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ABSTRACT

The response of tall buildings subjected to dynamic wind loads has been widely stud-
ied. For excitations approaching the resonant frequencies of the structure, ensuring
serviceability is a significant concern. One traditional solution is the implementation
of a tuned mass damper (TMD), which acts as a passive damping device in the region
of the tuned frequency. However, TMDs exhibit a limited bandwidth and often require
a significant mass. Active systems, such as the active mass driver, have been utilized
to improve the effectiveness of the TMD concept, but these systems require signifi-
cant power and bring the inherent risk of instability. Hybrid semi-active schemes with
variable damping devices have been proposed. They are stable, require low power,
and are controllable, thus providing a broader range of applicability. The concept of
a semi-active tuned mass damper (STMD) has been investigated, but the influence of
the dynamic range of the semi-active damping device has not been documented. This
analysis assesses the effectiveness of STMD systems using a variable-orifice damper
and a magnetorheological damper with varying dynamic ranges. Results demonstrate
a performance dependence on the dynamic range and also elucidate the superiority
of non-linear damping devices. It is shown that the prescribed TMD mass may be
reduced by a factor of two when semi-active control is implemented, thereby making
the STMD an attractive and feasible option when space and weight concerns govern

design.

Thesis Supervisor: Jerome J. Connor
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Chapter 1

Mitigating dynamic response of tall

buildings under wind excitation

Large civil structures are exposed to dynamic loading from a variety of sources, in-

cluding earthquakes, high winds, and reciprocating machinery. Satisfactory design

must ensure structural integrity and occupant safety under the most adverse condi-

tions, the severity of which varies widely based on building location and structural

purpose. This study focuses on the specific case of tall, flexible buildings, which are

particularly susceptible to wind-induced vibrations and may require more significant

control measures to satisfy performance requirements.

1.1 Motivation

Recent decades have marked a trend towards the design and construction of very tall

buildings. Advancements in analysis, coupled with an increased use of lighter building

materials and a decrease in heavy claddings, have led to structures that are not only

taller but also more flexible. Consequently, most modern towers are especially prone

to oscillations under persistent winds, which can lead to swaying motions of several

feet on the top floors [12, 39].

In many cases, these large deflections may not threaten the integrity of the struc-

ture, but the steady rocking can cause considerable discomfort and even illness to



building occupants. If persistent, the dynamic response under severe winds may

render the top floors completely uninhabitable. Studies by Chang and Hansen in-

vestigated the effects of this motion on the human body, creating benchmarks for

the perception of and physiological response to various increments of lateral accel-

eration [12, 17]. Additionally, Ruderman noted that the psychological effects of ob-

servable lateral displacements can be a key factor in human comfort, emphasizing the

need to limit both quantities - displacements and accelerations - in tall buildings [12].

The maximum amplitudes of these responses are ultimately dictated by the abil-

ity of the structure to dissipate energy; the more significant the energy dissipation,

the smaller the vibrations. All structures naturally release some energy through

mechanisms such as internal stressing, rubbing, and plastic deformations. In large

modern structures, however, the total damping may amount to as little as 1% of

critical, making them very vulnerable to dynamic effects such as resonance [20]. As

a result, additional measures are generally necessary to meet servicability standards.

Since eliminating the excitation source is impractical, this necessitates implementing

a control scheme to enhance the effective damping of the structure.

1.2 Methods of control

Numerous techniques have been tried to produce better control against wind exci-

tation, and these fall into three broad categories: passive control, which provides

additional damping with no additional energy; active control, which uses feedback

and an external energy source to provide optimized actuator forces in real-time; and

semi-active control, which relies on feedback and low-energy devices to provide op-

timized reactive forces in real-time. Each of these will be further introduced in this

section.

1.2.1 Passive control

The most mechanically simple set of control schemes is encompassed in the passive

control categorization, which has thus far been the most accepted for civil engineering



applications.

Definition

Housner et al. [20] and Spencer [55] have both provided comprehensive overviews

on structural control, including succinct definitions for the various types of control

implemented in structures. They define a passive control system as any that does

not require an external power source. All forces imparted by passive control devices

develop as direct responses to the motion of the structure. Hence, the energy of both

the device and the primary system can never be increased by the control scheme.

The main goal of these systems is to efficiently dissipate vibrational energy, and

the various methods of accomplishing this can be categorized in two ways. The first

method involves converting kinetic energy directly to heat, such as through the yield-

ing of metals, the deformation of viscoelastic solids and fluids, or the implementation

of friction sliders. The second method entails transferring energy among two or more

of the vibrational modes of the building, generally achieved by installing a supple-

mental oscillator that absorbs the vibrations of the primary structure [20].

Implementation for wind-excited structures

Both categories of passive control have been carried out in a variety of ways in the de-

sign of tall buildings subjected to dynamic wind loading. The first method, relying on

direct conversion of kinetic energy to heat, has been most successfully accomplished

through the addition of auxiliary dampers to the primary frame of the structure.

These damping devices may be viscous, viscoelastic, or plastic, and are generally dis-

tributed throughout the building in a manner that optimizes their energy dissipation.

This technique was most notably implemented in the original World Trade Centers

in New York City but has also been implemented in several buildings in Seattle and

throughout California [20, 37].

The second method of passive control increases effective damping indirectly by

modifying the vibrational modes of the structure. In general, the response of struc-

tures under wind loading is dominated by the first mode of vibration. Hence, by



adding an oscillatory control device that vibrates out of phase with the structure

during resonance conditions, it is possible to use it as a "counterweight" against the

fundamental mode, thereby decreasing the overall response of the primary structure.

Current passive devices that take advantage of this property include the tuned mass

damper (TMD), tuned liquid damper (TLD), and the tuned liquid column damper

(TLCD).

Tuned mass dampers, discussed in full in chapter 2, are the most frequently used

supplemental oscillators in buildings. Consisting of a mass, spring, and damping

element, the TMD is attached to the frame of a structure on one of its uppermost

stories. There it is allowed to move out of phase with the rocking building by sliding

on low-friction bearings or a thin film of oil, and energy is absorbed through the

affixed damper [33, 37]. TMDs have been used throughout the world, but examples

in America include the Citicorp Center in New York City and the John Hancock

Building in Boston.

Tuned liquid dampers and tuned liquid column dampers utilize oscillations of flu-

ids instead of a mobile mass. T LDs are essentially large sloshing tanks, theoretically as

simple as a swimming pool, the dimensions of which determine their oscillatory prop-

erties. Energy is absorbed through the viscous motion of the fluid and through wave

breaking. Notable examples of TLDs in practice include the Shin Yokohama Prince

Hotel and a steel-frame tower at the Nagasaki airport, both located in Japan [20].

Tuned liquid column dampers are based on the same concept but rely on the motion

of liquid in a U-shaped container with an orifice in the middle. The amount of energy

dissipation is contingent upon the inherent heat-loss characteristics and the velocity

of the fluid as it passes through this opening. Two 50, 000 gallon TLCDs have been

installed in the One Wall Centre in Vancouver [26, 60].

Advantages and limitations

Passive control is the most widely-used method of mitigating structural response

under wind loading, but it comes with limitations. While reliable and relatively

straightforward to design, passive control systems are generally only good for limited



bandwidths of dynamic input. As a result, they are vulnerable to the effects of off-

tuning, de-tuning, or resonances of secondary modes. It is primarily due to these

limitations that more elaborate active and semi-active control techniques have been

coming into practice.

1.2.2 Active control

Active control is a relatively recent subfield of structural engineering; it promises

improved response to passive systems at the cost of energy and more complex systems.

Definition

Active control has been described as any control system in which an external power

source is required to provide additional forces to the structure in a prescribed manner,

generally through the use of actuators. The signals sent to control the actuators are

determined based on feedback from sensors placed on or throughout the structure.

Due to the presence of an external power source, the forces applied may either add

or dissipate energy from the structure [20].

In order to maximize the performance of an active system, the actuator forces

must be prescribed in real-time based on the inputs of the sensors. Assigning the

direction and magnitude of these forces can be done in a variety of ways, all of which

have their roots in the diverse and mathematically rich field of control engineering.

Miller provides a useful overview of the breadth of this topic:

Civil engineering researchers have applied both classical and modern

control techniques to large civil structures, and have addressed many of

the same major issues that have been prominent in the aerospace, electri-

cal, and mechanical engineering fields. These issues include such topics as

mathematical modeling of structures, identification techniques, reduced-

order models, modal truncation and controller interaction with residual

modes, placement of control actuators, multivariable controller design

techniques, mathematical measures of desired system performance, and



optimal control techniques [39].

In 1972 Yao became the first such researcher to apply control theory to structural

problems [20]. Yang followed in 1975 with a study on the application of optimal con-

trol strategies for tall buildings subjected to wind loads [68]. Since then, innumerable

control algorithms have been developed specifically for civil structures, the basic task

of each being to use feedback from sensors to direct the actuator in the best possible

way for enhanced serviceability and safety of the structure [33, 55].

Implementation for wind-excited structures

As with passive control systems, there is a significant amount of variety in the de-

sign and application of active control systems. More so than with passive systems,

however, a majority of active control research has focused on the protection of struc-

tures under earthquake loading. Nevertheless, a significant amount of work has also

addressed the issues specific to wind-loaded structures, and some control techniques

have been adapted for both types of excitation.

Active tendons, also known as active bracing, are an example of an active control

technique that has been developed to counteract both earthquake and wind excitation.

These devices consist of tendons rigged to the primary structure, the tension of which

can be adjusted by actuators. By tightening or slackening these tendons in real-time,

it is possible to improve the response of the structure under dynamic loading. Full

scale active tendon installation has proven successful for dealing with ground motion

and has also been investigated for responding to wind excitation [39, 49].

Other active systems have developed more specifically for counteracting dynamic

wind loading, some of which closely resemble successful passive systems. The active

mass driver, or AMD, is similar to the passive TMD except that its damper has

been replaced by an actuator, allowing for substantially improved control. On the

other hand, the active tuned mass damper (ATMD) simply adds an actuator to the

original TMD and leaves both the spring and the damper in place. Because the

ATMD retains all the components of a passive system, it is sometimes referred to as

a "hybrid" control scheme [20].



Both the AMD and ATMD are described more fully in section 2.3, including some

successful applications. They have become the most common type of active control

implemented in civil structures [10].

Advantages and limitations

The performance benefits of active control are in some cases quite pronounced. Due

to its ability to respond in real-time, active control also eliminates most of the tuning

limitations inherent in passive devices. However, active control has not been exu-

berantly embraced by the civil engineering community as a result of some significant

limitations.

Most significantly, the attractiveness of active control schemes is diminished by

their heavy reliance on external power supplies. In order to output actuator forces

of the magnitude necessary to control large civil structures, the power consumption

may become large and costly. Additionally, the times at which the control forces are

needed most generally coincides with the time when power failure is the most likely,

such as during an earthquake or large wind storm. This raises reliability concerns [39].

Beyond the issue of energy supply, engineers also hesitate to embrace non-traditional

technologies for structures. The placement of sensors and the design of feedback

schemes are beyond the scope of most practicing engineers, and a poorly designed ac-

tive system may lead to deleterious energy inputs and destabilization of the primary

system. These legitimate concerns generally sway designers towards more traditional

solutions [55].

1.2.3 Semi-active control

Semi-active control seeks to combine the performance benefits of active control and

the reliability of passive control, making it a much more appealing alternative to

traditional control schemes in civil structures.



Definition

Semi-active control systems are similar to their fully active counterparts in their

reliance on real-time feedback to direct a control system, but they differ in that

their external energy requirements are orders of magnitude smaller. Generally, semi-

active control devices do not add mechanical energy to the primary system and hence

have an inherent stability in terms of bounded-input, bounded-output. Consequently,

semi-active devices may be viewed as controllable passive devices [20].

Instead of the application of actuator forces, semi-active control relies on the

reactive forces that develop due to variable stiffness or damping devices. That is, by

altering the properties of these devices, the response of the system may be favorably

modified using only nominal power, usually on the energy scale of a battery. As

a result, semi-active control strategies appear to combine the best features of fully

active and fully passive systems, leaving them with the greatest likelihood of near-

term acceptance for structural applications [55, 591.

Implementation for wind-excited structures

Similar to active control techniques, semi-active control schemes may be developed

uniquely or may simply modify and improve existing passive control schemes. Aero-

dynamic appendages are one example of a novel semi-active technique developed to

ameliorate resonance conditions under wind excitation. This concept involves the

addition of aerodynamic surfaces to the top of large buildings, the position and ori-

entation of which can be modified using only a small amount of energy. A proper

control strategy can then derive the requisite control forces directly from the incident

winds [2, 39].

More popular semi-active control schemes have been based on adding semi-active

damping or stiffness devices to well-tested passive control devices. These include the

semi-active tuned liquid column damper (STLCD), in which the orifice in the tube is

given a controllable diameter [26], and the semi-active tuned mass damper (STMD),

in which the spring or damping element of the passive TMD is replaced with a device



that has controllable properties. The selection of the semi-active device can vary

substantially, an elaboration of which is presented in section 2.4.

Advantages and limitations

The most distinct advantage of semi-active systems is their ability to provide improved

control forces with an incredibly low demnad for power. Because this power can be

supplied by a battery, this ensures continued functionality even in the event of a power

failure, adding reliability to any semi-active control method. It is because of these

benefits that enthusiasm towards semi-active structural control schemes has increased

in recent years, making it a viable alternative to proven passive devices [20].

While these advantages are in some cases truly significant, semi-active control

still has its detractors. Most relevant is the need for sensor technology and computer-

controlled feedback, which is as central to semi-active control as to active control.

