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Abstract

This thesis consists of three empirical essays on corporate bonds, examining the role of both

credit risk and liquidity. In the first chapter, I test the ability of structural models of default

to price corporate bonds in the cross-section. I find that the Black-Cox model can explain

45% of the cross-sectional variation in yield spreads. The unexplained portion is correlated

with proxies for credit risk and thus, cannot be attributed solely to non-credit components

such as liquidity. I then calibrate a .jump diffusion model and a stochastic volatility model,
finding that the jump diffusion model weakly improves cross-sectional explanatory power

while the stochastic volatility model does not. However, much of the cross-sectional variation

in yield spreads remains unexplained by structural models.

In the second chapter (co-authored with Jun Pan), we examine the connection between

corporate bonds, equities, and Treasury bonds through a Merton model with stochastic

interest rates. We construct empirical measures of bond volatility using bond returns over

daily, weekly, and monthly horizons. The empirical bond volatility is significantly larger

than model-implied volatility, particularly when daily returns are used, suggesting liquidity

as an explanation. Indeed, we find that variables known to be linked to bond liquidity are

related to excess volatility in the cross-section. Finally, controlling for equity and Treasury

exposures, we find a systematic component in bond residuals that gives rise to the excess

volatility.
In the third chapter (co-authored with Jun Pan and Jiang Wang), we examine the liq-

uidity of corporate bonds and its asset-pricing implications. Our measure of illiquidity is

based on the magnitude of transitory price movements. Using transaction-level data, we find

the illiquidity in corporate bonds to be significant, substantially greater than what can be
explained by the bid-ask bounce, and closely related to bond characteristics. We also find
a strong commonality in the time variation of bond illiquidity, which rises sharply during
market crises. Monthly changes in aggregate bond illiquidity are strongly related to changes

in the CBOE VIX index. Finally, we find a relation between our measure of bond illiquidity

and the cross-sectional variation in bond yield spreads.

Thesis Supervisor: Jun Pan
Title: Associate Professor of Finance
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Chapter 1

Structural Models of Default and the
Cross-Section of Corporate Bond
Yield Spreads

1.1 Introduction

The literature on structural models of default, beginning with Merton (1974), has sought to

price corporate debt by modeling firm fundamentals and combining equity and debt infor-

mation to capture the default processes of firms. Since Merton's work, numerous structural

models of default incorporating different assumptions have been developed.' Though struc-

tural models are appealing from an economic perspective, Huang and Huang (2003) argue

that a broad group of structural models underpredict the levels of empirically observed yield

spreads.2 Proposed solutions have included both models that generate larger yield spreads

and also non-credit solutions such as liquidity and the choice of benchmark security. It

remains unclear how important each component is.

Structural models of default provide predictions about the level of yield spreads as well

as the relative yield spreads of different bonds. While there is a large literature on the

level of yield spreads, the implications of structural models in relative pricing have largely

been ignored. This chapter focuses on the cross-section to better understand the disconnect

between observed and model yield spreads. Cross-sectional tests provide an important metric

for evaluating structural models beyond whether they are able to generate larger model yield

spreads than previous models. While some structural models cannot generate large levels

'See for example Black and Cox (1976), Leland (1994), Longstaff and Schwartz (1995), Leland and Toft
(1996), Anderson and Sundaresan (1996), Collin-Dufresne and Goldstein (2001), and Goldstein, Ju., and
Leland (2001).

2See also studies by Eom, Helwege, and Huang (2004), Ericsson, Reneby, and Wang (2005), Crerners,
Driessen, and Maenhout (2006), and Huang and Zhou (2007)



of spreads, it is possible that they contain mechanisms explaining the cross-section of yield

spreads. Furthermore, by examining relations between unexplained yield spreads and credit

risk proxies, cross-sectional tests can determine whether a structural model's unexplained

yield spreads are solely due to non-credit components in bond yields or are due to the model

failing to fully capture credit risk. Correlations between unexplained yield spreads and

credit risk proxies may suggest structural models of default that contain dynamics which

can further explain the cross-section of yield spreads.

My cross-sectional tests begin with the Black and Cox (1976) model as the base case.

The Black-Cox model captures two fundamental determinants of the likelihood of default,
leverage and asset volatility. To calibrate the Black-Cox model, I focus on matching firm-

level parameters such as market leverage, equity volatility, and payout ratio. From this

balance sheet and equity information, I am able to construct a panel of model yield spreads

which can be compared to observed yield spreads. As an initial examination, I consider the

cross-sectional explanatory power of the Black-Cox model spread, finding a within-group R2

of 44.9% when regressing observed yield spreads on Black-Cox yield spreads. Thus, I find

that over half of tile cross-sectional variation in yield spreads remains unexplained by the

Black-Cox model. This could be for two reasons. First, the remaining unexplained yield

spread could be due to elements that structural models are not designed to capture such as

liquidity, transitory price movements, and other non-credit components. Alternatively, the

unexplained portion of yield spreads could reflect the Black-Cox model's inability to fully

capture credit risk in the cross-section.3

To better understand the cross-sectional variation of observed yield spreads, and partic-

ularly, the variation that is not explained by the Black-Cox model, I examine the relation

between unexplained yield spreads and credit risk proxies such as recent equity volatility and

ratings. After controlling for Black-Cox yield spreads, observed yield spreads are related

to these proxies of credit risk. The cross-sectional effects of these credit risk variables are

economically large. For example, a move from the 25th to 75th percentile in recent equity

volatility accounts for a 48 basis point difference in unexplained yield spreads. There is

also evidence that unexplained yield spreads are related to option expensiveness, a proxy

for credit risk premia. These cross-sectional relations suggest different structural models

which may potentially improve our understanding of the cross-section of yield spreads. I

explore this in two directions, through a jump diffusion model and also through a stochastic

volatility model.

First, the relation between unexplained yield spreads and option expensiveness suggests

that there may be a common risk premium priced in the equity option and corporate bond

3 Of course, these two explanations are not mutually exclusive.



markets beyond a standard diffusion risk premium. I calibrate a jump diffusion model to

address this relation. I use individual equity option expensiveness to infer jump risk premia

firm-by-firm and then use this information to construct model yield spreads.4  My results

indicate that there is weak evidence that this model helps to explain the cross-section of yield

spreads above and beyond the Black-Cox model. Constructing a residual from a regression

of jump model spreads on Black-Cox spreads, I find that a one standard deviation change in

this residual corresponds to a 16 basis point difference in observed yield spreads. However,

the improvement in the within-group R 2 when including jump residuals in a regression of

observed yield spreads on Black-Cox yield spreads is only from 43.4% to 45.3%. Despite

this limited improvement in cross-sectional explanatory power, it is still interesting that the

corporate bond and equity option markets seem to price a common risk.

The limited ability of the jump model to explain the cross-section above and beyond a

Black-Cox model presents an important contrast to its ability to explain the level of yield

spreads over the Black-Cox model. In a calibration using ratings-level information, Cremners,

Driessen, and Maenhout (2006) find that a jump model with an equity index option-implied

jump risk premium greatly increases the level of yield spreads relative to a diffusion-only

model. Using individual equity options, I also find that the jump model helps to explain

the level of yield spreads, though the improvement is somewhat smaller in my study.

The relation between unexplained yield spreads and recent equity volatility suggests a

second potential solution to unexplained yield spreads, a stochastic volatility (Heston (1993))

model. Such a model has richer volatility dynamics that incorporate both recent and long-

run volatility. This contrasts with the Black-Cox model which uses only a constant long-run

volatility. In addition, the stochastic volatility model can generate further cross-sectional

variation in yield spreads through across-firm differences in the correlation between asset

return and variance shocks. This correlation is typically thought to be negative, meaning

that asset variance is high exactly when asset returns are low. Thus, larger shocks to asset

value are more likely to occur when asset value is low, increasing the probability of left-tail

events. For firms sufficiently far from default, this will generate a greater yield spread

through a greater probability of default.

I find that the stochastic volatility model cannot solve the puzzle of strong correlation

between yield spreads and recent equity volatility. The mean estimate of the mean-reversion

parameter of asset variance is 11.7, indicating a half-life of 0.71 months. Since bond maturi-

ties are typically multiple years, it will be the long-run asset variance that has a strong effect

on bond pricing rather than short-run variance. In addition, the correlation between asset

4 Cremers, Driessen, Maenhout, and Weinbaurn (2006) document a relation between equity option implied
volatilities and skews and yield spreads.



returns and variance, p, has little explanatory power for the cross-section of observed yield

spreads. Estimates of p are generally negative with a mean of -0.15, a magnitude that is sig-

nificantly smaller in economic terms than for equity indices. s Controlling for Merton model

spreads 6, firms with more negative values of p have bonds with larger stochastic volatility

model spreads, but these bonds do not have higher observed yield spreads. I further explore

time-varying volatility by pricing bonds with a slower variance mean-reversion parameter

and also by calibrating a Black-Cox model using only recent equity volatility. The former

calibration does not help explain the cross-section of observed yield spreads while the latter

does provide some additional explanatory power.

I also consider the cross-sectional pricing of credit default swaps (CDS). CDS have

similar credit risk exposures as corporate bonds, but are thought to have different non-credit

risk exposures. Whereas the primary non-credit component in the corporate bond market

is liquidity, the primary non-(firm)credit component in the CDS market is counterparty

risk. The results for CDS are similar to corporate bonds: unexplained CDS spreads are

related to recent equity volatility, ratings, and option expensiveness. In addition, I find

that unexplained CDS spreads are significantly related to unexplained corporate bond yield

spreads. The within-group R2 of a regression of unexplained CDS spreads on unexplained

corporate bond yield spreads is 49.6%, smaller than the R2 of 70.2% for a regression of CDS

spreads on corporate bond yield spreads, but still quite economically significant. Since

the most important common exposure of credit default swaps and corporate bonds is credit

risk, this commonality provides further evidence that the Black-Cox model does not fully

capture credit risk in the cross-section. Though part of this commonality could be due to

commonality in liquidity, the magnitude of the commonality suggests that it is at least in

part due to common unexplained credit risk.

My focus on the cross-section of yield spreads is related to the reduced-form regressions

framework used by Collin-Dufresne and Goldstein (2001) and Campbell and Taksler (2003).

CDGM find a common component in yield spread changes that they are unable to relate to

standard macroeconomic and financial variables.7  Campbell and Taksler (2003) document

a relation between observed yield spreads and equity volatility and argue that the relation

is too strong to be explained by a structural model such as Merton (1974). A reduced-form

regression framework is parsimonious and allows researchers to determine what yield spreads

5Pan (2002) estimates this correlation to be -0.57 for the S&P 500 and a stochastic volatility model
without a volatility premium.

6For the stochastic volatility model, the Merton model is the correct benchmark as the Heston model
does not capture a first passage time default.

7See Avramov, Jostova, and Philipov (2007) for a follow-up which argues that yield spread changes are
indeed related to changes in firm characteristics.



are related to. However, my focus is on testing whether a theoretically-founded measure of

risk - a structural model of default - can explain the cross-section of empirically observed

yield spreads.8

Another related strand of literature is on the relation between yield spreads and liquidity.

Since structural models of default are not designed to capture liquidity, it is likely that

unexplained yield spreads are related to liquidity proxies. Multiple studies have shown that

corporate bond yield spreads are negatively related to proxies for liquidity.9 In particular,

most studies have focused on age and issued amount as proxies for liquidity. Consistent with

this literature, I find that observed yield spreads are negatively related to liquidity in the

cross-section even after controlling for Black-Cox yield spreads. In particular, moving from

the 25th to the 75th percentile of bond age corresponds to a 10 to 15 basis point difference

in unexplained yield spreads. Recently, Longstaff, Mithal, and Neis (2005) and Nashikkar,

Subralmnanyan, and Mahanti (2007) have studied the relation between yield spreads and

liquidity by first using CDS to control for credit risk and find evidence that the non-default

component of yield spreads is related to liquidity. Their motivation for using CDS to control

for credit risk is based on the fact that CDS are considered to be very liquid and is similar to

my motivation for considering commonality in unexplained CDS and corporate bond spreads

above.

The remainder of the chapter is organized as follows. Section 1.2 describes the data

and provides summary statistics. Section 1.3 details the base case calibration and the rela-

tion between unexplained yield spreads and firm- and bond-level characteristics. Section 1.4

presents calibrations for a jump diffusion model. Section 1.5 presents calibrations for a

stochastic volatility model. Section 1.6 briefly discusses endogenous default models. Sec-

tion 1.7 presents results on credit default swaps and commonality between CDS and corporate

bonds. Section 1.8 concludes.

1.2 Data and Summary Statistics

1.2.1 Data Description

The bond pricing data for this chapter is obtained from FINRA's TRACE (Transaction

Reporting and Compliance Engine). This data set is a result of recent regulatory initiatives to

increase the price transparency in the secondary corporate bond markets. FINRA, formerly

8 Bharath and Shumway (2008) examine the default prediction of Moody's KMV model, a model based
on the Merton model. Though this is a theoretically-founded measure of risk, it only reflects one-year
P-measure default probabilities and is not designed to price corporate bonds.

9See Houweling, Mentink, and Vorst (2005) and references therein.



NASD, 10 is responsible for operating the reporting and dissemination facility for over-the-

counter corporate trades. Trade reports are time-stamped and include information on the

clean price and par value traded, although the par value traded is truncated at $1 million

for speculative grade bonds and at $5 million for investment grade bonds.

On July 1, 2002, the NASD began Phase I of bond transaction reporting, requiring

that transaction information be disseminated for investment grade securities with an initial

issue of $1 billion or greater. At the end of 2002, the NASD was disseminating information

on approximately 520 bonds. Phase II, implemented on April 14, 2003, expanded reporting

requirements, bringing the number of bonds to approximately 4,650. Phase III, implemented

on February 7, 2005, required reporting on approximately 99% of all public transactions.

From TRACE, I am able to construct quarterly observed bond yields for 2003 to 2007.

For my sample, I filter out canceled, corrected, and special trades and also drop cases where

prices are obviously misreported. In addition, I only use pricing data frorn trades that are

at least $100k in face value as both Edwards, Harris, and Piwowar (2007) and Chapter 3 of

this thesis find that smaller trades are subject to larger transitory price movements. From

the Fixed Income Securities Database (FISD), I obtain bond characteristics that include

flags for callability, putability, and convertibility along with various other characteristics

such as issuance, offering date, and coupons. I drop callable, putable, and convertible

bonds and also bonds with variable coupons from my sample. From MarketAxcess, I

obtain the characteristics of benchmark treasuries and from Datastream, the prices of these

treasuries. From the TRACE, FISD, MarketAxcess, and Datastream data, I am able to

compute observed yield spreads. For each issuer, I keep one bond that is close to four years

maturity and one bond that is close to ten years mraturity. This is done so that the results

below are not due to a handful of firms that have an extremely large number of issues.

The remaining data used consists mostly of firm-level characteristics used to construct

model yield spreads and other firm and equity characteristics." These are obtained from

standard sources such as CRSP and Compustat.

1.2.2 Variable Construction: Model Inputs

In calibrating a, structural model, the basic inputs are the same as that of options, v, T,, 6,

and oa,. As will be described below, , the default boundary over the total value of the firm

and r,, the asset volatility, will be calibrated to rmatch market leverage and equity volatility,

1oIn July 2007, the NASD merged with the regulation, enforcement, and arbitration branches of the New
York Stock Exchange to form the Financial Industry Regulatory Authority (FINRA).

"1Following Fama and French (2001), I drop utilities (SIC codes 4900-4949) and financial firms (SIC codes
6000-6999).



respectively. Market leverage is constructed as the market value of debt divided by the sum

of the market value of debt and the market value of equity. The market value of equity is

constructed as the product of share price and shares outstanding from CRSP. It should be

noted from Table 1.1 that my sample contains firms with larger than average equity market

capitalization. The median of $13.27 billion is larger than the 80th percentile cutoff of $9

billion for NYSE firms as of December 2007. Since over 70% of the firms in my sample are

S&P 500 firms, the large mean market capitalization is unsurprising. Market value of debt

is constructed as the sum of long-term debt and debt in current liabilities multiplied by a

firm's average market value of debt to face value of debt ratio calculated from TRACE data.

Equity volatility is constructed using the volatility of daily log equity returns. The maturity

of a firm, T, is constructed as the average duration of a firm's outstanding bond issues where

the appropriate Lehman rating index is used as the interest rate for discounting purposes.

The mean firm maturity in my sample is slightly more than six years. The interest rate, r,

is calculated as the average interest rate over the last ten years. Finally, the firm payout

ratio, 6, is calculated as a firm's annual dividends plus annual coupon payments divided by

total firm value.

1.2.3 Firm and Bond Characteristics

Table 1.1 also contains summary statistics for a number of additional firm and bond charac-

teristics. The average implied volatility of a short-term out-of-the-money (OTM) put option

and a short-term at-the-money (ATM) put option minus recent realized equity volatility, IV

- equity volatility, is meant to capture option expensiveness. The average implied volatil-

ity tends to be greater than recent realized volatility which is unsurprising given results

that options, and in particular, OTM puts tend to be overpriced (relative to realized equity

volatility and Black-Scholes). Firm age is calculated as the number of years since the firm's

BEGDT obtained from CRSP's msfhdr file. Firms in my sample are mostly mature firms

with an average age over 40 years. Return on assets for a quarter are calculated as income

before extraordinary items divided by the mean of quarter-start and quarter-end total assets.

The firms in my sample tend to be profitable with a mean quarterly ROA of 1.35% as com-

pared to an average of -0.9% for the full Compustat universe during the time period I study.

Equity beta is calculated using a standard 60-month rolling window and the estimates for

my sample do not exhibit unusual properties. Asset tangibility is constructed using the

estimates from Berger, Ofek, and Swary (1996) as 0.715 Receivables + 0.547 Inventory +

0.535 Capital + Cash Holdings, scaled by total book assets. Interest coverage is calculated

as earnings before interest and taxes divided by the interest expense. Finally, deviations



from historical leverage are calculated a.s the difference between a firm's mean leverage over

the 10 years prior to my sample minus its current leverage.

Most of the bonds in my sample have an A or Baa rating, with the average rating being

Baal. The average amount outstanding is approximately $300 million in face value, which

is larger than the average bond in FISD which has an average face value of approximately

$170 million. 12 Mean trade sizes are over half a million dollars in face value and trades on

average occur on less than half the days in which the bonds are in the sample.

1.3 Base Case and Cross-Sectional Tests

As a base case, I calibrate a Black-Cox model. This model has the advantage of capturing

both leverage and asset volatility while still having closed-form solutions for derivative prices

and probabilities of default. It also improves on the Merton model in that default occurs

the first time that asset value falls below a boundary rather than only if firm value is below

the face value of debt at maturity. Such a framework is perhaps more intuitive for pricing

coupon bonds as a firm's value can be below K at time t and above K at time s where s >

t in the Merton model. This would allow a firm to be in default at one point in time and

solvent at a future point in time.

1.3.1 Asset Value Process and Claims on Cashflow

The asset value process is a standard Geometric Brownian Motion,

dVt
= (r" + r - 6)dt + adWt ,  (1.1)

where v" is the asset risk premrniurm, r is the risk-free rate, 6 is the payout ratio, and av is

the constant asset volatility. Under the risk-neutral measure, the asset value process is a

Geometric Brownian Motion with r' = 0. If the total firm value falls below K, the face value

of debt, the firm defaults and (1 - Ri,,rm) is lost in bankruptcy. Firm-level recovery is set

at 80% to be consistent with Andrade and Kaplan (1998) finding that the cost of financial

distress is approximately 15 to 20% of firm value. For each firm, the issuance-weighted

average duration of its outstanding debt is taken to be the firm's "maturity", T. If the firm

is solvent at T, debtholders receive K and equityholders receive the remaining firm value.

Given these claims to cashflows, modeling the firm involves pricing three components, (1)
equity, (2) debt, and (3) bankruptcy costs.

12See Chapter 2.



1. Equity

At maturity, equity is the residual claimant if the firm is still solvent. With a first-

passage time model and the face value of debt used as the default boundary, equity is

always in the money if the firm is solvent and is paid VT - K. This piece of equity

is equivalent to a down-and-out call option. Equity is also a claim on dividends that

the firm pays out.

2. Debt

At maturity, debt receives K if the firm is solvent and RfirmK if the firm has defaulted.

Additionally, debt is also a claim on coupon payments.

3. Bankruptcy costs

If the firm defaults, there is a sunk bankruptcy cost of (1 - Rfirm)K.

Equity and debt at maturity and bankruptcy costs have closed form solutions. 13 Divi-

dends and coupons are claims on the remaining asset value. To divide the remaining asset

value between equity and debt, I construct the total payout ratio, 6, and the equity and debt

payout ratios, 6,e and 6b, respectively. 6e is the value of dividends paid divided by firm value

while 6b is equal to coupon payments divided by firm value. L is then the proportion of the

remaining firm value attributed to equity.

1.3.2 Calibration Methodology

For each firm, the values of Co, and (K) , are determined by matching model-implied values

of equity volatility and market leverage to observed values:

2 OlogE 2 2
E = logV

Model Debt(K T
Market Leverage VMarket Levera pical Model Debt(, o, T. r. 6) + Model Equity(, , T, , 6)

In the Black-Cox model, a, is constant while K is time-varying due to its denominator.

This, along with the time-varying nature of log V, leads to two important modeling choices.

First, equity volatility is time-varying in the model even though asset volatility is constant.

Thus, it is necessary to calculate equity volatility using short enough time periods so that

alogE does not change much. Changes in log are largely driven by changes in the firm's
a log V alog

market leverage, which typically does not change much at short horizons. Thus, I calculate

'3See Appendix 1.9.3 and also Bjork (2004)).



equity volatility quarterly using daily data. An alternative strategy would be to estimate

equity volatility at even shorter horizons such as by using minute-by-minute data. However,
as documented in Appendix 1.9.2, even small bid-ask bounces can generate large equity

volatility when such high frequency data is used.

The second important modeling choice I make is to aggregate the volatility equation over

time. In the simplest scheme, the two equations could be simultaneously solved period-

by-period. 14  However, this would give a time-varying asset volatility, which would be an

inconsistent application of the Black-Cox model. In addition, period-by-period estimates

mray be imprecise due to noisy estimates of equity volatility. Thus, I also extend the volatility

data back to 1993 for 15 years of total data, so that estimates of oa, will be more precise. I

solve for asset volatility so that the volatility equation holds on average:

S2 t E,t2 t
t- 8 logV)]

Since K is time-varying in the model, I allow for one market leverage equation per

quarter. I then simultaneously solve for r,; and a timre-series of ( ), through a single

volatility equation and a market leverage equation for each quarter.

Important distinctions between my calibration methodology anid that of Huang and

Huang (2003) are that I calibrate firm-by-firm and that I calibrate to match equity volatilities

rather than historical probabilities of default." Because they are concerned with the level

of the yield spread for typical firms, Huang and Huang calibrate by rating to the average

firm balance sheet information within a rating and the historical probability of default for

the rating. I substitute firm-level balance sheet information and equity volatility. Huang

and Huang's choice to match historical default probabilities is based on generating model-

implied credit spreads with empirically reasonable parameters. Matching equity volatilities

is consistent with the spirit of this goal. In addition, there are two important reasons to

match equity volatility rather than the historical probability of default. First, it is not nec-

essarily true that historical default probabilities reflect forward-looking default probabilities.

In fact, Huang and Huang indicate that they would ideally calibrate their models at each

time period separately to reflect each period's default probability, but are constrained by

the limited data on defaults. Second, from a practical perspective, default probabilities,

by definition, are not available on a firm-by-firm basis. Since Huang and Huang calibrate

by rating, they are able to match the historical default probability for each rating. By

matching each individual firm's default probability to the historical probability of default

14In Section 1.5.3, I explore such an estimation strategy.
15In Appendix 1.9.4, I consider the default probabilities implied by the model in my calibrations.



for its rating, I would prevent structural models from explaining cross-sectional variation in

yield spreads within a rating. Matching historical default probabilities would also hard-

code model yield spreads to be sorted cross-sectionally by rating. One possible method to

estimate firm-by-firm default probabilities would be to use the logit method in Campbell,

Hilscher, and Szilagyi (2007). However, they already use equity volatility and leverage as

inputs and thus, do not provide a theoretical improvement over simply using a structural

model's predicted defaults.

After firm-level parameters are calculated, pricing a coupon bond is an application of

risk-neutral pricing. Specifically, a T-year bond with semi-annual coupons c and face value

of $1 has a model price of:

2T 2T

t >1 - ri/2 pi/2 -+ rT + -bde -ri/ 2 (p(i2 _ pi/ 2 ) (1.3)
i=2 i=1

where Pt is the risk-neutral probability that a firm is still solvent at t and Rbond is the

recovery rate of the bond.16  The first term in the bond pricing equation is the value of

coupon payments and the second term is the value of the face value. The third term is the

value of the recovery given default. p(i-1)/2 _ pi/2 represents the risk-neutral probability of

default between times 1 and '. The cumulative risk-neutral probability of default is:

1 - Pt= N log - (1.4)

2 2

+exp -2log( ) 6N -log( )+ r-

1.3.3 Calibration Results and Cross-Sectional Tests

I assess the performance of the Black-Cox model by first testing whether the credit spread

puzzle on levels established by Huang and Huang (2003) holds in my sample of bonds.

Because I construct a panel of model-implied yield spreads, my exercise is an empirical

exercise in which I am able to provide t-stats. 17 In Table 1.9.1, I confirm that observed yield

l6 Note tha.t the bond recovery ra.te and the firm recovery rate do not have to be the same. In fact,
Andrade and Kaplan (1998) find that the cost of financial distress is approximately 15-20% of firm value at
bankruptcy. Carey and Gordy (2007) find that recovery for senior unsecured debt is slightly above 50%.
The disparity between overall firm recovery and senior debt recovery is largely due to bank debt having
priority over public debt. Here, I set the bond-level recovery equal to 50%, but consider setting recovery
rates by industry in Section 1.3.6.

17Huang and Huang (2003) calibrate by ratings using the mean firm fundamentals for a rating. Thus, their
conclusion is about the economic significance of the difference between model and observed yield spreads.



spreads are too low to be explained solely by the Black-Cox model. The mean difference

between observed and model spreads is 90 basis points for four-year bonds and 88 basis

points for ten-year bonds. Compared to mean observed yield spreads of 160 basis points

and 176 basis points, respectively, the results are very economically significant. In addition,
both differences have t-statistics that are significant at the 1% level when standard errors

are clustered by firm and time. Differences are also significant for each rating with the

exception of four-year poorer-rated bonds for which the sample size is small.

The results in Table 1.9.1 suggest that either (1) the model does not properly account

for the credit risk inherent in corporate bonds or (2) part of the level of yield spreads is due

to liquidity or some other non-credit risk factor. Simply comparing the levels of observed

and model yield spreads does not allow one to distinguish between these two competing, but

not mutually exclusive hypotheses. However, focusing on the cross-section, I can assess the

ability of the Black-Cox model to capture credit risk in the cross-section through a regression

framework. To test the model in the cross-section, I use the framework:

observed yield spreadit = at + almodel yield spreadit + Eit (1.5)

From this regression, I examine how much of the cross-section of observed yield spreads

is explained by the model yield spread and also construct the unexplained yield spread, ,.

This residual is orthogonal to the model yield spread by construction and can be thought of

as the portion of the observed yield spread unexplained by the model. I examine the relation

between the unexplained yield spread and various credit risk proxies, liquidity proxies, and

firm-level characteristics in this and the following sections. This methodology is similar in

spirit to the cross-sectional anomalies literature for equity returns. 8  In the literature on

equity returns, stocks are typically sorted on a characteristic into portfolios. If there is a

spread in the return based on the characteristic and the portfolios have similar risk (typically

measured by ,3), an anomaly has been discovered (and is potentially an indication that the

underlying risk model does not fully capture risk in the cross-section). Here, I explicitly

control for credit risk by first partialing it out before considering relations with firm-level and

bond-level characteristics. An alternative methodology would be to include characteristics

in the left-hand side of equation (1.5). However, given the large correlations of the model

yield spread with credit risk proxies, I instead first partial out the model yield spread to

allow it the best chance to succeed.

Running the regression from equation (1.5), I find that the coefficient of the model yield

spread is 0.58 with a robust t-stat of 8.00. It is statistically different from both 0 (the case

"sSee Lakonishok, Shleifer, and Vishny (1994) for a typical example.



where the model contains no information) and 1 (the case in which the model yield spread and

observed yield spread move one-for-one). I find a within-group R2 of 44.9%, indicating that

the model yield spread explains almost half of the cross-sectional variation in the observed

yield spread. Though this R2 does provide a sense of the ability of the model to explain

the observed yield spread in the cross-section, it does not on its own allow a determination

of whether the model successfully explains the cross-section. The remaining unexplained

observed yield spread could potentially be due to liquidity, transitory price movements, and

other non-credit components that structural models are not designed to capture.

To examine whether the model can fully capture credit risk in the cross-section, I regress

the unexplained yield spread on proxies for credit risk and credit risk premia in the final four

columns of Table 1.3, Panel A. The residuals from a regression of the observed yield spread

on the model yield spread are, by construction, orthogonal to the model yield spread. These

unexplained yield spreads should be unrelated to risk proxies if the model has sufficiently

controlled for credit risk in the cross-section. The unexplained spreads are significantly

related to leverage, recent equity volatility, and ratings, though the relation to leverage

is statistically insignificant once recent equity volatility is included. Using the first partial

derivative of the Merton model with respect to equity volatility and average firm parameters,

Campbell and Taksler (2003) find that the theoretical sensitivity of yield spreads to equity

volatility is smaller than suggested by their regression framework. The results in Table 1.3

formalize this finding for firm-by-firm model-implied yield spreads. It is important to note

that this relation holds even after controlling for market leverage and the model estimate of

asset volatility, the two major theoretical determinants of credit risk in the Black-Cox model.

In unreported results, I also find that unexplained spreads are related to the difference

between recent equity volatility and the mean of historical equity volatility. A move from

the 25th to 75th percentile in recent equity volatility in the sample corresponds to a 48

basis point difference in the unexplained yield spread. A move of three points in rating

(which would be equivalent to moving from Al to Baal) corresponds to a 50 basis point

difference in the unexplained yield spread. Both of these quantities are very significant

economically compared to the average observed yield spread of approximately 165 basis

points. Finally, once recent equity volatility is controlled for, the unexplained yield spread

is significantly related to option expensiveness as proxied for by option-implied volatility

minus equity volatility.

Table 1.4 contains a further examination of the relation between observed yield spreads

and recent equity volatility. Bonds are first sorted by their Black-Cox yield spread into

quintiles and quintiles 1 and 2 are combined as both groups have small model yield spreads.

Within each group, bonds are then sorted by past three months' equity volatility. Thus,



within each model yield group, I can examine the difference in observed yield spread with
the model yield spread reasonably well controlled for. For model yield spread quintiles 1 &
2, 3, and 4, there is a monotonic trend of increasing observed yield spread with increasing

recent equity volatility while the model yield spread remains relatively flat. The miagnitudcs

of the differences between quintile 5 and 1 of equity volatility are economically large as the

observed yield spread for quintile 5 is close to twice as large as the observed spread for
quintile 1.

The overall conclusion from tests of the Black-Cox model is that while the model does

capture a significant amount of cross-sectional variation in yield spreads, it does not fully

capture cross-sectional differences in credit risk. Even after controlling for the model,
observed yield spreads are related to recent equity volatility, equity option expensiveness,
and ratings. The relation to recent equity volatility suggests that the use of a stochastic

volatility model might be useful while the relation to option expensiveness suggests the use

of a model with an additional, non-diffusion, risk premium.

1.3.4 Additional Firm Characteristics

I examine the relation between the unexplained yield spread and additional firm character-

istics in Panel B of Table 1.3. My focus is on seven firm characteristics in addition to the

credit risk proxies considered previously: firm size (measured by equity market capitaliza-

tion or total firm value), firm age, return on assets, equity beta, asset tangibility, interest

coverage, and deviations fromn historical leverage. The relations between these variables and

unexplained yield spreads may suggest further modeling assumptions needed in a structural

model to explain the cross-section of yield spreads. In addition, the relations between these

variables and ratings may also shed light on the relation between unexplained yield spreads

and ratings.

Firm size potentially affects yield spreads through multiple channels. First, there may be

less asymmetric information about accounting information for large firms, leading to lower

yield spreads. This would be consistent with the incomplete accounting information model

of Duffic and Lando (2001). Second, larger firms may have better reputations in the debt

rriarket, decreasing their cost of borrowing. Diamond (1989) formalizes the relation between

reputation and borrowing costs in a model of project selection. Finally it is possible that

the debt market simply exhibits a size effect similar to the equity market.

Firm age is also a potential proxy for reputation as older firms that continue to borrow

have presumably established a positive reputation. Profitability, as measured by ROA,



is included as Moody's explicitly acknowledges 19 using profitability in assigning ratings.

Equity beta is included as a proxy for how much the firm moves with the market and would

be expected to be positively related to yield spreads. Chen (2008) constructs a model in

which the (endogenous) default boundary is higher in bad times. This is driven by higher

risk premia and lower expected growth rates in bad times. Equity beta is used to capture

the former effect as firms which move more closely with the market have higher risk premia

exactly when the aggregate risk premium is higher. In addition, I also construct a downside

beta, 11-, as in Ang, Chen, and Xing (2006). Downside beta reflects the co-movement

of a firm's equity with the market, conditional on a below average market return. Asset

tangibility is included as an explanatory variable as I assume 50% recovery in my calibrations

as a simplification. If there is in fact cross-sectional variation in expected recovery rates,

yield spreads should be negatively related to tangibility. Interest coverage is included as

a proxy for corporate liquidity. While firms can theoretically pay interest expenses by

liquidating assets, frictions make the ability for firms to pay interest expenses from earnings

important. Kimr, Ramaswamy, and Sundaresan (1993) present a model in which bankruptcy

occurs when a firm's net cashflow cannot cover interest expenses. Finally, the deviation

from historical leverage is included as firms may have mean-reverting leverage. A firm with

leverage lower than its historical average might be expected to increase its leverage. Thus,

just using its current leverage in pricing would generate a model yield spread that is too low.

Collin-Dufresne and Goldstein (2001) present a model with a mean-reverting leverage ratio.

When ratings are not controlled for (columns 1 to 4 of Table 1.3, Panel B), unexplained

yield spreads are negatively related to firm size and asset tangibility. Both relations are

economically significant as moving from the 25th percentile in equity market capitalization

to the 75th percentile results in a 32 basis point decrease in unexplained yield spreads and

a similar move for asset tangibility corresponds to an 11 basis point decrease in unexplained

yield spreads. The result for asset tangibility indicates that there is some cross-sectional

variation in recovery rates that my analysis does not capture Firm age, return on assets,

equity beta, interest coverage, and deviations from historical leverage are statistically in-

significant. In unreported results, I also find that substituting downside beta for beta does

not change these findings.

In columns 5 and 6 of Panel B, I include ratings as a control and find that unexplained

yield spreads are no longer related to firm size and asset tangibility. As shown in the final

two columns of Panel B, ratings are related to both firm size and asset tangibility. This

relation is particularly strong for firm size as a move from the 25th to 75th percentile in

equity market capitalization corresponds to a two point improvement in rating (i.e. A3 to

19See Fons, Cantor, and Mahoney (2002).



Al). These results suggest that at least in part, the relation between unexplained yield
spreads and ratings can be explained by firm size and the ability of ratings to capture
expected recoveries in the case of default. Interestingly, when I regress unexplained yield
spreads on the firm characteristics considered in this section and the credit risk proxies
considered previously, the only statistically significant variables are return on assets (at the

10% level with the wrong sign), ratings, recent equity volatility, arid option expensiveness.

This further affirms the results in Section 1.3.3 that the credit risk proxies considered are
important in understanding unexplained yield spreads.

