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Abstract

In the context of civil and industrial structures, structural control and damage de-
tection have recently become an area of great interest. The safety of a structure is
always the most important issue for structural engineers, and to achieve this goal,
the discipline of Structural Health Monitoring (SHM) was introduced. SHM records
real-time information concerning structural conditions and performances. In order
to evaluate the health conditions of structures, identifying the structural parameters
is needed. Research activities of this area are increasing due to the availability of
computation and wireless technologies.

The objective of this thesis is to evaluate the tracking ability of the Kalman
filter for identifying civil structural parameters based on measured vibration data
which usually are earthquake accelerations. For linear elastic structures, the ordi-
nary Kalman filter was used, but for nonlinear elastic structures, we implemented
the extended Kalman filter. For simulating damage occurrence in structures, a sud-
den change of stiffness was introduced, and an adaptive extended Kalman filter was
utilized to estimate the time-varying parameters. In this thesis, linear and nonlinear
structures with single-degree-of-freedom and multi-degree-of-freedom were simulated.
Measurements having different levels of white noise were considered in order to evalu-
ate the effects of noise on parametric estimations. In addition, the impacts of different
levels of noise covariance were also discussed. Simulation results from different struc-
tural models were presented to demonstrate the effectiveness of the Kalman filter.

Thesis Supervisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering



"The best and most beautiful things in the world cannot be seen or even touched.

They must be felt with the heart."

Helen Keller
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Chapter 1

Introduction

The main functionality of civil structures is to provide a safe place for human beings

in which people can be protected from the natural hazards such as storms, hurricanes,

and floods. However, structures may be damaged or even collapse due to these

external forces. Therefore, monitoring the performances of structures in real-time

is essential for structural maintenance and the protection of human lives. This thesis

presents the Kalman filter's ability to estimate structural parameters, which indicate

the structural integrity, for evaluating the conditions of a structure. In this chapter, a

brief introductory background of the main research of this thesis will be stated along

with the motivation, objectives, and thesis outline.

1.1 Damage Prognosis

Preventing structures from reaching their operational limits so that they can retain

a safe condition with expected performances is the goal of all structural engineering.

However, structures experience extreme events such as earthquakes and hurricanes.

The ability to detect damage in structures at an early stage can not only cut down

the maintenance costs but also avoid loss of human life. Research related to damage

detection has always been active. The traditional approach is visual inspection which

relies upon the human eye and human memory. With the understanding of many

physical phenomena, nondestructive testing techniques which rely upon the applica-



tion of electromagnetics, radiation, capillary action, ultrasonics, etc. were developed.

To date, due to the development of sensing and computation technologies, monitoring

the whole lifespan of a structure in real-time is a recent trend in damage prognosis.

The approaches stated above are discussed as follows:

1.1.1 Visual Inspection

Visual inspection mainly relies on human eye and human memory when conducting

damage detection [7]. In order to overcome the human physical limits, technical de-

vices such as borescopes and fiberscopes were developed to enhance the performances

on visual inspection [7, 33]. Although proper optical devices augment human eye-

sight, accurate results still depended on well-trained technician and suitable operation

conditions.

Borescopes are devices that can remotely view surfaces or cavities and allow people

to keep away from possible harmful substances. They consist of a rigid or flexible

optical viewing tube with objective lens and eyepiece lens on each end. Borescopes

provide clear images, and they are much cheaper than fiberscopes. As a result,

borescopes have gained wide use throughout the industry. In civil engineering aspects,

borescopes are used in inspection of cavity walls, beam ends, girder sections, etc.

Fiberscopes improve the deficiency of borescopes with a smaller size and ability

to access deeper area. Fiberscopes are composed of two fiber optic bundles within

a flexible tube. The fiber bundles are composed of tens of thousands of glass fibers

which transduce the image information. The fiberscopes are usually equipped with

video record system for providing a longspan and real-time inspection. Fiberscopes

are mostly used in medicine, aerospace, and ship industries.

Holography can also be used for inspection of structural flaws. The holograms

record the information of electromagnetic waves such as amplitudes and phases; and

the flaws can be detected by comparing the two holograms (one from the original

state; another from the damaged state). Producing holograms needs to utilize laser

lights and the process to record electromagnetic properties is very sensitive to external

disturbance; therefore, a vibration-free and light-free environment is required. In



this regard, holography is not a suitable method for detecting damage of large scale

structures.

With the rise of digital technology, structures can be monitored by digital cameras,

but it is only suitable for small areas. A digital camera records images of a particular

area at different time intervals, and the possible damage location can be indicated by

comparing these images.

A common drawback of the visual inspection methods is that all devices have

their own limitations and that makes it impossible to detect all the flaws. In addi-

tion, visual inspection is highly time and labor consuming; therefore, more effective

and systematic techniques were developed to have better performances on damage

detection.

1.1.2 Nondestructive Testing

Nondestructive testing (NDT) is a method used to evaluate the mechanical properties

of materials and examine the potential flaws or cracks in materials without alteration

of the portion being tested. The development of NDT can be traced back to late 19th

century. The main NDT methods will be presented in the order of development as

fellows [46].