The risk of destabilization has now been removed, but the design engineer must be

convinced of the performance benefits of adding semi-active devices before he is willing

to embrace a more intricate, less proven technology.

1.3 Selection of a control technique

As has been seen, there are numerous methods for addressing even the specific control

problem of wind-excited tall buildings. While several of the control methods have

received a great amount of attention in the literature, the greatest precedent lies with

mass-based oscillators, whether passive (TMDs) or fully active (AMDs and ATMDs).

With the more recent rise of semi-active control strategies, STMDs have also received

quite a bit of attention, but none have yet been installed in a full-scale civil structure.

This thesis purposes to expand knowledge of STMD systems, specifically by an-

alyzing their effectiveness as a function of the properties of the variable damping

device selected to provide the semi-active control. To do so, the use of tuned mass

dampers will be overviewed (chapter 2), various semi-active damping devices will be

compared (chapter 3), and performance simulations will be generated (chapter 4).



Comprehensive results for two specific STMD systems will be presented in chapters 5

and 6, both of which will evidence the benefits of adding semi-active control to a

traditional tuned mass damper (chapter 7).



Chapter 2

Tuned mass dampers for structures

As mentioned in chapter 1, the most widely accepted control measure for mitigating

the response of tall structures under wind loads is the implementation of a tuned

mass damper, or TMD. The concept has been well-established and at its base level is

relatively uncomplicated. Consisting of a mass, a spring, and a damper, the natural

frequency of the TMD is tuned to have a resonance very close to the fundamental mode

of the primary structure, which allows a large amount of the structure's vibrational

energy to be transferred to the TMD and then dissipated by its damper. This system

has been adapted in numerous tall structures, and it has proven to be an effective

method for mitigating structural vibration under high wind loads.

This chapter summarizes the vast amount of work done on TMD systems, explains

appropriate measures for the optimization of its parameters, and describes the more

recent work done in implementing active and semi-active control to enhance and

extend the performance of tuned mass dampers.

2.1 Development of TMD theory

Although the basic TMD framework is quite simple, the specific parameters for its

mass, stiffness, and damping must be found by using optimal design procedures to

maximize its control effectiveness. These expressions are generally developed using

a linear single degree of freedom (SDOF) model to represent the vibration of the
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Figure 2-1: Basic TMD model

fundamental mode. The literature on this topic is both extensive and varied, as

design equations depend not only on the parameters of the primary structure, but

also on system inputs and optimization goals. In all cases closed-form solutions exist

for these parameters when the sub-structure has no inherent damping (c = 0 in

figure 2-1), with numerical and series solutions available for the more complicated

case where c -/ 0 [5].

2.1.1 Factors influencing TMD optimization

Certainly, not all TMD design procedures are equally beneficial for their placement

in structures subjected to wind loading. Before any methods are excluded, however,

all TMD design factors will be summarized, with references provided for further

information.

Type of excitation input

Except for the special case where c = 0, optimal TMD parameters vary based on the

type of excitation. The types of loading most commonly considered are

* An excitation force applied directly to the main mass, which for structural

applications would include wind loading [5, 18, 44].
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Figure 2-2: Types of excitations

e An acceleration of the structure's base, which is used to model the effects of

earthquakes on structures [57, 58].

9 An inertial force applied to the main mass, which would describe the effects of

an eccentric mass vibrator [52].

Examples of these loadings can be seen in figure 2-2, where @ represents wind

excitation, @ represents ground excitation, and @ represents inertial excitation.

Output to be minimized

Selection of optimal TMD parameters further depends on which system output is

to be minimized. In general TMD applications these may include the displacement,

velocity, or acceleration of the primary mass, as well as the force transmitted to the

mass or the relative motion of the mass with respect to the base. Summaries of the

results for each of these design goals can be found in [61].



Optimization goal

Even when the excitation input is known and the output to optimize has been selected,

there are still three possibilities for optimization criterion from which to choose [5].

" H, optimization minimizes the maximum amplitude response of the system.

Expressions are developed by applying minimization techniques to harmonic

force inputs [5, 44, 47].

" H 2 optimization minimizes the total vibration energy of the system over all

frequencies. In this case, derivations come from minimization of the ensemble

mean of the response under random white noise excitation [5, 14, 61].

" Stability maximization attenuates the transient vibration of the system in the

shortest amount of time possible. Mathematically, this is accomplished by mov-

ing all poles of the transfer function of the system as far to the left of the

imaginary axis as possible in the s-plane [41, 64].

Both the H, and H2 optimization criteria seek improvement for the steady-state

response of the structure, while the stability maximization objective aims to improve

transient behavior. Figure 2-3 demonstrates how the transfer function of the TMD

system varies based on the goal of the optimization.

2.1.2 Optimization scheme for wind-loaded buildings

As can be seen, the procedures for optimizing a TMD are numerous. This necessitates

using engineering judgment to select the best expression for the TMD parameters. In

the case of tall buildings, both wind and earthquake loading have been considered,

but the mitigation of vibrations due to winds is generally the design goal of any

TMD system; hence, the model for an excitation force applied to the primary mass

will be chosen. As discussed in section 1.1, both displacements and accelerations

are dominating design concerns. Tthe selection between these two does not affect

the result significantly, so following convention the displacement will be the selected
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cant amount of progression. Indeed, minimization of maximum displacements under

harmonic loads was the original objective of early TMD research.

Using a secondary mass to limit displacements at resonance was first proposed

by Frahm in 1909 [16]. The benefits of a TMD with a damper was first shown by

Ormondroyd and Hartog in 1928, who demonstrated its success experimentally [44].

For a given TMD mass, it was later shown that optimizing the response consisted of

two distinct steps: tuning the frequency of the damper and selecting the ideal level of

damping. The frequency tuning parameter, fot is based on the fact that the TMD

introduces a second frequency to the system, which if carefully selected will produce

equal responses at the two resonances of the combined system. An expression for fopt

'Indeed, as shall be shown in the results sections, the addition of a semi-active device to a TMD
has the greatest overall effect when TMD parameters are optimized for displacement rather than
acceleration. This is due to the semi-active TMD being more effective for higher frequencies, which
is where the dynamic response of the acceleration deviates from optimum for a system optimized
for displacement.



was first developed by Hahnkamm in 1932 [5]. The second step involves selection of

the optimum damping ratio, (opt, the theory for which was first developed by Brock

in 1946 [8]. His approach is now known as the "fixed points" theory, since it is based

on the recognition that there are two points in the system response (one near each

resonance) through which all curves pass regardless of TMD damping; hence, (opt is

selected such that these points become local maxima.

These parameters were also developed independently by Den Hartog, who put

them into wider use with release of his textbook in 1956 [18], but they lacked com-

pleteness in that they were only valid for an undamped primary system. In 1981

Randall expanded this theory by producing numerical curve-fitting results for find-

ing fopt and (opt when c / 0 [47]. A variety of other curve-fit solution have also

been produced, and recently Asami presented a series solution to this problem [5].

It is believed that an exact analytical solution for damped systems will never be at-

tained, but the numerical and series solutions are certainly sufficient for engineering

applications.

Optimization equations

For a give mass ratio, yt, defined as the mass of the TMD divided by the mass of the

primary structure, the H, optimized parameters for tuned mass dampers limiting

displacements are as follows. In the case of no damping 2

fopt 1 (2.1)
1+p

3p
&opt = (2.2)

8 (1 + p)

2When c - 0, the closed-form analytic solution for Ho, optimization is identical for all types of
excitation inputs described previously.



and in the case of a primary structure with ( as its damping ratio3

1 1 '1 (4 ABfort = - 1 (3+ 4p,- )B (2.3)
1+ y 1 + p- 2 (1 + p) 2 + p

3p 60 + 63p + 16p 2 - 2(3 + 2,)AB
opt =+ (2.4)

""8( + p) 8(1 + p-) (2 + p-) (9 + 4p)

where

A = "3(2+ p) - p(2+ p)

B = )3(2 + p) + 1/p(2+ p)

2.2 Application to structures

Though most TMD theory developed for use in mechanical engineering applications, it

has proven to be an effective means of addressing the resonance issues in tall buildings

described in section 1.1. In many instances, they have been shown to reduce response

amplitudes by as much as 40%. The basic concept remains unchanged, with the TMD

acting as an energy-absorbing system with parameters optimized to the structure's

fundamental mode of vibration. There are, of course, special design considerations

due to the much larger scale, but the TMD has been successfully employed in several

tall buildings. Current applications include translational tuned mass dampers, in

which a large mass is placed on bearings or a near-frictionless oil film and fastened

into a structural frame, as well as pendulum tuned mass dampers, in which a large

mass is allowed to rock back while hanging from a large rod, the length of which

determines its tuning.

3The full series, developed by [5], also includes (2 terms, which are excluded here due to their
minimal contribution to lightly damped systems. For full expressions, see section 4.2.3



2.2.1 Special considerations

The first and most significant design consideration unique to tall civil structures is

the amount of mass that can be placed on the top of the tower. p, the mass ratio,

is the most influential parameter in terms of TMD effectiveness; once the mass ratio

is specified, it only remains to size optimal spring and damper elements. However,

due the large mass of structures, practical design considerations limit P to a range of

0.005 - 0.02 [37].

A second consideration that must be taken into account during the design process

is the relative movement of the TMD with respect to the building4 . In addition to

space constraints, stroke limits must be met. For example, in translational tuned

mass dampers, pneumatic springs may be used for the stiffness and hydraulic shock

absorbers for the dampers, which in both cases have inherit extension limitations [37].

Relative displacements may be decreased by increasing either P or cd. Consequently,

since the mass ratio is generally fixed, it may become necessary to overdamp the

TMD, which has the deleterious effect of increasing the response of the primary

structure [50]. This trade-off becomes a matter of engineering judgment.

Thirdly, there is the practical difficulty of creating a low-friction surface for the

damper mass. Friction forces must be small enough to enable the damper mass to

respond freely even for low levels of building excitation. In translational tuned mass

dampers, this may entail using a thin oil film [37].

2.2.2 Current examples

Both translational tuned mass dampers and pendulum tuned mass dampers have been

used in significant and progressive structures. This section highlights some examples.

Citicorp Center

The Citicorp Center in New York City was the first to complete installation of a

full-scale structural tuned mass damper. When finished in 1977, its 400-ton control

4For reference, full-scale lab tests produced relative displacements of around 3.5 feet under the
wind loading of a 10-year storm [37].



mass was 250 times larger than any existing TMD. With a mass ratio of 2% of the

first modal mass, the damper increased overall structural damping from 1% to 4% of

critical, which reduced sway amplitude by a factor of 2. The TMD system consists

of a large block of concrete bearing on a thin film of oil, with structural stiffness

provided by pneumatic springs [13, 37].

CN Tower, Toronto

The Canadian National Tower in Toronto is unique from a design perspective in that

tuned mass dampers had to be added to suppress the motion of the second and fourth

modes of vibration. It was not the 553-meter tall tower in its entirety, but rather the

102-meter steel antenna at the top that required suppression of dynamic wind loading

effects. Because the first and third modes of the antenna had the same vibrational

characteristics as the more heavily damped concrete structure, they did not require

any additional damping.

To dampen the vibrations, two doughnut-shaped steel rings with 9 tons of dead-

weight were added at elevations corresponding to the peak vibrations of the prob-

lematic modes. Each ring was mounted on a universal joint that could rotate in

all directions, thereby allowing it to act as a tuned mass regardless of the direction

of wind excitation. Energy dissipation is provided by four hydraulically activated

dampers per ring [13, 53].

Taipei 101

Taipei 101, the tallest building in the world at the time of its completion in 2004,

exemplifies how a tuned mass damper can double as a significant architectural and

visual element. Rather than sliding on bearings in an enclosed room, the Taipei 101

TMD rocks like a pendulum in a fully open viewing area at the top of the building.

The mass is provided by an impressive 6-meter-diameter steel ball weighing 726 tons.

Suspension of this enormous sphere is made possible by four sets of cables, and

dynamic energy is dissipated by eight hydraulic pistons each measuring two meters in

length. When in full motion, this system is capable of maintaining acceptable levels



of lateral acceleration under wind gusts of up to 150 mph [48].

2.2.3 Passive TMD Limitations

While tuned mass dampers have proven to be effective at mitigating structural vi-

brations caused by high winds, they also possess some pointed limitations.

The first and most obvious limitation is that, as its named suggests, a TMD is

"tuned" to a very narrow band of suppression frequencies. Hence, if other modes of

resonance are also significant concerns, the specificity of its tuning renders the TMD

ineffective to suppress them [46].

A corollary of this limited tuning range is the risk of a mistuned system. In

practical applications, this may occur for two reasons. First, structural properties

are only known with a degree of uncertainty, meaning that even a carefully-optimized

TMD system is liable to be sub-optimally calibrated to the resonance of the structure's

fundamental mode. Second, even if the structural properties are accurately assessed

initially, they are prone to vary with time; for example, both variation in mass and

deterioration of the structure could negatively affect its tuning [27, 50].

Finally, it is noted that wind excitation is generally neither harmonic nor white

noise, both of which have been used as assumptions in TMD optimization. Addition-

ally, even with detailed wind-tunnel models, it is difficult to predict the impact of

wind loads due to changes in topography, neighboring buildings, and the results of

vortex shedding [50].

These disadvantages do not negate the overall feasibility of TMD systems, but

they do threaten to limit their effectiveness. Consequently, methods for improving

the passive TMD system with active or semi-active control have been explored.