1.3.5 Liquidity

In Panel C of Table 1.3, I consider the cross-sectional variation in the unexplained yield

spread due to liquidity variables.20 As structural models of default are designed to capture
credit risk and not liquidity, unexplained yield spreads should be positively related to illiq-
uidity. Older bonds are thought to be less liquid because a larger fraction of their issuance is
likely to have been acquired by buy-and-hold investors. The results indicate that older bonds

indeed have larger yield spreads. A rmove from the 25th percentile to the 75th percentile of

age corresponds to approximately a 10 to 15 basis point difference in the unexplained yield

spread. Larger issues are thought to be more liquid and this is consistent with the finding

that larger issues have lower yield spreads. The difference in spreads between a bond at the
25th percentile and a bond at the 75th percentile of amount outstanding is approximately

10 basis points.

In addition to characteristic-based liquidity variables, I also consider trading-based vari-
ables. Total volume traded is positively related to yield spreads, but is insignificant. The

number of trades is positively related to yield spreads, a surprising result if one believes that
more liquid bonds trade less often. A move from the 25th percentile to 75th percentile
in number of trades is associated with an unexplained yield spread that is 12 basis points
higher. However, traders are more likely to break-up trades for less liquid issues, resulting

in smaller trading sizes and a larger number of trades. This is consistent with the negative

(albeit insignificant) sign on the average trade size. Finally, turnover and percent of days

traded are positively related to yield spreads. Overall, it seems that part of the unexplained

cross-sectional variation in observed yield spreads is due to liquidity effects, particularly
those effects measured by bond age and amount outstanding.

2 0 See Houweling, Mentink, and Vorst (2005) for an examination of different liquidity proxies. Issued
amount and age are the most popular liquidity proxies in the literature that the authors survey and also the
most applicable here.



1.3.6 Recovery Rates

My calibration of the Black-Cox model is able to capture cross-sectional variation in leverage

and asset volatility, but does not capture cross-sectional variation in recovery rates. I

have set firm-level recovery rates to 80% to be consistent with Andrade and Kaplan (1998)

estimate of the cost of financial distress being between 15 and 20% and bond-level recovery

at 50% to be roughly consistent with Carey and Gordy (2007). The assumption about

firm-level recovery has little effect in the calibration as it enters only in the first stage when

firm-level parameters are inferred from equity and balance sheet information. Since this

part of the calibration hinges largely on equity information and equity theoretically has

no recovery in default, the impact of firm-level recovery is minimal. However, the latter

assumption may potentially be important in bond pricing if there is significant cross-sectional

variation in expected recovery rates.

Schuermann (2004) provides a survey of the literature on loss given default (= 1 - recovery

rate). He finds three main factors that drive differences in loss given default: (1) seniority

and collateral, (2) the business cycle, and (3) the industry of the firm. Priority is important

as bank loans have higher recovery rates than corporate bonds and senior bonds have higher

recovery rates than subordinated and junior bonds. In addition, senior secured bonds have

higher recovery rates than senior unsecured bonds. The vast majority of my sample (- 97%)

is classified as senior and unsecured by FISD, indicating that it is unlikely that the cross-

sectional results presented above are driven solely by differences in seniority or collateral. A

caveat is that without full information about the debt structure of companies in my sample,

I cannot distinguish between companies with high or low levels of bank loans. Companies

with high levels of bank loans would potentially have lower recovery rates on corporate bonds

as their corporate bonds are junior to a larger fraction of the firm's debt.

The second determinant of recovery rates, the business cycle, is a variable that predicts

time-variation in recovery rates. Altman, Resti, and Sirnoi (2004) find that recovery rates

are lower in bad times. Acharya, Bharath, and Srinivasan (2007) find a fire-sales effect.

Specifically, the recovery rate for a firm is lower if its industry is in distress. These effects

suggest that in bond pricing equation (1.3), the risk-neutral recovery rate should in fact be

lower than the P-measure recovery rate, further complicating the treatment of the recovery

rate. Calculating a risk-neutral expected recovery rate requires the assumption of a model

and also the use of a credit-sensitive security for calibration purposes. This implicitly

chooses a risk-neutral expected recovery rate for which the model's pricing is exactly correct,

effectively imposing that all remaining variation in yield spreads is due to differences in

recovery rates. Since I am examining the ability of these models to price corporate bonds

in the cross-section, I do not adopt this methodology.



Altman and Kishore (1996) find that the recovery rate of corporate bonds is related to

the industry of the underlying firm. Using the mean industry-level recovery rates from

Altman and Kishore's paper, I re-calculate model yield spreads for the Black-Cox model.

As shown in Panel A of Table 1.5, the cross-sectional results for risk and risk premia proxies

are largely unchanged. In unreported results, I find that the results for liquidity proxies

and firm characteristics are also similar.

As described above, an ideal calibration of a structural model would involve bond-by-

bond, risk-neutral expected recovery rates. However, without more detailed information

about firm-level debt structure and the assumption of an underlying model to infer risk-

neutral recovery rates, this cannot be done. Thus, I instead consider the possible effect

of the recovery rate by varying recovery rates based on observed yield spreads. The main

concern when using the same recovery rate for all bonds is that for two bonds with similar

rnodel-irnplied yield spreads, the bond with the higher observed yield spread is exactly the

bond with a lower recovery rate and that this explains exactly what the model is missing in

the cross-section. To explore this possibility, I first sort issuers into deciles by the average

model yield spread of their bonds. Within each decile, I then sort into terciles by the average

observed yield spread of each issuer. I assign a 15.44% recovery to the high observed yield

spread tercile, 41% to the middle tercile, and 66.56% to the low tercile21 and then re-

estimate Black-Cox yield spreads. This effectively assumes that bonds with high observed

yield spreads compared to the population of bonds with similar model yield spreads have

higher yield spreads at least in part because they have lower recovery rates. Mechanically,

this improves the cross-sectional explanatory power of the model. However, as shown in

Panel B of Table 1.5, this improvement is limited as the within-group R 2 only improves to

50.49%. More importantly, the unexplained yield spread remains related to recent equity

volatility, ratings, and option expensiveness. Therefore, it is unlikely that cross-sectional

variation in recovery rates can explain the cross-sectional variation in observed yield spreads

that the Black-Cox model does not capture.

1.4 Jump Diffusion Model

Making use of the results in Kou and Wang (2003) and the calibration in Huang and Huang

(2003), I now calibrate a double-exponential jump diffusion model (henceforth referred to as

the jump model). Such a model has the potential to explain the levels of yield spreads as

well as the cross-section through changes in the distribution of firm value and an additional

21These recovery rates are chose to match the mean recovery rate reported by Altman and Kishore ± one
standard deviation.



source of risk premia, the jump risk premia. Cremers, Driessen, and Maenhout (2006)

calibrate a similar model in the aggregate by matching equity index options and find that

the incorporation of a jump risk premia greatly reduces the levels puzzle. Here, I calibrate

firmn-by-firm to individual equity options to examine if a jump model can help to explain the

cross-section of yield spreads above and beyond the Black-Cox model. Under the P-measure,

asset value is assumed to follow the process:

V = (rV + r - 6)dt + odWt' + d (ZL 1) - AXdt (1.6)

where Y - log(Z) and fy(y) = pue-"'7-Y1y>o} + pdde?- lY{< 0

The mean percentage jump size is:

S= E(e Y - 1) = P,7, + 7d - 1

The probability of up and down jumps are p, and Pd, respectively and and are the

mean up and down jump sizes, respectively.

I follow Kou (2002) and Huang and Huang (2003) in defining the transformation from P

to Q, the risk-neutral measure, via a single parameter, 7. Under Q, the asset value process

is:

dV = (r - 6)dt + o,dWt + d (ZQ -1)]A d (1.7)

where YQ = log(ZQ) and fyo(y) = pr1e- 71{2O0) + p e d <,

Q = E(e Q
- 

1) Q Q 
Q

r/7 
1 

-~+1d ,

The jump risk premium is A - AQ Q .

1.4.1 Calibration Methodology

In calibrating the model, I make a, number of simplifications for tractability. First, I start

with the asset volatility calculated for the Black-Cox model. This assumption is equivalent

to accepting that the mapping from equity variance to asset variance given by the Black-

Cox model is reasonable.22 When incorporating jumps, the total asset variance is no longer
22Previous papers have considered different methods of mapping equity variance to asset variance. Eom,

Helwege, and Huang (2004) use the delta of a call option from the Merton model. In Chapter 2, I follow
a similar procedure, but allow for stochastic interest rates. Schaefer and Strebulaev (2008) use a leverage-
weighted average of equity and debt return variance.



just variance due to the diffusion component in the asset value process as the jumps also

contribute to the total asset variance. The total asset variance is:

2 2 + A2P2u 2Pd(

The second assumption that I make is regarding the choice of jump parameters. Huang

and Huang (2003) choose A, the jump frequency, to equal 3, and r, and rid, the inverse of the

mean up and down-jump sizes, respectively, to equal 30. They argue that these parameter

values are roughly consistent with the results from Anderson, Benzoni, and Lund (2002).

Cremers, Driessen, and Maenhout (2006) find A to be much smaller and jump sizes to be

much larger, though their jump sizes seem much larger than what is empirically observed.

I choose A = 1, an average of one jump per year, and q, = rid - n. The mean absolute

jump size, -, is then calibrated by matching the fourth moment of equity returns in a similar

manner to how asset volatility is calculated for the base case. As a simplification, I use

partial derivatives from the Black-Cox model and the equation,2 3

fourth momentt = E[( lo, Z + d )4] (19)n n dlogV)

To be precise, the transformation from a function of asset value to a function of equity

value requires an application of Ito's Lemma with jumps and not a simple application of

first partials. The disparity when using the above simplification is particularly severe if

jump sizes are large. For my sample, estimated jump sizes turn out to be relatively small

(with an average r around 25). In addition, sensitivity analysis shows that yield spreads

are not very sensitive to the size of the jump 24 and are instead much more sensitive to the

transformation front P to Q-dynamics.

Finally, I estimate y, the parameter to transform the P-measure jump parameters to

Q-measure jump parameters. To estimate y, I use equity option prices with the intuition

that if there is indeed a jump risk premium (or any other non-diffusion risk premium), it

should be reflected in the prices of both corporate bonds and equity options. Since equity

options are now compound options on asset value with an underlying process that is a

double-exponential jump diffusion., I calculate approximate option prices by calculating the

risk-neutral probability of asset value falling between discreet levels at option maturity, given

y. Equity options are then priced by inferring the value of equity from assets, calculating
23In some cases, fourth moments are too small to back out any jump size. In these cases, r1 is set equal

to 100, a small jump size that has a, trivial effect on default probabilities.
24Note that the estimate of jump size alone has little effect on yield spreads because large jump sizes will

cause a large downward adjustment in a, while small jump sizes will cause a small downward adjustment in
07V.



option payoffs, and using payoffs along with risk-neutral probabilities. The parameter - is

estimated by minimizing the sum of percentage squared pricing errors of a group of options:

SSPE = min (actual price - model price)2 (.10)
^ actual price

I use four options in calculating y: (1) a short-horizon (< 3 month) OTM put, (2) a short-

horizon ATM put, (3) a short-horizon OTM call, and (4) a longer-horizon (> 6 month) OTM

put. Because individual equity options are American while pricing is European, I choose

options for which the pricing difference between American and European options is likely to

be small. The longer-horizon OTM put is included due to possible differences in the volatility

surface across maturities. Among each subgroup of options, I choose the option with the

greatest trading volume during the most recent month. Bakshi, Cao, and Chen (1997)

minimize the sum of squared dollar pricing errors rather than percentage pricing errors.

However, this underweights OTM options which should provide important information about

jump risk premia.

One important consideration in calculating the distribution of asset value is the choice

of asset volatility. Under jump model dynamics, asset volatility is constant. This is, of

course, a simplification of reality. Using the above procedure with a constant asset volatility

may generate positive results that are due to the strong relation between yield spreads and

recent realized equity volatility rather than a risk premium. Suppose that implied volatility

exactly equals recent equity volatility. Some firms have a higher recent equity volatility than

their asset volatility (calculated for the full time period) and current leverage can explain.

If the full sample asset volatility is used to calculate the distribution of asset value in the

next couple of months, it will be exactly these high recent equity volatility firms that will

be deemed to have expensive equity options and large jump risk premia. Thus, these firms

will have a larger model yield spread. Since high recent equity volatility firms have higher

observed yield spreads, the model would be deemed an improvement despite the fact that all

equity options are actually of equal expensiveness. To prevent my results from being driven

solely by the recent equity volatility effect, I use recent equity volatility to calibrate a short-

term asset volatility and use this asset volatility to determine the distribution of asset value

at option maturity. Using the full sample asset volatility generates results that suggest that

observed yield spreads are strongly related to jump spreads even when Black-Cox spreads

are controlled for.

For the firm-level calibration above to be entirely precise would require joint estimation

of cr,, T, and y as the calibration of a, and rj requires functions of equity value. Equity value

contains a call option on firm value and is, thus, dependent on the risk-neutral distribution



of asset value. The risk-neutral distribution of asset value depends on - which cannot be

calculated without cr, and r. An alternative to simultaneously solving variance, fourth

moment, arid option valuation equations would be to follow a procedure like Huang and

Zhou (2007). They use the difference between empirical and model CDS prices as moment

restrictions in a GMM framework to back-out parameters.

In my calibration exercise, I avoid using a series of defaultable securities to estimate

pararrieters or using a simultaneous calibration and instead try to calibrate to equity and

equity options data through the sequential process described above. My calibration does

capture two essential elements: (1) Asset variance should be related to leverage and the

equity variance and (2) jump model spreads should be larger for firms with expensive equity

options, holding asset volatility and leverage constant. A sanity check for whether my

calibration methodology has reasonably captured that firms with expensive equity options

should have higher jump risk premia and thus higher yield spreads is a regression of the jump

model spread on the Black-Cox model spread and option expensiveness as measured by the

difference between implied and recent equity volatility. I find that the jump model spread

is indeed strongly positively related to both the Black-Cox spread and option expensiveness.

Probabilities of default are calculated using the results in Kou and Wang (2003) and

previously applied by Huang and Huang (2003). Kou and Wang (2003) find an analytical

solution for the Laplace transform of survival probabilities in the jump diffusion model.

This transform can be inverted using the Gaver-Stehfest algorithm. Interested readers are

referred to Kou and Wang's original work for details. With risk-neutral default probabilities,
bonds can be priced using equation (1.3).

1.4.2 Calibration Results

As expected, incorporating jump risk premia decreases the difference between observed and

model yield spreads as compared to the Black-Cox model. As shown in Table 1.9.1, the

difference between observed and model yield spreads decreases for all ratings and for both the

four-year and ten-year bonds. The mean difference drops from 54 to 32 basis points for four-

year bonds and from 79 to 57 basis points for ten-year bonds." These drops are unsurprising

given that the jump diffusion model incorporates an additional risk premium which increases

Q-measure default probabilities. These results using individual equity option-implied jump

risk premia are consistent with the finding in Cremers, Driessen, and Maenhout (2006)

that index equity option-implied jump risk premia can generate higher model-implied yield

25The reader may notice that the reported difference for the Black-Cox model here does not correspond
to the numbers reported in Table 1.9.1. This is due to the fact that the sample for the jump model is a
subset of the sample for the Black-Cox model.



spreads in ratings-level calibrations than for diffusion-only models. 26

Since I calibrate at a firm-by-firm level rather than at the ratings level, I can further test

whether the jump model can help to explain the cross-section of yield spreads in addition

to the level of yield spreads. In Table 1.7, I examine whether the same firms that have high

jump risk premia (as inferred from equity options) also have higher observed spreads, with

Black-Cox spreads held constant. I find weak evidence that this is indeed the case. In Panel

A, I first sort on Black-Cox yield spreads and then jump risk premia within each Black-Cox

group. It appears that observed spreads do increase with jump risk prernia for jump risk

premia quintiles 2 to 5. However, differences between quintile 5 and quintile 1 observed

spreads tend to be statistically insignificant, largely due to the high observed spreads of the

low jump risk premia quintile. Many of the firms in this quintile are in fact high recent

equity volatility firms. As shown in Section 1.3, such firms tend to have high unexplained

yield spreads. Thus, the recent equity volatility effect tends to blunt the results for the jump

model.

In Panel B, I use a regression framework to study the ability of the jump model to

explain the cross-section of yield spreads above and beyond a Black-Cox model. For the

full sample and for four-year, ten-year, and investment grade subsamples, the portion of the

jump yield spread orthogonal to the Black-Cox yield spread (labeled the jump residual) is

positively related to observed yield spreads. The economic significance of the jump residual,

however, is relatively small. Moving from the 25th to 75th percentile of the jump residual is

approximately a 15 basis point move which then translates to a less than 4 basis point move in

observed yield spreads. A move from the 10th to 90th percentile equates to approximnately

a 12 basis point move in observed yield spreads. A two standard deviation move in the

jump residual is much larger at 140 basis points and corresponds to a 33 basis point move in

observed yield spreads. Economically, this is still a much smaller move than the 255 basis

point difference in observed yield spreads for a two standard deviation difference. Thus, it

appears that incorporating a jump risk premium calibrated from equity options does improve

the cross-sectional explanatory power over a Black-Cox model, but the economic significance

of this improvement is limited. In particular, the jump model is a much greater success in

explaining the level of yield spreads than the cross-section.

26They argue that once jumps are incorporated and yield spreads are tax-adjusted to reflect the fact that
treasuries are exempt from state taxes, the level credit spread puzzle disappears.



1.5 Stochastic Volatility

As a potential solution to the fact that observed yield spreads are strongly related to recent

equity volatility, I calibrate a Heston (1993) model27 where the underlying firm value process

has mean-reverting variance. The modeling of claims on firm cashflow is similar to the base

case with one important difference. Equity at maturity is a Heston call option rather than

a down-and-out call option. The major distinction between the two options besides the way

volatility is modeled, is that the Heston option does not capture a first-passage time default.

Thus, the proper baseline model to compare the Heston model to is the Merton model and

not the Black-Cox model. Numerically, the major difference is that the A of the barrier

option is much higher when K, the face value of debt, is near V, the total value of the firm.

As in the Heston (1993) stochastic volatility model, the processes of the underlying and

of the variance are:

dVt
(7i +- +r. - )d + (pd + 1- 2 i 2) (1.11)

Vt

dHt = H(O- H- ) + ¢H HdW'

where Vt is asset value and Ht is asset variance. KH is the mean-reversion parameter for asset

variance, OH is the long-run average asset variance, and cH is the volatility of variance term.

Besides incorporating mean-reverting dynamics for asset variance, the above specification

also allows for correlation between firm value and variance shocks, p. 28

Allowing for stochastic variance, the relevant asset variance for pricing bonds is some

weighting of the current asset variance and the long-run average asset variance, OH. If

'H, which measures the speed of the rnmean-reversion in asset variance, is sufficiently small,
current asset variance is important in pricing corporate bonds and this could explain the

relation between unexplained yield spreads and recent equity volatility. In addition, the

correlation parameter, p, could potentially further explain the cross-sectional dispersion of

yield spreads. If firm value shocks are negatively correlated to asset variance shocks, asset

variance tends to be high exactly when firm value is low. For most firms, this increases

the probability of default and drives up yield spreads. Thus, cross-sectional variation in p

would lead to cross-sectional variation in model yield spreads.

271n estimating call option prices for the Heston (1993) model, I follow the Duffie, Pan, and Singleton
(2000) formulation. Lord and Kahl (2008) find that the formulation in Heston (1993) is sometimes inaccurate
because of a discontinuous characteristic function when only the principal branch of logarithms are used.
See Appendix 1.9.5 for the option pricing formula used.

25The model calibrated in this section does not have a volatility risk premium.



1.5.1 Calibration Methodology

Given the above processes for asset value and variance, I can calculate model-implied re-

lations between equity variance and asset variance and also the model-implied correlation

between asset return shocks and variance shocks. First, denote Et = f(t, Vt, Hlit), where Et

is the value of equity. Then, the aforementioned relations are:

( 2 Ht + j 'Ht + 2 V HHtp (1.12)

1
Et[(d log Vt - (i" + r - 6 -Ht)dt)(dHt - 1H(OH - Ht)dt)] = UHHtpdt (1.13)

2

Since asset value is not observed, this requires backing out asset returns from equity

returns. I estimate d log Vt from d log Et (log equity returns without dividends). The model

provides the estimate, d log Vt dlogEt E, where d log Et is estimated as log equity returns

iminus 6e V, dt and the other terms are estimated through the model.

To estimate ['H, OH, H, p], I adopt the following iterative procedure:

1. Start with observed equity volatility and an initial guess of [nH, OH, H, p] and use

equation (1.12) to estimate a time-series of Ht.

2. Using the Ht estimated in step 1, estimate ["H, OH, CrH] using maximum likelihood.

3. Using the Ht and [1H, OH, CH] calculated in the previous two steps along with equation

(1.13), estimate p.

4. Return to step 1 using the [{H, OH, OH H, p] estimated from the previous two steps as the

initial guess. Repeat until convergence.

In the Merton model, the risk-neutral probability that asset value is above the face value
2

of debt at time t is N(d2), where d2 For a Heston model, it is similarly,

G-= (0 Ho t) 1 " Im M1 -iHo, t) eiu(log k)
2 T-o U

where tj is defined as in Duffie. Pan. and Singleton (2000), but is scaled by e-c " in my appli-

cation. 29 With the risk-neutral probability of survival, bonds can be priced using equation

(1.3).
29A stochastic volatility model is a special case of the example in Section 4 of Duffie, Pan, and Singleton

(2000). See also Appendix B in Pan (2002) and Section 8F of Duffie (2001) for details of pricing options
via transform analysis.



1.5.2 Calibration Results

In Table 1.8, I present calibration results for the stochastic volatility model. One important

difference that arises between these results and the Black-Cox results is that the stochastic

volatility model is able to generate larger yield spreads for poorer-rated bonds. This is due

to the modeling convention that is used. In the stochastic volatility model, the sensitivity of

equity to underlying asset value is smaller than in a Black-Cox model for firms that are near

the default boundary.30  It is exactly firms with higher leverage (typically firms with junk

ratings) for which this is true. Since asset volatility is inversely related to this sensitivity,
the stochastic volatility model infers larger asset volatilities which then lead to larger yield

spreads. Thus, the Merton model actually overestimates yield spreads for short-maturity

junk debt. However, the results for investment grade and longer maturity bonds remain

unchanged as the stochastic volatility model cannot generate sufficiently high yield spreads

to match observed yield spreads for these bonds.

To test the cross-sectional explanatory power of the stochastic volatility model, I com-

pare the ability of the model to improve on yield spread estimates from the Merton model.

Comparing the model to a Black-Cox model would potentially lead to results that are driven

by the difference between barrier options and vanilla options. In Panel A of Table 1.9, I

sort first by the Merton model yield spread as a control and then sort within each group

by the difference between stochastic volatility and Merton yield spreads. If the additional

elements in the stochastic volatility model indeed help to explain yield spreads, the observed

yield spread should increase across quintiles while the Merton yield spreads remain relatively

flat. The stochastic volatility yield spread should also increase across quintiles. Empirically,
observed spreads do not increase across quintiles, suggesting that the stochastic volatility

model does not help to explain the cross-section of yield spreads.

Using regressions with time fixed-effects in Panel B, I confirm that the stochastic volatility

model has little explanatory power above and beyond the Merton model. The first two

columns of Panel B show that regressing observed yield spreads on stochastic volatility yield

spreads actually results in a slightly lower within-group R2 than regressing on Merton model

spreads. In the final four columns of Panel B, I first orthogonalize the stochastic volatility

model to the Merton model. Then, I regress the observed yield spread on the Merton

spread and the residual stochastic volatility spread. For the full sample and for four-year,
ten-year, and investment grade subsamples, the stochastic volatility model residual adds

little additional explanatory power as the coefficient on the residual stochastic volatility

spread is statistically and economically insignificant.

30This is due to the fact that equity in a Black-Cox model is based on a down-and-out call option which
has a. larger A near the boundary than a vanilla call option.



The inability of the stochastic volatility model to improve cross-sectional predictions of

yield spreads stems from two sources. First, estimated values of KH,31 the mean-reversion pa-

rameter, are large (averaging 11.7) and thus, the effect of recent volatility is muted. Second,

ceteris paribus, firms with a more negative correlation between return shocks and variance

shocks do not seem to have larger observed yield spreads even though they generally have

larger stochastic volatility model yield spreads.

1.5.3 Alternative Specifications

In this subsection, I further address the relation between unexplained yield spreads and

recent equity volatility. The stochastic volatility model is unable to address the relation

between unexplained yield spreads and recent equity volatility largely because of the large

estimated mean-reversion parameter for asset variance. Here, I examine whether the relation

between the unexplained yield spread and recent equity volatility can be explained if a slower

mean-reversion parameter is imposed. I also examine whether allowing asset volatility to be

inferred solely from recent equity volatility improves the cross-sectional explanatory power

of the Black-Cox model.

Stochastic Volatility with Slower Mean-Reversion

In this section, my calibration methodology follows that of Section 1.5.1, except that I

price bonds as if the mean-reversion parameter for asset variance, /H, is one. The mean-

reversion parameter used here is much smaller than the average P-measure estimates in

Section 1.5.1. In a model with a volatility risk premium, the Q-measure mean-reversion

parameter is typically much smaller than the P-measure parameter. In such a model3 2, O,

the Q-measure long-run mean variance, is also greater than 0, but I do not impose this

restriction here as my goal is solely to determine the effect of slower mean reversion on model

yield spreads.

I examine the cross-sectional explanatory power of this model through the same regression

framework as in Section 1.5.2. The results in Table 1.10 indicate that the stochastic volatility

model does not help to explain the cross-section of yield spreads above and beyond the

Merton model. Even for four-year bonds where a smaller mean-reversion parameter should

have the largest effect, the SV residual is insignificant. Surprisingly, the SV residual is

statistically significant and negative for ten-year bonds at the 10% level.

31See Panel C of Table 1.8 for summary statistics for parameter estimates.
32See Pan (2002) for an example.



At first glance, these results seem surprising given the intuition that a slower mean-

reversion weights recent volatility more and yield spreads are related to recent volatility

more than constant volatility models can explain. However, the volatility of variance pa-

ramrneter, H, complicates this interpretation. With deterministic changes in variance, having

a slower mean-reversion parameter when the current variance is lower than the mean his-

torical variance will decrease yield spreads. However, when OcH is important, this is not

necessarily the case. For firms that are unlikely to default, a larger than average asset

variance is needed to increase default probabilities while lower than average asset variances

have little effect on already low default probabilities. A slower mean-reversion parameter

allows for positive shocks in variance to be more persistent and hence, have a greater effect

on yield spreads. It seems unlikely that a stochastic volatility model with mean-reverting

variance can explain the relation between yield spreads and recent equity volatility.

Black-Cox with Recent Equity Volatility

A method of purely examining whether bonds are priced with recent volatility being more

important than P-measure estimates would suggest is to calibrate the Black-Cox model using

only recent equity volatility and calibrating equation (1.2) period-by-period. While such a

scheme is inconsistent with the Black-Cox modeling assumption of constant asset volatility,
it does capture a scenario in which bonds are priced using current volatility as an input for

the probability of default.

In Panel B of Table 1.10, I find evidence that observed yield spreads are indeed related to

these period-by-period estimates above and beyond the Black-Cox estimates from Section 1.3.

A move from the 25th to 75th percentile in the period yield spread residual corresponds to a

change in observed yield spread of 16 basis points. A move from the 10th to 90th percentile

corresponds to a 54 basis point change in the observed yield spread. Thus, it appears that

recent volatility is an important determinant of yield spreads. Interestingly, I find that

even when this period-by-period yield spread is partialed out from observed yield spreads,
unexplained observed yield spreads are related to recent equity volatility as shown by the

statistically significant coefficient for the last column of Panel B.

1.6 Endogenous Default Models

Throughout this chapter, I have focused on exogenous default models, largely because the

default barrier is unobservable. This ignores an important literature on endogenous default

models typified by the optimal capital structure and endogenous boundary model of Leland



(1994) and the Anderson and Sundaresan (1996) strategic debt service model. Here, I

discuss these models and present some preliminary evidence.

In Leland's model, firms optimally choose the level of debt (effectively through the coupon

rate) and the default boundary. These endogenous choices generate two comparative statics

that can be examined. First, the relation between coupons and asset volatility is U-shaped.

Second, the relation between yield spreads and asset volatility is positive for investment

grade bonds, but negative for junk grade bonds. A standard exogenous default boundary

model makes no predictions about the relation between coupons and asset volatility and

predicts a positive relation between yield spreads and asset volatility, regardless of rating.

Examining the two aforementioned implications of the Leland model requires estimates

of the asset volatility. While the asset volatility has been estimated earlier for the Black-

Cox model, I do not use these estimates here and instead use a model-free estimate. In

particular, I first estimate period-by-period asset variance using:

a = (1- L) 2 o- (1.15)

where L is a firm's leverage.

Then, I take the time series mean of o' for each firm as an estimate of the firm's (constant)

asset variance. With estimates of the asset variance, I can now examine the implications of

the Leland model.

To examine the relation between coupons and asset volatility, I run a regression of the

average coupon rate of a firm on asset volatility and asset variance. I plot the results of this

regression in Figure 1 along with the theoretical relation derived by Leland. The empirical

relation between coupons and asset volatility is indeed U-shaped, but is less convex than the

Leland model suggests.

To further examine the implications of the Leland model, I regress yield spreads on market

leverage, asset volatility, and an interaction between asset volatility and an investment grade

dummy. The implication from the Leland model is that the coefficient on asset volatility

should be negative, reflecting higher prices (lower yield spreads) for junk debt when the asset

volatility is higher, and the sum of the asset volatility and interaction coefficients should be

positive. However. I find that the coefficient on asset volatility is positive and significant,

indicating that yield spreads are positively related to asset volatility, even for junk debt.

Overall, it seems unlikely that a Leland-type model can fully explain the cross-section of

yield spreads.

The second major type of endogenous default model, the strategic debt service model of

Anderson and Sundaresan (1996), hinges largely on the bargaining power of equityholders.

If recovery rates are lower, equityholders know that debtholders will receive little in default



and can strategically refuse to pay debtholders the full promised amount. This predicts

that yield spreads are negatively related to recovery rates. In Section 1.3, it is established

that unexplained yield spreads from the Black-Cox model are negatively related to asset

tangibility (a proxy for recovery rate), but this relation is weakly significant and becomes

statistically insignificant when ratings are controlled for. In addition, it cannot be determined

whether this negative relation is due to strategic debt service or simply pricing a lower payoff

in case of default.

From the evidence presented in this section, it seems unlikely that endogenous default

models can fully explain the cross-section of observed yield spreads as their predicted com-

parative statics are not strongly supported in the data. However, to truly determine if some

of these elements marginally add to explaining the cross-section of yield spreads requires a

full calibration that is beyond the scope of this chapter.

1.7 Credit Default Swaps

Credit default swaps are insurance contracts in which the buyer pays a (typically) quarterly

payment, the CDS spread, to a seller until the maturity of the contract or when the un-

derlying firm (also known as the reference entity) defaults. In the case of default by the

underlying, the seller pays the difference between the notional amount and the recovery to

the buyer. Conceptually, CDS are very similar to corporate bonds. The seller of CDS

contracts is long credit risk, much like the buyer of corporate bonds while the buyer of CDS

contracts is short credit risk, like an investor who is short corporate bonds. The pricing of

credit default swaps using structural models also follows the pricing of corporate bonds very
closely. The CDS spread is determined by calculating the spread such that the present value

of the risk-neutral expected value of the series of spread payments is equal to the present

value of the risk-neutral expected value of the credit-event payment. A discretized version

of this pricing formula is:

4T 48T
1 s + - 1 mod( - 1, 12) 1 s

4 4 48 48 12 4

48T

= q (q R)e-r8

where q() is the cumulative risk-neutral probability of default, s is the CDS spread, and R1.

is the recovery rate. The maturity of the CDS contract, T, is five years in my sample.

The left-hand side is the value of the quarterly payments by the buyer plus the accrued

swap spread if the reference entity defaults between two swap spread payment dates while



the right-hand side is the value of the payment given default.3 3

Though corporate bonds and credit default swaps are similar in their exposures to credit

risk, their non-credit components are thought to be very different. As of the fourth quarter

of 2007, there were $5.8 trillion of corporate bonds outstanding according to the Securities

Industry and Financial Markets Association. In contrast, Christopher Cox, the SEC Chair-

man, cited the size of the CDS market as $58 trillion in testimony to the United States Senate

in 2008. Also, it is generally believed that the CDS market is more liquid than the corporate

bond market, particularly for five-year CDS contracts. Thus, Longstaff, Mithal, and Neis

(2005) and Nashikkar, Subrahmianyam, and Mahanti (2007) use CDS as proxies for credit

risk and generate CDS-implied corporate bond yield spreads. In contrast to the corporate

bond market, a major source of risk in the CDS market is counterparty risk, the likelihood

that the counterparty in a CDS contract will be unable to pay its side of the contract. Since

corporate bonds and CDS of the same underlying entity directly share credit risk, but not

necessarily liquidity and counterparty risk, it is interesting to examine the performance of

structural models of default in the CDS market. In particular, if structural models fail to

fully capture credit risk in the cross-section, it is likely that unexplained spreads should be

correlated for corporate bonds and CDS of the same company.

1.7.1 Calibration and Cross-Sectional Results

In Panel A of Table 1.9.1, I examine the magnitudes of observed and model CDS spreads for

the Black-Cox model, finding that the mean difference between observed and model spreads

for five-year CDS contracts is 42 basis points in my sample and statistically significant. The

magnitude of this difference is smaller than for both four-year corporate bonds (90 basis

points) and for ten-year corporate bonds (88 basis points).3 4  In addition, the difference

between observed and model CDS spreads is significant for all ratings groups, though it is

larger for firms with poorer ratings.

The cross-sectional performance of structural models in the CDS market is similar to that

of the bond market. Following the same procedure as for corporate bonds, I first regress the

observed CDS spread on the model CDS spread., finding a coefficient of 0.59 and a within-

group R2 of 36.58%. Interestingly, this R 2 is lower than the R 2 from an analogous regression

33I have made the simplification that the parties determine whether or not the reference entity has defaulted
every _ years and that CDS premia also accrue at this horizon. In contrast, if the parties continuously
monitor whether the reference entity has defaulted, the summations in the equation should be replaced by

integrals.
34This is consistent with findings by Hull, Predescu, and White (2004) that the benchmark risk-free rate

in the CDS market is close to the swap rate rather than the Treasury rate. During the 2003 to 2007 period,
the mean difference between swap rates and Treasury rates was approximately 45 basis points.



for corporate bonds.3 5 I then construct the residual from this regression as the unexplained

CDS spread and test whether the unexplained spread is related to credit risk proxies and

firm-level characteristics. In Panel B, I find that the unexplained CDS spread is strongly

related to recent equity volatility and ratings, much like corporate bonds. Unexplained CDS

spreads are also related to firm size as in the corporate bond market. Thus, the cross-

sectional performance of the Black-Cox model is similar for both the corporate bond and

CDS market.

1.7.2 Commonality Between CDS and Corporate Bonds

The common credit risk component in corporate bonds and CDS suggests a natural test of

whether unexplained corporate bond yield spreads are related to unexplained CDS spreads.

For each firm-quarter, I choose the bond for a firm that is closest to five years to maturity

to compare to my sample of five-year CDS contracts. As a benchmark regression, I first

regress the observed CDS spread on the observed corporate bond yield spread with time
fixed-effects. As shown in Panel C of Table 1.9.1, CDS spreads and corporate bond yield

spreads are strongly related with a coefficient of 1.05 and a robust t-stat of 23.61. The

within-group R 2 is large at 70.16%. I then run a similar regression for the unexplained CDS

spread and unexplained corporate bond yield spread. finding a coefficient of 0.98 and a robust

t-stat of 14.78. The within-group R 2 drops to 49.62%, indicating that the Black-Cox model

has captured some common component between corporate bonds and CDS, but that there is

also a remaining common component. Since unexplained corporate bond yield spreads and

CDS spreads are related to recent equity volatility and ratings, I further purge out recent

equity volatility and ratings from the unexplained corporate bond and CDS spreads. The

still unexplained spreads are related, though the within-group R 2 declines further to 37.67%.