Radiography is one of the earliest NDT techniques used for medical and industrial

applications. Radiographys are shadow images providing two dimensional informa-

tion and they are obtained using radiation penetration such as X-rays and 'y -rays.

The contrast of the images is caused by different levels of absorption of radiation.

The flaws, discontinuities, chemical composition, dimensions, densities, etc. are the

possible reason leading the contrast, and people can detect damage or obtain mate-

rials properties from the contrast. One concerned issue of radiography is the safety

during the operations. The U.S. Nuclear Regulatory Commission provides proper

procedures to manipulate radiography, and radiographers have to receive complete

training on radiographic techniques.

Researchers have already discovered that the magnetic fields of a magnet can be

displayed by filing iron powder. Magnetic particle inspection was developed based on



this concept and has been applied to industry. The flaws and cracks in a magnetized

object disturb the magnetic fields and result in magnetic lines of force that are highly

distorted. The possible damage location is where the magnetic lines of force are

nonsymmetric or eerie. The magnetic particle inspection has the best performance

when the suspected damage is perpendicular to the magnetic field; therefore, the

choice of direction impacts the results.

Eddy current testing is a defect inspection technique for conductive materials. An

alternating electric current in a circular coil generates a varying magnetic field, and

the interaction between this varying magnetic field and a nearby conductor results

in eddy current on the conductor. Flaws or defects in the conductor will change the

induced eddy current, and they can be detected by placing a inspection coil which

examine its current generated by the conductor. Generally, eddy current testing is

portable and easy to implement, but the surface accessibility and penetration ability

of magnetic field have to be considered.

Liquid penetrant testing is a simple and effective method for detecting surface

damage. A liquid dye penetrant is firstly applied to the suspected surface and left for

a suitable dwell time. The dye penetrant will be absorbed into the surface cracks due

to the capillary action. After the dwell time has passed, the surface need to be wiped

gently. Finally, a developer is sprayed onto the surface indicating possible damage of

the surface. The selected dye has to be highly visible, washable, and insensitive to

the tested materials. The liquid penetrant method is less time consuming and less

expensive among most NDT techniques.

As presented above, there are many NDT techniques developed to detect dam-

age, but the wave-based techniques are the most promising ones and attract much

attention from researchers and engineers. Waves can propagate at a long distance

so that the whole structure including the surface and body can be examined. Based

on the frequency ranges, waves can be classified as ultrasonic, sonic, and subsonic

waves. Ultrasonic waves, which have frequency above 20kHz, are used for NDT, and

can be carried out in two ways: active inspection and passive inspection. For active

inspection, an actuator and a receiver are mounted on the suspected surface. The



receiver receives the altered signals, which are caused by passing through damage

area, and the damage location can be identified by data processing techniques. For

passive inspection, two receivers are mounted on the suspected surface. When any

part of the structure is damaged, the receivers receive the signals generated by the

disturbance. After analyzing the two received signals, the location of damage can be

identified. Ultrasonics inspection involves many disciplines such as sensing and signal

processing techniques; it is an active research area nowadays.

In recent years, incorporating NDT with structural health monitoring (SHM) has

been a topic of great interest. SHM firstly provides a real-time global level monitoring

and then NDT will be employed to detect local damage of structures. Simply put, as

shown in Figure 1-1, SHM narrows the possible damage location from global to local,

and NDT is used to find the exactly position and quantify damage.

Uoa
Figure 1-1: General process of implementing SHM.
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1.1.3 Structural Heath Monitoring

Structural Health Monitoring (SHM) has been studied intensively in recent years due

to the rapid rise of wireless and computation technologies, and it has been already

applied to field works [34, 16, 31]. SHM aims to diagnose the health conditions of a

structure, including damage location, damage quantification, and remaining service

life. We can refer SHM to a hierarchy process as shown in Figure 1-2. SHM provides

an integrity monitor on a real-time basis over the whole lifespan of structures, and a

complete SHM strategy allows an optimal use of structures, reduces the maintenance

costs, and avoids catastrophic failures. SHM can be classified as global monitoring

and local monitoring. At the global level, monitor techniques mainly rely on the

measurement of vibration data. For local monitoring, eddy current, magnetic field,

and ultrasonics are the main tools [17]. Sensors technology, data analysis techniques,

and health condition evaluation are needed to access a completed SHM process.

Damage Detection

Damage Location

Damage Quantification

Extent of Damage

Health Prognosis

Figure 1-2: Hierarchy of damage detection.



Service life prognosis is highly related to the cost of civil structures, and the ac-

curacy of prognoses is based on system identification techniques. Therefore, system

identification becomes an important issue in SHM. Many system identification tech-

niques in earthquake engineering were proposed to analyze and interpret the vibration

data which are measured before and after a severe event such as an earthquake or a

hurricane. Structural parameters such as mass, stiffness, and damping coefficient may

degrade when damage occurs, and a common way to evaluate the health conditions

of a structure is to compare the changes of these identified structural parameters.

The parameters to be monitored depend on different factors. If a structure is

located at a highly seismic area, stiffness, deformation, or stress may need to be

monitored. If a structure is built for refrigeration industry, temperature and humidity

may be the parameters to be monitored. Hence, the locations and the functionalities

of a structure are the key factor to decide which parameters to be monitored.

