated with a thin insulating film so that the high

triggering voltages would not short through the lead powder. Later

dismantling of the sources showed that the lead-loaded epoxy had

made essentially perfect contact across the entire back of the

transducer.

3.7. The assembled source and receiver are shown in this photo-

graph. We can easily see the round epoxy tip of the receiver probe

which allows minimal contact area. The internal construction of the

probe is essentially the same as that of the source. The probe is

coated with a conductive silver paint which, when grounded,
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provides electrical shielding. The shielding is necessary since

the pulse generator (operating at a few kilohertz) acts as a radio

transmitter and, since the signal from the probe is greatly ampli-

fied, any RF picked up will overwhelm the actual signal we are

interested in.

3.8. This photograph shows the entire probe positioning assembly.

The two stages provide accurate positioning in x and y. The verti-

cal micrometer can be used to vary the contact pressure. The lever

(a) operates a cam which lowers the probe to the surface of the

model. The probe is raised when being moved from one location to

the next in order to reduce wear on the probe tip and to avoid

lateral stressing of the probe which could bend it.

3.9. Cross-sectional and exploded views of the probe-lowering

mechanism. The lever and cam at the upper left end of the enclo-

sure (6), can be used to displace plunger (5) up to .5 inch. When

this plunger is fully depressed by the cam it does not contact the

bottom of the hole in plunger (3), so that only the pressure of

spring (4) displaces plunger (3). The receiver can be attached to

this plunger using either the internal or external threads, provid-

ing the ability to test many different receiver configurations.

This opposed spring system gives highly repeatable contact pres-

sures. Measurements made by re-occupying a given x-y location many

times showed variations of 5 % or less in measured amplitudes.
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3.10. Block diagram of electronics used in the experiment. This

system was developed for velocity measurements of earth-materials

and was easily modified for model experiments. The digital record-

ing system shown was not a part of our experimental apparatus, but

is shown to indicate where such devices could be added.

3.11. This view shows the location of the sources used in the

first experiment. The reflection and transmission sources were

made as similar as possible, and both were mounted to the block

using a heat-sensitive adhesive which polymerises on cooling giving

a brittle but rigid bond. The second source on the bottom of the

block was only used temporarily to compare source characteristics.

3.12. This photograph shows the reference grid scribed into the

top of the model. The grid allows a quick visual check when re-

setting the probe location.

3.13. These records were both recorded at (2.54,0.0). The times

t. shown on the reflection record were measured directly in the
1

laboratory by matching a delayed timing pulse to the break of each

arrival. The peak (A) in the direct record is the first positive

peak which was used for the arrival time and amplitude measurements

discussed in the text. Arrival times for the direct records were

measured by aligning the delayed timing pulse with the first break

of this arrival.



- 85 -

3.14. The arrivals plotted here correspond to the times t. in the

reflection record shown in figure 3.12 plotted as a function of

receiver position along the x-axis. The first arrival is the

direct P-wave from the source (X's). The second arrival (triangles)

is either the direct S-wave or the direct Rayleigh wave. The Third

arrival corresponds to the first reflection off of the bottom of

the block (asterisks). The lines through the points are the calcu-

lated least-square fit to velocity for each set of arrivals.

3.15. If we set the left side of Eq.3 equal to a quantity (A):

2 2
A = 12 -

1 2

And we set the right side of Eq. 3. equal to a quantity (B):

12 211
B~ :ii~ 2ii c :2B = 411 - 1-2 1

Q:22

then the points where A=B will correspond to realisable solu-

tions of Eq. 3. for set values of Q, p, and C. In this figure we

assume we know Q: and P and plot the quantities A and B against the

unknown (C). The result is a value of .97 Km./sec. for the Ray-

leigh wave velocity.

3.16. In this figure we assume we know ( and (C) , and we plot A

and B against the unknown ( ). The result is a shear velocity of

1.1 Km./sec.

3.17. The arrival times (in microseconds) of the direct signal

from the source plotted as a function of position along the x-axis,

measured in cm. describe a smoothly varying hyperbolic curve.
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3.18. The entire suite of 441 direct arrival times are shown here

as a function of total tavel-path (S). Where (S) is the direct-

line distance from the center of the source to the receiver as

described in the text. The line through these points corresponds

to a least-square fit to ( ), and gives a velocity of 2.38
V

Km./sec.

3.19. This photograph was taken after the block was cut and

machined, just before it was re-cemented together. The "crack" and

the fluid access channels can be easily seen in this view.