The results above indicate that a Black-Cox model is able to capture some component

of credit risk as the relation between corporate bonds and CDS weaken once the model is

controlled for. However, there remains an important relation between unexplained corporate

bond yield spreads anrid CDS spreads. An important caveat is that liquidity has thus far

been treated as security-specific (and only for corporate bonds) rather than firm-specific

and it is possible that a common liquidity component across markets could account for a

portion of this commonality. Empirical evidence about CDS liquidity and in particular, the

relation between CDS and corporate bond liquidity, is limited. Nashikkar, Subrahmanyam,

and Mahanti (2007) find that less liquid CDS contracts (ones with greater bid-ask spreads)

have more expensive corporate bonds (bonds with lower yield spreads). Tang and Yan

35However, this can potentially be attributed to the different data sources used for corporate bond prices
(TRACE) and CDS spreads (Bloomberg).



(2007) find that less liquid CDS contracts have larger CDS spreads. Together, these results

suggest that companies with less liquid CDS contracts should have higher CDS spreads and

lower corporate bond yield spreads. This actually works against my finding of a positive

commonality between unexplained corporate bond and CDS spreads, though the current

understanding of liquidity commonality between corporate bond markets and CDS markets

is limited and I cannot completely dismiss the possibility of a positive common liquidity

component. However, the magnitude of commonality that remains and the previous results

on the corporate bond and CDS cross-sections suggest that there is some component of credit

risk that the Black-Cox model cannot capture in the cross-section.

1.8 Conclusion

In this chapter, I test the ability of structural models of default to explain the cross-section of

corporate bond yield spreads. Though structural models present predictions about both the

levels of yield spreads and also the relative yield spreads of different bonds, the literature has

thus far focused on levels. Huang and Huang (2003) find that for a broad group of structural

models matched to historical default probabilities, yield spreads are too high to be explained

solely by credit risk. Much of the literature that has followed involves examining model

mechanisms that can generate model yield spreads that are closer to the levels of historically

observed yield spreads. Instead, I focus on an alternative test of structural models, their

cross-sectional explanatory power, rather than solely asking if they can generate large model

yield spreads. This allows me to directly assess the determinants of the disconnect between

observed and model yield spreads.

My base case is a Black-Cox model. Regressing observed yield spreads on Black-Cox

yield spreads, I find that the Black-Cox model is able to explain 44.9% of the variation in

observed yield spreads. I then construct unexplained yield spreads as the residuals from this

regression. As expected, unexplained yield spreads are related to proxies for liquidity, as

structural models are designed to capture credit risk and not illiquidity. More importantly,

I find a significant cross-sectional relation between unexplained yield spreads and proxies for

credit risk such as recent equity volatility and ratings. This indicates a failure of the Black-

Cox model to fully capture credit risk in the cross-section. In addition, unexplained yield

spreads are related to equity option expensiveness, suggesting an additional risk preimium.

The relations between unexplained yield spreads and recent equity volatility and option

expensiveness suggest that models with stochastic volatility and a non-diffusion risk premium

may help to explain cross-sectional yield spreads. Calibrations based on a Heston (1993)

model do not improve cross-sectional explanatory power as estimates of the asset variance



mean-reversion parameter are high. A double-exponential jump diffusion model with jump

risk premia inferred from individual equity options does improve cross-sectional explanatory

power, suggesting that there is a risk premiurr that is priced in both the corporate bond

and equity option markets. However, the economic significance of this relation is limited as
compared to the Cremers, Driessen, and Maenhout (2006) finding that a model with index

equity option-implied juimp risk premia can explain much of the levels puzzle.

In addition to examining the cross-sectional explanatory power of structural mnodels for
corporate bonds, I examine whether the Black-Cox model can explain the cross-section of
CDS spreads. Much like the results for corporate bonds, unexplained CDS spreads are
related to proxies for credit risk in the cross-section. I also find that unexplained CDS
spreads are related to unexplained corporate bond yield spreads of the same firm, consistent
with structural models being unable to fully capture credit risk in the cross-section. Though
I cannot completely rule out that this commonality is a liquidity commonality, the magnitude

of the relation suggests that it is at least in part due to credit risk that the model has not

captured.

In this chapter, I do not address the relation between unexplained spreads and ratings

through a structural model of default. I do find that ratings are significantly related to
the size of a firm and that firm size is related to unexplained spreads when ratings are not
controlled for. A further examination of what ratings truly capture would be useful as they
are intended to represent forward-looking predictions of credit-worthiness. Current stud-
ies of ratings have generally focused on market reactions to rating announcements. Hand,
Hothausen, and Leftwich (1992) find significant bond price reactions to unexpected bond
ratings changes. There are potentially two interpretations for this result. First, ratings
agencies receive private information from the firms that they rate and bond price reactions
could reflect this information. Second, it is possible that changes in ratings elicit changes in
bond prices simply because market participants price bonds based on ratings, regardless of
how much information ratings capture. A more recent study by Hull, Predescu, and White
(2004) finds that the credit default swap market anticipates ratings announcements, casting

doubt on the second explanation. This is consistent with ratings reflecting something fun-

damental that markets use to price bonds rather than ratings leading bond prices. Though

ratings may be slower than the market to incorporate information, a potential avenue for

future research would be to examine the information that ratings agencies use and to see

how this information is related to bond pricing above and beyond what structural models of

default suggest. These inputs may then be a guide for future work in structural models.

The tests in this chapter present an additional challenge to researchers in credit risk

modeling. Most of the previous work on structural models of default has been focused



on constructing a model to match the level of yield spreads. I argue that explaining the

cross-section of observed yield spreads through a theoretically-founded model is an equally

important and difficult task that should be the focus of future research.



1.9 Appendix

1.9.1 Tables and Figures

Table 1.1: Summary Statistics

Firm Summary Statistics
Obs Mean Std Dev 25th 50th 75th

Market Leverage 3,250 30.61 23.46 13.83 23.59 39.98
Equity Volatility 3,250 25.60 12.11 17.86 22.71 30.26
IV - Equity Volatility 2,364 6.73 6.88 2.95 6.33 9.94
Equity Market Cap 3,250 31.22 53.90 4.37 13.27 33.04
Firm Age 3,250 40.73 25.37 17.42 36.66 62.91
Return on Assets 2,874 1.35 1.19 0.65 1.29 1.97
Equity Beta 3,227 0.95 0.75 0.49 0.81 1.24
Avg Bond Duration 3,250 6.07 2.66 4.14 5.81 7.60
Asset Tangibility 3,220 40.57 12.01 33.09 41.97 49.87
Interest Coverage 3,249 8.87 9.90 2.95 5.89 11.37
Hist - Current Lev 3,249 0.89 13.02 -5.79 0.92 7.89
S&P 3,250 71.23

4yr Bonds
Obs Mean Std Dev 25th 50th 75th

Maturity 2,540 3.36 1.36 2.24 3.44 4.19
Rating 2,493 8.16 3.66 6.00 7.00 10.00
Age 2,540 6.94 3.99 4.33 6.79 8.56
Amount Outstanding 2,540 297.45 377.21 100.00 200.00 325.00
Volume 2,540 47.10 132.98 3.50 12.60 37.72
Trades 2,540 146.51 436.43 16.00 45.00 129.50
Turnover 2,532 13.36 19.42 3.15 7.87 15.83
Avg Trade Size 2,540 520.24 763.91 118.90 271.14 585.61
% Days Traded 2,540 41.36 31.77 14.06 32.26 67.74



10yr Bonds
Obs Mean Std Dev 25th 50th 75th

Maturity 1,687 12.83 8.12 8.90 10.70 15.29
Rating 1,650 8.30 3.71 6.00 8.00 10.00
Age 1,687 8.69 4.90 4.18 9.49 11.97
Amount Outstanding 1,687 358.39 478.95 150.00 250.00 350.00
Volume 1,687 124.00 593.67 4.95 15.15 45.11
Trades 1,687 203.96 774.65 15.00 41.00 109.00
Turnover 1,680 15.08 22.32 3.08 7.71 16.98
Avg Trade Size 1,687 644.04 791.17 154.57 390.61 803.34
% Days Traded 1,687 40.15 31.25 12.90 32.26 61.90

Observations are quarterly. Market leverage is the ratio of market value of debt to the sum of market value

of debt plus market value of equity. Equity volatility is the annualized volatility of daily log equity returns

for a quarter. IV - equity volatility is the mean of the implied volatilities of a short-term OTM put and

a short-term ATM put minus recent equity volatility. Equity market capitalization is the product of share

price and shares outstanding in $B. Firm age is the number of years since a firm's BEGDT in CRSP. Return

on Assets is a firm's income before extraordinary items divided by the mean of total assets at the start

and end of the quarter. Equity beta is a firm's CAPM beta using a 60-month rolling window. Avg Bond

Duration is the issuance-weighted average of the duration of a firm's outstanding bonds. Asset tangibility is

calculated using the estimates in Berger, Ofek, and Swary (1996). Interest coverage is EBIT divided by the

interest expense. Hist - Current Lev is the difference between a firm's mean leverage from 1993 to 2002 and

its current leverage. S&P equals 1 if a firm is an S&P 500 firm. Maturity is the number of years to a bond's

maturity and age is the number of years since a bond's issuance. Rating is coded as 1 for Aaa and 21 for C

with intermediate ratings coded. Amount Outstanding is the face value outstanding in $mm. Volume is the

quarterly trading volume in $mm face value. Trades is the number of trades in a quarter. Turnover is the

volume scaled by the amount outstanding. Avg Trade Size is the average trade size in $k. %Days Traded

equals the number of days a bond was traded divided by the number of trading days in the quarter.



Table 1.2: Level of Yield Spreads, Black-Cox Model

Panel A: 4yr bonds

Rating Obs Lev Asset Vol Obs Yield BC Yield
mean rmed mean rued

Aaa 83 21.21 22.42 3.88 4.17 5.12 4.94
Aa 206 16.63 22.69 4.08 4.13 4.91 4.89
A 973 25.80 22.45 4.22 4.37 5.19 4.89
Baa 778 32.75 22.98 5.06 4.72 5.23 4.93
Ba 214 42.36 21.05 6.49 6.59 5.58 5.47
B 154 55.64 20.52 7.55 7.09 7.75 6.93
C 91 70.12 18.36 20.06 10.74 9.91 9.77
Full 2,546 31.90 22.24 5.46 4.52 5.56 4.89

Rating Observed Spread BC Spread Difference
mean med mean med mean med t-stat

Aaa 35.03 33.70 12.85 5.42 22.17 19.15 2.94
Aa 36.19 38.32 0.63 0.01 35.56 37.61 9.53
A 61.99 57.89 24.62 0.15 37.37 51.12 4.88
Baa 100.72 99.72 44.07 4.43 56.65 79.01 4.85
Ba 223.76 289.59 85.37 60.72 138.40 213.37 5.56
B 329.25 318.72 302.21 207.75 27.05 162.88 0.35
C 1,591.15 698.28 515.54 490.67 1,075.61 235.56 1.32
Full 159.95 73.26 69.73 0.38 90.21 59.24 3.13

Panel B: 10yr bonds

Rating Obs Lev Asset Vol Obs Yield BC Yield
mean med mean med

Aaa 90 16.84 21.53 5.03 5.06 5.14 4.89
Aa 117 13.58 23.25 5.19 5.12 4.97 4.92
A 515 29.33 21.78 5.39 5.31 5.48 5.08
Baa 562 29.65 24.59 6.17 6.08 5.58 5.35
Ba 203 40.68 21.52 7.33 7.02 6.05 5.60
B 128 51.16 19.79 8.56 8.15 6.93 6.43
C 40 72.67 12.57 12.02 11.37 8.09 7.96
Full 1,692 31.70 22.48 6.28 5.74 5.71 5.19

Rating Observed Spread BC Spread Difference
mean med mean med mean med t-stat

Aaa 53.62 55.68 20.04 0.57 33.57 41.86 2.60
Aa 71.34 68.60 8.09 3.47 63.25 62.22 10.86
A 96.04 85.71 55.30 19.55 40.74 61.12 3.26
Baa 160.09 147.02 80.03 45.97 80.06 77.53 5.32
Ba 271.87 247.23 132.96 83.28 138.91 142.34 6.35
B 394.47 360.82 222.72 158.56 171.75 207.53 4.73
C 748.28 684.33 340.16 325.02 408.12 350.87 2.66
Full 175.72 122.39 88.19 30.04 87.54 74.30 7.07

Observations are at the bond-quarter level from 2003 Q1 to 2007 Q4. Leverage, asset volatility, and yields

are reported in %. Spreads and the difference in spreads are reported in basis points. T-statistics for the

difference use standard errors that are clustered by firm and time.



Table 1.3: Cross-Sectional Tests

Panel A: Risk Variables

Unexplained Spread

1.08
[2.23]

1.22
[1.00]

-0.21
[-0.52]

-1.18
[-1.23]

3.89 4.03
[6.16] [4.41]

2.57
[3.01]

3.20 15.50 13.55
4,227 4,227 3,145

Panel B: Additional Characteristics

Unexplained Spread
Mktlev

Rating

Eq Vol

IV - Eq Vol

ln(Eq Mkt Cap)

In(Firm Value)

Firm Age

ROA

Eq Beta

Asset Tangibility

Interest Coverage

Hist - Current Lev

R-sqd
Obs

-0.16 0.28 -0.26 0.16 -0.33
[-0.30] [0.57] [0.48] [0.32] [-0.67]

15.71

3.10 3.09 3.35
[5.72] [5.84] [4.05]

2.50
[3.87]

-16.18 -16.00
[-3.84] [-4.12]

0.30
[1.22]
-7.88

[-1.21]
1.02

[0.07]
-0.75

[-1.71]
-0.38

[-0.83]
0.44

[0.90]
21.43
3,692

-17.08
[-3.93]

0.31
[1.27]
-7.50

[-1.16]
1.72

[0.12]
-0.73

[-1.66]
-0.21

[-0.48]
0.42

[0.87]
21.96
3,692

0.19
[0.76]
-1.86

[-0.30]
4.40

[0.30]
-0.72

[-1.76]
-0.39

[-0.86]
0.41

[0.77]
19.01
3,021

3.33
[3.90]

2.53
[3.84]

-17.39
[-4.03]

0.21
[0.85]
-1.64

[-0.27]
4.59

[0.31]
-0.70

[-1.70]
-0.22

[-0.52]
0.37

[0.70]
19.75
3,021

[6.21]
1.97

[2.66]
1.28

[2.43]
0.75

[0.18]

0.32
[1.50]
9.98

[1.67]
-2.60

[-0.21]
-0.15

[-0.46]
0.07

[0.17]
0.30

[0.65]
29.35
2,975

-0.28
[-0.65]
15.05
[5.63]

1.93
[2.59]

1.29
[2.44]

-1.96
[-0.41]

0.34
[1.59]

9.67
[1.63]
-1.87

[-0.15]
-0.18

[-0.57]
0.14

[0.34]
0.29

[0.63]
29.38
2,975

Rating
0.01 0.03

[1.24] [3.70]

0.07
[5.76]
0.05

[4.15]
-1.01

[-7.99]

-0.00
[-0.70]
-0.63

[-4.15]
0.43

[1.68]
-0.02

[-1.77]
-0.04

[-3.26]
0.01

[0.47]
66.73
2,237

0.08
[5.89]
0.05

[4.30]

-0.96
[-7.96]
-0.00

[-0.70]
-0.62

[-4.09]
0.42

[1.65]
-0.02

[-1.52]
-0.04

[-2.95]
0.00

[0.39]
66.32
2,237

BC Spd

Rating

Obs Spd
0.58

[8.00]

Mktlev

Asset Vol

Eq Vol

IV - Eq Vol

16.77
[9.39]

29.71
4.143

R-sqd
Obs

44.86
4.227



Panel C: Liquidity Variables

Unexplained Spread
Rating 14.25 14.20 14.22 14.27 14.29 14.17

[8.02] [ 8.06] [8.18] [ 8.10] [8.07] [8.20]
Eq Vol 1.42 1.38 1.36 1.30 1.43 1.38

[2.83] [ 2.77] [ 2.72] [ 2.60] [2.85] [2.76]
Age 2.80 3.14 3.22 3.20 2.67 3.24

[3.07] [ 3.22] [ 3.42] [ 3.35] [2.91] [3.38]
ln(Amt) -8.79 -11.27 -12.03 -7.91 -7.96 -11.98

[-3.70] [-3.74] [-4.04] [-3.10] [-3.15] [-3.99]
ln(Volume) 3.20

[1.58]
ln(Trades) 5.89

[2.00]
Turnover 0.32

[1.84]
In(Trd Size) -3.66

[-1.53]
% Days Trd 0.28

[2.05]
R-sqd 34.08 34.24 34.60 34.41 34.23 34.55
Obs 4,143 4,143 4,143 4,129 4,143 4,143

The data is at the bond-quarter level from 2003 Q1 to 2007 Q4. For each firm, one bond close to four
years to maturity and one bond close to ten years to maturity are used. The only exception is in Panel B
when ratings are the dependent variable. For those regressions, the data is at the firm-quarter level. The
unexplained spread is the predicted residual from a regression of observed yield spreads on BC yield spreads
with time fixed-effects. Yield spreads are reported in basis points and are winsorized at 1% of each tail. The
dependent variable is the unexplained yield spread unless otherwise labeled. All regressions include time
fixcd-effccts. Ratings are coded as I for Aaa and 21 for C with intermnediate ratings also coded. Nlktlev is the
market leverage of a firm, reported in %. Asset volatility is the rnodel-implied asset volatility inl %. Equity
volatility is the past three months' equity volatility in %. IV - equity volatility is the difference between
equity option implied volatility and recently realized equity volatility. Eq Mkt Cap and Firm Value are
reported in $mm. ROA is the mean quarterly return on assets over the last ten years reported in %. Equity
Beta is a firm's equity CAPM beta. Asset tangibility is measured using the estimates in Berger, Ofek, and
Swary (1996) and is reported in %. Interest coverage is EBIT divided by interest expense. Hist - Current
Lev is the difference between a firrn's mean leverage from 1993 to 2002 and its current leverage. Age (of
a bond) and firm age are reported in years. ln(Amit) is the log face value amount outstanding for a bond
in ln($mm). In(Volume) is the volume of trading for a bond reported in In($mm face value). ln(Trd Size)
is the log of the average trade size in ln($k face value). Turnover is reported in %. % Days Traded is the
percentage of days in which a bond was traded at least once. Reported t-stats use standard errors clustered
by firm. Reported R2 values are within-group R 2s.



Table 1.4: The Effect of Recent Equity Volatility

Eq Vol Quintile
BC Quint 1 2 3 4 5 Q5-Q1 t-stat std

Eq Vol 13.32 17.08 20.36 24.95 36.25
1 & 2 Obs Spd 52.88 55.44 67.71 75.78 114.07 61.19 3.30 68.77

BC Spd 0.11 0.12 0.12 0.12 0.08 -0.03 -1.56 0.21
Eq Vol 14.90 18.72 22.26 26.59 36.73

3 Obs Spd 89.84 98.95 94.38 115.73 140.98 51.14 3.41 73.28
BC Spd 5.13 4.59 5.31 5.32 6.01 0.87 1.59 3.52
Eq Vol 14.81 19.36 23.13 28.54 41.37

4 Obs Spd 116.13 122.41 130.25 150.20 226.00 109.87 4.80 105.39
BC Spd 39.10 36.92 38.16 39.41 40.34 1.25 0.52 18.69
Eq Vol 17.04 23.69 29.76 38.30 59.61

5 Obs Spd 173.09 181.00 262.62 338.32 1,181.89 1,008.80 2.51 2,354.65
BC Spd 278.44 305.76 229.43 288.36 597.81 319.38 2.76 344.87

The sample is the same as in Table 1.3. Bonds are sorted into quintiles by Black-Cox yield spreads. Quintiles

1 and 2 are combined and within each group, bonds are then sorted by past three months' equity volatility.

Equity volatility is reported in % and yield spreads in basis points. Reported t-stats use standard errors

clustered by firm and time. Reported standard deviations are standard deviations within a Black-Cox

quintile.



Table 1.5: Alternative Specifications of Recovery Rates

Panel A: Recovery Rates by Industry
Obs Spd Unexplained Spread

BC Spd 0.46
[7.62]

Rating 17.15
[9.22]

Mktlev 1.24 -0.12
[2.37] [-0.27]

Asset Vol 1.44 -1.06
[1.02] [-0.93]

Eq Vol 4.04 4.22
[6.03] [4.51]

IV - Eq Vol 2.46
[ 2.77]

R-sqd 44.57 4.04 16.84 14.57 30.08
Obs 4,034 4,034 4,034 3,009 3,996

Panel B: Recovery Rates by Observed Yield Spread
Obs Spd Unexplained Spread

BC Spd 0.41
[8.46]

Rating 15.66
[9.32]

Mktlev 1.32 0.35
[3.32] [ 1.07]

Asset Vol 1.88 0.08
[ 1.96] [ 0.10]

Eq Vol 2.92 3.61
[4.72] [4.13]

IV - Eq Vol 2.38
[3.10]

R-sqd 50.49 4.85 12.54 12.00 28.80
Obs 4,227 4,227 4,227 3,145 4,143

Variables are defined as in Table 1.3. The model-implied yield spreads in Panel A are calculated using

recovery rates from Altman and Kishore (1996). In Panel B, firms with high average observed yield spreads

for their base case average model yield spread decile are assigned a recovery rate of 15.44%, medium average

observed yield spreads are assigned a recovery rate of 41%, and low average observed yield spreads are

assigned a recovery rate of 66.56%. All regressions include time fixed-effects. Reported t-stats use standard

errors clustered by firm. Reported R 2 values are within-group R 2s.



Table 1.6: Level of Yield Spreads, Jump Model

Panel A: 4yr bonds

Rating Obs Lev Asset Vol Obs Yield Jump Yield
mean med mean med

Aaa 77 20.21 21.84 3.82 4.12 5.26 5.03
Aa 182 15.70 22.04 4.01 4.06 5.09 4.94
A 866 24.78 22.16 4.18 4.30 5.31 4.96
Baa 677 30.05 23.08 5.01 4.64 5.32 5.20
Ba 185 42.11 20.54 6.37 6.54 6.12 5.93
B 125 54.86 20.01 7.42 7.19 8.48 7.66
C 57 67.00 18.99 10.93 10.06 10.60 10.56
Full 2,209 29.79 22.06 4.99 4.41 5.70 4.96

Rating Observed Spread Jump Spread Difference
mean mred mean mred mean med t-stat

Aaa 32.63 31.31 24.71 9.77 7.92 16.01 0.64
Aa 31.94 32.94 14.41 0.26 17.52 29.46 1.55
A 57.38 50.97 33.38 2.13 24.00 40.38 2.67
Baa 94.60 93.01 50.72 26.74 43.88 53.98 4.34
Ba 210.94 285.63 135.98 101.71 74.96 173.17 2.91
B 307.85 326.21 372.72 277.84 -64.87 90.74 -0.89
C 662.88 628.18 584.54 564.46 78.35 127.39 0.54
Full 113.20 63.22 81.16 2.77 32.04 45.11 3.24

Panel B: 10yr bonds

Rating Obs Lev Asset Vol Obs Yield Jump Yield
mean med mean med

Aaa 84 16.48 21.00 5.00 5.02 5.23 4.96
Aa 105 13.77 22.42 5.16 5.09 5.08 5.02
A 458 29.00 21.25 5.34 5.25 5.69 5.28
Baa 478 29.13 23.95 6.09 6.06 5.78 5.69
Ba 173 40.42 20.98 7.33 6.92 6.39 6.01
B 98 51.46 18.70 8.39 7.99 7.24 6.63
C 25 73.43 11.39 10.49 11.06 8.60 8.90
Full 1,443 30.97 21.83 6.12 5.63 5.89 5.41

Rating Observed Spread Jump Spread Difference
mean mred mean meed mnean mred t-stat

Aaa 51.29 51.25 25.99 2.46 25.30 38.37 1.55
Aa 69.28 65.61 14.80 8.24 54.48 54.27 7.97
A 92.22 80.35 72.59 34.01 19.63 42.46 1.34
Baa 152.87 142.92 96.52 75.71 56.35 51.99 3.73
Ba 270.36 240.21 165.09 119.76 105.27 105.93 4.24
B 375.46 344.54 249.14 173.15 126.32 163.80 3.44
C 585.83 652.88 389.53 414.94 196.29 234.01 2.12
Full 160.01 113.44 102.57 47.15 57.44 54.12 4.66

Observations are at the bond-quarter level from 2003 Q1 to 2007 Q4. Leverage, asset volatility, and yields
are reported in X. Spreads and the difference in spreads are reported in basis points. T-statistics for the
difference use stanldard errors that are clustered by firm and time.



Table 1.7: Cross-Section, Jump Model

Panel A: Sorts

Jump Risk Premium Quintile
BC Quint 1 2 3 4 5 Q5-Q1 t-stat std

Jump RP (%) 0.49 2.92 5.24 7.67 15.15
1 & 2 Obs Spd 71.79 64.00 62.65 58.80 66.77 -5.02 -0.56 56.87

BC Spd 0.10 0.09 0.10 0.12 0.09 -0.01 -0.26 0.19
Juirip Spd 0.19 0.34 2.02 4.97 32.22 32.04 2.44 92.05
Jump RP (%) 0.56 3.02 5.43 8.02 13.63

3 Obs Spd 101.70 92.58 91.35 95.92 109.91 8.21 0.56 66.53
BC Spd 4.47 5.08 4.48 4.57 4.88 0.42 1.24 3.13
Jump Spd 5.91 7.92 10.93 16.58 46.65 40.74 5.90 41.87
Jump RP (%) 0.32 2.32 4.84 7.32 14.08

4 Obs Spd 140.43 111.24 139.52 128.97 166.47 26.03 1.99 86.68
BC Spd 35.52 33.77 37.22 34.27 33.43 -2.09 -1.56 16.73
Jump Spd 35.85 39.61 53.50 60.44 114.38 78.53 6.83 71.11
Jump RP (%) 0.04 0.92 2.91 6.07 19.39

5 Obs Spd 300.17 252.44 250.32 268.59 396.26 96.09 1.34 329.81
BC Spd 308.05 318.61 345.79 223.15 304.93 -3.12 -0.05 304.18
Jump Spd 306.17 326.65 378.77 271.42 488.91 182.74 2.24 334.53

Panel B: Regressions

Full Full Full 4yr 10yr IG
BC Spread 0.54 0.54 0.52 0.55 0.36

[8.29] [8.59] [8.00] [6.85] [7.99]
Jump Spread 0.45

[10.02]
Jump Residual 0.24 0.22 0.31 0.16

[4.77] [3.87] [3.71] [ 2.37]
R-sqd 43.44 43.64 45.29 48.14 41.17 33.73
Obs 3,652 3,652 3,652 2,209 1,443 2,927

The data is at the bond-quarter level from 2003 Q1 to 2007 Q2. The bonds in this table are the subset of

bonds from Table 1.3 3 where a jump model spread could be calculated. In Panel A, bonds are sorted into

quintiles by Black-Cox yield spreads. Quintiles 1 and 2 are combined and within each group, bonds are then

sorted by jump risk premia. The jump risk premia are reported in %. Spreads are reported in basis points.

Reported t-stats use standard errors clustered by firm and time. Reported standard deviations are standard

deviations within a Black-Cox quintile. In Panel B, the Jump residual is constructed as the residual from

a regression of the jump model yield spread on the Black-Cox yield spread with time fixed-effects. The

dependent variable in the reported regressions is the observed yield spread and all regressions contain time

fixed-effects. Yield spreads in this panel are winsorized at 1% of each tail. Reported t-stats use standard

errors clustered by firm. Reported R 2 values are within-group R 2s.



Table 1.8: Level of Yield Spreads, Stochastic Volatility Model

Panel A: 4yr bonds

Rating Obs Lev Asset Vol Obs Yield SV Yield
mean med mean med

Aaa 83 21.21 23.37 3.88 4.17 5.10 4.98
Aa 200 14.51 23.91 4.06 4.13 4.92 4.89
A 952 25.35 23.27 4.24 4.37 5.23 4.89
Baa 778 32.75 25.16 5.06 4.72 5.72 4.98
Ba 214 42.36 24.52 6.49 6.59 7.03 5.77
B 154 55.64 26.41 7.55 7.09 10.15 9.26
C 90 69.94 35.90 12.78 10.71 13.87 13.04

Full 2,518 31.62 24.72 5.21 4.52 6.15 4.91

Rat ing Observed Spread SV Spread Difference
imean rned mean rned rnean ined t-stat

Aaa 35.03 33.70 11.73 8.62 23.30 19.08 4.13
Aa 36.09 38.08 0.80 0.14 35.30 37.25 9.27
A 62.33 57.43 28.96 0.55 33.37 50.13 4.09
Baa 100.72 99.72 93.61 9.37 7.11 68.80 0.32
Ba 223.76 289.59 229.87 90.24 -6.11 188.81 -0.06
B 329.25 318.72 541.89 441.38 -212.63 -71.48 -1.68
C 860.67 694.97 912.21 817.43 -51.53 -6.08 -0.25
Full 134.50 73.00 129.33 1.78 5.17 52.75 0.30

Panel B: 10yr bonds

Rating Obs Lev Asset Vol Obs Yield SV Yield
mean ired mean med

Aaa 90 16.84 21.99 5.03 5.06 5.07 4.89
Aa 117 13.58 23.87 5.19 5.12 4.95 4.92
A 515 29.33 22.96 5.39 5.31 5.43 5.08
Baa 562 29.65 26.31 6.17 6.08 5.58 5.35
Ba 203 40.68 27.20 7.33 7.02 6.37 5.75
B 128 51.16 25.56 8.56 8.15 7.49 7.35
C 40 72.67 25.67 12.02 11.37 9.49 9.67
Full 1,692 31.70 24.95 6.28 5.74 5.80 5.20

Rating Observed Spread SV Spread Difference
mean rmed mean med mean med t-stat

Aaa 53.62 55.68 13.05 0.40 40.56 42.94 4.87
Aa 71.34 68.60 6.07 3.50 65.27 63.98 11.53
A 96.04 85.71 49.53 18.95 46.51 63.68 4.58
Baa 160.09 147.02 80.36 46.15 79.73 84.97 5.58
Ba 271.87 247.23 165.22 97.99 106.65 132.60 4.09
B 394.47 360.82 278.38 250.26 116.09 131.81 2.80
C 748.28 684.33 480.11 495.77 268.17 212.13 1.27
Full 175.72 122.39 97.16 31.08 78.56 74.46 7.30



Panel C: Parameter Estimates, Stochastic Volatility Model

Parameter Mean Std Dev 25th 50th 75th
KH 11.67 6.11 7.53 10.68 14.20
OH  0.0727 0.0518 0.0443 0.0606 0.0868
rTH 0.9436 0.4409 0.6614 0.8464 1.1796
p -0.1490 0.2256 -0.2164 -0.1138 -0.0193

In Panels A and B, observations are at the bond-quarter level. Leverage, asset volatility, and yields are
reported in %. The reported asset volatility is the square root of the average long-run asset variance, OH.
Spreads and the difference in spreads are reported in basis points. T-statistics for the difference use standard
errors that are clustered by firm and time. Iii Panel C. firmi-level parameter estimates are reported for the
286 firms in the sample.



Table 1.9: Cross-Section, Stochastic Volatility Model

Panel A: Sorts

SV - Mer Quintile
Mer Quint 1 2 3 4 5 Q5-Q1 t-stat std

Rho -0.05 -0.11 -0.11 -0.14 -0.20
1 & 2 Obs Spd 60.43 52.86 65.86 71.00 76.77 16.33 1.99 49.44

Mer Spd 0.13 0.01 0.08 0.34 0.49 0.36 5.67 0.37
SV Spd 0.11 0.02 0.16 0.67 8.64 8.53 3.15 18.69
Rho 0.02 -0.08 -0.12 -0.24 -0.23

3 Obs Spd 143.01 97.63 97.20 95.37 92.19 -50.82 -2.90 67.05
Mer Spd 8.39 6.24 6.99 7.75 8.97 0.59 0.92 4.79
SV Spd 7.43 6.67 8.32 10.55 43.02 35.59 3.46 36.74
Rho -0.04 -0.08 -0.17 -0.20 -0.27

4 Obs Spd 188.05 129.93 149.09 154.94 151.78 -36.27 -1.33 100.02
Mer Spd 52.14 37.88 42.25 47.02 54.45 2.31 0.41 22.88
SV Spd 46.85 38.47 45.06 52.94 100.24 53.39 4.50 40.46
Rho -0.40 -0.18 -0.18 -0.24 -0.21

5 Obs Spd 508.40 439.38 363.30 320.52 196.34 -312.05 -3.50 482.40
Mer Spd 1,058.01 446.09 321.34 318.61 376.22 -681.79 -3.24 564.72
SV Spd 910.44 430.94 323.75 336.33 475.67 -434.77 -2.66 465.34

Panel B: Regressions

Full Full Full 4yr 10 Oyr IG
Merton Spread 0.38 0.38 0.35 0.61 0.24

[7.00] [ 7.00] [ 6.54] [8.14] [4.26]
SV Spread 0.39

[7.05]
SV Residual 0.04 0.05 -0.05 -0.11

[0.27] [ 0.42] [-0.13] [-1.40]
R-sqd 46.01 45.11 46.02 50.04 53.12 23.64
Obs 4,186 4,186 4,186 2,499 1,687 3,273

The data, is at the bond-quarter level from 2003 Q1 to 2007 Q4. For each firm, one bond close to four years
to maturity and one bond close to ten years to maturity are used. In Panel A, bonds are sorted into quintiles
by Merton yield spreads. Quintiles 1 and 2 are combined and within each group, bonds are then sorted by
the difference between stochastic volatility yield spreads and Merton yield spreads. Rho is the estimated
correlation between asset return and asset variance shocks. Spreads are reported in basis points. Reported
t-stats use standard errors clustered by firm and time. Reported standard deviations are standard deviations
within a Merton quintile. In Panel B, the SV residual is constructed as the residual from a regression of the
stochastic volatility yield spread on the Merton yield spread with time fixed-effects. The dependent variable
in the reported regressions is the observed yield spread and all regressions contain t ime fixed-effects. Yield
spreads are winsorized at 1% of each tail. Reported t-stats use standard errors clustered by firm. Reported
R 2 values are within-group R 2s.



Table 1.10: Alternative Specifications

Panel A: Stochastic Volatility with Slower Mean-Reversion

Full Full Full 4yr 10yr IG
Merton Spread 0.38 0.38 0.35 0.61 0.24

[7.00] [7.13] [6.63] [8.85] [4.11]
SV Spread 0.46

[6.09]
SV Residual -0.12 -0.07 -0.41 0.17

[-0.88] [-0.54] [-1.87] [ 1.49]
R-sqd 46.01 41.80 46.18 50.10 54.24 24.11
Obs 4,186 4,186 4,186 2,499 1,687 3,273

Panel B: Black-Cox with Recent Equity Volatility

Full Full Full 4yr 10yr IG Unexp Spd
BC Spread 0.58 0.58 0.58 0.58 0.32

[8.02] [ 7.98] [6.90] [6.66] [ 8.10]
BC Spread (period) 0.70

[8.84]
BC Spread (period) Residual 0.44 0.45 0.42 0.25

[5.90] [4.83] [4.72] [ 4.23]
Eq Vol 1.71

[3.23]
R-sqd 44.92 48.12 52.95 55.05 49.50 32.97 3.32
Obs 4,238 4,238 4,238 2,546 1,692 3,324 4,238

In Panel A, the SV residual is constructed as the residual from a regression of the (alternative) stochastic

volatility model yield spread on the Merton yield spread with time fixed-effects. In Panel B, the BC (period)

residual is constructed as the residual from a regression of the BC (period) yield spread on the Black-Cox

yield spread with time fixed-effects. In both panels, the dependent variable is the observed yield spread with

the exception of the last column of Panel B where the dependent variable is the residual from a regression

of the observed yield spread on BC (period) yield spread. All yield spreads are winsorized at 1% of each

tail and all regressions contain time fixed-effects. Reported t-stats use standard errors clustered by firm.