There is no such an approach that can identify all the structural systems because

of the complexity of real structures. As a result, plenty of system identification

techniques were proposed to deal with different structural systems. In general, we

can identify the structural parameters in either frequency domain or time domain.

Frequency domain approaches such as the peak-picking method and the circle-fit

method mainly rely on measured data of frequency-response-function [3]. A critical

issue for SHM is "monitoring" the structures in real-time; therefore, the time domain

analysis techniques may be the preferred ones. Several techniques in time domain

have been studied for SHM such as the Recursive Least Squares method, the Parity

Equation method, the Neural Networks, and the Kahnan filter. In this thesis, the

Kalman filter is adopted to evaluate the health of structures.

1.2 Motivations I

Civil and industrial infrastructures such as buildings, bridges, roads, railways, har-

bors, and airports are the essential elements composing a society, and apparently,

people cannot live without them. Structures affect not only human beings but also



environment, climate, creatures and so on. In addition, structures are costly and are

always related to the assets of countries. Therefore, building a safe, durable, and cost

effective structure is always the goal for civil engineers.

However, structures deteriorate due to physical aging and natural hazards, and

that will result in serious consequences. Human victims, ecological pollution, and

economy crushing are always involved in the accidents. To prevent this sort of event,

revealing the health conditions of structures becomes a critical issue. Hence, safety

and economics are the main motivation for carrying out this research.

The vibration data of a structure that has undergone an extreme event such

as earthquake can be used to determine whether the structure is damaged or not.

Unfortunately, these data often contain noise so that the useful information is cor-

rupted. Hence, signal processing techniques are required to deal with this problem.

The Kalman filter is a promising way to filter out noise and extract the useful in-

formation because theoretically it provides the best estimation among all the linear

filters. Therefore, the Kalman filter was used for identifying structural parameters

throughout this thesis.

1.3 Objectives

The main objective in this thesis is to evaluate the Kalman filter's ability to esti-

mate structural parameters, so that, as mentioned above, we can narrow the possible

damage location from a whole building to a specific floor (global to local) . We will

develop different structural models to represent different types of buildings, and apply

the Kalman filter to each model. The measured data may be affected by external (en-

vironment) or internal (sensors) noise; therefore, the capability of the Kalman filter

to predict unknown parameters is desirable. The process noise covariance and mea-

surement noise covariance affect the estimation results as well; hence, the influences

of different levels of noise covariance are also discussed.



1.4 Thesis Outline

This thesis is organized as follows:

Following this introduction, Chapter 2 of this thesis provides a brief literature

review on the Structural Health Monitoring including sensors and actuators issue

used for sensing the structures, the data analysis techniques used for processing the

vibration data involved in damage events, and health condition evaluation used for

examining the functionalities of structures.

In Chapter 3, the Kalman filter algorithm, which is used throughout the simulation

part in this thesis, is derived. In general, the Kalman filter can be classified into two

categories: (1) the ordinary Kalman filter, which can deal with linear system, and (2)

the extended Kalman filter, which is able to tackle nonlinear system. Both of them

are described in great detail. Meanwhile, an adaptive extended Kalman filter used

for estimating abrupt changes of structural parameters of a dynamical system is also

presented in this chapter.

In Chapter 4, the capability of the Kalman filter to estimate the structural pa-

rameters is discussed. Linear and nonlinear single-degree-of-freedom elastic structures

are considered firstly, followed by two multi-degree-of-freedom elastic structures with

linear and nonlinear properties. In order to simulate damage of a real civil struc-

ture, structural parameters are changed suddenly at a particular time slice. All the

simulation cases are carried out with different levels of noise and noise covariance.

Finally, in Chapter 5, the main findings and contributions are summarized. The

possible future research directions and extension works of this thesis are suggested at

the end of this chapter.



Chapter 2

Literature Review

The way architectures and civil engineers design, build, operate, and maintain a

building has been changed into a new stage. Technologies such as high performance

materials, intelligent sensing systems, and adaptive control systems are merged to-

gether and lead to a so-called "Smart Structure" stage. Smart Structure is a structure

that has the ability to detect the disturbance or damage by itself and adopts an ade-

quate mechanism to recover to its original state. Structural Health Monitoring (SHM)

provides a comprehensive monitor on structures, and it is the essential component of

Smart Structure. In general, SHM can be divided into three parts: (1) sensors and ac-

tuators placement, (2) sensing technology, (3) data processing and health evaluation.

In this chapter, the past works of all these parts are presented.

2.1 Sensors and Actuators Placement

To effectively investigate damage, a dense array of sensors and actuators is envisioned

for large-scale structures. For global damage detection, the accelerograms, which

can be obtained from accelerometers, in each floor are essential for vibration-based

techniques. For local damage detection, the optimal placement of the sensors and

actuators need to be evaluated because it impacts the performances of SHM. Benefits

from the optimal placement are described as follows [36]:

e use minimal sensors and actuators to reduce the cost of devices and implemen-



tation;

" obtain accurate signal information from noisy data;

" monitor efficiently the structural behavior;

" repair or remove easily the sensors and actuators.

