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Abstract

The human problem solution process has attracted an increasing amount of interest among educa-
tors, managers, computer scientists and others. However, the discussion of the subject has suffered
from the lack of stochastic tools to quantitatively capture both the subtler steps of the problem
solution process and the diversity of human thinking. In order to stochastically model the human
problem solution, this thesis presents an approach referred to as “influence modeling,” that at-
tempts to describe how an individual navigates from one random memory chunk to another related
memory chunk, and how a group of people randomly remind one another of memory chunks that
could be individually uncommon.

As an application of influence modeling, this thesis shows how groups play “20-questions” games
based on a semantic space, such as ConceptNet (a common-sense database). It also investigates
how groups send signals about their behavior, which are collected by embedded devices, how group
interaction processes could be automatically monitored with embedded devices, how group perfor-
mance could be facilitated, and how to map group behavior and performance from the macroscopic
level to the microscopic level in experiments in measuring collective intelligence. The influence
modeling makes it possible to understand how a group could perform better than an individual. It
also allows for the monitoring of the status of the problem solution, and makes it possible to direct
group interaction in more fruitful ways.

Thesis Advisor: Prof. Alex (Sandy) Pentland
Toshiba Professor of Media Arts and Sciences
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Chapter 1

Introduction

My research aims to help individuals and groups to improve their problem-solving ability. I ap-
proach this goal by modeling how people solve real-world problems. From the perspective of a
computer scientist, I emphasize modeling the mechanism of individual and group problem solving.
I base this modelling process upon stochastic methods and signals that can be easily collected with
embedded devices. After this, I then use these models to help guide individuals and groups toward
more productive behaviors.

I have developed a method I refer to as “influence modeling” to measure, describe and under-
stand the momentary roles people take during a group problem solving process, and to quantify
the performance of the group based upon these role-taking statistics. These influence modeling
procedures enable us to detect rare and important roles related to raising of disagreements and the
asking of questions with approximately 50% accuracy and recall. This method also allow for the
detection of common and less important roles related to the giving of facts and passive listening
with approximately 85% accuracy, and to estimate performance from behavior with R? =~ 6.

Based upon this modeling approach, I have also been able to model and confirm several psycho-
logical hypotheses. For instance, I have been able to demonstrate that active conflict-resolution
among group members increases group problem-solving performance. This is based on a widely-
accepted management principle, and observations of the different socio-emotional roles and task
roles taken by the group members. This has especially been true for the roles related to conflict
resolution.\

Let us first consider the concept of describing human problem-solving (including learning) as
a searching process in a network of human knowledge, or what might be referred to in more
formal terms as a derived network. Since people have different (but comparable) backgrounds
and thinking patterns, a sample of individual/group problem-solving processes collected should
reveal both commonalities and individuality in terms of the strategies and performances of different
people.

The key mathematical tool I developed for modeling the problem-solving dynamics of individuals
and groups of different sizes is called the latent state influence model. This tool captures the
group dynamics,as demonstrated in the following brainstorming task. In this task, a group is asked
to generate as many ideas as possible in a specified amount of time that satisfy a given set of
constraints.
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Building on several existing psychological theories,, I model the set of ideas the people generate,
as well asthe set of dyadic relations of each other individual within the network. In this network,
the individual can navigate from one idea to another via a relationship, with the rate at which
they move being dependent upon both the individual and their relationship with the other people.
Hence, the brainstorming process could be modeled with a set of “reactions” w; — w; from idea

w; to idea w; with a corresponding transition rate pﬁfi)_,wj that is dependent on individual c.

In experimental scenarios we observe “social signals,” such as interruption and turn taking, that
only give incomplete information about the transitions. Latent state models can be used to de-
termine which signals are more indicative of transitions. Since the goal is to help people in their
problem solving, we are interested in the domain knowledge structure.It is also important to ob-
serve human behavior and group interaction related to general intelligence (such as intention and
memory). The factors that are orthogonal to the direction of problem-solving performance can be
ignored.

A discrete-state stochastic modeling of human activities normally involves a large number of la-
tent states related to what people think, and, correspondingly, a complex state-transition kernel.
Influence modeling simplifies the state-transition kernel by imposing further structure upon the
state transitions. It is one of many tools that can be used to investigate behavior related to problem
solving in a laboratory setting.

In a discrete time hidden Markov process with finite latent states {1,---, N}, state transition
events i — j happen at discrete times ¢ € {1,2,---} = N. The events happen with probability
P(S;1 = j|S; = i) = a;;. These observations contain partial information about the latent states
based on a probability measure P(O;|S;). In comparison, in a latent structure influence process,
a system has finite components (chains) {1,--- ,C}, and each component has finite latent states
{1,---,N.}. The observations for each component contain partial information about the latent
states for the same component based on probability measures P(O§C)|S§C)). In this influence pro-

cess, components cause each other to change states St(c) =1~ St(i)l = 7 at discrete times with

probability IP(St(cl) =17 ~ S,ffr)l =j) = hgg’c). Each component state change has one exact
cause. The discrete-time hidden Markov model and discrete-time influence modeling have their
(continuous-time) jump Markov model counterparts. Hence, the influence modeling captures the
interactions among different components of a system.

My research seeks to understand human problem solving by studying how stochastic processes that
are compatible with psychological findings search through networks related to human knowledge
and find answers. If the models that describe important areas of human problem solving (such as
reading, writing and creativity) have good predictive power, then they could potentially be very
useful in practical ways. people,

In addition to providing mathematical support for the development of new human-computer in-
teraction interfaces, I am interested in helping organizations and societies relax from information
overload, regain self-awareness, and focus attention upon their real needs. We may eventually see
the emergence of a new computational social science based upon stochastic modeling, that aims to
create a lucid society, provides privacy and offers help of the type that is mostly urgently needed.

I am also interested in expanding my work from the domain of the small group behavior and per-
formance into investigation of the whole society, again using a data-driven approach. For example,
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finding the structure in the publication of a whole research field — who influences who, the impor-
tance and key contributions of each article in different levels of detail, and what are the current hot
directions — could be an interesting research project.My experiences in finding the local knowl-
edge structures and modeling the problem-solving processes from small-group problem-solving
dynamics and organizational dynamics could be very useful in such an endevour..

Just as stochastic methods can be used to model human behavior, it is also possible to use human
problem-solving to inspire mathematical optimization and solution techniques. From my model-
ing of human problem solving as a diffusion process, I can proceed to compare how humans and
computer algorithms solve similar problems and to find interesting theorems. Influenced by the
approach of mathematical logic, I believe the meaning of an entity exists in its relationship with
other entities. Hence, it is reasonable to abstractly discuss the strategies and the corresponding ob-
servable behavior of solving, for instance, a 20-questions game. It is also reasonable to believe the
observable behavior and strategies involved in solving a 20-questions game will also be applicable
to those used for solving a wide variety of other problems.






Chapter 2

Diffusion Model of Human Problem Solving

I use the following influence process to capture how people influence one another and accordingly
change their thinking. The influence process is a Markov chain computationally much cheaper
approximation of the continuous-time Markov jump process to study the dynamics of complex
networks.. The influence process that I developed here was inspired by the work of Asavathiratham
[Asavathiratham, 1996].

In a imaginary world such as the network of flipflops (Figure 2.1), each flipflop can take two states:
red and blue, each flipflop changes its state occasionally by itself or by an occasional message from
another flipflop that takes an opposite state, and each flipflop occasionally misrepresents itself as
having an opposite state. We are often interested the following properties about this network. How
are the flipflops connected with each other, for in real-world the relationships among the “flipflops™
may not be obvious and even in this visually intuitive imaginary world the network will behave
differently according to the strengths of the connections? How does the network evolve over time?
Who are the most influential flipflops, for we surely want to target the most influential flipflops
if we want to run a campaign on the network? How well can the network solve problems and
how much performance variation can the network have if the performance of the network can
be expressed as an integral of a function of the flipflops’ states? We often claim intuitively that
collaboration increases the convergence rate and decreases the diversity in problem solving, and
the network dynamics model may provide us a tool to quantitatively reason about our intuition.

Specifically, I hope to capture the relationship between information flow and performance at both
macroscopic social network level and microscopic knowledge network level. At the social network
level, I am interested in how critical information could be quickly spread in the network through the
connectors and the persuaders to make things happen [Gladwell, 2002]. At the microscopic level,
I am interested in how individuals and groups could quickly fetch the critical pieces of knowledge
and have problems solved.

In a real world network, we estimate the structure of the network and the states of the nodes by
counting the concurrences of the states of the nodes. We often need to iterate the structure learning
and the state estimation processes for many times to get a good understanding of the network.
The more knowledge we have about the structure of the network, the more precision we can get in
estimating the states of the nodes, and vice versa. The statistical algorithms described here learn the
structure of the flipflop network in the same way that we estimate the real world network behind

13



14 CHAPTER 2. INFLUENCE MODELING

all the maths (Figure 2.2). We can tell the misrepresentations of the flipflops’ states by looking
at their previous and later states as well as their neighbours’ states, since the misrepresentations
are occasional and are not systematically organized with one another. We can tell the (unknown)
network structure and how the state of one flipflop influence the state of a neighbouring flipflop by
noticing how often a pair of states appear one after another, no matter whether a blue node makes
ared neighbouring node, a blue node makes a blue node, or otherwise. When two nodes go further
and further from each other, the correlation between their states becomes weaker and weaker.

The preceeding statisitical inference about the flipflop network assumes both that we can observe
all events that changes the flipflops’ states and that we cannot directly observe the flipflops’ states.
These assumptions are similarly taken in many other latent state models used in the areas of digital
signal processing (DSP). The first assumption reflects the optimism of the DSP researchers that
they can develop devices fast enough to capture almost all events of their interest. This assump-
tion is generally not taken by computational systems biologists in studying the change of chemical
concentrations (latent states) caused by chemical reactions (events). Hence computational systems
biologists have to either develop intriguing Metroplis-Hastings scheme to sample the possible event
sequences that lead from one chemical concentration the next, or use approximations and other as-
sumptions to work around the need to estimate the event sequences [Wilkinson, 2006]. The second
assumption is due to the diversity and randomness of human behavior. For instance, a person may
not know that he possesses a critical resource or certain opinions and will report imprecisely about
those “states”. Often we only have limited knowledge to map our observations about people to the
real states.

In the rest of this section, I will discuss what the influence model is, and how we can make statis-
tical estimations with the influence model.

2.1 Influence Model

Let us consider how a node in a graph changes its state (St(c) where c is the node index and ¢ is the
time index) over time as the result of the occasional and independent influences sent from one an-

other nodes along the edges (H (¢ (c,c) 4O ). Let us further put an additional constraint/approximation
t t+1
that node ¢’ has constant overall influence rate on node c:

- (c',c) _ (c',c)
Vi, ZH (g 5@ Z H () ;500
582,509 50 =j,5(9

s S

(¢se) (c,¢) d,c) (¢'s0) _
< H 5 50, = = DI A <) 4@ where g A S5O, = 1.
t+1 t ’ f+l S(C) t+1

Atany time t, a node c currently in state .S; () receives a message from a node ¢ that asks node c to
y y ; g
c,c

change state to .S; +1 # S ) ata rate/probability H ( S 50 4500 and the overall rate/probability of

t b4 t+l
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existing such a message and a state change to Sfj_)l is

P (SISO -+ 51V, where S, # 57

= P (El a message that requests node c to go to St(i)l # St(c))

inclusion-exclusion principle
= Z PP (message from node ¢’) — Z (message from ¢’ and ¢”) + Z
¢ d#e’ ¢,¢’ . mutually different
probability that more than 2 messages received is negligible

(¢0)
Z Hs(Cl) S(C)
4

t+1

12

. . (o) - (dse) (ds0)
The probability that node c stays in state S;” ishence 1— S 456 Dow HS(C') 59, => . .H 5 507
which takes the same form as the probability that node ¢ changes state. The overall probablhty that

the whole graph system goes from state S - - - 5 t0 S&, - S is [, S, H C(C,C)) 50 follow-

S(C) I (1) .
t+1
of the conditional marginal probability distributions at time ¢ + 1. When the rates of state change

is sufficiently small (i.e., when min ) (1 = g© P(S,ffL)llS,fl) .-+ 59 is sufficiently small), ap-
t+1%t Mt

proximately at most one node changes state at each time step.

ing the conditional marginal probability distributions P ( . S,fc)) and the independence

We can also consider the evolution of the nodes’ states in a continuous-time framework. Let
HZ(E ) be the rate of the event that node ¢ in state 55” = 7 causes node c to jump to a different

state j # S(()c). The first occurrence time of this event (taking the current time as 0) is hence an
exponential distribution:

Lt/At_: , ’
Jim (1 —HY c) At) Hi(; Nt = H;; () exp (—Hfj <) t) At
— . k2

J

event not happen before ¢
&t ~ Exponential (Hi(f;"c) ) :

The first occurrence time of any such event that causes node c to leave its current state is the
minimum among all such the first occurrence times, and it is again an exponential distribution:

IP (first event requesting ¢ to change state arrives at ¢)

= H IP (event does not happen before ¢)
all such events

— H/t Hi(;,c) exp ( H(C(C,C)) : ) dr = Hexp ( H(C(C,C)) t) = exp <—ZH;EC’/C))J .t>

<t ~ Exponential (Z H (C(C,c)) ) , where j # S(()c).

4
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Given that ¢ is the first occurrence time of such events that cause node c to leave its current state,
the likelihood that a specific event happens is proportional to the rate of the event,

P (X, € (t,t+dt) |min (X1, -, X,) €
= P(Xl (= (t,t+dt);X27... 7Xn >t /P

= Arexp(—Ait) ﬁexp (—At) dt/ (Zn: /\i> exp (—t . zn:)\z> dt
i=2 i=1 i=1
ST
=1

and two such occational events are unlikely to happen simultaneously.

t,t+ dt))
min (X1, -+, X,) € (¢,t +dt))

o~ o~

Exponential distribution often appears in physical sciences because it is memoryless and it has the
maximum entropy among all probability distributions in [0, co) with given mean and whose density
functions are positive everywhere. The exponential distribution is memoryless because it does not
remember its past and behave as if the past never happened at each time: P (X >t 4+ s|X > t) =
P(X > s)or

P(X>t+s) = P(X>t+sX>t)-P(X>t)=P(X >s)P(X >t)
or specifically, / Hi((;‘l’C) exp (_ Hi(j'/’C) . 7-) dr
t+s ’ ’

7

=exp (—H.(Cv/’c) ~(t+s))

= / H(C’c)exp Hi(z-l’c) dT/ H(c C)exp H;;’,c).T) dr.

1‘7]

J

:exp(—Hi(yc]. ’C).t). :eXp(—Hi(,Cj ’C)-s)

We can check that the exponential distribution has the maximum entropy with calculus of varia-

tions.
Lip]=— /R+ p(x) log p(z)dz + « (1 - /R+ p(x)da:) + (u - /I;+ x -p(:v)dx)

oc =l+logp—a—-p-x SEtO / p(z)dr =1, / xp(x)dr = p
8]) R+ R+
1
= p(e) =7 exp<—§>, exp(—1-a)=4.6=1/u

Asavathiratham developed the influence model to describe the dynamics of a graph that is com-
posed of a large set of nodes (or vertices) and a set of edges that connect the nodes. In this graph,
each node takes a state from its state space at any specific time, and changes its state stochastically
according to both the messages sent from the other nodes through the edges and the messages sent
from itself. This message-passing dynamics has much less complexity than the general dynam-
ics in which any state combination of the nodes can lead to any other state combination. On the
other hand, it provides us a quantitative language to describe our intuition on how people change
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their behavior from the accumulated influences of their friends, how brainstorming hits a new idea
that receives enough activation from nearby ideas, and how neurons fire based on the votes from
other neurons. Asavathiratham further extended the influence model into a system where a subset
of nodes and send a message to another subset of nodes and change the state combination of the

latter.

In order both to compute through simulations and and to analytically express some statistics about
the evolution of the states of the graph nodes, Asavathiratham specified the dynamics of the graph
nodes in such a way that the marginal probability distributions of the nodes at time ¢ + 1 can be
estimated as a weighted sum of the marginal probability distributions at ¢. Asavathiratham found
a way to translate between the weights to update the marginal probability distributions and the
state transition probabilities from one state combination of all nodes to another state combination
of all nodes. Hence he is able to connect the statistics of the influence process about a graph and
the statistics of the Markov chain about the graph. In particular, he is able to chaim that given a
Markov chain of a graph, he could create a logarithmically simpler influence process which while
having different dynamics has the same asymptotic marginal probability distributions of the nodes’
states.

Definition 1 (influence model). An influence process (St(c) : ¢, t) ,wheret CN,c={1,---,C}

and St(c) € {1,--- ,m.}, identifies a family of Markov chains parameterized by row vectors 7r§°}mc,
matrix D¢y and matrices Aﬁglf‘;,)lc

P(s0) = 7@ (s),
C Mt c et
() (<o) £ (¢
P(Sm) Z Z HS(C’>5'(C) ZD(C ? Z As§°')5§?{

e=1g{_y e=1 st

1

With this influence model definition, Asavathiratham simulated how a network of power plants go
normal and overheated by the influences of one another in the following way:

at time 1 each power plant randomly chooses its initial state, S\ ~ 7(9), and

att 4+ 1 each power plant randomly chooses its state indepdently according to the states of the

: (@) _. HO
power plants at time ¢, P (St+l) = Z 1 ZS(C,) " s(c’)s“)
Once he specifies a way to simulate a influence model, Asavathiratham picks a specific Markov
chain from the family of Markov chains that are compatible with the influence model specification.
For instance, the Markov chain describing the state evolution of the power plant network has the
state transition probability

1 C 1 C 1 C s
P (s StV 51) = TTp (sEUst”-56) ~ [ 58,
c c

On the other hand, Asavathiratham could simulate the power plant network with other Markov
chain specifications and still conformed to the influence model to be simulated. The differently
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simulated versions of the influence model will have different dynamics about the whole power
plant network, yet they have the same dynamics about any specific power plant. A simple way
to simulate with different dynamics about the power plant network is to correlate the conditional

probability distributions P (15{5,[{" - - 5{7).

Asavathiratham related the Markov chain description of graph dynamics and the influence model
description with an event matrix. Let us denote the state transition matrix (or state transition ker-

nel) of the graph as (]P’ (St(l) e St(c) — St(i)l e ffi))n _—_— This matrix has [ m. rows
MeX Me
and [] m. columns, and each row/column is indexed by a s state combination of the graph nodes.