3.20. The amplitude and arrival time of the first positive peak as

a function of position along the x-axis for the second experiment

as compared to the results from the first experiment. The ampli-

tude shows a pair of peaks on either side of the central peak that

can be explained by re-radiation from the crack. The arrival

times, however, show no discernable effect due to the presence of

the crack.

3.21. Waveforms recorded when the crack is filled with water are

considered to be essentially equal to the unperturbed incident sig-

nal. The difference between the wet and dry waveforms at a given

point, then gives just the signal radiated due to the presence of

the crack. Since the differenced record is just a lower amplitude

inverse of the incident signal it can be explained as re-radiation

by the crack which has been excited by the incident P-wave. This

figure shows two of the pairs of wet and dry records which were

used to make the differenced records.
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3.22. The wet (incident) record and the corresponding differenced

record are shown here for the 0,0 point of the reference grid. The

amplitude of the differenced record is about one-fifth that of the

wet record for corresponding peaks.

3.23. We can roughly estimate the depth of the crack by assuming

that the amplitude peaks seen in fig. 3.20 are caused by the super-

position of the incident signal and in-phase energy re-radiated by

the crack. The block is 13.7 cm. thick, so , if the peak occurs

at x = 3 cm., the signal from the source will have traveled a

distance (S0 ) given by eq. 8. In this case S0 = 14.02 cm. If we

assume that the re-radiated signal comes from the center of the

crack and will give a peak in amplitude if it arrives in phase with

the incident signal, we can then estimate the depth to the center

of the crack by solving for a difference in travel path AS = 

Where AS = SO ~ S1 , and S = Sla + Slb . In the case of our model

if we take Sla = 6.6 cm., this would give S - 14.25 . Then AS

will be ~.22 cm which is ~2. This means we can explain the ampli-2

tude peaks by postulating an out of phase source in the center of

the block.
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4. ANALYSIS OF RESULTS

The first experiment was conducted solely to establish the

model's parameters, so we will begin this chapter with an analysis

of the second experiment. The second experiment was tailored to

the collection of data for the wavefront reconstruction technique.

We start with a general discussion of the sources of error in the

recording technique and proceed to the discussion of the wavefront

reconstruction results.

4.1. RESULTS FROM WAVEFRONT RECONSTRUCTION

4.1.1. SOURCES OF ERROR

After the block was machined for the second experiment and

re-glued, the arrival times and amplitudes of the first positive

peaks were recorded over a 21 x 21 grid. The arrival times were

determined by measuring the delay required to align the timing

pulse with the waveform. Fig. 4.1 shows the alignment of the tim-

ing pulse with a typical first arrival. By setting the scanning

rate of the oscilliscope up to .5 microsecond per cm., the preci-

sion and repeatability of arrival time measurements were greatly

enhanced. Repeated measurements at the same point varied by

approximately +.02 microsecond. Noting the slight deviations of

the observed times from the fitted lines in fig.3.14 demonstrates

that this accuracy is adequate for our purposes.

While errors in travel time measurement are small, errors in

amplitude measurement increase as the amplitude of the signal

increases. This occurs because the amplitudes are measured
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directly on the screen of the oscilliscope. As the amplitude of

the signal increases, the gain of the oscilliscope must be

decreased to fit all of the trace onto the screen. The precision

to which the screen can be read is about + .5 mm. Over the range

of scope gains used, the precision results in a range of amplitude

errors of + .1 mv. for the smallest, to ± .5 mv. for the largest

signals. Though this amplitude error increases with amplitude, it

is always a fixed percentage of the amplitude.

In the derivation of the wavefront reconstruction technique, a

monochromatic scalar wave field was assumed. We now have enough

information from the experiment to determine if our data meets this

criterion. Fig. 4.2 shows the spectrum of the first 50

microseconds of three typical waveforms. If we restrict our atten-

tion to the first 10 microseconds of signal we are assured of an

effectively monochromatic signal. To verify the scalar nature of

the wavefield we refer to the measured P and S velocities, and the

known structure of the model. The minimum P-wave travel time from

the source to the recording plane is 57.9 microseconds. The travel

time for an S-wave along the same path would be 100 microseconds,

or, well into the coda of the record. Even if the crack were to

scatter significant amounts of S energy, the differential travel

time between the P and S signals would be over 20 microseconds.