2.3 Active tuned mass dampers

In an effort to overcome these limitations and to improve performance, measures

have been taken to incorporate active control techniques with passive TMD systems,



as mentioned in chapter 1. The basic concept involves adding an external energy

source to generate an additional force that complements the force generated by the

TMD, usually through the use of an actuator. With the inclusion of sensors and a

feedback loop, the actuator force can be adjusted nearly real-time to produce opti-

mized results.

There are many motivations for using an active TMD system, but there are a few

particularly significant benefits. First, adding an external force can greatly increase

the control system's effectiveness while also mitigating the limitations posed in sec-

tion 2.2.3. Second, it can allow the size of the mass to be reduced, alleviating potential

space and weight constraints. Third, an active system can be used to reduce the rel-

ative TMD displacement, thereby addressing limitations on stroke length [53]. As a

result of these distinct advantages, the active TMD has become a widely accepted

application of active control in civil structures [4].

2.3.1 Development of concept

There are a number of variations to the active TMD concept, ranging from the place-

ment of the actuator to the control scheme used to direct it. This section describes

the more common design possibilities and highlights advancements in the theory.

Variations of design

The most basic design is known as an active mass driver (AMD) and consists of a

force actuator driving a mass connected to the building by a stiffness element. In this

set-up there is no passive energy dissipation; the desired control forces are obtained

directly through the reaction of the AMD system acting on the building.

Another scheme is the active tuned mass damper (ATMD), which includes the

passive damper of traditional tuned mass dampers. Hence, the actuator is placed in

parallel with the stiffness and damping elements and is programmed to enhance the

behavior of the passive TMD.

A hybrid variation known as the DUOX system combines an AMD and a passive
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TMD. This design involves attaching an auxiliary mass and an actuator to the tuned

mass damper. The purpose of this smaller-scale AMD is to drive itself out of phase

with the passive mass damper, producing an additional force that complements the

natural motion of the TMD [13, 33].

Basic schematics of each of these devices can be seen in figure 2-4, which portrays

the AMD, @, the ATMD, @, and the DUOX, @.

Advancements in theory

A significant amount of literature has been produced on the benefits of actively-

controlled tuned mass dampers. This work has included analyses of ATMD effec-

tiveness under both earthquake and wind loading. To date, a majority of published

results has concentrated on earthquake-loaded buildings, as this is a frontier that

passive TMD systems have proven relatively ineffective at targeting. Nevertheless,

since tall structures are more prone to wind-loading issues at their resonant frequen-

cies, work on both issues has been on-going. Because this thesis addresses large



wind-loaded structures, the literature on this topic will be summarized.

The concept of using active control elements to enhance TMD performance was

first proposed by Lund in 1979 [32]. In 1980, Soong applied optimal control the-

ory to an ATMD to demonstrate its superiority over passive systems at mitigating

wind-induced vibrations [53]. Abdel-Rohman advanced the theory in 1984 by de-

scribing how the optimization of the passive TMD parameters must be modified if

minimization of energy consumption is to be taken into account [1]. In following years,

various attempts were made to produce closed-form optimized solutions of both the

passive parameters and the gain coefficients of the closed-loop full-state feedback

system [4, 11, 65]. Mackriell further demonstrated ATMD feasibility by using pure

acceleration feedback to control simulated high-rise structures subjected to digital

time histories of wind-tunnel results [33].

In addition to assessing the overall effectiveness of ATMD systems, work has

also been done to specifically address concerns of the actuator stroke. As in the

passive TMD case, the relative displacement of the damper mass with respect to

the floor can be a significant design issue. Soong demonstrated that this relative

displacement can be significantly decreased through use of the ATMD [53]. Ideka

was the first to develop guidelines for using LQR control theory to weight the stroke

of the actuator [22]. Sakamoto undertook both experimental and theoretical measures

to develop an AMD with a limited stroke [51].

2.3.2 Examples

Advances in ATMD theory has been complimented by its success in several structural

applications, though predominantly in Japan.

Kyobashi Seiwa Buidling

The first practical application of an AMD was in the Kyobashi Seiwa Building, a

slender 11-story building located in Tokyo, Japan. In 1989 two AMDs were installed

on the top floor to control both lateral and torsional vibrational modes under ground



or wind excitation. The fully-active system consists of sensors on several locations, a

control computer for signal analysis, actuators with 0.01 second response times, and

the two large masses. Lateral response of the building was successfully decreased by

a factor of three as compared to the uncontrolled structure [10, 13].

Ando Nishikicho building

The Ando Nishikicho building in Japan exemplifies the use of a DUOX active-passive

hybrid TMD system. This 14-story building in crowded downtown Tokyo is sus-

ceptible to strong wind gusts due to the contours of surrounding buildings. The

DUOX control system designed to solve this problem consists of two active mass

drivers mounted in orthogonal directions to control vibrations along either primary

axis. Sensors were placed on both the AMD and TMD, as well as throughout the

building to monitor ground excitation and building response. The computer directs

the actuators to both optimize the response of the structure and to limit the stroke

of the AMDs [13].

2.3.3 ATMD limitations

The performance benefits of an ATMD are now obvious, but these are not made

available without some significant drawbacks.

Perhaps the most serious disadvantage of an active system is the steep increase in

cost. Installation of the device itself becomes more complex, as now sensors, feedback

connections, and actuator devices must be taken into account. Furthermore, these

systems may require both large amounts of power and tedious regular maintenance,

both of which add to the long-term operational costs.

Active systems also pose instability risks that need not be considered with passive

devices. For example, a malfunction of the system control could cause the actuator

to erroneously add energy to the primary structure, thereby having an adverse effect

on vibration mitigation. Additionally, any large scale power outage could render the

benefits of active control completely useless.



Due to both cost and instability considerations, many have explored alternatives

to fully active TMD systems.

2.4 Semi-active tuned mass dampers

As described in section 1.2.3, recent work has championed the promise of semi-

active design strategies to blend the performance benefits of active systems with the

stability and energy advantages of passive systems. This concept of hybrid design has

also been applied to TMD systems. In a semi-active tuned mass damper (STMD),

additional forces are developed through variable stiffness or damping devices rather

than through the direct application of an active control force.

Utilizing semi-active control with TMD systems is attractive for several reasons.

First, it allows for variations in the control force to optimize system performance

without the addition of a significant energy source, since devices that vary the stiffness

or damping forces require only nominal power. Second, because these control forces

dissipate energy rather than add it, they are inherently stable. Consequently, even

in the event of a control system malfunction or a system power loss, an STMD may

still behave as an effective passive system.

2.4.1 Development of concept

Similar to ATMD design, there are several basic variations of STMD systems that

have been considered.

Variations in design

By far the majority of work on STMD systems has focused on improving transla-

tional passive TMDs 5 , with the reactive control forces coming from installing variable

stiffness or damping elements. Semi-active variable stiffness (SAIVS) devices involve

replacing the pneumatic springs of the traditional TMD with a mechanical device

5 Semi-active pendulum TMDs have also been considered. See [38].
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Figure 2-5: Semi-active variable stiffness device [40]

capable of adjusting its stiffness as necessary for optimized performance. This af-

fords the distinct advantage of allowing a continuous retuning of the TMD frequency,

thereby improving control and providing robustness against all off-tuning effects. An

example of a SAIVS device developed by Nagarajaiah [40] is shown in figure 2-5.

On the other hand, damper-based STMD design involves replacing the passive

dissipative element with a variable damping device. Many such devices, including

variable-orifice dampers, rheological dampers, and variable friction dampers have al-

ready proven successful, with details in the following chapter. These variable dampers

are used to adjust the level of energy dissipation in real-time to optimize the perfor-

mance of the TMD. Due to their documented feasibility in large-scale civil structures,

variable damping devices have generally been preferred to the more mechanically in-

tricate SAIVS devices for implementation in STMD systems.



Advancements in theory

As with ATMD studies, the literature on STMDs has focused both on earthquake-

loaded and wind-loaded structures, with a noticeable preponderance towards earthquake-

excited structures. Because work on both cases is more limited for STMD systems,

the significant results for all excitation types will be summarized.

The concept of a semi-active tuned mass damper was first proposed by Hrovat in

1983, who in essence simulated results for a force-clipped ATMD that was prohibited

from adding energy to the system [21]. The first practical applications investigated

used electrorheological (ER) dampers to supply the semi-active forces; in 1995 Abe

developed ER-STMD theory for controlling transient responses under impulse load-

ing [3], and in 1999 Hidaka conducted experimental studies that coupled an ER-STMD

with a three-story model building under ground excitation [19]. Both demonstrated

improved performance.

With the emergence of magnetorheological (MR) dampers as preferable to ER

devices for structural applications (see chapter 3), more recent work has focused

on MR-based STMD systems. Koo assessed various groundhook-based control al-

gorithms and demonstrated their effectiveness through an experimental study of a

base-excited SDOF model structure coupled with an MR-STMD [27, 28]. Ji further

evaluated semi-active control algorithms for controlling an MDOF structure subjected

to earthquake loading when there are uncertainties about structural properties [24].

Performance benefits of an MR-STMD under earthquake loading were further doc-

umented by Loh through numerical simulations of the response of a 12-story build-

ing [30].

Other significant work has focused specifically on wind-loaded structures. Pinkaew

was the first to demonstrate the steady-state efficacy of a damper-based STMD by

simulating frequency-domain results due to harmonic excitation [46]. Varadarajan

proposed a novel device for a stiffness-based STMD capable of retuning to meet the

demands of realistic wind excitations and changes in the stiffness properties of the

primary structure [59].



At this point, no semi-active TMD devices have been installed in an actual civil

structure, but theoretical work remains on-going due to the great potential of semi-

active devices.

2.4.2 Limitations and design issues

There are evident advantages in equipping tuned mass dampers with semi-active

control, but these, too, come with their own design challenges.

First, while STMD costs may be significantly reduced compared to ATMD costs -

particularly with regards to power consumption and maintenance - installation costs

still include sensors, control software, and the necessary wiring. Hence, it must be

shown that the use of feedback control is still a worthwhile investment.

Second, and more importantly, the effectiveness of any STMD is ultimately limited

by the control flexibility afforded by the semi-active device, whether it be through

variable stiffness or variable damping. As mentioned previously, the mechanical dif-

ficulties associated with variable stiffness devices generally make them a less attrac-

tive option, which leaves the designer with the task of choosing the best variable

damping device for the STMD system being considered. Realistic damping devices,

such as variable-orifice, magnetorheological, or friction-based dampers, have inher-

ent limitations in their maximum force, accessible range of forces, and stroke length.

Consequently, it is critical to understand these limitations in order to produce an

optimally-designed semi-active tuned mass damper.



Chapter 3

Semi-active damping devices

Selecting an optimal damping device for a given control application involves assess-

ing a host of design considerations, including not only maximum force output, but

also reaction time, power requirements, reliability, size, and stroke limitations. This

chapter summarizes the capabilities of the three classes of semi-active devices that

have been considered for structural applications: hydraulic dampers with a variable

orifice, friction dampers, and controllable fluid dampers.

3.1 Variable-orifice damper

The variable-orifice (VO) damper was the first semi-active damping device imple-

mented in structural applications. It consists of a cylinder-piston system with a

by-pass valve connected at both ends and behaves essentially like a conventional hy-

draulic fluid damper with adjustable resistance to fluid flow. By electromechanically

controlling an orifice in this valve, it is possible to greatly vary the damping force

in real-time. Consequently, VO dampers may be modeled mathematically as linear

viscous dampers in which the damping coefficient, c, now becomes a manipulable

variable, c(t). A basic schematic of the VO damper can be seen in figure 3-1.
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Figure 3-1: Variable-orifice damper schematic [55]

Industrial-sized devices

Kurata [29], Matsunaga [35], and Niwa [42] have each contributed to the development

and classification of VO dampers capable of performing on a structural scale. These

devices can produce maximum force outputs of 1-2 MN and require a power supply of

only 70 W. The dynamic range of the dampers, which is determined by the minimum

and maximum values for the damping coefficient, c(t), is in excess of 200. These

devices are relatively space efficient, with dimensions of 1.5 x 0.5 x 0.5, in meters,

and a mass of around 1, 300 kg.

Structural applications

VO dampers have proven successful in several applications in civil structures. In 1994

Patten led installation of VO dampers on an 1-35 bridge in Oklahoma to dissipate

energy induced by vehicle traffic, marking the first full-scale implementation of struc-

tural control in the United States [45]. Kobori implemented VO dampers to control

stiffness elements in a semi-actively controlled building at the Kobori research com-

plex [20]. Kurata was the first to make VO dampers the primary control system of

a full-scale building, using several of the 1 MN models. Each of these advancements,

among others, has led to acceptance of VO dampers as a viable means of improving

control performance on a large scale.
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Figure 3-2: Variable-friction damper schematic [69]

3.2 Friction dampers

A second class of semi-active damping devices is based on variable friction elements.

These dampers consist of a frictional sliding surface and a clamping device that pro-

duces a normal force at the interface. Controllability comes from varying the magni-

tude of the clamping force in real time. Various techniques have been employed to

generate the normal force, including electrically-controlled piezoelectric material [63]

and magnetic attractive forces produced by solenoids [69]. A schematic of the latter

device is shown in figure 3-2; in this configuration the normal force, N(t) is directly

proportional to the square of the current, I, in the solenoids, which are placed on

either side of the interface.

Industrial-sized devices and structural applications

Although friction dampers have been lauded due to their insensitivity to tempera-

ture, their minimal degradation due to aging, and their complete absence of leakage

problems, they have been the least utilized semi-active damper in structural engineer-

ing applications [31]. Most of their applications have been in conjunction with other



semi-active devices or in specialized situations. For example, Feng and Yang used

friction-controllable fluid bearings in parallel with seismic isolation systems to im-

prove performance under earthquake loading [20]. Xu demonstrated friction damper

effectiveness for the control of large truss structures under wind loads [63], but few

other systems use friction dampers as the primary control mechanism.