An intuitive optimal placement based on the knowledge of structural analysis is a

solution to this problem. However, more systematic optimization methods are desired

to be developed. Lim [22] adopted an effective independence algorithm to evaluate

the contribution of each sensor so that the less contributed sensors can be eliminated.

The Genetic Algorithms (GAs) are probabilistic search algorithms initially proposed

by Holland (1975) inspired by Darwin's theory of evolution. The GAs can efficiently

find the optimal solution from the discontinuous solution space, and they have been

widely applied to evaluate the optimal placement of sensors for discrete structures

like civil structures [1, 24]. In order to find the optimal placement and number of

sensors and actuators, minimizing the system norms is also a promising approach.

Different norms can be chosen as the objective function for different situations. A

comprehensive study was carried out in [27].

2.2 Sensing Technology

Sensors are devices mounted in or on an object to attain desired information of

the object and have the ability to transform the information into electrical signals.

Sensors, in general, consist of three parts: (1) sensing elements, (2) signal processing

algorithms, and (3) sensor interface [21]. When manufacturing a sensor, the sizes and

costs have to be considered because usually a large amount of sensors are required

for a sensing system. A sensor with small size, low cost, high quality, and reliable

outputs is the one that researchers and engineers are looking for [43].

The most radical issue needed to be addressed when developing a sensing system

for SHM is to accurately capture the structural responses (signals). Wired sensors



are the traditional ones which are linked together to the central computer. But for

global damage detection, wired sensors are inconvenient, particularly for large-scale

structures. As a result, wireless sensors are desired for global monitoring. However,

wireless sensors can be unreliable. For example, external or internal noise, path losses,

and hardware components reduce the accuracy of acquired signals resulting in delayed

transmission of data and packet, or even transmitted data missing[37]. Applications

of wireless sensors on civil structures with investigation on loss of signals has been

studied in [38, 6, 29].

Indeed, much more attention has been focused on 'Smart Sensors' in recent years.

Sensors with embedded systems such as microprocessors provide self-diagnosis and

self-adaptation are called Smart Sensors. The first application of Smart Sensors for

civil structures was carried out by Straser and Kiremidjian [44]. They developed

sensors with real-time damage detection ability during extreme events and long time

health monitoring. The ability to manufacture high quality microprocessors allows

sensors producing accurate signals and processing data in high speed. The increasing

volume of data storage provides larger processing space. The switch of waiting mode

and operational mode of sensors reduces the batteries consumption. With these

rising technologies, Smart Sensors have received great improvements in rapid speed

and many proprietary smart sensing platforms have been created and applied to

industry. Tomonori and Spencer provided [451 a summary of recent development of

Smart Sensors for SHM in great detail.

2.3 Data Processing and Health Evaluation

Signals more or less contain noise in an open environment; hence, signal processing

techniques become essential to mitigate noise and identify useful information from the

noise-contaminated signals. The identified or filtered signals are the basis for evalu-

ating the health conditions of a structure. Accurate signals allow the SHM system

to correctly detect, measure, and evaluate the performances of a structure over its

service life. The monitored structure could be a delicate aircraft, a civil infrastruc-



ture, or any mechanical system. A fully-developed SHM system enhances the safety

level and reduces the maintenance cost of a structure. Damage detection is the core

of SHM and it relies mainly on the signal processing techniques. In general, the pro-

cessing techniques can be classified into two types: frequency domain techniques and

time domain techniques. These two approaches are discussed respectively as follows.

2.3.1 Frequency Domain Approaches

Frequency domain approaches extract modal parameters such as modal frequencies,

modal damping, and mode shapes from frequency response function data which are

derived from vibration data [8]. The earliest method incorporates the finite element

method with linear modal properties to detect possible damage [35, 25]. The peak-

picking method identifies the eigenfrequencies as the peaks of a spectrum, and this

method is broadly used in many area due to its simplicity [4]. The circle-fit method,

which adopts the circularity property of a frequency response function, is a common

yet effective technique to attain modal information [10, 15, 18]. Other methods such

as the inverse frequency response function method and the Dobson's method are

also extensively used for damage detection [15]. A integrated review of the damage

detection and health monitoring using frequency domain analysis can be found in [8].

However, the modal parameters are easily changed due to external disturbances

such as light wind and operational vibration. As a result, it is difficult to distinguish

whether the structure is truly damaged or just disturbed by the environment. More-

over, these approaches cannot detect the onset of damage [30]. Hence, research has

focused on time domain analysis in recent days.

2.3.2 Time Domain Approaches

Time domain approaches mainly utilize their stochastic properties to filter out noise

and, further, identify the system. The Parity Equation method was developed to

evaluate the residuals obtained from measured data which indicate the behavior of the

monitored system. Basically, this method provides a proper check of the consistency



of measurement outputs which are acquired from the structural model and the real

system. Fritzen et al. [13] proposed a robust algorithm to determine the residuals so

that damage can be detected.