So, by limiting our attention to the first 10 microseconds of the

record, we ensure that we will record only P-wave energy in a nar-

row band around 500 kHz. Having verified that the data are amen-

able to the use of the wavefront reconstruction technique, let's

verify that the technique gives reasonable results.
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The recorded arrival times for each grid point were converted

to phase lags by setting the phase of the earliest arrival to zero

and dividing the difference in arrival time by the measured period

of the signal. So, at each grid point our data is now in the form

A e . The data were recorded over a 21x21 grid, but the recon-

struction was done using a 45x45 grid. The amplitude values meas-

ured near the edge of the 21x21 grid were all on the order of 3

mv., which was the lowest measured amplitude. Also, as the edge of

the grid was approached, the travel times became longer, with the

values at the edge of the grid all being within .05 microsecond of

each other. The 45x45 grid was constructed by filling out the grid

with the lowest measured amplitude and latest arrival time. This

had the effect of allowing energy to propagate out of the area of

immediate interest, and reduced sideband problems. The A e

values were converted to complex numbers for the reconstruction

using:

Complex Amplitude = A(cos(6) + isin(6) )
EQ 1

In figure 4.3 we see the amplitude and phase of the first

arrivals as recorded at the surface for the case where the crack is

filled with fluid. Recalling the results of section 3.3.3, we know

that this is very close to the unperturbed incident signal. To

test the wavefront reconstruction technique, we used this data to

reconstruct the spatial amplitude distribution at a depth of 25 X,

or, just above the source. The amplitude distribution a(x,y) is

recovered from the complex amplitude A(x,y) by,

1 2 2
a(x,y) \' (Im A(x,y)) + (Re A(x,y))

EQ 2
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The results of this calculation are shown in fig. 4.4. Gratify-

ingly enough, we see that the energy converges to an area about

five grid points on a side. Since the grid points in the figure

correspond to the spatial sampling interval employed in the experi-

ment ( 5 mm), we can estimate that most of the energy converges

back to an area 2.5 cm on a side. Since the source tranducer was

1 cm in diameter, we have succeeded in propagating the wavefield

back to a region on the order of the size of the source. We have

shown here only the spatial amplitude distribution of the wavefield

because the phase distribution of the reconstruction is somewhat

more difficult to display and interpret. Fig. 4.5 shows the phase

distribution calculated for the unperturbed wavefield in the center

of the block. The interference-pattern-like rings are (according

to Boyer, 1971, El Sum, 1967, and Boyer and Van Rooy, 1970) a man-

ifestation of the Moire Effect we discussed in Chapter 2. For the

purposes of interpreting the amplitude distributions, we need only

to know that these are predominantly first-order rings, the

higher-order rings , which give rise to spurious images, being out-

side the area of reconstruction. So, for our purposes, this effect

does not impair the amplitude reconstructions, but makes contour

plots of the phase inordinately "busy". It is for this reason that

the remaining figures show only the amplitude distributions. Thus

reassured, we now turn our attention to using the technique to

determine the actual orientation of the crack from the recorded

data.
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4.1.2. RECONSTRUCTIONS

In the last chapter we used the amplitude distribution on the

recording plane to show that the crack could lie in the center of

the block. This provides a good starting point for picking a depth

for reconstruction. Fig. 4.5 shows the amplitude distribution of

the unperturbed wavefield (actually the field reconstructed for a

water-filled crack.) at a depth of 15 X, or 7.5 cm. We see that

the energy is beginning to focus into a smaller region, but there

is no readily apparant structure to the amplitude distribution.

This lack of structure is in direct contrast to the reconstructed

wavefield shown in fig. 4.6. This reconstruction is also for a

depth of 15 X, but the input data are for the case where the crack

is dry. In these, and subsequent figures, the crack is located in

the center of the plots between the two central + marks. The axis

of the crack is along a line connecting these two marks, and the

diameter of the crack is slightly less than the distance between

the two marks. The most striking difference between fig. 4.5 and

4.6 is a sharp drop in amplitude along a line corresponding to the

crack location for the case where the crack is dry. From such a

reconstruction we could certainly infer the presence of some sort

of scattering structure and narrowly define its orientation. We

would be hard-pressed however to make a good quantitative estimate

of its size.

We computed reconstructions for both the fluid-filled and dry

crack at a number of depths in the range from 4 cm. deep to 9 cm.

deep. For all of the fluid-filled crack reconstructions, The wave-
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field showed no discernable symmetry or pattern. Another example

of such a reconstruction is shown in fig. 4.8. The reconstructions

for the dry-crack all showed the same basic structure; a sharp

linear low in amplitude between two large peaks. The axis of sym-

metry between the peaks always was oriented parallel to the crack

and was always very close to the actual crack location. Two more

examples of dry-crack reconstructions are shown in fig. 4.9 and

4.10 for depths just above the crack and in the top third of the

crack, respectively. The orientation of the crack is quite evident

in both reconstructions. As a final exercise in wavefront recon-

struction, we reconstructed the dry-crack wavefront just above the

source transducer. In doing so we violated one of the assumptions

which went into the derivation of the wavefront reconstruction

technique; namely, that the wave propagated through a source-free

region. Even so, the technique resulted in a well-concentrated

amplitude peak, corresponding quite well with the size and location

of the source transducer. In fig. 4.11 and 4.12 we show the ampli-

tude distribution of the unperturbed wavefront and the dry-crack

wavefront just above the source.