Reported R 2 values are within-group R 2s.



Table 1.11: Credit Default Swaps

Panel A: Levels of CDS Premia

Obs Observed CDS Spread Model CDS Spread Difference t-stat
Mean Med

Aaa & Aa 195 12.42 4.66 7.76 9.97 2.50
A 538 26.51 10.23 16.28 18.98 3.48
Baa 741 63.91 31.98 31.92 32.65 3.76
Junk 407 337.48 229.23 108.25 118.90 2.01
Full 1,905 107.61 65.23 42.38 25.64 3.24

Panel B: Cross-Sectional Regressions

BC Spread
Obs Spd

0.59
[3.94]

Rating

Mktlev

Asset Vol

Eq Vol

IV - Eq Vol

ln(Eq Mkt Cap)

ln(Firm Value)

Firm Age

ROA

Eq Beta

Asset Tangibility

Interest Coverage

Hist - Current Lev

R-sqd
Obs

36.58
1,905

Unexplained Spread

17.80
[6.66]

2.15
[2.51]

1.08
[0.74]

0.40
[0.46]
-1.50

[-1.28]
5.60

[5.27]

0.70 0.95
[0.74] [1.01]

6.41
[5.06]
4.57

[4.09]

5.68
[5.30]

3.71
[5.13]

-10.88
[-1.77]

0.34
[1.47]

6.35
[0.69]
18.68
[1.10]
-1.57

[-3.30]
0.08

[0.12]
0.28

[0.52]
8.91 22.66 22.42 23.27 29.59

1,905 1,905 1,405 1,881 1,358

5.67

[5.45]
3.72

[5.08]

-12.40
[-2.28]

0.37
[1.55]
6.61

[0.72]
18.88
[1.10]
-1.58

[-3.27]
0.19

[0.34]
0.27

[0.50]
29.93
1,358

Rating



Panel C: Commonality

CDS Spread eCDS,1 ZCDS.,2

Bond Spread 1.05
[23.61]

e Bond,1 0.98

[14.78]
EBond,2 0.87

[8.33]
R-sqd 70.16 49.62 37.67
Obs 1,914 1,914 1,876

The sample is a panel of quarterly five-year CDS with a matching panel of bonds that represent the bond
closest to five years to maturity for each issuer. Data. is from 2004 Q4 to 2007 Q4. CDS spreads are reported
in basis points. Ratings are the average of the ratings of the corporate bonds for the issuer. In Panel A,
t-stats use standard deviations clustered by time and firm. In Panel B, the dependent variable is the residual
from a regression of observed CDS spreads on model CDS spreads with the exception of the first column
for which the dependent variable is the observed CDS spread. In Panel B, CDS spreads and model CDS
spreads are winsorized at 1% of each tail and all regressions contain time fixed-effects and reported t-stats
use standard errors clustered by firm. Dependent variables are as defined in Tables 1.1 and 1.3. In Panel
C, eBond,1 and ECDS,1 have the Black-Cox model spreads partialed out while 9Bond,2 and ECDS,2 also have
recent equity volatility and ratings partialed out. All regressions contain time fixed-effects. T-statistics in
Panels B and C are clustered by firm. Reported R 2 values are within-group R 2s.
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Figure 1-1: Relation Between Coupons and Asset Volatility

1.9.2 Volatility Due to Bid-Ask Spreads

In equation (1.2), 1 and cE are not constant over time, but I only update these values

quarterly due to the fact that Compustat data is updated quarterly. An alternative spec-

ification is to update ogE more frequently by using a linear interpolation of Compustat

values between quarterly reports and use higher frequency updates of TE. This, however,

creates problems in volatility estimates due to bid-ask spread. Using a framework similar

to Roll (1984), I examine the amount of annualized equity volatility that can be generated

solely through bid-ask bounce depending on the sampling horizon. Suppose that all changes

in equity price are due to whether the transaction is at the bid or ask price, denoted b and

a, respectively. Also, denote the bid-ask spread as s = a - b. If transactions at bid and

ask are equally likely, the distribution of log returns is:

0 w.p. 0.5,

log(R) = log(+) w.p. 0.25,

log(1-) w.p. 0.25
• a



Suppose b+ = 100, then the annualized volatility generated solely by bid-ask spreads for2

5-minute, 30-minute, and daily sampling (in %) are:

Table 1.12: Bid-Ask Spread Induced Volatility

Bid-Ask Spread Vol (5 ruin) Vol (30 rnin) Vol (daily)
0.1 9.91 4.05 1.12
0.2 19.83 8.09 2.24
0.3 29.74 12.14 3.37
0.4 39.65 16.19 4.49
0.5 49.57 20.24 5.61

As can be seen above, sampling at too high a frequency can generate large equity volatility

even when there are no changes in firm fundamentals. As a baseline for comparison, the

median spreads as a percentage of stock value for IBM, GE, GM, JNJ, and WMT in January

2003 were 0.18, 0.16, 0.36, 0.30, and 0.29, respectively. 3 6

1.9.3 Claims on the Firm in the Black-Cox Model

Following Bjork (2004), the value of a down-and-out call option where the barrier equals the

strike price is:

a2il -y2 K 6T
3

((KI) NN ) (-rTK)((12)KCall = Ve-N(d) - Ke-,rN(d2)- 2(r-6- TN(j) - Ke-TN(d 2)V V

(1.17)

In(V) + (r - 6 + )2 T
di K 2 d2= di - (TVV

In( K) + (r -6 + )T 
di =V ,2 d2 =d - 6

The value of equity at maturity is the value of this call option.

Defining Q as the risk-neutral probability of default (see equation (1.4), the value of debt

at maturity and the value of bankruptcy costs are:

Debt at Maturity = Ke-rT - Ke- TQ(1 - Rfirm) (1.18)

Bankruptcy Costs = Ke--TQ(l - Rjim)

36Quote-by-quote spreads fromn the NYSE TAQ data are used.



Thus, the remaining value of the firm, the value of payouts, is equal to V - Call - Ke - T,

and is attributed to equity and debt in a proportion equal to L and (6 , ,respectively.

1.9.4 Model-Implied Default Probabilities

In contrast to Huang and Huang (2003), I match equity volatilities rather than probabilities

of default when calculating firm parameters. This is done both because historical default

probabilities do not necessarily reflect forward-looking default probabilities and because there

is no data on firm-by-firm default probabilities. Here, I examine model-implied default

probabilities for the Black-Cox model and compare them to historical default probabilities.

Huang and Huang use average firm parameters within a rating and use the Bhandari

(1988) estimates to generate an equity risk premium to match along with historical proba-

bilities of default. From this, they generate implied asset volatilities and implied asset risk

premia. As my calculations in Section 1.3 infer an asset volatility from equity volatility, I

only need to infer an asset risk premium to be able to calculate probabilities of default. I

follow the Huang and Huang procedure in using the Bhandari estimates (columns labeled

with Lev) and also use equity risk premia calculated from the CAPM. In the third and fourth

columns of Panels A and B, I report the model-implied default probabilities for four-year

and ten-year horizons, respectively. For four-year horizons, the model tends to underesti-

mate default probabilities for all ratings. At the ten-year horizon, the model actually does

a reasonable job for investment grade bonds, but vastly underestimates default probabilities

for junk debt.

In addition to using average firm parameters, I also calculate model-implied default prob-

abilities firm-by-firm for comparison with historical default probabilities. I find that the

mean model-implied default probabilities tend to be higher than historical default probabili-

ties for investment grade firms at both the four-year and ten-year horizon. However, median

default probabilities are much lower, indicating that these results are driven by cases where

a few firms have very high model-implied default probabilities.



Table 1.13: Model-Implied Default Probabilities
Panel A: 4yr, Default Probabilities

Average Firm
CAPM Used Lev Used

Firm-by-Firm CAPM
Mean Std Med

Firm-by-Firm Lev
Mean Std Med

Aaa 0.04 0.01 0.01 0.47 0.92 0.00 0.45 0.88 0.00
Aa 0.23 0.00 0.00 0.18 0.85 0.00 0.14 0.64 0.00
A 0.35 0.07 0.12 1.12 4.59 0.01 0.83 3.25 0.01
Baa 1.24 0.38 0.62 1.97 7.30 0.04 1.49 4.90 0.04
Ba 8.51 0.89 1.41 5.07 14.49 0.38 2.96 6.50 0.50
B 23.32 6.43 8.14 9.78 15.81 1.98 6.97 11.20 2.02
C 20.80 19.90 21.76 21.12 18.20 17.70 19.41 10.02

Panel B: 10yr Default Probabilities
Average Firm Firm-by-Firm CAPM Firm-by-Firm Lev

Rating Historical CAPM Used Lev Used Mean Std Med Mean Std Med
Aaa 0.77 0.88 0.91 2.45 3.89 0.01 2.40 3.85 0.01
Aa 0.99 0.70 0.97 1.87 4.73 0.32 1.60 3.61 0.34
A 1.55 1.78 3.10 3.98 8.70 0.69 3.23 6.27 0.82
Baa 4.39 3.77 6.40 6.80 12.76 1.60 5.56 9.52 1.73
Ba 20.63 5.02 8.36 12.01 21.19 3.71 10.33 14.63 5.25
B 43.91 17.83 23.04 24.49 28.98 11.01 20.32 22.90 12.44
C 36.93 35.19 36.74 28.19 38.35 28.20 25.78 27.27

1.9.5 Option Pricing Formula for the Stochastic Volatility Model

In this section, I present call pricing formulas for a stochastic volatility model. This formu-

lation is a special case of Duffic, Pan. and Singleton (2000) and also of Pan (2002).

) - kGo,- 1(- log k, Ho. T)

S (1, Ho,T) 1 Im[l(1 - in, Ho, T)eiu(lg k)

G1,_1 = du

,(0, Ho, T) 1 f Im[V/(-iu, Ho, T)ei"(o k)]
Go,-1= du

2 7ro U,

V4(s, Ho, T) = exp(a(T, s) + 3(T, s)Ho)

a(T, s) = -rT + (r - 6)sT - r

f3(T, s) = -

7 + b  2 l +bYOH( - T + 2 log[ 2 -

cH 0%

a(1 - e -T)

2' - (y + b)(1 e- )

a = s(1 - s)

0 = -HPS

7 =/b 2 + au

Rating Historical

Call
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Chapter 2

Excess Volatility of Corporate Bonds

2.1 Introduction

We examine the connection between corporate bonds and stocks under the structural model

of Merton with stochastic interest rates. In particular, we focus on the volatility of corporate

bonds and its connection to the equity volatility of the same firm. as well as Treasury

volatility. Using daily returns on bonds and stocks, we find an overwhelming amount of

excess volatility in corporate bonds. In annualized terms, the difference between the empirical

volatility 6D and its model-implied counterpart 8Derto is on average 12.64% with a robust

t-stat of 35. Moving from daily returns to weekly and monthly returns, this excess volatility

tapers off quite dramatically, suggesting a liquidity component in corporate bonds that is

more pronounced at short horizons.

The motivation for this empirical study is two-fold. First, while the structural models

pioneered by Merton (1974) have a direct impact on our conceptual understanding of the

connection between bonds and stocks of the same firm, their empirical reach remains sorne-

what limited. Limited access to quality bond data in the past certainly is an important

factor. The recently available TRACE data, however, greatly improves the situation by

offering transaction-level data with both price and volume information. The second, and

perhaps more important motivation for this study is the severe liquidity issues in the cor-

porate bond market. While the corporate bond market is as large as the Treasury bond

market, the difference in liquidity between these two markets can offer a stark contrast. By

the first quarter of 2007, the total amount outstanding is $4.45 trillion in Treasuries and

$5.45 trillion in corporate debt. By comparison, in January 2007, the average daily trading

volume is around $492 billion in Treasuries and $16.7 billion in corporate debt. Thus, there

is active trading in Treasuries and hardly any trading in corporates. Liquidity issues of this

magnitude are bound to find its way to corporate bond pricing.



In this chapter, we tackle these two issues by introducing and comparing two measures

of corporate bond volatility: the empirically estimated versus the model implied. We use

the Merton model to take into account the two main drivers of corporate bond volatility:

the firm's asset volatility and the Treasury volatility. Measuring Treasury volatility using

Treasury bond returns and inferring asset volatility from the firm's equity volatility through

the Merton model, we feed these these estimates collected from equity and Treasury markets

back to the Merton model with stochastic interest rates to obtain model-implied return

volatilities for the respective corporate bonds. We then compare this model-implied bond

volatility &D"erton with the empirically observed bond return volatility &cD. The discrepancy

between the two volatility measures sets the stage for both an empirical evaluation of the

Merton model and an empirical investigation on the nature of illiquidity in the corporate

bond market.

For a broad cross-section of corporate bonds from July 2002 through December 2006, we

find that the annualized bond volatility 8 D is on average 18.06% using daily bond returns,
9.62% using weekly returns, and 7.18% using monthly returns. This pattern of decreasing

annualized volatility with increasing measurement horizon is found to be unique only in

corporate bonds. In particular, when daily, weekly, and monthly equity returns are used for

the same pool of bond issuers in our sample, the estimated annualized equity volatilities are

similar in magnitudes across measurement horizons. The same is true when daily, weekly, and

rnonthly Treasury bond returns are used to estimate the Treasury bond volatility. Absent

a structural model, this result along the measurement horizon by itself has an immediate

implication on the liquidity of corporate bonds. It quantifies arid contrasts the illiquidity of

corporate bonds in relation to that of the equity and Treasury markets.

To connect the diverging information in the three markets - corporate bond, equity and

Treasury bond - into one unified framework, we adopt the Merton model with stochastic

interest rates. In the model, the corporate bond volatility has two contributions: randorn

fluctuations in firm value and in the risk-free interest rate. While the Treasury bond volatil-

ity can be directly estimated using Treasury bond returns, we can only infer, via tile Merton

model, the firm's asset volatility from estimates of the equity volatility of the firm. Conse-

quently, the two important inputs of the model come from the volatility estimates of equity

and of Treasury bond returns. In addition, we also rely on the firm's balance sheet infor-

mation to estimate the other firm-level characteristics that are important in the model. We

find that, for the same pool of bonds and for the same timrne periods, the annualized bond

volatility is on average 5.42% using daily equity and Treasury returns, 5.14% using weekly

returns, and 5.35% using monthly returns. Comparing this set of model-implied volatilities

against the ones estimated empirically, we see a clear pattern of excess volatility in corporate



bonds that is most severe at the short horizon, but remains significant, both statistically and

economically, even at longer measurement horizons.

To further shed light on the economic origin of the excess bond volatility, we examine

its cross-sectional determinants. Our results paint a general picture that links the degree of

excess bond volatility to the illiquidity of a bond. For example, our results show that excess

volatility is higher for smaller bonds, which are typically less liquid. More interestingly, our

results also show that, after controlling for bond characteristics including maturity, rating

and size, older bonds have higher excess volatility. As newly issued bonds are typically

more liquid, while the old bonds are more likely to be have larger fractions held by buy-

and-hold investors, our result is consistent with a liquidity explanation. Finally, we also

find interesting connections to trading related variables. For example, we find more excess

volatility in corporate bonds whose average trade size is small. This is consistent with the

possibility that, after controlling for bond size, the bonds with smaller average trade size are

more likely to be traded in less liquid bond trading platforms and therefore have a larger

liquidity component. In addition to this cross-sectional explanation, the monthly time-series

variation in excess volatility and the bond trading variable could also contribute to the result.

In particular, it is consistent with the assumption that the month during which the average

trade size of a particular bond is small is a less liquid month, resulting in higher excess

volatility for that bond during that month.

Compared with the existing literature that examines the empirical performance of the

Merton model from the angle of the first moment, our particular focus on the second moment

of corporate bond returns sets us apart and provides us with a new angle. Our motivation,

however, is very much aligned with this literature. In particular, we would like to be able

to add to the debate that is central to this literature and has been raised, among others, by

Huang and Huang (2003): How much of the market-observed corporate bond yield spreads

is due to the firm's credit risk? Our empirical results point in the direction of an illiquidity

component in corporate bond returns. One might argue that with the reliance of a model,
the conclusion is always a joint hypothesis of the empirical performance, or, in this case,
the lack of empirical performance, of the Merton model. Nevertheless, it would be highly

implausible for any default-based model to generate the observed pattern of increasing bond

volatility with decreasing measuring horizon. A pattern like this is more reminiscent of a

inicrostructure model with bid-ask bounce playing a more important role at a short horizon.

The fact that we find this pattern only in corporate bonds but not in equities and Treasury

bonds is indicative of a liquidity problem beyond simple bid-ask bounce. Indeed, using the

quoted bid-ask spreads of corporate bonds, we find the effect of bid-ask bounce to be rather

minor in addressing the excess volatility puzzle. In summary, the empirical pattern of bond



volatility documented in this chapter stands on its own to provide a clear and unambiguous

support of the importance of liquidity in corporate bond prices.

To the extent that the structural model of Merton is important in our analysis, it provides

a set of benchmark numbers of corporate bond volatility, incorporating the firm's balance

sheet information as well as information from the equity and Treasury bond markets. A

formal and extensive empirical evaluation of the Merton model constitutes another important

motivation of this chapter. In relation to the work of Eom, Helwege, and Huang (2004), who

examine the empirical performance of structural models of default including the Merton

model using only 182 data points, our contribution is to perform an empirical analysis of the

Merton model on a much larger scale of corporate bonds. More importantly, by contrasting

the mrodel-implied bond volatility against the empirical volatility measures, we are able to

shed light on the empirical performance of the Merton model from a perspective that has

not been looked at before.

Our result indicates that while at the daily and weekly measurement horizons, the Merton

model cannot even begin to generate the kind of bond volatility observed in the data due

to the liquidity problems in corporate bonds, at the monthly return horizon, the model

is able to generate an average volatility of 5.35% that is relatively close to the empirically

observed bond volatility of 7.18%. This excess volatility of 1.83%, however, is still statistically

significant with a robust t-stat of 2.29, and, perhaps more importantly, still accounts for a

quarter of the observed empirical bond volatility. Whether or riot this is due to liquidity or

model mis-specification remains an interesting question. We find that even at the rnonthly

measurement horizon, the cross-sectional determinants of the excess volatility are still closely

related to liquidity variables such as the age of a bond and its average trade size.

On the other hand, we can look for potential model mis-specifications by examining the

model-implied bond volatility more closely. In constructing the model-implied volatility, the

corporate bond's sensitivities to its firm's asset and the Treasury bond are the two basic

building blocks. As such, whether or not the model-implied sensitivities match their empiri-

cal counterparts provides a more detailed test of the model. In fact, Schaefer and Strebulaev

(2008) show the Merton rmodel provides quite accurate predictions of the sensitivity of cor-

porate bond returns to changes in the value of equity. However, the empirical sensitivity to

Treasury bonds is significantly lower than those prescribed by the model.' This result indi-

cates that the excess volatility puzzle documented in this chapter is somewhat understated.

Given the importance of Treasury bond volatility in generating the model-implied corporate

bond volatility, the magnitude of the excess volatility puzzle would have been more severe

had we not used the model-implied sensitivity measures.

'We find that this empirical result holds for our sample.



Indeed, this is confirmed in our finding of an even more exacerbated volatility puzzle

when excess bond returns are used to avoid explicitly modeling the risk-free interest rate.

Given the importance of interest rate risk in corporate bonds, the stochastic interest rate

component of the model should perhaps be subject to the most severe scrutiny. In particular,

the bonds in our sample have a median maturity close to 7 years. To properly account for

the risk-free bond's volatility in our main results, we employ the Vasicek (1977) model for

its simplicity, but calibrate the volatility coefficient of the model so that the model generates

the empirically observed level of volatility for a 7-year Treasury coupon bond. Missing in

this simple one-factor term structure model is the potentially rich term-structure of interest

rate volatility. As a robustness check, we work with excess bond returns to avoid relying

on a term structure model. Specifically, we calculate excess bond returns by subtracting,

from the corporate bond returns, the contemporaneous Treasury bond returns of a similar

maturity. Comparing the volatility measured by bond excess returns to the model-implied

excess bond volatility, we find that, in annualized terms, the excess volatility is 17.21% using

daily returns, 8.02% using weekly returns, and 4.76% using monthly returns. In other words,

the excess volatility puzzle is more severe in this treatment.

This chapter is related to Collin-Dufresne, Goldstein, and Martin (2001), who regress

monthly changes in corporate bond yields on variables that should in theory determine

credit spread changes, and find very low R 2's in their regressions. We are able to put a

horizon dimension to this illuminating and intuitive result. Specifically, regressing daily

corporate bond returns on daily equity returns on its firm equity and on a Treasury bond of

a similar maturity, we find a cross-sectional average R 2 of 18.28%, which increases to 46.38%

when monthly returns are employed. More importantly, by working in a structural setting,

we are able to contrast the data and the model more closely. Instead of simply comparing

the magnitudes of R2 , we are able to construct formal empirical tests linking the empirical

volatility to the model-implied volatility. In the liquidity dimension, this chapter is related

to the papers by Houweling, Mentink, and Vorst (2005), Downing, Underwood, and Xing

(2005), Mahanti, Nashikkar, and Subrahmanyam (2008), deJong and Driessen (2005), and

Chen, Lesmond, and Wei (2007), which examine the liquidity impact in corporate through a

liquidity premium component in bond yields. Our empirical evaluation of the Merton model

is closely related to the papers by Crosbie and Bohn (2003), Leland (2004) and Bharath

and Shumway (2008), which use structural models of default to forecast default probability.

Finally, also related are the papers by Vassalou and Xing (2004) and Campbell, Hilscher,

and Szilagyi (2007), which use default probability to examine the expected equity returns of

the same firm.

The rest of the chapter is organized as follows. Section 2.2 outlines the empirical specifi-



cation. Section 2.3 summarizes the data and the empirical volatility estimates. Section 2.4

details the model implied volatility. Section 2.5 summarizes the main empirical results of this

chapter. Section 2.6 reports the cross-sectional determinants of excess volatility. Section 2.7

supplements with a time-series analysis of corporate bond returns. Section 2.8 concludes.

2.2 Empirical Specification

2.2.1 The Merton Model

We use the Merton (1974) model to connect the equity and corporate bonds of the same

firm. Let V be the total firm value, whose risk-neutral dynamics are assumed to be

dV(
= (rt - 6) dt + a, dWc (2.1)

where W is a standard Brownian motion, and where the payout rate 6 and the asset volatility

a are assumed to be constant.

We adopt a simple extension of the Merton model to allow for a stochastic interest rate. 2

This is important for our purposes because a large component of the corporate bond volatility

comes from the Treasury market. Specifically, we model the risk-free rate using the Vasicek

(1977) model:

dt = K (0 - .rt) (1t + CJr (IZQ , (2.2)

where Z is a standard Brownian motion independent of W, and where the mean-reversion

rate K,, long-run mean 0 and the diffusion coefficient ra are assumed to be constant.

Following Merton (1974), let us assume for the moment that the firm has, in addition to

its equity, a single homogeneous class of debt, and promises to pay a total of K dollars to

the bondholders on the pre-specified date T. Equity then becomes a call option on V:

St = Vt Ce-  N(dI) - K ( ((T)+b(T) rt N(d 2 ), (2.3)

where N(.) is the cumulative distribution function for a standard normal, d = d2 + v-,

d n(V/K) - a(T) - b(T)rt - 6T - (2.4)

S T(

E = T(a + )+ (- 2 1) (e (2.5)

2See Shirnko, Tejirna, and vanDeventer (1993).



and where a(T) and b(T) are the exponents of the discount function of the Vasicek model:

e "' - 1 12KT 1-2 eT - 2 _ 2)
b(T) = a(T) = 0 1T + 2 2 1 - -- 2 +T)

(2.6)

Note that a Merton model extended to have Vasicek interest rates simply has e-'T replaced

by ea(T)+ b(T)rt and 0,2 T replaced by E.

2.2.2 From Equity Volatility to Asset Volatility

We first use the Merton model to link the firm's asset volatility to its equity volatility. Let

UE be the volatility of instantaneous equity returns. In our model, the equity volatility is

affected by two sources of random fluctuations:

( In St In S t , (2.7)

Using equation (2.3), we can calculate the sensitivities of equity returns to the random shocks

in asset returns and risk-free rates:

O In St 1 and n nSt _ b(T) C

0InVt 1 - £L rt 1-

where
K N(d2 )S= K N(d2) exp (6 T + a(T) + b(T) rt)
V N(d1 )

Combining the above equations, we have

S2 C b(T ) (2.8)

As expected, the firm's equity volatility OE is closely related to its asset volatility a,. In

addition, it is also affected by the Treasury volatility o, through the firm's borrowing activity

in the bond market. This is reflected in the second term of equation (2.8), with b(T) a, being

the volatility of instantaneous returns on a zero-coupon risk-free bond of the same maturity

T. The actual impact of these two random shocks is further amplified through C, which,

for lack of a better expression, we refer to as the "modified leverage." Specifically, for a

firm with a higher £, a one unit shock to its asset return is translated to a larger shock

to its equity return. Of course, this is the standard leverage effect. Moreover, as shown in

the second term of equation (2.8), for such a highly "levered" firm, its equity return also

bears more interest rate risk. Conversely, for an all-equity firm, £ = 0, and the interest-rate



component diminishes to zero.

As it is true in many empirical studies before us, a structural model such as the Merton
model plays a crucial role in connecting the asset value of a firm to its equity value. Ours is
not the first empirical exercise to back out asset volatility using observations from the equity
market.3 In the existing literature, there are at least two alternative ways to approximate
K/V. For example, in the approach pioneered and popularized by Moody's KMV, the
Merton model is used to calculate AS/OV as well as to infer the firm value V through
equation (2.3). By contrast, we use the Merton model to derive the entire piece of the
sensitivity or elasticity function 0 In S/ Iln V, as opposed to using only OS/OV from the

model and then plugging in the market observed equity value S for the scaling component.
At a conceptual level, we believe that taking the entire piece of the sensitivity function from

the Merton model is a more consistent approach. At a practical level, while the Merton

model might have its limitations in the exact valuation of bond and equity, it is still valuable

in providing insights on how a percentage change in asset value propagates to percentage

changes in equity value for a levered firm.

In this respect, our reliance on the Merton model centers on the sensitivity measure. To

the extent the Merton model is important in our empirical implementation, it is in deriving

the analytical expressions that enter equation (2.8). In particular, we rely on the Merton

model to tell us how the sensitivities or elasticities vary as functions of the key parameters

of the model including leverage K/V, asset volatility a, payout rate 6, and debt maturity
T. When it comes to the actual calculations of these key parameters, we deviate from the
Merton model as follows.

The key parameter that enters equation (2.8) is the ratio K/V, where K is the book
value of debt and V is the market value of the firm. We calculate the book debt K using

Compustat data, and approximate the firm value V by its definition V = S + D, where S
is the market value of equity and D is the market value of debt. To estimate the market

value of debt D, we start with the book value of debt K. To further improve on this

approximation, we collect, for each firm, all of its bonds in TRACE, calculate an issuance

weighted market-to-book ratio, and multiply K by this ratio.

Implicit in our estimation of the firm value V is the acknowledgment that firms do not

issue discount bonds as prescribed by the Merton model. In particular, we deviate from the

zero-coupon structure of the Merton model in order to take into account of the fact that

firms typically issue bonds at par. By adopting this empirical implementation, however,
we do have to live with one internal inconsistency with respect to the relation between K

3 See, for example, Crosbie and Bohn (2003), Eom, Helwege, and Huang (2004), Bharath and Shumway
(2008), and Vassalou and Xing (2004).



and D, and central to this inconsistency is the problem of applying a model designed for

zero-coupon bonds to coupon bonds.

The main implication of our choice of V is on the ratio of K/V, which in turn, affects the

firm's actual leverage. We can therefore gauge the impact of our implementation strategy by

comparing the market leverage implied by the Merton model with the empirically estimated

market leverage. In unreported results, we find that with our choice of K/V, the two

market leverage numbers, model implied vs. empirically estimated, are actually very close

for the sample of firms considered in this chapter. Closely related to this comparison is the

alternative estimation strategy that infers K/V by matching the two market leverage ratios:

model-implied and empirically estimated.4 From our analysis, we expect this approach to

yield K/V ratios that are close to ours.5

Finally, two other parameters that enter equation (2.8) are the firm-level debt maturity

T and the firm's payout ratio 6. Taking into account the actual maturity structure of the

firm, we collect, for each firm, all of its bonds in FISD and calculate the respective durations.

We let the firm-level T be the issuance-weighted duration of all the bonds in our sample.

Effectively, we acknowledge the fact that firm's maturity structure is more complex than the

zero-coupon structure assumed in the Merton model, and our issuance-weighted duration is

an attempt to map the collection of coupon bonds to the maturity of a zero-coupon bond.

In calculating the payout ratio 6, we aggregate the firm's equity dividends, repurchases, and

issuances and the debt coupon payments and scale the total payout by firm value V, with

the details of calculating V summarized above.

2.2.3 Model-Implied Bond Volatility

The second step of our empirical implementation is to calculate, bond-by-bond, the volatility

of its instantaneous returns, taking the inferred asset volatility -, from the first step as a key

input. Again, we have to take make a simplification to the Merton model to accommodate

the bonds of varying maturities issued by the same firm. Specifically, we rely on the Merton

model to tell us, for any given time 7, the risk-neutral survival probability up to time 7:

P' = N(d2), where d2 is as defined in equation (2.4) with T replaced by T. Instead of taking

the Merton model literally, which would imply no default between time 0 and the maturity

date T. We find this to be a more realistic adoption of the model.6

Equipped with the term structure of default probabilities implied by the Merton model,

4We thank Hayne Leland for pointing this out and for extensive discussions on this issue.
5See the previous chapter for an example of how K/V can be inferred.
6A more self-consistent approach is to use the Black and Cox (1976) model, which generates a term

structure of default probability that is the complementary first passage time distribution.



we can now price defaultable bonds issued by each firm. Consider a T-year bond paying

semi-annual coupons with an annual rate of c. Assuming a face value of $1, the time-t price

of the bond is

27 27

Y c ea(i/ 2 )+b(i/2 ) rt pi/ 2 + ea(7)+b()rt ea(i/
2
)+b(i/

2
) rt (p(i-1)/2 _ pi/2 ) (29)

i=1 i=1

where R is the risk-neutral expected recovery rate of the bond upon default. The first two

terms in equation (2.9) collect the coupon and the principal payments taking into account

the probabilities of survival up to each payment. The third term collects the recovery of the

bond taking into account the probability of default happening exactly within each six-month

period, which is p(i-1)/2 _ pi/2 for the i-th six-month period. The terms involving a and

b are the respective risk-free discount functions implied by the Vasicek model as defined in

equation (2.6).

Let o}erton be the volatility of the instantaneous returns of the defaultable bond. The

model-irnplied bond volatility can be calculated as

( Merton)2 (ln 2  + (n Bt (2.10)D In V V + rt )

Using the bond priced in equation (2.9) as an example, we can see that its asset-sensitivity,
lIn Btt/0ln Vt, arises from the sequence of risk-neutral default probabilities, pi/2 for i =

1,.., 2r, while the Treasury-sensitivity, a in Bt/art arises both explicitly from the sequence

of Vasicek discount functions and implicitly from the sequence of risk-neutral default prob-

abilities.

It might be instructive to consider a 7-year zero-coupon bond, since its calculation can

be further simplified to

SIn Bt n(d2 ) (1 - R) 1 and dn Bt - b( In Bt

0 1n1 V N(d2)+(1-N(d2 ))7 ar, dln Vt

where n(.) is the probability distribution function of a standard normal. As expected, with

full recovery upon default, R = 1, the bond is equivalent to a treasury bond and its asset-

sensitivity is zero and its Treasury-sensitivity becomes b(r). The asset-sensitivity becomes

more important with increasing loss given default, 1 - R, as well as with increasing firm

leverage K/V. From this example, we can also see the importance of allowing for a stochastic

risk-free rate, as the Treasury volatility is an important component in the defaultable bond

volatility.

In calculating the mrodel-implied bond volatility, we take advantage of the model-implied



term structure of survival probabilities but avoid treating the defaultable bond as one large

piece of zero-coupon bond with face value of K and maturity of T. This calculation is similar

to the reduced-form approach of Duffle and Singleton (1999), except for the fact that our

term structure of survival probabilities come from a structural model while theirs derives

from a stochastic default intensity.

2.3 Data and Construction of Volatility Estimates

The main dataset used in this chapter is the TRACE dataset, a transaction-level dataset on

corporate bonds distributed by FINRA. TRACE is describe in more detail in Chapter 1.

2.3.1 The Bond Sample

We use the transaction-level data from TRACE to construct bond return volatility for non-

financial firms. First. we construct daily bond returns as follows. For any day t, we keep the

last observation of the day for the bond and calculate the log return on day t as:

Rt = In(Pt + Alt + Ct

where Pt is the clean price as reported in TRACE, Alt is the accrued interest, and Ct is the

coupon paid at t if day t is a scheduled coupon payment day. We use FISD to get bond-level

information on coupon rates and payment dates. Accrued interest is calculated using the

standard 30/360 convention. Returns are only calculated for day t if there is a price available

for both t and t - 1. Given the daily return data, we next construct time-series of monthly

bond volatilities by taking the standard deviation of the daily bond returns (if there are at

least 10 bond returns in a month) and annualizing. The sample of bonds that survive this

calculation form the basis of our bond sample. In addition, to exclude very infrequently

traded bonds, we include bonds for which we can construct monthly volatilities for at least

75% of its presence in TRACE.

Table 2.1 summarizes our bond sample. The number of bonds increases throughout our

sample period largely due to the coverage expansion of the TRACE. Compared with the

universe of U.S. corporate bonds documented in FISD, our sample contains only a small

number of bonds. In terms of size, however, these bonds are orders of magnitude larger than

the median size bond in FISD. For example, at the beginning of our sample in 2002, the

median bond size is $1,368 million in our sample, compared with $68 million in FISD. In the

early sample, this is largely due to the limited coverage of TRACE, but overall, our sample



construction biases toward picking more frequently traded bonds, which are typically larger.

The average maturity of the bonds in our sample is about 8.5 years, similar in magnitude

but slightly higher than the average maturity of 7.3 years for the bond universe in FISD.

While the cross-sectional median maturity is close to 7 years in our sample, it is only around

4.5 years in the FISD sample. These observations are consistent with a relatively higher

degree of cross-sectional dispersion of bond maturity in FISD. In the early sample period,
the bonds in our sample are noticeably younger than those in the FISD sample, although

this difference diminishes toward the later sample period. The representative bonds in our

sample are investment grade, with a median rating of roughly 7 (Moody's A3) during the

early sample and 9 (Moody's Baa2) during the later sample. By contrast, the median rating

in the FISD sample remains stable.

Given that TRACE is transaction-level data, we can further collect trading information

for the bonds in our sample. For example, in 2002, an average bond is traded on average

534 times a month with $245 million of average trading volume and 13.69% turnover.7 Over

time, this set of numbers decrease quite significantly, reflecting the coverage expansion of

TRACE to include smaller and less frequently traded bonds. By 2006, an average bond was

traded on average 150 times a month with $58 million of average trading volume and 7.31%

turnover. Also, the average trade size is $781 thousand in 2002 and $450 thousand in 2006,
reflecting the inclusion of smaller trades. Overall, compared with the entire TRACE sample,
our sample is biased toward bonds that are more frequently traded. For example, on over

95% of the business (lays, a median bond in our sample is traded at least once on that day.

Merging our bond sample with CRSP and Compustat by bond issuer, the firm-level

summary statistics are reported in Table 2.1. The average number of firms in our sample

is 60 in 2002 and grows to 236 in 2006. By equity market capitalization, the firms whose

bonds are in our sample are typically large, with an average market capitalization of $35.90

billion in 2002 and $26.96 billion in 2006.