The Recursive Least Squares (RLS) method estimates parameters in real-time

by minimizing the overall squared errors. The RLS algorithm is one of the most

traditional methods to recursively update estimated parameters, and it was originally

developed by Carl Friedrich Gauss. Since it was developed, the RLS has been widely

used in various fields because it is simple to implement and does not need to store

the whole observed data [2]. In civil engineering, especially in the area of system

identification and damage detection, the RLS is used to identify structural properties

and parameters for both linear and nonlinear systems. Loh et al. [26] adopted the

RLS method to identify time-variant system and a system with abrupt changes of

modal parameters. Lin [23] incorporated a variable forgetting factor approach with

the RLS algorithm to identify nonlinear multi-degree-of-freedom structural systems

with only acceleration measurements. Yang [50] proposed a RLS estimation with

unknown inputs to identify structural parameters when the external excitations are

not available.

The Neural Networks are another well-known time domain signal processing tech-

niques which are capable of modeling relations of input-output functions. It was

firstly developed in the fields of brain and cognitive science, showing the massively

parallel distributed processing functionality of neurons. When the Neural Networks

are applied in artificial intelligence, a simplified neuron model is used to perform cer-

tain tasks such function approximation and data processing. The Neural Networks

can be trained based on observed data and they operate as black boxes and adaptive

tools. Applications of the Neural Networks in civil engineering became popular in late

1980s due to the development of backpropagation [40]. The basic idea of backpropa-

gation is that the synapses of a neuron model collect many weighted inputs, and the

weights (parameters to be estimated) are changed in gradient descent so that the error

between predicted outputs and real outputs can be reduced. In general, most Neural

Networks applications in civil engineering are based on backpropagation because of



its simplicity. Flood [12, 11] applied the Neural Networks to optimize construction

operation and process problems. Wong et al. [47] performed the hazard prediction

of a structure due to earthquake loads. In concrete engineering, Yeh [51] optimized

the workability of high performance concrete mixture. Elkordy et al. [9] proposed a

diagnostic system based on the Neural Networks for detecting damage for a five story

steel frame model. Based on acceleration data obtained from earthquake excitations,

Qian and Mita [39] evaluated the structural parameters using the artificial Neural

Network emulators.

The Kalman filter has been received extensively attention since R. E. Kalman [19]

published a paper describing the recursive solutions of predicting state variables for

linear systems in 1960. The advances in computing technology allow huge amounts

of computation and make the Kalman filter be applied practically. The Kalman

filter provides real-time estimations on state variables based on minimizing the mean

squared error. The Kalman filter generates the best estimation if the optimal filter

is linear among all the linear observers because it minimizes the error covariance.

Since the Kalman filter only works for linear system, the extended Kalman filter was

developed to deal with nonlinear system in which the system has been linearized. The

Kalman filter is mainly used in the areas of aeronautics and robotics for navigation

applications. In civil engineering, the Kalman filter has been mostly studied for

SHM and on-line damage detection. Xia et al. [48] proposed a technique to solve

the stability and divergence problems of the Kalman filter. Maruyama and Hoshiya

[32] proposed a method which incorporates a weighted global iteration procedure

with the extended Kalman filter to obtain stable parametric estimations and fast

convergence. Yang et al. [49] proposed an adaptive extended Kalman filter algorithm

to estimate damaged structural parameters with abrupt stiffness changes. Zhou et

al. [52] performed an experimental study on identifying structural parameters of a

damage structure. Soyoz and Feng [42] verified the capability of the extended Kalman

filter on detecting instantaneous damage of a concrete bridge by using large-scale

shaking table test.



2.4 Chapter Summary

In this chapter, we reviewed the essential elements and available algorithms for per-

forming Structural Health Monitoring which provides continuous information about

the health conditions of a structure. The idea of merging Smart Structure with sens-

ing technology and signal processing techniques was carried out as well. Due to the

needs of safe space and better structural performances, there is no doubt that the

increase applications and research activities on Smart Structure and SHM will be

continued.



Chapter 3

The Kalman Filter

Filtering is a process that eliminates noise from electrical signals and returns valuable

information from which we can identify or even control a system or an object. Among

many filter algorithms, the Kalman filter provides the best estimation on unknown

variables if we assume the optimal filter is linear as it minimizes the error covariance

throughout the process.

The development of the Kalman filter can be traced back to 1960s. In 1960, R.

E. Kalman published a famous paper proposing a new approach to predict random

signals of a linear system, and that approach has been called the "Kalman filter" [19].

In 1961, R. E. Kalman and R. S. Bucy published a paper in which they solved the

nonlinear differential equation of the Riccati type used in continuous-time domain

[20]. With the rapid rise of computation technology, the Kalman filter has been

extensively studied and developed. A brief yet clear introduction of the theory of the

Kalman filter with some simple examples was carried out in [41].

In this chapter, the theory of Kalman filter would be stated [2]. In general, we

classify the Kalman filter into three parts: the ordinary Kalman filter, the extended

Kalman filter, and the adaptive extended Kalman filter. The ordinary Kalman filter

can be applied to linear system, the extended Kalman filter can tackle with nonlinear

system, and the adaptive extended Kalman filter was developed for specific purpose

such as estimating time-varying parameters or dealing with highly nonlinear systems.



3.1 Ordinary Kalman Filter

State space representation is used in the Kalman filter algorithm; therefore, the com-

mon usages and conventions of this representation are firstly presented. General

speaking, the Kalman filter can be described in two types: discrete type and contin-

uous type. In this section, both of them are derived.

