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ABSTRACT

- A model is presented for the generation of inertial-gravity

waves in the ocean by wind stress acting on the surface. The

ocean is considered to rotate uniformly and has a constant eddy

coefficient of viscosity as well as uniform stratification.

Thermal diffusion is neglected. The singularities in the Ekman-

Stokes layers associated with this system are removed by fric-

tional considerations. The vertical structure of the near inertial

motions is found to be confined to a surface layer with thick-

ness proportional to E1 4 ( E = Ekman number The

motion due to an idealized travelling front is solved for at all

depths by numerical integration and at the surface by analytical

methods. The theoretical amplitudes and frequencies so obtained

are in reasonable agreement with typical observations in the upper

layers of the ocean. The persistence time for a slowly moving

front is found to be about one week; faster moving -fronts leave

a longer trail behind them. A comparison is made with a simpler

layer model due to Pollard and Millard (1970).
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1. Introduction and summary of thesis

1.1 Observations and existing theories

The occurrence of inertial oscillations at almost all lo-

cations and depths of the world ocean is a well documented and accep-

ted fact; they appear in current records as a spectral peak slightly

above the inertial frequency (given at latitude & by 2 sin L cycles

per day). A sample spectrum is shown in figure 1.1. Webster (1968)

gives an excellent survey of the substantiating observational data.

The motion is characterized by the fluid particles traversing an almost

circular path with a period slightly shorter than the local inertial

period. The amplitudes are typically of the order of 10 cm sec- 1 .

These oscillations belong to the class of waves called inertial-gravity

waves which can exist in fluids, such as the ocean, which are subjec-

ted to both rotational and gravitational restoring forces.

The source of these ubiquitous oscillations has not yet been

satisfactorily explained. There are two types of mechanisms which can

act to produce the observed spectral peak. The first, a wave guide

mechanism, allows a global generation of waves and is based on a phy-

sical restriction that the waves' frequency be greater than the local

inertial frequency but less than the Brunt-V~issla frequency (given by

Fwhere g is gravity, is density, and z is a vertical

coordinate). Since the inertial frequency increases with latitude,

waves produced at a lower latitude can only travel poleward until they
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Figure 1.1 Kinetic energy density spectrum for measurements
collected at site F (380 30'N,700W). The local
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reach the latitude at which their frequency is equal to the local in-

ertial frequency. The global generation theory (e.g. see Munk and

Phillips, 1968), then, states that at a given latitude the inertial

motion will be a superposition of all those waves produced further

equatorward whose frequency is equal to the inertial frequency at

that given latitude. The kinematics of the waves in the vicinity of

this "turning latitude" is such that they have their maximum ampli-

tude there. The second mechanism involves local generation of the

waves and is based on the fact that the oceanic "transfer function"

between an input variable (e.g. a time dependent, atmospheric wind

stress) and the oceanic motion field has a peak slightly above the

inertial frequency. Both theories have weaknesses (see Munk and Phil-

lips) if they are used individually to explain inertial oscillations

in the ocean. The global generation theory does not explain the obser-

ved intermittency of the motion (persistence times of the order of one

week) while the local generation theory does not explain the short

coherence distances in the records (of the order of 10 m vertically

and several tens of kilometers horizontally).

The purpose of this paper is to present a model for the local

generation of inertial-gravity waves by travelling atmospheric fronts.

The evidence for wind generation of inertial-gravity waves is quite

strong (Day and Webster, 1965; Saelen, 1963; Hunkins, 1967; Pollard

and Millard, 1970), and has led to various models involvi:ng different

air-sea interaction mechanisms. Pollard (1970) assumed that the mixed

layer, several tens of meters thick at the ocean surface, absorbs



the momentum, generated by the wind stress at the surface, by turbu-

lent mixing in a time period short compared with the inertial period.

The applied stress is thereby allowed to be considered as a body

force acting over the entire depth of the mixed layer rather than as

a surface force. Viscous diffusion of momentum is subsequently ig-

nored. As an alternate mechanism, Hasselmann (1970) considered the

driving force as arising from the weakly nonlinear Stokes drift associ-

ated with wind-driven surface gravity waves. Both models assume the

ocean to be essentially inviscid.

The mechanism treated in this paper assumes the oceanic tur-

bulence to be modelled by a constant eddy coefficient of viscosity.

This is the classical model for transferring momentum downward from

a steady wind stress applied at the ocean surface and it is here ex-

tended to the case of a time dependent stress. At frequencies removed

from inertial, the structure of the motion in this model has been well

explained (e.g., see Tomczak 1967) but near the inertial frequency

the behavior of the velocity fields is not at all understood. More

specifically, the existing theory (see Tomczak) gives a boundary layer

eruption and a singularity in the inviscid vertical wave number at the

inertial frequency which must be resolved by a more complete treatment

that is uniformly valid for all frequencies. The ocean's behavior

near this point is important because it is precisely here that large

energy concentrations are found.



1.2 Summary of thesis

In Chapter 2 the oceanic model is formulated. The equations

of motion of the system are derived and non-dimensionalized; their

limitations are discussed.

Chapter 3 contains what may be called a normal mode analy'sis'

of the model. The behavior of the boundary layer structures is dis-

cussed for all values of the frequency of excitation, including the

inertial frequency. The oscillatory modes and their modification

by friction are also analysed for all values of the forcing frequency.

Chapter 4 contains solutions obtained by numerical integra-

tion for an ocean forced at -the surface by stresses associated with a

north-south front travelling in the eastward direction. The motion as

a function of depth is found to die out rapidly, in accordance with the

deductions in Chapter 3 concerning the effects of friction. The ampli-

tude and dispersive character of the solutions are discussed.

In Chapter 5, an infinitely deep ocean is treated analyti-

cally. The motivation for this is to gain further insight into the

solutions obtained in Chapter 4. More specifically, analytic solu-

tions are obtained as well as expressions for the frequency of the

inertial wake and its horizontal decay rate.

Chapter 6 contains a comparison of the model of Chapter 2

with the surface layer model used by Pollard and Millard (1970) to

explain wind generation of inertial waves. There is also a discussion

of the conclusions drawn from the model presented as well.as some

of its weaknesses.



2. Formulation of the model

Consider a stratified ocean rotating uniformly about a

vertical axis as shown below

-A

H

and where the following correspondences hold

2.1 The equations of motion

The equations governing the motion in the system are taken

as

ddt

where y and X- are the kinematic viscosity and thermal diffusivity

respectively.

The stratification will be modelled by a linear gradient

of density, / , perturbed by variations, , due to the

motion of the fluid. Thus,
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so that

Making the Boussinesq approximation and linearizing then gives
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where the static pressure,

and -

1 zbI
Z,

has been subtracted

The equations are now non-dimensionalized by the following

transformations:

-14
a = .aH i'
x" Ht

tt

I ,O=1j-'t'

In chapter 5 the case of an infinitely deep ocean will be
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considered and H then loses its meaning. It is not inconsistent,

however, to continue to use it as a simple non-dimensionalizing

parameter.