2.3.2 Bond Return Volatility 6TD

The direct outcome of our sample construction is a, monthly time-series of bond return

volatility, cD, for cross-sections of bonds. Building on the same bond sample, we also use

weekly bond returns to construct a quarterly time-series of bond volatility, and monthly

bond returns to construct a yearly time-series.8

7Note that transaction-level statistics are biased downwards as TRACE truncates trading volume for
individual trades at 5mmforinvestmentgradebondsandlmm for speculative grade bonds.

8Like the case for daily returns, we require at least 10 weekly bond returns in a quarter to form a quarterly
estimate of bond volatility, and at least 10 monthly bond returns in a year to form a yearly estimate.



The first panel of Table 2.2 summarizes the empirically estimated bond volatility, &D,

using daily, weekly, and monthly returns. Moving across the three return horizons, the

magnitude of &D's, all annualized, decreases markedly. Specifically, the sample mean of &D

is 18.06% when estimated using daily returns, contrasted with 9.62% using weekly returns,

and 7.18% using monthly returns. The time-series averages of the cross-sectional median

of &D exhibit a simila pattern: 15.78% at daily, 8.48% at weekly, and 6.36% at monthly

frequency.

Implicit in this pattern are strong negative auto-covariances of daily and weekly bond

returns. Given that we are using transaction prices to construct bond returns, bid-ask

bounce could be a natural candidate for such negative autocorrelations. 9 One could use

the volatility estimate proposed by French, Schwert, and Stambaugh (1987) to take out

this autocorrelation and therefore construct a volatility estimate that is more closely linked

to the fundamental movements. For our purposes, however, it is more appropriate to use a

simple measure of volatility that includes the fundamental component as well as the potential

liquidity component. As we move on next to construct equity return volatility from daily,

weekly and monthly stock returns, we will adopt the same treatment. To emphasize the

cross-sectional variation of the empirical bond volatility, we sort &D, at the appropriate

frequencies, by a set of bond- and firm-level variables into quartiles, and report the means

for each quartile. As reported in Table 2.3, bonds with smaller issuance, longer maturity,

and lower rating are more volatile. Bonds issued by firms with higher equity volatility and

higher leverage are also more volatile. The relation of &D to the bond trading variables

such as turnover and the frequency of its trading is not as clear, nor is there a clear pattern

linking &D to the firm payout ratio. Finally, it is interesting to notice that moving across

measurement horizons from daily to monthly returns, the cross-sectional patterns hold quite

well, while the overall magnitude decreases in a dramatic fashion.

2.3.3 Equity Return Volatility &E

The equity return volatility, from which the asset volatility for the firm can be backed out,

is one key input to our structural model. The equity sample used to construct the equity

volatility mirrors the bond sample summarized in Table 2.1. For each firm whose bonds

enter our bond sample, we use CRSP daily, weekly, and monthly returns to form monthly,

quarterly, and yearly estimates of equity volatility.

The second panel of Table 2.2 summarizes the empirical equity return volatility &E.

When we average across firms and time, the annualized equity volatility of our sample is

9See, for example, Niederhoffer and Osborne (1966) and Roll (1984).



26.86% when estimated using daily equity returns, 27.46% using weekly returns, and 24.39%

using monthly returns. Compared with the dramatic pattern of decreasing empirical bond

volatility with increasing measurement horizon, this is a strong indication of the relative

importance of liquidity in the bond and equity markets. The cross-sectional variation of the

empirical equity volatility is reported in the second panel of Table 2.3. As expected, smaller

firms are more volatile, and so are more leveraged firms.

Overall, our volatility measures are lower than those reported for U.S. equities, in part

due to the fact that firms in our sample are typically larger firms. Another important driver

is that our sample period, from July 2002 through 2006, is a relatively low volatility period.

We maintain a contemporaneous sample of empirical bond and equity volatilities so as to

capture the time-variation in asset volatility and its impact on both the bond and equity

volatilities. Nevertheless, our model is set in a constant volatility setting. So a lower than

average equity volatility would have a more permanent impact on our estimate of the firm

asset volatility than it otherwise would in a stochastic volatility setting. We consider the

robustness of our results with respect to this limitation of our model in Section 2.5.2.

2.4 Model-Implied Volatility

2.4.1 Parameter Calibration of the Merton Model

The parameters that govern the dynamics of the risk-free rate are calibrated as follows. First,

we use the daily time-series of three-month T-bill rates from 1982 through 2006 to calibrate

the long-run mean parameter 0 and the rate of mean reversion parameter K. Specifically, we

set 0 = 5.46%, so that the long-run mean equals its time-series average; K = 0.2443, so that

the daily autocorrelation of the model matches the sample autocorrelation.1 0 Second, we set

the volatility parameter a, so that, for a 7-year Treasury coupon bond, the model-implied

volatility of its instantaneous returns matches the sample volatility. More specifically, to

parallel our treatment of the empirical bond and equity volatilities, we use daily 7-year

Treasury coupon-bond returns to form monthly estimates of Treasury bond volatilities, and

weekly returns to form quarterly estimates and monthly returns to form yearly estimates.

The Treasury volatility estimates are reported in the third panel of Table 2.2. When averaged

across time, the annualized volatility estimates remain stable regardless of the measurement

horizons, again, contrasting with the pattern in corporate bonds.

The random fluctuations of the Treasury rate are an important component in corporate

'OTo be more precise, we should match the risk-neutral value of , since we are using the model for pricing
purposes.



bonds. Our choice of the risk-free parameters, particularly 0r, have a big impact on the

model-implied bond volatility. The median maturity of the bonds in our sample is close

to 7 years. We choose a, to match the volatility of a 7-year Treasury coupon bond so

that on average, the Treasury component of the bond volatility is matched to its sample

counterpart. While a, varies over time in our calibrations, its time-series average is around

2.3%. By contrast, the volatility coefficient or estimated from the time-series of three-month

T-bill rates is only at 1.3%, which would severely under-estimate the Treasury component

of corporate bond volatility. Implicit in this difference in r, is the fact that the simple one-

factor model of Vasicek cannot match well the term structure of Treasury bond volatility.

Our approach is to force the model to match well near the 7-year maturity, which is close to

the median maturity of our bond sample.

Apart from the asset volatility oa, which is to be inferred from the model, the firm-level

parameters to be calibrated are the payout ratio 6, leverage K/V, and maturity T. For each

firm, its leverage K/V is calculated as follows. First, we calculate the book value of the firm's

debt, K, to be the sum of long-term debt and debt in current liabilities using Compustat

data. Second, we set V = S + D to be the firm value with S equaling the market value of

the equity and D equaling the market value of the debt. Given that firms typically issue

bonds at par, the market value of the debt should be close to the book value. To improve on

this approximation, however, we collect, for each firm, all of its bonds covered by TRACE

and calculate an issuance weighted market-to-book ratio. We then approximate the market

value of the debt by multiplying K by the market-to-book ratio.

In calibrating the firm-level debt maturity T, we take into account the actual maturity

structure of the firm and collect all of the firm's bonds in FISD and calculate the respective

durations. We let the firm-level T be the issuance-weighted duration of all the bonds in

our sample. Effectively, we acknowledge the fact that firm's maturity structure is more

complex than the zero-coupon structure assumed in the Merton model, and our issuance-

weighted duration is an attempt to map the collection of coupon bonds to the maturity of

a zero-coupon bond. Finally, we calculate the firm's payout ratio 6 by adding its annual

dividends plus repurchases minus issuances and plus annual coupon payments and scale the

total dollar payout by the firm value V. With the exception of leverage K/V, the other

firm-level parameters are constant in the model. We do, however, take its time-variation

into account and update the firm level parameters at the appropriate frequencies.



2.4.2 Model-Implied Asset Return Volatility ,Merton

For each firm in our sample, we back out its asset volatility rMerton using the Merton model via

equation (2.8). The risk-free parameters as well as the firm-level model parameters including

leverage K/V, payout ratio S and firm T are calibrated as described in Section 2.4.1. The

fourth panel of Table 2.2 summarizes the model-implied asset volatility using the firm-level

parameters, the estimated equity volatility (^E, and the bond volatility cTr as inputs. Among

the inputs, however, the key variable is equity volatility, which remains quite stable across

measurement horizons. The model-implied asset volatility inherits this pattern. In addition,
it also inherits a relatively low asset volatility from the relatively low equity volatility.

The cross-sectional variation of the model-implied asset volatility is reported in the third

panel of Table 2.3. It shows that smaller firms have higher asset volatilities. It is interesting

that firms with lower leverage have higher asset volatilities, consistent with the possibility

of leverage being an endogenous variable. On the other hand, firms whose bonds are spec-

ulative grades have markedly higher volatilities than that of the investment grades. Within

investment grade, there is some evidence of increasing asset volatility with decreasing credit

rating, although this pattern is not robust. Finally, the relation of asset volatility to eq-

uity volatility is monotonically increasing, indicating that the cross-sectional variation in

leverage, or more precisely the modified leverage .L, does not break the link between the two.

Finally, we should mention one bias in our sarmple regarding the calculation of model-

implied asset volatility. Although it is clear from equation (2.8) that, for each firm with a

fixed set of parameters, the equity volatility will be the deciding factor in backing out the

asset volatility, the interest rate volatility component does plays a role. For firms with high

leverage, its equity volatility should have a component tied to the volatility of the risk-free

rate. But for some highly levered firms in our sample, their empirical equity volatility is

too low to account for the risk-free interest-rate volatility component. In such cases, an

asset volatility cannot be backed out from equation (2.8), and we exclude the firm and

their bonds from our sample. The frequency of such incidents is not rare, and happens for

about 10% of the firms and 20% of the bonds in our sample. Had we used a zero asset

volatility in the model, the bond volatility would be identical to the Treasury bond volatility

of the same maturity. In practice, however, these bonds' volatilities are higher than their

Treasury counterparts because of default risk. By excluding these bonds from our sample,

we effective create an downward bias in the difference between empirical and model-implied

bond volatility.



2.4.3 Model-Implied Bond Return Volatility &DMerton

For each bond in our sample, we calculate its model-implied volatility &Merton using the

Merton model via equation (2.10). The risk-free parameters as well as the firm-level model

parameters are the same as before, except that we are taking the model-implied asset volatil-

ity lfertion as a key put. Moreover, we no longer need the firm maturity T. Instead, the

respective bond maturity is used in calculating the return volatility for coupon bonds and

the loss given default is set at 50%.

The last panel of Table 2.2 summarizes the model-implied bond volatility, &Merton. It is

interesting to note that while the sample mean of &D is 18.06%, 9.62%, and 7.18% when

estimated using daily, weekly, and month bond returns, the sample mean of DMerton is 5.42%,

5.14%, and 5.35%, respectively. Of course, this lack of variation across horizons is not

surprising given that a key input in estimating c Merton is the equity return volatility 5 E,

which is relatively stable when various horizon returns are used. It does, however, reflect

an interesting disconnect between the bond and equity market. We will compare &D and

&Merton more closely in the next section.

The cross-sectional variation of &Merton is summarized in the last panel of Table 2.3.

Quite intuitively, bonds with higher firm leverage, longer maturity, and lower rating are

more volatile. In fact, among all the variables used in the sorting procedure, bond maturity

is among the most effective variables in generating a spread in &M erton. In other words, the

duration risk is an important component in the cross-sectional determinants of 6 )lerton. The

other most effective variable is the bond volatility &D estimated directly from the data. The

fact that &D and (&Merton line up in the expected direction is encouraging for our model.

In addition, the fact that the spread is even wider when sorted by the empirical bond

volatility &Merton estimated using monthly bond returns is even more telling. It indicates

that the model-implied bond volatility, which includes no information about the potential

liquidity problems in corporate bonds, lines up better cross-sectionally with the empirical

bond volatilities that are estimated using longer horizon returns and are less subject to

liquidity contaminations. Sorting by equity volatility &E generates a cross-sectional variation

in oDMerton, although the effect is somewhat muted.11 Finally, the relation of &)Merton to the

size of the bond, however, is not as clear as it is the case for &D.

"It should be noted that &M rtor is not necessarily monotonic in &E. For example, while the first term

equation (2.10), which measures the defaultable bond's exposure to firm risk, is clearly increasing in a,, the
second term, however, is decreasing in a,. For long duration bonds, the second term, which captures the
risk-free interest rate exposure, could outweigh the first.



2.5 Bond Volatility: Empirical vs. Model

2.5.1 Excess Volatility

Table 2.4 summarizes the main result of this chapter. Specifically, there is a strong dis-
creparicy between the bond volatility &D estimated directly using bond return data and the
bond volatility &Merton implied by the Merton model. Using daily returns to construct the
volatility estimates, the sample means of &D and Merton are 18.06% and 5.42%, respectively.

The full sample mean of &D - (Merton is 12.64% with a robust t-stat of 34.55 (clustered by
month and bond). The economic magnitude of such a discrepancy is quite large, and it
indicates a volatility component in corporate bonds that is disconnected from the equity
volatility of the same issuer and tile interest rate volatility in Treasury bonds. Figure 2-2
paints a very similar picture by reporting the cross-sectional distribution the time-series av-
erages of &D - iMerton, bond by bond. In fact, 618 out of the 623 bonds in our sample have
a D - Merton that is positive with t-stat greater than 1.96.

To better understand this large excess volatility component, we examine 5 D - Merton

across various measurement horizons.i 2 When the volatility estimates are constructed using
weekly returns, the sample mean of &D - DMerton shrinks to 4.47% with a robust t-stat of
15.52. Moving to the monthly horizon, the difference is further reduced to 1.83% with a
robust t-stat of 2.29. Putting aside the fact that even at the monthly level the discrepancy

is still significant statistically arid large economically, the dramatic reduction in &D - Merton

across measurement horizons indicates that the disconnect is most severe at shorter hori-
zons. Indeed, this horizon result is driven almost entirely by the short-term behavior of
corporate bond returns. Specifically, the sample means of the empirical bond volatility &D
are 18.06%, 9.62%, 7.18%, respectively, when measured using daily, weekly, and monthly
bond returns. By contrast, the empirical equity volatility SE remains stable across the dif-
ferent measurement horizons. So does the model-implied bond volatility. Implicit in this
unique horizon result is a high degree of negative auto-covariances in short-horizon bond
returns, accentuating a severe liquidity component in the corporate bond market.

To exclude the possibility that our results are driven by a few bonds with extreme values

of &D, we examine tile time-series average of the cross-sectional medians of the volatility

estimates. Specifically, the medians of 6D are 15.78%, 8.48%, and 6.36% for daily, weekly,
and monthly measurement horizons respectively; the medians of DMerton are 6.30%, 6.16%,
and 6.18% respectively; and the medians of &D - 5 Mrton are 9.85%, 2.63%, and 0.47%,

12It should be mentioned that the model-implied volatility ^Merton is derived for instantaneous returns.
As such, when we move on to calculate volatility of bond returns over monthly horizons, the approximation
error would increase.



respectively. The patterns are similar to those reported for the sample mean results, with

the exception that the median discrepancy in volatility estimates is only 47 basis points when

measured with monthly returns. In other words, the excess volatility in corporate bond is

most severe when measured with short-horizon returns, and then tapers off near monthly

returns.

As shown in Table 2.4, at the daily and weekly measurement horizons, the pattern of

excess volatility is quite robust, whether the sample is split by bond type, by year, by

credit rating, or by bond duration. While our full sample includes only straight bonds and

callable bonds, we also report the results for convertible and putable bonds separately. It

is expected that, except for straight bonds, the model-implied bond volatility will be off

in capturing the real bond volatility. In particular, the model would under-estimate the

volatility for a convertible bond. Indeed, we find a much higher level of excess volatility

for convertible bonds. The fact that the putable bonds also have higher excess volatility,

however, is puzzling, although the sample is quite small. Given that the callability feature is

more tied to the random fluctuation of interest rates and effectively shortens the duration of

a callable bond, one would expect the model to over-estimate the volatility in a callable bond,

and therefore generate a lower degree of excess volatility. Table 2.4, however, shows that the

excess volatility is slightly higher for callable bonds than for straight bonds. This comparison,

however, fails to factor in bond-level characteristics such as maturity and rating, which could

be important in driving the excess volatility results. Indeed, the average maturity of the

callable bonds in our sample is about 3.5 years longer than for the straight bonds. Their

credit ratings are also on average one or two notches below the straight bonds.

It is not surprising that the model performs the best at the monthly return horizon.

Specifically, the model is able to generate an average volatility of 5.35% that is relatively close

to the empirically observed bond volatility of 7.18%. This excess volatility of 1.83%, however,
is still statistically significant with a robust t-stat of 2.29, and, perhaps more importantly, still

accounts for a quarter of the observed empirical bond volatility. The subsample results at the

monthly measurement horizon, however, are not as robust as those at the shorter horizons.

For example, at the monthly measurement horizon, excess volatility is not significant for A

and above rated bonds, but remains to be important for bonds rated Baa and below. The

U-shaped pattern of excess volatility by bond duration is also interesting. At the monthly

measurement horizon, the average empirical volatility is 3.14% for bonds with duration less

than 2 years, and the corresponding excess volatility is 0.91%, which is close to a third of

the observed empirical volatility and is statistically significant. For median duration bonds,

however, excess volatility becomes less significant. But as we move to the category of bonds

with the longest duration, excess volatility becomes significant again. The average empirical



volatility for bonds with duration longer than 8 years is 11.19%, and the corresponding excess

volatility is 4.98%, which is about 45% of the observed empirical volatility.

Overall, our results indicate that while at the daily and weekly measurement horizons,
the Merton model cannot even begin to generate the kind of bond volatility observed in the

data due to the liquidity problems in corporate bonds, the model does a much better job at

the monthly horizon. Whether or not the remaining amount of excess volatility is due to

liquidity or model mis-specification remains an interesting question. We pay close attention

to this aspect of our result in the next few sections.

2.5.2 Further Considerations

Stochastic Interest Rate

The simple term-structure model employed in this chapter is an issue of concern. A proper

account of the risk-free volatility is important because small fluctuations in the risk-free

interest rate will be magnified by the duration of the bond to a sizeable volatility. Because

of this, we calibrate the volatility coefficient (u, in the risk-free rate model so that the model

generates the empirically observed level of volatility for a 7-year Treasury coupon bond.

Effectively, we force the model to match well near the 7-year maturity, which is close to the

median maturity of our bond sample. This, however, still does not fully capture the entire

term-structure of interest rate volatility.

To account for this, we work with excess bond returns to avoid relying on a term structure

model. We calculate excess bond returns by subtracting contemporaneous Treasury bond

returns of a similar maturity from the corporate bond returns.13 Comparing the volatility

measured by bond excess returns to the model-implied excess bond volatility, we find that

the results are similar to our main result. For the daily, weekly, and monthly measurement

horizons, the sample means of 3&D - &Merto are respectively 17.21%, 8.02%, and 4.76%

with robust t-stats of 42.98, 31.37, and 18.85; the time-series averages of the cross-sectional

medians are 14.54%, 6.39%, and 3.79%.

Overall, the excess bond volatility puzzle is somewhat deepened here with the adoption

of the model-free approach. The main reason is that in working with the Merton model with

stochastic interest rates, we inherit the model-implied correlation between the corporate

bond and Treasury bond. In the model-free approach, the empirical correlation is used.

Implicit in the current result, the empirical link is weaker than that prescribed by the model,
consequently making the excess volatility puzzle even larger in magnitude.

13The return horizons are matched at daily, weekly, and monthly, respectively. We use 1-, 2-, 5-, 7-, 10-,
20-, and 30-year Treasury returns as the basis of our extrapolation to get the target maturity.



Bid-Ask Bounce

Given the importance of liquidity as a potential explanation of our results, we further consider

correcting the bond volatility measure by factoring in the effect of bid-ask bounce. Following

Roll (1984) and assuming that transactions at bid and ask are equally likely, we can map an

observed bid-ask spread to its impact on return volatility. For all of the bonds in our sample,

we collect monthly bid-ask spreads from Bloomberg Terminals, and calculate the associated

"bid-ask bounce" contribution to the bond return volatility.14

The last panel in Table 2.4 reports D - erton, where &D is the square-root of the

difference between the empirical bond variance minus the variance generated by the bid-

ask bounce. While decreasing somewhat from the previous results, the magnitude of the

discrepancy remains similar to our main result. In other words, the excess bond volatility

documented here cannot be explained by bid-ask bounce alone.

Firms with Missing Asset Volatility

We use the Merton model to back out asset volatility from equity and Treasury volatilities

via equation (2.8). For most firms, the key input of this calculation is equity volatility, with

interest rate volatility relegated to playing only a minor role. It is for this reason, many of the

existing studies do not include Treasury volatility in the calculation. For firms with higher

than usual leverages, however, this Treasury component becomes too large to be ignored. If

the high leverage is further coupled with a higher than usual payout ratio 6, it would result

in a high level of modified leverage L. And from equation (2.8), we see that for such a firm,
its equity volatility would collect a component amplified by £/(1 - £) from the Treasury

volatility. If in practice, the equity volatility for such a firm is not large enough to account

for this component alone, then we run into the problem of not being able to back out asset

volatility from equation (2.8).

Indeed, for 12% of the firm-years in our sample based on monthly returns, we run into

this problem of missing asset volatility. This pool of firms has an average leverage of 70%,

twice the sample average of 35%. They have an average payout ratio of 11.55%, almost one

and a half deviations from the sample average of 4.92%. On the other hand, their firm-T

is on average 5.3 years, not that different from and slightly lower than the sample average.

Their equity volatility is on average 32.15%, which is indeed higher than the sample average

14Bloomberg typically provides bid-ask quotes from various dealers and we use the Bloomberg Generic
(BGN) Quote, which reflects consensus nmarket quotes. BGN quotes are available for a larger number of
bonds in our subsample and typically have a longer time series than quotes by other dealers. It should also
be noted that our adjustment is one-sided, since the bid-ask spread in the equity market might also have an
impa.ct as it finds its way to uDerton



of 25.68%, but not high enough to account for their interest rate exposure.

This problem of missing asset volatility affects 20% of the bonds in our sample that is

summarized in Table 2.1. Using monthly bond returns, we construct empirical bond volatility

for this sample of bonds and find an average bond volatility of 13.81% and a median volatility

of 10.44%, which are markedly higher than the average of 8.96% and median of 6.74% for the

sample of bonds without the missing asset volatility problem. The exclusion of such firms

and their bonds effectively creates a downward bias in our main result. In other words, the

magnitude of excess volatility reported in our main result would have been larger had we

included such bonds in our analysis.

Conditional vs. Unconditional Asset Volatility

One limitation of our modeling approach is the tension between conditional versus uncon-

ditional volatility. Using conditional volatility sharpens the contemporaneous connection

among the equity, Treasury, and corporate bond volatilities, capturing the link both across

firms and across time. Indeed, our approach leans heavily toward this conditional approach

by constructing monthly estimates of volatility using daily returns, and yearly estimates

using monthly returns. The limitation, however, is that when the Merton model is used

to calculate the sensitivity coefficients in equations (2.7) and (2.10), the conditional rather

than unconditional volatility is plugged into the model. This has the wrong implication that

if the current volatility is low, it will stay low for the entire life of the firm or the entire

maturity of the bond. Given that our sample of July 2002 through December 2006 falls

under a low equity volatility period, this tension could be important. The best resolution of

this tension is to have a stochastic volatility model. Given that it will dramatically increase

the complexity of the problem without the benefit of additional insights, we examine the

robustness of our main result by using the following "hybrid" approach.

We first obtain unconditional estimates of equity and Treasury bond volatilities using

monthly equity and Treasury bond returns going as far back into history as possible. We

then plug in the unconditional volatilities to equation (2.7) to obtain an unconditional ver-

sion of the asset volatility. Averaged across all firms, this unconditional asset volatility is

27.84% with a cross-sectional median of 24.18%, which are indeed higher than the the model-

implied asset volatilities reported for our sample period. Armed with the unconditional asset

volatility, we can now fix the problem with respect to the model-implied sensitivity coeffi-

cients in equations (2.7) and (2.10). Given that the horizon of the firm is typically long

(firm-T is on average 6 years), and the rate of mean reversion of equity volatility is relatively

fast, calculating the sensitivity coefficients using an unconditional approach seems reason-

able. Applying this hybrid approach, we find only minor effects on our main result. For the



monthly measurement horizon, the excess volatility measure 6D -Merton is on average 1.36%

with a t-stat of 3.96. In other words, excess volatility remains significant both statistically

and economically even at the monthly horizon.

2.6 Cross-Sectional Determinants of Excess Volatility

To shed light on the discrepancy measure &D - aDMerton, we examine its cross-sectional determi-

nants. Using the daily measurement horizon, we have monthly time-series of &D and &Merton

for cross-sections of bonds. Table 2.5 reports the Fama and MacBeth (1973) cross-sectional

regressions at monthly frequency with &D DMerton as the dependent variable.

We find that, after controlling for other bond characteristics such as maturity and rating,

excess volatility is more severe in smaller bonds. Given that smaller bonds are typically

less liquid, this could potentially be a liquidity explanation. Similarly, the result on age is

also quite interesting. In terms of the level of bond volatility, there is no theoretical link

between the age of a bond and its volatility, keeping bond maturity fixed. By contrast, we

find that &D - Merton is higher for those bonds that are older. Specifically, controlling for

other bond characteristics including maturity, rating and size, a bond that is one-year older

has an additional excess volatility of 58 basis points, and the t-stat is 4.55. As newly issued

bonds are typically more liquid, while the old bonds are more likely to have a larger fraction

held by buy-and-hold investors, our result is consistent with a liquidity explanation.

Table 2.5 shows that both the bond maturity and rating play an important role in ex-

plaining &D - ~Merton. More specifically, longer maturity bonds and lower rated bonds exhibit

more excess volatility. This effect, however, could be confounded with the fact that longer

maturity bonds and lower rated bonds are more volatile in general. The liquidity connec-

tions in terms of rating and maturity are not apparent, although it is probably true that

investment grades are more liquid than speculative grades, and certain maturity cohorts are

more liquid. Given the importance of these two variables in bond volatility, we add them to

serve more as controls.

The results using the firm-level variables are mixed. After controlling for rating, bonds

that are issued by firms with higher leverage have higher excess volatility. Specifically, a

10% increase in a firm's leverage increases the excess volatility by 41 basis points. The

firm's equity volatility is found to be positively related to the cross-sectional variation of

D -D rDMerton, but the result is not statistically significant. Given the inherent connection

between the corporate bonds and equity of the same firm, one would expect a positive link

between the empirical bond volatility &D and the equity volatility 6rE. Indeed, Table 2.3

shows that the cross-sectional variation in empirical bond volatility is closely connected to



the cross-sectional variation in equity volatility. The fact that the equity volatility can
no longer explain, with statistical significance, the cross-sectional variation in 5 D - D 5 Merton

indicates that the model-implied bond volatility &Merton is doing a good job in capturing
the cross-sectional variation in &D that was previously proxied by YE. And whatever is left
unexplained is unlikely to be related to the issuer's equity volatility.

The trading related variables also show some interesting results. We find more excess
volatility in corporate bonds whose average trade size is small. Controlling for other bond
characteristics including bond size, maturity, rating, and age, a bond with an average trade
size of $100,000 face value would have an additional excess volatility of 2.26 ln(10)=5.20%
than a bond with an average trade size of $1,000,000 face value.15 One could argue that,
after controlling for bond size, the bonds with smaller average trade size are more likely
to be traded in less liquid bond trading platforms and therefore have a larger liquidity
component. It should be mentioned that the niontlily time-series variation of the variables

could also contribute to the result. That is, for each bond, tile month during which the

average trade size is small is a less liquid month, therefore resulting in a higher &D - &Mrton

during that month relative to other bonds. The results from the other trading variables
are somewhat mixed. For example, bonds with higher trading volume yield lower excess
volatility. The turnover result points in the same direction, but is not statistically significant.
On the other hand, bonds with a larger number of trades yield higher excess volatility and is
statistically significant. While trading volume and number of trades are positively related,
their implications for liquidity might be different, and this observation is consistent with our
result for average trade size."6 Similarly, we find that bonds with higher percentage days of
trading exhibit more excess bond volatility.1 7

Finally, using the monthly measurement horizon, we have yearly time-series of the empir-
ical and model-implied bond volatilities, and the Fama-MacBeth cross-sectional regression
could be done at yearly frequency. It is plausible that the liquidity problem is less prominent
at this measurement horizon. Indeed, we find that the size of the bond is no longer important
in explaining the excess volatility. The age of a bond remains important: older bonds have

more excess volatility, but the importance diminishes when the average trade size of a bond

is used. Overall, the average trade size of a bond remains to be important: bonds trading in

smaller average sizes have higher excess volatility. The leverage of the firm, however, is no
15It should be mentioned that TRACE truncates the trade size at $1 million for speculative grade bonds

and at $5 million for investment grade bonds.
16A bond with high number of trades from investors trading with small average trade size is different froim

a bond with low number of trades from investors trading large average trade size.
17Overall, it should be mentioned that our bond sample selection biases toward more liquid bonds. So to

the extent that we would like to interpret some of the trading variables as proxying for bond liquidity, we
are working within the domain of relatively liquid bonds.



longer important in explaining the cross-sectional variation in excess volatility.

2.7 Time-Series Determinants of Bond Returns

In this section, we focus on the random shocks that give rise to the excess volatility puzzle

documented in this chapter. In particular, we are interested in knowing if these random

shocks exist only at the individual bond level, and whether or not they aggregate to a

systematic component.

For this, we apply the method of Campbell, Lettau, Malkiel, and Xu (2001) to decompose

the volatility associated with the random shocks into systematic and idiosyncratic compo-

nents. The results are summarized in Figure 2-1. Given that uneven panels might introduce

time variations in the relative magnitude of idiosyncratic and systematic volatility, we per-

form our analysis for the sample period after April 14, 2003, when Phase II of TRACE was

introduced and the coverage was broader. Moreover, we exclude bonds that entered only

after Phase III. The stock sample mirrors this bond sample. The bond residuals are the

regression residuals from 18

R = + E E R TR T Ett  (2.11)

Intuitively, this equation captures the variation of bond returns after taking out the exposure

to the equity of the same firm and the exposure to a Treasury bond of a similar maturity.

As shown in the top panel of Figure 2-1, the systematic volatility of corporate bonds is on

average 3.82%, which is low compared with the equity market. The bond residuals have an

even lower systematic volatility at 2.11%. According to the model, however, this systematic

volatility should be zero. In practice, however, over 50% of the systematic volatility in

the corporate bond market actually arises from this systematic component of the residuals

that should have been zero according to the model. Moreover, as shown in Figure 2-1, the

systematic volatility of bonds moves quite closely with the systematic volatility of bond

residuals, with a correlation of 85%. Interestingly, they also co-move with the CBOE VIX

index: the correlation is 71.62% with bonds and 76.21% with bond residuals.

The bottom panel of Figure 2-1 plots the idiosyncratic volatility of stock, bond, and

bond residual. Unsurprisingly, the idiosyncratic volatility of the residuals is disproportion-

ally large. The average idiosyncratic volatility is 18.52% for equities, 20.11% for bonds,
and 17.02% for bond residuals. Given that the equity market in aggregate is several times

more volatile than the aggregate bond market, the similar magnitudes of their idiosyncratic

s1For each bond in our sample, this regression is run every month (at least 10 daily observations are
required).



volatility indicate a disproportionally large idiosyncratic component in corporate bond re-

turns. Moreover, the fact that the idiosyncratic volatility of the bond residual remains high,
at a level of 17.02%, indicates that this large idiosyncratic component cannot be explained

by our model. Interestingly, this idiosyncratic volatility has a correlation of 80% with the

systematic volatility of the residuals and a correlation of 83.56% with the CBOE VIX index.

2.8 Conclusions

In recent years, we have seen increasing research activities on the empirical performance

of structural models of default. Much attention has been focused on the model's ability or

inability to match credit spreads. In addition, our knowledge of the empirical performance of

structural models, while intriguing and informative, is formed in large part by calibrations at

the level of credit ratings or by applying the model to only a handful of bond observations.

With the availability of the high frequency data from TRACE, which offers better data

quality for a broad cross-section of corporate bonds, it is perhaps an opportune timrne to

examine the structural models of default more closely.

This chapter's contribution is to provide an alternative angle from which the empirical

performance of the structural models can be evaluated. In addition, by taking advantage

of the high frequency data from TRACE, we can evaluate the empirical performance of the

Merton model from varying measurement horizons. Applying the model at the firm level

for a relatively broad cross-section of bonds, we are also able to form a better sense of how

the Merton model actually performs at the individual firm and bond level and examine the

cross-sectional and time-series determinants of the discrepancies between model and data.

For a broad cross-section of corporate bonds that extend from July 2002 through Decem-

ber 2006, we find an overwhelming amount of excess volatility in corporate bonds that cannot

be explained by the Merton model of default. In fact, perhaps no structural model of default

can explain our results at the daily and weekly measurement horizons: the magnitudes of

the discrepancy are too large and the patterns too unique to be contributed by default risk.

At these horizons, the issue of liquidity is unambiguously important. Moreover, we find that

variables known to be linked to bond liquidity are important in explaining the cross-sectional

variations in excess volatility, providing further evidence of a liquidity problem in corporate

bonds.

At the monthly measurement horizon, excess volatility becomes less severe, although on

average it still accounts for a quarter of the observed empirical bond volatility. At this

horizon, it becomes interesting to question whether or not the documented excess volatility

is due to liquidity or model mis-specification. Our additional analyses show that it cannot



be attributed to the lack of a sophisticated term-structure model or to the bid-ask bounce

in the quoted bid-ask spread for corporate bonds. Finally, even at the monthly measure

horizon, we still find interesting connections between variables known to be linked to bond

volatility and the cross-sectional variations in excess volatility,

Overall, the main result of this chapter is the pattern of excess volatility in corporate

bonds and its connection to the liquidity of the corporate bond market. In the following

chapter, we link this excess volatility more closely to the micro-structure of corporate bonds

so as to understand the economic driver of the illiquidity in corporate bonds.

2.9 Tables and Figures



Table 2.1: Bond Sample Summary Statistics

Our Sample
2002 2003 2004 2005 2006

mean med std mean med std mean med std mean med std mean med std
#Bonds 184 341 467 773 784
Maturity 8.51 7.05 7.97 8.34 6.49 7.67 8.26 6.19 7.51 8.67 6.48 7.61 8.55 6.12 7.64
Amt 1,686 1,368 976 1.233 1,082 944 1,033 895 903 782 521 775 799 579 746
Rating 6.58 7.00 2.88 6.31 6.92 2.82 6.89 6.96 3.14 8.79 8.75 4.13 9.27 9.00 4.31
Age 2.02 1.58 1.69 2.74 2.07 2.31 3.28 2.59 2.53 3.82 3.13 2.92 4.04 3.56 3.03
#Trades 534 241 941 326 171 582 213 131 285 208 116 345 150 101 151
Volume 245 169 255 172 101 257 113 57 227 75 36 145 58 33 82
Turnover 13.69 11.12 9.50 11.79 9.02 9.77 9.14 6.68 8.34 8.44 5.73 8.10 7.31 4.81 7.42
%Traded 96.12 98.44 6.17 95.18 98.82 7.02 93.68 98.43 8.00 92.93 96.48 8.34 91.79 95.31 8.84
Trd Size 781 610 606 651 484 571 541 392 519 418 279 462 450 269 521

#Firms 60 92 129 227 236
Mkt Cap 35.90 17.61 52.78 36.56 19.05 50.76 34.67 20.33 51.65 25.23 10.46 46.65 26.96 11.50 48.22

US Corporates in FISD

#Bonds 21,465 22,305 24.203 26,590 28,710
Maturity 7.11 4.33 8.97 7.24 4.43 8.88 7.43 4.55 8.74 7.45 4.65 8.61 7.23 4.39 8.57
Amt 172 68 328 174 57 336 171 48 337 164 31 335 164 25 339
Rating 7.49 6.00 4.26 7.41 6.58 4.25 7.02 6.17 4.10 6.77 6.00 4.03 6.51 5.58 4.11
Age 4.47 3.84 3.82 4.15 3.11 3.86 3.76 2.18 3.89 3.56 2.04 3.85 3.55 2.29 3.79

#Bonds and #Firm are the average numbers of bonds and firms per month. Maturity is the bond's time to maturity in years. Amt is the
bond's amount outstanding in millions of dollars. Rating is a numerical translation of Moody's rating: 1 =Aaa and 21=C. Age is the time
since issuance in years. #Trades is the bond's total number of trades in a month. Volume is the bond's total trading volume in a month
in millions of dollars of face value. Turnover is the bond's monthly trading volume as a percentage of the amount outstanding. % Traded
is the percentage of business (lays in a month when the bond is traded. Trd Size is the average trade size of the bond in thousands of
dollars of face value. Mkt Cap is the equity market capitalization in billions of dollars. The reported std and median are the time-series
averages of cross-sectional values.