J
Let us write the influence matrix corresponding to the influence model as <H éc( f))s(c)) .
t Tt S mexY_ me

This matrix has > m, rows and > m, columns, and each row/column is indexed by a state of a

node. The event matrix (B (St(l) e S,SC), (c, z)) def. (S(C) L z)> has [] m,. rows and
[Tmex> me

>~ m, columns. In this event matrix, the row indexed by St( D... St(c) and the column indexed by

(c,17) is one if 5% = ; and zero otherwise. Asavathiratham showed that

S>> B(Su(c0)-B(S; = Sen) - B(Se, (c,0)) = HGY.

Sp=-viree ,Spp1=--jorr

Asavathiratham’s influence modeling provides us a good example of studying the stochastic pro-
cess of a node by relating the stochastic process of the whole graph to a Markov chain. His
approach also tells us through an eigen-decomposition argument that we can seek to get the statis-
tics of a computationally intractable network by working with a much simpler network, which has
the same statistics that we are interested in and very different dynamics otherwise. For instance,
computing the marginal probability distirbution of the asymptotic state of a power plant in a power
plant network could be intractable due to the complexity of the network dynamics, and Asavathi-
ratham showed us that he can compute the same distribution by working with a much simpler
network in which the power plants independently change their states through the influences of one
another. We make many approximations too in studying knowledge networks and social networks
due to the sparsity of the available human behavior data and the diversity and randomness of human
behavior. We learned through Asavathiratham’s story that we can sometimes get a good estimation
of our interested statistics through a good selection of an approximation network. On the other
hand, we should noticed that Asavathiratham’s influence process represents a family of Markov
chains with different dynamics and probability measures, hence it is an ill-posed problem to talk
about the (log) likelihood of the Asavathiratham’s influence process.

The influence model defined by Asavathiratham is not the only way to describe a large system with
interacting parts. The model has a limitation about “influence” since different states of a chain are
required to have the same influence to another chain, and we can define another influence model
without this limitation.
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2.2 Completely Factorized Variational Inference

c={1,,C}
An influence model is a Markov chain (St(c) e{l, - ,m.}, Ul e {1,--- ,C’}) x param-
tC
eterized by row vectors wicﬁmc, matrix D¢y and matrices Afﬁ‘ ﬁi,)Lc
T-1 C )
P({S§C)aU1€(0) :C:{L'" 70}7t:{17 T}}) ‘(;()C) HHDU(C) A u(©
t=1 c=1 ( ) S(C)
t+1
with latent state
({S(C) Uy cefl,-,Chtefl, ,T}}) 2.1)
T g (Ue(0)0) v
_ (9 Ui(o),e )1 ole)
= H”SC@ H H S@fa» s, HHP ( 1S )
c= t=1 c=1 t=1 c=1

T—l,C,C,mcl sMe S(c) T Cme

ST Y™ T () e (vorsto =)

c=11i=1 t,c1,¢,4,j=1 t,ci=1

Hence the log probability is

log]P’({St(C),Ut(c),Y ce{l,--,Chte{l, - ,T}}) 2.2)
— z Z S(C) log 79 + Z Ui(cy, c )S(CI)AS'(_C,_)1 ;log H,-(;l’c) + Z St(j-) log P (Y;(°)|St(c) = z)
c=1 4=1 t,c,Cc1,i,] t,ct
C,me T,Cmc
= Y 5%logn® + Y S 10gP (V)50 =) +
ci=1 tici=1
T-1,C,Cimey,me T-1,C,C
+ Z Ui(a, (:)S't(czl)St(fr)1 log A(cl <) 4 Z Uy(c1, ¢) log D¢+,
t,c,c1,%,5=1 t,c,c1=1

The probability and the log probability in the mean-field approximation are respectively

@ ({St(c%Ut(C))Yyt(C) 1cE {1v' o 70})t € {17' o 7T}}) H Q St(C)) H Q U(C))

t,c=1 t,c=1
c C

= ﬁﬁﬁ("t(?) ﬁH (teler, €))7

=1 i= t=1c=1c1=1

log @ ({St(c),Ut(c),Y;(c) cce{l,---,Chte{l,- ,T}})

C T C C

T me
= Z Z Z St(cz) log U(C) + Z Z Z Ui(cy, ¢) log (e, c)

t=1 c=1 i=1 t=1 c=1 ¢;=1
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Hence the KL divergence

KL(Q|IP) = Eg(log Q) — Eq(logP)

T C me T ¢ C
S S el £ 35S g
t=1 c=1 i=1 t=1 c=1 c1=1
T-1,C,Cme,mcy T,Cyme,ne
- Z o(c) log m® — Z (e, c)a( ‘)aﬁfr)U log H,-(f;l’c) - Z (C)Y(C) log B; ;.
c,i=1 t,c,c1,i,j=1 t,c,i,j=1

It is a convex optimization problem with constraints to find the best Q that minimizes K L(Q||P).
In particular, the parameters for Q can be solve by fixed point iteration that is in essence an EM
algorithm: Taking partial derivatives.

mC2

_6% = 1+log a(c) logﬂ' Z Z (e, cz)a'(°2) 1ogH(° e2) log]P’(Yl(C)|S§°) =)
boy; co=1 j=
SKL Cime, Cimey
—— = 1+ loga(c) + Z ti—1(c1,¢) t(cll)k log H(Cl © 4 > ule cz)at_*_1 ;log H(C c2) 4 log]P(Y(c)[S(C) =1)
8Ut>l i c1,k=1 c2,j=1
KL g C)+m'§c oD ) log HEEO
A(cr,c) ’ Pt ti Tt+1,j 2
Hence
(c2)
(C) ( (c Cz)>L1(0702)0'2,j P (Y(C) S(c) )
=1
(c) (new) cha 1 1St
14 - (c2)
0 o) 1672 ©) g _
ZT{ 1_.[62_7 %7 ]P Yi 'Sl =1
(c1) . (c2)
Cﬁq (H(m,c))L"_l(cl’c)gt‘ll”‘ ez (H(C,cz))Lt(c’c2)at+21yj P (Y(c)ls(t:) _ Z)
k.i ij t t =
5 (new) _ ck=1 carj=1 J
t>1,8 - C,mcl ( ) (1) CymCQ ( ) (e2)
(er,0) ) -1k (eea) ) *1@Te 15 ©ale) _ ;
> 10 (Hk IT (H P (Y95 =
i cr k=1 ca,j=1
Me,Mey C MceyMey (e1) (o)
e C)(new) . H (H(c 02))% t+1] Z H ( (c (:2))0' 4 Cti1
) - 1,7
i,j=1 ca=1 ,i,j=1

The parameters {a(c) ¢,t,i} and {(c1, ¢) @ t, ¢, ¢} of the mean-field approximation Q adapt to
the posterior probability measure P(e| {y(c) ¢, t}) by balancing between the incompatible needs of
minimizing Eg(log Q) and maximizing Eg(log P) in a procedure to minimize the KL divergence
K L(Q||P). They minimize Eg(log Q) with a(c) = 1/m, and t;(cy,c) = 1/C, and corresponding
to this parameterization every latent state path {.S; 5l ,Ut(c) : ¢, t} is equally likely. They maximize
Eg(log P) by assigning all probability weight to one specific latent state path {St( ), U(e) : ¢, t}

The parameters crt(,) and ¢;(e, ¢) in a minimization procedure need to adapt to the observation Y(

need to match aiill) . and ;11 (e, c; ) through the influence parameters (H Z( e ) and need to match

Jt( fgt . and t;1n¢(e, c2) for At > 1 through atﬂ) . and ¢;11 (e, 1) and the influence parameters.
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2.3 Structured Variation Inference

Let us use the “structure” that I have already had to approximate the probability measure of the
latent state influence model.

I developed an approximation algorithm for the E-step of the latent state influence model. This
algorithm works sufficiently well for the applications that I have investigated. It is based on the
following relationships among the marginal probability statistics of the latent states.

Let the marginal forward statistics o, )(s )) the marginal backward statistics 6t(c) (s§6>), the marginal
one-slice statistics 1.9 (s(9), the marginal two-slice statistics £ 57 (s\™, 5]} of a latent structure
influence model be

o(s1%) = B (s, {v: 1=1,---,C;t1=1,~--,t})
)59y = P({y;(f”. —1,- c~t1=t+1,---,T} ,S’t(c),{agcl):cl#c})
(5 = P(sO{ri e =1, it =1,- ,T})

€ams), s5) = P(sOSE{YY =1, i =1, T}).

We can deduce the following inductive relationship among the forward statistics from the structure
of the latent state influence model:

by definition of o{? by influence model structure
W= Y RPON) = Y T[RRI -
{5():eifix {7} {s{Veifix s} ¢
factorization
— H Z 7.[.(0(2,)1[1: ( S(c )) w(c()c)IP’ (}/1(0)|S§C))

d#c Sic’)
by definition of o{®
ol (59 =P ({vi) : ¢} 15) P (S5, Vo=, 1))
influence model structure
IP( glev) Y(d) < )
({ (C’) }| (C)) (CI,C) 104 drst} ({Y(c’).c' 7-<t})
t+1 - t+1 S(cl)s(c) (C T . 9 — .
S ]P’({YT (e, r <t}

C1 S(Cl)

- 7

of? (519

Known the posterior marginal distributions a( ), we can proceed to deduce the posterior backward
parameters by the same reasoning in the deductlon of the forward statistics, and the other statistics:

B (St(c)> = ZIP’( Sien {Y(c) dit<t< T} |S(C),{ (). ¢ £ c})

ngl)
,ch) ( S(C)>

(5

e, Sl — o (50) B P (V) ) 1560) - A (82).
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The forward, backward, one-slice and two-slice statistics seem to give an exact inference algorithm
for the latent state influence model. But when we look behind the nice forms of the statistics, we

find that there is generally not an exact way of computing [P ({ (C) } |S; ) without coping

with the exploding number of terms involving (S,fi)l ngf) In the approximation algorithm

that I developed, I assumed that
approx. ’
afh(sih) o P (VRISE) D0 DT HE ol (S).
c1 SSCl)
We correctly computed

P (St(fﬂ {v 9 :e,r < t}) = Z P ({St(ﬂ : c’} | {YT(C') 2, < t})

{sresfix s2,)

through the definition of the influence model. On the other hand, the latent states {St(i)l : c} are

correlated, and hence both Y. with ¢ # c and Y9 contain information for updating S, , and
t+1 t+1 p g Vi1

P (s {9 ¢r <1)) P (52
bR e <) TIe ()

(e fix 819, v

Below I give the variational method that adapt hﬁfi) to P ({Yt(c,) : c’} 158 = z) Recall that the

likelihood function for a latent state influence model with known latent state sequences and un-
known “influencers” is

P ({57 e} = [Te (1) o, T [T (i) 3 s, =

c=1 =1 c=

s ©)4(© I e (©) () sih, L ene) >
_ i — i 1,
- cl;I“:n; (P (yl IS z)) ( ) I:I I:—[ I;I ( (Yt“ Sit1= )) 1;,1 CIZ:I Hst(cl),sgi)l
togP ({89, % : ,t}) = Z Z 54 10gP (V{Is(? = i) + Z Z 5 log n{® +

c=1i= c=14¢=1

T-1,C,me¢ T—-1,C,m¢

> SPleeP (YIS =)+ 3 Y Silog Z HS @

t,c,i=1 t,c,i=1 Sg,... c1=1 St Sy

The structural approximation that I just described translates into the following likelihood function.

P(Yl(c)lsfc)) (0) T-1

C 8 C
Q ({St(C) : c’t}) - g Sy P (Yl(c>‘5(c)§( )(c> UQ (S(C) - Z)

(c) t=1 c=1

Q (S(C) _ Z) & -\ QEC) (?’) (C) ch Zk ~(CI) k)HIEchl C)
13 - c . C ~{C C1,C
>,0d90G) %, h” S Sk “><k) (e
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To understand the probability measure QQ define by the structual approximation, we treat Q as a
product of many factors involving {S§C’, S(C) : ¢} that compute the prior probability distribution

of { t(j_)l c} from {St o c} and that incorporate the evidence in the observations Yt(f)l

These factors are different for Q and for P: The part that computes the prior probability distribution
is the same, but the part that incorporate evidence is different. Since ) ¢ ({S(c) Yt(c) e, t}) =

P <{Y;(C) e t}) , this probability measure is compatible with the approximation that we used.
The KL-divergence can be computed as

log Q ({st“),. , }) —logP({S§C’,n‘°):c,t})
> (z S (12, ~togP (IS, =) ~on S, X0 H) ,

_ Z

t=1 c=1

f

unrelated to r{?

KL (Q|[P) = EglogQ ({5§°),: c,t}) log P ({S(°> v e t}) +log ({Y(C) c t})

T-1 C me
= Z Z (Z ag?}-)l (log h£0+)1,i —logP ( t(:)l|St(i)l = Z)) - IOgZ hgi)l,j ZZ&ECI) (%) Hi(,cjl’c)) -
7 [

t=1 c=1

Setting the derivatives of K L(Q||P) over h(c) to be 0, we get

OKL AL 3&(6)(k) (c) ©) alc) ~§Cz) Dey 2k d(cl) (k) HIEC:’C)
© = > © (l ogh; logp(yt 18" = k)) T T © Py @0
8ht,i k=1 8ht hy E hy ch Dok G (k) Hy '

&) /nee)

= Q=P (YIS = k) Ve b,k

We know that a minimum point {hic,z L ¢ty k} exists because K L(Q||P) is lower bounded by 0.

We can define a probability measure with Q (S(c) ) = ’yt( ° () from our approximation, and
get better estimation of P (St =i {Y;(c) A t}) and other statistics. This improvement involves

more complicated update of hgc,g and I will no pursue this path further. There are other possible
structural approximations to the latent state influence model.

Sometimes we want to know who-influence-who from the state sequences of the different interact-
ing processes in the influence model and the influence matrix. I give an estimation algorithm for
finding the “influencers” below in the case that the “influencers” U are independent of each other
and are independent of the influence model states .S. This algorithm is again based on minimizing
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the K-L divergence. The approximate distribution and its logarithm are respectively

QUSE, U® - e,t}) = QUU : ¢t}) - QST : ¢, t}) = QS : ¢, t}) - T [ [ @)

where Q (Ut(c)) =1 (Ut(c>7 c) = ﬁ (4 (e, €))Vrer®

c1=1
T C C

og QS U : ¢,t}) = S°3" 3" Uiler, ) - logue (,0) +10gQ@ ({57 : ¢, t}).

t=1 c=1 =1

Setting to O the partial derivatives over ¢; (¢, ¢) of the Lagrangian involving the KL divergence and
the constraints 3 ¢; (c1,¢) =1

KL(Q|P) = EqlogQ — EqlogP
- Z 1 (c1,¢) -logi (c1,c) — Z ti(c1,¢)Eg (S(CI)S(?U) -log Hi(;.l’c) + irrelavant terms

t,c,c1 EQ(U(Cl,C)) t,c1,¢,1,

0 (KL =500 (1= %, uler,9) )
O (¢, €)

=1+logu (c1,c) — Eq (S(cl)st(fr)l ;) log Hi()?’C)

we get the following softmax iteration to calculate ¢,.

Me,Mey () C  Me,Mey (c1) g(c)
Eo(S°Vs
new (e,c2) "M "t+11 (c,c 0( t+1 J)
(e, =TT (85™) > I (#5”
i,7=1 c1=1 ,i,j=1

2.4 Parameter estimation

Review parameter estimation for HMM.

Let us recall how we use the maximum (log) likelihood method to estimate with state transition
matrix (p;—;), ; and the initial state distribution (m;); of a hidden Markov model (HMM) with
observation distribution P(Y;|.S;). The likelihood and log-likelihood of a Markov chain of (.S;),,
are respectively

PU{S,Y:}) = P(S) [[P(SesalS) [T P(¥lS:) = w5, [ [ psissis [ [ PVEIS) =
=TT T (o™ TTBISE = 0%, and

logP ({S,,Y;}) = ZSM logm+zsmst+lj long,Jranlong&—z>.

t,i,7 t,i

The constraints to maximizing the log likelihood are Z]’ pisyj = Lforalliand ), m; = 1. The
Lagrangian is hence £ = logP+> ", y; (1 -2 pi—)j) +v (1 =3, m). We can get the maximum
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likelihood estimation of the parameters of the Markov chain by setting the partial derivatives of the
Lagrangian over the parameters to 0 and checking that the second order partial derivatives of the
loglikelihood over the parameters are negative.

oL 2S4St 2S4Sk
- - = — OV ) Di =1 = P S L4y M1 t J
Opis; Di—j ’ ZJ: .” a Z e > ¢ St
oL S i set
—37ri = 7;1 = 0V, Ei m=1 = v=1m=>5u

Given the observation sequence (Y;), of an HMM, we can maximize the expected log likelihood
under posterior probability measure using the Baum-Welch algorithm [Baum et al., 1970]:

E def. (log P ({5, Y3}))
Q9 p(isipigny)

ZEQ (S13) logmi + Y _Eg (StiSes1) - logpins + Y Bo (i) log P(Yi|S; = 1),

t,3,9 t,i

where Eg(S;;) and Eg(S;:S:41,;) can be estimated through the forward-backward algorithm. By
the same line of reasoning when the latent state sequence is known, the parameters that maximize
the expected log likelihood are

Pivi = O Eq(SuiSi+1,)/ Y Eq(Sis)
t t

T = ]EQ(Sl,i)-

Estimating the influence matrix and the inital marginal state distributionsfrom known state se-
quence St(c) : ¢, t) follows the same procedure as in the Markov chain case. Recall that the log
likelihood of a influence-model state sequence is

1ogp({st<c),U§°),}q(c) ced{l,-,Chtefl, . ,T}})

— Z Z S(c) log m + Z Us(ar c)S(Cl),S’lffr)1 ;log Hi(’?’c) + Z St(ﬁ-) log P (Y,:(C)|S§c) = z)

c=1 i=1 t,c,c1,%,7 t,c,t
C,me T,Cme
= > siogr?+ 3 S logP (VOIS = 1) +
c,i=1 t,ci=1
T—-1,C,Cyme; yme T-1,C,C
+ > Ule,0SY88 10 A+ Y Uler, ) log D9,
t,c,e1,4,5=1 t,cei=1

and the constraints are Ve, 5. 79 = 1, Ve, >, D) = 1, and Vey, ¢,4, ), A(c’ ©) = 1. The
Lagrangian is hence

= logP+ Z M(Cl (1 — ZAz(‘,CJ'LC)) + ZV(C)(]‘ _ Zm(c)) + Zw(c)(l _ ZD(CI’C))'

C1,C,0 J c [ c c1
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We can get the maximum likelihood estimation of the the influence matrix and the marginal initial
state distributions by setting the partial derivatives of the Lagrangian over the parameters to O and
checking that the partial derivatives of the loglikelihood over the parameters are all negative.