The following

N~

A//

2.

**2.

parameters can be defined:

taken to be 2 x 10-3 sec- 1, charac-
teristic of the oceanic main thermo-
cline

taken as 1872.4, corresponding to
latitude 39*20.5'N (WHOI station D)
and N above

corresponding to an Ekman layer 40 m
thick with H = 4 km

the Prandtl number.

With these values the velocity scaling is f/1 = 18.45 cm/sec.

The equations may then be written, after dropping the primes:

-J -.)1{

(2.1)

2.2 The boundary conditions - the nature of the forcing

The generation mechanism considered will be mechanical and

is expressed non-dimensionally by the boundary conditions:

V 4, kr vr
dt



(2.2)

where the stress is non-dimensionalized by o 2

0.0340 dynes cm-2 .

To simplify the problem, 2 is taken as a one dimensional

(in x) stress pattern moving with constant speed U across the ocean

surface. Consequently, it is assumed that 0 . The pattern is

described in detail in chapter 4.

2.3 Simplifying assumptions

Probably the most severe restriction on the model is the

neglect of the earth's curvature, i.e., the beta effect. It is well

known (e.g., see Phillips 1966) that internal gravity waves of fre-

quency Uo at low latitudes can travel northward until they reach

their so-called inertial latitude given by We _f, at which point

they are almost purely inertial in character and beyond which they

cannot propagate. This wave guide behavior might account for the

appearance of inertial oscillations far from any region of forcing.

The model presented here, as a result of its having no north-south

variation, does not allow this flow of energy.

For mathematical tractability, the basic stratification

is taken to vary -linearly with depth. In the ocean, this is obvious-

ly not the case. The effect of this assumption, however, does not
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alter qualitatively the conclusions drawn.

Another major assumption regards the role of oceanic tur-

bulence in the generation and decay of inertial-gravity waves. The

turbulence is modeled as being an eddy viscosity with magnitude

7.4 x 102cm2sec- 1. This corresponds to an Ekman layer 40 m thick

at site D and is assumed to be constant with depth.

Since mechanical forcing is of interest here, the model

allows no thermal diffusion, i.e., O-V co . This is not too crucial

in the light of the other assumptions and purposes for studying the

model.
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3. The vertical structure of the motion

The vertical structure of the motion may be determined by

studying the behavior of the vertical wave numbers for all the pos-

sible modes of motion of the system. In the model formulated in

Chapter 2, one expects both frictional boundary layers and, far away

from the boundaries, relatively inviscid motion.

3.1 The characteristic equation

Solutions of the basic equations (2.1) with O'-am are sought

of the form

where W) is taken as a Doppler frequency ( U . U is a constant

velocity and will be considered as positive. 40 , then, is positive

or negative depending on A . Later on, more general forcing functions

will be Fourier synthesized (-0 .O4W ) with the above functions.

This form may be substituted directly into the five equations of mo-

tion or the combined equation:

Ot 4t ;t at 2

where is any dependent variable and This
dX

results in a sixth order polynomial in :

( (2) )() T )I
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where o2 +3

A numerical solution of (3.1) for m as a function of k

was carried out for three values of U (13.411, 54.083, 100.0) and

the results appear in figures 3.1 to 3.6. Since the equation is a

2cubic in m , only the positive solutions for positive k are plot-

ted. It can be shown that if (m, +k) is a solution of (3.1), then

(m*,-k) where * denotes the conjugate is also a solution and, thus,

one quadrant suffices to show the behavior of m. To identify the roots

more precisely, the sketch below shows the real and imaginary parts

of the three wave numbers with negative imaginary parts. The root

labeled m3 has a change of sign in its imaginary part at the origin

and, hence, is drawn here as being discontinuous in its first

derivative at the origin.

tnA

Mix ~3
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Re m

Figure 3.1

k --

-1
Re m vs k as the solution of (3.1) for U = 13.411 (2.5 msec )

E = 10~ S = 1872.4.

./S
U
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101

Im m
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10-2
0.1 2 1.0 S

U -

k -

Figure 3.2 Im m vs. k as the solution of (3.1) for U = 13.411

(2.5 m sec ), E = 10 ,. S = 1872.4.
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Figure 3.3 Same as 3.1 but for U = 54.083 (10 m sec ).

The dashed line represents the inviscid wave number.
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i0o2

Im m

10 -

10-3 .0I - .s 1.02 .1

k --

-1
Figure 3.4 The same as 3.2 but for U = 54.083 ( 10 m seec)
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Figure 3.5 The same as 3.1 but for U = 100.0 ( 18.45 m sec~1

17.
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Figure 3.6 The same as 3.2 but for U = 106.0 ( 18,45 m sec ).

18.
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Figure 3.3 also shows a plot of the inviscid wave number

2- 2 4j )

If the ocean has a finite depth, all six vertical wave

numbers are needed to synthesize a solution. If the ocean is in-

finitely deep (-'<2O), only those wave numbers with negative

imaginary parts are permitted for a bounded solution as 2 -4 -:

The discussion of the roots of (3.1) which follows holds

in a strict sense only in the limit as E approaches zero since U and S

take on values which are not 0(1). Since here E=10 0, the

validity of the arguments presented rests on the numerical solutions.

For the parameter values used, these solutions do in fact substan-

tiate the arguments.

3.2 Properties of the inviscid roots

Consider the roots of (3.1) in the limiting case of zero

friction, i.e., E = 0. The sixth order equation in m reduces to a

quadratic one:

(3.2)

(L/ 4-)

These wave numbers represent travelling inertial-gravity

waves which will be discussed now. The singular points at W) = re-

quire a non-inviscid resolution and will be considered afterwards.
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The inviscid phase velocity is given by the solution of

x--x _. x.t = X+

tc - I X

(3.3)

Waves produced by a travelling disturbance moving on the ocean

surface with speed U must have their trace speeds equal to U. By

trace speed is meant the speed with which the intersection point of

the ocean surface and a constant phase line moves. Thus, X- 4-Edf= t.

and 2- yield A.x - O and, hence, for the

trace speed. This allows only waves for which { >0

The group velocity of the inviscid waves is of special

importance and is given by

Al is-

(3.4)
sk*J (3-4)

This is shown in figures 3.7 and 3.8. Note that as 4J-9 2.