Table 2.2: Volatility Estimates

Daily Returns Weekly Returns Monthly Returns
mean med sd mean med sd mean reed sd

Empirical Bond Volatility &D
2003 21.14 18.32 13.11 11.45 10.03 7.09 8.79 8.42 4.50

2004 17.37 14.04 12.30 8.82 7.50 6.26 6.21 6.07 3.14

2005 17.50 13.88 13.56 9.30 7.40 8.10 6.50 5.28 4.85

2006 16.06 13.31 10.99 8.63 6.99 8.99 7.50 5.67 5.85

Full 18.06 15.78 13.51 9.62 8.48 8.43 7.18 6.36 4.58

Empirical Equity Volatility CYE

2003 27.17 25.37 11.54 26.07 25.09 11.27 25.46 23.27 10.73

2004 22.05 18.63 12.40 23.18 19.57 13.27 18.73 16.43 8.20

2005 26.09 21.09 17.36 26.79 21.92 17.88 26.51 21.91 20.30

2006 26.21 21.51 17.70 27.06 21.58 20.01 24.87 19.61 18.50

Full 26.86 24.50 16.06 27.46 25.56 16.74 24.39 20.31 14.43
Empirical 7-Year Treasury Bond Volatility

2003 6.83 7.11 1.15 6.98 7.06 1.20 7.96 NA NA

2004 5.77 5.61 1.16 5.36 5.33 1.73 6.15 NA NA

2005 4.65 4.81 0.62 4.18 4.01 0.72 5.00 NA NA

2006 3.93 4.12 0.54 3.43 3.41 0.50 3.35 NA NA

Full 5.51 5.20 1.55 5.30 5.19 1.93 5.62 5.58 1.94

Model-Implied Asset Volatility Mrtorn

2003 18.19 17.47 9.99 17.35 16.54 10.06 17.30 16.46 8.28

2004 15.14 13.36 10.58 15.92 13.32 11.16 13.32 12.54 6.29

2005 16.78 13.50 13.12 17.24 13.93 13.15 17.24 14.26 16.69

2006 16.98 13.98 13.50 17.42 14.21 14.66 16.41 13.34 13.00

Full 17.81 16.52 13.53 18.15 16.92 13.85 16.26 14.15 11.07

Model-Implied Bond Volatility &eD rton
2003 7.42 8.00 2.51 7.31 8.03 2.50 8.10 9.08 2.54

2004 5.79 6.38 2.16 5.41 5.88 2.16 5.97 6.68 2.15
2005 4.85 5.00 2.86 4.42 4.48 2.62 5.00 5.27 2.73

2006 4.03 4.08 2.37 3.76 3.63 2.69 4.06 3.70 2.82
Full 5.42 6.30 2.72 5.14 6.16 2.87 5.35 6.18 2.56

All volatility estimates are annualized and expressed in percentages. The empirical

bond and equity return volatilities are constructed using daily, weekly, and monthly

bond and equity returns, respectively. The model-implied asset and bond return

volatilities are backed out from equations (2.8) and (2.10), respectively, using the

equity return volatility &E as inputs. The reported med and std are the time-
series averages of cross-sectional medians and standard deviations. For empirical

Treasury bond volatility, the reported numbers are time-series medians and standard

deviations. The full sample includes data from July 2002 through 2006.



Table 2.3: Volatility Estimates by Firm or Bond Characteristics

Daily Returns Weekly Returns Monthly Returns
low Q2 Q3 high low Q2 Q3 high low Q2 Q3 high

Empirical Bond Volatility O
0

D
Bond Amt 36.58 21.60 18.10 17.79 20.70 11.90 9.80 9.88 12.77 7.99 7.34 7.30
Bond Maturity 13.83 19.04 24.96 36.15 7.09 10.32 14.33 20.50 4.82 7.12 9.78 14.27
Rating 15.75 17.02 24.67 33.85 7.82 8.82 13.65 19.76 5.32 6.26 7.79 14.63
Equity Volatility 16.85 17.43 23.81 35.93 8.73 9.07 16.57 18.66 5.78 6.32 8.61 15.29
Firm Leverage 17.47 20.16 19.76 37.03 9.52 10.40 11.45 21.87 6.61 7.14 7.46 15.05
Firm Payout 20.05 17.84 29.53 25.59 10.64 9.76 17.66 13.56 7.40 7.22 11.83 8.91
Bond Turnover 25.84 21.45 20.40 25.83 14.16 11.53 10.95 15.31 9.76 7.17 7.53 11.43
%Days Traded 23.61 24.92 23.81 20.71 13.24 13.68 13.16 11.44 10.93 8.23 8.36 8.24

Empirical Equity Volatility cE
Equity Mkt Cap 36.58 24.27 23.05 21.33 40.37 25.23 23.32 21.35 38.59 24.37 20.68 18.81
Firm Leverage 23.80 24.33 23.89 39.54 23.90 24.43 24.78 41.04 20.19 23.86 21.06 37.81

Model-Implied Asset Volatility .Merton

Equity Mkt Cap 21.21 17.96 17.52 18.43 22.66 18.87 17.21 18.07 19.92 17.27 15.90 15.55
Firm Leverage 21.67 19.19 15.78 17.48 21.84 19.68 15.76 18.37 19.02 17.91 15.41 16.33
Equity Volatility 11.04 15.92 19.67 28.70 10.72 15.38 20.50 31.65 8.82 13.51 17.80 28.73
Rating 15.66 17.19 17.61 21.67 15.68 16.89 17.91 22.43 14.25 14.87 14.43 22.74

Model-Implied Bond Volatility -erton
Bond Amt 5.91 5.22 5.38 5.53 5.74 4.81 5.05 5.28 6.08 5.34 4.83 5.36
Firm Leverage 5.03 5.59 5.26 6.64 4.60 5.05 5.06 6.42 4.85 5.15 5.33 6.34
Bond Maturity 3.19 5.50 6.57 6.88 3.00 5.15 6.30 6.50 2.76 5.34 6.53 7.04
Equity Volatility 4.92 5.17 5.58 6.57 4.61 4.70 5.01 6.99 4.90 4.92 5.03 6.84
Firm Payout 5.64 5.24 5.59 5.53 5.18 5.11 5.28 5.26 5.49 5.03 6.10 5.00
Bond Volatility &D 3.68 5.34 6.13 7.20 3.41 4.86 5.82 7.04 2.96 5.04 6.05 7.61
Rating 5.08 5.30 5.76 6.00 4.74 4.96 5.42 5.81 4.99 5.26 5.34 6.08

All volatility estimates are annualized and expressed in percentages. The empirical bond and equity return volatilities are
constructed using daily, weekly, and monthly bond and equity returns, respectively. The model-implied asset and bond
return volatilities are backed out from equations (2.8) and (2.10), respectively, using equity return volatility SE as inputs.
The sample is sorted by the respective variables from low to high into quartiles: Q1 (low), Q2, Q3, and Q4 (high). For bond
ratings: Q1=Aaa&Aa, Q2=A, Q3=Baa and Q4=Junk.



Table 2.4: Data Estimated vs. Model Implied Bond Volatility
_ Merton

Daily Returns Weekly Returns Monthly Returns

#obs mean t-stat #obs mean t-stat #obs mean t-stat
Full Sample* 20,486 12.64 34.55 7,057 4.47 15.52 1,692 1.83 2.29
Straight 7,067 11.60 21.46 2,428 3.79 11.81 577 1.26 2.14
Callable Only 13,419 13.19 29.46 4,629 4.83 13.12 1,115 2.13 2.43
Convertible 1,848 27.36 26.45 624 13.84 13.31 133 8.59 7.97
Putable Not Cony. 117 23.78 6.02 41 12.76 3.64 10 4.60 3.50
By Year
2003 3,199 13.73 23.81 1,034 4.14 8.09 277 0.69 3.38
2004 4,147 11.58 23.59 1,441 3.41 6.64 319 0.23 1.86
2005 5,957 12.66 26.25 2,022 4.88 9.08 482 1.50 9.98
2006 6,340 12.04 31.88 2,274 4.86 12.09 614 3.45 19.02
By Rating
Aaa 2,090 10.74 12.05 685 3.24 7.37 154 0.44 1.04
Aa 2,258 10.23 12.75 751 2.90 7.86 166 0.21 0.48
A 7,088 10.11 19.82 2,387 3.13 10.42 571 0.59 1.51
Baa 5,274 13.66 19.78 1,828 4.98 10.55 419 1.86 3.50
Ba 1,665 17.39 15.38 649 7.79 8.47 202 6.10 5.28
B 1,230 17.10 17.28 444 6.84 8.80 96 3.16 5.66
By Duration
< 2 3,402 7.41 18.99 1,208 2.46 9.10 317 0.91 2.55
2 - 4 4,442 9.01 22.73 1,554 2.43 8.24 366 0.34 0.62
4- 6 5,126 11.43 28.33 1,753 3.93 8.60 442 1.22 1.59
6- 8 3,917 14.50 27.52 1,312 5.23 12.82 267 2.95 1.94
> 8 3,150 22.86 21.66 1,090 9.59 19.04 270 4.98 4.47
Using Excess (Bond - Treasury) Returns

19,079 17.21 42.98 6,665 8.02 31.37 1,668 4.76 18.85
Factor in Bid/Ask Spreads

17,734 11.64 30.75 6,121 3.97 14.69 1,487 1.74 2.12

The full sample includes straight and callable bonds, excluding convertibles and putables. Convert-
ibles and putables are excluded from all tests except those reported under Covertible, and Putable
Not Covertible. &D is estimated using daily, weekly, and monthly bond returns, respectively. ODMertor

is the model-implied bond volatility. #obs is bond month for daily, bond quarter for weekly, and
bond year for monthly. The t-stat's are calculated using robust standard errors, clustered by time
and by bond, with the by-year results at the monthly horizon being the only exception.



Table 2.5: Cross-sectional Determinants of &D

Constant 16.99
[7.13]

In(Amt) -2.48
[-7.31]

Maturity 0.61
[16.86]

Age 0.58

[4.55]
Rating 0.34

[4.29]
Leverage 4.05

[5.80]
Equity Vol 0.050

[1.57]
Volume

In(#Trd)

14.85
[7.27]
-1.53

[-4.98]
0.64

[19.59]
0.44

[3.33]
0.36

[5.24]
4.30

[6.59]
0.069
[2.37]
-1.18

[-4.71]

12.01 3.16
[5.79] [1.80]
-3.38 -1.83

[-9.08] [-5.45]
0.61 0.65

[16.25] [19.58]
0.62 0.33

[4.54] [2.72]
0.43 0.55

[5.06] [7.67]
3.50 3.27

[5.53] [6.30]
0.021 0.037
[0.67] [1.28]

-2.42
[-10.46]

2.26 3.80
[11.09] [14.44]

Turnover

ln(Trd Sz)

%Days Trd

Callable

R-sqd

-0.49
[-1.23]
30.17

-0.48
[-1.281
31.51

-0.40
[-1.01]
31.71

-0.39
[-1.13]
34.82

23.88
[6.82]
-3.54

[-7.57]
0.63

[19.54]
0.57

[4.75]
0.27

[4.40]
5.07

[7.07]
0.060
[1.89]

23.65
[10.61]

-1.08
[-3.61]

0.66
[19.92]

0.25
[2.29]

0.52
[7.76]

3.52
[6.19]
0.056
[1.87]

-0.009
[-1.10]

-2.78 -2.42
[-15.38] [-10.46]

-0.27
[-0.80]
31.72

Reported are monthly Fama-MacBeth cross-sectional regressions with OD - Merton as the de-
pendent variable, where UD and &ierto, both in %, are estimated using daily returns. The
Fama-MacBeth t-stats are corrected for autocorrelation using Newey-West. The reported R-
sqd's are the time-series averages of cross-sectional R 2's. Convertible and putable bonds are
excluded from the regression, and Callable is one for a callable bond and zero otherwise. Age
is year since issuance, Amt is in $m, Ratings are coded as 1 for Aaa and 21 for C, Leverage
is in decimals, Volume is monthly bond trading volume in $m, Trd Sz is average trade size in
$thousand, and Turnover, %Day Trd and Equity Vol are all in %. See Table 2.1 for the summary
statistics of the independent variables.
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8.22
[2.80]
-2.81

[-7.84]
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[17.41]
0.59
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0.39
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[5.94]
0.045
[1.40]
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-1.83
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[19.58]
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3.27
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[1.28]

1.38
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-0.45
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34.20
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-0.51
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30.92
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Figure 2-1: Systematic (top panel) and idiosyncratic (bottom panel) volatility of daily returns on stocks,
bonds, and bond residuals.
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Figure 2-2: The
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Chapter 3

Liquidity of Corporate Bonds

3.1 Introduction

The liquidity of the corporate bond market has been of interest for researchers, practitioners

and policy makers. Many studies have attributed deviations in corporate bond prices from

their "theoretical values" to the influence of illiquidity in the market.' Yet, our understanding

of how to quantify illiquidity remains limited. Without a credible measure of illiquidity, it is

difficult to have a direct and serious examination of the asset-pricing influence of illiquidity

and its implications on market efficiency.

Several measures of illiquidity have been considered in the literature for corporate bonds.

A simple measure is the effective bid-ask spread, which is analyzed in detail by Edwards,

Harris, and Piwowar (2007).2 Although the bid-ask spread is a direct and potentially im-

portant indicator of illiquidity, it does not fully capture many important aspects of liquidity

such as market depth and resilience. Alternatively, relying on theoretical pricing models to

gauge the impact of illiquidity allows for direct estimation of its influence on prices, but

suffers from potential mis-specifications of the pricing model.

In this chapter, we rely on a salient feature of illiquidity to measure its significance.

It has been well recognized that the lack of liquidity in an asset gives rise to transitory

components in its prices.3 The magnitude of such transitory price movements reflects the

1For example, Huang and Huang (2003) find that yield spreads for corporate bonds are too high to be
explained by credit risk and question the economic content of the unexplained portion of yield spreads (see
also Collin-Dufresne, Goldstein, and Martin (2001) and Longstaff, Mithal, and Neis (2005)). Chapter 2
documents a significant amount of transitory excess volatility in corporate bond returns and attributes this
excess volatility to the illiquidity of corporate bonds.

2 See also Besseinbinder, Maxwell, and Venkataraman (2006) and Goldstein, Hotchkiss, and Sirri (2007).
3 Niederhoffer and Osborne (1966) are among the first to recognize the relation between negative serial

covariation and illiquidity. More recent theoretical work in establishing this link include Grossman and Miller
(1988) and Huang and Wang (2007), among others.
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degree of illiquidity in the market. Since transitory price movements lead to negatively

serially correlated price changes, the negative of the autocovariance in price changes, which
we denote by 7, provides a simple, yet robust measure of illiquidity. In the simplest case
when the transitory price movements arise purely frorn bid-ask bounce, as considered by Roll
(1984), 2-y equals the bid-ask spread. But in more general cases, 7 captures the broader
impact of illiquidity on prices, above and beyond the effect of bid-ask spread. Moreover, it
does so without relying on specific bond pricing models.

Indeed, our results show that the lack of liquidity in the corporate bond market is sub-
stantial, significantly more severe than what can be explained by bid-ask bounce, and closely

related to bond characteristics that are known to be linked to liquidity. More importantly,
taking advantage of this measure of illiquidity, we are able to analyze the time variation

of the aggregate illiquidity in corporate bonds and its asset-pricing implications. The mnain

results of this chapter can be further detailed as follows.

First, we uncover a level of illiquidity in corporate bonds that is important both eco-

nomically and statistically. Using TRACE, a transaction-level dataset, we estimate y for a

broad cross-section of the most liquid corporate bonds in the U.S. market. Our results show

that, using trade-by-trade data, the median estimate of -y is 0.41, and the mean estimate is

0.60; using daily data, the median y is 0.67, and the mean -y is 1.04. Both means are highly

statistically significant. To judge the economic significance of such magnitudes, we can use

the quoted bid-ask spreads to calculate a bid-ask implied -. For the same sample of bonds

and for the same sample period, we find that the median and mean - implied by the quoted

bid-ask spreads are respectively 0.031 and 0.045, which are tiny fractions of our estimated -y.
An alternative comparison is to use Roll's model to calculate the -y-implied bid-ask spread,
which is 2 Vy, and compare it with the quoted bid-ask spread.4 Using our median estimates

of y, the y-implied bid-ask spread is $1.28 using trade-by-trade data and $1.64 using daily

data, significantly larger than the median quoted bid-ask spread of $0.31 or the estimated

bid-ask spread reported by Edwards, Harris, and Piwowar (2007) (see Section 3.5 for more

details). Such comparisons suggest that our illiquidity measure y captures the price impact

of illiquidity above and beyond the effect of simple bid-ask bounce.

Second, we establish a robust connection between our illiquidity measure y and bond

characteristics known to be relevant for liquidity. Regressing our illiquidity measure -y on a

spectrum of bond characteristics, we find a strong positive relation between ? and bond age

4 Roll's model assumes that directions of trades are serially independent. For a given bid-ask spread,
positive serial correlation in trade directions, which could be the case when liquidity is lacking and traders
break up their trades, tends to increase the implied bid-ask spreads for a given y. This could potentially
increase the magnitude of the -y implied bid-ask spreads, further deepening its difference from the quoted
bid-ask spreads.
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- a variable widely used in the fixed-income market as a proxy of illiquidity; and a strong

negative relation between y and the size of the bond issuance - another variable potentially

linked to bond liquidity. Moreover, we find that the measure of illiquidity captured by

y is related to but goes beyond the information contained in the quoted bid-ask spreads.

Specifically, adding the bid-ask implied y as an additional explanatory variable, we find

that it has a positive cross-sectional relation with our y measure, but it does not alter the

established cross-sectional relation between - and bond characteristics, including age and

issuance size. Controlling for bond characteristics including age and issuance size, we also

find that bonds with smaller average trade sizes typically have higher illiquidity measure y.

Third, focusing on the systematic component of bond illiquidity, we construct a time-

series of aggregate -y. Examining its variation over time and its connection with broader

financial markets, we find some rather interesting patterns in the aggregate y. Before the

onset of the subprime crisis in 2007, there is a general trend of decreasing -y, indicating

an overall improvement of liquidity in the corporate bond market before the summer of

2007. Against this backdrop of an overall time trend, however, we find substantial monthly

movements in the aggregate measure of illiquidity. In particular, the aggregate -y rises sharply

during market crises, including the periods that lead to the downgrade of Ford and GM bonds

to junk status, the sub-prime mortgage crisis that started in August 2007, and the credit

market turmoil following the collapse of Lehman Brothers. For example, before August 2007,

our aggregate - hovered around a level near 0.38 with a monthly standard deviation of 0.096.

In August 2007, it jumped by over 60% to a level near 0.70. During the year after that,

it stabilized around 0.81 with a monthly standard deviation of 0.12. Then rose to 1.59 in

September 2008 and an all-time high of 2.85 in October 2008.'

More interestingly, this common illiquidity component uncovered by our analysis is closely

connected with the changing conditions of broader financial markets. Regressing monthly

changes in aggregate - on changes in CBOE VIX, we find a positive and strongly significant

relation with an R-squared of 64%. We also consider a number of other variables that may

capture changing conditions in financial markets such as the volatility of aggregate bond

returns, CDS spread, term spread, default spread and lagged returns on the aggregate stock

and bond markets. While there is some evidence that these variables are related to our

aggregate liquidity measure during some periods, by far, the most robust relation lies with

VIX. Moreover, this connection between VIX is not simply a 2008 phenomena. For the

subperiod that excludes 2008, monthly changes in our aggregate ~ remain closely related to

monthly changes in VIX.

5To be conservative, we use the cross-sectional median of the bond-level y as our aggregate illiquidity
measure. The numbers are even more dramatic using the cross-sectional mean.
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The fact that the VIX index, measured from index options, is the main variable in ex-
plaining changes in aggregate illiquidity of corporate bonds is rather intriguing. Indeed, from
an aggregate perspective, this implies that the sources of our estimated bond market illiquid-
ity are not contained just in the bond market. This raises the possibility of illiquidity being
an additional source of systemic risk, as examined by Chordia, Roll, and Subrahmanyam

(2000) and Pastor and Stambaugh (2003) for the equity market.

Fourth, we examine the asset-pricing implications of bond illiquidity. We find that our

illiquidity measure 7 explains the cross-sectional variation of average bond yield spreads with

large economic significance. Controlling for bond rating categories, we perform monthly

cross-sectional regressions of bond yield spreads on bond 7. We find a coefficient of 0.21

with a t-stat of 7.08 using Fama and MacBeth (1973) standard errors. Given that the cross-

sectional standard deviation of y is 1.79, our result implies that for two bonds in the same

rating category, a two standard deviation difference in their y leads to a difference in their

yield spreads as large as 75 bps. This is comparable to the difference in yield spreads between

Baa and Aaa/Aa bonds, which is 113 bps in our sample. In contrast, quoted bid-ask spreads

have rather limited, if any, economic significance in explaining the cross-sectional average

yield spreads. Moreover, the economic significance of our illiquidity measure remains robust

in its magnitude and statistical significance after we control for a spectrum of variables

related to the bond's fundamental information as well as bond characteristics. In particular,
liquidity related variables such as bond age, issuance size, quoted bid-ask spread, and average

trade size do not change this result in a significant way.

In addition to the main results summarized above, we provide detailed analyses of our

illiquidity measure to further shed light on the nature of illiquidity in corporate bonds. We
explore the dynamic properties of illiquidity by estimating the magnitude of price reversals

after skipping one or several trades. We find significant price reversals even after skipping a

trade, indicating a mean-reversion in price changes that lasts for imore than one trade.6 We

also find that negative price changes, likely caused by excess selling pressure, are followed

by stronger reversals than positive price changes, resulting in an asymmetry in 7.7 We find

that price changes associated with large trades exhibit weaker reversals than those associated

with small trades, and this effect is robust after controlling for the overall bond liquidity.

Although this result suggests a strong link between liquidity and trade sizes, it is, however,
difficult to interpret this negative relation between y and trade sizes simply as more liquidity

6This is consistent with the fact that our measured at the daily level, capturing this persistent
transaction-level rmean-reversion cumulatively, yields a higher magnitude than its counterpart at the trans-
action level.

7Such an asymmetry was described as a characteristic of the impact of illiquidity on prices by Huang and
Wang (2007). Our results provide an interesting empirical test of this proposition.
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for larger trades, since both trade sizes and prices are endogenous.

This chapter is related to the growing literature on the impact of liquidity on corporate

bond yields. Using illiquidity proxies that include quoted bid-ask spreads and the percentage

of zero returns, Chen, Lesmond, and Wei (2007) find that more illiquid bonds earn higher

yield spreads. Using nine liquidity proxies including issuance size, age, missing prices, and

yield volatility, Houweling, Mentink, and Vorst (2005) reach similar conclusions for euro

corporate bonds. deJong and Driessen (2005) find that, systematic liquidity risk factors

for the Treasury bond and equity markets are priced in corporate bonds, and Downing,

Underwood, and Xing (2005) address a similar question. Using a proprietary dataset on

institutional holdings of corporate bonds, Nashikkar, Mahanti, Subrahmanyam, Chacko,

and Mallik (2008) and Mahanti, Nashikkar, and Subrahrnanyam (2008) propose a measure

of latent liquidity and examine its connection with the pricing of corporate bonds and credit

default swaps.

We contribute to this growing body of literature by proposing a measure of illiquidity that

is theoretically motivated and empirically more direct. Moreover, the degree of illiquidity

captured by our illiquidity measure is significantly higher in magnitude than that implied

by the quoted or estimated bid-ask spreads. We are able to establish a connection between

our measure of illiquidity and the commonly used liquidity proxies such as age, issuance

and trading activities. But more importantly, our illiquidity measure contains information

above and beyond these proxies in explaining, for example, the average bond yield spreads

across a broad cross-section of bonds. Finally, the close connection between our aggregate

illiquidity measure and overall market conditions is a clear indication that our measure indeed

extracts useful information about illiquidity from the transaction-level data. We hope that

the properties we uncover in this chapter about the illiquidity of corporate bonds can provide

a basis to further analyze its importance to the efficiency of the bond market.

It should be noted that the estimation of our illiquidity measures relies on transactions

prices. For relatively liquid bonds, transactions are fairly frequent and our estimates are more

reliable. This constrains our analysis to more liquid bonds. Since the goal of this chapter

is to demonstrate the potential importance of illiquidity for corporate bonds, doing so for

the more liquid bonds actually strengthens our case. However, a large fraction of corporate

bonds are not traded often. For those bonds, one may need to use the methods proposed

by Edwards, Harris, and Piwowar (2007), which rely on more detailed trade information in

addition to prices.

The chapter is organized as follows. Section 3.2 describes the data used in our analysis

and provides summary statistics. The main results of this chapter are reported in Section 3.3,

and Section 3.4 provides further analyses of our illiquidity measure. Section 3.5 compares
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our illiquidity measure with the effect of bid-ask spreads. Section 3.6 concludes.

3.2 Data Description and Summary

The main data set used for this chapter is FINRA's TRACE (Transaction Reporting and

Compliance Engine). Coverage of bond trades was gradually implemented in three phases

by FINRA. See chapter 1 for a more complete description of the dataset and the different

phases.

In our study, we drop the early sample period with only Phase I coverage. We also drop

all of the Phase III only bonds. We sacrifice in these two dimensions in order to maintain

a balanced sample of Phase I and II bonds from April 14, 2003 to December 31, 2008. Of

course, new issuances and retired bonds generate some time variation in the cross-section of

bonds in our sample. After cleaning up the data, we also take out the repeated inter-dealer

trades by deleting trades with the same bond, date, time, price, and volume as the previous

trade.8 We further require the bonds in our sample to have frequent enough trading so that

the illiquidity measure can be constructed from the trading data. Specifically, during its

existence in the TRACE data, a bond must trade on at least 75% of its relevant business

days in order to be included in our sample. Finally, to avoid bonds that show up just for

several months and then disappear from TRACE, we require the bonds in our sample to be

in existence in the TRACE data for at least one full year.

Tables 3.1 and 3.2 summarize our sample, which consists of frequently traded Phase I

and II bonds from April 2003 to December 2008. There are 1,205 bonds in our full sample,
although the total number of bonds does vary from year to year. The increase in the number

of bonds from 2003 to 2004 could be a result of how NASD starts its coverage of Phase III

bonds, while the gradual reduction of number of bonds from 2004 through 2008 is a result

of matured or retired bonds.

The bonds in our sample are typically large, with a median issuance size of $717 million,
and the representative bonds in our sample are investment grade, with a mnedian rating of 6,
which translates to Moody's A2. The average maturity is close to 6 years and the average

age is about 4 years. Over time, we see a gradual reduction in maturity and increase in age.

This can be attributed to our sample selection which excludes bonds issued after February

7, 2005, the beginning of Phase III.9

8This includes cleaning up withdrawn or corrected trades, dropping trades with special sale conditions or
special prices, and correcting for obviously mis-reported prices.

91Ve will discuss later the effect, if' any, of' this sample selection on our results. An alternative treatment
is to include in our sample those newly issued bonds that meet the Phase II criteria, but this is difficult to
implement since the Phase II criteria are not precisely specified by NASD.
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Given our selection criteria, the bonds in our sample are more frequently traded than

a typical bond. The average monthly turnover - the bond's monthly trading volume as

a percentage of its issuance size - is 7.51%, the average number of trades in a month is

181. The median trade size is $338,000. While for the the whole sample in TRACE, the

average monthly turnover is 4.07%, the average number of trades in a month is 26 and the

median trade size is $61,000. Thus, the bonds in our sample are also relatively more liquid.

Given that our focus to study the significance of illiquidity for corporate bonds, such a bias

in our sample towards more liquid bonds, although not ideal, will only help to strengthen

our results if they show up for the most liquid bonds.

In addition to the TRACE data, we use CRSP to obtain stock returns for the market

and the respective bond issuers. We use FISD to obtain bond-level information such as issue

date, issuance size, coupon rate, and credit rating, as well as to identify callable, convertible

and putable bonds. We use Bloomberg to collect the quoted bid-ask spreads for the bonds in

our sample, from which we have data for 1,170 out of the 1,205 bonds in our sample. 10 We

use Datastream to collect Lehman Bond indices to calculate the default spread and returns

on the aggregate corporate bond market. To calculate yield spreads for individual corporate

bonds, we obtain Treasury bond yields from the Federal Reserve, which publishes constant

maturity Treasury rates for a range of maturities. Finally, we obtain the VIX index from

CBOE.

3.3 Main Results

3.3.1 Measure of Illiquidity

Although a precise definition of illiquidity and its quantification will depend on a specific

model, two properties are clear. First, illiquidity arises from market frictions, such as costs

and constraints for trading and capital flows; second, its impact to the market is transitory.11

Our empirical measure of illiquidity is motivated by these two properties.

Let Pt denote the clean price of a bond - the full value minus the accrued interest since

1oWe follow Chen, Lesmond, and Wei (2007) in using the Bloomberg Generic (BGN) bid-ask spread. This
spread is calculated using a proprietary formula which uses quotes provided to Bloomberg by a proprietary

list of contributors. These quotes are indicative rather than binding.
11i a recent paper, Vayanos and Wang (2008) provide a, unified theoretical model for liquidity, which

relates illiquidity with different forms of market frictions. Huang and Wang (2007) consider a model in

which trading costs give rise to illiquidity in the market endogenously and show that it leads to transitory

deviations in prices from fundamentals.
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the last coupon date - at time t. We start by assuming that Pt consists of two components:

Pt = F + ut. (3.1)

The first component Ft is its fundamental value - the price in the absence of frictions,
which follows a random walk; the second component ut comes from the impact of illiquidity,
which is transitory (and uncorrelated with the fundamental value).12 In such a framework,
the magnitude of the transitory price component 'ut characterizes the level of illiquidity in

the market. Our measure of illiquidity is aimed at extracting the transitory component in

the observed price Pt. Specifically, let APt = Pt - Pt-1 be the price change from t - 1 to t.

We define the measure of illiquidity - by

- = -Cov (APt, APt+) ). (3.2)

With the assumption that the fundamental component Ft follows a random walk, -7 depends

only on the transitory component ut, and it increases with the magnitude of ut.

Several comments are in order before our proceed with our analysis of y. First, it should

be noted that we use this framework merely to facilitate our empirical estimation. Indeed,
our contribution to the literature lies in our empirical results. Second, other than being

transitory, we know little about the dynamics of ut. For example, when ut follows an AR(1)

process, we have -y = (1 - p) 2
U

2 /(1 + p), where c is the instantaneous volatility of ut, and

p is its persistence coefficient. 13 In this case, while y does provide a simple gauge of the

magnitude of ut, it combines various aspects of 'ut. Third, in terms of measuring illiquidity,
other aspects of ut that are not fully captured by -y may also matter. In other words, 7Y
itself gives only a partial measure of illiquidity. Finally, given the potential richness in

the dynamics of ut, 7 will in general depend on the horizon over which we measure price

changes. This horizon effect is important because y measured over different horizons may

capture different aspects of ut or illiquidity. For most of our analysis, we will use either

trade-by-trade prices or end of the day prices in estimating -y. Consequently, our y estimate

captures more of the high frequency components in transitory price movements.

12Such a separation assumes that the fundamental value Ft carries no time-varying risk premium. This is
a reasonable assumption over short horizons. It is equivalent to assuming that high frequency variations in
expected returns are ultimately related to market frictions - otherwise, arbitrage forces would have driven
them away. To the extent that illiquidity can be viewed a manifestation of these frictions, price movements
giving rise to high frequency variations in expected returns should be included in ut. Admittedly, a more
precise separation of Ft and ut must rely on a pricing theory incorporating frictions or illiquidity. See, for
example, Vayanos and Wang (2008).

13The persistent coefficient p is less than 1 given that ut is transitory.
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Table 3.3 summarizes the illiquidity measure -y for the bonds in our sample. 14 Focusing

first on Panel A, in which y is estimated bond-by-bond using either trade-by-trade or daily

data, we see an illiquidity measure of y that is important both economically and statisti-

cally.1 5 For the full sample period from 2003 through 2008, our illiquidity measure - has a

cross-sectional average of 0.60 with a robust t-stat of 22.43 when estimated using trade-by-

trade data, and an average of 1.04 with a robust t-stat of 28.35 using daily data. 16 More

importantly, the significant mean estimate of ' is not generated by just a few highly illiquid

bonds. Using trade-by-trade data, the cross-sectional median of y is 0.41, and 99.83% of the

bonds have a statistically significant -y (the t-stat of y greater than or equal to 1.96); using

daily data, the cross-sectional median of 7 is 0.67 and over 98% of the bonds have a statis-

tically significant v. Moreover, breaking our full sample by year shows that the illiquidity

measure y is important and stable across years.17

For each bond, we can further breakdown its overall illiquidity measure y to gauge the

relative contribution from trades of various sizes.Specifically, for each bond, we sort its

trades by size into the smallest 30%, middle 40%, and largest 30% and then estimate -small

ymedium and -large using prices associated with the corresponding trade sizes. The results are

summarized in Table 3.15 in the Appendix. We find that our overall illiquidity measure is

not driven only by small trades. In particular, we find significant illiquidity across all trade

sizes. For example, using daily data, the cross-sectional means of -smll, medium and /large

are 1.44, 0.91, and 0.47, respectively, each with very high statistical significance.

As a comparison to the level of illiquidity for individual bonds, Panel B of Table 3.3

reports y measured using equal- or issuance-weighted portfolios constructed from the same

cross-section of bonds and for the same sample period. In contrast to its counterpart at the

individual bond level, y at the portfolio level is slightly negative, rather small in magnitude,

and statistically insignificant. This implies that the transitory component extracted by our

14To be included in our sample, the bond must trade on at least 75% of business (lays and at least 10
observations of the paired price changes, (APt, APt__1), are required to calculate y.

15In calculating 7y using daily data, price changes may be between prices over multiple days if a bond does
not trade during a day. We limit the difference in days to one week though this criteria rarely binds due to
our sample selection criteria.

16The robust t-stats are calculated using standard errors that are corrected for cross-sectional and time-
series correlations. Specifically, the moment condition for estimating 7 is -5 + AP/AP 1 = 0 for all bond i
and time t, where AP is demeaned. We can then correct for cross-sectional and time-series correlations in
APt AP/j _1 using standard errors clustered by bond and day.

"7Our - measure could be affected by the presence of persistent small trades, which could be a result of
how dealers deal bonds to retail traders. We thank the referee for raising this point. Such persistent small
trades will bias our illiquidity measure downward. In other words, our - measures would have been larger
in the absence of such persistent small trades. Moreover, it will have a larger impact on , measured using
prices associated small trade sizes. As we show in the next paragraph, we find significant illiquidity across
all trade sizes.



-y measure is idiosyncratic in nature and gets diversified away at the portfolio level. It does

not imply, however, that the illiquidity in corporate bonds lacks a systematic component,

which we will examine later in Section 3.3.3.

Panel C of Table 3.3 provides another and perhaps more important gauge of the mag-

nitude of our estimated - for individual bonds. Using quoted bid-ask spreads for the same

cross-section of bonds and for the same sample period, we estimate a bid-ask implied y for

each bond by computing the magnitude of negative autocovariance that would have been

generated by bid-ask bounce. For the full sample period, the cross-sectional mean of the

implied -y is 0.045 and the median is 0.031, which are more than one order of magnitude

smaller than the empirically observed y for individual bonds. As shown later in the chapter,

not only does the quoted bid-ask spread fail to capture the overall level of illiquidity, but

it also fails to explain the cross-sectional variation in bond illiquidity and its asset pricing

implications.