3.3 Rheological dampers

The final class of semi-active damping devices utilizes the controllability of rheo-

logical fluids. The essential characteristic of these fluids is their ability to reversibly

change from free-flowing linear viscous fluids into semi-solids with a controllable yield

strength. This change in material property can be imparted in milliseconds through

the application of either an electric field or a magnetic field, depending on if an

electrorheological (ER) or magnetorheological (MR) fluid has been chosen [20].

Rheological fluids have garnered a significant amount of attention in the engi-

neering community due to their mechanical reliability. Unlike the other choices for

semi-active dampers, rheological dampers have no moving parts except for a pis-

ton. Without any electrically controlled valves or additional mechanical components,

rheological fluids can provide simple, quick, and quiet interfaces between control elec-

tronics and the mechanical system [20].

3.3.1 Electrorheological fluids

ER materials were the first rheological fluids to undergo extensive study. These fluids

consist of micron-sized particles suspended in high dielectric strength oils. Upon the

application of an electric field, the suspended particles become polarized and fibrate

into inter-electrode bridges, producing a solidified material mixture. Once in a solid

state, ER fluids experience yield stresses in shear on the order of 10 kPa for static

loading and 5 kPa for dynamic loading. Response times vary from 1 to 10 ms, and

dynamic ranges exceeding 1, 000 have been obtained [34, 36].
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Structural applications

Application of ER technology has been extensive, but it has not been developed on

the structural scale. ER fluids have been successfully used in clutches, breaks, tunable

engine mounts, shock absorbers, robotics, and aerospace structures [34]. However, ER

fluid use diminished by the time structural control gained traction at the end of the

twentieth century, primarily because further advancements in MR fluids demonstrated

its superiority for control purposes.

3.3.2 Magnetorheological fluids

MR fluids are the magnetic analog to ER fluids. They are comprised of micron-sized

magnetically polarizable particles dispersed in a carrier medium such as silicon oil,

meaning they take on semi-solid, viscoplastic tendencies when exposed to a magnetic

field instead of an electric field. Only recently have they been considered for ap-

plications in place of ER fluids [20]. See figure 3-3 for the design of a typical MR

damper.

Preferability of MR fluids

With the recent increase in knowledge of MR fluids, several distinctive advantages

have surfaced over ER fluids. Perhaps most significantly, MR fluids are capable of



11 MR fluids ER fluids

Max yield stress 50-100 kPa 2-5 kPa
Operable temp. -40-150 C 10-90 C

Impurity sensitivity No Yes
Response time milliseconds milliseconds
Voltage supply 2-25 V 2, 000-5, 000 V
Current supply 1-2 A 1-10 mA

Table 3.1: Comparison of MR and ER fluids [55]

achieving a yield strength 20-50 times greater than their ER counterparts. This is

because ER fluid is generally limited by the electric field breakdown strength of the

carrier liquid, but MR fluids are limited primarily by magnetic saturation, occurring

at a much higher threshold.

Other significant advantages involve operability and robustness. While MR and

ER dampers require comparable levels of power to operate, the MR damper requires

only a low voltage supply (generally 12-24 volts as compared with 2000 or more volts

for ER dampers). Outside of power issues, the operational temperatures tolerated by

an MR damper range from -40 - 150 C, more than double the temperature range of

ER fluids. Additionally, MR fluids are much less sensitive to contaminants, as their

magnetic polarization mechanism us unaffected by additives [20]. Hence, a strong

case can be made for the superiority of MR fluids for control purposes. Table 3.1

summarizes comparison details.

Industrial-sized devices

Much effort has been put into harnessing the vast capabilities of MR dampers for

structural-scale applications. In 1998 design was completed on a 200 kN MR damper

with a dynamic range of 10 at its design velocity. The device, which is now produced

by Lord Corporation, has a mass of 250 kg, measures 1 m long, and contains 6 liters

of rheological material. Response times average 60 ms, and the device requires only

60 W of power for full functionality [66].



Structural applications

The feasibility of MR dampers in structural control has been well-documented in

recent years. Spencer developed a phenomenological model of the MR damper's com-

plicated behavior [54], and Dyke demonstrated its usefulness using control algorithms

based on acceleration feedback, the standard sensor output in structures [15]. These

rapid advancements led to the first full-scale implementation of an MR damper con-

trol system in the National Museum of Emerging Science and Innovation, located in

Tokyo, in 2001 [67].

3.4 Choosing a damping device

As has been seen, the characteristics of semi-active damping devices can vary con-

siderably. Settling on a particular device to supply semi-active control may be a

project-specific design task, but this study will focus on VO and MR dampers for the

following reasons: First, both of them are available on the industrial-sized scales nec-

essary for structural applications. Second, each has already been used in functioning

civil structures, providing precedent for their reliability. Third, and critically for the

study at hand, they represent two distinct classes of damping devices - those with

linear responses and those with non-linear responses. As shall be seen, this will be an

essential characteristic in determining the effectiveness of a semi-active tuned mass

damper.
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Chapter 4

Simulation of Controlled System

In order to provide benchmarks for various STMD systems under wind excitation, it

is necessary to accurately simulate how well they mitigate the dynamic response of

the primary structure. The numerical techniques used to accomplish this task will be

the focus of chapter 4.

4.1 Equations of motion

For a mathematical model that describes the structure as having n degrees of freedom,

optimizing control performance is akin to limiting the displacements, velocities, and

accelerations in the governing equation of motion

MffO + Cf f + KfUf = Pf - M5Eag (4.1)

where Uf is the n x 1 vector containing the system displacements, Mf is the n x n

mass matrix, Cf is the n x n damping matrix, Kf is the n x n stiffness matrix, Pf is

an n x 1 vector containing the external disturbances (such as wind loading), ag is the

ground acceleration, and E is an n x 1 vector of ones. Here the subscript f denotes

that the equations refer to the free, uncontrolled structure.

For a disturbance mitigation system based on the addition of r active or semi-

active tuned mass dampers in which wind loading is the primary concern, equation 4.1



becomes

MU + CU + KU = P + WF (4.2)

in which U is now an (n + r) x 1 vector to include the displacements of the tuned

mass dampers, M, C, and K are (n + r) x (n + r) matrices, and P is (n + r) x 1.

Here F has been added as an r x 1 vector of control forces, and W is an (n + r) x r

matrix that defines the location of those control forces with respect to the degrees of

freedom.

This chapter elucidates how equation 4.2 can be used to simulate the benefits of

using semi-active tuned mass dampers in actual structures. Presented in the following

sections are the rational for determining Mf, Cf, and Kf for realistically modeled

structures; the procedure for designing the r tuned mass dampers; and the technique

for calculating the optimal control forces contained in F. All simulations using these

methods were performed using MATLAB, the results of which are presented in the

chapters to follow.

4.2 Development of model structures

In practice, it is difficult to determine the stiffness and damping properties of a

structure without detailed calculations or a finite element analysis. This lack of

knowledge is of heightened concern for older buildings in need of retrofitting, as

recovery of this information may be nearly impossible. In these cases, not only may

the original data be limited, but uncertainties are compounded by fluctuations in

structural properties with aging and deterioration.

As an acknowledgement of these limitations, the model structures generated in

this study will be based on Mf, the mass properties of the uncontrolled building, and

T0, the fundamental period of the building. The former can generally be reasonably

estimated, and the latter can be readily observed and measured. These values will be

used to calculate stiffness matrices, based on an optimized stiffness distribution, and

damping matrices, based on Rayleigh Damping. In an effort to maintain generality,

this will be done for a structure with n degrees of freedom to which r tuned mass



Figure 4-1: Shear beam model of a structure

dampers are being added.

4.2.1 Optimized stiffness distribution

One standard approach for designing the stiffness distribution of a structure is to

perform a calibration technique that produces a linear profile of the fundamental mode

of vibration. This leads to a structure that is stiffer at the bottom, where bending

and shear contribute most significantly, and more efficiently limits deflections at the

top of the building. Hence, this design methodology is most beneficial in the tallest

of buildings and can even be observed in the profiles of many existing skyscrapers.

Treating the structure as a discrete cantilever shear beam as shown in figure 4-1,



Mf is a diagonal positive semi-definite matrix of the form:

Mf =
Mn2

where mi is the mass of the ith floor. The stiffness matrix of this structure, Kf, can

then be formed using

Kf = ATdiag{kJ}A

where

kf =

and A is an n x n matrix such that [56]:

A -11

-1 1

(4.3)

It is now desired to solve for the elements kf such that the fundamental mode has

a linear profile:

1

n



calibrated to have a period of T,. Using w = g, this is found from [13]:

kf = w2(AT)lMfv (4.4)

Equation 4.2.1 then produces the system stiffness matrix.

4.2.2 Implementation of Rayleigh damping

In general, the damping matrix of the structure, Cf, cannot be calculated directly.

Hence, it is customary to construct this matrix such that it approximates the overall

energy dissipation during the response of the system [6]. One common method for

doing so is Rayleigh damping, which is based on a linear combination of the mass

and stiffness matrices:

Cf = aoMf + alKf (4.5)

These constants are most frequently determined by specifiying the damping ratios, (i

and (j, at two arbitrary frequencies pertinent to the structure being considered. For

frequencies wi and wj, this leads to [7, 25]:

ao = 2 - 2 (4.6)
Wi 2- 2

a = (ij- ji (4.7)

Ji 2 2

In the majority of simulations presented here, Rayleigh damping of (= = 0.02

is assigned directly to the first two modes, w = wi and wj = w2, since ( 0.02 is

common for steel structures.

4.2.3 Design of tuned mass dampers

The use of tuned mass dampers to mitigate undesirable vibrations in structures has

typically focused on control of the fundamental mode. Because this mode contains

the dominant response of the structure, particularly under wind loading, reduction of

its response is generally sufficient for serviceability considerations. However, multiple



tuned mass dampers have also been considered, particularly in situations where both

horizontal and torsional motions merit design consideration [9].

Hence, while control of the fundamental mode through the use of a single tuned

mass damper will be a focus of this study, the design methodology will be developed

for the more general case where r modes of the structural response will be controlled

by independently calibrated tuned mass dampers. This allows for a more complete

analysis of the effectiveness of improving response through optimal control theory.

Placement of multiple tuned mass dampers

For the discrete shear beam model being developed, r tuned mass dampers will be

designed to mitigate vibrations of modes 1 through r. Each of these tuned mass

dampers will be placed at the degree of freedom most conducive to the control of

that mode in order to maximize their effectiveness. Hence, a modal analysis of the

structure must be performed' to produce the modal shape vectors:

With this information it is possible to optimize the location of the i'h tuned

mass damper by placing it at degree of freedom 1, chosen such that <D1i - max{i}.

Location vectors can then be developed for properly placing mass, stiffness, and

damping elements into matrices for the complete n + r degree of freedom system. Let

ai be the (n + r) x 1 location vector for the ith tuned mass damper and let bi be the

iThis can be done efficiently using the MATLAB command eig.



(n + r) x 1 location vector for its stiffness and damping elements. Then2 :

1 ifj=n+i

0 otherwise

1 if j=n

bij = -1 if j =M

0 otherwis

(4.8)

+i

(4.9)

e

From these the system matrices may be formulated [9]:

M = + maaT
0 01

KL J
K = + kibibiT0 0 1

Cf 0+T

C = + cdibibi
0 0 1

(4.10)

(4.11)

(4.12)

where mdi, kdi, and Cdi are the mass, damping, and stiffness of the ith tuned mass

damper, yet to be optimized.

Tuned mass damper optimization

Following the procedure described by [13], the properties of the ith tuned mass damper

may be found by using modal decomposition to isolate the response of the correspond-

ing mode3 . Then, for a given mass ratio t, the corresponding mass necessary at degree

of freedom I must be
n 2

mdi = I (4.13)

2 Here and throughout, the comma is not used to express index notation but rather to clarify that
i does not refer to a dimension of the matrix.

3 The procedure outlined here is approximate for MDOF systems but exact for SDOF systems,
the primary focus of this study. For a more rigorous development of parameters for multiple tuned
mass dampers, refer to [91



where ini = #TMf # is the modal mass. Using modal stiffness and damping terms,

ki = #T K i and ej = #iTCfq5i, specifying the stiffness and damping terms for

each tuned mass damper is now equivalent to working with a single degree of freedom

system, in which

kdi = d mYfortosi)2 (.4

Cdi = 
2 diWimdi (4.15)

where fopt and (dj are the optimal tuning and damping parameters.