S = 0SS A e 0 35 =

5 e - Zm%swﬂw>zwmc$?%J2mﬁ@$%
oL

9D(er9

: w(c) =T7D(01’C) =ZUt Cl,C)/T

Z U (er,¢) /D) — @ E ove, 3 Dlevd = 1

c1

oL o (e ) c
2~ s{omt? = B 0w ol 1
T i

= v=1, ﬂ(c) Sici),
Estimation the influence matrix and the initial marginal state distributions of a latent state influence

model from an observation sequence {Yt(c) : c,t} follows the same procedure as in the HMM

case.When the latent state sequence {Ut(c), St(c) e, t} is unknown, we can maximize the expected
log likelihood under posterior probability measure

E g, ({59009 }{Y(%t}) (ogP({S(C) SRR }))
= Z Eg (S(C)) Jog @ + Z Eq (St(‘?) -logP (Yt(c)|5’t(°) = z) +

ci=1 t,c,i=1
T-1,C,Cimeq ,me T-1,C,C
Y Eo(Ue,08PSD,) tos AT+ 3 Bo(Uien,0)) log DO,
t,c,c1,4,5=1 t,c,c1=1
where Eq(Ui(c1,c) ) and Eq(U(c,¢) - St(czl) (fr)l ;) can be estimated. By the same line of

reasoning when the latent state sequence is known, the parameters that maximize the expected log
likelihood are

oG = Y28 (0100 SIS / S 5o (U0 57).
t
D(CI,C) = ZEQ Ut (CI,C)) /T
t

= o (s4).

Sometimes we want to compute the influence matrix from either the influence process {St(c) e t}
or the posterior probability distribution of this process given observations, and we do not want to
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make any assumptions about the unknown “influencer” sequence { Ut(c) le t} such as an assump-

tion about the probability distribution. When we know the latetent state sequence {St(c) e, t}, the
computation of the influence matrix doesn’t require enumerating the exploding number of latent
state combinations of the interacting processes {S,fc) : c} and is hence tractable. In contrast, when

we only know some statistics about the latent state sequence, the computation normally involves
an exploding number of terms that express the different influences corresponding to different latent

state combinations {St(c) : c}, and I only know some approximation algorithms that combine the
exploding number of terms into a computationally manipulatable number of terms.

Computing the influence matrix that maximizes the likelihood of a known latent state sequence
{S(c) c t} corresponds to the following optimization problem:

c
(©) (0 40
argmax , 4 Z WSP + Z Z log Z ast(c') St(i)ld
c=1 i <

N v

tog ({50}

satisfying Vc, Zd(c ) =1;V¢ c,z,Za(c ) = 1; Ve, Zn,@ =1.

=1

This maxmization problem is benign because the log-likelihood to be maximized is an increasing
function of the variables a and d, the log-likelihood takes as its domain the convex hull of a and
d, and when the latent influence process is aperiodic and non-reducible the log-likelihood function
takes as its domain the interior of convex hull. The partial derivatives of the log-likelihood over a
and d are respectively

a IOg IP) (cl,c) (c ,c) (C/ C)
G ; ( S(Cl)s“) / ~ s(c')St(ﬁr)ld

OlogP (c1.0) (¢,0) (c',c)
PHC R 2 ( /Z aS“”st‘i%d '

i, {£5E0=i,5,=5)

2.5 Example: Interacting Processes with Noisy Observations

Let us suppose that we have six stochastic processes, and we sample these six processes with six
sensors. Each process can be either signaled (one) or non-signaled (zero) at any time, and the
corresponding sensor has approximately 10% of its samples flipped. The interaction of the six
stochastic processes behind the scene looks like this: processes one through three tend to have the
same states; processes four through six tend to have the same states; the processes are more likely
to be non-signaled than to be signaled; and the processes tend to stick to their states for a stretch
of time. The parameters of the model are given as the following and are going to be estimated:
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Figure 2.3: Inference from observations of interacting dynamic processes.
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In Figure 2.3, (a) shows the sampled latent state sequences, (b) shows the corresponding observa-
tion sequences, (c) shows the influence matrix reconstructed from sampled observation sequences,
and (d) shows the reconstructed latent state sequences after 300 observations. The (7, 7)™ entry of
the (1, ¢2)™ sub-matrix of an influence matrix determines how likely that process c; is in state ¢ at
time ¢ and process c; is in state j at time ¢ 4 1. It can be seen from Figure 2.3 (c) that the influence
model computation recovers the structure of the interaction.

The influence model can normally attain around 95% accuracy in predicting the latent states for
each process. The reconstructed influence matrix has only 9% relative differences with the original
one. Using only observations of other chains we can predict a missing chain’s state with 87%

accuracy.

We then constructed a more complex experimental setting to compare the performances of different
types of hidden Markov models. In this setting, we have a Markov process with 2¢, where C' = 10,
number of states and a randomly generated state transition matrix. Each system state s; is encoded
into a binary sm (C). Each of the m. = 2 evaluations of “bit” (C)COITE:SpondS a different
1-d Gaussian observation 0\”: Digit () = 1 corresponds to 0{? ~ Nu; = 0,02 = 1] ; Digit

s\ = 2 corresponds to o{ ~ Nuy = 1,02 = 1] . Figure 2.4 compares the performances of
several dynamic latent structure models applicable to multi-sensor systems. Of the 1000 samples
(G:)1<t<100 » We use the first 250 for training and all 1000 for validation.

There are two interesting points. First, the logarithmically scaled number of parameters of the
influence model allows us to attain high accuracy based on a relatively small number of observa-
tions. This is because the eigenvectors of the master Markov model we want to approximate are
either mapped to the eigenvectors of the corresponding influence model, or mapped to the null
space of the corresponding event matrix thus is not observable from the influence model, and that
in addition the eigenvector with the largest eigenvalue (i.e., 1) is mapped to the eigenvector with
the largest eigenvalue of the influence matrix [Asavathiratham, 1996]. Secondly, both the influ-
ence model and the hidden Markov model applied to individual processes are relatively immune
to over-fitting, at the cost of low convergence rates. This situation is intuitively the same as the
numerical analysis wisdom that a faster algorithm is more likely to converge to a local extremum
or to diverge.
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Chapter 3

Modeling and Optimizing Group
Collaboration Dynamics

An understanding of face-to-face communications within a group discussion can provide new clues
about how humans collaborate to accomplish complex tasks and how the collaboration protocols
can be learned. It can also help evaluate and facilitate brainstorming sessions. I will discuss the
following three findings about the dynamics: (a) meetings in different languages and on different
topics could follow the same form of dynamics; (b) the functional roles of the meeting participants
could be better understood by examining not only their individual speaking and activity features
but also their interactions with each other; (c) the outcome of a meeting could be predicted by
examining how its participants interact.

The form of the group discussion process (in which participants present their opinions, argue about
an issue, and try to reach a consensus), is related to the participants’ tendencies to maximize the
outcome of the discussion. People “instinctively” know how to cope with each other in many
different situations to make an effective discussion. As a result, we could expect some invariant
structures from one discussion to another, and could, just by watching the discussion dynam-
ics, answer the following four questions: (1) how the opinions of the meeting participants differ
from each other, (2) what are the psychological profiles of the participants, (3) how the discussion
progress, and (4) whether the discussion is effective. We do not concern ourselves with the content
of the discussion, and thus we cannot answer questions concerning the content., Even so, we can
nevertheless learn a great deal simply by observing the form (i.e., the container).

I will model the group discussion dynamics as interacting stochastic processes, with each process
representing a participant. I will identify the different functional roles the participants take at each
point in a group discussion, and evaluate the discussion efficiency within the framework of the
stochastic process. I will first briefly discuss the intuition behind the influence modeling of the
group interaction process, the mission survival data set, and the previous work related to under-
standing group dynamics, influences, meeting progression, and the effectiveness of a meeting. The
study of non-verbal aspects of a face-to-face group discussion is not new, yet the approach used
here yields better accuracy when estimating the participants’ functional roles and the discussion
outcome than obtained in previous studies. This is because this new formulation takes into account
the interaction features. I will then describe several data sets and give the new results on their inter-
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action statistics. The statistics both motivate our new formulation of influence and provide insights
about why the new formulation could give better estimation results. I will proceed to compare the
old and new formulations on influence and give the performance of estimating the functional roles
with influence modeling and other methods. I will conclude by briefly describing the experiences
and lessons I have learned in my efforts to understand the non-verbal aspects of group discussion,
as well as offer some suggestions for future research .

3.1 Influence Modeling of Interactive Process Dynamics

Let us employ a thought experiment to examine an imaginary group discussion which involves
the participants expressing their opinions about an open problem in order to reach a consensus.
The quantitative analysis corresponding to the following description will be given in the following
sections.

A discussion is normally driven by one person at a time, and it can be driven by different persons at
different times. The person who drives the discussion normally has longer uninterrupted speaking
time, steadier intonation and speaking speed. They also usually receive more attention from the
other persons, who usually display their attention by orienting their bodies toward and looking at
the speaker.

The persons who do not drive the discussion (listeners) can, from time to time and individually,
support the person who drives the discussion (turn-taker) by briefly showing their agreement or
by briefly adding supporting material to the turn-taker’s argument. The listeners can sometimes
request clarifications on the turn-taker’s argument, and the requested clarification can subsequently
be provided by either the turn-taker or the other listeners.

One or more listeners may infrequently show their disagreement with the turn-taker’s opinion/argument
and initiate an “attack,” which may consequently pull more listeners into the “battle.” The inten-
sity of the battle is indicated by significantly less body/hand movement by the person who initiates

the attack, significantly more body/hand movement of the others in response to the attack-initiator
(who speak and turn to each other), and the large number of simultaneous speakers.

The turn-taker and a listener may, from time to time, engage in a series of back-and-forth negotia-
tions to fill the gap in their understandings or opinions. If the negotiation takes too long, the other
participants may jump in and terminate the negotiation. When the turn-taker finishes his turn, he
may either simply stop speaking or explicitly hand over his turn to a listener. The next turn-taker
will continue to drive the discussion appropriately.

In many of the discussions, there is a distinctive “orienteer,” who has the “charisma” to drive the
discussion forward when it comes into a halt or degenerates into chaos. This charisma is reflected
by the capability of the orienteer to quickly seize the attention of the others. When the orienteer
takes on the orientation role, all other speakers quickly turn their body towards the orienteer, and
the other current (normally multiple) speakers quickly stop speaking.

What has just been described can be expressed as an “influence model,” in which each participant
randomly chooses to maintain his role (e.g., turn-taker, supporter, attacker, orienteer) for some
duration or chooses to make a transition to another role. The duration for which a turn-taker drives
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the discussion depends among many factors, including the option and arguments of the turn-taker,
his own style, and the responses of the other participants. When one person expresses his opinion
and arguments, the other people normally listen to his statement attentively and patiently, and
express their agreements and doubts unobtrusively. The transition from one turn-taker to another
depends on how the latter’s opinion is related to the former’s, and how the latter wants to drive
the discussion. The manner and the likelihood for a participant to express his support, doubt or
disagreement depend both upon his judgment about the importance of making an utterance and
upon his personal style.

An observer who watches the group discussion dynamics — the turn-takers at each point, the
transitions of the turns, the responses of the listeners and the dyadic back-and-forth negotiations
— can often obtain a precise understanding of them (the testing data set) by pattern-matching
them with the past group discussion dynamics (the training data set) stored in his memory. The
reason for is because the multi-person face-to-face interactions normally take on a small number of
regular patterns out of a huge number of possibilities. For example, if each of the four participants
in a discussion can take one of the four roles — protagonist, attacker, supporter or neutral, there
will be 4* = 256 possible role combinations. However, in an efficient group discussion, only a
few combinations exist most of the time. A corollary of the regularity of face-to-face interactions
is that we can evaluate the effectiveness of a group discussion by examining how frequently its
interaction pattern is an efficient one.

Since the dynamics of a discussion is dependent upon the purpose of the discussion, we can either
imagine the characteristics of an efficient discussion for a certain purpose, or compute the charac-
teristics based on simplified mathematical models representative of the discussion purpose. We can
also use our intuition either to guide our experimental designs or to help interpreting the experi-
mental results. Since we normally obtain a more comprehensive range of perspectives by listening
to more people during the discussion of an open problem, and since we can normally only pay
attention to a single person at a time, we could imagine that, for the most part, an effective discus-
sion is driven by a single person. Since discussing a topic normally requires a considerable amount
of set-up time and summarizing time, we should not see frequent transitions among topics. The
topics can be separated from each other by different amounts of participation by the individuals
and different interaction dynamics. Since a back-and-forth dyadic negotiation normally involves
the interests and attention of only two individuals, it should generally not last long in an effective
group discussion. Thus, the effectiveness of a group discussion could be studied using stochastic
process models and statistical learning methods.

Different group-discussion purposes require different types of dynamics. Even so, there are invari-
ants in interpersonal communications. The cognitive loads of individuals has a statistical distribu-
tion. Different types of turn-taking dynamics statistically result in different performances, condi-
tioned by the meeting purposes and the individual parameters. Similar kinds of group-discussion
issues, such as blocking and social loafing [Diehl and Stroebe, 1991, Jackson and Harkins, 1985]
may exist in different types of discussions. As a result, while the same stochastic model may be
used to fit all group-discussions, different purposes may require different parameters. We should
take special care of the compatibility of two group discussions when we fit a dynamic model to the
former with appropriate parameters and apply the fitted model to the latter.
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3.2 Mission Survival Corpus I

The Mission Survival Corpus [Pianesi et al., 2008b] is a multimodal annotated corpus based on
the audio and video recordings of eight meetings that took place in a laboratory setting equipped
with cameras and microphones. Each meeting consisted of four people attempt to solve the “mis-
sion survival task.” This task is frequently used in experimental and social psychology studies to
elicit decision-making processes in small groups. Originally designed by National Aeronautics
and Space Administration (NASA) to train astronauts, the Survival Task proved to be a good indi-
cator of group decision making processes [Hall and Watson, 1970]. The exercise promotes group
discussion by asking participants to reach a consensus about how to survive in a disaster scenario,
such as a moon landing or a plane crash in Canada. The group is required to rank a number of
items (usually 15) according to their importance for the survival of crew members.- For this study
setting, the plane crash version was used. This consensus decision-making scenario was chosen for
the purpose of meeting dynamics analysis, primarily because of the intensive engagement required
of groups in order to reach a mutual agreement. This offered the possibility to observe a large set
of social dynamics and attitudes. In this setting, the basic structure of the Survival Task was re-
tained with minor adjustments: (a) the task was competitive across groups/team, with a prize being
awarded to the group providing the best survival kit; (b) the task was collaborative and based upon
consensus within the group, meaning that a participant’s proposal became part of the common
sorted list only if he/she managed to convince the other of the validity of his/her proposal.

The recording equipment consisted of five FireWire cameras.Four were placed at the four corners
of the room, and one was placed directly above the table. Four web cameras were also installed on
the walls surrounding the table. Speech activity was recorded using four close-talk microphones,
six tabletop microphones and seven T-shaped microphone arrays, each consisting of four omni-
directional microphones installed on the four walls. This configuration was used in order to obtain
an optimal coverage of the environment for speaker localization and tracking. Each session was
automatically segmented, labeling the speech activity recorded by the close-talk microphones ev-
ery 330ms [Carli and Gretter, 1997]. The fidgeting—the amount of energy in a person’s body and
hands—was automatically tracked by using skin region features and temporal motion [Chippen-
dale, 2006]. The values of fidgeting for hands and body were collected for each participant and
normalized on the fidgeting activity of the person during the entire meeting.

The Functional Role Coding Scheme (FRCS) was partially inspired by Bales’ Interaction Process
Analysis [Bales, 1969]. This consists of ten labels that identify the behavior of each participant in
two complementary areas. The first was referred to as the Task Area, which includes functional
roles related to facilitation and coordination tasks as well as to technical experience of members.
The second was the Socio-Emotional Area, which was concerned with the relationships between
group members and the functional roles oriented toward the functioning of the group as a group.
A synthetic description of the FRCS is given below (for more information, see [Pianesi et al.,
2008b]. The Task Area functional roles consisted of the following: the orienteer (0), who oriented
the group by introducing the agenda, defined goals and procedures, kept the group focused and
summarized the most important arguments and the group decisions; the Giver (g), who provided
factual information and answers to questions, stated her beliefs and attitudes about an idea, and
expressed personal values and factual information; the Seeker (s), who requested information, as
well as clarifications, to promote effective group decisions; the Procedural Technician (pt), who
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used the resources available to the group, managing them for the sake of the group; the follower (f),
who merely listened, without actively participating in the interaction. The Socio-Emotional func-
tional roles consisted of: the Attacker (a), who deflated the status of others, expressed disapproval,
and attacked the group or the problem; the Gate-keeper (gk), who was the group moderator, me-
diated the communicative relations, encouraged and facilitated the participation and regulated the
flow of communication; the Protagonist (p), who took the floor, drove the conversation, assumed
a personal perspective and asserted her authority; the Supporter (su), who displayed a coopera-
tive attitude demonstrating understanding, attention and acceptance as well as providing technical
and relational support; the Neutral Role (n), played by those who passively accept the ideas of
the others, serving as an audience in group discussion. Of course, participants may—and often
do—vplay different roles during the meeting. However at any given time, each of them plays ex-
actly one role in the Task Area and one role in the Socio-Emotional Area. The FCRS was shown
to have a high inter-rater reliability (Cohen’s statistics x = 0.70 for the Task Area; x = 0.60 for
the Socio-Emotional Area).

3.3 A Literature Review on the Form and Content of Interac-
tive Group Problem Solution

Various approaches have been applied to characterize the roles of speakers in news bulletins, based
on the distinctive characteristics of those roles. Vinciarelli [Vinciarelli, 2007b,a] used Bayesian
methods to identify the roles of the anchorman, the second anchorman, the guest as well as several
other roles. These roles were assigned based upon how much each person speaks, when they
speak (beginning, middle, or end of the bulletin), and the sequence in which they speak. Using
material from three movies, based on the co-occurrences of roles in different scenes, the same
social network analysis (SNA) concept was adopted by Weng et al. [Weng et al., 2007] to identify
the hero, the heroine, and their respective friends. When analyzing a radio program, Barzilay et al.
[Barzilay et al., 2000] made use of the keywords employed by individuals , the durations of their
speaking turns, and the explicit speaker introduction segments to identify the roles of the anchor,
the journalists and the guest speakers.