3.1.1 State Space Estimation

Consider a linear discrete-time dynamical system which can be written as

xt+1 = Atxt + Btut (3.1)

where xt+1 and xt are state vectors; ut is an input vector; and At, Bt are transition

matrices. The output measurements of this dynamical system can be represented as

yt = Htxt (3.2)

where Ht is a measurement transition matrix. If a dynamical system is represented

as Equation 3.1 and 3.2, we say it is described in a state space representation.

One radical concept of the Kalman filter is that the state estimation is recursively

corrected by the actual physical system outputs:

St+1 = At.t + Btut + Kt(yt -

t = Htst

(3.3)

(3.4)



where hat means estimation states and Kt is a feedback gain matrix. Figure 3-1

shows the block diagram of Equation 3.3 and 3.4.

Figure 3-1: Block diagram of the Kalman filter.

Now we consider a dynamical system added by a noise term making this system a

random process. Some basic concepts of random process can be found in [5, 28, 14].

xt±1 = Atxt + Btut + Gtwt (3.5)

where wt is process noise and Gt is a process noise transition matrix. When measuring

the responses of a dynamical system, the signals produced by sensors would be con-

taminated by noise due to internal manufacturing defects or external environmental

disturbances. Therefore, the contaminated output measurements can be described as



yt = Htxt + vt

where vt is measurement noise. Note that the Kalman filter assumes every measure-

ment from the physical sensors contains noise; therefore, if measurement noise is zero,

then the Kalman filter collapses. Setting the mean of noise to be zero is a common

practice as shown in Equation 3.7 and 3.8.

E[wt] = 0 (3.7)

E[vt] = 0 (3.8)

The process noise covariance and measurement noise covariance can be expressed as

Cov[w] = E[wtw[ ] (3.9)

Cov [v] = E[vtv[T] (3.10)

where t and s are different time instances. If the noise signals of any two time instances

are uncorrelated, then we call this kind of noise as "white noise." In general, covariance

of process noise and measurement noise is zero:

Cov [w,v] = E[wtv T] = 0

(3.6)

( 3.11)



Since the state variables and output measurements contain process noise and

measurement noise, respectively, the system can be described as a random process.

The deterministic term Btut makes no influence on the state variables in the stochastic

estimation process; therefore, the Btut term could be eliminated during the whole

process without losing generality. Suppose a dynamical system is given by Equation

3.12 and 3.13, and it has the stochastic properties as shown from Equation 3.14

through 3.17.

xt+l = Atxt + Gtwt

Yt = Hext + Vt

(3.12)

(3.13)

E[wt] = E[vt] = 0

0,

Rt,

if t s

if t = S

if t $ S

if t = s

E[wtV] = 0 Vts

where Qt is process noise covariance and Rt is measurement noise covariance. As

E[wtw] = 0
Qt,

E[vtvi] =

(3.14)

(3.15)

(3.16)

(3.17)



mentioned before, the basic assumption of the Kalman filter is that all sensors contain

noise; therefore, matrix Qt is positive semi-definite and matrix Rt is positive definite.

The Kalman filter produces the optimal estimation by minimizing the mean squared

error based on the measurements:

Jt = E[(_i - xt)'(se - Xt)| (3.18)

3.1.2 Discrete Kalman Filter

The discrete Kalman filter provides recursive solutions by minimizing Equation 3.18.

Suppose stit_1 represents a priori state estimation at time t based on &t_1 which is

the state estimation at time t - 1. Then, stit_1 can be expressed as

stit-1 = E[xtlxt 1] (3.19)

By substituting Equation 3.12 into 3.19, we obtain

&tit1 = E[At 1xt- 1 +G 1wt_1]

= At _ 1 t _+ G _1E[wt _] (3.20)

= At_1t 1

Similarly, the output measurements can be derived as

Qt = E[Ht_1 + vt]

= Htit_1 + E[vt] (3.21)

= Htitt 1

The state estimation can be updated in real-time by the predicted error which is the

difference between real and estimated measurements.



(3.22)
Ze= stjt1 + Kt(yt - Q )

= tj|1- + Kt( yt - Htitlt _1)

where Kt is called the Kalman gain. The mean squared error in Equation 3.18 can

be minimized by optimizing the Kalman gain. Figure 3-2 shows the outline of the

Kalman filter.

Real measuremn

State estination

Xt-1

Priori estimation
tIt--1 At~t-1

Predicted ioutput
yt =Htx -

Prediction error

Posteriori estimatio

Rt Xt It-1 + Kt (t -Yt

Figure 3-2: Process flow of the Kalman filter.



Define ct as a priori estimation error and 7> as a posteriori estimation error, namely:

Ct &xtIt 1 - Xt (3.23)

'Yt = t - Xt = xilt-1 + Kt(yt - Qt) - xt

= ( tit1 - xt) - KtHt(stit_1 - xt) + Ktvt

= (I-KtHt)t +Ktvt

(3.24)

As stated before, the optimal estimation is based on minimizing the mean squared

error with respect to the Kalman gain Kt:

Jt = E[Y[7-It]

dJtt= 0
dK

(3.25)

(3.26)

To access this, the following calculation is needed. Note that all terms in Equation

3.27 are symmetric because they are scalar functions.