As described in chapter 2, there are a variety of optimization techniques for de-

termining these values, each depending on the system input and the goal of the

optimization. In this study all passive TMD systems will be tuned with the results of

Asami [5], which provides series solutions for optimization of maximum displacements

under a force excitation. The results obtained are

1 1 1 AB
fopt = _ - (_ (3 + 4p -

1 + y 1 + p 2 (1 + p-) 2 + p1(.16i±~~ +P (4.16)

2 Co -4(5 + 2p)AB
4(1 + p)2(2 + p)(9 + 4p)

3p 60_63pu+16p2 - 2(3 + 2p)AB
8(1 + p_) 8( + )( + p)(9 + 4p)
S (1i) 8(1+ y)(2 + y)(9 + 4 /-t) (4.17)

C1(jA + B) 2+p + C2(A - B)J/jt
32(1 + p)(2 + )2(9 + 4p)3 2(1 + p)

where

A = 13(2+py)- p(2-+p)

B = V3(2+ p)+ [p(2+ p)

Co= 52+41p +8p 2

C1 = -1296+2124*p+6509* p2 + 5024 * P3 + 1616 * P4 + 192 * 5

C2 = 48168 + 112887 * t + 105907 * p2 + 49664 * p3 + 11632 * [4 + 1088 * p



Due to the increased amount of variability in the design of active and semi-active

systems, an optimal passive TMD may produce sub-optimal results in the controlled

case. Consequently, multiple TMD optimization schemes were tested, with the best

control results generally achieved using the expressions developed by Tsai [58]. These

parameters were found using curve-fitting schemes to minimize the maximum dis-

placements of damped structures under ground excitation 4 and are given by

f N (/1 - 0.5py } 22_1
1ot + p 2

- (2.375 - 1.0 3 4 5'7 - 0.426[t)(x/7i (4.18)

- (3.730 - 16.903\/7 + 20.496)(i 2 /t,

di = + (0.151j - 0.170 2)8(1 + pt)(1 - 0.5p) (4.19)

(0.163(i + 4.980 i2 ),u

4.3 Selection of control algorithm

With all system parameters now established, it is possible to choose a method for

finding the optimal control forces, F, and solve the governing equation of motion

(equation 4.2). While in general many control techniques may be worth considering,

this study focuses on the use of a clipped optimal control algorithm based on a

linear quadratic regulator (LQR), for which precedent has been set. Doing so first

necessitates the development of state-space formulation of the system.

4The ability to improve semi-active performance by choosing an alternate TMD optimization
scheme, even one optimized for ground excitation, indicates that the ideal parameters for an STMD
may vary notably from all sets of optimized passive parameters. In particular, selection of the TMD
tuning ratio, fot, could likely be altered to further improve STMD results. However, because it is
desirable for semi-active systems to behave as passive systems following control failure, only optimal
parameters from the literature were explored. For example, while the values given by Tsai are
slightly sub-optimal for a wind-excited passive system, overall performance results do not deviate
substantially.



4.3.1 Formulation of state-space equations

Because working with a second-order differential equation can prove cumbersome, it

is convenient to transform equation 4.2 to a state-space notation that reduces the

problem to a set of first-order equations involving the state vector X [13, 43], where

U
X =t

This leads to a reformulation of equation 4.2:

X = AX + BP + BfF (4.20)

which involves the constant coefficient matrices

0 I
A = -M-1K -M-1C (4.21)

0(n+r)x 1
B = diag{Mf -1} (4.22)

Orx1

Bf = 0(n+r)xr (4.23)
M-IW

where A is 2(n + r) x 2(n + r), Bp is 2(n + r) x 1, and Bf is 2(n + r) x r. W is

the (n + r) x r force location matrix and can be formed from the stiffness location

vectors:

W = - [b ... br]

By making this transformation into state-space notation it becomes more direct

to numerically integrate equation 4.2 and more straightforward to apply an optimal

control law.



4.3.2 Clipped optimal control

Guidelines for choosing a particular control method are rather general, and several

options may be viable. One shown to be effective for semi-active damping devices

is the clipped optimal control algorithm, proposed by Hrovat [21] for semi-active

tuned mass dampers and recommended by Dyke [15] for use with magnetorheological

dampers. Clipped optimal control was further applied to semi-active tuned mass

dampers by Pinkaew [46], who demonstrated effective results in the frequency domain,

and by Ji [24], who demonstrated its validity through a comparison with three other

control algorithms. Following their precedent, clipped optimal control will be used in

5this study

The first part of the clipped optimal control strategy involves finding the control

vector F = F(t) that minimizes the quadratic performance index given by

j (XTQX + FT RF) dt (4.24)

where Q is a positive semi-definite weighting matrix and R is a positive definite

weighting matrix that penalizes extreme control forces. These matrices are generally

found heuristically to meet control and cost considerations, but they are typically

diagonal matrices that take the form

Q = qd i 6i 0 (4.25)
0 qV'Aor

R = [rioi] (4.26)

where the qd and q, terms weight displacement and velocity feedbacks, respectively,

and the r terms weight the various control forces. For fully active control devices,

all qd terms are often set to zero to avoid potential instability due to displacement

5Comparative studies by Wu [62] and Yang [70] demonstrated H, control methods to have com-
parable effectiveness when used for wind-loaded buildings, with an advantage over linear quadratic
controllers when robustness is a concern. Because this study is not concerned with system uncertain-
ties, use of these methods was not considered advantageous, though H, techniques are recommended
for studies in which robustness is a fundamental design issue.



feedback [13, 43].

Solution of equation 4.24 leads to an optimal control force based on the feedback

law

F(t) = -KcX(t) (4.27)

in which Kf is a constant gain vector formed from

Kc = R--lBf TPc (4.28)

where Pf is a symmetric matrix that satisfies the reduced-matrix Ricatti equation

ATPC + PfA - PcBfR--BfTPc + Q = 0 (4.29)

Using equations 4.27, 4.28, and 4.29 it is possible to calculate the optimal control

force vector for the user-specified weighting matrices. The second component of the

control law involves commanding the control device to perform the optimal action

given its inherent constraints, such as force saturation. In the case of semi-active

damping devices only dissipative forces can be exerted, giving further limitations to

controllability. The details of the control law, including clipping strategies, vary by

device and are presented more fully in section 4.5.

4.4 Simulation strategy for frequency-range response

The effectiveness of any control scheme, whether passive or active, can be investigated

by performing a dynamic amplification analysis. That is, by surveying the stead-

state response of the structure as a function of excitation frequency, it is possible to

address issues of resonance and to characterize a control scheme's efficacy in vibration

suppression. Because closed-loop feedback control schemes can produce highly non-

linear responses, it is not possible to directly generate such results.

Hence, to quantify the frequency-range effectiveness of semi-active tuned mass

dampers, numerical techniques must be employed. First, a system input is chosen that



ranges over a broad band of harmonic excitations; second, a time-domain numerical

integration scheme is executed; and third, Fourier transformations are obtained to

produce transfer functions in the frequency domain.

4.4.1 System input

In order to recover useful information in the frequency domain, the external distur-

bances must contain a broad range of frequencies. Since the present study involves

an analysis of wind loading on the primary structure, the external disturbances are

limited to

P = p(t) Ef (4.30)

where p(t) is a time-dependent function that must contain the necessary frequency

content. One common technique is to use a "chirp" excitation in which

p(t) = sin w(t)t (4.31)

Here w(t) varies linearly from wmin to Wmax over the duration of the input excitation.

Wmin and wmax must be selected to satisfactorily enclose all frequencies of interest,

specifically any system resonances.

4.4.2 Time domain numerical integration

The response of the structure under this loading can be found by integrating equa-

tion 4.20. Assuming time independent feedback parameters and known initial condi-

tions at time to, the total solution is given by the Duhamel integral matrix [13]

X(t) = eA(t-to)X(to) +it] eA(t-t,)(BpP(T) + BfF( r))dT (4.32)
t

wher e is a matrix exponential. In the more general case where parameters may be

time dependent, the closed-form solution must give way to a time-step discretization

scheme in which t -+ ti and tj+1 = tj + At. An expansion for eAt then transforms



equation 4.32 into

X41 =eAAtXj + A -(eAAt - I) (BPPj + BfFj) (4.33)

By starting with an initial state vector, Xo = X(to), equation 4.33 provides an ac-

curate estimate for Xj+i and may be used successively to obtain the system re-

sponse [13].

4.4.3 Calculation of dynamic amplication factors

Once the time history of a response has been calculated, the frequency-range response

can be found by computing the Fourier transforms of the outputs and inputs. In

general,

H(w) .F[ui(t) (4.34)
F [p(t)]

where F is the Fourier transform, ui(t) is the response of degree of freedom i, and

pj (t) is the load applied to degree of freedom j. Hij is referred to as the transfer

function for the response at i due to a load at j; due to the principle of reciprocity,

Hij = Hjj for all i, j pairs [25].

Under the wind disturbance being considered, the load is the same for all degrees

of freedom. Namely,

P1 = .=pn = PMt

as defined in equation 4.31. Consequently, equation 4.34 reduces to

Hi(w) = T[U (t) (4.35)
F [p(t)]

leaving n distinct transfer functions for the response of the primary structure.

When damping is present, transfer functions contain an imaginary component;

furthermore, because they describe an input-output relationship, their scaling is de-

pendent on the units used for each. In a general assessment of a system's dynamic

behavior, it is therefore convenient to work with a dynamic amplification function, de-



fined as the frequency-dependent ratio between the maximum dynamic displacement

and the maximum static displacement:

Ad,iy (W) = |j Hij(bw)|(4.36)
Us,ij

where Ad,ij is the dynamic amplification function for displacement, us,ij is the deflec-

tion at degree of freedom i due to a load applied statically at degree of freedom j of

magnitude pj.

As described in chapter 2, tuned mass dampers may be needed more to limit

accelerations than displacements, for occupant comfort is a driving concern in most

flexible high-rise buildings. Consequently, it is worthwhile to investigate the effect

of control devices on mitigating maximum accelerations in the structure. Following

the steps of equations 4.34 and 4.36, a result analogous to the dynamic amplification

function can be obtained for SDOF systems:

A,(w) = m _ it (4.37)
F [p(t)]

4.5 Systems compared

The simulation techniques outlined in this chapter were applied to model structures

with six categorizations of control. While the semi-active tuned mass dampers are the

focus of this study, results were generated for structures without control, with passive

control only, and with fully active control to provide useful comparative benchmarks.

The summary that follows explains the basis of these simulations, including techniques

for clipped optimal control and an explanation of accessible control forces.

4.5.1 Free response

The free response simulations solve equation 4.1 without the addition of any tuned

mass dampers or control forces. Mitigation of the sharp resonance of the fundamental

mode is the goal of all control measures.
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Figure 4-2: Forces accessible by an actuator

4.5.2 Passive TMD

Results for passive tuned mass dampers come from the solution of equation 4.2 with

F = 0. Because the optimization of the tuned mass dampers has been standardized,

as described in section 4.2.3, the control effectiveness of the passive system depends

entirely on the selection of pu, the mass ratio. Hence, any improvements in mitigation

of resonance comes at the expense of adding more mass to the top of the building.

4.5.3 ATMD

As described in chapter 2, the active tuned mass damper uses a full-scale actuator,

capable of adding energy to the system. The only limitations on the potential control

force come from constraints on the cost, as introduced by the control force weighting

matrix R, and clipping due to any force saturation limits inherit in the actuator.

Figure 4-2 graphically demonstrates the accessible forces for a given saturation limit,

fsat. As has already been shown in the literature, use of clipped optimal control with

a low concern for cost can lead to near complete mitigation of resonance effects [53].



4.5.4 Limited ATMD

What is here termed a "limited ATMD" refers to an ATMD that has been given the

additional constraint of only being able to produce dissipative forces. This concept

was first developed by Hrovat [21] and represents an upper bound for the effective-

ness of any semi-active tuned mass damper, making it useful for comparison purposes.

Mathematically, simulations are equivalent to using a full-scale ATMD with the ad-

dition of the dissipation constraint

fi = fsat < fi I+ Sgr (fi) < fKat (4.38)2

where fi refers to the optimal force for the actuator on the ith tuned mass damper,

zi is the relative velocity of the tuned mass damper with respect to the building, and

f1,i is the actual control force outputted by the limited ATMD.

A graph of the resulting forces available for this system are shown in figure 4-3. As

has been demonstrated by Hrovat, mitigation around resonance is comparable to that

attainable by an actuator without any limitations, thereby demonstrating validity to

the concept of semi-active tuned mass dampers. It remains only to find a realistic

damping device capable of achieving similar results.

4.5.5 Variable-orifice STMD

As described in chapter 3, a variable-orifice damper is one candidate for use in a

semi-active tuned mass damper based on a variable damping device. The basic math-

ematical model for this device treats it as a linear viscous damper with controllable

damping coefficient c(t), which can vary between limiting values cmin and Cmax. Hence,

the magnitude of the control force is now also limited by the magnitude of the relative

TMD velocity. In addition to the constraint of equation 4.38, the accessible control

force is now limited to

. 1 + sgn (fi ) < fsat

2 (4.39)

Cmin c(t) Cmax
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Figure 4-3: Forces accessible by a semi-active actuator

The result is a much more limited band of accessible forces, as shown in figure 4-4,

and performance that falls between that of the limited ATMD and the passive system.

The control objective is to come as near to the limited ATMD results as possible for

a given damping device.

4.5.6 Magnetorheological STMD

The second variable damping device compared in this study is the magnetorheological

damper. Chapter 3 highlights the capabilities of MR dampers. The mathematical

model selected for this study is a modified version of the Bingham model, described

more fully in chapter 6. Because this is a non-linear device, the control force must be

produced by assigning a voltage to the mathematical model rather than by prescribing

a force directly. Clipped optimal control laws have been developed by Dyke [23]. This

study uses

fmr,i -sat gmr [V(t) ] 5 fsat

1 + sgn (fii (4.40)
V(t) =Vmax 2
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Figure 4-4: Forces accessible by a variable-orifice semi-active damper

where gmr is a function that outputs the force of the MR damper for a given math-

ematical model, V(t) is the voltage assigned by the control law, and Vmax is the

maximum voltage that can be prescribed. See figure 4-5 for a display of the accessi-

ble forces and equation 6 for the formulation gmr.
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Figure 4-5: Forces accessible by a magnetorheological semi-active damper
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Chapter 5

Results for Variable-Orifice STMD

As described in chapter 3, the variable-orifice damper is one candidate to provide the

reactive forces necessary for an effective semi-active tuned mass damper (VO-STMD).