Different meeting states and roles have been defined, and their characteristics and estimation al-
gorithms have been studied. Banerjee and Rudnicky [Banerjee and Rudnicky, 2004] defined three
meeting states (discussion, presentation and briefing) and four corresponding roles (discussion
participators, presenter, information provider, and information giver). They subsequently used the
C4.5 algorithm to describe the meeting states and the roles, based on four features (number of
speaker turns, number of participants who spoke, number of overlaps, and average length of over-
laps). McCowan et al. [McCowan et al., 2005] developed a statistical framework based on different
Hidden Markov Models. This enabled them to recognize the sequences of group actions starting
from audio-visual features concerning individuals’ activities—e.g., “discussion,” as a group action
recognizable from the verbal activity of individuals. In a simulated discussion on the development
of a new remote control, Garg et al. [Garg et al., 2008] discussed the recognition of the project
manager, the marketing expert, the user interface expert and the industrial designer. . The role of
recognizer is based upon when the participants speak and what keywords the participants use.
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The subject of “Dominance detection” has aroused a great deal of interest. This is probably be-
cause the dominant person is believed to have large influence on the outcome of a meeting. Rienks
et al. [Rienks and Heylen, 2005, Rienks et al., 2006] used various static and temporal models to es-
timate the dominance of the participants in a meeting, and concluded that the automated estimation
is compatible with the human estimation. They used several nonverbal features, including speaker
turns, floor grabs, speaking length. They also examinedverbal features, such the, number of spoken
words used by the next speaker, as well as audio features retrieved from the transcript of the dis-
cussion. Jayagopi et al. [Jayagopi et al., 2008, Hung et al., 2008b,a] extended the work of Rienks
et al., and estimated dominance using features computed from the audio and video recordings —
e.g., total speaking “energy,” total number of times being unsuccessfully interrupted.

The social psychology literature, especially that related to the structures and the performances of
small group discussions, provides useful observations, insights, and challenges to investigate using
automated computer algorithms. Conversation and discourse analysis provides useful observa-
tions and examples [Sacks et al., 1974, Atkinson, 1985, Frey et al., 1999, Schegloff, 2007]. The
features and structures of conversational group processes may be analyzed through experiments
and simulations. Bales investigated the phases (e.g., giving opinion, showing disagreements, ask-
ing for suggestion) and the performances of group discussions, as well as the different roles that the
discussion participants play [Bales, 1950, 1969, Bales and Cohen, 1979]. In contrast, McGrath ex-
amined meetings based on their different tasks [McGrath and Kravitz, 1982, McGrath, 1984]. The
usefulness of group brainstorming has been widely debated [Osborn, 1963, Frey et al., 1999] Pro-
duction blocking and social loafing have been identified as two drawbacks of group brainstorming
[Diehl and Stroebe, 1991, Karau and Williams, 1993, Nijstad et al., 2003]. Hall [Hall and Watson,
1970] and Wilson [Wilson et al., 2004] systematically analyzed their respective group brainstorm-
ing experiments, and have each offered explanation for why a group can collectively outperform
the individuals within it.

The work related to the Mission Survival corpus includes several distinct components. First of all,
it requires the identification of functional relational roles (social and task roles). This issue was
addressed by Zancanaro et al. [Zancanaro et al., 2006, Pianesi et al., 2008b] through an SVM that
exploited speech activity (whether a participant was speaking at a given time) and the fidgeting
of each participant in a time window. Dong [Dong et al., 2007] extended this work by compar-
ing the SVM-based approach to HMM-based and IM-based approaches. Pianesi et al. [Pianesi
et al., 2008a] have used social behavior as a means to identify individual characteristics, such as
personality traits. The task consisted of a three-way classification (low, medium, high) of the par-
ticipants’ levels of extroversion and locus of control. The study also used speech features that were
demonstrated to be “honest signals” for social behavior, as well as visual fidgeting features.

As far as can be determined, this present study is the first to discuss the features and modeling
issues of the turn-taking behavior and the personal styles in an unconstrained group discussion that
can be extracted with computer algorithms from the audio and video recordings. This study also
presents the initial findings on the correlation between discussion turn-taking behavior and discus-
sion performance. The discussion is based on Mission Survival Corpus I. The primary difficulty
in the current work is that was studying an unconstrained group discussion. Thus, in contrast to
communications such as news bulletins, there was no any pre-defined agenda or keywords would
could be used, , nor was there any visual cues, such as a whiteboard or a projector screen. A person
who was dominant in one part of a discussion may be non-dominant in another part. Nevertheless,
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the study revealsthat, although the predefined macro-structure does not exist in an unconstrained
discussion, the micro-structures at different parts of the discussion are based on the instantaneous
roles of the participants, and the statistics associated with the micro-structures are related to the
discussion performance.

The influence modeling used in this work has a long history of development, and simultaneously
captures interactions and temporal coherence The coupled hidden Markov models were first the
development to capture the interactions and temporal coherence of two parts based on audio and
visual features [Brand et al., 1997, Brand, 1996, Oliver et al., 2000]. Asavathiratham introduced
the influence model to study the asymptotic behavior of a large number of individual power plants
in a network [Asavathiratham, 1996, Asavathiratham et al., 2001]. The approximation used by
Asavathiratham is that the probability measure of state of a power plant is a linear functional
of the probability measures of all power plants’ states in the network. A similar concept was
employed by Saul and Boyen [Saul and Jordan, 1999, Boyen and Koller, 1999]. Choudhurry noted
that individuals have their characteristic styles in two-person face-to-face conversations, and the
overall style of a two-person face-to-face conversation more closely ressembles the style of the
more influential person. Choudhurry et al. subsequently used influence modeling to study the
structures of discussions and organizations [Basu et al., 2001, Choudhury and Pentland, 2002,
Choudhury, 2003]. Dong developed several versions of multi-agent dynamic Bayesian networks
using the same name, which are better fitted with the probability measures of group processes
[Dong, 2006, Dong and Pentland, 2007].

3.4 Group Process Statistics in Mission Survival Corpus 1

Each individual within a group discussion has their own characteristic style with regards to the
frequency, the duration and the functional (i.e., task and socio-emotional) roles of their speaking
turns. In Mission Survival Corpus I, some individuals consistently take certain functional roles,
, while other individuals display little or no consistency in the roles they take. . The functional
roles each have their respective characteristics, durations , and interactions with other functional
roles, independently of who assumes them. As a result, the functional roles of a speaker turn can
be inferred from the characteristics of the turn and the characteristics of the turn-taker.

Figure 3.1 displays the decision trees that reveal a meeting participant’s functional roles at a speci-
fied moment, as a function of the amounts of time he speaks in the time windows of different sizes
around the moment. The C4.5 algorithm is used to generate the decision trees from four discussions
of Mission Survival Corpus I as training data.It correctly captures the characteristics of the func-
tional roles. An information giver speaks more than an information seeker in a short time window.
A protagonist speaks more than a supporter in a long time window. A neutral role (i.e., a listener
or a follower) speaks much less than the other roles in time windows of up to several minutes.
The C4.5 algorithm, like many other modern statistical learning algorithms, is protected against
overfitting by a mechanism. The trained decisions trees can attain an accuracy of approximately
55%. (As a comparison, the inter-rater reliability has Cohen’s statistics £ = .70 for the Task Area
and x = 0.60 for the Socio-Emotional area.) Further accuracy can be achieved by considering the
speaker characteristics and more functional role characteristics. Since the participant who spends
more time giving information often spends more time in seeking information (R? = .27, F = 12.4
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(a) Task roles. (b) Socio-Emotional roles.

Figure 3.1: Decision trees trained with the C4.5 algorithm for functional role detection. If a person
takes the Neutral/Follower role at a moment, he speaks noticeably less in the 10-second window
around the moment. The Giver speaks more than the Seeker in a 20-second window. The Protag-
onist speaks more than the Supporter in a 50-second window. The Orienteer, on average, speaks
62% of time in a 280-second window.The speaking/non-speaking signal seems to be insufficient
to detect an Attacker.

on 1 and 30 degrees of freedom, p = .0014), the total amount of time a participant has spent in
giving information can be used to determine whether a short speaking turn corresponds to a seeker
role or a neutral role. Due to the way an auxiliary role, such as seeker/supporter, and a major role,
such as giver/protagonist co-occur, the amounts of speaking time of a participant in time windows
of different sizes can be contrasted with those of the other participants to disambiguate the roles
of the participant. Since an attacker is relatively quiet and arouses significant agitation from the
others, and since a person in a neutral role is often less paid attention, the intensities of hand/body
movements can be taken as the characteristics of those roles.

This section is organized into two subsections. In Subsection 3.4.1, the durations of each functional
role and the likelihood that different functional roles co-occur is analyzed. In Subsection 3.4.2, the
issue of who is more likely to take which roles, based ontheir individual honest signals, is analyzed.

3.4.1 Turn-taking behavior

The patterns in the functional roles, social signaling, turn-taking behavior, and their relations are
given as follows. Any effective heuristics and statistical learning methods that model the group
discussion behavior should take advantage of these patterns.

We will first examine the (Task Area and Socio-Emotional Area) role assignments of the subjects
in Mission Survival Corpus 1. The role assignments reflect how the observers understand the group
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processes.

Table 3.1 (left) gives the durations in seconds of social roles, task roles and their combinations.
In this table, an instance of a supporter role has a significantly shorter average duration than that
of a protagonist role (15 vs. 26). This coincides with the fact that a protagonist is the main role
which drives the conversation while a supporter takes a secondary importance. An attacker role
takes an average duration of 9 seconds, which is equivalent to 10~20 words and approximately one
sentence, assuming conversations occur at a rate of approximately 100 - 200 words per minute.
This reflects a person’s strategy for expressing his contrasting ideas concisely, so that he can make
constructive utterances and simultaneously avoid conflicts. A person asks questions (when he
takes an information-seeker’s role) more briefly than when he provides information (when he takes
an information-giver’s role). This reflects the natural tendency to make task-oriented discussions
more information-rich and productive. A protagonist role is, on average, 37% longer in duration.
This indicates that the social roles happen on a different time scale compared with the task roles.
The two types of roles are not perfectly correlated with each other. A discussion is normally
driven by one person and thus generally has only a single protagonist at any given point in time.
The protagonist can ask another person questions, and the latter generally gives the requested
information briefly, avoiding assuming the speaker’s role for too long. The protagonist can seldom
be interrupted by questions, and the questioner generally seeks additional information in a brief
and collaborative way. The durations of the neutral roles in the “task role dimension” and the
“social role dimension” are less than twice the durations of the giver’s role and the protagonist’s
role, respectively. This indicates the participants do not passively listen when they take listeners’
roles.

Table 3.1 (right) shows the number of speaking-turns and the amount of time that the meeting
participants take different task roles, social roles and combinations of task and social roles. This
table complements Table 3.1 (left) regarding how individual participants take different functional
roles in a discussion. The group process can also be viewed as a Markov process with different
distributions of functional roles at different time. In Mission Survival Corpus I, the configuration
1g3n000s, which denotes the configuration of the discussion with 1 Giver, 3 Neutrals, 0 Orienteer,
and 0 Seekers, takes 36% of discussion time.The configurations 2g2n0o0s, Og3nlo0s, 0g4n000s,
1g2n0o01s, 3g1n000s, 1g2nl100s, 0g3n0ols and 2gInOols take 20%, 13%, 11%, 5%, 5%, 4%, 2%
and 1% discussion time respectively. In the same data set, the different socio-emotional role dis-
tributions 0a3nlp0s, 0a4n0p0s, 0a3nOpls, 0a2n2p0s, Oa2nipls, 0a2n0p2s, Oaln2pls, Oaln3pOs
and Oalnlp2s take 36%, 21%, 18%, 11%, 7%, 3%, 1%, 1% and 1% of discussion time, respec-
tively. Each different role distribution tends to last for a specific duration. Considering a group
process in terms of role distribution makes the group process model speaker-independent, and thus
effectively compresses the number of states of the group process. Since it is possible to model a
group process more effectively in terms of “influence,” we will not discuss the distribution of roles
further.

We will proceed to analyze the turn-taking behavior, the body movements, and the hand movements
corresponding to different roles. The analysis will show that, rather than being artificially imposed
to the group processes, the roles reflect a set of essential features of the group processes.

In a discussion involving multiple persons, the individuals normally orient their bodies towards
the locus of the discussion, which can be either the protagonist or the information giver. The
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Table 3.1: (Left) Durations in seconds of social roles , task roles and their combinations. (Right)
Number of instances and amount of time in seconds that a person takes a task role, a social-role
and a task/social role combo. Each table entry u(co) gives the mean and standard deviation for a
specific case.

plo) a n p s marginal a n p s total
g 8(6) | 10(16) | 2324 | 11(D) 19(20) g 5(39) 316(3k) 233(5k) 112(1k) 666(9k)
n 2(2) | 52(79) 4(6) 5(5) 34(45) n 9(22) | 426(22k) | 185(747) | 147(718) 767(24k)
o N/A 48 1009) | 18(16) 17(14) o 0(0) 67(323) 21(432) 53(1k) 141(2k)
N 7(4) 6(4) A7) 10(5) 9(5) s 5(36) 74(471) 27(253) 17(170) 123(930)
marginal || 9(4) | 56(85) | 26(27) | 15(14) 7(50) total || 19(97) | 883(26k) | 466(6k) 329(3k) 1697(36k)

Table 3.2: Average percentage of speaking time in 10-second windows (spk) around different
social roles and task roles, average body movement (bdy) and hand movement (hnd) of the self
(self) and the others (othr) in the 10-second windows around the shifts into different social roles.
Each table entry p(o) gives the mean and standard deviation for a feature-role combination.

Social-Emotional Area Roles Task Area roles

a
'u( ) Attacker Neutral Protagonist Supporter Giver Follower Orienteer Seeker

self spk | .47(.16) | .20(.21) | .62(.21) | .54(.21) || .58(.21) | .16(.18) | .62(.21) | .41(.19)

othr spk | .30(.09) | .32(.12) | .25(.14) | .25(.15) || .25(.14) | .33(.12) | .23(.14) | .30(.12)

self hnd | 11(14) | 18(21) | 18(21) | 16(19) 17(21) | 18(20) | 17(20) | 15(17)

features

othr hnd | 20(14) | 16(13) | 19(14) | 17(12) 19(14) | 16(13) | 18(12) | 18(14)

self bdy | 11(19) | 20(22) | 21(22) | 18(20) 19(22) | 20(22) | 20(20) | 18(21)

othrbdy | 23(14) | 19(14) | 22(14) | 19(14) || 21(14) | 18(13) | 21(14) | 19(14)

protagonist or the information giver normally transmits non-verbal communications to the listeners
by turning his body toward them. The shifts of attention consist of a significant fraction of hand and
body movementa. In the mission survival data set, the correlation between the change-of-speaker
and the body/hand movement intensity is greater than 0.50.

Table 3.2 shows how the meeting participants execute their Task Area Roles and Socio-Emotional
Area Roles in terms of \the amount they speak and to whom attentions is given. While the pat-
terns are weak and might not be sufficient for constructing good role classifiers, they nevertheless
exist and match our intuition: An attacker provokes a significant amount of attention, hand move-
ments and body movements from the others, while he himself shows significant less hand and
body movements. The neutral roles, on average, the supporter role and the seeker role attract less
attention from the others compared with the giver role and the protagonist role. In the 10-second
window when a person takes either a supporter role or a seeker role, he displays less hand and
body movements. This may be due to the fact he has already paid attention to the locus of the
discussion when he takes one of those roles. When a person takes an Orienteer role, on average,
only 23% of the time in the 10-second window do the other three participants speak.The Orienteer
speaks 62% of the time in this window. This indicates that the one task of an Orienteer is to keep
the brainstorming on track.

Table 3.3 shows how the meeting participants shift their roles as a function of speaker overlap.
We intuitively view speaker overlap as an indicator of the intensivity of a discussion. The tables
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Table 3.3: Distribution of social roles and task roles conditioned on the amount of speaker-overlap.
Socio-Emotional Area Roles Task Area Roles
Attacker Neutral Protagonist Supporter Z Giver Follower Orienteer Supporter Z
.001 | .817 | .104 | .078 | 15k(1.0) || .162 | .777 | .043 | .018 | 15k(1.0)
002 | 740 | .177 | .081 | 60k(1.0) || .251 | .675 | .049 | .025 | 60k(1.0)
004 | 680 | 220 | .096 | 26k(1.0) || .325 | .591 | .054 | .031 | 26k(1.0)
005 | .620 | 238 | .137 | 6k(1.0) || .358 | .536 | .070 | .037 | 6k(1.0)
008 | 581 | 305 | .107 | 656(1.0) || .329 | .572 | .076 | .023 | 656(1.0)
293 | 78k | 19k 9k 11k 28k | 71k | Sk 3k 11k

#. of spks

MAwN»—-O

indicate that for 80% time in Mission Survival Corpus I, there are between one or two simultaneous
speakers, an average of less than .88 protagonists (who drives the meeting) and between 1.004
to 1.3 information-givers. This is determined by the mental load of the participants and their
conscious (or subconscious attempts) to increase the efficiency of the discussions. On the other
hand, the fraction of the secondary roles, such as attackers, increases significantly.

We note that the statistical learning theory does not guarantee the learnability of features. Thus,
we cannot treat a statistical learning method as a magical black box that takes training data as input
and generates working models about the training data. What the theory provides instead is math-
ematically rigorous ways to avoid overfitting in statistical learning. As a result, our introspection
into how we solve problems by ourselves and attain efficiency provides good intuitions about how
our individual and collective mental processes can be “learned” and simulated by machines.

3.4.2 Individual Honest Signals

This section, introduces individual honest signals, their relationships to role-taking tendencies,
their relevance with the roles, and their correlations.

3.4.2.1 Speech Features

Previous studies suggest speech can be very informative about social behavior. For instance, Pent-
land [Pentland, 2008] identified four classes of speech features for one-minute windows (Emphasis,
Activity, Mimicry and Influence). He showed these classes are informative of social behavior and
can be used to predict it. In Pentland’s [Pentland, 2008] view, these four classes of features are
- honest signals, “behaviors that are sufficiently hard to fake that they can form the basis for a reli-
able channel of communication.” To these four classes, Spectral Center may also be added, which
has been reported to be related to dominance [Rienks and Heylen, 2005].