It can easily be shown from (3.4) that c':O. Furthermore, if

.Gf is considered positive and since positive m then corresponds
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Figure 3.7 The horizontal group velocity (multiplied by the vertical wave number m) as a function

of to
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Figure 3.8 The vertical group velocity ( nultiplied by the vertical wave number m ) as a

function of £3
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to waves travelling in the positive it direction, the familiar

result emerges that the vertical components of the group and phase

velocities are in opposite directions. The following sets of

arrows indicate the possible directions for 5 and

2<<

c

Combinations (2) and (4) are the only ones allowed here. Waves of

type (4) can synthesize a disturbance at the surface or ref-lections

from the surface while type (2) waves represent energy propagated

from the bottom. If the ocean were infinite, only type (4) would

be allowed.

The table below gives the frequencies 4J=(9A. for the first

five normal modes of the system which satisfy the inviscid dispersion

relation (3.2):
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U 13.411 54.083 100.0

1 12.0811 2.0680 2,0192

2 2.3296 2.0164 2.0047

3 2.1283 2.0074 2.0023

4 2.0692 2.0043 2.0016

5 2.0435 2,0032 2.0013

As the speed of the disturbance increases, the response will thus

become more inertial. The relation (3.2) shows that WC t2. are

accumulation points for the normal modes of the system.

Finally, the familiar frequency limitation to 44145 is

seen, both in equation 3.2 and figures 3.1 to 3.6.

3.3 The role of friction

The characteristic equation is a cubic in m2 and thu's has

three pairs of plus and minus roots. This suggests two boundary

layer structures corresponding to the two viscous pairs of roots as

well as the inviscid pair just discussed.

First consider the effect of friction on the inviscid roots,

i.e., the propagating waves. Inspection of (3.1) suggests that, for

2
these roots, m be expanded in powers of E:

27 #(3.6)
,tcO
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This yields the following equations

( --4) (3.7)

'4 -s( z04.44 - 'k4

Adt &-4)

This expansion breaks down when E / M 6)2*/ is 0(1). As

the inviscid wave number grows when &J 2-> f , the largest term

in i grows as * Aj 

(tJ .- 4)

Thus, when ... Of/ Of(I
-(ZL--4)~

i.e ., when {14-4) ( O ld ) the f irst two terms of the

expansion are of the same order and a new expansion is necessary. The

expansion also is invalid for large values of k, i~e., for

Thus, waves with non-inertial frequencies and horizontal

wave numbers of 0(1) or less travel vertically for an e-folding dis-

tance of 0(E-1/2). As their frequency approaches inertial, however, the

waves decrease their vertical wavelength, thus allowing friction a

stronger role. The inviscid balance between terms (3) and (5) in

(3.1) and the inviscid expansion (3.6) fail when (3.8) holds. Term

(3.8)
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(2) which represents friction due to vertical shear of the horizon-

4/ Z .4
tal velocities becomes important. At this point #4 = OE )and

the previously inviscid root has grown to Of(e' 1 4. The wave motion

will thus be trapped frictionally in a layer whose thickness is

-4
(E' ). Forf=/O this thickness amounts to one tenth of the

ocean's depth.

Now consider the boundary layer structures. These are the

roots corresponding to the upper two curves in the numerical solutions.

If the wind stress were steady (J0 ), an Ekman layer of thickness

of O( )would be established and this suggests that roots of A-E

be looked for. To do this write

u a o(3.9)

which yields the following sequence:

4)4
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and hence,

(3.10)

4J 2.) means that W(0 - ---- . For

id j o , this reduces to the steady Ekman layer case. As 4 be-

comes non-zero, the Ekman layer splits into two layers and these

will be referred to as Ekman-Stokes layers. One is thicker than an

Ekman layer ( corresponding to the - sign for J'0o ) and one is

thinner (corresponding to the + sign for i'>o ).

For t0*O , the thinner layer is well described by (3.10).

The thicker layer, however, has a singularity near the inertial

frequency.

As approaches zero when 4J-9 .2. , behaves

like 2. fs-

Thus, F" / wo,approaches 0(1) when

~~ Oq O(3.11)

i.e., when 12./Ot f . At this point af
The thicker Ekman-Stokes layer, then, grows to a thickness

of 0(E1/4) as the frequency approaches inertial and the asymptotic
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expansion (3.9) breaks down. What was a balance between terms (1),

(2) and (3) in the characteristic equation (3.1) must now include

other terms. For f= E fit can be seen from (3.1) that a new
balance among (2), (3) and (5) occurs.

As in the case of the inviscid root, the expansion (3.9)

breaks down for .O

To summarize the results of this chapter, figure 3.9 shows

the dominant forces acting in the various frequency ranges discussed.

The figure is plotted for U = 13.411 and is typical of all three

speeds.
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Figure 3.9 Re m vs. k for U = 13.411.
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4. The response to an idealized travelling wind distribution

In this chapter is discussed the oceanic response to the

idealized travelling wind distribution described below. The equations

and boundary conditions are as posed in Chapter 2. Thermal conduc-

tivity is neglected.

4.2 Specification of an idealized stress field for a travelling front

The frontal stress system to be modelled is one dimensional

(no north-south variation), is travelling toward the east (positive

x) and has an exponential decay of wind speed away from the frontal

line. It takes the general form

e & xtut)

of is the e-folding decay distance of the stress away from the front.

-.It is set equal to 102 (or 400 km in dimensional units). /-/ff) is the

Heaviside function:

= 0 
O.

C1 and Ca are determined as follows. Far above the sea

surface and in close proximity to the frontal line, the wind velocities

are assumed to be:
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-vx '~')v '~' tIi

VV

(+) ()

-- A (+) (+ M+

where , refer to "in front of" and "behind" the front respec-

tively. The winds 10 meters above the sea surface are obtained from

these "geostrophic" values by rotating them 22.50 to the left and de-

creasing their magnitude 60%. This simulates the effect of the at-

mospheric boundary layer. (See G.I. Taylor, 1915.) Thus, if these

near surface winds are denoted by :

(Vsx ) = 0( cs 2.5* .- sm 22.f} VW7 )

S 252.Y 0  CoS 2. 5

Then,

SLI(.'4 -o.32j
, 6.') U -7 J43 5

vs' v u o.32s a.184 )

The assumption that the wind velocities are proportional

to (i , the speed of translation of the system, is to some extent an

arbitrary simplification. *A stationary front, for example, can have

a discontinuity in the tangential velocity component.

To determine the stress on the ocean surface, it is assumed

Ltat_ ieIlatiLon to teLIC VC.LOCLLy Ls VLL LL dimenionics f
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~~1

(4.4)

where V is the stress T evaluated at X(-Ut -O , =

1.225x10- 3 gm cm- 3 and (0 is a drag coefficient assumed to be

0.002 (Deacon et al 1956).. , and CL are now given by

U X/O 1 -763 /.629E)

~. j U XO (i-. Z1 --. 4 703)

It will be necessary to know the Fourier transform of the

wind stress:

7-10
- f 1~t'~je

.47kf10

0of[c,eufie(je cg

- -- ACze2 - ~L (/~.4j ?~)
(4.5)

tx and as functions of (X-ut) are shown in figure

4.1, as is ITx) and I7 j as a function of /- (real).