We knew the orientation of the crack beforehand, so we were

able to say that the reconstructions showed the presence of the

crack, but it would be advantageous to be able to show a physical

reason for the distinctive structure seen in the dry-crack recon-

structions. We find such a reason by going back to the source

model formulation in Chapter 2. We postulated that the observed

wave-field could modeled by the superposition of the incident wave

and the wave-field produced by the opening of a tensile crack. We
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then calculated the far-field P-wave field due to an equivalent

source based on the opening of a tensile crack. The radiation pat-

tern of P-waves produced by this source model is shown in fig.

4.13. As we can see the two lobes of the radiation pattern bear a

strong resemblance to the reconstructed amplitude distributions.

This allows us to define the orientation of the crack with very

little ambiguity. For information on the size of the crack, we

will turn to data from the third experiment as analysed in terms of

our source model.

4.2. RESULTS FROM SOURCE MODEL

4.2.1. FINAL FORMULATION OF SOURCE MODEL

Using the data set collected in the first and third experi-

ments, it is now possible to finish the formulation of the source

model. We have seen, in Chapter 2, that the time dependence of the

displacement of the crack face should be the same as in the

incident plane P-wave. This knowledge will allow us to define the

spatial dependence and temporal dependence of the source function

in terms of the incident wave. We can define the spatial depen-

dence because of one implication of considering the incident wave

to be a plane-wave when it encounters the crack, which is that the

dislocation function will have the same shape across the source

width at any distance 3 along the source length (L). So, if we

write the source time function in the form:

An U( ,t) = D (t - -)
v 

EQ 3

where v is the velocity with which the displacement discontinuity (
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or slip function) propagates. We can remove the 2 dependence,

L r h
(T )d~l

EQ 4

Where K is the compressional wave velocity, and L and W are the

length and width of the source, respectively.

The integral can be further simplified by making the following

approximation for the (r) dependence. We take ' to be the vector

from the origin taken at a fixed point on the source surface ( 7 )

to a point on 5, f' to be the vector from this point to the observa-

tion point, and R is the vector from the origin to the observation

point, where the unit vector in this direction is denoted as ^

(Such that ^tn R. ). We can write

r2 2 + 2 - 2 ' = R 1 + 2 A

R 2 2

EQ 5

taking the square root gives;

2~f
r = R\j 1 + 2 1

R2 R

EQ 6

We can expand the square root,

1 2 R 8 2 R 16
I R R

EQ 7

If we neglect terms:

B 1 2 14 2 -8f)

R R R R

EQ 8



- 119 -

and terms of higher order, we are left with,

r = R - n

EQ 9

This is the Fraunhofer far-field approximation. We are justified

in making this approximation when is much greater than the

neglected terms in eq. 5. In the case of our model, this criterion

is met when the travel path from the scattering portion of the

crack to the observation point is more than about 4 cm.

We can now rewrite eq. 3, using r R - cosd,

L. R - cos6
WSD(, ,t )d

> 0

EQ 10

If we denote the Fourier transform of the slip velocity D(t) by

U(uW , where this transform is given by:

U() = D(t)e dt
-o3

EQ 11

The Fourier transform of eq. 10 is,

L . iu , ( -cos6

D0(-,u = W U(uO e 1v Q d l

sin X -iX
X EQ 12

uL 1 cost
where X = ( - ). If we combine this with eq. 2.5 we get2 v (K

the complete expression for the far-field amplitude spectral den-

sity,

(, = WL 3 + 2psin2esin2 g) J sinX -iX
4pR(K 3X

EQ 13

We shall now use the relation between the slip U and the displace-

ment of incident P waves Wz obtained earlier on the basis of a
0
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quasi-static argument. From Eq. 2.14, we have

U C \w
1 1 -2a- z
p o

EQ 14

where C is an unknown constant to be determined by the results of

our model experiments. In the frequency domain, Eq. 14 can be

transformed into a relation between the Fourier transform U(u) of

slip velocity and that of incident wave displacement.