Emphasis is usually considered a signal of how strong the speaker’s motivation is. In particular,
its consistency is a signal of mental focus, while its variability indicates an openness to influence
from other people. The features for determining emphasis consistency are related to the variations
in spectral properties and prosody of speech: the less the variations, the higher the consistency.
The relevant features are: (1) confidence in formant frequency, (2) spectral entropy, (3) number of
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autocorrelation peaks, (4) time derivative of energy in frame, (5) entropy of speaking lengths, and
(6) entropy of pause lengths.

The features for determining the Spectral Center are (1) formant frequency, (2) value of largest
autocorrelation peak, and (2) location of largest autocorrelation peak.

Activity (=conversational activity level) is usually a good indicator of interest and engagement.
The relevant features concern the voicing and speech patterns related to prosody: (1) energy in
frame, (2) length of voiced segment, (3) length of speaking segment, (4) fraction of time speaking,
(5) voicing rate (=number of voiced regions per second speaking).

Mimicry allows keeping track of multi-lateral interactions in speech patterns, and can be accounted
for by measuring. It is measured through the number of short reciprocal speech segments, (such as
the utterances of “OK?,” “OK!,” “done?” or “yup.”).

Finally, influence, the amount of influence each person has upon another person in a social interac-
tion, was measured by calculating the overlapping speech segments (a measure of dominance). It
can also serve as an indicator of attention, since the maintenance of an appropriate conversational
pattern requires attention.

For the analysis discussed below,windows of one minute in length were used. Earlier works [Pent-
land, 2008], suggested this sample size is large enough to compute the speech features in a reliable
way, while being small enough to capture the transient nature of social behavior.

3.4.2.2 Body Gestures

Body gestures have been successfully used to predict social and task roles [Dong et al., 2007]. In
this study, they were used as baselines to compare the import of speech features for socio and task
roles prediction. Two visual features were consdered: (1) hand fidgeting and (2) body fidgeting.
The fidgeting—the amount of energy in a person’s body and hands—was automatically tracked
using the MHI (Motion History Image) techniques. This methods uses skin region features and
temporal motion to detect repetitive motions in the images and associate them with an energy
value in such a way that the higher the value, the more pronounced is the motion [Chippendale,
2006]. These visual features were first extracted and tracked for each frame at a frequency of 3
hertz, then averaged out over the one-minute window.

3.4.2.3 Relationship between honest signals and role-taking tendencies

We note different people have different yet consistent styles in taking functional roles, and their
styles are reflected in their honest signals.

The frequencies with which the 32 subjects assumed each of the eight functional roles in the first
half of their respective discussions were compared with those in the second half, taking into ac-
count the fact it is difficult to collect a data set in which the same persons participant in many
different types of discussions. The frequencies with which people take the Neutral/Follower roles,
the Giver role, the Protagonist role, the Supporter role and the Seeker role in the first half of their
discussions were predictive of the frequencies in the second half (R? > .8, p < .001). The frequen-
cies in the first half were compared with those in the second half, but randomly permuted (within
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discussion groups and within the whole data set). The permutations destroy both the correlations
and the normality (R? < .1,p > .3). The consistency of taking the other roles in both halves of
the discussions were weaker, but they nevertheless exist.

The hypothesis that the frequencies of taking different roles are linearly dependent on the honest
signals with normal random noise was tested. The results show the rate a person takes the Seeker
role is linearly dependent on his rate of short speaking segments (R? = .47,p = .006). The
rate of taking the Supporter role is linearly dependent on the fraction of speaking and the fraction
of voicing (R > .46,p < .007)The rates of taking the Giver role, the Protagonist role and the
Neutral/Follower roles are linearly dependent on most of the honest signals in the activity category.

3.5 Role Detection about Mission Survival Corpus I

Modern statistical methods normally guard against overfitting by several mechanism, and can nor-
mally attain comparable performances by careful selection of features and careful formulation of
problems. However, some methods may be easier to use and more intuitively understandable for
some problems. This Section discusses the one-person features and the interaction features that sta-
tistical learning methods (the support vector method and the influence model, in particular) should
utilize in order to obatin good performance, the different ways the methods use the features, and
the resulting performances.

The turn-taking behavior related to the functional roles of a speaker at a specific moment include:
(1) his amounts of speaking time in time-windows of different sizes around the moment; (2)
whether other persons oreinted their bodies to the speaker at the beginning/end of his speaking
turn; (3) the amounts of speaking time of other persons in time windows of different sizes around
the moment, specifically, the amounts of speaking time of the persons who speak the most in
those time windows; and (4) the psychological profile of this person, e.g., his extrovertedness, his
tendency to take control and his level of interest in the discussion topic.

The influence model formulates the group process in terms of how an individual takes his func-
tional role based on the functional roles of the others on the one hand, and how an individual pre-
sumes the others’ possible functional roles based on everyone’s current roles on the other hand (c.f.
Figure 3.2). When a person is taking the Giver role, he prefers others to take the Neutral/Follower
role or the seeker role at least for a while. In comparison, when a person takes the Neutral role,
he does not usually care who is going to take which role next. When all participants take the
Neutral role, the overall preference of the whole group can be very weak. When this happens, the
individuals can wander about their role-taking states until some individual takes a “stronger” role.
Specifically, an influence model can determine which functional role a participant is most likely
to take at a given moment by comparing how likely different roles correspond to his amounts of
speaking time in time-windows of different sizes around this moment. For example, when there
are doubts about whether a person is shifting to the Giver role or the Seeker role, the influence
model will examine the intensity of the other participants’ body movements. The Giver role is
associated with more body movements at the beginning of the corresponding speaking-turn and
more attention from the others. The role which had been taken by a participant a moment previ-
ously can be used by the influence model to generate a “vote” for different roles for the participant
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interaction of social/task roles among speakers
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Figure 3.2: Roles combine with each other in useful ways,hence we can infer roles from the roles
of others.

under investigation This vote can subsequently be used to bias the model’s Bayesian estimation.
The psychological profile of the participants can be further used for generating the votes (for the
participants to take certain roles).

In contrast, the support vector method (SVM) does not involve a probability distribution in the
training phase and the application phase, although SVM can be used within the Bayesian frame-
work. SVM also requires the model observations to be points in a (possibly high-dimensional)
Euclidean space. In terms of utilizing the amounts of speaking time corresponding to different
window sizes, the SVM performs as well as any Bayesian method, and the latter requires appropri-
ate probability estimations of the observations conditioned on the functional roles. The amounts
of speaking time were sorted over all participants in every time-window of different sizes up to
some upper bound (two minutes in these experiments).The sorted amounts of speaking time over
all speakers and corresponding to all window sizes around the moment of inspection (among other
features) were used for functional-role classification. The arrangement by sorting makes the cor-
responding feature permutation independent. The SVM can subsequently disambiguate among
the possible roles of a person by comparing his amounts speaking time with those of the others,
particularly by comparing them with those of the person who speaks the most. The hand/body
movements involved with role-shifting is the most difficult feature for the sSSVM to deal with,
since the boundaries of the role assignments are unknown. Functional-role classifiers who have
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Table 3.4: Performances of classifying task/social-emotional roles using SVM/IM with interaction
signals.

SVM influence model
Giver Follower | Orienteer Seeker % Giver Follower Orienteer Seeker %
c | 10758 | 1944 982 1092 | .72 || 10173 | 1441 880 2282 | .68
g | F 2581 | 26924 | 334 3401 | .80 || 1542 | 28000 | 246 3542 | .84
2l o | 796 153 795 447 | .36 | 708 260 1045 178 | 48
: s | 362 639 27 277 | 21 || 426 219 32 628 | .48
% | .74 .90 37 .05 79 .94 47 .10
SVM influence model
Attacker Neutral | Protagonist | Supporter % Attacker Neutral Protagonist | Supporter %0
A 95 63 15 12 Sl 108 54 5 18 58
g | N | 452 32779 | 3932 1308 | .85 || 450 | 32813 | 3916 1292 | 85
g p | 320 813 5789 | 2458 | .62 | 318 804 5804 2454 | .62
=ls 143 251 1738 1344 | .39 142 258 1733 1343 | .39
% | .09 97 .50 26 A1 97 Sl .26

been trained in the use of SVM indicate that SVM uses the body/hands movement corresponding
to the current moment in order tor disambiguate the roles.

Table 3.4 compares the performance of the influence model and the performance of SVM using
the best construction of features were capable of generating. The performances of both SVM and
the influence model are seen to be improved compared with a my previous study[Dong et al.,
2007], especially with regards to the infrequently-appearing roles. The improvement is due to a
better understanding of the group process. In this present study, the influence model displayed a
slightly higher performance than the SVM, in contrast to the previous study in which the influence
model performed somewhat more poorly than the SVM. This is due to the new perspective and
corresponding EM algorithm for the influence modeling. In this current study, the latent state space
of an influence model was the summed voting of the individuals’ future states (e.g., participants’
next functional roles) associated with a probability space, whereas in the previous study, it was the
marginal probability distributions among those states. A direct consequence of this new perspective
is that, previously, a person taking a neutral role could not waive his votes, in the current study,
they were able to do so. .

3.6 Group Process Statistics and Performances in Mission Sur-
vival Corpus 1

One reason to investigate group processes and the Task/Socio-Emotional Area roles is to facilitate
the design of automated tools to improve the performance of the group. In the Mission Survival
Corpus I, the initial individual scores and the final group scores of seven discussions out of a total
of eight are available. and they are in terms of how the individual/group rankings of 15 items
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are different from the standard expert ranking. (f(ry---7r15) = Zzlil |r; — r§°)|, where f is the
score function, r; - - - 715 is an individual/group ranking, r§°’ = ~r§? is the expert ranking, r; # r;
and rfo) # rj(-o) for ¢ # j, and r,-,rEO) € {1,---,15}.) Thus, the corpus provides laboratory
data with which it is possible to examine how individuals with different initial performances and
psychological profiles interact with each other. This makes it possible for them to incorporate their

individual information to attain better performance. The preliminary findings are given below.

The post-discussion group performance is linearly and positively correlated with the average of the
pre-discussion individual performances of the participants, with the pre-discussion performance
being slightly better than the post-discussion performance. (Group score = .93x average of indi-
vidual scores -.74, R? = .58, p = .03). The relationship is shown in Figure 3.3 (a), and can be
explained with a probabilistic model of how individuals combine their results. Prior to the dis-
cussion, pieces of information for solving the ranking problem of the mission survival task are
probabilistically distributed among the participants, and different individuals have the correct/best
rankings for different items. During the discussion, the individuals merge their information through
a group process that is probabilistically dependent on their initial performances, their interactions
with each other, and numerous other factors. When the individuals disagree on the ranking of
an item, they can either choose one from their repository of rankings that results in minimal dis-
agreements, or find a creative and better ranking by further sharing of information and an “aha”
experience. Previous experiments have shownthat groups make use of their resources to a proba-
bilistically similar extent, and experienced discussion groups outperform inexperienced groups by
generating more item rankings that are more creative and more correct as as a result of better in-
formation sharing [Hall and Watson, 1970]. Thus, the relationship between the group performance
and the average of the individual performances follows from the fact the different groups are more
or less similar.

The improvement of a group’s performance over the average performance of the individuals with-
inis positively correlated with the amount of speaker-overlap throughout the discussion, which
reflects the intensity of the discussion (R? = .35, p = .10). The relationship is shown in Figure
3.3 (b). The improvement is also positively correlated with the frequency with which meeting par-
ticipants take the protagonist role (R? = .35, p = .10) as well as with the rate at which meeting
participants take the giver role (R? = .28, p = .12). Since the average length of a continuous
protagonist role segment is almost 50% longer than the average length of a continuous giver role
segment (26 vs. 19), I speculate that the improvement is more dependent upon the longer utterances
of the individuals. The improvement doesn’t seem to correlate with either the length of a discus-
sion or the rates at which the participants take other roles. These correlations are again compatible
with the observation reported in previous experiments that an experienced discussion group en-
courages better problem solving and more thorough information sharing [Hall and Watson, 1970].
An inexperienced discussion group worries more about whether it can eventually reach a consen-
sus. As a result, its members treat consensus-reaching as the goal, rather than the natural result of
sufficient information sharing. They either argue for their own rankings without paying attention
to the arguments of other group members , or give up their rankings too easily. In either case, they
feel their importance in the discussion is not being sufficiently recognized, and quickly lose their
motivation for participation. In contrast, an experienced group encourages different opinions, and
views conflicts as evidence of insufficient information sharing. Its participants solve a conflict by
a thorough discussion and a win-win problem solving strategy rather than by superficial or me-
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Figure 3.3: (a) Group score is linearly related with the average of pre-discussion individual scores.
(b) Group performance is linearly related with the average overlap between speakers. This can be
seen as a measure of engagement in the task or the intensity of the discussion.

chanical techniques such as majority-rule voting and coin-flipping. The participants also display
an appropriate degree of skepticism and suspicion about initial agreements that seem to be arrived
at too easily. Different group discussion process characteristics and different role-playing behavior
can be dependent upon the different opinions between an experienced group and an inexperienced
group about what constitutes fruitful group discussion. '

“In many of the discussions, one or a few individuals take certain tasks and social roles twice as
frequently as they do other roles. The fraction of speaking time of an individual and the rates that
an individual takes the giver and/or the protagonist role do not seem to correlate with the initial
performance of the individual. Based on the small number of discussions and the fact that the
meeting corpus is in Italian, we can only speculate that role-taking is related to the personal styles
of the individuals, their motivation, their interaction with each other, as well as numerous other
factors.

While it is my belief that the symptoms of group process problems could be found by automated
tools and the prescriptions could be given accordingly, I note that facilitating the group process
is considerably more difficult. One reason for this is that an inappropriately-phrased prescription
may inadvertently distract the attention of the participant from the real goal of the discussion, and
shift their attention from one unimportant concern (e.g., the pressure of reaching a consensus) to
another unimportant concern (e.g., the “appropriate” speaking-turn lengths and the “appropriate”
amount of speaker overlap). :
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3.7 Summary and Discussions about the Mission Survival Ex-
periment '

This chapter discussed the turn-taking dynamics and the changing individual role assignments of
several group brainstorming sessions on different open problems. It also discussed their model-
ing and learnability issues using several statistical learning methods (support vector machines, the
hidden Markov model, and the influence model). The group discussion dynamics were first mod-
elled by first thinking about how such discussions should work to acheive their purposes, and then
by applying the appropriate statistical learning methods. There are several possible future direc-
tions:: First, it may prove interesting to simulate the behavior and performances of different types
of brainstorming sessions with stochastic processes and simplified assumptions, then compare the
simulated results with the experimentally collected results. The simulation could provide insight
for understanding collective intelligence. Secondly, I would like to use modeling to improve the
efficiency of multi-person interaction.. Thirdly, I would like to know whether such turn-taking
and role-assignment modeling could be suitable for other types of multi-person interactions with
appropriately tuned parameters.



Chapter 4

Improving Group Performance with Meeting Mediators

Modeling and facilitating group problem-solving are key issues in many fields including man-
agement, cognitive sciences, human computer interaction and robotics. I will discuss our novel
approach of mapping the interaction patterns of group processes to their performances. We use
sensors to automatically measure group behavior and actions. We also see how the modification of
group dynamics changes the resulting performance. Our discussions are based on a lab study data
set using the meeting mediator system through which we collected objective quantitative data. I
believe the findings of this data set are applicable to many real world task-group processes.

While it is an important topic in cognitive sciences, the study of the relationship between interac-
tion and performance is often suffered from its non-analytical nature and is often marginalized to
some extent. I will base the discussion on the meeting mediator data set [Kim et al., 2008}, so
that we can reason the group problem-solving strategies and quantitatively analyze the relationship
between the group performances and the group dynamics. The group brainstorming and decision
making processes in the meeting mediator data set are representative of the group processes in
many task groups.

The meeting mediator is a system that detects and displays group dynamics. Its goal is to quanti-
tatively measure the group’s interaction pattern and provide real-time feedback to promote change
in the group’s behavior. The meeting mediator system consists of two components: the sociomet-
ric badge and a mobile phone. The sociometric badge is an business-card-sized embedded device,
that understands the behavior and interaction of the sociometric badge user by collecting the audio
and motion information of him and interact with other sociometric badges through radio, IR and
BlueTooth channels. It is the input and the brain of a meeting mediator. The phone displays group
interactivity level and participation balance which is transferred from the badges via Bluetooth
connection. A more detailed description and pictures of a meeting mediator can be found in the
work of Kim et al. [Kim et al., 2008].

The meeting mediator data set involves over 40 group problem-solving processes in different con-
figurations. Our goal in collecting this data set is to understand the relationship between the task
group dynamics and the task group performances, so that we can design automated tools to esti-
mate and improve group performances using signals that can be reliably detected and estimated
with embedded-device hardware/firmware.

51
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The two tasks in the group processes are two 20-questions games [20q]. We split each task into
two parts: Each group of four persons is first required to brainstorm as many ideas as possible that
is compatible with a partially finished game — a list of 10 yes/no questions and the corresponding
answers — in eight minutes (c.f. Table 4.1). The group is then required to ask as few questions
as possible through its leader to get the answer. In order to solve a 20-questions game by asking
the fewest number of questions, the group has to construct each question carefully based on its
estimation of the items that satisfy the answers to all previously asked questions. As a result,
using the two-parts form for the tasks both enforced a good structure in the group problem-solving
processes and gives us extra semantic clues on why some groups asked fewer questions than others
to accomplish the tasks.

The data about each group process in the meeting mediator data set consist of: (1) the features
about the group dynamics and captured by the sociometric badges [Olguin et al., 2009] worn
by the experiment subjects, in particular at each sample time whether an individual subject is
speaking, how he moves his body, and how he orients his body in relation to the others; (2) the facts
related to the group performances, including the ideas generated by each team/individual in the
brainstorming sessions, the times spent for every single groups to generate every single questions;
and (3) the surveys, in particular those about the subjects’ own opinions on the group dynamics and
group performances. We neither audio-recorded nor video-recorded any of the group processes,
following the COUHES guidelines [COU] to protect the privacy of the experiment subjects.

Each group was instructed that collaboration was important to group performances prior to its
tasks. The task-groups were randomly assigned one of four labels: A, B, C and D. To test the
effect of feedback on the groups’ behavior, the members in the groups labeled with C or D were
not allowed to see the feedback of the meeting mediators. In the following, we will simply refer
the groups labeled with C or D as groups without meeting mediators.