Although our focus is on extracting the transitory component at the trade-by-trade and

daily frequencies, it is nevertheless interesting to provide a general picture of ', over varying

horizons. First, our results show that the magnitude of the illiquidity measure -y is stronger

at the daily than the trade-by-trade horizon. Given that the autocovariance at the daily level

cumulatively captures the mean-reversion at the trade-by-trade level, this implies that the

mean-reversion at the trade-by-trade level persists for a few trades before fully dissipating,

which we show in Section 3.4.1. Second, moving from the daily to weekly horizon, we find

that the magnitude of y increases from an average level of 1.04 to 1.11, although its statistical

significance decreases to a robust t-stat of 11.70, and 74.94% of the bonds in our sample have

a positive and statistically significant y at this horizon. Third, extending to the bi-weekly

and monthly horizons, -y starts to decline in both magnitude and statistical significance.' 8

As mentioned earlier in the section, the transitory component ut might have richer dy-

namics than what can be offered by a simple AR(1) structure for Aut. By extending 7Y over

various horizons, we are able to uncover some of the dynamics. We show in Section 3.4.1

that at the trade-by-trade level Aut is by no means a simple AR(1). Likewise, in addition

to the mean-reversion at the daily horizon that is captured in this chapter, the transitory

component ut may also have a slow moving mean-reversion component at a longer horizon.

To examine this issue more thoroughly is an interesting topic, but requires time-series data

for a longer sample period than ours. 19

1sIn addition to reducing the available data, the higher differencing intervals also decreases the signal to
noise ratio as the fundamental volatility starts to build up. See Harris (1990) for the exact small sample
moments of the serial covariance estimator and of the standard variance estimator for price changes generated
by the Roll spread model.

19By using monthly bid prices from 1978 to 1998, Khang and King (2004) report contrarian patterns in
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3.3.2 Illiquidity and Bond Characteristics

Our sample includes a broad cross-section of bonds, which allows us to examine the connec-

tion between our illiquidity measure 7 and various bond characteristics, some of which are

known to be linked to bond liquidity. The variation in our illiquidity measure y and bond

characteristics are reported in Table 3.4. We use daily data to construct yearly estimates for

y for each bond and perform pooled regressions on various bond characteristics. Reported

in square brackets are the t-stat's calculated using standard errors clustered by year.

We find that older bonds on average have higher y, and the results are robust regardless

of which control variables are used in the regression. On average, a bond that is one-year

older is associated with an increase of 0.1 in its y, which accounts for 10% of the full-sample

average of y. Given that the age of a bond has been widely used in the fixed-income market

as a proxy for illiquidity, it is important that we establish this connection between our

illiquidity measure y and age. Similarly, we find that bonds with smaller issuance tend to

have larger y. We also find that bonds with longer time to maturity and lower credit ratings

typically have higher 7.

Using weekly bond returns, we also estimate, for each bond, its betas on the aggregate

stock- and bond-market returns, using the CRSP value-weighted index as a proxy for the

stock market and the Lehman US Bond Index as a proxy for the bond market. We find

that -y is positively related to the stock beta and weakly related to bond beta. However, in

unreported results, we find that the inclusion of the idiosyncratic volatility (estimated from

the residual of the betas regression) drives out the significance of both stock and bond betas.

Given that we have transaction-level data, we can also examine the connection between

our illiquidity measure and bond trading activity. We find that, by far, the most interesting

variable is the average trade size of a bond. In particular, bonds with smaller trade sizes

have higher illiquidity measure y.

To examine the cross-sectional connection between our illiquidity measure and the quoted

bid-ask spreads, we use the quoted bid-ask spreads for each bond in our sample to calculate

the bid-ask spread implied autocovariance, or bid-ask implied 7. We find a positive relation

between our y measure and the y measure implied by the quoted bid-ask spread.20  The

corporate bond returns over horizons of one to six months. Instead of examining autocovariance in bond
returns, their focus is on the cross-sectional effect. Sorting bonds by their past monthly (or bi-monthly up
to 6 months) returns, they find that past winners under perform past losers in the next month (or 2-month
up to 6 months). Their result, however, is relatively weak and is significant only in the early half of their
sample and goes away in the second half of their sample (1988-1998).

20As it is possible that the relation between y and y implied by quoted bid-ask spreads is mechanical due
to spreads being a fixed proportion of prices and price levels being different, we also examine the relation
between 7 calculated using log price changes and -' implied by bid-ask spreads, finding a significant correlation
between the two variables.
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regression coefficient is on average around 4 and is statistically significant. The magnitude
of the coefficient implies that one unit difference in 7y implied by quoted bid-ask spreads gets
amplified to four times the difference in our measure of 7y. Adding the bid-ask implied -/
as an explanatory variable, however, does not alter the relation between our - measure and
liquidity-related bond characteristics such as age and size. Overall, we find that the magni-

tude of illiquidity captured by our 7 measure is related to but goes beyond the information
contained in the quoted bid-ask spreads.

We also introduce a CDS dummy, which is one if the bond issuer has credit default swaps

traded on it, to examine whether or not there is a difference in our illiquidity measure for
bonds with and without CDS traded on their issuers. About 71% of the bonds-years in our

sample have traded CDS and our results show that, after controlling for bond age, maturity,
issuance size and rating, such bonds on average have insignificantly different -y, although they

have slightly lower - in the sample pro-2008. Finally, we introduce CDS spreads, finding

that higher CDS spreads are correlated with greater illiquidity, though this result is largely

driven by 2008.

3.3.3 Commonality in Illiquidity and Market Conditions

We next examine the time variation of illiquidity in the bond market. From Table 3.3, we
see a steady reduction in the annual -y averaged over all bonds in our sample from 2003

through 2006. For example, the median ? using daily data is 0.71 in 2003, which decreases

monotonically to 0.42 in 2006, suggesting an overall irnproverrient of liquidity in the bond
market from 2003 through 2006. During 2007, however, the median -y jumped back to 0.59
and in 2008, the rriedian y dramatically increased to 1.50, reflecting worsening liquidity in
the market.2 1 Using the cross-sectional mean of y, we can observe the same and even a
somewhat more dramatic pattern.

We now investigate this time variation more closely. For this, we turn our attention

to monthly fluctuations in the illiquidity measure y. Monthly illiquidity measures -y are

calculated for each bond using daily data within that month.22 We then use the median -y

21By focusing only on Phase I and II bonds in TRACE to maintain a reasonably balanced sample, we did
not include bonds that were included only after Phase III, which was fully implemented on February 7, 2005.
Consequently, new bonds issued after that date were excluded from our sample, even though some of them
would have been eligible for Phase II had they been issued earlier. As a result, starting from February 7,
2005, we have a population of slowly aging bonds. Since " is positively related to age, the overall downward
trend in y would have been more pronounced had we been able to maintain a more balanced sample. It
should be mentioned that the sudden increases in aggregate - during crises are too large to be explained
by the slow aging process. Finally, to avoid regressing trend on trend, the time-series regression results
presented later in this section are based on regressing changes on changes.

22In calculating the monthly autocovariance of price changes, we can demean the price change using the
sample mean within the month, within the year, or over the entire sample period. It depends on whether
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as our aggregate 7 measure. Compared with the cross-sectional mean of 7, the median -7

is a more conservative measure and is less sensitive to those highly illiquid bonds that were

most severely affected by the credit market turmoil.

In Figure 3-1, we plot our aggregate y along with the CBOE VIX index. It is clear that

the aggregate 7 exhibits significant time variation, which suggests that there are important

commonalities in the illiquidity measure captured by our bond-level 7. In particular, after

decreasing markedly but relatively smoothly during 2003 and the first half of 2004, it reversed

its trend and started to climb up in late 2004 and then spiked in April/May 2005. This rise

in - coincides with the downgrade of Ford and GM to junk status in early May 2005, which

rattled the credit market. The illiquidity measure 7 quieted down somewhat through 2006,

but rose sharply in August 2007, when the sub-prime mortgage crisis first hit. Its August

2007 value of 0.70 is quite dramatic compared to its late 2006 value of 0.30. Though this

rise is fairly sharp compared to changes in y preceding 2007, it is small compared to changes

in 2008. Aggregate y remained in the 0.8 to 1.1 range for much of 2008 before jumping to

1.59 in September 2008, when Lehman Brothers filed for bankruptcy. In October 2008, -

rose further to 2.85 before slightly declining towards the end of 2008.

The fact that y increased drastically during periods of credit market turmoil in our sample

indicates that not only does bond market illiquidity vary over time, but, more importantly,

it also varies together with the changing conditions of the market. In Figure 3-1, we also

plot the CBOE VIX index with aggregate 7- The CBOE VIX index is used to capture the

overall market condition and is also known as the "fear gauge" of the market. In Figure 3-2,

we plot the aggregate y along with several other variables that are known to be linked to

market conditions. To capture the conditions of the credit market, we use default spread,

measured as the difference in yields between AAA- and BBB-rated corporate bonds, using

the Lehman US Corporate Intermediate Indices. To capture the overall volatility of the

corporate bond market, we construct monthly estimates of annualized bond return volatility

using daily returns to the Lehman US Investment Grade Corporate Index. We also consider

an average CDS index, constructed as the average of five-year CDS spreads covered by CMA

Datavision in Datastreanm.

Comparing the time variation in these variables with that of our aggregate '7, we have

several observations. First, the aggregate - comoves with VIX in a rather significant way.

Regressing changes in 7 on contemporaneous changes in VIX, we obtain a slope coefficient of

0.0351 with a t-stat of 8.15 (adjusted for serial correlation using Newey-West) as reported in

we view the monthly variation in the mean of price change as noise or as some low-frequency movement
related to the fundamental. In practice, however, this time variation is rather small compared with the
high-frequency bouncing around the mean. As a result, demeaning using the monthly mean or the sample
mean generates very similar results. Here we report the results using the former.
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Panel A of Table 3.5. The adjusted R-squared of the OLS regression is 64.12%. Furthermore,

this result is robust to only including data through 2007 as reported in Panel B.

Second, there seems to be a link between -y and the volatility of bond returns towards the

end of our sample. Indeed as shown in Panel A of Table 3.5, changes in -Y and contermpora-

neous changes in bond return volatility are related with a coefficient of 0.0409 and a t-stat of

2.03 when we use the whole sample. However, as Panel B shows, this result is mostly driven

by 2008 and it disappears when the data from 2008 is excluded. Third, the aggregate 7 also

comoves weakly with CDS, but not the default spread.

We further examine in Table 3.5 the relation between monthly changes of our aggregate

-y and the performance of the aggregate stock and bond markets in the previous month. We

find that our aggregate y has statistically insignificant relations with lagged aggregate bond

and stock market returns. In the pre-2008 period, however, aggregate 7 typically increased

following down markets. Towards the end of 2008, our aggregate illiquidity measure flattened

out while stock and bond markets continued to decline.

The various market condition variables considered so far are closely inter-connected. To

evaluate their relative importance, Table 3.5 also reports the result of the multivariate re-

gression using all variables that are univariately significant in full sample regressions. VIX

remains robustly significant and bond volatility remains significant only when 2008 is in-

cluded while the CDS index does not. Our illiquidity measure is in fact most related to

variables that tend to measure aggregate uncertainty and fear.

Our time-series analysis of the aggregate illiquidity reveals two important properties

of 7 as a measure of illiquidity for corporate bonds. First, there exists commonality in the

illiquidity of individual bonds, which is reflected in the significant time variation in aggregate

7. Second, such common movements in bond market illiquidity are closely connected with

overall market conditions in an important way.

3.3.4 Bond Yield Spreads and Illiquidity

We now examine the pricing implications of bond illiquidity. For this purpose, we focus

on the bond yield spread, which is the difference between the corporate bond yield and the

Treasury bond yield of the same maturity. For Treasury yields, we use the constant maturity

rate published by the Federal Reserve and use linear interpolation whenever necessary. We

perform monthly cross-sectional regressions of the yield spreads on the illiquidity measure

7, along with a set of control variables. We report our results for our full sample of bonds

here, including both investiment-grade and junk bonds. Results using just investment grade

bonds are similar.
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The results are reported in Table 3.6, where the t-stat's are calculated using the Fama-

MacBeth standard errors with serial correlation corrected using Newey and West (1987). To

include callable bonds in our analysis, which constitute a large portion of our sample, we

use a callable dummy, which is one if a bond is callable and zero otherwise.23 We exclude all

convertible and putable bonds from our analysis. In addition, we also include three rating

dummies for A, Baa, and junk ratings, respectively. The first column in Table 3.6 shows

that the average yield spread of the Aaa and Aa bonds in our sample is 113 bps, relative to

which the A bonds are 69 bps higher, Baa bonds are 119 bps higher, and junk bonds are 541

bps higher.

As reported in the second column of Table 3.6, adding y to the regression does not bring

much change to the relative yield spreads across ratings. This is to be expected since 'y

should capture more of a liquidity effect, and less of a fundamental risk effect, which is

reflected in the differences in ratings. More importantly, we find that the coefficient on '

is 0.21 with a t-stat of 7.08. This implies that for two bonds in the same rating category,

if one bond, presumably less liquid, has a 7 that is higher than the other by 1, the yield

spread of this bond is on average 21 bps higher than the other. To put an increase of 1 in

y in context, the cross-sectional standard deviation of 7 is on average 1.79 in our sample.

From this perspective, our illiquidity measure y is economically important in explaining the

cross-sectional variation in average bond yields.

To control for the fundamental risk of a bond above and beyond what is captured by

the rating dummies, we use equity volatility estimated using daily equity returns of the

bond issuer. Effectively, this variable is a combination of the issuer's asset volatility and

leverage. We find this variable to be important in explaining yield spreads. As shown in

the third column of Table 3.6, the slope coefficient on equity volatility is 0.06 with a t-stat

of 3.82. That is, a ten percentage point increase in the equity volatility of a bond issuer

is associated with a 60 bps increase in the bond yield. While adding 7 improves the cross-

sectional R-squared from a time-series average of 42.79% to 46.55%, adding equity volatility

improves the R-squared to 53.07%. Such R-squared's, however, should be interpreted with

caution since it is a time-series average of cross-sectional R-squared, and does not take into

account the cross-sectional correlations in the regression residuals. By contrast, our reported

Fama-MacBeth t-stat's do and 7 has a stronger statistical significance. It is also interesting

to observe that by adding equity volatility, the magnitudes of the rating dummies decrease

significantly. This is to be expected since both equity volatility and rating dummies are

designed to control for the bond's fundamental risk.

When used simultaneously to explain the cross-sectional variation in bond yield spreads,
23In the Appendix, we also report results with callable bonds excluded.
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both - and equity volatility are significant, with the slope coefficients for both remaining

more or less the same as before. This implies a limited interaction between the two variables,
which is to be expected since the equity volatility is designed to pick up the fundamental

information about a bond while 7 is to capture its liquidity information. Moreover, the

statistical significance of our illiquidity measure -y is virtually unchanged.

Taking advantage of the fact that a substantial sub-sample of our bonds have CDS traded

on their issuers, we use CDS spreads as an additional control for the fundamental risk of a

bond. We find a very strong relation between bond yields and CDS yields: the coefficient is

0.53 with a t-stat of 12.20. For the sub-sample of bonds with CDS traded, and controlling

for the CDS spread, we still find a strong cross-sectional relation between our illiquidity

measure y and bond yields. The economic significance of the relation is smaller: a difference

of - of 1 translates to a 14 bps difference in bond yields. On the other hand, the statistical

significance improves because the sample is less noisy.

Adding three bond characteristics - age, maturity and issuance - to compete with '3, we

find that the positive connection between 7 and average bond yield spreads remains robust.

Both bond age and bond issuance are known to be linked to liquidity.24 Our results show

that bond age remains an important liquidity variable above and beyond our -y measure. In

particular, a bond that is one year older is associated with an increase of 6 bps in average

yield spreads. 25

Including the bond trading variables reveals that bonds with higher turnover and a large

number of trades have higher average yield spreads. The slope coefficients for both variables

are statistically significant. If one believes that more frequently traded bonds are more liquid,
then this result would be puzzling. It is, however, arguable whether this variable actually

captures the liquidity of a bond. We also find that bonds with higher average trade size have

lower yield spreads. This result seems to be consistent with a liquidity explanation. Another

possibility is that more frequent trades also reflect the speculative interest in the bonds,
which can lead to higher yields. Overall, these variables are important control variables

for us, since they are shown in Table 3.4 to be connected with our illiquidity measure 'y.

Our results show that these variables do not have a strong impact on the positive relation

between our illiquidity measure y and average yield spreads.

Finally, we examine the relative importance of the quoted bid-ask spreads and our illiq-

uidity measure -y. As shown in the last two columns of Table 3.6, the quoted bid-ask spreads

are negatively related average yield spreads. Using both the quoted bid-ask spreads and our

24 See, for example, Houweling, Mentink, and Vorst (2005) and additional references therein.
25We find that this relation is robust to both an investment grade subsample and to a subsample of

non-callable bonds.
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illiquidity measure 'y, we find a robust result for -y and a statistically insignificant result for

the quoted bid-ask spread. This aspect of our result is curious since Chen, Lesmond, and

Wei (2007) report a positive relation between the quoted bid-ask spreads and yield spreads.

We find that this discrepancy is due to both the junk bonds in our sample and to 2008 data.

This is not surprising given that the Phase I and II bonds in TRACE are predominantly in-

vestment grades, and the junk bonds covered by TRACE could be an unrepresentative pool.

In unreported results, we consider the subsample of investment grade bonds, finding that -y

remains an important explanatory variable for yields in this subsample. Furthermore, this

holds even after controlling for quoted bid-ask spreads. In contrast to Chen, Lesmond, and

Wei (2007), we do not find a significant positive relation between yield spreads and quoted

bid-ask spreads. We do, however, find such a relation in the pre-2008 data.

3.4 Further Analyses of Illiquidity

3.4.1 Dynamic Properties of Illiquidity

To further examine the dynamic properties of the transitory component in corporate bonds,

we measure the autocovariance of price changes that are separated by a few trades or a few

days:

T =-Cov (APt, APt+) . (3.3)

The illiquidity measure we have used so far is simply yi. For 7 > 1, i, measures the extent

to which the mean-reversion persists after the initial price reversal at 7 = 1. In Table 3.7, we

report the -, for T = 1. 2. 3, using trade-by-trade data. Clearly, the initial bounce back is the

strongest while the mrean-reversion still persists after skipping a trade. In particular, 7'2 is

on average 0.11 with a robust t-stat of 15.50. At the individual bond level, 74% of the bonds

have a statistically significant Y2. After skipping two trades, the amount of residual mean-

reversion dissipates further in magnitude. The cross-sectional average of Y3 is only 0.027,

although it is still statistically significant with a robust t-stat of 11.60. At the individual

bond level, fewer than 14% of the bonds have a statistically significant 73.

The fact that the mean-reversion persists for a few trades before fully dissipating implies

that autocovariance at the daily level is stronger than at the trade-by-trade level as it captures

the effect cumulatively, as shown in Table 3.3. At the daily level, however, the mean-reversion

dissipates rather quickly, with an insignificant Y2 and 73. For brevity, we omit these results.
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3.4.2 Asymmetry in Price Reversals

One interesting question regarding the mean-reversion captured in our main result is whether

or not the magnitude of mean-reversion is symmetric in the sign of the initial price change.

Specifically, with AP properly demeaned, let y- = -Cov (APt, APt+1 APt < 0) be a mea-

sure of mean-reversion conditioning on an initial price change that is negative, and let 7+

be the counterpart conditioning on a positive price change. In a simple theory of liquidity

based on costly market participation, Huang and Wang (2007) show that the bounce-back

effect caused by illiquidity is more severe conditioning on an initial price movement that is

negative, predicting a positive difference between - and +.

We test this hypothesis in Table 3.8, which shows that indeed there is a positive difference

between - and 7+ . Using trade-by-trade data, the cross-sectional average of 7y - -y+ is

0.1025 with a robust t-stat of 7.10. Skipping a trade, the asymmetry in 'Y2 is on average

0.0488 with a robust t-stat of 8.74. Compared with how y, dissipates across T, this measure

of asymmetry does not exhibit the same dissipating pattern. In fact, in the later sample

period, the level of asymmetry for 7 = 2 is almost as important for the first-order mean-

reversion, with an even higher statistical significance. Using daily data, the asymmetry is

stronger, incorporating the cumulative effect from the transaction level. The cross-sectional

average of '- - 7+ is 0.19, which is close to 20% of the observed level of mean reversion.

Skipping a day, however, produces no evidence of asymmnetry, which is expected since there

is very little evidence of mean-reversion at this level in the first place.

3.4.3 Trade Size and Illiquidity

Since our illiquidity measure is based on transaction prices, a natural question is how it

is related to the sizes of these transactions. In particular, are reversals in price changes

stronger for trades of larger or smaller sizes? In order to answer this question, we consider

the autocovariance of price changes conditional on different trade sizes.

For a change in price Pt - Pt 1, let Vt denote the size of the trade associated with price

Pt. The autocovariance of price changes conditional on trade size being in a particular range,
say, R, is defined as

Cov (Pt - Pt-1, Pt+l - Pt, IVt R) , (3.4)

where six brackets of trade sizes are considered in our estimation: ($0, $5K], ($5K, $15K],

($15K, $25K], ($25K, $75K], ($75K, $500K], and ($500K, oc), respectively. Our choice of

the number of brackets and their respective cutoffs is influenced by the sample distribution

of trade sizes. In particular, to facilitate the estimation of y conditional on trade size, we

need to have enough transactions within each bracket for each bond to obtain a reliable
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conditional 7.

For the same reason, we construct our conditional - using trade-by-trade data. Otherwise,

the data would be cut too thin at the daily level to provide reliable estimates of conditional 7.

For each bond, we categorize transactions by their time-t trade sizes into their respective

bracket s, with s = 1, 2,..., 6, and collect the corresponding pairs of price changes, Pt - Pt-1

and Pt+l - Pt. Grouping such pairs of prices changes for each size bracket s and for each

bond, we can estimate the autocovariance of the price changes, the negative of which is our

conditional -y(s).26

Equipped with the conditional -y, we can now explore the link between trade size and

illiquidity. In particular, does -1(s) vary with s and how? We answer this question by first

controlling for the overall liquidity of the bond. This control is important as we find in

Section 3.3.2 the average trade size of a bond is an important determinant of the cross-

sectional variation of 7. So we first sort all bonds by their unconditional 7 into quintiles and

then examine the connection between 7(s) and s within each quintile.

As shown in Panel A of Table 3.9, for each 7 quintile, there is a pattern of decreasing

conditional 7 with increasing trade size and the relation is monotonic for all 7 quintiles. For

example, quintile 1 consists of bonds with the highest -y and therefore the least liquid in our

sample. The mean 7 is 2.13 for trade-size bracket 1 (less than $5K) but it decreases to 0.69

for trade-size bracket 6 (greater than $500K). The mean difference in 7 between the trade-

size bracket 1 and 6 is 1.37 and has a robust t-stat of 9.22. Likewise, for quintile 5, which

consists of bonds with the lowest 7 measure and therefore are the most liquid, the same

pattern emerges. The average value of 7 is 0.23 for the smallest trades and then decreases

monotonically to 0.02 for the largest trades. The difference between the two is 0.21, with a

robust t-stat of 8.20, indicating that the conditional 7 between small and large size trades

remains significant even for the most liquid bonds. To check the potential impact of outliers,

we also report the median -' for different trade sizes. Although the magnitudes are smaller,

the general pattern remains the same.

Overall, our results demonstrate a clear negative relation between trade sizes and our

illiquidity measure. 27 The interpretation of this result, however, requires caution. It would

be simplistic to infer from this pattern that larger trades face less illiquidity or have less

impact on prices. It is important to realize that both trades sizes and prices are endogenous

variables. Their relation arises from an equilibrium outcome in which traders of different

26Specifically, we compute six conditional covariances for each bond, one for each size bracket. The negative

of these conditional covariances is our conditional 7.
271n the Appendix, we consider an alternative method of examining 3/ by trade size, simply cutting the

data into trade size brackets and calculating -y separately for each bracket. We find a similar negative relation
between trade sizes and our illiquidity measure using this methodology.
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types optimally choose their trading strategies, taking into account the dynamics of the

market including the actions of their own and others. Non-competitive factors such as

negotiation power for large trades can also contribute to the relation between trade sizes and

3.5 Illiquidity and Bid-Ask Spread

It is well known that the bid-ask spread can lead to negative autocovariance in price changes.

For example, using a simple specification, Roll (1984) shows that when transactions prices

bounce between bid and ask prices, depending on whether they are sell or buy orders frorn

customers, their changes exhibit negative autocovariance even when the "underlying value"

follows a random walk. Thus, it is important to ask whether or not the negative autocovari-

ances documented in this chapter are simply a reflection of bid-ask bounce. Using quoted

bid-ask spreads, we show in Table 3.3 that the associated bid-ask bounce can only gener-

ate a tiny fraction of the empirically observed autocovariance in corporate bonds. Quoted

spreads, however, are mostly indicative rather than binding. Moreover, the structure of the

corporate bond market is mostly over-the-counter, making it even more difficult to estimate

the actual bid-ask spreads.28 Thus, a direct examination of how bid-ask spreads contribute

to our illiquidity measure -y is challenging.

We can, however, address this question to certain extent by taking advantage of the

results by Edwards, Harris, and Piwowar (2007) (EHP hereafter). Using a more detailed

version of the TRACE data that includes the side on which the dealer participated, they

provide estimates of effective bid-ask spreads for corporate bonds. To examine the extent

to which our illiquidity measure - can be explained by the estimated bid-ask spread, we use

our illiquidity measure 'y to compute the implied bid-ask spreads, and compare them with

the estimated bid-ask spreads reported by EHP. The actual comparison will not be exact,
since our sample of bonds is different from theirs. Later in the section, we will discuss how

this could affect our analysis.

It is first instructive to understand the theoretical underpinning of how our estimate of y

relates to the estimate of bid-ask spreads in EHP. In the Roll (1984) model, the transaction

price Pt takes the form of equation (3.1), in which P is the sum of the fundamental value

and a transitory component. Moreover, the transitory component equals to S qt in the Roll

model, with S being the bid-ask spread and qt indicating the direction of trade. Specifically,

28The corporate bond market actually involves different trading platforms, which provide liquidity to
different clienteles. In such a market, a single bid-ask spread can be too simplistic in capturing the actual
spreads in the market.
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q is +1 if the transaction is buyer initiated and -1 if it is seller initiated, assuming that the

dealer takes the other side. More specifically, in the Roll model, we have

Pt = Ft + S qt . (3.5)

If we further assume that qt is i.i.d. over time, the autocovariance in price change then

becomes -(S/2) 2, or y = (S/2)2. Conversely, we have

SRol = 2 N/ , (3.6)

where we call SRni the implied bid-ask spread.

EHP use an enriched Roll model, which allows the spreads to depend on trade sizes. In

particular, they assume

Pt = Ft + 1 S(Vt) qt, (3.7)

where Vt is the size of the trade at time [. 29 Since the dataset used by EHP also contains

information about qt, they directly estimate the first difference of equation (3.7), assuming

a factor model for the increments of Ft.

Table 3.10 reproduces the results of EHP, who estimate percentage bid-ask spreads for

average trade sizes of $5K, $10K, $20K, $50K, $100K, $200K, $500K and $1MM. The cross-

sectional medians of the percentage bid-ask spreads are 1.20%, 1.12%, 96 bps, 66 bps, 48

bps, 34 bps, 20 bps and 12 bps, respectively. To compare with their results, we form trade

size brackets that center around their reported trade sizes. For example, to compare with

their trade size $10K, we calculate our illiquidity measure 7 conditional on trade sizes falling

between $7.5K and $15K, and then calculate the implied bid-ask spread. Using the average

price for the respective bond, we further convert the spread to percentage spread so as to

compare with the EHP result. The results are reported in Table 3.10, where to correct for

the difference in our respective sample periods, we also report our implied bid-ask spreads

for the period used by EHP. For the EHP sample period, the cross-sectional medians of

our implied percentage bid-ask spreads are 1.82%, 1.80%, 1.59%, 1.23%, 91 bps, 68 bps, 57

bps, and 54 bps, respectively. As we move on to compare our median estimates to those in

EHP, it should be mentioned that this is a simple comparison by magnitudes, not a formal

statistical test.

Overall, our implied spreads are much higher than those estimated by EHP. For small

29The model EHP use has an additional feature. It distinguishes customer-dealer trades from dealer-dealer
trades. The spread they estimate is for the customer-dealer trades. Thus, in (3.7), we simply do not identify
dealer-dealer trades. This decreases our estimate of 'y relative to EHP since we are including inter-dealer
trades which have a smaller spread than customer-dealer trades.
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trades, our median estimates of implied spreads are over 50% higher than those by EHP.

Moving to larger trades, the difference becomes even more substantial. Our median estimates

are close to doubling theirs for the average sizes of $100K and $200K, close to tripling theirs

for the average size of $500K, and more than quadrupling theirs for the average size of

$1,000K. In fact, our estimates are biased downward for the trade size group around $1,000K,
since our estimated bid-ask spreads include all trade sizes above $750K, including trade sizes

of $2MM, $5MM, and $10MM, whose median bid-ask spreads are estimated by EHP to be 6

bps, 2 bps, and 2 bps, respectively. We have to group such trade sizes because in the publicly

available TRACE data, the reported trade size is truncated at $1MM for speculative grade

bonds and at $5MM for investment grade bonds.

In addition to differing in sample periods, which is easy to correct, our sample is also

different from that used in EHP in the composition of the bonds that are used to estimate the

bid-ask spreads. In particular, our selection criteria bias our sample towards highly liquid

bonds. For example, to be included in our sample, the bond has to trade at least 75% of

business days, while the median frequency of days with a trade is only 48% for the bonds

used in EHP. The median average trade sizes is $462K in 2003 and $401K in 2004 for the

bonds used in our sample, compared with $240K for the bonds used in EHP; the median

average number of trades per month is 148 in 2003 and 122 in 2004 for the bonds in our

sample, while the median average number of trades per day is 1.1 for the bonds used in EHP.

Given that more liquid bonds typically have simaller bid-ask spreads, the difference between

our implied bid-ask spreads and EHP's estimates would have been even more drastic had

we been able to match our sample of bonds to theirs. It is therefore our conclusion that

the negative autocovariance in price changes observed in the bond market is much more

substantial than merely the bid-ask effect. And our measure of illiquidity captures more

broadly the impact of illiquidity in the market.

Finally, one might be curious as to what is the exact mechanism that drives our estimates

apart from those by EHP. Within the Roll model as specified in equation (3.6), our estimates

should be identical to theirs. In particular, using equation (3.5) to identify bid-ask spread S

implies regressing AP t on Aqt. But using our model specified in equation (3.1) as a reference,
it is possible that the transitory component ut does not take the simple form of S qt. More

specifically, the residual of this regression of APt on Aqt might still exhibit a high degree of

negative autocovariance, simply because ut is not fully captured by1 S qt. If that is true,

then our measure of illiquidity captures the transitory component more completely: both the

bid-ask bounce associated with 1 S qt and the additional mean-reversion that is not related

to bid-ask bounce. Overall, more analysis is needed, possibly with more detailed data as in

EHP, in order to fully reconcile the two sets of results.
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3.6 Conclusions

The main objective of this chapter is to gauge the level of illiquidity in the corporate bond

market and to examine its key properties and implications. Using a theoretically motivated

measure of illiquidity, i.e., the amount of price reversals as captured by the negative of auto-

covariance of prices changes, we show that this illiquidity measure is both statistically and

economically significant for a broad cross-section of corporate bonds examined in this chap-

ter. We demonstrate that the magnitude of the reversals is beyond what can be explained

by bid-ask bounce. We also show that the reversals exhibit significant asymmetry: price

reversals are on average stronger after a price reduction than a price increase.

We find that a bond's illiquidity is related to several bond characteristics. In particular,

illiquidity increases with a bond's age and maturity, but decreases with its rating and issue

size. As compared to a bond's idiosyncratic return volatility, a bond's illiquidity shows

limited relation with its market risk exposures, as measured by its beta with respect to the

stock and bond market indices. We also find that price reversals are inversely related to

trade sizes. That is, prices changes accompanied by small trades exhibit stronger reversals

than those accompanied by large trades.

Furthermore, the illiquidity of individual bonds fluctuates substantially over time. More

interestingly, these time fluctuations display important commonalities. For example, the

median illiquidity over all bonds, which represents a market-wide illiquidity, increases sharply

during the periods of market turmoil such as the downgrade of Ford and GM to junk status

around May of 2005, the sub-prime market crisis starting in August 2007, and in late 2008

when Lehman filed for bankruptcy. Exploring the relation between changes in the market-

wide illiquidity and other market variables, we find that changes in illiquidity are positively

related to changes in VIX and that this relation is not driven solely by the events in 2008.

During pre-2008 periods, we also find that aggregate illiquidity tends to rise following down

markets.

We also find important pricing implications associated with bond illiquidity. Our result

shows that for two bonds in the same rating category, a one-standard-deviation difference

in their illiquidity measure would set their yield spreads apart by almost 40 bps. This

result remains robust in magnitude and statistical significance, after controlling for bond

fundamental information and bond characteristics including those commonly related to bond

liquidity.

Our results raise several questions concerning the liquidity of corporate bonds. First,

what are the underlying factors giving rise to the high level of illiquidity? This question

is particularly pressing when we contrast the magnitude of our illiquidity measure in the
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corporate bond market against that in the equity market. Second, what causes the fluctua-
tions in the overall level of illiquidity in the market? Are these fluctuations merely another
manifestation of more fundamental risks or a reflection of new sources of risks such as a

liquidity risk? Third, does the high level of illiquidity for the corporate bonds indicate any
inefficiencies in the market? If so. what would be the policy remedies? We leave these
questions for future work.
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3.7 Appendix

3.7.1 Tables and Figures
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Table 3.1: Summary Statistics: Year-by-Year

Panel A: Our Sample
2003 2004 2005 2006 2007 2008

mean med std mean med std mean med std mean med std mean med std mean med std

#Bonds 773 1,150 1,093 970 831 670

Issuance 1,012 1,000 730 864 700 683 861 700 689 844 681 666 842 650 676 847 688 678
Rating 5.59 5.67 2.55 6.77 6.00 3.84 7.05 6.00 4.07 7.41 6.00 4.52 7.51 6.00 4.73 7.98 7.00 4.71
Maturity 7.33 5.23 6.80 7.88 5.66 7.24 7.36 5.19 7.24 7.02 4.66 7.24 6.92 4.42 7.31 6.70 3.96 7.35
Coupon 5.87 6.00 1.66 5.87 6.13 1.87 5.83 6.00 1.87 5.78 5.88 1.90 5.81 6.00 1.90 5.90 6.00 1.86
Age 2.68 1.94 2.62 3.17 2.38 2.94 3.90 3.17 2.94 4.74 3.96 2.95 5.69 4.73 3.07 6.66 5.74 3.15

Turnover 11.57 8.31 9.52 9.40 7.10 7.51 8.26 6.17 6.90 6.30 5.11 4.78 5.08 4.10 3.90 4.82 4.11 3.33
Trd Size 584 462 488 527 401 477 430 336 385 383 293 344 336 256 313 257 183 247

#Trades 243 148 360 180 122 191 201 121 291 158 109 144 143 102 127 200 126 219

Avg Ret 0.59 0.38 0.85 0.64 0.35 1.57 -0.03 0.17 1.04 0.63 0.39 1.10 0.39 0.45 0.71 -1.18 0.27 3.59
Volatility 2.49 2.25 1.48 1.76 1.61 1.09 2.17 1.44 2.87 1.79 1.22 2.06 1.86 1.33 1.82 6.99 4.03 8.68
Price 108 109 10 106 106 11 103 103 11 100 101 11 102 101 12 96 100 20

Panel B: TRACE
2003 2004 2005 2006 2007 2008

mean med std mean med std mean med std mean mred std mean med std mean med std

#Bonds 4,161 15,270 23,415 22,627 23,640 23.442

Issuance 470 260 542 220 85 384 189 50 363 209 56 371 221 42 403 219 30 417
Rating 5.30 5.00 2.60 6.46 6.00 3.26 7.37 7.00 4.00 7.18 6.00 4.26 6.77 6.00 4.19 6.75 6.00 4.29
Maturity 8.51 4.55 10.77 8.34 5.38 8.88 7.86 5.05 8.41 8.01 5.12 8.66 8.08 5.05 8.97 8.00 4.94 8.97
Coupon 6.51 6.75 1.69 5.76 5.85 1.96 5.80 5.70 2.16 5.74 5.63 2.13 5.60 5.55 2.16 5.35 5.50 2.32
Age 4.61 3.75 3.87 3.24 1.82 3.61 3.37 2.00 3.73 3.64 2.44 3.78 3.77 2.83 3.71 4.06 3.33 3.70

Turnover 5.87 3.82 6.36 5.20 2.58 7.07 3.95 2.44 4.52 3.56 2.18 4.18 3.29 1.97 4.02 3.10 1.84 3.69
Trd Size 1,017 532 1,263 534 59 991 477 55 869 509 58 905 487 49 899 386 46 761
#Trades 66 19 184 31 9 86 26 6 90 21 5 56 21 5 71 28 5 97

Avg Ret 0.63 0.38 4.07 0.50 0.28 2.56 0.11 0.21 2.27 0.85 0.54 2.06 0.36 0.45 2.02 -0.90 0.14 6.33
Volatility 2.73 2.37 2.27 1.93 1.68 1.29 2.65 1.94 2.81 2.31 1.75 2.28 2.42 1.96 2.24 9.34 5.79 11.08
Price 109 110 12 104 103 16 100 100 17 99 99 19 100 100 34 92 97 22

Panel A presents summary statistics for our sample and Panel B for bonds traded in TRACE. #IBonds is the number of bonds in a given period. Issuance
is the bond's amount outstanding in millions of dollars. Rating is a numerical translation of Moody's rating: l=Aaa and 21=C. Maturity is the bond's
time to maturity in years. Coupon, reported only for fixed coupon bonds, is the bond's coulpon payment in percentage. Age is the time since issuance
in years. Turnover is the bond's monthly trading volume as a percentage of its issuance. Trd Size is the average trade size of the bond in thousands of
dollars of face value. #Trades is the bond's total number of trades in a month. Med and std are the time-series averages of the cross-sectional medians
and standard deviations. For each bond, we also calculate the time-series mean and standard deviation of its monthly log returns, whose cross-sectional
mean, median and standard deviation are reported under Avg Ret and Volatility. Price is the average market value of the bond in dollars.