This device has been selected for further analysis as a representative case of variable

dampers with linear responses. Such devices behave essentially as viscous dampers

whose damping coefficient, c, may be adjusted in real time.

This chapter follows the simulation procedure described in the previous chapter

and bases control forces on the mathematical model explained in section 4.5.5. An

overview of the analysis is provided before results are presented in full.

5.1 Overview of analysis

Since realistic damping devices have inherent limitations in their control effectiveness,

semi-active tuned mass dampers should be designed to maximize their performance

under these constraints. In an effort to categorize the capability of STMD systems,

two variables will be defined:

" D, = the dynamic range of a damping device, which quantifies the difference

between its maximum and minimum force outputs.

" C, = the damping reduction factor of the STMD design, which quantifies the

difference between the optimal damping for a passive TMD, cd, and the mini-
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Figure 5-1: Dynamic range and damping reduction factor

mum damping attainable by a given damping device.

In the case where a variable-orifice damper is used as the semi-active device, these

variables will be described by

Dr = Cmax (5.1)
Cmin

Cr = Cd (5.2)
Cmin

where Cmax and Cmin may vary significantly depending on the damping device selected.

Figure 5-1 indicates how Dr and Cr affect the range of accessible control forces

for a variable-orifice STMD; note that i refers to the relative velocity of the tuned

mass with respect to the primary structure.

5.1.1 Dynamic range implications

Assuming that a given STMD system is constructible and meets all stroke limitations,

the dynamic range of its damping device is perhaps the most critical characteristic

in determining its potential effectiveness. As can be seen in figure 5-1, the value



given for D, directly controls the range of accessible control forces. For D, = 0, the

best result could be to reproduce the results of a passive TMD, but as D, - oC the

controllability will approach that of the limited ATMD as described in section 4.5.4.

In fact, the dynamic range of a damper is more critical to the success of an STMD

than is the maximum force output of a given damping device. That is, even if a

device has the potential for a high force output (such as by having a significant cmax

in the case of a variable-orifice damper), the range of accessible forces may be signif-

icantly limited if its minimum force output is not significantly below its maximum.

Furthermore, for design purposes, constraints on the maximum force capacity of a

device may be overcome by installing several dampers in parallel provided that their

dynamic range is not the limiting factor.

Figure 5-2 demonstrates the effect the dynamic range can have on the steady-state

performance of a VO-STMD. As can be seen, the VO-STMD performance improve-

ment is rather sensitive to dynamic range for low D, values but levels off as D,

increases.
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5.1.2 Damping reduction factor implications

While the dynamic range is an unalterable limitation of the selected damping device,

the damping reduction factor is fundamentally a design issue. That is, the determi-

nation of C, may not significantly alter the range of accessible control forces, but it

it can significantly affect how beneficial that range of forces is to the overall perfor-

mance of the STMD. For example, if C, < 1, any control forces will exceed those of

the optimally-tuned passive TMD, thereby resulting in an over-damped system. Sim-

ilarly, if C, is specified too highly, the controlled system may fall short of producing

optimal forces. Hence, there is some optimal value for C, constrained by

1 < Cr < Dr (5.3)

The optimal value must be found heuristically and indeed may vary widely based

on the dynamic range of the damper, the selection of a control algorithm, and the

performance goal of the overall system.

Figure 5-3 displays results for various values of Cr for an STMD with a dynamic

range of D, = 10. As can be seen, an improperly designed system can produce

controlled results that are inferior to those of the passive system.
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5.1.3 Evaluative measures

By varying both Dr and C, the effectiveness of variable-orifice STMD systems will be

investigated and compared with equivalent passive systems. In order to accomplish

this, performance indices will be established; results for equivalent passive systems

will be produced; and comparisons of various system characteristics will be presented.

Performance indices

As described in section 4.4.3, the two primary design considerations for the structural

control of high-rise buildings are displacements and accelerations. Hence, the perfor-

mance indices used in this study focus on the ability of the STMD to limit these

values, with two evaluations for each:

J1 = max {Ad(w) } (5.4)

J2 = max {Aa(w) } (5.5)
1 1.15w4

J3 = Ad(w) dw (5.6)
0.3a), JO.85w

1 1.15wn

J4 = Aa(w) dw (5.7)
0.3w Jo.855n

J1 and J2 are to be emphasized, as peak response values represent the primary con-

cern for structures. J3 and J4 have been chosen to represent the overall effectiveness

of STMD vibration mitigation in a region ±15% of the resonance frequency (Wo),

the bandwidth in which passive TMD systems are considered to be effective' [13].

Consequently, optimizing the STMD for J3 and J4 values corresponds to an H2 opti-

mization, in which the overall dissipation of energy is emphasized.

'For SDOF systems, dynamic effects are relatively small outside of this narrow band of frequen-
cies, and the behaviors of the systems under consideration are almost identical. In the case of MDOF
structures where secondary modes may be problematic, these performance indices are inadequate to
fully categorize the improvements of controlled tuned mass dampers over their passive counterparts.
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Equivalent passive performance

With these evaluative criteria established, it is useful to generate benchmark perfor-

mance indices for equivalent passive systems. Since the effectiveness of optimally-

calibrated passive tuned mass dampers is a function of P, passive results for J1 ... J4

may be plotted directly against the selected mass ratio. Figure 5-4 shows representa-

tive Ad(w) and Aa(w) results for varying mass ratios, and figure 5-5 organizes results

in terms of the four performance indices. Because an ultimate design goal of STMD

systems is to reduce the required mass, these results will be used to measure the

comparative effectiveness of all STMD systems being considered in this study.

Effective damping

Another means of assessing control effectiveness is to compare results based on "ef-

fective damping," ce, defined as the damping ratio necessary in an SDOF system to

provide equivalent vibration mitigation. For an SDOF system, the maximum amplfi-

cation function values for displacement (Ji,f) and acceleration (J2,f) are equivalent

and are determined directly by the damping ratio:

J,f = J2,f = (5.8)
2w 1 -e

where the subscript f denotes the free, uncontrolled structure [25].

M
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Hence, once J1 or J2 have been found for a controlled system using the formulation

given in section 5.1.3, equation 5.8 can be used to establish the effective damping of

an equivalent SDOF system:

Ji = (5.9)
2(e 12 - c2

for i = 1 or 2, depending on whether maximum displacement or maximum accelera-

tion is the quantity of interest 2. Solving for e and discarding negative or imaginary

solutions leads to

1 J~ 2 (5.10)
2 2Ji

Relative STMD motion

A serious design consideration for tuned mass dampers in structures is the relative dis-

placement between the mass and the building floor on which it rests. Large movement

of the mass can complicate the design of spring, damper, and actuator connections

and also raises concerns for the stroke limit of any semi-active damping device being

considered. While this study focuses on the optimization of performance, attention

will also be paid to relative displacements to provide comparison with equivalent

passive tuned mass dampers.

Actual relative displacements depend heavily on the size of the building and the

location of the tuned mass damper, so this parameter will be addressed in a relative

manner to maintain generality. For assessment of STMD systems, results for the

maximum relative displacements will be presented in terms of the maximum relative

displacement observed in a passive system with the same mass ratio.

Maximum force output

Since variation in C, will affect the maximum force attainable for a semi-active

damper with a given dynamic range, data will also be presented on the maximum force

output required by a given STMD system. This will provide insight into the size of

semi-active damper necessary or, for smaller-scale devices, the number of semi-active

2Note that for controlled systems, Ji = J2 is no longer guaranteed.



dampers that must be placed in parallel. As in the case of relative displacements,

results will be presented in comparison form, with the maximum damper force of an

optimally-tuned passive TMD used for reference.

5.1.4 Broken system considerations

A significant factor to take into account for any active or semi-active system is its

behavior during a malfunction of the control system. If designed correctly, one of the

benefits of implementing a semi-active system is that it can still perform effectively

as a passive device when this occurs. In the case of a VO-STMD, or any other STMD

with a linearly-variable damping device, there is an accessible level of damping, Cd,

that allows the STMD to perform like an optimized passive TMD. Hence, the ideal

failure mode would involve the variable-orifice damper automatically adjusting to Cd

as a default level of damping.

If, however, such a "safety mode" were also to fail, it is likely that the variable-

orifice damper would output forces only at its minimal damping level, cmin = I.

Since the optimal value for C, can vary widely, as described in section 5.1.2, the

resulting reduction in system damping may be very significant. These adverse con-

ditions were investigated by comparing the performance indices, J1 ... J4 , of passive

TMD systems in which the damping has been adjusted to cmin for various C, values.

Figure 5-6 shows representative results for Ad(w) using the mass ratio y- = 0.02 and

design C, values of 1.2, 2, 4, and 8. Performance results for a variety of C, values are

summarized in figure 5-7.

As these figures demonstrate, an impaired control system with no safety mode will

have very damaging effects on performance, in some cases resulting in worse control

than a passive TMD with less than 10% of the mass. Hence, it is imperative that any

STMD system be well-equipped to deal with power outages or control deficiencies by

defaulting to the optimized level of damping.
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5.2 Results for y = 0.01

Results for the preceding evaluative measures will first be presented for a mass ratio

of 1 = 0.01. Though in practice the mass ratio may range from p = 0.005 to

y = 0.02 [37], 1% of the modal mass of the fundamental mode is a typical value for

sizing a TMD [13]. All results presented here were obtained with the heuristically

determined weighting matrices

1

0.1
Q=

70

0.1

R [10-12]

5.2.1 C, optimization

With the goal being to measure STMD effectiveness as a function of its dynamic range,

it is first necessary to find the optimal value of C, for each D, being considered. Here,

values of D, being analyzed include

D, = 2, 5, 10, 20, 50, and 100

For each of these six values of D, simulations were run with an array of values

for C,. By tracking the four performance indices for each run, it was then possible to

obtain sets of C, values that minimized J1 ... J4 . The following four figures present

these results for each of the performance indices and each of the D, values under

consideration. This makes apparent how the optimal C, value may vary depending

on which performance index is set as the design criteria. Additional lines have been

added to demonstrate how STMD performance compares to passive systems with

larger mass ratios.

By tracking the minimum values in each of the previous figures, four sets of op-
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timal values C, can be obtained depending on which performance goal is selected.

Hence, if the TMD system is to be optimized for any one of the criteria, J ... J4 , the

corresponding set of optimized C, values should be used. The results are presented

in figure 5-12



5,2.2 D, variability

Based on the values of C, presented in figure 5-12, the optimized performance of the

variable-orifice STMD can be plotted as a function of the damper's dynamic range.

The figures that follow highlight some of the results:

" Figure 5-13 shows optimized results for all four performance indices, assuming

that each may be optimized independently.

" Figure 5-14 shows results for all four performance indices using only C, values

from the optimized J1 results.

" Figure 5-15 presents Ad(w) simulations for minimization of J1 .

" Figure 5-16 presents Aa (w) simulations for minimization of J 1.

The C, values that minimized J1 were chosen even for figures 5-14 through 5-16

because the minimization of maximum displacements is generally the design goal of

a passive TMD. Since, of course, there can be only one design value for Cr, this was

the data selected for comparison of results.
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5.2.3 Other performance measures

As described in section 5.1.3, each simulation also tracked the maximum relative

displacement of the TMD and the maximum force output of the semi-active damper.

Representative results for minimized Ji simulations are given in figures 5-17 and 5-

18. While relative displacement, z, levels off with increasing D, there is continued

growth in Fmax-

5.3 Results for p = 0.03

The second set of results presented for the variable-orifice STMD will be for a mass

ratio of p = 0.03. While this is in general a very large mass for a TMD in structures, it

is here presented for two reasons. First, there is a trend that the importance of D, in

determining the effectiveness of an STMD increases noticeably as the prescribed mass

ratio gets larger; consequently, the results for [L = 0.03 make this readily apparent.
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Figure 5-18: p = 0.01 Maximum damper force

Second, in the only current publication addressing the frequency-range response of

STMD systems, pi = 0.03 is the mass ratio considered [46]. This work claims STMD

effectiveness equivalent to a passive system with a quadrupled mass ratio but does

not justify the use of a dynamic range exceeding 3, 000; hence, it provides a useful

benchmark for demonstrating the benefits of a study that explicitly addresses this

issue.

The weighting matrices used for p = 0.03 are

0.1

R = [10-12]



5.3.1 C, optimization

As before, the values of D, being analyzed include

D, = 2, 5, 10, 20, 50, and 100

The two figures that follow present the J1 and J2 results for the arrays of C, values

considered. From this point forward, results for J3 and J4 will no longer be plotted

against C, due to their lesser importance. However, their optimized results will still

be summarized by including plots for J3 and J4 as functions of Dr. Figure 5-21 again

summarizes the optimal C, values for each performance index.
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5.3.2 Dr variability

Based on the values of C, presented in Figure 5-21, the optimized performance of the

variable-orifice STMD can be plotted as a function of the damper's dynamic range.

As in the previous section, the following results will be highlighted:

" Figure 5-22 shows optimized results for all four performance indices, assuming

that each may be optimized independently.

" Figure 5-23 shows results for all four performance indices using only C, values

from the optimized J1 results.

" Figure 5-24 presents Ad(w) for minimization of J1.