4.1 20-Questions Game

Facilitating group problem solving in 20-questions games is possible because the 20-questions
game is amiable for group problem-solving, the performance of a task-group in solving this game
could be reliably estimated from the group turn-taking dynamics, and a meeting mediator could
direct its user to a high level of participation based on its understanding of the group process.
Before we inspect the groups in the meeting mediator data set and reason how they could improve
their performances, let us make a plan on how we would like to solve a 20-questions game with
the best possible performance by ourselves.

In a 20-questions game, the answerer has a thing in his mind, and the questioner is responsible
for pinpointing the thing with as few yes/no questions as possible. By information theory, a good
question should eliminate half of the remaining candidates that are compatible with the previous
question/answer pairs. Since the questioner does not know the set of all compatible candidates a
priori, he has to choose a good question based on his sampling of the set. Thus the more similarly
the answerer and the questioner sample the candidate sets, the better performance the questioner
will have.
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We can also put the previous paragraph in the language of probability: The answerer samples
a thing with a probability measure P; The questioner reduces half of probabilities at each step
assuming he can, or Q(Si1) = $Q(S;) where S; represents the set of all compatible candidates
at step ¢ and Q is the probability measure used by the questioner; The closer IP is to Q, the better
performance the questioner will have; The questioner samples the set of compatible candidates
according to a diffusion process implicit in his mind ui ) ~ Q(o|{u§,’lt} Ul a1 1 8,
and ask questions based on his samples S;11 = S:[) x({ug,]it} UL, -+ ul™}) where wl? €
S; is an item that the questioner sampled at time ¢, and the characteristic function x is what the
questioner subsequently asked. Solving a 20-questions game with a group of people provides
wider diffusion, larger sample sizes at each steps, and better questions. When the questioner do
not know the P in the mind of the answerer, his safest bet is the uniform distribution over the set.

of all things, and he is expected to pinpoint the thing in log |.S| steps.

I will give the mechanism of brainstorming and the formula to predict decision making perfor-
mance from the corresponding brainstorming performance, both referring the meeting mediator
data set, show how the group dynamics collected by the meeting mediators determine the brain-
storming performance and consequently the decision making performance, and show how the
meeting mediators could improve group performance.

4.2 Brainstorming & Decision Making

In this section, we will discuss how the groups in the meeting mediator data set came to new ideas
in the brainstorming sessions, and how the groups subsequently made decisions based on their
brainstorming results.

4.2.1 Brainstorming

A brainstorming session such as one in the meeting mediator data set can be viewed as a diffusion
process. The subjects in the session randomly hit new ideas based on the ideas they have recollected
due to familiarity or accessibility and the ideas that they have already considered. The ideas are
then checked against the given constraints — a partially finished game represented by a list of
yes/no questions together the corresponding answers. If the group hits one idea, it will be more
likely to hit other closely related ideas. From this perspective, the set of all ideas that are compatible
with the given constraints are related with each other according to the accessibility from one idea
directly to another idea, and the inspected ideas of a group diffuse on the network of all ideas.
Based on the diffusion argument, a group of people working together will statistically generate
more ideas than the same people working individually assuming all other conditions are the same,
since in the former configuration people can inspire each other and thus the edges connecting
different items are more accessible. Based on the same argument, a group of interacting strangers
will statistically hit more ideas than a group of interacting friends, since in the former configuration
the different backgrounds of the strangers imply more “unexpected” edges from items to items
[Wilson et al., 2004].
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With the knowledge of which group hit which ideas (c.f. Table 4.2 and Table 4.3), the structure
of the space of brainstorming ideas can be computed: As we have discussed previously, a group
either generated all/most elements in a set of closely related items or none/few in this set. In other
words, there is a equivalence relation on the set of all items for this group. Thus the set of items
generated by a group is the union of some sets of statistically related items (which forms equivalent
classes) from the perspective of the group, so is the set of items not generated by the group. When
we change our perspective and inspect how the items were generated by the groups, rather than
how the groups generated the items, a distance among the items can be defined: Two ideas share an
obvious relationship and are thus close to each other if most of the groups generated either both or
none of them; Two ideas are related by uncommon relationships and are thus far from each other
if many groups generated only one of them. The space of ideas, represented by the set of ideas
and the set of relationships among the ideas, can subsequently be mapped into a familiar structure,
such as a Euclidean space, a dendrogram or a graph, and be inspected.

In the meeting mediator data set, 52 groups have their task 2 brainstorming outcomes recorded,
and they generated 92 distinct items in total. The overall result can be represented as a 92 x 52
matrix, with the matrix rows corresponding to distinct items and the matrix columns corresponding
to different teams. The entry that lies in the i-t4 row and in the j-th column is either O or 1,
representing group j did or did not generate idea i in its brainstorming.

The two characteristics of the dendrogram in Fig. 4.1 are listed below. They have implications on
how a 20-questions game is played, and how the game-play can be modeled, as will be discussed
later. First, the brainstorming ideas of task 2 in the meeting mediator data set form small clusters.
Of these clusters, some consist of ideas that truly go together (“stapler” and “hole puncher”); and
a few — “clusters invented by a clever group” — consist of ideas that were hit by a single group.
Second, the small clusters are well separated from each other. As a result, the idea set of a partially
finished game can be split into a yes-set and a no-set equally well in many ways, assuming the
corresponding yes/no questions can be found. The well-separateness of the small clusters also
means that which cluster of ideas a group is going to hit next is more or less unpredictable.

If we define an Euclidean (i.e., a 2-norm) distance between the brainstorming ideas and subse-
quently do eigenvalue decomposition on the resulting distance matrix, we will find that the largest
eigenvalue accounts for more than 80% of variance, the corresponding eigenvector sorts the ideas
based on the frequencies they were hit, and the rest eigenvalues are relatively equivalent to each
other. Thus the observation from principle component analysis coincides with the second charac-
teristic we just described based on the dendrogram.

Known the structure of the brainstorming ideas, we could be able to inspect how a group hit new
ideas as a function of time, as well as how a group of interacting strangers take unexpected paths
and statistically hit ideas faster than a group of interacting friends or a group of people working
alone.

4.2.2 Decision Making

The brainstorming session of a task gives a group a considerable amount of time (8 minutes out
of 8+10 minutes) in sampling the set of candidate items. It also implicitly prepares the group on
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Table 4.1: Task #1 Clues & Task #2 Clues.

e Task #1 Clues: Thing

—
e

R T A ol o

| I A 111 2O OO No
2. Do you hold it When you use it?.........cccccoeiviiiniininiieniicciee e, Yes
3. Can it fit in @ SNOEDOX? c...eeeiiieeieieere ettt Yes
4. Would you use it daily? ......ccoceiiiiiiiiniiiiiii e Yes
5. IS Bt FIEXIDIE? .ottt ettt Yes
6. IS 1t AECOTAIVE? ....eieieeeeiteie ettt ettt ettt e see e e s ne e ae s s saaasaseens No
7. DOES Tt OPENIT ...ttt sttt et e e st sa s st assaseae No
8. Is it found in the NOME? .....cooviiiiiiiie ettt s Yes
9. Do you clean it regularly?.........ccccoiiiiiii e Yes
10. IS it OZANICT ...ttt et No

o Task #2 Clues: Thing

—

Lo XA R W=

Is it used for entertaiNMENT?.........cooveiriirriieeneeneeeee et ste s ree e No
Would you give it as @ ift?......coouriiniiiiiiiii No
IS TE @007 ..t cee et e e e ettt e bt e st e s ste e sbee e s s bee e s mane s an e e st e e s sas e e sane e Yes
Is it smaller than 8 SHOEDOX?....ceueeeiieeieeie ettt Yes
Would you find it in @ t0OIDOX7......c..oimiiiiiiiicit e No
DO0ES it USE ElECIICILY 7 c-eeenieieieeieee ettt ettt ee e s s No
IS it @SSEMIDIEAT .. .oiceeiiieeie ettt sttt s e s Yes
IS it MEANE 10 ZEE WELT .ottt r et ne s No
Does it Nave MEtal PATTS? .....eeeieerieriieierieieeteieie et ete e eser bt eses bt ssss e resrresnesas Yes
TS 16 USEA INAOOIS? ....ooiiiieeeeieeeetieeetie st sstreesree e s beees st e s s seeesenneesemnaeeesaneesnanees Yes
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Table 4.2: The brainstorming outcomes (task 1) of different groups reveal the regularity and diver-
sity human thinking process.
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Table 4.4: ConceptNet indicates brainstorming has focus around familiar ideas (task 1).
brainstorming 1 ideas
bathroom | comb, cup, hairbrush, shower curtain, toilet brush, toothbrush, towel, wash-
cloth
cabinet | brush, cup, eraser, glove, napkin, toothbrush
kitchen | cup, spatula, towel, washcloth, whisk
clean | brush, sponge, towel, washcloth
drawer | comb, eraser, spatula, whisk
home | cup, hairbrush, napkin, toothbrush
brush hair | brush, comb, hairbrush
closet | cup, towel, watch
groom | brush, comb, hairbrush
hair | brush, comb, hairbrush
hand | cup, glove, watch
house | cup, hairbrush, napkin
restaurant | cup, napkin, towel
shower | shower curtain, towel, washcloth
store | cup, eraser, toothbrush
straighten hair | brush, comb, hairbrush
suitcase | comb, glove, toothbrush
table | cup, napkin, place mat
taste good | eraser, shower curtain, toothbrush
this | comb, cup, eraser

the subsequent questions to ask in the next session in order to finish the task. The following lists
several strategies that a group can take in exploiting its brainstorming outcome.

A simple-minded approach is to assume that the brainstorming outcome contains the answer, and
to conduct a “binary search” on all ideas generated in the brainstorming session. The shortcoming
of this approach becomes apparent when the answer turns out to be outside of the brainstorming
outcome: The information contained in the additional question/answer pairs is vague, and it needs
a considerable amount of efforts to be processed — If the thing is neither a donut nor a bean, it
could be not square, not edible, hard, larger than a golf ball, and so on.

A better strategy is to treat the brainstorming outcome as a skeleton of the space of all items
compatible with the partially finished game, and to treat the compatible items outside of the brain-
storming outcome as the flesh that grows on the skeleton. Thus the question of the group is not
“is the thing either a donut or a bean?”, but rather “is the thing edible?” randomly chosen among
many choices. The improved strategy has the same performance as the simple-minded one when
the answer is in the brainstorming outcome and it implies better performance when the answer is
out of the brainstorming outcome.

A group can be more advanced-minded to estimate the probability measures that the group and the
answerer respectively uses. Thus the group can discuss intensively on the consequences of asking
“is it edible?” or “is it larger than a golf ball?” among many others before it finalizes the question.
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We will discuss the decision-making performance of a group by two cases: when the answer is in
the set of brainstorming ideas of the group, and when the answer is not in.

Based on our analysis, when the answer is in the set of brainstorming ideas, a group can identify
the answer with around log, | S| questions (following the partially completed game), where S is the
set of brainstorming ideas. In the meeting mediator data set, 64% and 57% of the groups identified
the correct answers with 1+ log, |S| questions in task 1 and task 2 respectively, and 70% and 84%
of the groups identified the correct answers in 2 -+ log, | S| steps.

When the answer is not in the brainstorming ideas, the group will use around log, |S| steps to
realize this fact, and then it will use additional d(.5,n)/|S|%® number of steps to reach the answer

(cf., Fig. 4.2).

4.3 Individual Participation Levels & Group Performances

We have discussed how a 20-questions game is played by either an individual or a group, and
how the performance at playing a game can be estimated from the result and performance of
the preceding brainstorming session. We will continue to discuss how the group performance at
playing such a game is determined by the ways that the group members act and interact.

In a 20-questions game, we have treated the answer space of a partially finished game — a list of
yes/no questions and their answers — as a semantic network in which a node represents an idea
compatible with the partially finished game, and the length of an edge connecting two nodes rep-
resents the difficulty to go directly along this edge to hit one another idea. Based on this treatment,
a brainstorming process is a diffusion process in which the set of considered ideas spread along
the edges on the semantic network, and a speaking-turn is stochastically an attempt to go along an
edge. The statistics of a speaking turn can subsequently be related to the likelihood that a new idea
or a new cluster of ideas is hit by the group: An isolated sub-second utterance (“yeah”, “right”,
“OK”) is unlikely a hit of an idea; A loud speaking turn followed by overlapping speaking-turns is
more likely an indicator of a good progress; A cluster of loud speaking-turns followed by overlap-
ping speaking-turns corresponds more likely to a cluster of ideas; And speaking turns are generally
associated with the enumerating and testing of ideas.

Bales used the interaction process analysis (or IPA) to study the roles and communication pattern
in a small task-group [Bales, 1950]. According to Bales, a task-group process is interwoven with
task area roles (such as information giver, information seeker, orienteer, and follower) and socio-
emotional area roles (such as protagonist, supporter, attacker, and neutral). In our work to detect
these roles from signals that can be reliably estimated with automated tools, we found that the
speaking/non-speaking time series of an individual is a SPLOT-type (stationary-process, large ob-
servation time) process [Trees, 2002], the time series from different individuals interact with each
other by means of a latent combinatorial space, and there is a hierarchical structure in the group
process [Dong et al., 2007]. Our findings from the perspective of digital signal processing coincide
with those of Burke from a linguist’s point of view [Burke, 1974]. We found it helpful to relate the
statistics of roles and communication patterns to group performances.

The performance of a task-group can be estimated from the signals that are directly related with
problem-solving, e.g., the brainstorming ideas generated by a group as we discussed in section 4.2.
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Figure 4.2: The number of questions asked by a group to solve a 20-questions game is a function
of both the number of ideas generated in the preceeding brainstorming session and the structure of
the ideas (task 1 and task 2). If the group hit the answer in brainstorming, the number of questions
is approximately the logarithm of the number of ideas. If the group did not hit the answer, the
number of questions is generally larger than the number of ideas. .
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The performance can also be estimated from the signals that are indirectly related with problem-
solving, such as the turn-taking behavior, speaking-turn lengths, audio amplitude and body move-
ments of the group members. The former type of signal contains more information about the
problem-solving, but it is much harder to collect especially with automated tools in real time.
As a result, the meeting mediator is designed to estimate group performance and facilitate group
collaboration based on the latter types of signals.

We should put a caution before we discuss the relationship between group process statistics and
group performance, that we are dealing with statistics about human behavior and that human be-
havior is highly unpredictable. For example, a task group may effectively discuss a wrong topic, or
a task group may consist of ingenious and socially-awkward people. In both of the two cases, the
estimate of group performance based on group process statistics is wrong. Due to this caution, we
build our group process model from the turn-taking signals all the way down to the signals directed
related to the problem solving, and hope to make it clear in which sense we say that group process
statistics and group performance are related.

The brainstorming and decision-making processes in the meeting mediator experiments are repre-
sentative of many individual/group problem-solving processes. For example, a chess player (or a
group playing one side) needs to brainstorm many possible sequences of moves, and make a deci-
sion on the next move based on the estimated consequences of each sequences. We hope that the
problem-solving structure and the turn-taking structure of the 20-questions game could be related
to those of other problems.

We used the speaking/non-speaking time series corresponding to the group members derived from
the meeting mediators. These signals are then fed into an influence model to get the corresponding
role assignment time series. The statistics that we can think of are subsequently computed and
tested for their predictability of group performances.

Among the group process statistics that we tested, the amount of speaker-overlap is the best linear
predictor of the group brainstorming performance in terms of either the total number of ideas or
the total number of unique correct ideas generated by a group. (R* > .33,p < .001 for task 1
brainstorming and R? > .35,p < .001 for task 2 brainstorming.) This can be explained by our
observation that a group uses most of its time in enumerating and testing ideas, and that our human
subjects have comparable skills.

The sum of the fractions of time that the group members take the giver role or the protagonist role
during a group brainstorming session is also a good linear indicator of the group brainstorming
performance. This means that the brainstorming performance is explained by the long speaking-
turns, which are supposed to be the places where the enumeration and validation of ideas really
happen.

All the linear regressions in the above two paragraphs were carried out after we had taken out two
data points (out of a total of around 40 data points for each regressions): One group had an average
number of 2.5 simultaneous speakers during each of the 8 minute brainstorming sessions, and it
only came out around 5 ideas and around 3 unique correct ideas in each sessions. Another group
had an average number of 0.4 simultaneous speakers, and it came out around 32 ideas and around
16 unique correct ideas in each sessions. As a comparison, an normal group had an average of
1.2 simultaneous speakers, and it came out around 16 ideas and around 8 unique correct ideas in
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each sessions. Due to the lack of audio/video recordings, we do not know whether the two group
processes proceeded in the same way as the other group processes in the data set.

Leaders are reported to have impact on the task group performance. Due to our need to investigate
the characteristics and roles of leaders, each group was instructed to choose a leader after a practice
task that precedes and is similar to task 1 and task 2. The group was told that only its leader can
ask questions in the following decision making sessions on the behalf of the whole group.

The leaders in the meeting mediator data set generate more ideas than the other group members
in around 50% brainstorming sessions. They generated around 7.8 ideas on average for each
brainstorming sessions, while a normal person generated around 4.5 ideas. and speak more and
longer. The leaders spoke, took the information giver role and took the protagonist role more
than the other group members in about 55% brainstorming sessions. Their speaking and turn-
taking tendencies are consistent in both of their brainstorming sessions. Thus if we believe that
the human subjects’ performances are consistent in the practice task, task 1 and task 2, we can
conclude that a task group pick its leader from those who perform well and participate well.

4.4 TImproving Group Performance with the Meeting Media-
tors

We have discussed the structure of the idea space of a partially finished 20-questions game in the
meeting mediator data set, the implications of this structure to the subsequent decision making ses-
sions, and how the actions and interactions of the group members are related to the brainstorming
performance of this group. We will proceed to discuss how the meeting mediators improved the
group performances.

By encouraging interaction and engagement, the meeting mediators made noticeable improve-
ments in regularizing the group behavior in the task-group processes without sacrificing perfor-
mance, and the regularization pays off in performance when the task becomes harder. The more
regularized and predictable group behavior has merits in management. In the experiments, the
groups equipped with meeting mediators have their performances more linearly-predictable from
the interactions in them (R? =~ .40 for groups with meeting mediators and R? = .20 for groups
without, cf. Fig. 4.3). Indeed in performing task 2, even the groups not equipped with meeting
mediators intrinsically had more interactions among their members, and their performances are
more predictable from the amount of interactions in them. Recall that the overall R-squared statis-
tic increases from .32 to .35 when the groups coped with the harder task (task 2). The meeting
mediators also made the group members more considerate and the decision making faster, as was
discussed by Kim et al. [Kim et al., 2008].