U = iuf 1 1 - 2a z
p 0

EQ 15

Putting the above equation in Eq. 13, we can write the Fourier

transform of the scattered wave displacements U (x,u) in terms of

that of the primary wave displacement Wz (u.
0

Because of the geometry of our experiment it is possible to

minimize effects due to the presence of the free surface and

attenuation effects through a judicious choice of data points. Fig

4.14 shows the free surface effect on the horizontal and vertical

displacements due to a unit incident plane P-wave. If the angle of

incidence is in the range of 0 to 10 degrees, the amplification

effect due to the free surface will be fairly constant, giving a

variation of only 5 % over this range. This effect is made even

smaller when we consider that, for data points within 5 cm. of the

origin, the difference between angle of incidence of the incident

and scattered waves is less than 5 degrees. This means that the

free surface effect on the vertical displacement due to the

incident wave and the scattered wave is virtually the same for data

points near the origin. By restricting ourselves to this set of
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data points we will gain two other advantages. First, since 6 - 0

and v = K, x is nearly zero and inX is unity. Secondly, the pathx

length for the scattered wave will be nearly the same as the verti-

cal distance from the incident wave front to the observation point.

The implication of this is that the two signals will be attenuated

nearly the same amount by anelastic attenuation.

For 6 - 0, then, Eq. 13 will be greatly simplified. We now

rewrite Eq. 13 and 15 in terms of amplitude A of primary waves

observed at the surface. Since A is about one half of Az , we

obtain from Eq. 13 and 15 ( putting 6 - 0 ) the amplitude ratio of

scattered wave to primary wave as

I I

U u) _ CuIKWL |a_ a(1 -a0)
W (u) 3 1 1 -2r
z 2WMR p

EQ 16

for =

Iu I ,

0.125 \1
1W (u ~ R1
Izi Ip

EQ 17

Following the argument of section 2.2.2, we shall assume that
1

L ~-R and W 2a. Then, the above equation becomes
2

2a

zi p

=0.125 C A \a
R 11

p
EQ 18

Since a = 1.27 cm, R = 7.5 cm
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= 2.4 x 10 = 0.5cm
500 x 103

a 1.27 = 0.17
r 7.5

S \1.27 1.591 0.5
p

I I

Iu I

1W 1 0.033 x C

I I

From fig. 3.22, the observed ratio is about 0.24. Therefore, C =

7.3. Putting this value of C back into Eq. 14, we obtain

U = 7.3 \a a(1 - a)
1 1 - 2a z
p 0

7.3 x 1.59 x 0.375 W
0

~3 W
0

The above result shows that the opening of the crack by P waves

propagating along the crack is a little greater that the peak to

peak displacement amplitude of the incident P waves for the crack

of radius 1.27 cm and the incident wavelength of 0.5 cm.

4.2.2. DISCUSSION

While these results are strictly valid only for our experimen-

tal model, we have developed a number of techniques and a model

which could be applied to other geometries and materials. From our

results, we can outline a methodology to be employed in such stu-

dies. We can split our analyses into two categories, those which

depend on the construction of differenced seismograms, and those

which rely on single records. When only the first arrivals are
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recorded, the wavefront reconstruction technique can be used to

infer the approximate position and orientation of the crack.

Further, if the ampltude of the first full cycle is available, we

can use the construction of section 3.3.3 to estimate the depth of

the crack. The data required for these two techniques is signifi-

cantly less than that required for the source model study, but we

can still gain highly useful information from them. Thus, if the

position and orientation of the crack are the desired information,

we can suggest the use of these techniques.

However, if the size of the crack is of importance, a source

model study can be used. In the last section we derived for our

specific model, a value of the coefficient C, which we could now

use to derive the size of the crack from the ratio of the scattered

signal to the incident signal. Since we would be simply re-

deriving one of the the terms we used to calculate the factor C in

the first place, this would be a circular exercise. We could, how-

ever, predict the ratio of the scattered signal to the incident

signal for a different ratio of crack size to wavelength. Or, for

a different crack size to wavelength ratio, we could calculate the

size of the crack from the ratio of the signals. The important

point is that a model can be derived which gives reasonable

results, and which can be used for other experiments.
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FIGURE CAPTIONS FOR CHAPTER IV

4.1. These records were produced by the x-y plotter attached to

the oscilliscope for a signal recorded at (0,0). In practice, the

two pulses were aligned on the oscilliscope screen where the trace

is somewhat thicker than this figure would indicate. Owing to the

thickness of the trace our accuracy of time measurement was +.02

microsecond.

4.2. These amplitude spectra were calculated for the first 80

microseconds of the records from the locations indicated on the

figure. Comparison with the actual records indicates that the

energy at 500 kHz. corresponds to the first 10-15 microseconds of

the time record. The spectrum calculated for (0,-3) shows notice-

ably higher amplitude for this peak, corresponding to the observed

peak in the first arrival amplitude noted in the vicinity of

x ~ 3 cm..