* Figure 5-25 presents Aa(w) for minimization of J1.
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Figure 5-24: p = 0.03: Ad(w) simulations for minimized J1

- - No TMD

--- TMD
- VO-STMD

..-. '---

/

- - -No TMD
--- TMD

-VO-STMD

M



g =0.03, Dr =2, C = 1.5rr

-- -No TMD

--- TMD
-VO-STMD

6N
5

0
0.9 1 1.1

0)/o n

=0.03, D =10, C =3.5rr

g =0.03, D = 5, C =2.4rr

- -No TMD
--- TMD

-VO-STMD

0.9 1 1.1
0)/Co

p=0.03, D =20, C =5rr

- - No TMD

--- TMD
-VO-STMD

5,

n .
0.9 1 1.1

0O/)o

p =0.03, D =50, C =7rr

- - No TMD

--- TMD
-VO-STMD

5

0 0.9 1 1.1
m/o

- -No TMD
--- TMD

-VO-STMO

5

0
0.9 1 1.1

0O/0on

p=0.03, D = 100, C =7.9r r

---- No TMD
--- TMD

-VO-STMD

N

0.9 1 1.1
0O/co

Figure 5-25: y = 0.03 : Aa(w) simulations for minimized J1
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Figure 5-26: p = 0.03: Relative STMD displacement

5.3.3 Other performance measures

Relative motion and maximum force results for simulations that minimized J1 are

given in figures 5-26 and 5-27. As can be seen, relative displacements are essentially

equivalent for [p = 0.01 and yj = 0.03 when comapared with their passive counterparts.

However, the maximum damper force output, which is already larger for higher mass

ratios, has increased significantly for y = 0.03. This is due largely to the fact that

lower C, values are now optimal, implying that cmax - and therefore fmax will

increase accordingly.



= 0.03, VO-STMD

Figure 5-27: p = 0.03: Maximum damper force
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5.4 Other mass ratios

In an effort to more fully categorize the relationship between mass ratio and STMD

effectiveness, the analysis presented for 1 = 0.01 and y = 0.03 was also performed for

realistic mass ratios of 0.005, 0.0075, 0.015, 0.02, and 0.025. This section compares

optimized results of these analyses by presenting only the most relevant outputs:

" Figure 5-28 shows optimized J1 results.

* Figure 5-29 shows J2 results using C, values obtained in the J1 optimization.

" Figure 5-30 presents representative Ad(w) results for D, = 10 and C, obtained

through J1 optimization.

" Figure 5-31 presents representative Aa(w) results for D, = 10 and C, obtained

through Ji optimization.
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Figure 5-28: Optimized J1 results for various mass ratios
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Figure 5-30: D, = 10: Ad(w) simulations for minimized J1
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Figure 5-32: Relative effectiveness of VO-STMD

5.5 Summary of results

As has been demonstrated, the performance of variable-orifice STMD systems shows

considerable improvement over their passive counterparts. Even with a nominal dy-

namic range of Dr = 10, the results for all performance criteria either met or exceeded

those of passive systems with 60% more mass.

This is significant because one possible design objective in choosing a semi-active

system could be to decrease the required mass. Particularly in retrofit situations,

space or weight constraints may present difficult design issues that could be ame-

liorated through the addition of a semi-active damper. Hence, it is worthwhile to

document how the required mass for an STMD compares with the required mass

for a passive TMD. Figure 5-32 summarizes the results for all VO-STMD studies

performed, which include full results for several Dr values using the following mass

ratios:

p = 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025, and 0.03
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Figure 5-33: Effective damping ratios for peak displacements

The results shown in figure 5-32 were taken using the J1 criteria, which in almost

all instances represents the worst case results for each of the performance criteria

previously defined 3. Hence, the advantages of using a semi-active device in a TMD

system are readily apparent from the standpoint of decreasing the requisite mass

ratio.

A secondary way of viewing STMD performance improvement is by assessing the

effective damping of the controlled system as described in section 5.1.3. In engineer-

ing practice, it is common to determine how much damping a structure needs for

serviceability and then to select a control system whose capability matches the need.

Figures 5-33 and 5-34 summarize the effective damping provided by VO-STMD sys-

tems in terms of peak displacements (figure 5-33) and peak accelerations (figure 5-34).

Hence, these may function as design charts: once the requisite damping has been de-

termined and the dynamic range of the VO damper has been selected, the necessary

mass ratio may quickly be found.

3This is the expected result given that the passive systems were optimized for J1, making it the
most difficult to improve through additional control measures.
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Figure 5-34: Effective damping ratios for peak accelerations

Note that the inherent damping of the simulated structure is 2%, making this

the baseline for all performance benefits. The simulations considered also focus on

passive TMD systems optimized to limit maximum displacements; hence, the passive

results shown in figure 5-34 may be slightly improved if the mitigation of maximum

accelerations is the design goal. Even with a displacement-based optimization, how-

ever, it is observed that the effective damping of STMD systems is more significant

for J2 then for J1.

As evidenced in figure 5-30, this is because STMD systems exhibit greater control

at higher input frequencies, particularly for larger mass ratios. Since Aa(w) is more

problematic at higher frequencies due to the addition of a w2/w) 2 term, STMD sys-

tems appear better suited to mitigate acceleration than displacements; see figure 5-31

for comparison. This suggests than an STMD system may be designed to limit peak

displacements while actually improving peak accelerations more significantly. Since

acceleration often governs the design of wind-loaded structures, this is a particular

advantageous feature of STMD systems.

106



Chapter 6

Results for Magnetorheological

STMD

Another possible device for a damper-based STMD is the magnetorheological damper.

As elucidated more fully in chapter 3, MR dampers have attracted a significant

amount of attention for their viability in semi-active control of structures, making

them an appealing candidate for use with a tuned mass damper. Hence, MR-STMD

systems will be analyzed and used as a representative case of variable dampers with

non-linear responses. As shall be shown in this chapter, the introduction of non-

linearity leads to superior STMD performance as compared to systems using linearly-

varying dampers.

This chapter follows the simulation procedure described in chapter 4 and bases

control forces on the formulation explained in section 4.5.6. The mathematical model

used for the MR damper is a modification of the classic Bingham model and can be

expressed mathematically as

1 0 fc Z(I if lil < 0.1smax
gmr [V(t) ] CminZ + vmax Zmax (6.1)

fV() sgn(s) otherwise

where V(t) is the applied voltage, 0 < V(t) Vmax; cmin is the minimum damping

when V(t) = 0; fc is the equivalent Coulomb friction force when V(t) = Vmax; z is
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V(t) = O.OV

V(t) = 0.5V
- V(t) = 1.0Vmax

Figure 6-1: Modified Bingham model

the relative velocity of the TMD with respect to the building; and imax is the design

value for the maximum relative velocity, above which saturation limits are reached.

The purpose of adding the transition zone for |%j < O.1imax is to avoid generating

unrealistic control forces when the relative velocity is very small. Based on exper-

imental results for large-scale MR dampers, the traditional Bingham model, which

does not take this transition zone into account, is overly generous in this region. Fig-

ure 6-1 shows simulations for this mathematical model for various constant values of

V(t).

6.1 Overview of analysis

Due to the non-linear nature of MR-dampers, the definitions developed in chap-

ter 5 must be slightly modified. While the damping reduction factor, C, remains

mathematically unchanged, the dynamic range, D, must now take into account this

non-linearity by being defined at a particular velocity. For convenience, this term will

be based on the secant damping at the design value for the maximum velocity, imaxi-

'In general, defining Dr at i =max produces the most favorable results for a given value of Dr.
However, this definition was selected to follow accepted convention for assigning a dynamic range
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Figure 6-2: Dynamic range and damping reduction factor for MR-STMD

The resulting expressions are

Dr = . + 1 (6.2)
ZmaxCmin

Cr = cd (6.3)
Cmin

where cd is optimal damping for the passive TMD, and where fe, imax, and cmin may

vary significantly depending on the damping device selected.

Figure 6-2 demonstrates how D, and C, are found and how they affect the range

of accessible control forces for an MR-STMD.

6.1.1 Dynamic range implications

Just as with the variable-orifice damper, if stroke and force requirements can be met,

the dynamic range is perhaps the most significant factor in determining how effective

a magnetorheological damper might be at improving the performance of a passive

TMD. Figure 6-3 demonstrates the influence the dynamic range has on the steady-

state performance of an MR-STMD by highlighting simulation results for markedly
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Figure 6-3: Variation based on dynamic range for MR-STMD

different D, values. As is evident, most of the benefits of an MR damper are accessible

even for relatively small values for D,.
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6.1.2 Damping reduction factor implications

The effects of selecting an optimal dynamic reduction factor for a given value of D, are

also similar between the VO-STMD and the MR-STMD, with heuristic optimization

methods being required. For comparison, results are presented in figure 6-4 for various

values of C, for an MR-STMD with a dynamic range of D, = 10. Again, it is evident

that poorly selected C, values can result in unacceptable performance results, though

performance is less sensitive to C, for the MR-STMD than for the VO-STMD.
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6.1.3 Evaluative measures

The effects of varying both D, and Cr will be evaluated using the same performance

measures described in section 5.1.3. J1 ... J4 will used as the evaluative criteria,

passive systems will be used for comparison, effective damping will be calculated,

and maximum displacements and force outputs will be assessed.

6.1.4 Broken system considerations

One of the key differences between MR dampers and VO dampers is that there is no

accessible level of damping that can allow the system to behave like an optimally-

tuned passive TMD should the control system fail. There exists a constant level

of voltage, V(t), for which an uncontrolled system is the most beneficial, but its

performance falls short of the optimal response attainable by a VO-STMD. This is

a trade-off that must be taken into account when considering the reliability of the

semi-actively controlled system.

To demonstrate this more explicitly, figure 6.1.4 shows simulations results for an

MR-STMD in which the MR damper has been set to a constant voltage. As evident

in these simulations, some voltages produce better results than others, making it

desirable to find the optimal voltage level for "passive" performance. Ideally, the

system will default to this voltage should any problems occur. Figure 6.1.4 further

demonstrates the behavior of a passive MR-STMD for each of the four performance

indices.
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Figure 6-5: Dynamic amplification factors for malfunctioning systems with fixed V(t)
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6.2 Results for y = 0.01

Results will be presented in the same manner as the previous chapter except that now

both VO-STMD results and MR-STMD results will be plotted together for compari-

son. In all cases, the same Q and R weighting matrices have been used as introduced

in chapter 5, as well as the same values of Dr. What follows are results for a mass

ratio of 0.01.

6.2.1 C, optimization

The optimal values for C, were found heuristically as for the VO-STMD. Figures 6-7

through 6-10 give results for each of the four performance indices, with plots presented

for each of the D, values under consideration. In general, the optimal C, values for

the MR-STMD are greater than those for the VO-STMD.

By tracking these optimum values, four sets of optimal C, values can be obtained

depending on which performance goal is selected. Results for these "design values"

can be seen in figure 6-11.

116



g=0.01, D =2r

g =0.01, D =10r
10 '- ' ' '

S-----------------

8

7

4 6 8 1

g=0.01, D =5

10

9

8

7

6

5

1 2 3 4 5
Cr

-0-STMD
-0-MR-TMD
--- TMD

0.02
-. - 0.03
-.- 0.04

g=0.01, D =50r

10 20 30 40
C

p=0.01, D =20r
10 -

8 f

7-

5 10 15
C

g=0.01, D =100r

20 40
Cr

Figure 6-7: p = 0.01 : Finding optimal C, values for J

117

-0-STMD
-O-MR-TMD
--- TMD
--- -. = 

0
.
0 2

--- =0.03
--- =0.04

-- STMD
-0-MR-TMD
--- TMD

0.02
---p=0.03

" -- 0.04

-*-STMD
-0-MR-TMD
--- TMD

0.02
-'-- -=

0
.
0 3

0.04

60 80



g=0.01, D =2r

g = 0.01, D = 10r

-0- STMD
--C-MR-TMD
--- TMD

0.02
---- =

0
.
0 3

-,---- = 0.04

-4-STMD
-C-MR-TMD
--- TMD
-- - =0.02
--- - =0.03
1-- -=0.04

g =0.01, D =5r

g=0.01, D = 20r

Cr

=0.01, Dr =100p=0.01, Dr =50

20 30 40 20 40
C Cr r

60 80

Figure 6-8: p = 0.01 : Finding optimal C, values for J 2

118

-@-STMD
-0-MR-TMD
--- TMD
---- =0.02
--- s=0.03

--- 0.04

-0-STMD
-0-MR-TMD
--- TMD

0.02
0.03

---=0.04



g=0.01, D =2r

1.5 2
C

r

g=0.01, D = 10r

g= 0.01, D = 50r

7

6

5.5

5

4.5|-

7

6.5

5.5

g=0.01, D =5

1 2 3 4
C

r

p=0.01, D =20
r

-- - - -- - - -- - -

5 10
C

p= 0.01, D = 100r

7

6.5

5.5

5

10 20 30 40
Cr

-0-STMD
-C-MR-TMD
--- TMD

0.02
- 0.03
= 0.04

20 40 60 80
C

r

Figure 6-9: p = 0.01 : Finding optimal C, values for J 3
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Figure 6-11: Summary of optimal C, values for t = 0.01
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6.2.2 D, variability

Based on the values of C, presented in figure 6-11, the optimized performance of the

MR-STMD can be plotted as a function of the damper's dynamic range. The results

highlighted for the MR-TMD will again be compared to the previous VO-STMD

results:

9 Figure 6-12 shows optimized results for all four performance indices, assuming

that each may be optimized independently.

9 Figure 6-13 shows results for all four performance indices using only C, values

from the optimized J1 results.

e Figure 6-14 presents Ad(W) simulations for minimization of J1 .

e Figure 6-15 presents Aa(w) simulations for minimization of J 1.

As before, the C, values that minimized J1 have been chosen as the design objec-

tive.
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Figure 6-14: p = 0.01 : Ad(w) simulations for minimized J1
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Figure 6-15: p = 0.01 : Aa(w) simulations for minimized J1
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Figure 6-16: p = 0.01 : Relative STMD displacement

6.2.3 Other performance measures

As described in section 5.1.3, each simulation also tracked the maximum relative dis-

placement and the maximum force output of the semi-active damper. Representative

results for minimized Ji simulations are given in figures 6-16 and 6-17.