A new version of meeting mediator is under development that systematically exploits the group-
process mechanism that we discussed and that could significantly improve the task-group perfor-
mance.
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(a) Task 1 discussion intensity vs. outcome
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Table 4.5: ConceptNet indicates brainstorming has focus around familiar ideas (task 2).

brainstorming 2 ideas

drawer

desk

cabinet

this

office

tool

office supply store
desk drawer
pocket
school

home

library
machine
office build
backpack
doctor
doctor’s office
house
kitchen

room

shop

table

alarm
apartment
break

build

car

city
classroom
clock

device
device measure time
hold hand
horse
hospital

keep time
measure passage time
measure titne
metal

plastic

post office
purse

store

time

useful

work

clock, corkscrew, egg beater, fountain pen, glasses, gun, letter opener, nail clippers, nut cracker, pen, pencil sharpener,
stapler, tape dispenser, thermometer, whisk

clock, fountain pen, gun, hole punch, iron, letter opener, pen, pencil sharpener, staple remover, stapler, tape dispenser
compass, glasses, metronome, nail clippers, pencil sharpener, scale, staple remover, stapler, thermometer, trowel
alarm clock, balance, bike pump, hourglass, pen, pocket knife, safety pin, scale, stethoscope
clock, gun, letter opener, pen, pencil sharpener, staple remover, stapler, tape dispenser
gun, iron, lighter, nail gun, stapler, stethoscope, tape measure, trowel

binder, letter opener, pen, pencil sharpener, staple remover, stapler, tape dispenser
fountain pen, letter opener, pen, pencil sharpener, staple remover, stapler

fountain pen, glasses, lighter, pen, pocket knife, watch

binder, gun, pen, pencil sharpener, staple remover, stapler

alarm clock, clock, door hinge, glasses, stapler

binder, clock, pencil sharpener, stapler, tape dispenser

belt, clock, metronome, scale, watch

clock, door hinge, pen, stapler, tape dispenser

binder, can opener, compass, pen

scale, stethoscope, syringe, thermometer

scale, stethoscope, syringe, thermometer

clock, iron, pen, stapler

can opener, iron, juicer, whisk

glasses, pen, scale, stapler

pen, safety pin, stapler, tape measure

clock, pen, salt shaker, stapler

alarm clock, clock, watch

door hinge, pen, stapler

alarm clock, glasses, gun

pen, scale, stapler

clock, iron, lighter

gun, pen, stapler

pen, pencil sharpener, stapler

alarm clock, hourglass, watch

stapler, stethoscope, thermometer

clock, hourglass, watch

gun, pen, staple gun

compass, pen, watch

pen, syringe, thermometer

clock, metronome, watch

clock, hourglass, watch

clock, hourglass, watch

gun, iron, safety pin

belt, pen, tape dispenser

scale, stapler, tape dispenser

nail file, pen, safety pin

clock, pen, stapler

clock, metronome, watch

abacus, pocket knife, safety pin

clock, pen, stapler







Chapter 5

Quantifying Group Problem Solving using
Social Signal Analysis

Quantifying the relationship between group dynamics and group performance is a key issue of
increasing group performance. In this chapter, we will discuss how group performance is related
to several heuristics about group dynamics in performing several typical tasks. We will also give
our novel stochastic modeling in learning the structure of group dynamics. While we confine
our discussion to a specific data set, we hope our findings and method could be applied to wider
scenarios.

We are interested in quantifying group problem solving performance by analysis of non-linguistic
social signals. These pre-linguistic communication structures have been shown to capture a large
fraction of the dynamics of group interaction, and to be predictive of performance and outcomes
[Dong et al., 2009, Pentland, 2008]. We accomplish this by instrumenting group participants using
Sociometric Badges [Olguin et al., 2009, Pentland, 2008], to record speaking dynamics, tone of
voice, body motion, etc. These data are then analyzed by use of signal processing techniques
including HMM, influence, and similar stochastic models.

The Interaction Process Analysis (IPA) [Bales, 1950] is a traditional approach for quantifying a
general group problem-solving process based on fine time-grained analysis. In this approach, an
interaction process is treated as a sequence of events of different categories — giving and analyzing
facts, showing individual approaches for problem-solving, making group decisions, and releasing
tensions developed in decision-making. The analysis proceeds in the following way: Two or more
trained observers watch through a whole group problem-solving process and mark events at a
resolution of 10~15 events per minute; The sequences of events marked by different observers are
then compared and accessed for reliability; Heuristic scores about the interaction process are then
computed by counting events in different categories and are related to group performance.

While they could quantitatively explain the relationship between the details of an interaction pro-
cess and the corresponding group performance, the traditional methods are costly in terms of hu-
man expert time. As a result, there are many difficulties in applying these methods in explaining
the fine differences about the interaction dynamics and performances of a large number of groups
in solving a large number of different problems.
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On the other hand, we argue that the traditional approaches could be complemented, automated
and unified with a new approach based on the statistical learning methods and our capability to
collect a massive amount of data about group interaction processes with embedded devices. Our
reasoning is the following. Different types of activities in a group problem-solving process have
different temporal and interaction statistics — Fact-giving often involves longer sentences and less
parallel-speaking from other speakers while showing-opinions often involves shorter sentences and
more parallel-speaking. Further, the solutions of many common problems often involve a limited
amount of facts, opinions and voting and thus a limited amount of events of different categories
in problem-specific proportions. Thus we could estimate group performance based on heuristics
and stochastic methods about these non-semantic cues of the group process, and potentially find
ways to improve it. In situations when we do not know the structure of the group problem-solving
process, we could use latent-state stochastic models to “project” the time series of non-semantic
cues along the direction of problem-solving performance and discover the structure of problem
solving.

To illustrate our method in quantifying group interaction-dynamics and problem-solving, we will
refer to the interaction-dynamics data collected by the Sociometric Badges in the Measuring Col-
lective Intelligence (MCI) study 1 [mci]. The goal of the MCI studies is towards finding the key
components of collective intelligence, the relationship between group interaction and group per-
formance, and the methods to increase collective intelligence. MCI Study 1 involves 42 groups
solving 12 problems, with each problem costing a fixed amount of time ranging from 10 minutes
to 1 hour and all 12 problems costing around 3 hours.

I will summarize some key feature extraction steps, discuss some heuristics about quantifying
group problem solving, and give our stochastic modeling that learns the structure of group problem
solving.

5.1 Data Preprocessing

Throughout the MCI studies, we instructed each subject to wear a sociometric badge through a
lanyard around the neck. Each badge recorded the audio of its wearer, the movements of its wearer
(through the accelerometer), the orientation of the wearer relative to other participating group
members (through the infrared interface), a sequence of button-presses (by the wearer at the task
boundaries according the instructions to press the single button on the badge and used by us to
mark the beginnings of tasks), and a periodic sequence of messages from the other badges that
contained the senders’ local times and the receiver’s local time (through the BlueTooth interface).
The message sequences were used to align the signals from different badges in the MCI studies.

Since we are interested in comparing the interactions and the performances of different groups in
solving different problems, we translated the button-presses into the task boundaries by finding the
Viterbi path of a hidden Markov model in which the observations were the time-intervals between
neighboring button-presses and the latent states were the transitions from task boundaries to later
task boundaries (c.f. Fig. 5.1). The parameters of the hidden Markov model were set according to
the manually marked task boundaries for three groups that we chose.
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Figure 5.1: map button presses to task boundaries with Viterbi decoding.
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We aligned the local times of different badges used in a same group process through the prin-
ciple component analysis (PCA) of the messages that contained the senders’ local times and the
receivers’ local times. We subsequently took the first principle component as the global time and
used the relationships between local-times and the global time to adjust the times of other time
series. When the audio recordings contained speaking, we also aligned the local times of different
badges by aligning the pitched segments recorded by the badges. Due to their duration and spacing
statistics, the pitched segments in different badges could in most cases be unambiguously aligned
(c.f., Fig. 5.2).

Densities of voiced-segment durations and intervals group 9, /8-15/14_42_52/101_ and /8-15/15_39_15/74_ ,from 2400 sec. to 3000 sec.
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Figure 5.2: Left: The voice segments in our data set normally last 0.05 second and no longer than 0.5
second; They are normally 0.2 seconds apart when appearing in the same sentence. Right: Aligning voiced
frames could be a robust way to align data collected by different embedded devices deployed in close
distance; When aligned, the pitch signals collected by different embedded devices are normally equal to
each other.

We extracted the voiced segments using the 9-parameter algorithm of Boersma [Boersma, 1993],
which was reported to have small pitch determination error and large resolution of determination
of harmonics-to-noise ratio due to its method of computing the short-term autocorrelation function
of continuous-time audio time series. We estimated who is speaking by comparing the sound inten-
sities of the voiced segments recorded by different badges. Based on our investigation of a random
sample of 10 minutes recordings of different groups, the voiced segment detection algorithm could
archive about 95% precision, 90% recall, and the speaker detection algorithm could achieve about
95% accuracy. The speaking and speaker features, together with other features of the interaction
processes, were imported through some scripting languages into Audacity as label tracks and into
Praat as TextGrid for investigation.
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Figure 5.3: collective intelligence

5.2 Performance Heuristics

In this section, we show the correlations of the group performances in solving different problems
in the MCI experiment, and the correlations between the group performances and group dynamics.
The former class of correlations enable us to predict the performance of a group in solving a
problem based on the performance of the same group in solving a similar problem. The latter class
of correlations explain why one group performs better than another group.

The problem-solving skills involved in the MCI data set are organized in many clusters, as is
indicated by Figure 5.3. The figure contains a distance matrix of the MCI problems and the cor-
responding cluster dendrogram constructed using the complete linkage method. In the distance
matrix, the rows and columns are indexed by the MCI problems, and an entry at row i and col-
umn j represents the distance between problem i and problem j. We define the distance between
problem i and problem j in the following way so that they are closer if the group performance in
solving one problem is more positively correlated with the group performance in solving the other
problem. If two problems are closer in distance, they may involve more similar skill sets and prob-
lem solving mechanisms. In specific, let the numeric scores of the n groups in solving problem i
be X, ---,X,, and the numeric scores in solving problem j be Y7, - - -, ¥,,. If we treat the scores
as samples of random variables X and Y respectively, The correlation coefficient between X and Y
is subsequently pxy = XX It can be verified that d(i, j) = d(X,Y) = /T — pxy is a distance
metric, and d(e, ) is the distance we use in Figure 5.3.

Based on Figure 5.3, solving an MCI problem involves both general intelligence and problem-
specific intelligence: A group that performs well in one checkers game problem normally performs
well in another checkers game problem, and a group that performs well in one basketball problem
normally performas well in another basketball problem; On the other hand, a group that performs
well in the brainstorming problem and/or the cluster involving the group IQ problem (i.e., shopping
problem, typing problem, group IQ problem) normally performs well in several other problems.
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Figure 5.3 also shows that the number of questions attempted by a group in the group IQ test
has visible positive correlation with the number of questions incorrectly answered by the group,
however, the former doesn’t seem to be related to the number of questions correctly answered by

the group.

It is a clever and simple approach to predict the group performance of solving a problem from
the group performances of solving other related problems. This approach shortcuts the complex
and information-rich group-solving dynamics under the hood, and leaves us with a few good vari-
ables (the group performances in solving other related problems) to manipulate. On the other
hand, the approach has several limitations due to its simplicity. Firstly, while we could collect
data about solving simple problems in laboratory settings and estimate the correlation among the
performances, we may have significant difficulty in finding a mathematical tool to estimate the
correlation between the performance in solving a real-world problem and the performance in solv-
ing laboratory-setting problems. Secondly, the approach tells us nothing about how the group
performances are related to the action and interaction of the group members and consequently
how to facilitate group problem-solving. Thirdly, this approach doesn’t enable us to tell the group
performances in different parts of a group problem-solving, since the information related to the
microscopic group dynamics is simply not available.

Non-linguistic cues could be used for performance prediction with appropriate parameterization
suitable for the underlying process. Speaking-over, speech speed and equality of participation pre-
dict good momentum and thus good group performance in general. Sentence length and variability
of volume predict group performance on a per task basis. For example, good group performance
in analytical-reasoning corresponds to longer sentence length and less variability in volume than
that in brainstorming.

Let us compare a process involving a group of three persons sitting together and solving an IQ test
problem such as in the Raven’s Progressive Matrices and another process involving a group in the
same configuration and brainstorming the usages of a brick. A good performance in solving an IQ
test problem normally involves clear reasoning and being able to promptly find the key patterns:
Different individuals and groups normally have to spot the same key patterns and go through the
same line of reasoning to get the right answer. As a result, a easy problem or a better group
performance is normally related to the group dynamics involving one person speaking fluently and
other two persons listening attentively. In comparison, a good performance in brainstorming is
normally related to being able to act in fast tempo and think broadly. A long stretch of silence or a
long stretch of speaking destroys the tempo and is normally not a good sign of brainstorming.

We will first show the relationship between the total number of clauses in an interaction process
and the corresponding performance in the cases of an easy brainstorming task, a task to solve
analytical IQ problems, and two tasks about optimization with constraints. This type of relationship
is exploited by people to evaluate the scale of a piece of software based on its lines of source code,
to evaluate the difficulty of a problem set based on the number of pages need to write down the full
solutions, and to evaluate the proficiency of a person based on the number of work pieces he could
finish in unit time.

In the MCI Study data sets, most of the discourses in the interaction processes are directly related
to the solution of the problems, since most groups took their tasks seriously in most of time. The
groups spoke the same contents in the same dynamics to solve the problems up to rephrasing,
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sentence permutation and the addition of some supplementary sentences, since the groups were
required to solve the problems together by communication and there was normally one way to
solve each problem. Hence the performances of the groups were not only determined by what
the group members said but also significantly correlated with how the group members spoke. We
could not only estimate group performance of such a task by counting the number of clauses in the
interaction process but also give a prescription for improving group performance based on factors
such as average clause length and speaking speed.

We count the number of clauses in an interaction process using a hidden Markov process. The
hidden Markov process has two latent states. Corresponding to each voiced segment, the observa-
tion of the hidden Markov process is comprised of whether there is a speaker change and the time
interval between the current and the past voiced segment, with the two elements of the observa-
tion independent of each other. After it is fitted with interaction processes, such a hidden Markov
process normally contains one latent state corresponding to no speaker-change and a sub-second
interval (approximately 0.2 second) between neighboring voiced segments, and another latent state
corresponding to a significant probability of speaker-change (normally greater than 30%) and an
interval of more than one second. In the rest of the section, we will use the latent state with longer
time interval as the indicator of the start of a clause, and subsequently compute the number of
clauses, as well as other statistics, of an interaction process.

Fig. 5.4 gives the relationship between the number of clauses in an interaction process and the
corresponding performance score in four tasks. This figure also gives subplots about the aver-
age numbers of clauses at different times of problem-solving for each individual processes. In
this figure, there exist strong linear relationships between number-of-clauses and performance-
score in the processes of the group brainstorming and group IQ-test. The number-of-clauses and
performance-score relationship in solving the group IQ test may be slightly better fitted with a
quadratic curve because the problems were increasingly harder and required more verbal reason-
ing in the processes. The number of clauses and the performance score in the processes of the
judgment task and the shopping task, on the other hand, may not have linear relationships while
they are positively correlated. In order to figure out the relationship in the judgment task and the
shopping task, we need either an understanding of how people really solve the two tasks or a larger
sample of the interaction processes for solving the two tasks.

There are many task-specific heuristics: The brainstorming score of an interaction process in our
data set is negatively correlated with the average clause length of this process. With support vector
regression, the estimated brainstorming score from clause length could explain the brainstorming
score with R? = (0.45. The number of back-and-forth interactions of group members in a group IQ
test process could explain group IQ test score with R? = 0.51.

While it has many shortcomings, heuristic-based approach is widely-used to index group problem-
solving performances, and it could be useful last-resort approach when other methods fail.
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n.sentences = 11*grp.iq.score+67 (RA2=.6, p=.006)

n.sentences=1.4*bh.s.score+127 (RA2=0.62,p=.01)
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Figure 5.4: The number-of-sentences vs. performance-score relationship in four types of interac-
tion processes: brainstorming, group IQ test, shopping and group judgment making (going clock-
wise from upper-left).
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5.3 Learning Group Problem-Solving Structure with Stochas-
tic Modeling

While it is a good step forward to quantify the interaction processes using heuristics based on
signals recorded by embedded devices and to explain performances thereby, the heuristic-based
approach has several limitations. Firstly, the approach still costs a good amount of expert time
to figure out the right heuristics for different types of tasks, and sometimes the statistics that dif-
ferentiate good and bad performances could be complex and delicate. Secondly, the approach is
sensitive to and does not discriminate outliers, such as when a group did not work on what it was
supposed to do. As a result, we will discuss in this section a non-parametric approach of learn-
ing the structure of group problem solving, that uses a mixture model of hidden Markov models
(HMMs) to describe the probability measure of an interaction process, with each component HMM
in charge of explaining the dynamics-performance relationship of solving each of the four specific
types of problems.

There are similarities between the mixture of HMMs approach and how humans figure out the
dynamics-performance relationships about group problem solving. Given a training set of interac-
tion processes, together with the n types of problems that the processes intended to solve and the
performance scores, a human observer will intuitively relate the interaction processes to the corre-
sponding problem types and performance scores. Hence he can assign meanings to different parts
of the processes, and tell the differences among the dynamics related to different problems and
different performance scores in terms of some statistics such as average sentence length, speaking
speed, and the frequency of transitions to different speakers. Given the observation of a new inter-
action process, he will compare the new process with the n template processes in the training set,
and tell (a) whether the process was intended to solve any problem, (b) which type of problems the
process was intended to solve most likely, and (c) which (latent) performance covariate could best
explain the dynamics in the process.