The response will be calculated for three values of the

frontal speed i :

NOWNIMP-

. I I

e (/V IVV
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-400 -300 -200 -100 0
(x -Ut)

Figure 4.la The wind stress

100 200 300 400

as a function of x-Ut. The

e-folding distance is 100 (400 km.).
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2 JTj
u2

|Tyl
u2

I I I I i 1 i IiI i i | 1 i i |

.001 .005 .01 .05 .1 .2
k r

Figure 4.lb -The transform, 7 , of 7' . The maximum of is at

k = 0.00807. The inertial wave numbers are (0.149,

.0 370,0.020) corresponding to the three values of

U: (13.411,54.083,100.0).
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-1
U = 13.411, U dimensional 2.48 m sec

-l
U = 54.083, U dmso = 10.0 m sec
2 ' dimensional

U = 100.0, Udiensional =18.45 m sec

Different values of U were chosen to study the effect of

frontal speed on the frequency of the response. UZ = 10 m sec-l,

dimensionally, is an average summer-winter storm speed.

The dimensional stresses, in dynes cm- 2, corresponding to

these speeds are as follows:

U Udim C1 dimensional C2 dimensional
(m sec-1 ) (dynes cm-2) (dynes cm-2)

13.411 2.48 (.04104, .09976) (.09976, -.04104)

54.083 10.0 (0.667, 1.622) (1.622, -0.667)

100.0 18.45 (2.282, 5.547) (5.547, -2.292)

The velocity U has been used in two ways: to define

the speed of progression of the stress system, and to define an am-

plitude for the stress. Within the linear framework of the model,

this second use is arbitrary, and the numerical results shown in the

figures can be reinterpreted by any reader who wishes to assign a

different magnitude to the amplitude of the stress associated with

one of the three translational speeds. One other point about this
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stress system is that it models only that part of the atmospheric

winds which are closely associated with the front. For example,

a steady uniform geostrophic west wind could be superimposed if a

more complete picture of the stress were sought. Except for some minor

effects entering through the V law in (4.4), this would only add a

steady Ekman layer (with surface current directed SSE) to the solu-

tions computed here.

4.2 Method of solution for the problem

. The dependent variables will be synthesized from ths set

of exponential functions discussed in section 3.1. Thus, if is

any dependent variable:

CPclie-

Cik-flU) (4.6)

j/ I

The A4fj , as before, satisfy the characteristic equation

(3.1). The WA/' field is used here as the working dependent variable

and the other fields can be obtained from it by the relations:

Lr-L 1) j/4

The boundary conditions (4.2) require that
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These equations completely determine the integrand of (4.6)

and it remains only to invert the transform. This was done numeri-

cally and a discussion of the procedure involved appears in Appendix

'1.

4.3 Discussion of solutions

The horizontal velocities u and v at various depths for

(f= 13.411 are shown in figures 4.2 to 4.6. On the surface, the

passage of the front is preceded by a non-oscillatory buildup of

velocity, showing no evidence of upstream waves. The fact that the

u velocity is larger .than the v velocity in this region, although

the stress is oriented more in the y direction,, indicates an in-

completely established Ekman layer type structure. The ratio of u

to v corresponds to the surface current being approximately 380 to
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the right of the wind stress (the stress is 22.5* to the right of

the y axis before the front; see section 4.1). This compares to

an angle of 450 in the steady state case. The-horizontal variation

of the pre-front velocity field is similar to that of the stress field.

Just as the front passes, the velocities reach their maxi-

mum values. The v velocity field has a strong jump corresponding to

the jump in the y component of the applied stress. The u field simi-

larly emulates the applied stress.

Behind the front the solution is a superposition of an ex-

ponentially decaying field and an oscillatory wake, also decaying in

amplitude. The e-folding distance (100, or, dimensionally, 400 km)

of the non-oscillatory part of the solution is independent of the

speed of the front. In this case, 0 = 13.411, the superposition is

most obvious. For this speed, the wavelength of the oscillatory so-

lution is quite short (42.1, or, dimensionally, 168.4 km) and, hence,

many wavelengths fit into the region of the non-oscillatory solution.

The frequency of the oscillations is approximately 3%

higher than inertial. Of the three frontal speeds, this case shows

the greatest deviation from the inertial frequency. This is to be

expected from the discussion in section 3.2 of the frequencies of

the inviscid normal modes.

The oscillatory response for all three cases is very close

to inertial. This is because the scale of the forcing function (see

figure 4.1) is attuned to forcing waves near the low end of the
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allowable frequency range (244J 4.(i) , The maximum in can

be shown to occur at

k~~~~~ ±-I2YE )J00,R07

whereas the values of k given by Uhe-.- are:

1.3.411 0./49
Sq.C3 tS 0.370
/00.0 . OZO

For this scale of disturbance, then, the response will be mostly

inertial. To excite waves non-inertial in character, it would be

necessary to have a smaller scale (greater ( ) disturbance. This would

move the stress transform maximum to a higher value of k which, for

fixed U, corresponds to a higher Doppler frequency.

The horizontal decay of the oscillatory wake at the surface

is more rapid in this case than in the higher front speeds. By this

is meant that the ratio of the amplitude of the Nth crest after the

front to the amplitude of the first crest is larger for the faster

moving front. Figure 3.8 shows that the vertical group velocity

increases from zero as the frequency increases from the inertial

value. In this case, the waves are farthest from the inertial fre-

quency and, hence, vertical dispersion of the energy put in at the

surface by the wind stress will be greatest.

The depth dependence of the wave motion bears out the ar-

guments of chapLer 3. TUe wave LILioi is almost completely damped
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at - = 0.75 (dimensionally 100 m). The e-folding distance of the

E1/4 layer discussed in chapter 3 is dimensionally 400 m and, hence,

the motion should be approximately 2 S. - of the surface value

of the oscillatory component. Comparison of figures 4.2 and 4.6

shows that this is approximately so in the computed solution.

The depth dependence of the non-oscillatory component of

the solution shows a much more rapid decay. It has virtually disap-

peared at a depth of j = 0.975 (100 m) and this suggests that it

is associated with the double Ekman-Stokes layer discussed in chapter

3. The depth behavior of this near front, non-oscillatory component

of the response will be treated more fully in the case of U = 54.083.

The case U = 54.083 (10 m sec 1) corresponds to a storm

speed which is an average over summer and winter storms., The results

for this case are presented in figures 4.7 - 4.10.

The pattern of velocities is similar to the slower moving

case / = 13.411. The front is again preceded by a non-oscillatory

solution and followed by the superposition of a decaying oscillatory-

wake and a decaying exponential.

The surface velocity preceding the front is again oriented

to the right of- the wind stress but several degrees less so than in

the slowest moving case. The angle is now approximately 350 to the

right of the stress. This smaller angle is due to the faster speed

of the storm; the Ekman structure has less time to develop.