4.3. A significant problem in 3-D wavefront reconstruction is how

to display the results. An isometric representation allows easy

visualisation, but it is difficult to convey quantatitive informa-

tion in this way. This figure helps to visualise the nature of the

data set recorded for the reconstruction experiment.

4.4. The unperturbed wavefield reconstructed just above the source

transducer has converged to a small area only slightly larger than

the dimensions of the transducer itself. This was the first test

the wavefront reconsctruction technique needed to pass before being

applied to the crack problem.
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4.5. The Moire Effect, while a common phenomenon in optics, is not

normally encountered in seismology. In our case it results from

the superposition of a rectangular sampling grid on a highly sym-

metric radial phase pattern. While it degrades the quality of the

distribution plots, it has no adverse effect on our amplitude

plots.

4.6. We see here the spatial distribution of the amplitude of the

reconstructed wavefront in the center of the block when the block

contains a fluid-filled crack. In this and subsequent plots, the

contours are in the units of the measured signal (millivolts pro-

duced by the transducer in response to a stress pulse), and range

from 0 to the maximum amplitude in 5 unit increments. This ampli-

tude distribution shows no symmetry or structure which could be

attributed to the presence of the crack.

4.7. This figure shows the amplitude distribution for the recon-

structed wavefront in the case where the crack is dry. This ampli-

tude shows a significant drop along a line which coincides with the

location of the crack.

4.8. The reconstructed wavefront at a depth just above the fluid-

filled crack shows as little effect due to the presence of the

crack as the reconstruction shown in fig. 4.6

4.9. This reconstruction is for a depth at the top edge of the dry

crack. The major feature of a sharp drop in amplitude along a line

corresponding to the crack location is present in this reconstruc-

tion as in the other dry-crack reconstructions.
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4.10. Yet another reconstruction for the case where the crack is

dry. In this case the reconstruction depth is in the top third of

the crack.

4.11. For the purposes of comparison, we have contoured the recon-

struction shown in fig. 4.4. Virtually all of the energy recorded

at the surface has been propagated back to a small area, necessi-

tating a much larger contour interval, but also indicating that

reconstruction results are reasonable.

4.12. The data recorded for the dry crack also converges back to

avery small area. The form is somewhat distorted since we have

violated the assumption of a source-free propagation path by intro-

ducing the crack.

4.13. The radiation pattern for P-waves produced by the opening of

a tensile crack bears a strong resemblance to the amplitude distri-

bution of the reconstructed wavefronts in the vicinity of the dry

crack.

4.14. The presence of a free-surface introduces amplification of

the vertical displacement for near-normal angle of incidence.

These curves show the vertical and horizontal displacements meas-

ured at the free surface as a function of angle of incidence for an

incident plane P-wave of unit potential. The calculation of these

curves is based on the formulation cited by Chouet, 1978.
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Figure 4.4
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Figure 4.5
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5. CONCLUSIONS

In the beginning of this thesis we set out to examine three

mildly disparate, but related problems. The main problem, of

course, was to examine the feasibility of applying seismic methods

to the study of scattering by a penny-shaped crack. The second

problem was to see if the technique of wavefront reconstruction

could provide information about earth structure that might not be

obtainable with more traditional seismic methods. In evaluating

these problems, we were faced with the need to determine if model

seismology had once again become a viable research tool, which

became our third problem. In discussing our findings we will

attack these questions in reverse order.

As we outlined in Chapter 2, model seismology has been out of

vogue in the United States for about the last decade. The success

we had in using models to collect the data for our problem indi-

cates that this disinterest should be re-examined. Perhaps the

major complaint against model seismology in the 1960's was that it

didn't supply data in a form compatible with field data. More pre-

cisely, digital data could not be easily obtained from model exper-

iments. The use of an x-y scanner to record paper records moved

model seismology into the early 70's; bypassing the paper copy to

digitiser interface and digitising the records directly could move

model seismology in the postion of being up to date with contem-

porary seismic data collection techniques. While we did not make

use of them, commercial analog to digital converters are commonly

available which can digitise at a rate of one microsecond per sam-
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ple. Since the signals of interest in our experiment were 500 kHz.,

this sampling rate would have been adequate. So, the technolgy

exist to remonve the most significant historical complaint against

model seismology.