In the mixture model of hidden Markov processes, any sequence (S;, O;),_,...r of latent-state and
observation tuples is sampled with probability w; from hidden Markov process ¢ out of the n+1 dif-
ferent hidden Markov processes parameterized by 6; where 0 < ¢ < n. Thus P ((S;, O¢),_;..7) =
Y oio WiP ((St, O1)_y..7 5 0i). Of the n + 1 hidden Markov processes, process f, is the garbage
process that explains “everything else”, and process 1 < ¢ < n explains the dynamics of the
interaction processes in solving task i. The parameters (i.e., the state transition matrix, and the
parameters related to the observation model) §; = {A4;, B;} for processes 1 < ¢ < n are func-
tions of the performance covariate f and the parameters 6, are constant. We take linear functions
in our modeling: A;(f) = A§°) + f - o; and Bi(f) = Bi(o) + f - B; with the constraint that
A;(f) and By(f) are valid. With the given definition, model fitting follows the standard EM algo-
rithm. After it is fitted interaction processes for different tasks, the model is used for finding the
most likely mixture component and the performance covariate argmax; (P ((S;, Os),_;..1; f, 0i)
for given (St, O),—y..1-

Of the 43 interaction processes in solving the four tasks that we are interested in, we have randomly
chosen 80% processes for training and the rest 20% for testing. We could estimate performance
with R? =~ 60% accuracy by finding the maximum likely performance covariate.

The performance coefficients of the fitted models for the four tasks (c.f. table 5.1) tell us not only
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| | b.s. | grp.iq ' shop | jdgmnt |

P(s; — 51) 9-f*2e-5 9-f*3e-5 9 9
P(sy — s2) 2+f*2e-5 d+f*2e-4 2 2
P(chg.spkris1) | .2+f*le-5 3+f*1e-5 Ad+f*1e-5 2
P(chg.spkr|se) | 4+f*le-5 | -.03+f*4e-4 5 4
u(Atls1) 2+f*1e-5 2+f*8e-5 3 2
o(At]s1) A+%2e-5 .1+f*9e-5 2 2
u(Atlsz2) 2.0+f*7e-5 3-f*3e-4 1.7 2
o(At|s2) 3.2-f*2e-4 | 7.0-f*2e-1 | 2.7+f*2e-5 9

Table 5.1: Hidden Markov modeling of interaction processes in solving four tasks.

how different tasks require different group process dynamics but also how different performances
in the same task correspond to slightly different dynamics. In general good performance generally
requires more active discussions (e.g., the coefficients in the first four rows are generally positive).
On the other hand, the brainstorming task and the group IQ task both have faster speaker transitions
(P(chg.spkr|s;)), shorter sentences (u(At|s1)), and longer pauses (u(At|s2)) than the group shopping
task and the group judgement task. Further, better performances in the brainstorming task and the
group IQ task normally requires faster speaker changes, longer sentence lengths and less standard
deviations of pauses (o(At|sz)). The different dynamics in the two types of tasks are due to the
fact that brainstorming and IQ problems normally requires a good aptitude of making discoveries
through unusual paths, while a planning a shopping itinerary and making a judgement normally
involves making good reasoning. The longer sentence lengths in brainstorming and solving IQ
problems correspond to actively giving information rather than passively accepting an answer, and
the less standard deviations of pauses correspond to consistent performance throughout a task.

This active-discussion and good-performance relationship could be further confirmed by estimat-
ing the heuristics at different performance levels through simulating the component HMMs (c f.
table 5.2). For example, at the 25%, median, and 75% performance levels, the interaction processes
to solve the group 1Q problem will respectively produce 10.6, 12.3, 14 sentences and involve 4, 5,
7 speaker changes per minute.

In summary, it is generally not possible without prior knowledge to relate hours of signals of
group problem-solving to limited amount of performance labels. Modeling the conversational
interaction is a good step forward to bring in prior knowledge. We can proceed to bring in more
prior knowledge about human problem-solving. But a better way is to try to align the dynamics
with the performance based on data mining.
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percentile number of sentences per | speaker. turns vowels per speaker
sentences person*minute | per minute sentence overlap
25% 250 10.6 4 2 0.8
50% 300 12.3 5 1.5 1.2
75% 350 14.0 7 1.2 1.4
(a) A lookup table to estimate performance from observed dynamics in the brainstorming task in
the MCI data set.
task | 1word | 2words | 3words | >4words |
brainstorming 33% 19% 12% 36%
group 1Q 36% 18% 11% 35%
itinerary planning 32% 17% 10% 41%
making judgment 32% 16% 10% 42%
(b) The sentence-length statistic 1s adapted to better task performance in the MCI data set.

Table 5.2: Hidden Markov modeling of interaction processes in solving four tasks.






Chapter 6

Conclusions and Further Discussions

In this thesis, I have demonstrated my approach to the modelling of the randomness and diversity
of human problem solving. This approach uses influence modeling to track the dynamics and
measure the effectivenss of problem solving by examining the signals that can be reliably collected
with embedded devices. This method allows us to formulate and test models of human problem
solving processes, and to explore possibilities for improving performance with a model-based,
data-driven approach. The “common sense” knowledge that I used in this thesis either comes from
experimental observations, or from a common sense knowledge database such as ConceptNet. It is
my sincere hope that research into human intelligence can ultimately make people more intelligent,
that we can collect enough data to sufficiently represent the diversity and randomness of human
intelligence. I futher hope that we can one day study human intelligence with stochastic differential
equations and datawith the same effectivenss with which physicists currently study the natural
world.

From my perspective, a good problem solver is a resourceful person. The resourceful person has
both an efficiently connected knowledge network and a flexible attitude when attemptingdifferent
ways of reaching a goal. Problem solving may be conceptualized as finding a path from a given
initial node to a goal node within a network. Hence, to facilitate problem solving, a person or
a computer must have enough domain knowledge and an effective model of the problem solving
process. My preceding perspective draws upon on my own experience, previous research, as well
as folk wisdom about constructing tools to facilitate human problem solving. The ACT-R theory
[Anderson, 1990, Anderson and Bellezza, 1993] provided me with experimental facts and an ex-
planation how people both organize their experience and retrieve it during the stepwise solving of
their problems. My participation in the programs of MIT Teaching and Learning Laboratory en-
ables me to see how teachers in different academic fields engage and help students solve problems
by putting knowledge in contexts relevant to the students. Many general works about problem-
solving [Newell and Simon, 1972, Sternberg and Frensch, 1991, Frensch and Funke, 1995] in
domains such as mathematics [Hadamard, 1954,1945, Pdlya and Conway, 2004,1985], physical
sciences, engineering [Mahajan, 2008], reading and writing[Kaye, 1989] have been written. I have
read more than 100 works of this type. The study of such excellent works has provided me with
broad background of solid information about how problem solvers actively explore their knowl-
edge to solve their problems, as well as how previous observers, researchers and authors have
conceptualized the problem-solving process. The common sense knowledge databases, such as
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ConceptNet, have enabled me to fit random walk models into discourses, and to simulate how the
thinking process wander among conflicting opinions and different moods. My research related
to Honest Signals [Pentland, 2008] has helped me understand how verbal communication in a
small-group problem-solving process is related to the (sub)conscious non-linguistic social signals
displayed by the individuals, as well as non-linguistic interpersonal interaction patterns. It has also
given me opportunities to construct stochastic processes to make inferences about content from
non-linguistic social signals [Dong, 2006, Dong and Pentland, 2007].

The ACT-R cognitive architecture [Anderson, 1990, Anderson and Bellezza, 1993], is rooted in the
General Problem Solver [Newell and Simon, 1972]. This work painstakingly attempts to explain
the macroscopic performance of problem solvingin terms of the amount of time and the earned
score of finishing a task, from the microscopic behavior of how individuals access their memory
and make stepwise decisions. ACT_R does this in terms of the memory access times and the esti-
mated gains corresponding to alternative steps used by a person in order to achieve their goals of
problem solving. Over a period of several decades, researchershave used the cognitive architecture
of ACT-R to explain observations made in the laboratory of many well-controlled problem-solving
experiments (e.g., solving a Hanoi tower problem, planning a trip under uncertain conditions, mak-
ing predictions about new observations) and learning (e.g., learning LISP programming language).
I have found the several aspects of ACT-R to be useful. For instance, the hard facts provided
about the experiments have been valuable., The use of microscopic behavioral dynamics to explain
macroscopic performance, which parallels the approach commonly used by physicists, has been
very useful. The rational analysis approach, which biases stepwise decision-making towards the
direction that attempts to maximize performance, has likewise proved quite useful On the other
hand, many formulae in ACT-R lack simplicity and physical explanation. There seems to be no
information provided about how parameters of the ACT-R formula were fitted to the experimental
data. Furthermore, I have significant difficulties in applying ACT-R to more complex problem-
solving instances, such as those involving natural languages and collaboration.

The teachers in various academic fields seem to feel they can best assess a students’ mastery of
knowledge and facilitate each students’ problem-solving based on introspectively pondering how
students think, based solely on their own “intuitions” and implicit knowledge. This approach is
different from that of some managers and politicians, who resort to oversimplified slogans such as
“brainstorming is always an effective way of problem solving,” and “let us ask the primary school
students to construct mathematical knowledge all by themselves since constructivism is right.” T
believe the teachers’ approach is a better approach to helping people. Further, it is my intention
to contribute to building a comprehensive database of diverse human knowledge and provide a
stochastic description of how people access their own knowledge to solve problems. Doing so
may allow us to transform the “black art” of teaching, based solely upon the implicit knowledge,
into a quantitative science, based on knowledge, databases, measuring and simulation. My under-
standing of what teachers do comes from my own experience, and from my participation in the
programs of the MIT Teaching and Learning Laboratory (TLL). By my understanding, TLL advo-
cates[Bransford et al., 1999, Prosser and Trigwell, 1999, Biggs, 2006] that learning is knowledge
constructed within the minds of the students. \An expert differs from a novice in that experts have
a more efficient network of concepts and their relations acquired from past experience than do
the novices. According to this view, teaching and learning should be evaluated in the in terms of
increased ability of the student to engage their knowledge for use in problem solving
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This approach tolearning and problem-solving seems to agree with the perspective of Polya [Polya
and Conway, 2004,1985], who primarily concerned withsolving math problems. InHow fo solve
it: a new aspect of mathematical methods, P6lya pointed out that the role of a teacher is to guide
the students - without giving them too many hints - to extract the meaning of the problem, the
relevants details about the related concepts and analogous problems and solutions. Polya did this
so that the students could build a path from the information given to the goal by themselves. This
perspective on learning and problem-solving also seems to agree with that of Minsky [Minsky,
1988,1986, 2006], Lenat [Lenat and Guha, 1989,1990] and others, who suggest we should give
a computer a large amount of knowledge so that the computer can reason like a human, and can
adaptively assist people in their everyday lives. It is my hope that the stochastic description of
the problem/solution developed in my research can eventually assist people in reasoning about
problem solving with existing knowledge databases, and can encourage people to contribute to the
creation of a comprehensive knowledge database that captures the diversity of our society.

Introspection upon my own experience seems to confirm the idea that thinking is a random walk
in the direction of intention or problem solution, drawing upon on past experiences which form a
knowledge network. Imagine for instance, a brief experiment in which several students in a lecture
are given one minute to sum the first » odd natural numbers, with the teacher being responsible for
facilitating the students’ problem-solving. Most students might immediately speculate the solution
to be n? by following pattern that the sums corresponding to n = 1,2, 3, 4 are respectively 1, 4, 9,
16. Most students might proceed to confirm their speculation, but some might fail to do so. Many
students would proceed to consider the other approaches to solving the problem.. Some would
stack up rows of 1, 3, 5, 7 square blocks and count the volume of the resulting triangles, and this
approach algebraically corresponds to -7 (2k — 1) = 1 3°7 ((2k — 1) 4+ (2n — (2k — 1))) = n’.
Some would repetitively put 3, 5, 7 square blocks on two neighbouring edges of the 1 x 1, 2 x 2,
3 x 3 block squares to get larger block squares, and this approach algebraically corresponds to
S 2k — 1) = 1+ 35 (k2 — (k — 1)°) = n? Other students mightreduce summing the first 7
odd numbers to summing the first 2»n natural numbers.

I have the following comments to make about common sense knowledge concerning the solution
by special cases approach in the preceding example. Solution by special cases naturally came
to the students because it was developed in an early stage of mental development and became
common sense, but it may be forgotten when people cope with complex problems. It worked
in the example given above because it is “‘common sense” that 1, 4, 9 are square numbers. The
conception of proving the truthfulness and disproving the falsity of a statement has been taught and
naturally held by most science and engineering students, but this conception may not be obvious
to everyone.

Concerning the deeper and more abstract approaches related to the preceding example, I hold the
perspective that abstract-thinking involves the abilities of freely navigating between a generaliza-
tion and its many specific examples, finding commonality, making connections among seemingly
unrelated things, and error-free reasoning. This perspective agrees with the constructivism perspec-
tive advocated by TLL, which claims that problem- solving can be facilitated by a faster access
to the appropriate context than is enabled from the past experience. To elaborate my perspective
in the example, I can see no reason that the students chose the deeper approaches among many
alternative ways of operating upon the odd numbers (e.g., decomposing 2k — 1 into £ — 1 and k)
if they had not had previous experience with triangles and squares. I can see no superiority of a
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human problem solver over a computer — which has no human experience, but is programmed to
enumerate all possible ways of combining odd numbers — either, if previous human experience
does not play a role.

Bransford et al. [Bransford et al., 1999] described many examples of problem/solution and con-
text/experience. Of these, I found the psychological study by de Groot on expert chess playing
to be the most interesting. In this example, the chess masters and the novices were found to have
equally good recall when faced with random arrangements of chess pieces. However, when pre-
sented with strategically-meaningful arrangements of pieces, the recall of chess masters was vastly
superior to that of novices. The masters had more patterns in stored within their memories from
past experience, and this enabled them not only remember the chess positions taken from actual
games, but also to anticipate the moves of opponents, and hence perform better than the novices.
I believe that problem solution without context could be extremely difficult, and we should not
judge the ability of abstract thinking by asking people to solve problems without context.

In many important applications of natural languages, such as sharing opinions and coordinating
problem-solving efforts in both written and spoken forms, we perform random walks in the net-
works of our individual past experience in the directions that maximize our values. In such net-
works, every node represents a piece of experience and has a value. These nodes are all connected
to one another according to how “close” they are. If we somehow collect a comprehensive net-
work of human experience, the network can be applied to model the dynamics and interpersonal
“influences” in brain storming, group problem solving, writing and reading from observations. It
can also model all discourses as samples of the corresponding opinions based upon Markov chain
Monte Carlo.

The network random walk perspective can be considered when studying writing. As reviewed
by Bryson and Bereiter [Sternberg and Frensch, 1991], the comparisons based on thinking-aloud
protocols seemed to suggest the expert writers tended to use the larger pictures of extracting and
effectively organizing arguments in conveying the experts’ actual opinions to the audience. They
also note it is possible to make novice writers perform like experts by instructing the novices to
cope with the more important problems of finding out the truths from past experience and engaging
the audience. The differences between an expert and a novice in writing is consistent with the
differences in other areas of problem solving. The more efficient problem solution behavior of
an expert can be explained by the fact that their additional experience contributes to their more
efficiently-connected knowledge network, which in turn enables them to navigate their network in
more efficient ways [Bransford et al., 1999]. This concept that writing is a problem/solution and
requires the engaging past of experience seems to be endorsed byseveral experts. For example,
Kaye [Kaye, 1989] gave a timetable about how to engage experience and finish a 3-page article in
three hours.

I hope one day that it will be possible to transform the study of the human intelligence into a
field akin to a physical science, in which we make good predictions about people based on var-
ious stochastic equations and sufficiently digitized human experiences. I propose to treat human
thinking as a random-walk in a network of human knowledge. This treatment reminds us that we
can sometimes oversimplify problems and make biased judgments based on our own limited ex-
periences. It also provides us with a good mathematical foundation to quantitatively discuss the
microscopic details about the diversity and randomness of human problem solving processes. Our
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behavior is limited by our experiences, and it the behavior of a computer. When I imagine myself
as a present-day computer participating in the human-computer interaction beyond its programmed
capability, I realize that the computer is either blank in its “thinking” or is inclined to ask for further
instructions. The computer has no intentions of its own, no tidbits of human experience to search
for a solution among, and no clues about how to speculate upon the mental status of its human
partner. Thus, at best, it acts like a philosophical zombie.

When we abstract the content of the group problem-solving process and focus on the form (e.g. the
interaction pattern among the participants), the psychological theories, such as Bales’ interaction
process analysis (IPA), make the stochastic analysis easier by imposing a structure on the process.
In Bales’ IPA, a group problem-solving process is composed of a series of events involving periods
of providing/seeking facts, providing/seeking opinions on the facts, suggesting/seeking approaches
for problem solving, voting for different approaches, and solving socio-emotional conflicts. Hence,
IPA summarizes group problem-solving by counting the number of events of different types. From
the perspective of a computer scientists, it enables the algorithmical estimation of group discussion
performance by translating gigabytes of information sampled by embedded devices in the group
process into a process of Bales’ events, as demonstrated in this thesis. As I understand it, Bales’
general form of group problem-solving process should be related to the content and verified based
on common sense knowledge databases, such as ConceptNet. Since any abstract form only makes
sense in the context where it can be substantialized with content, this should be done for future
studies. . There are two reasons for studying the form of a process: (a) the goal of training
people in problem-solving is to enable them to be good problem-solvers in future scenerios that
are different from the training scenarios; and (b) our current technologies are still unable to reliably
estimate the content of group problem-solving.

I would like to thank several professors for advising me to point out the limitations of making
statistical inferences with forms and without contents. This thesis only tells my observations about
the statistical correlations between the dynamics and the performances, investigates these correla-
tions by relating the form to the content, and suggests people adjust their dynamics and to improve
their performances based on my limited observations. It should neither be taken as a way to “fake”
good performance nor as an absolute measure of performance.

The theory of honest signals [Pentland, 2008] represents a novel approach to abstracting the con-
tent of individual and organizational behavior, and for investigating the relationship between per-
formance and dynamics generally. According to this theory, we should put more emphasis on the
research of pre-linguistic social signals (such as the centrality role of a person in a social network,
the way they communicate with others, their psychological profile, and, at least from my perspec-
tive, their habits ). This is because these social signals form the basis of human language. This
thesis showed my attempt to interpret the honest signals in terms of performance data and the lin-
guistic cues I could collect in the experiments. The field of artificial intelligence (AI), which aims
to simulate human intelligence with computer programs, started when the first digital computers
came into being as an attempt to create a computer with superhuman intelligence Failing that, Al
eventuallyproceeded to the deceptively difficult problem of merely creating acomputer that dis-
plays what seems to humans like “common sense.” [Minsky, 1988,1986]. In my opinion, the field
should proceed even further, and equip a computer with the honest signals. What we can achieve
and understand are limited by our experiences, and this is equally true of computers.
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