7 Tyt [(I - KtHt)(t + Ktvt]T [(I - KtHt)Ct + Ktvt]

= (-t + etHt KTKtHtct -2CTKtHtCt

+2cTKtvt - 2vTKf KtHtCt + v[KTKtv

dE[7tFyt] 
0

dK

(3.27)

(3.28)



2E [KtHtEtFTH - K CtHctv - Ktvt(iTHt + KtvtvT + EtV - t Hi] = 0 (3.29)

Note that random variables in Equation 3.29 are only ct and vt; therefore, Kt and Ht

can be factored out when taking expected values.

KtHtE[ct~t|Hf KtHtE[ctvf| - KtE [vtET]H T

KtE[vtvT] + E[Etv[] - E[Ct(T]Ht = 0

Using Equation 3.20 and 3.23, we obtain E[tvf] = E[vte] 0. In addition, define

Ptit_1 as a priori state estimation error covariance:

Ptit_1 = E[(tET] (3.31)

Note that E[ctc ] = E[CT Et] because the former one is a matrix but the later one is a

scalar. Then Equation 3.30 can be rewritten as

(3.32)

Kt = Ptlt_1H[HtPtlt_1Ht+ R] 1 (3.33)

Now, define Pt as a posteriori state estimation error covariance:

Pt = E[7t7]

From Equation 3.24, Pt can be computed as

(3.30)

(3.34)

Kt HtPtt_1H T + Kt Rt - Ptlt-1HtT = 0



Pt = E[((I - KHt)ct + Ktvt)((I - KHt)ct + Kve)T ]

= E[(I - KiHt) jeiT(I - KtHt)T + (I - KtHt)jetvTKf

+Ktvt(eT(I - KtHt)T + KtvtvT Ki] (3.35)

= (I - KtHt)E[ctc T](I - KtHt)T + (I - KtHt)E[EtvT|KT

+KtE[vtcT](I - KtHt)T + KtE [vtvT]K[

We know E[tv[] = E[vtET] = 0; therefore, Equation 3.35 can be rewritten as

Pt = (I - Kt Ht)E tE](I - KtHt)T + KtE [vtvT]K[

(I _Kt~~p tT t(3.36)
= (I - K t 1(I - KtHt)T + KtQtKt

Substituting Equation 3.33 into Equation 3.36 yields

Pt = (I - K1H)Pty_1 (3.37)

In order to produce a recursive form of state estimation error covariance, we aim to

compute the values of Pt+11t.

Pt+11t =E[t+11)

= E[(.t+1it - xt+1)(Xt+lIt - xt+1)T]

= E[(Azt.si - Atxt - Gtwt)(Atst - Atxt - Gtwt)T] (3.38)

= E[(At'yt - Gtwt)(At'yt - Gtwt)T]

= AtE[y[ty7]AT - GtE [wtwT ]GT

Note that E[wty"f] = E[-ytwT] = 0 (can be proved by Equation 3.12). Substituting Pt

and Qt into Equation 3.38, we obtain Pt+11t based on Pt.



Pt+1\t = AtPtA - GtQtG (

Hence, a recursive formula of error covariance Pti 1t- -+ Pt -+ Pt+11t Pt+1 is ob-

tained. A flow chart of the Discrete Kalman filter is shown in Figure 3-3.

Figure 3-3: Flow chart of the discrete Kalman filter.

(3.39)



3.1.3 Continuous Kalman Filter

The continuous Kalman filter, also known as the Kalman-Bucy filter, is used in linear,

continuous-time dynamical system. The state space representation can be described

as

x = Fx +Gw(t)

y = Hx + v(t)

(3.40)

(3.41)

where F and H are state and measurement transition matrices; w(t) and v(t) are

process and measurement noise, which have the following properties:

E[w(t)wT (s)] = Q6(t - s)

E[v(t)vT (s)] = R6(t - s)

(3.42)

(3.43)

E[v(t)w T (s)] = 0 (3.44)

where 6(t - s) is Dirac delta function. Note that Qt and Rt in the discrete Kalman

filter represent noise for a specific time slice, but in the continuous-time domain we

just need to use Q and R to represent noise. Q and R have the relations with Qt and

Rt as [5]



Qt (3.45)

(3.46)R = RtAt

where At is a time interval. Substituting Equation 3.45 and 3.46 into 3.33, we obtain

Kt = AtPtit_ 1H7(AtHtPt1 t_1Hf + R)-1 (3.47)
= AtPtt 1HfR-1 + 0(2)

Note that K = {. Neglecting the higher order terms, K can be rewritten as

K = Ptlt_1HfTR-1 (3.48)

In order to compute the error covariance, substituting Equation 3.45, 3.46, and 3.37

into 3.39 leads to

Pt+ 1 \t = At(I - AtKHt)Pett _1A[ + GtAtQGT (3.49)

Note that At is obtained by eliminating higher order terms as

At = Fxt + 0(2) (3.50)

Xt+1 = (I + FAt)xt + 0(2) (3.51)



At = I+ FAt (3.52)

The error covariance in continuous-time domain can be described by using Equation

3.49 and 3.48:

Pt+1\t = PtIt-1 + AtFPlt-1 + AtPt1 -1 FT - AtKHtPitt-1 + GtAtQG[ (3.53)

P~l - Ptt1Tp RHtttl+GQT
At = FPtit-1 + Plt_1 F - Pi 1 H7R- 1 HPtil 1 + GtQGT (3.54)

Note that for small time intervals, -t ' is the derivative of Pt _. Therefore,

the error covariance in continuous-time domain can be derived as shown in Equation

3.55, and it is also called the Matrix Riccati Equation.