Even without using a fully digital system, we found that model

studies provided us with data that would have likely been unobtain-

able in any other fashion. It is difficult to think of a field

experiment or data set that could have been more useful in analys-

ing this scattering problem than our model proved to be. We were

able to collect data specifically tailored to each of our analysis

techniques at a minimal cost. We also had the added advantage of

flexibility that model studies provide. When we found that the

difference between the waveforms produced by the wet and dry cracks

was not easily resolved, we were able to quickly design and imple-

ment an alternative experiment which extracted the information we

needed.

Against these advantages of model seismology we must weigh the

difficulties we encountered in our work. Two major problems sur-

faced, the first of which was a lack of published information on

the solution of problems specific to model seismology such as those

we discussed in Chapter 2. Two fields which share a number of

experimental techniques with model seismology are experimental rock

mechanics and non-destructive acoustic testing of solids. While

some useful information can be gleaned from the literature of these

fields, model seismology has sufficient problems unique to itself

that it could certainly benefit from its own literature on experi-
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mental techniques.

The other problem we encountered was that our experiments were

excessively time consuming. The need to manually position the

probe for each data point and make a paper copy of the record or

write down the arrival time and amplitude resulted in experiments

that required days of constant attention. This limited the number

of experiments we could undertake in a resonable amount of time.

Fortunately, it is easy to envision an automated data collection

system which would solve this problem handily. The mechanical

stage and probe assembly we devised needs only the addition of a

servo motor to each of the positioning micrometers and to the

probe-lowering assembly to allow unattended operation under the

control of a micro-processor. The addition of digital data collec-

tion and recording to such a system would remove the last obstacle

to what we might term a renaissance of model seismology. The only

pitfall would be the temptation to collect more data than could be

easily processed. We can only conclude that model seismology

deserves serious reconsideration as a research tool.

With regard to the wavefront reconstruction technique, our

conclusions are somewhat less forceful. In using this technique we

found an almost equal balance in assets and liabilities of the

method. For example, while we were able to very precisely image

the orientation and location of the crack on a given plane, we

could not determine the size or depth of the crack with this tech-

nique. Further, while the data needed for reconstructions is only

the amplitude and arrival time at each recording location ( as



opposed to requiring the entire waveform), the number of recording

locations must be very great for reasonable reconstructions. In

light of the conflicting attributes of this technique, we conclude

that it is indeed useful, and is deserving of further study, if

only to overcome some of the shortcomings.

Having dispensed with the ancillary problems raised by our

experiments, we can now address ourselves to the primary problem.

We have seen, for our particular model, how we can apply various

seismic techniques to the study of scattering by a penny-shaped

crack, depending on the form of data available. The wavefront

reconstruction technique, as we have just noted, is tailored to the

interpretation of travel time and amplitude measurements. From the

results of our reconstructions we were able to verify a very impor-

tant result. Namely, that the radiation pattern associated with

the energy scattered from the dry crack is consistant with that due

to the opening of a tensile crack. This observation does much ( in

addition to the arguments cited in Chapter 2.) to enhance the

believability of our scattering model.

One of the most interesting observations we can make using

this same data set, is that the amplitude information is at least

as important as the travel times. For the refraction experiments,

we were unable to resolve any significant alteration in travel time

due to the presence of the crack. Without the amplitude informa-

tion, we would have been hard-pressed to estimate the depth of the

source without resorting to a reflection shooting geometry.

- 144 -
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Admittedly, our situation was highly idealised, and we were

able to collect data for only one geometry, nonetheless, our

results show how kinematic source modeling techniques might be

applied to scattering by a penny-shaped crack under a variety of

circumstances. The differential seismogram technique is particu-

larly persuasive in support of this proposition. The fact that the

waveform of the scattered signal is identical to the input waveform

is telling evidence in support of modeling the incident wave as a

forcing function of the crack face. The use of a simple ramp time

function is, of course quite simplistic, but, as we have mentioned

before, it is not a good idea to over-design one part of a model.

Further experiments should naturally be run for a variety of crack

size to wavelength ratios, and for a variety of source-receiver

geometries. But, for the present, we have shown how one might use

earthquake source modeling techniques to estimate the size of such

a crack.
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APPENDIX

In order to provide complete information about the physical proper-

ties of the epoxy used in our model, we conducted a number of tests

after completing the experimental work. Three small samples were cut

from the model block: a cube .5 inches on a side, a rod 6 inches long by

.25 inches in diameter, and a cylinder 2.5 inches long by .5 inch in

diameter. The dimensions of the samples were measured with a

machinist's micrometer and then each sample was weighed on a laboratory

balance. The average density derived from these measurements was 1.22

-3 -3
gm/cm. +.02 gm./cm.