The structure of the solutions in the neighborhood of the
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front as a function of depth is shown in figure 4.11 for U = 54.083.

These curves show that the non-oscillatory part of the solution is

essentially confined to the double Ekman-Stokes layers discussed in

chapter 3. The thickness of these layers is non-dimensionally

The length scales of the forcing function are 0(102) (see figure 4.1)

and hence, k = 0(10-2). .Then, = 'O1/1 or for the scaling used

here, a dimensional e-folding thickness of 40 meters. Put another

way, the Doppler frequency is close to zero and this results in the

layers being close to the Ekman thickness. One would expect motion in

these layers to be negligible after the five e-folding distances say,

or 200 meters. This is indeed the case, as is seen in figure 4.11.

The largest part of the total response, then, takes place in the near

surface layers and in the immediate neighborhood of the front. The

oscillatory wake, however, is not restricted to these thin layers.

Since in this case the horizontal wavelength in the wake is

170 (dimensionally 680 km) while the total storm length is around 400

(1600 km), the non-oscillatory component of the solution has disappeared

after two or three waves have passed after the front. The wake regime,

as a result, appears quite different from the slowest moving case

: /13.4 11
The frequency of the waves is approximately 1% higher than

inertial. The horizontal decay of the wave solutions for U= 516'3

is less rapid than in the L:- /3.41 I ase due Uto i hLiher

MOMMOMbr-
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Figure 4.11 The structure of u and v as functions of x-Ut for variousvalues of Z

near the front. . U = 54.083. The axes here have the same scales as 4.7.
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frequency and, hence, lower vertical group velocity. The vertical

decay takes place over the upper 1000 m of the ocean as discussed in

chapter 3.

The solutions for the fast frontal speed case V = 100.0

are shown in figures 4.12 - 4.15 and are similar to those for U =

54.083. The ratio of u to v in the solution preceding the front is

the smallest for the three cases and corresponds to an angle of ap-

proximately 30* between the applied stress and the resultant surface

velocity. This non-oscillatory solution again decays in the top 100

meters of the ocean and, because of the high speed, is a smaller part,

spatially speaking, of the total solution than it is in the other

two cases.-

The frequency of the oscillatory wake is about 0.3% higher

than inertial. The horizontal decay of the solution takes place more

slowly than in the other cases due to the smaller dispersion resulting

from the lower vertical group velocity.

The motion is substantially damped out at a depth of 1000

meters as in the previous cases.
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5. The response to an idealized travelling wind distribution; the

case of an infinitely deep ocean.

This chapter treats the response of an infinitely deep

ocean to a travelling sinusoidal stress pattern as well as to the

idealized front discussed in chapter 4. The infinite depth problem

is far more tractable mathematically than the finite depth problem

since, here, only three vertical wave numbers, rather than six, are

needed to satisfy the boundary conditions. As a result, more analy-

tical work can be done giving further insight into the nature of the

solutions obtained in chapter 4.

The formulation of the problem has thus far utilized the

depth H of-the ocean as its length scale. This obviously loses its

independent meaning in an infinitely deep ocean. H will continue

to be used, however, and can be thought of in its relation to the

JD/s

thickness of the Ekman layer, J. Sand H are related by J=E H.

The ocean is taken as occupying the lower half space

( O f4M ) as shown below

'f////f/ ////1,// /'

The equations of motion are (2.1) with a'ep and the

boundary conditions are as follows:
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t will be either a sinusoid (section 5.1) or an idealized

front (section 5.2).

5.1 The response to a travelling sinusoidal stress pattern

Suppose that *V is a one-dimensional sinusoid travelling

with speed ) in the positive x-direction:

7e T =.(x K, A etoNMTA17

(5.1)

Solutions will be of the form

where the satisfy equation (3.1), k
The Ij are such that .TA, *4ZO to satisfy conditions as

The north-south velocity V' will be used as the working

variable. Application of the boundary conditions at z = 0 yield

the following set of equations for the V'
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These are solved by

7 (.

V3 . ~T .r4(Y 4 91bI)

V~
M13

where

Y26

The solution for the v velocity field may then be written as:

J I

/ I
I. &

59.

O L 
)]

(5.2)

7,- t

Bill

M41i4 T ( r2 - r ) -

P 
-

I

16'f .2 g0 (,y- U ")
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The behavior of IV(42?JI as a function of k and z is

shown in figure 5.1 (with TXO and .,/ ) and figure 5.2 (with

& I and :O). Note the strong peak just above the inertial

frequency ( < -- -O-0.37). The ocean is thus most attuned to

producing an inertial response when the wavelength of the stress

pattern is in a range corresponding to the values of k discussed

here.
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5.2 The response to the idealized travelling front

For a forcing function more complicated than a sinusoidal

one, a Fourier synthesis must be used:

/ : fv4I e A (5.4)

where /t/4,) is the determinant quotient (5.3) in which 7 and

are no longer constants but Fourier transforms of the wind stress

4D 9-4

f~1  / '(1) e hcI(5.5)

and are described in section 4.1.

The nature of the response to this pattern will depend on

the location and type of singularities of 2 and these will

be discussed now.

It is first necessary to study the behavior of the roots

$f- for those values of . in the complex plane such that

It will be assumed that values of k beyond this region will not

significantly affect the solution as they correspond to motions with

extremely short horizontal length scales. If this assumption is

made, then, the asymptotic expansions of Chapter 3 are valid away

from the inertial frequency. Asymptotically, then, designate
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e

91 (5.6)

( 1 qj-4)

,M and A/1 ave no branch points away from the inertial

frequency with this approximation while . ll has a square root type

branch at /C () . The above expressionssuggest that all three

vertical wave numbers might have branches near the inertial frequency

and it is their behavior there that will be examined next.

Near the inertial frequency, it was shown that four of the

-14
six roots of (3.1) were of O(6 ). A good approximation to these

roots can thus be achieved by solving:

-Zito Eu ... -4): *1 +4 '(-- L- -
(5.7)

which are the most important terms of (3.1) near idYl This yields:

= --4)-'( - (5.8)

This suggests that the MS have branch points when

Four of the five k-roots are found from the asymptotic expansion

, 44 , . n, are
|c:|e"1t k U e and are:
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U.

These are close to the inertial wave number. The fifth k-root is

far away from

kr +O

which is out of the range of validity of (5.7).