Table 3.2: Summary Statistics: Full Sample

Our Sample TRACE
2003 Full 2003 Full

mean med std mean med std mean med std mean med std

#Bonds 773 1,205 4,161 38,012

Issuance 1,012 1,000 730 879 717 685 470 260 542 209 40 407
Rating 5.59 5.67 2.55 7.13 6.00 4.19 5.30 5.00 2.60 6.87 6.00 4.04
Maturity 7.33 5.23 6.80 6.36 3.83 6.90 8.51 4.55 10.77 7.25 4.25 8.42
Coupon 5.87 6.00 1.66 5.87 6.00 1.87 6.51 6.75 1.69 5.51 5.60 2.43
Age 2.68 1.94 2.62 4.44 3.49 2.85 4.61 3.75 3.87 3.31 2.05 3.52

Turnover 11.57 8.31 9.52 7.51 6.38 4.90 5.87 3.82 6.36 4.07 2.49 4.83
Trd Size 584 462 488 417 338 348 1,017 532 1,263 517 61 930

#Trades 243 148 360 181 126 184 66 19 184 26 6 88

Avg Ret 0.59 0.38 0.85 0.20 0.31 0.76 0.63 0.38 4.07 0.05 0.33 3.90
Volatility 2.49 2.25 1.48 3.08 1.81 3.73 2.73 2.37 2.27 4.49 2.73 5.81
Price 108 109 10 103 103 11 109 110 12 98 99 31

#Bonds is the number of bonds in a given period.
Moody's rating: 1= Aaa and 21=C. Maturity is the

Issuance is the bond's amount outstanding in millions of dollars. Rating is a numerical translation of
bond's time to maturity in years. Coupon, reported only for fixed coupon bonds, is the bond's coupon

payment in percentage. Age is the time since issuance in years. Turnover is the bond's monthly trading volume as a percentage of its issuance. Trd Size

is the average trade size of the bond in thousands of dollars of face value. #Trades is the bond's total number of trades in a month. Med and std are the
time-series averages of the cross-sectional medians and standard deviations. For each bond, we also calculate the time-series mean and standard deviation
of its monthly log returns, whose cross-sectional mean, median and standard deviation are reported under Avg Ret and Volatility. Price is the average
market value of the bond in dollars.
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Panel A: Individual Bonds
2003 2004 2005 2006 2007 2008 Full

Trade-by-Trade Data
Mean -' 0.67 0.68 0.57 0.48 0.52 0.89 0.60
Median 2 0.46 0.40 0.32 0.27 0.31 0.63 0.41
Per t > 1.96 99.35 97.56 99.63 99.59 99.52 98.06 99.83
Robust t-stat 16.79 16.10 18.61 19.97 19.20 16.21 22.43

Daily Data
Mean 7 1.05 1.00 0.90 0.77 0.97 2.39 1.04
Median y 0.71 0.55 0.46 0.42 0.59 1.50 0.67
Per t > 1.96 94.55 90.43 96.15 96.27 94.90 93.70 98.76
Robust t-stat 22.29 17.49 26.38 25.10 23.01 16.04 28.35

Panel B: Bond Portfolios
2003 2004 2005 2006 2007 2008 Full

Equal-weighted -0.0021 -0.0044 -0.0024 0.0009 -0.0004 -0.0393 -0.0087
t-stat -0.38 -1.17 -0.86 0.75 -0.21 -1.08 -1.29
Issuance-weighted 0.0019 -0.0040 -0.0011 0.0008 0.0006 -0.0402 -0.0077
t-stat 0.28 -0.98 -0.35 0.48 0.19 -1.04 -1.09

Panel C: Implied by Quoted Bid-Ask Spreads
2003 2004 2005 2006 2007 2008 Full

Mean implied y 0.045 0.040 0.050 0.050 0.051 0.056 0.045
Median implied y 0.037 0.030 0.027 0.024 0.027 0.050 0.031

At the individual bond level, - is calculated using either trade-by-trade or daily data. Per
t-stat > 1.96 reports the percentage of bond with statistically significant y. Robust t-stat
is a test on the cross-sectional mean of y with standard errors corrected for cross-sectional
and time-series correlations. At the portfolio level, y is calculated using daily data and the
Newey-West t-stats are reported. Monthly quoted bid-ask spreads, which we have data
for 1,170 out of 1,205 bonds in our sample, are used to calculate the implied ' .
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Table 3.4: Variation in y and Bond Characteristics

Cons 1.36 1.59 2.53 1.15 1.35 1.59 1.49
[4.55] [4.71] [5.23] [2.91] [6.80] [7.97] [3.12]

Age 0.10 0.08 0.05 0.09 0.09 0.09 0.09
[3.49] [3.61] [2.31] [3.07] [2.91] [2.82] [3.75]

Maturity 0.07 0.08 0.08 0.08 0.07 0.08 0.08
[11.51] [9.02] [10.28] [9.52] [9.95] [8.58] [8.25]

In(Issuance) -0.26 -0.27 -0.06 -0.30 -0.24 -0.28 -0.25
[-4.20] [-5.75] [-3.95] [-10.05] [-5.55] [-6.18] [-3.78]

Rating 0.04 0.06 0.07 0.05 0.03 0.06 0.01
[4.10] [5.41] [6.13] [6.24] [2.99] [7.53] [1.59]

beta (stock) 0.58
[4.84]

beta (bond) 0.18
[1.75]

Turnover -0.01
[-1.04]

ln(Trd Size) -0.41
[-4.72]

ln(Num Trades) 0.11
[1.45]

Quoted BA Gamma 3.90
[4.75]

CDS Dummy -0.07
[-0.94]

CDS Spread 0.06
[5.86]

Obs 4,781 5,323 5,323 5,323 5,076 4,565 3,317

R-sqd 27.49 25.86 29.17 25.85 26.05 24.71 23.33

Panel regression with y as the dependent variable. T-stats are reported in square brackets

using standard errors clustered by year. Issuance is the bond's amount outstanding in
millions of dollars. Rating is a numerical translation of Moody's rating: l=Aaa and

21=C. Age is the time since issuance in years. Maturity is the bond's time to inmaturity in
years. Turnover is the bond's monthly trading volume as a percentage of its issuance. Trd
Size is the average trade size of the bond in thousands of dollars of face value. #Trades
is the bond's total number of trades in a month. beta(stock) and beta(bond) are obtained
by regressing weekly bond returns on weekly returns on the CRSP value-weighted index
and the Lehman US bond index. Quoted BA y is the 7 implied by the quoted bid-ask
spreads. CDS Dummy is 1 if the bond has credit default swaps traded on its issuer. CDS

Spread is the spread on the five-year CDS of the bond issuer in %. Data is from 2003 to

2008 except for regressions with CDS information which start in 2004.
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Table 3.5: Time Variation in 7 and Market Variables

Panel A: 2003-2008
Cons 0.0224 0.0068 0.0042 0.0261 0.0251 0.0241 0.0205 0.0088

[1.00] [0.86] [0.46] [1.06] [0.96] [1.15] [1.15] [ 1.11]
A VIX 0.0351 0.0339

[8.15] [5.70]
A Bond Volatility 0.0409 0.0375

[2.03] [3.26]
A CDS Index 0.2288 0.0098

[1.94] [0.15]
A Term Spread 0.3496

[1.45]
A Default Spread -0.0283

[-0.24]
Lagged Stock Return -0.0061

[-0.81]
Lagged Bond Return -0.0303

[-1.62]
Adj R-sqd (%) 64.12 6.50 14.68 10.32 -1.40 -0.10 6.08 69.96

Panel B: 2003-2007
Cons 0.0012 0.0004 0.0014 0.0033 0.0003 0.0094 0.0021 0.0069

[0.13] [0.05] [0.26] [0.35] [0.04] [0.92] [0.24] [ 1.08]
A VIX 0.0187 0.0156

[3.46] [3.29]
A Bond Volatility -0.0054

[-0.64]

A CDS Index 0.3500 0.0809
[2.67] [0.89]

A Term Spread 0.0868
[1.85]

A Default Spread 0.2705
[1.72]

Lagged Stock Return -0.0088 -0.0047
[-2.27] [-1.63]

Lagged Bond Return -0.0127 -0.0058
[-3.65] [-1.10]

Adj R-sqd (%) 40.29 -1.22 32.25 3.20 13.25 11.36 6.17 50.58

Monthly changes in 7 regressed on monthly changes in bond index volatility, VIX, CDS index, term
spread, default spread, and lagged stock and bond returns. The Newey-West t-stats are reported in
square brackets. Panel A includes data through the end of 2008. Panel B includes data through the
end of 2007. Regressions with CDS Index do not include 2003 data.
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Cons

Equity Vol

CDS Spread

Age

Maturity

In(Issuance)

Table 3.6: Bond Yield Spread and Illiquidity Measure 7

1.13 0.96 -0.70 -0.70 0.06 -0.36 -0.64 0.02
[3.46] [3.31] [-1.55] [-1.58] [0.35] [-1.20] [-1.91] [0.08]

0.21 0.21 0.14 0.14 0.15 0.13
[7.08] [7.01] [8.23] [4.51] [4.72] [4.27]

0.06 0.06 0.02 0.06 0.05 0.06
[3.82] [3.40] [2.99] [3.41] [3.36] [3.43]

0.53
[12.20]

0.06
[2.60]

0.00
[0.14]

-0.10
[-2.26]

Turnover

ln(Trd Size)

In(#Trades)

Quoted B/A Spread

Call Dummy

A Dummy

BAA Dummy

,Junk Dummy

Obs

R-sqd (%)

-0.44
[-1.05]

0.69
[1.52]

1.19
[2.85]

5.41
[4.38]

679

42.79

-0.47
[-1.10]

0.66
[1.52]

1.08
[2.91]

5.00
[4.12]

670

46.55

0.12
[2.14]

0.19
[1.14]

0.74
[2.77]

3.86
[3.96]

679

53.07

0.07
[1.52]

0.16
[1.10]

0.67
[2.68]

3.57
[3.65]

670

56.24

0.04
[1.01]

0.21
[1.46]

0.50
[2.51]

1.28
[4.20]

502

75.33

0.07
[1.61]

0.16
[1.05]

0.64
[2.42]

3.53
[3.76]

670

58.74

0.07
[3.05]

0.00
[0.04]

-0.08
[-1.97]

0.03
[5.89]

0.09
[2.13]

0.15
[0.97]

0.59
[2.12]

3.48
[3.70]

670

59.43

0.05
[2.47]

0.00
[0.10]

-0.05
[-1.49]

-0.13
[-2.56]

0.08
[1.56]

0.18
[1.18]

0.71
[2.57]

3.59
[3.73]

670

59.01

-1.31
[-2.55]

0.13
[4.59]

0.05
[3.32]

0.07
[2.76]

0.00
[0.21]

-0.19
[-3.37]

0.31
[5.00]

0.12
[2.19]

0.23
[1.39]

0.76
[2.49]

3.62
[3.72]

670

60.22

1.66 -0.26
[2.11] [-1.17]

0.21
[6.38]

0.06
[3.55]

-1.34
[-1.09]

-0.38
[-1.11]

0.67
[1.56]

1.18
[3.15]

5.43
[3.97]

633

43.37

-0.98
[-1.12]

0.18
[1.48]

0.09
[0.96]

0.63
[3.42]

3.58
[3.53]

627

57.25

Monthly Famia-MacBeth cross-sectional regression with the bond yield spread as the dependent variable. The t-stats are reported
in square brackets calculated using Fama-MacBeth standard errors with serial correlation corrected using Newey-West. The

reported number of observations are the average number of observations per period. The reported R-squareds are the time-series
averages of the cross-sectional R-squareds. - is the monthly estimate of illiquidity measure using daily data. Equity Vol is

estimated using daily equity returns of the bond issuer. Age, Maturity, Issuance, Turnover, Trd Size, and #Trades are as defined

in Table 3.4. Call Dummy is one if the bond is callable and zero otherwise. Convertible and putable bonds are excluded from the

regression. The sample period is from May 2003 through December 2008.

0.20
[1.76]

0.13
[9.32]

0.02
[2.96]

0.52
[11.90]

-0.28
[-0.63]

0.08
[1.04]

0.16
[1.64]

0.49
[2.79]

1.36
[3.57]

472

76.40



Table 3.7: Dynamics of Illiquidity: y, =

2003 2004 2005 2006 2007 2008 Full
- = 1 Mean y 0.668 0.679 0.575 0.477 0.520 0.887 0.603

Median y 0.463 0.400 0.323 0.267 0.307 0.633 0.407
Per t > 1.96 99.35 97.56 99.63 99.59 99.52 98.06 99.83
Robust t-stat 16.79 16.10 18.61 19.97 19.20 16.21 22.43

T = 2 Mean y 0.084 0.068 0.079 0.056 0.105 0.341 0.106
Median y 0.038 0.025 0.032 0.027 0.060 0.211 0.061
Per t > 1.96 27.85 20.31 38.06 38.56 54.64 76.38 73.53
Robust t-stat 10.36 7.61 12.73 10.08 13.47 14.23 15.50

T = 3 Mean - 0.011 0.023 0.022 0.030 0.029 0.072 0.027
Median y 0.006 0.005 0.005 0.006 0.008 0.020 0.008
Per t > 1.96 4.92 5.75 6.77 8.25 6.76 11.51 13.78
Robust t-stat 2.98 4.37 8.59 7.54 7.93 7.55 11.60

For each bond, its y,, 7 = 1, 2, 3, is calculated using trade-by-trade data. Per t-
stat > 1.96 reports the percentage of bond with statistically significant -/. Robust
t-stat is a test on the cross-sectional mean of -y with standard errors corrected for
cross-sectional and time-series correlations.
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Table 3.8: Asymmetry in 'y

Panel A: Using trade-by-trade data
Tau 2003 2004 2005 2006 2007 2008 Full
1 Mean 0.1547 0.0739 0.0120 0.0394 0.0679 0.1209 0.1025

Median 0.1421 0.0183 -0.0064 0.0225 0.0627 0.1080 0.0556
CS t-stat 8.42 3.90 0.92 3.36 5.62 6.76 7.79
Robust t-stat 6.86 3.61 0.89 3.22 5.37 6.25 7.10

2 Mean 0.0379 0.0336 0.0428 0.0413 0.0542 0.0732 0.0488
Median 0.0147 0.0078 0.0096 0.0169 0.0263 0.0519 0.0189
CS t-stat 5.23 4.24 8.94 8.93 8.26 4.62 9.56
Robust t-stat 5.21 3.94 7.79 7.59 7.65 4.38 8.74

Panel B: Using daily data
Tau 2003 2004 2005 2006 2007 2008 Full
1 Mean 0.2993 0.1726 0.1155 0.1240 0.1774 0.2046 0.1910

Median 0.2006 0.0426 0.0171 0.0439 0.1031 0.1763 0.0892
CS t-stat 10.64 5.47 5.06 5.79 6.30 2.74 9.89
Robust t-stat 9.46 4.92 4.65 5.00 5.96 2.33 8.57

2 Mean -0.0028 0.0043 0.0100 0.0003 0.0107 -0.0324 -0.0091
Median 0.0002 0.0007 0.0011 0.0008 0.0003 0.0037 0.0007
CS t-stat -0.25 0.28 1.09 0.03 0.77 -0.59 -0.95
Robust t-stat -0.21 0.31 0.94 0.03 0.68 -0.47 -0.71

Asymmetry in , is measured by the difference between 3- and -y+, where - =
-E (APt+APt APt < 0), with AP properly demeaned, measures the price reversal condi-
tioning on a negative price movement. Likewise, -y+ measures the price reversal conditioning
on a positive price movement. Robust t-stat is a pooled test on the mean of y- - y+ with
standard errors clustered by bond and day. CS t-stat is the cross-sectional t-stat.
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Table 3.9: Variation of y with Trade Size

' Quint trade size= 1 2 3 4 5 6 1- 6
1 Mean 2.13 1.64 1.47 1.29 0.89 0.69 1.37

Median 1.94 1.53 1.40 1.25 0.84 0.53 1.26
Robust t-stat 13.14 10.64 9.73 9.56 8.51 6.17 9.22

2 Mean 1.13 0.93 0.83 0.67 0.38 0.24 0.88
Median 1.05 0.86 0.78 0.62 0.36 0.19 0.82
Robust t-stat 10.59 10.16 10.60 11.65 13.92 10.15 8.54

3 Mean 0.69 0.56 0.49 0.38 0.22 0.12 0.57
Median 0.61 0.51 0.45 0.36 0.21 0.10 0.48
Robust t-stat 8.32 12.26 12.17 12.58 14.19 11.29 7.05

4 Mean 0.43 0.34 0.28 0.20 0.12 0.06 0.37
Median 0.37 0.30 0.25 0.19 0.11 0.05 0.31
Robust t-stat 8.69 12.23 12.20 13.31 15.57 11.25 7.64

5 Mean 0.23 0.17 0.14 0.10 0.05 0.02 0.21
Median 0.21 0.17 0.13 0.09 0.05 0.02 0.18
Robust t-stat 8.93 13.95 12.41 15.76 18.35 13.23 8.20

Trade size is categorized into 6 groups with
$500K. y = -Cov(Pt - Pt-1, Pt+ - Pt). 7

cutoffs of $5K, $15K, $25K, $75K, and
is calculated conditioning on the trade

size associated with Pt. Bonds are sorted by their "unconditional" y into quintiles,
and the variation of -Y by trade size is reported for each quintile group. The trade-
by-trade data is used in the calculation. For the daily data, the results are similar
but stronger.
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Table 3.10: Implied and Estimated Bid-Ask Spreads

Full Sample Period EHP Subperiod
y-Implied -Implied EHP Estimated

trade size #bonds Mean Med #bonds Mean Med EHP Size Mean Med

< 7,500 1,148 2.21 1.90 938 2.07 1.82 5K 1.50 1.20
(7500, 15K] 1,156 1.98 1.73 1,036 1.98 1.80 10K 1.42 1.12
(15K, 35K] 1,160 1.80 1.50 1,043 1.80 1.59 20K 1.24 0.96
(35K, 75K] 1,152 1.56 1.25 906 1.38 1.23 50K 0.92 0.66
(75K, 150K] 1,124 1.28 1.02 817 1.00 0.91 100K 0.68 0.48
(150K, 350K] 1,025 0.94 0.76 678 0.68 0.68 200K 0.48 0.34
(350K, 750K] 1,066 0.82 0.69 786 0.60 0.57 500K 0.28 0.20
> 750K 1,093 0.74 0.61 950 0.52 0.54 1,000K 0.18 0.12

The bid-ask spreads are calculated as a percentage of the market value of the bond and are
reported in percentages. The EHP bid-ask spread estimates are from Table 4 of Edwards,
Harris, and Piwowar (2007), and the EHP subperiod is Jan. 2003 to Jan. 2005. Our bid-ask
spreads are obtained using Roll's measure: 2 v- divided by the average market value of the
bond. The sample of bonds differs from that in EHP, and our selection criteria biases us toward
more liquid bonds with smaller bid-ask spreads.
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Figure 3-1: Monthly time-series of aggregate "y and CBOE VIX

The bottom panel is for the subperiod before the collapse of Lehman.
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3.7.2 Robustness Tables

Measure of Illiquidity, Log Price Changes

In Table 3.11, we reproduce the results in Table 3.3, but use changes in log prices. In

particular, we define y as

S= -Cov (Lr(APt), Ln(APt+1)). (3.8)

Note that reported y's are scaled by 10,000 for easier comparison with y's calculated using

AP.

Time Variation in Gamma

In Table 3.12, we present regression results for determinants of the aggregate 7. This table

corresponds to Panel A of Table 3.5, but with 7y calculated using log price changes rather

than price changes.

Cross-Sectional Determinants of Yield Spreads

We report results using log price changes rather than price changes in Table 3.13. Our

results remain largely unchanged. In Table 3.14, we consider only the subset of non-callable

bonds. As callable bonds of the poorest credit quality are unlikely to be called, bond age

may actually be a proxy for credit quality in a sample of callable bonds. We find that in the

subsarnple of non-callable bonds, age remains an important determinant of yield spread.

Gamma by Trade Size

In Table 3.15, we consider -y calculated using only trades of certain sizes. First, we take all

trades for a particular bond and sort these trades by into the smallest 30% of trade size,
middle 40%, and largest 30%. We then calculate y using only trades from a given bin to

estimate small trade, medium trade, and large trade y's. These results are supplemental

to those presented in Table 3.9, but provide an additional robustness check as these y's are

calculated solely with a subset of trades of a given size rather than conditioning on the trade

size at t as in equation (3.4). Furthermore, the size of trades is now grouped relative to a

bond's other trades rather than with respect to a fixed cut-off.
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Table 3.11: Measure of Illiquidity -y = -Cov (InPt

Panel A: Individual Bonds
2003 2004 2005 2006 2007 2008 Full

Trade-by-Trade Data
Mean , 0.65 0.68 0.63 0.53 0.56 1.45 0.70
Median * 0.41 0.36 0.30 0.27 0.30 0.70 0.39
Per t > 1.96 99.35 97.38 99.63 99.59 99.52 97.91 99.83
Pooled t-stat 15.01 15.07 17.81 19.52 18.22 12.85 20.21

Daily Data
Mean y 1.01 1.06 1.01 0.88 1.05 5.05 1.38
Median -y 0.62 0.50 0.44 0.40 0.60 1.74 0.65
Per t > 1.96 94.29 90.08 95.33 96.48 94.66 90.85 97.93
Pooled t-stat 17.74 12.84 21.50 21.92 19.36 10.22 18.32

Panel B: Bond Portfolios
2003 2004 2005 2006 2007 2008 Full

Equal-weighted -0.0010 -0.0037 -0.0031 0.0010 -0.0005 -0.1222 -0.0239
t-stat -0.20 -1.06 -0.93 0.79 -0.21 -1.37 -1.44

Issuance-weighted 0.0021 -0.0035 -0.0012 0.0007 0.0004 -0.1361 -0.0249
t-stat 0.36 -0.97 -0.32 0.47 0.13 -1.77 -1.74

Panel C: Implied by Quoted Bid-Ask Spreads
2003 2004 2005 2006 2007 2008 Full

Mean implied -y 0.045 0.041 0.061 0.058 0.058 0.084 0.052
Median implied 7 0.032 0.027 0.026 0.025 0.026 0.052 0.030

At the individual bond level, - is calculated using either trade-by-trade or daily data. y

is scaled by 10,000. Per t-stat > 1.96 reports the percentage of bond with statistically
significant -. Robust t-stat is a test on the cross-sectional mean of 7 with standard errors
corrected for cross-sectional and time-series correlations. At the portfolio level, 7 is calcu-
lated using daily data and the Newey-West t-stats are reported. Monthly quoted bid-ask
spreads, which we have data for 1,170 out of 1,205 bonds in our sample, are used to calculate
the implied y.
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Table 3.12: Time Variation in y and Market Variables, Ln Prices

Cons

A VIX

A Bond Volatility

A CDS Index

A Term Spread

A Default Spread

Lagged Stock Return

Lagged Bond Return

Adj R-sqd (%)

0.0346
[1.05]

0.0578
[5.51]

0.0084 0.0031 0.0404
[0.75] [0.35] [1.06]

0.0482
[1.92]

0.3501
[1.63]

0.0401 0.0366 0.0305 0.0148
[1.08] [1.16] [1.29] [ 1.07]

0.0599
[4.32]

0.0348
[3.01]

-0.0624
[-0.51]

0.6092
[1.35]

-0.0767
[-0.39]

-0.0073
[-0.54]

-0.0544
[-1.51]

63.54 2.53 12.18 11.63 -1.17 -0.80 7.43 65.30

Monthly changes in 3' regressed on monthly changes in bond index volatility, VIX, CDS index, term
spread, default spread, and lagged stock and bond returns. The Newey-West t-stats are reported in
square brackets. Regressions with CDS Index do not include 2003 data. y is calculated using log
price changes and is scaled by 10,000.
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Table 3.13: Bond Yield Spread and Illiquidity Measure Y, In P

Cons

Equity Vol

CDS Spread

Age

Maturity

In(Issuance)

1.13 0.97
[3.46] [3.14]

0.22
[4.45]

-0.70 -0.58
[-1.55] [-1.52]

0.22
[5.14]

0.06 0.05
[3.82] [3.51]

0.14
[0.95]

0.12
[3.75]

0.02
[3.67]

0.52
[11.16]

-0.34
[-1.30]

0.17
[3.70]

0.05
[3.53]

0.05
[2.54]

-0.00
[-0.11]

-0.07
[-2.13]

Turnover

-0.64
[-2.08]

0.17
[3.83]

0.05
[3.48]

0.06
[3.07]

-0.00
[-0.18]

-0.05
[-1.76]

0.03
[5.27]

In(Trd Size)

-0.05
[-0.22]

0.16
[3.52]

0.05
[3.55]

0.04
[2.36]

-0.00
[-0.16]

-0.03
[-1.24]

-0.10
[-2.52]

lii(#Trades)

Quoted B/A Spread

Call Dummy

A Dummy

BAA Dummy

Junk Dummy

Obs

R-sqd (%)

-0.44
[-1.05]

0.69
[1.52]

1.19
[2.85]

5.41
[4.38]

679

42.79

-0.44
[-1.07]

0.66
[1.52]

1.07
[2.89]

4.65
[4.46]

670

49.80

0.12
[2.14]

0.19
[1.14]

0.74
[2.77]

3.86
[3.96]

679

53.07

0.07
[1.65]

0.18
[1.17]

0.69
[2.69]

3.39
[3.94]

670

58.22

0.04
[1.11]

0.24
[1.50]

0.56
[2.45]

1.28
[4.29]

502

76.06

0.08
[1.79]

0.18
[1.14]

0.67
[2.46]

3.37
[4.04]

670

60.66

0.10
[2.30]

0.17
[1.07]

0.61
[2.16]

3.33
[3.98]

670

61.33

0.09
[1.75]

0.19
[1.24]

0.72
[2.59]

3.42
[4.02]

670

60.91

-1.21
[-2.72]

0.16
[3.65]

0.05
[3.42]

0.06
[2.70]

-0.00
[-0.08]

-0.16
[-3.51]

0.29
[5.12]

0.12
[2.33]

0.24
[1.43]

0.77
[2.52]

3.45
[4.02]

670

62.02

1.66 -0.23
[2.11] [-1.11]

0.21
[4.80]

0.05
[3.72]

-1.34
[-1.09]

-0.38
[-1.11]

0.67
[1.56]

1.18
[3.15]

5.43
[3.97]

633

43.37

-0.87
[-1.14]

0.19
[1.57]

0.11
[1.08]

0.67
[3.31]

3.43
[3.74]

627

59.22

Monthly Fama-MacBeth cross-sectional regression with the bond yield spread as the dependent variable. The t-stats are reported
in square brackets calculated using Fama-MlacBeth standard errors with serial correlation corrected using Newey-West. The
reported number of observations are the average number of observations per period. The reported R-squareds are the time-series
averages of the cross-sectional R-squareds. -y is the monthly estimate of illiquidity measure using daily data and log price changes.
Equity Vol is estimated using daily equity returns of the bond issuer. Age, Maturity., Issuance, Turnover, Trd Size, and #Trades
are as defined in Table 3.4. Call Dummy is one if the bond is callable and zero otherwise. Convertible and putable bonds are
excluded from the regression. The sample period is from May 2003 through December 2008.

0.26
[2.77]

0.10
[3.12]

0.02
[3.65]

0.52
[10.96]

-0.21
[-0.52]

0.08
[1.22]

0.20
[1.71]

0.56
[2.68]

1.35
[3.62]

472

77.21



Table 3.14: Bond Yield Spread and Illiquidity Measure y, Non-Callable Only

0.98 0.91
[3.86] [3.63]

0.13
[6.59]

-0.41 -0.40
[-0.95] [-0.96]

0.14
[9.92]

0.04 0.04
[3.31] [3.05]

-0.06
[-0.27]

0.13
[6.95]

0.03
[2.01]

0.54

[27.58]

-1.59
[-2.84]

0.06
[2.96]

0.04
[2.99]

0.08
[2.86]

0.00
[0.02]

0.11
[4.02]

-2.11
[-2.72]

0.07
[3.22]

0.04
[2.92]

0.10
[3.07]

0.00
[0.07]

0.15
[4.33]

0.04
[3.02]

-1.73
[-2.64]

0.06
[3.03]

0.04
[2.98]

0.09
[2.77]

-0.00
[-0.02]

0.11
[3.16]

0.04
[0.63]

Quoted B/A Spread

A Dummy

BAA Dummy

Junk Dummy

Obs

R-sqd (%)

1.16
[1.49]

1.44
[3.16]

6.24
[3.76]

373

44.43

1.10
[1.48]

1.38
[2.90]

4.31
[3.25]

370

44.62

0.22
[1.68]
0.98

[3.74]

5.38
[3.50]

373

52.57

0.17
[1.72]

0.89
[3.65]

3.53
[3.05]

370

52.40

0.25
[1.07]

0.56
[2.00]

1.21
[3.52]

283

72.22

0.23
[1.88]

0.85
[2.77]

3.48
[3.01]

370

56.82

0.25
[1.83]

0.78
[2.60]

3.45
[2.97]

370

57.97

0.21
[1.91]

0.83
[2.78]

3.48
[3.02]

370

57.11

-1.92
[-2.77]

0.06
[2.44]

0.04
[2.92]

0.09
[2.93]

0.01
[0.28]

-0.07
[-1.25]

0.29
[3.72]

0.28
[2.13]

0.87
[2.65]

3.45
[2.97]

370

58.30

1.55 -0.03
[1.87] [-0.15]

0.12
[6.72]

0.04
[3.05]

-1.29
[-0.83]

1.12
[1.48]

1.42
[3.00]

6.33
[3.33]

357

46.10

-0.66
[-0.74]

0.10
[1.47]

0.87
[3.51]

3.41
[2.85]

356

53.61

Monthly Fama-MacBeth cross-sectional regression with the bond yield spread as the dependent variable. The t-stats are reported
in square brackets calculated using Fama-MacBeth standard errors with serial correlation corrected using Newey-West. The
reported number of observations are the average number of observations per period. The reported R-squareds are the time-series
averages of the cross-sectional R-squareds. 7 is the monthly estimate of illiquidity measure using daily data. Equity Vol is
estimated using daily equity returns of the bond issuer. Age, Maturity, Issuance, Turnover, Trd Size, and #Trades are as defined
in Table 3.4. Callable, convertible and putable bonds are excluded from the regression. The sample period is from May 2003
through December 2008.

Cons

-y

Equity Vol

CDS Spread

Age

Maturity

In(Issuance)

Turnover

In(Trd Size)

In(#Trades)

0.23
[0.83]

0.12
[7.21]

0.03
[1.95]

0.54
[23.31]

-0.58
[-0.85]

0.19
[1.04]

0.58
[1.89]

1.30
[3.14]

273

73.70



Table 3.15: y by Trade Size

Panel A: Using Trade-by-Trade Data
Size 2003 2004 2005 2006 2007 2008 Full

Small Mean y 1.10 1.05 0.83 0.72 0.77 1.18 0.88
Median - 0.76 0.62 0.48 0.41 0.45 0.76 0.59
Per t > 1.96 91.32 90.43 95.48 94.62 92.23 88.11 99.09
Robust t-stat 13.54 14.35 17.47 17.90 17.00 15.34 20.62

Medium Mean y 0.69 0.68 0.58 0.47 0.48 0.78 0.57
Median -y 0.48 0.43 0.33 0.25 0.25 0.53 0.39
Per t > 1.96 95.84 92.40 96.60 96.27 95.16 91.29 97.75
Robust t-stat 14.91 16.37 17.20 19.20 18.02 15.05 22.11

Large Mean 7 0.29 0.30 0.27 0.22 0.25 0.47 0.27
Median y 0.11 0.08 0.07 0.06 0.08 0.24 0.10
Per t > 1.96 90.13 83.94 90.02 85.42 82.93 79.03 95.35
Robust t-stat 13.44 12.65 14.20 13.68 13.51 12.82 17.42

Panel B: Using Daily Data
Size 2003 2004 2005 2006 2007 2008 Full

Small Mean Gamma 1.55 1.41 1.26 1.04 1.30 2.92 1.44
Median Gamma 1.05 0.80 0.68 0.59 0.84 2.03 0.98
Per t > 1.96 86.14 83.24 90.22 89.52 89.03 83.59 96.75
Robust t-stat 21.04 16.29 24.26 24.20 20.76 17.37 25.84

Medium Mean y 1.02 0.92 0.83 0.65 0.76 2.05 0.91
Median y 0.65 0.54 0.45 0.32 0.40 1.22 0.58
Per t >1.96 89.88 86.18 92.51 91.16 89.62 86.33 95.58
Robust t-stat 23.26 18.72 24.45 22.30 20.34 15.22 27.66

Large Mean '7 0.50 0.46 0.42 0.35 0.47 1.20 0.47
Median , 0.18 0.12 0.10 0.07 0.12 0.48 0.15
Per t >1.96 68.59 63.04 70.93 71.18 69.33 63.08 80.33
Robust t-stat 14.28 13.05 15.30 14.27 9.84 9.53 17.84

7 is calculated using only trades of sizes in the smallest 30%, middle 40%, or largest
30% for each bond. Per t-stat > 1.96 reports the percentage of bond with statistically
significant -y. Robust t-stat is a test on the cross-sectional mean of y with standard
errors corrected for cross-sectional and time-series correlations.
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