6.3 Results for p = 0.03

The second set of results presented are for a mass ratio of 0.03.

6.3.1 C, optimization

Figures 6-18 and 6-19 present the J1 and J2 results, with J3 and J4 again excluded due

to their lesser importance. The clear trend is that higher values for p result in lower

optimal values for Cr. Design values for C, based on each of the four performance

indices are summarized in figure 6-20.
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6.3.2 D, variability

Based on the values of C, presented in Figure 6-20, the optimized performance of

the MR-STMD can be plotted as a function of the damper's dynamic range. As

in the previous section, results will be shown for each performance index optimized

individually as well as performance results when J1 is chosen as the optimization

target for C, selection.
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Figure 6-25: p = 0.03: Relative STMD displacements

6.3.3 Other performance measures

Relative motion and maximum force results for simulations that minimized J1 are

given in figures 6-25 and 6-26. As can be seen, relative displacements are essentially

equivalent not only for p = 0.01 and y = 0.03 but also for the VO-STMD and

MR-STMD. Hence, for a performance-optimized system, there is no trade-off with

regards to stroke limitations. However, the maximum damper force output is seen to

be'significantly lower for the use of an MR damper. This is due largely to the fact

that higher C, values are optimal for the MR-STMD - which leads to a decrease in

fmax -but is also aided by the accessibility of a greater range of control forces at

lower velocities.
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6.4 Other mass ratios

As with the VO-STMD, the same analysis was also performed for realistic mass ratios

of 0.005, 0.0075, 0.015, 0.02, and 0.025. This section compares optimized results of

these analyses by presenting only the most relevant outputs:

" Figure 6-27 shows optimized J1 results.

" Figure 6-28 shows J2 results using C, values obtained in the J1 optimization.

" Figure 6-29 presents representative Ad(w) results for D, = 10 and C, obtained

through J1 optimization.

" Figure 6-30 presents representative Aa(w) results for D, = 10 and C, obtained

through J1 optimization.
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Figure 6-31: Relative effectiveness of MR-STMD systems

6.5 Summary of results

As these analyses have indicated, the performances of MR-STMD systems demon-

strate marked improvement as compared to VO-STMD systems with comparable

dynamic ranges. For example, using an MR damper with a dynamic range of 10, it is

possible to attain performance results equivalent to increasing the mass of a passive

system by 100%. This is a significant improvement compared to the 60% increase

attainable with a similar VO-STMD system.

Based on the MR-STMD analysis, figure 6-31 summarizes the mass equivalency

results for all studies performed, which include full results for several D, values using

the same mass ratios as before:

p = 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025, and 0.03

Figures 6-32 and 6-33 further demonstrate MR-STMD effectiveness in terms of
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Figure 6-32: Effective damping ratios for peak displacements

the equivalent damping of the controlled system. Even more than for VO-STMDs,

the improvement of maximum acceleration values (figure 6-33) is more pronounced

than the improvement of maximum displacement values (figure 6-32). This is of great

benefit when serviceability considerations dominate the design.
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Figure 6-33: Effective damping ratios for peak accelerations
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Chapter 7

Conclusions

Based on the analyses presented in chapters 5 and 6, it is possible to make some

general conclusions and design recommendations for optimized semi-active tuned mass

dampers.

7.1 Summary of motivation

As described in chapter 1, the response of tall buildings subjected to dynamic wind

loads has been a subject of much study. For excitations approaching the resonant

frequencies of the structure, ensuring structural integrity and serviceability is a sig-

nificant concern. One traditional solution is the implementation of a tuned mass

damper, which acts as a passive damping device in the region of the tuned frequency.

However, TMDs are only efficient within limits of the tuned frequency and depend

heavily on the magnitude of their mass. Active systems, such as the active mass

driver, have been utilized to improve the effectiveness of the TMD concept, but these

systems require significant power and bring the inherent risk of instability. Hybrid

semi-active schemes have been proposed, which are stable, require low power, and are

controllable, thus providing a broader range of applicability.

Studies have already demonstrated the successful use of magnetorheological dampers

for semi-active control of TMD systems. Other semi-active damping devices, such as

the variable orifice damper, have also been documented to be effective. Though
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semi-active dampers differ widely, with responses ranging from linear (VO) to highly

nonlinear (MR), criteria for optimizing a semi-active tuned mass damper based on

the limitations of the damping device have not been rigorously developed.

The present analysis addresses this issue be categorizing the effectiveness of STMD

systems based on the dynamic range of the damping device (D,) and a design variable

referred to as the damping reduction factor (C,). Two representative cases, the

VO-STMD and MR-STMD, have been analyzed in detail to assess the effect of the

dynamic range and of non-linearity in the damping device on the overall performance

of the STMD.

7.2 Performance of STMD systems

While semi-active control introduces clear advantages, STMD systems will be pre-

ferred to their passive counterparts only if their performance improvements are rel-

evant and do not come with costly complications. This section summarizes the per-

formance benefits of STMD systems and is followed by a discussion of other design

design considerations in section 7.2.3.

7.2.1 Reduction in TMD mass

One of the most significant objectives of employing a semi-active TMD may be to

reduce the mass ratio, p, necessary for sufficient vibration mitigation. As the results

in chapters 5 and 6 indicated, both the VO-STMD and MR-STMD proved effective at

meeting this goal. Figure 7-1 highlights benchmark results for both STMD types and

shows the potential of STMD systems to alleviate excessive TMD mass requirements.

Even for realistic dynamic range of , ~ 10, the performance improvements of the

STMD are equivalent to increasing the mass ratio of the passive system by 60% for

VO dampers or 100% for MR dampers.
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7.2.2 Increase in effective damping

Another means of assessing control effectiveness is to compare results based on "ef-

fective damping," (e, defined as the damping ratio necessary in a SDOF system to

provide equivalent vibration mitigation. Using the performance indices developed

in section 5.1.3, (e may describe the damping necessary for equivalent maximum

displacement, J1, or for equivalent maximum acceleration, J2. Results are given in

figures 7-2 and 7-3 and show a marked increase in effective damping for all STMD

systems as compared with their passive counterparts.

Based on results for both equivalent mass ratio and effective damping, the MR-

STMD produces noticeably better results than the VO-STMD for comparable dy-

namic ranges. It is observed that an MR-STMD with Dr = 10 exhibits nearly equiv-

alent performance benefits to those of a VO-STMD with D, = 100.
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Passive TMD - 1.0 5.3% 1.0 1.0 -

VO-STMD 10 4.3 6.3% 1.6 2.9 100%
VO-STMD 100 31.1 6.5% 1.8 4.4 100%
MR-STMD 10 6.2 6.7% 1.7 1.9 92%
MR-STMD 100 47.5 7.0% 1.8 2.4 92%

Table 7.1: Comparison of design considerations for y 0.01

7.2.3 Other performance metrics

The benchmarks for STMD effectiveness presented in figures 7-1 through 7-3 were

obtained by designing each STMD system solely for optimized performance. As ex-

plained in section 5.1.3, however, there are other factors to take into account when

considering the feasibility of an STMD system. These include the relative displace-

ment of the TMD, the maximum expected damper force, the reliability of the damping

device, and the behavior of the system under a control malfunction.

Details for each of these considerations can be found in chapters 5 and 6, but

results for representative TMD systems are summarized in tables 7.1 and 7.2. In

each of these tables, four STMD systems are compared to a passive system having

the same mass ratio. Here, C, refers to the optimal damping reduction factor for the

given system; (e is the effective damping using the J1 criterion; zmax/z compares the

maximum relative displacement of the STMD with the maximum relative displace-

ment of the passive TMD; Fmax/Fd compares the maximum semi-active force with

the passive TMD damper force; and "safe fail" indicates the optimal effectiveness of

the STMD in the event of a control failure1 .

It is readily apparent that an optimized STMD comes at the expense of increased

relative displacements and higher required damper forces. While the increase in peak

dissipative forces is expected when using a varying damping device, the augmentation

of relative motion is generally undesirable. Consequently, if stroke limitations become

'This assumes there is a default failure mode as described in sections 5.1.4 and 6.1.4. The percents
given are relative to the performance of an optimally-tuned passive TMD: % = 100 (1- ),
where e,,p is the equivalent damping of the passive TMD system, ,,, is the equivalent damping of
the broken STMD system, and ( is the damping of the primary structure.
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Passive TMD 1.0 7.8% 1.0 1.0 -

VO-STMD 10 3.5 9.3% 1.4 4.1 100%
VO-STMD 100 7.7 10.6% 1.5 18.1 100%
MR-STMD 1 10 6.6 10.4% 1.5 2.1 72%
MR-STMD 1 100 14 12.3% 1.5 10.0 72%

Table 7.2: Comparison of design considerations for p = 0.03

a design concern, the specifics of the controller may have to be adjusted to reduce

relative displacements rather than optimize only the performance.

7.3 Implications

Discussion thus far has focused on specific STMD systems using either a variable-

orifice or magnetorheological damper to supply the semi-active reactive forces. Based

on the data obtained, however, it is possible to make some useful generalizations

about the design of STMDs and the selection of semi-active damping devices.

7.3.1 Linear vs. non-linear damping devices

The models used for the VO and MR damper in this study were selected partially for

their ability to represent broader categorizations of semi-active devices, namely linear

(VO) and non-linear (MR) dampers. As demonstrated graphically in section 4.5,

non-linear devices such as the MR damper provide a larger range of accessible control

forces, including vastly improved responses for low velocities.

Preferrability of non-linear devices

Based on the results of this study, it is clear that this expanded range of control forces

directly influences the efficacy of an STMD. For example, for a given dynamic range,

the MR-STMD out-performed the VO-STMD in all measures of control effectiveness;

in order to produce similar results, the VO-STMD required a dynamic range an order

of magnitude larger than that of the MR-STMD. Additionally, the maximum force
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Figure 7-4: Alternative non-linear damping device

requirements for the damper are substantially less for the MR-STMD than for the

VO-STMD, as evidenced in tables 7.1 and 7.2. Hence, a non-linear damping device

need not be as robust as a linear one to accomplish the same performance objectives.

Since the relative displacements of the VO-STMD and MR-STMD are very com-

parable, the only observed shortcoming of utilizing a non-linear damping device is the

absence of an optimum failure mode. That is, as described in section 5.1.4, a linear

semi-active damper may default to the optimal level of passive damping in the event

of a control malfunction. Non-linear dampers, however, do not afford this flexibility;

even if a failure mode is programmed, its control will be sub-optimal as compared to

a passive TMD. Consequently, system reliability must be taken into consideration.

Extension to other non-linear damping devices

Apart from a system failure, these observations suggest that any semi-active damping

device with significant non-linearity will provide the best results for a variable-damper

based STMD. While MR-dampers have been the focus of this analysis, other damping

devices may be preferred due to the uncertainties associated with the MR fluid and

limitations imposed by manufacturers. For example, a controllable Coulomb friction

element in parallel with a traditional viscous damper would maintain the benefits
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of non-linearity while providing higher reliability and increased design flexibility. A

schematic of such a device is shown in figure 7-4, which also includes a stiffness

element to mimic the hysteresis exhibited by rheological dampers.

To verify these conclusions, simulations were performed using this hybrid damping

device instead of an MR-damper. With dynamic range and damping reduction factor

defined as in section 6.1.1, the same optimization process was undertaken. Repre-

sentative results for J1 optimization with p = 0.01 and Dr = 2, 10 are compared

with those of the MR-damper in figure 7-5, as well as summary optimization plots.

Slight differences in system behavior are evident, but overall effectiveness is relatively

indistinguishable. Accordingly, it is confirmed that semi-acvie damper non-linearity

supersedes other device details in importance, leaving it as a matter of engineering

judgment to determine the most suitable components for a given STMD.
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Figure 7-5: Non-linear device comparison: MR damper (left) and Coulomb friction
damper (right)
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7.3.2 Impact of dynamic range

Regardless of which damping device is selected for an STMD, its potential impact

is further limited by its dynamic range (see sections 5.1.1 and 6.1.1). While this is

an inherent limitation of virtually all semi-active damping devices, its influence on

STMD performance results had not yet been documented.

The influence of the dynamic range is shown in figures 7-6 and 7-7 for both the J1

and J2 performance criteria. All results are presented as percents calibrated such that

0% corresponds to the effective damping of a passive TMD and 100% corresponds to

the effective damping of the STMD with a dynamic range of 100.

As can be seen, the importance of the dynamic range increases for higher mass

ratios. However, for realistic mass ratios such as y ~ 0.01, most of the benefit of an

STMD can still be gained even with a relatively low dynamic range. For example,

for y = 0.01 and an MR damper with , = 10, displacement mitigation has already

surpassed 90% the effectiveness of an MR-STMD with a dynamic range of 100.
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These are encouraging results for the practicality of STMD systems, for Dr >

10 has become relatively standard for industrial-sized semi-active dampers. Hence,

demonstrating control success with D, = 10 is a critical step in validiting STMD

feasibiliy.

7.3.3 Closing remarks

The analysis presented here has elucidated the potential of semi-active damping de-

vices to significantly improve passive tuned mass damper performance. Results have

shown the superiority of non-linear damping devices, have demonstrated effective re-

sults for realistic dynamic ranges, and have suggested that the prescribed TMD mass

may be reduced by a factor of up to two when semi-active control is implemented.

These findings give particular promise to STMD implementation in both retrofit sit-

uations - in which space constraints may be significant - and in design situations

where extraordinarily large masses would otherwise be required.
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