The branch points, (5.10), and branch cuts introduced to

make the roots single valued are shown below

.k

At. fG,

To examine the roots near these points define

4-9 . j '- ' -f ') -

(5.11)

- .- 2. -3

,4 (5.10)

where
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Substituting these into (5.8) yields the approximations:

(5.12)

near Ld2. and

i6 A-r f+r

-1 -(5 .13)

near

It is now necessary to identify these roots with their cor-

responding values away from the inertial frequencies. Refer to the

rough figures in Chapter 3, page 12. Those branches of (5.12) and

(5.13) that, on the real axis, have negative imaginary parts and

behave like the above figures are:

/ ipf) 4)

2.2

. f (5.14)

near W 2 and

e 2

(5.15)

, r-) 4 $4

MUVMIMMMW
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near cJ -2. , The above show that

at k r- k1 043 --- 2., ima Ao3, o. -Tw o

- M3 77a. 94 e T .u4 A. 4o 3
$ - rj g.: M:, IOU ayf0 ue , -e 0

With this information, it is now possible to examine the

singularities of the integrand (5.3). 1' will again be used as

the working dependent variable. The singularities of i/(4/)are as

follows:

1. The simple poles of the wind stress transforms 7x

and T at -- '

2. The numerator and denominator of V both have zeroes

when any row or column is a multiple of another. This occurs in

the numerator when any of the roots M' become multiple roots and

in the denominator when the roots iM' become multiple or if their

squares are equal. It also occurs when (-i f&6k&Jo. This latter

point reduces the to constants. It is, however, of OiFf and,

hence, will be ignored. Both numerator and denominator vanish when

the roots become multiple, and it can be shown that these ( E. and

4, ) are not singular points of the integrand. The zeroes of the

denominator, however, give a square root branch behavior to the in-

tegrand where the roots' squares are equal ( ki and k? ). Singularities
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at the origin will be neglected; it is assumed that they will con-

tribute only to the steady state response.

The author was unable to find a suitable contour of in-

i4 bt.Ut)
tegration for all values of z. The function e decays rap-

idly in the upper half plane for x-Uto and in the lower half plane

for X-Ofdo . This damping, however, is not sufficient to over-

come the behavior of t for the roots which behave like

yA.= t ( S-U'k c)

(OP M"-4)

Some headway can still be made, however, for z = 0, as this

eliminates any exponential behavior in k except for the highly damped

S (U terms and, hence, allows the contours to be closed at

infinity.

The contour taken for (XUef is as shown

The branch points at (J. 1 will be neglected. This is

equivalent to making the hydrostatic assumption in the original

equations (2.1) and, for the scales of motion involved here, is
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justifiable. By Cauchy's integral theorem then,

4/

IL ((-U4

Because of the.factor e' ( the integral along R

vanishes. The integrals around A, and Af also vanish as / -94

The integral (5.4) then becomes

l' L2L (X- Uf)d
&r =,(e .1/ -1t ed d!<-T

77T [ J..
4 it-b I 4 -s'd Io

i-- 1 4 -VV

where the integrand, I4, must be evaluated on the proper Riemann

sheet for each integral. The integrals along the branch cuts were

calculated asymptotically for large values of Y-Ut (not a severe

restriction considering the large horizontal scales of the problem).

The behavior of these integrals, under this approximation, is such

that the main contribution comes from that portion of the integral

which is very close to the branch points. Accordingly, that.portionr

of Vtk!, say I/i , which is singular at the branch point can be

nig.
represented in an U neighborhood of the inertial frequency by
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ST -r (-m
( ' W3 IeP3

413I- gI)

S0(g 3 1)
(5.16)

near iJ.. , and

I J j -V llt) 0 ~~4 ( X

The remainder of the integrand, i.e., the functions

e at W---' , can be shown to beinvolving e at jta; L and

regular at (J o4 and gge - respectively.

The details of the integrations around the branch cuts are

relegated to Appendix 2. The solution for If' is

v (x, tJ = Rea/ -E edk-U 7 Mi.-x ) ,C .

4:1 ,t-o' e 5 L

/,rut1-ut/

-LY

aLI. -

*0(f A .1

The solution for gI/,t/ is obtained in a similar fashion

and is

(-4Ax +r' cL ). *
/dUt1+4

(6 x +

/ t --z 'a

/e r.- . ,)--T
I')(.e- U t . V

(4,I] 0 1- F E 1+

For (X..UtJ >o , the problem is much simpler; there is only

a simple pole in the upper half plane:

Vt(k) =

near V- -2 .

(5.17)

(5.18)

:3/4

(5.19)

W., t- U11

-w,~~~ e ",' A.

*r (Zed - n. (4,
. ? ]i f

//4. g(.*,-U)SEett, t) = /2e4| /
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I.
Again because of ,4  , bi o the integral along R

vanishes as C->m and the residue calculation yields

______(5.20)

2. 11---ew.o-r c-Af--t (5 .21)

These solutions are shown in figure 5.3 for U = 54.083.

The first two terms in (5.18) and (5.19) represent the decaying ex-

ponential component and the second part, the decaying oscillatory

component of the solution. Comparison of figure 4.7 with figure 5.3

shows that, away from the immediate vicinity of the frontal line, the

asymptotic solution agrees well with the numerically integrated

solution.

The exponential component decays as the stress does (e-

fUldigI& distance of c ) while the oscillatory component decays to
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a first approximation as

The Doppler frequency of the wake may be computed from

(5.10) as' the solutions behave like :

zu, 2. +-

VLi

The wake frequency is above the inertial frequency by the

amount

Uf (5.22)

For the three front speeds (13.411, 54.083, 100.0) this

amounts to the following percentages above the inertial frequency:

U 4

13.411 2,28%

54.083 0.56%

100.0 0.31%

The dependence of AtW on the square root of the eddy viscosity points

clearly to a quite different mechanism than is given by inviscid

theories for this phenomenon, e.g., the planetary dispersion mech-

anism described by Munk and Phillips (1968).
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6. Comparison with a simple model and conclusions

6.1 Comparisons of solutions with the Pollard-Fofonoff model

This section compares the solutions obtained in Chapter 4

with those obtained with a more simple oceanic model proposed by

Fofonoff (1968) and applied by Pollard and Millard (1970) to cal-

culate the oceanic response to some actual wind systems at site D.

The forcing used here will be the travelling front discussed in Chap-

ter 4. Their model assumes that the ocean is characterized by a

homogeneous surface layer, several tens of meters thick, in which

the motion is uniform both hor.izontally and vertically.

Dimensional variables will be used throughout this section.

The equations of motion averaged over the homogeneous layer are

taken as

dt (6.1)

where is the Coriolis parameter (equal to 0.92 x 10-4sec-1 at

site D) and F is the wind stress applied as a body force over

the layer. CI. is the frictional stress across the bottom of the

homogeneous surface layer and is used to roughly model the disper-

sion which is formally prohibited by the requirement of horizontal

and vertical homogeneity in the velocity fields.