Q - MEASUREMENT

The long rod was used to measure the quality factor "Q", of the

material using the resonant bar method. {White,1970} When a bar is

driven at one end at its lowest resonant frequencies, longitudinal waves

propagate along its length at a velocity C governed by the Young's

modulus:

C =-
y EQ A.1

-a x
If the attenuation of such waves is expressed in the form e Y , it can

be shown {White,1970} that the Q of the material can be expressed in

terms of the velocity and attenuation of the Young's modulus waves, to

wit,
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1 a C Af
Q f ~f

n
EQ A.2

P tranducers were cemented to each end of the rod with Duco cement, and

the rod was supported only at its center. One of the transducers was

driven by a variable frequency source, and the resonance points of the

combined rod/transducer system were measured. Results from this experi-

ment are summarised in Table A.1. The corrected Q of 21 is constant

over the range of frequencies used. The correction refers to the remo-

val of effects due to the presence of the transducers on the end of the

rod.

TABLE A.1

RESULTS FROM RESONANT BAR EXPERIMENT

Mode(M) FM(kHz.) +3Db. -3Db. QM QCorr.

1 10.438 10.647 10.229 25.0 20.6

2 22.586 23.038 22.135 25.0 20.6

3 35.054 35.754 34.353 25.0 20.6

4 47.560 48.510 46.610 25.0 20.6

5 60.080 61.281 58.880 25.0 20.6

Young's Modulus Velocity= 3.366 km/sec.

Another check of Q is provided by the constant Q model of Kjartans-

son (1978). Kjartansson's work is a theoretical derivation of of a con-

stant defined in earlier experimental studies by Gladwin and Stacy

(1974). If the rise time of an arrival is defined as the ratio of the

maximum amplitude of the arrival to the maximum slope, Gladwin and Stacy

found that t could be expressed by:
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to Q+ C
EQ A.3

Where:

t is the rise time of the source,

T is the total travel time of the arrival,

and, C is the experimentally determined constant.

Kjartansson's theoretically derived values for C agree well with

published experimental measurements. For Q > 20 Kjartanssons gives C=

.485 for displacement records, and .298 for velocity records. Applying

this latter value to wet records in a region .2.54 cm. from the origin

gives Q = 26 ± 2, which is certainly in the same neighborhood as the

measurements from resonant bar method.

COMPRESSIBILITY MEASUREMENT

The final sample (.5 inch by 2.5 inch cylinder) was used to measure

the compressibility of the material. Besides the intrinsic value in

making such a measurement to help complete our description of the model

material, we can use it to determine which of the two possible S-wave

velocities mentioned in Chapter 2 is more nearly correct. Two BLH

SR-4.FAE-50-12-56 strain gauges were glued to the sample which was then

placed in a pressure vessel capable of producing over 2 kBars of hydros-

tatic compression. Plotting the linear strain as a function of applied

pressure results in a very nearly straight line. The beginning of the

curve shows a very slight tendency to taper-off, indicating stiffening,

however, in a very short time, the curve becomes virtually straight.
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The compressibility and bulk modulus calculated from the slope of this

line are:

k = .057 Mbar

p = 17.55 Mbar~ 1

We can express the compressibility in terms of the P-wave velocity

( VP ), the S-wave velocity ( V ), and the density ( C), as;

V P( 4 (

100 3 100 EQ A.4

Using a P-wave velocity of 2.35 km/sec, and S-wave velocity of .97

km/sec, we get k=.055 Mbar. If we use the higher value for the S-

velocity of 1.1 km/sec, we get k=.045 Mbar. So, we can say that the

slower S-wave velocity is consistant with the measured compressibility.

COMPARABLE MATERIALS

For those who might wish to reproduce experiments such as these, a

number of materials are available in the United States with similar pro-

perties. An epoxy with very similar characteristics one might investi-

gate is Hy-Sol Epoxi-Patch. A polyester casting resin which has similar

properites is Crystal Clear Casting Resin, made by the Fibre-Glass Ever-

coat Company, which has the added advantage of being water-clear, allow-

ing easy visual inspection of embedded inhomogeneities. As a guide to

the type of materials which enjoy the advantages of easy bonding at

interfaces we summarise in Table A.2 physical properties of our material

and published properties of Poly-Vinyl Chloride and Lucite.
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TABLE A.2

COMPARISON OF MATERIAL PROPERTIES

QUANTITY

Density(gm/cc)

P-Velocity(km/sec)

S-Velocity(km/sec)

Poisson's Ratio

LUCITE

1.2

2.7

1.2

0.33

PVC(rigid)

0.9

2.3

.975

0.37

EPOXY

1.2

2.3

1.0

0.37