It is now necessary to determine F for the stress dis-

tribution discussed in Chapter 4.
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,kr -2o (6.2)

where

F&r

For the front,

= density of air (1.225 x 10~ gm cm )

= drag coefficient

= density of water (1 gm cm )

thickness of the mixed layer (taken as 40 m)

= wind velocity near the sea surface.

this becomes (in dimensional notation):

F . 2.44xIO~ U /ut e ut

where

LI~O' 044% S0" ~ ~ " ec
The ocean surface sees the front passing and this appears locally

as a time series of wind stress. The model assumes that this

time series is without horizontal variation.

The solutions of (6.1) are easily obtained and take the

general form

r te F dt ao t i dc

For the F distribution above, this reduces to
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£f sL Ce ~L

t>~ iXt~h(ee/~w~c 9.)LE , A 1 (6.3)
(if4e-sU) J

corresponds to the frontal line "passing" the

fixed observation station (site D, say). The numbers A and /
4 L

are

" /0. Z761 f .fE).44Kr/0 U

20

(o.2- .' Z7 ) 2.4 4 xIo L

/4&t) was calculated for the three values of the frontal

speed of translation U (2.48, 10, and 18.45 m sec-1 ) and also for

three values of the damping constant C (1, 4, and 8 days). The

results appear in figures 6.1 through 6.9.

Comparison of these solutions with the results of Chapter

4 for -I/ shows similarity in the gross features of the motion

but quite a few differences in detail. Perhaps the most significant

difference in the solutions is the failure of the layer model to

predict the spectral peak slightly above the inertial frequency;

for all three frontal speeds, the wake frequency is exactly inertial.

TheAustausch model does predict a frequency slightly above inertial.



.020

.010-

-U

u,v 0

-. 010-

-. 020-

-. 030-

-. 040 I
-400 -300 -200 -100 0 100 200

(x -Ut)

Figure 6.1 u and v for U. = 13.411 (2.5 m.sec. ) and c = 1 day.

The scales of the axes are the same as for figure 4.2,
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Figure 6.3 The same as 6.1 but c - 8 days.
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Figure 6.4 u and v for U = 54.083 (10 m.sec. ) and c = 1 day.

The scales of the axes are the same as for figure 4.7.
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Figure 6.7 u and v for U = 100.0 (18.45 m.sec.'I) and c 1 day.

The scales of the axes are the same as for figure 4.12.
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Before the front ( teo ) the velocity field in the Pol-

lard-Fofonoff model is exponentially decaying but is directed much

more to the right of the stress vector than it is for the surface

"Velocity in the Austaush model. The angle between the stress vector

and velocity vector in front of the storm as given by equations

(6.3) as well as the approximate values in the Austausch model are

shown below:

U(cm sec-1 ) 248 1000 1845

C

(days)

1 79.10 68.20 57.90

4 85.20 73.20 62.00

8 86.20 74.0* 62.80

Austausch 380 350 30*

This greater angle is at least partly due to the fact that

in the layer model the mass transport over the homogeneous layer

rather than only a surface velocity is being calculated. In the

Austauch model, the velocity field integrated over the depth of the

Ekman layer would be more to the right of the stress vector.

Another difference between the two models is the ratio

of magnitudes of the near front solution to that of the oscillatory

wake. In the Austausch model, the surface velocities near the front



are approximately twice as big as the wave amplitudes one or two cy-

cles'after the front. This is only true in the layer model for the

highest value of the frictional coefficient (C = 1 day). The oscil-

Zatory field in the layer model generally has a larger amplitude

than that of the Austausch model.

The similarity of the results from the two models can be

interpreted as providing some theoretical justification for the simple

layer model (at least if one believes in eddy viscosity!), and per-

haps it is best to emphasize this aspect of the comparison.
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6.2 Conclusions

It has become clear that atmospheric wind systems can be

responsible for a large portion of the inertial motions observed

near the ocean surface. The model presented in this paper, which

includes both frictional and dispersive processes, gives wind gen-

erated inertial waves with velocities of the order of 10 cm sec-1

and with frequencies a few percent above inertial. The relatively

realistic forcing function treated thus produces waves which resem-

ble quite well those observed in nature.

Waves generated locally by an isolated wind field can de-

cay horizontally in essentially two ways. The first is by dispersion

of energy horizontally and vertically away from the forced area; the

second is by forced destruction of the wave field by other wind

fields. These mechanisms must be able to explain the observed per-

sistence times which are of the order of one week. Figure 4.2 shows

that the slowest moving front (2.5 m sec 1) has a wake which decays

in just about this time scale. Tomczak (1969) presents some data from

the western Baltic (see figures 6.10 and 6.11) which shows horizontal

decay rates (see records from 32 and 38 meters around July 1 and Aug-

ust 21, 1968) very similar to that of the near surface solutions for

U = 2.5 m sec~ 1. Atmospheric fronts passed over the observation site

on June 28 and again on August 20, 1968. It seems possible then, that

under some circumstances, dispersion and viscous decay could
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Figure 6.10 Observations of inertial motion in the western Baltic.

(from Tomczak, 1969). The numbers following the horizontal

velocity components U and V refer to the depth in meters.

The horizontal axis covers the period May 15 to July 31, 1968.
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16, 1968.
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explain the reported persistence time. The reader should compare

this result with Pollard (1970) who found slower dispersion rates

but with a different forcing function. For the faster moving fronts,

the horizontal decay is less rapid due to the lower group velocities

associated with the waves' increased closeness to the inertial

frequency. It is unlikely that these oscillations could decay by

dispersion before other wind fields came along. This second mech-

anism, that of forced destruction by a new wind field would then be

the main agent of decay.

The depth dependance of the waves produced with the model

is such as to confine the motion to the upper several hundred meters

of the ocean. The solutions of Chapter 4 show approximately a

90% decrease in wave amplitude between the surface and a depth of

1 km. Thus, very high surface velocities of 50 cm.sec.~1 say,

would correspond to motion at 1 km. of only 5 cm.sec.~ This depth,

1 km., seems to be the limit to which wind induced inertial motion

could penetrate with a measureable amplitude. Motions below this

depth must come from other sources. It can also be concluded that

inertial motion produced at the ocean bottom would only penetrate

upwards a distance of approximately 1 km. These statements are of

course based on'the model presented and would have to be modified

by the inclusion of the effect or a variable Austausch coefficient.

It seems possible but improbable to the author that a variable f
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would allow inertial waves to penetrate deep into the ocean. This

opinion is based on the discussion in Chapter 3 of the effects of

friction on waves with near inertial frequencies. A variable eddy

coefficient could allow deeper penetration since the coefficient

would be expected to diminish with depth away from the surface

layers and, hence, decrease the frictional effects. The constant

3
value assumed here ( 10 ) is appropriate to the surface layers.

Aside from the problem of inertial motions at great depths, however,

this Austausch model gives a realistic picture of the inertial motions

in the upper layers of the ocean. For waves occuring at great depths,

the hypothesis suggested by the above conclusions is that of wave

generation within the body of the ocean, away from both the surface

and the bottom. Possible mechanisms might be instabilities or

adjustments associated with essentially geostrophic flows. An

alternative to this mid-depth forcing is the global generation

mechanism and this would require a generation mechanism for large

scale internal waves (to not close to f) which is, at present, not

apparent.
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Appendix 1. Discussion of the numerical procedure

All computations were done on an IBM 360 at the M.I.T.

Information Processing Center and consisted of.the following steps:

1. The roots of equation (3.1) were solved iteratively as

functions of k using Muller's method (the program is contained in the

MIT subroutine library). The k-grid spacing was variable with k and

was arranged to give minimum spacing near the inertial wave number

2/U; it is a given in'table A.1:

number of
grid points

grid spacing

13.411

2
(=0. 149)
U

54.083

(=0. 0370)
U

100.0

2 = 0.02)
U

0 - 0.144

0.144 - 0.167

0.167 - 0.227

0.227 - 0.700

0.700 - 1.10

1.10 - 9.9

0 - 0.031

0.031 - 0.055

0.055 - 1.055

1.055 -10.055

0 - 0.019

0.019 - 0.023

25

175

75

50.

125

50

10

390

50

50

50

200

0.576 x 10-2

0.131 x 10-3

0.214 x 10~3

0.946 x 10-2

0.32 x 10-2

0.178

0.31 x 10-2

0.616 x 10-4

0.2 x 10~1

0.2

0.38 x 10-3

0.2 x 10~4

k-range
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0.023 - 1.023 200 0.5 x 10~2

1.023 -11.023 50 0.2

For all three cases, 1000 k points were used, 500 for

k > 0 and 500 for k < 0. In the above table only k > 0 is pre-

sented; the points were symmetric about k = 0.

2. The roots obtained above were then substituted into.

equations (4.8), the transform variable 7~ calculated using (4.5)

and the resulting sixth order system of equations inverted for each

value of k. The coefficient matrix is rather ill-conditioned due to

the different orders of magnitude of the vertical wave numbers, W- .

To avoid computational problems, the wave numbers were identified

with the top or bottom boundary (Imag m 4 0 on top and Imag m > 0

on bottom) and the exponentials in (4.8) were then written as 6

(upper boundary term) and e (lower boundary term). Terms

like C become very small as z approaches 1 and are ne-

glected in the calculations. Physically, this procedure amounts to

neglecting the influence of the top boundary layer near the bottom

of the fluid and that of the bottom boundary layers near the top of

the fluid, when ISW W / is large.

3. The solutions, k/ , of (4.8) were converted into (/

I/. and R; by (4.7) and these were then placed into (4.6) and
ViJ
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integrated over a finite range in k. The cut-off value of k was

determined by comparing the integrand, for the case U = 100, to a

test function of k which was always bigger than the integrand and

which was known analytically and, hence, could be integrated. The

error in this comparison, using k cut-off= 10, was much less than

1%. The value k = 10 corresponds to a wavelength of 2.51 km. and,

judging from the scale of motion in the solutions, seems to have been

large enough.

Difficulty was encountered in integrating by Simpson's

rule the function ((&o/j A ) e for large values of x-Ut

due to the high frequency of its oscillations; with such a high

frequency the integrand is aliased by a fixed grid, space. The

difficulty appeared as a failure of the solution to satisfy the finite-

difference test described below. To correct this the integrand

was approximated by a linear function between grid points and the

integral for u, say, calculated as follows:

~~=iUe 4 %k ,,f(aih.i4Je IhTd;

$D / oi e
2 11' 4 _-4 fqI

x-Ut d ~ J yu U.__

Ji~~

6 f, levI Ad 

e;4T
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The integration for u, v, and was carried through for

the various values of x-Ut and z shown in the solution curves of

Chapter 4.

In the case U = 100, a finite difference scheme was used

to test the accuracy of the numerical solutions in satisfying the

equations of motion and the boundary conditions. A horizontal grid

interval of 100 m. and a vertical grid interval of 1 cm. was used

with points at and near the surface. The errors in the various

equations, defined as the ratio of the residue of the equation to

the largest term were as follows:

u-momentum eq'n. 2%

v-momentum eq'n. 3%

w-momentum eq'n. 0.6%

continuity eq'n. 0.2%

density eq'n. 0.1%

The boundary conditions were satisfied to within 1%. The boundary

conditions were tested in the other two cases and similar accuracy

was found.
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Appendix 2 Calculation of the branch cut integrals of Chapter 5

A-2.1 Evaluation of an integral used on the branch cuts.

It will be necessary to evaluate the integral

Iii-)
/0

A-2.1rl;
where 11)0 and is regular and bounded for 409 -/4

174J) will be evaluated asymptotically for large P using

integration by parts following Copson (1965), p. 21 ff. For

any function

-
) p~p { (-T

where denotes
It

t)

N 
I l

and ,C/t) 0it

dopson shows that

where 4 is arbitrary. Here,

so that

(2-C) -t

T"1.o( 1 )

f~,4Ui

<6 ) e '-mI..

fx -tiA'pOct
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~J1'/2~)

~1#!.- I

-/ 3)

(AO- A
c>

A-2.2

- )

If the approximation is carried only to the first term:

'- ci-~Li
A-2.3

Evaluation of the branch cut integrals.

5.16 and 5.17 show that the integrals to be evaluated on

the branch cuts are of the general form:

7r >, -Tr
21

e-

x JFkiC
A~ 2

(0

Since

0

v5Z

T #)

A-2.2

x4 L9 d< 14 A-2.4

/4A 1.

g,,= (j)
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where F/hinvolves the stress transforms and m and n are two

of the roots of (3.1).

written

CA/ --

c'A1 97

5.14 and 5.15 allow m and n to be

of4= &+1$

%1~

~

where A. vanishes at the branch point (e.g., 4:

) and of ANP are either

' A-2.4 becomes

T i/f P " +45)e'.
nj ,-40 2. rJ})4

since the integral around the small circle vanishes in the limit

of zero radius.

.4 2.11

21r k k i

k--I

147-CUP ecI

on

-E

from 5.14 and 5.15. Define 4 : I

on 0 T - / or

for m3

-- 1

Now,

-- 2. for& -+-W/ A b

and --' -Jj ' j>0 .
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Using A-2.3

(q~6- ~i)
E Vr-

6i' e

A-2.5 may be used as a formula to compute the contributions

from the integrands 5.16 and 5.17 along the various branch cuts.

These- contributions sum to

-1

(w toI

From 5.10,

Using the fact that

and from 4.5

-Peq) Tf-.s,)1-0E"),

. '4,

7W (x-dt~i

Then, 4E eF

100.

A-2.5

It eow .7
becomes

uwm

;A-

V VA

fcI - T U)

7I14)=-Tt~eAE$k i--- $. ,
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