P = FP + PFT - PH T R- 1HP + GtQGtT (3.55)

The Matrix Riccati Equation can be solved by using special techniques such as

Matrix Fraction Decomposition. Compared with the discrete Kalman filter, the con-

tinuous Kalman filter needs higher observability to predict state variables. Hence,

if the error covariance blows up when using the continuous Kalman filter, checking

the observability is needed. Usually, poor observability can be solved by adding ad-

ditional sensors onto the dynamical system. A flow chart of the continuous Kalman

filter is shown in Figure 3-4.



Figure 3-4: Flow chart of the continuous Kalman filter.
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3.2 Extended Kalman Filter

Mathematically, engineers like to describe a physical system using a linear model.

However, if a real system is complicated so that it is difficult to describe the system by

just using a simple linear model, a nonlinear model may be needed [2]. The extension

of the ordinary Kalman filter, called the extended Kalman filter, is developed to

deal with nonlinear system. In general, the extended Kalman filter has two types:

the continuous extended Kalman filter and the continuous-discrete extended Kalman

filter. Both of them will be derived as follows.

3.2.1 Continuous Extended Kalman Filter

In continuous-time form, a nonlinear and differentiable dynamical system is given by

J = f(x, u, t) + w(t) (3.56)

y = h(x, u, t) + v(t) (3.57)

where f(x, u, t) and h(x, u, t) are nonlinear vectors with state vector x and input

vector u; w(t) and v(t) are process noise and measurement noise with the same

stochastic properties as stated in the continuous Kalman filter. Because the input

term u is deterministic and it won't affect the state estimation x under stochastic

process, we can ignore it without loss of generality. An important step of the extended

Kalman filter is to linearize the nonlinear term, and the procedures are described as

below.

Consider x as an actual trajectory in a nonlinear dynamical system; z is a nominal

trajectory with no process noise in the same system. They can be written as



i = f(x, t) + w(t)

= f(±,t) (3.59)

As shown in Figure 3-5, 6x is the discrepancy between the actual trajectory and the

nominal trajectory, and we can describe the relation in a mathematical form:

x = i + 6x (3.60)

State x(t)

Time

Figure 3-5: Actual and nominal trajectory of state estimation in a dynamical system.

Substituting Equation 3.60 into f(x, t) and adopting Taylor expansion, f(x, t) can be

expressed as

f(x, t) = f(z + ox, t)

= f(it)+ -| -x+0(2)
(3.61)

(3.58)



Neglecting the higher order terms of Equation 3.61 and substituting into Equation

3.58 leads to

±(t) = f(.,t) Of
O X 6x +w(t) (3.62)

We know the = z + & and f(z, t) = z'; therefore, Equation 3.62 can be rewritten

as

X + X+
Ox

6X + w(t) (3.63)

Canceling out z on both sides and replacing 6x by x and by F(t), we obtain

a linearized form:

x = F(t)x + w(t) (3.64)

As for linearizing the measurement outputs, similar steps are utilized:

y = h(x, t) + v(t)

p = h(z, t)

y = 9 + 6y

(3.65)

(3.66)

(3.67)

Applying the Taylor expansion to h(x, t) and ignoring the higher order terms, we



obtain

h(x,t) = h(z'+6x,t)

= h(z , t) + ah 6x
(3.68)

Substituting Equation 3.67 and 3.68 into 3.65 leads to

Oh
#+ 6y =+ - x + v(t)Ox -

(3.69)

Canceling out Q on both sides and replacing 6y by y and by H(t), a linearized

form of the measurement outputs is derived

y = H(t)x + v(t) (3.70)

Apparently the linearized form has the same state space representation as that of the

ordinary Kalman filter, but note that F(t) = and H(t) =

H(t) can be described as

Ox

Oh
H (t) = h

ax -

Of,
Oxi

Oh1

19xi

Ohl

axi

Ohm
Oxl

OA.

0x2 Oxn

ax2x

Oxn

F(t) and

(3.71)

(3.72)

Oh,
axn

Ohm
aXn



The extended Kalman filter is derived by linearizing the nonlinear dynamical equa-

tions at current estimation it which can be written as

F(t) -f F(2, t) (3.73)

H(t) H(, t) (3.74)
OX -x=x

Because the measurement outputs will correct the state estimation in real-time,

the estimated trajectory is more accurate than the nominal trajectory as shown in

Figure 3-5. The extended Kalman filter needs to update both state estimation and

error covariance; therefore, all the processes are in real-time. A flow chart of the

extended Kalman filter process is shown in Figure 3-6.

3.2.2 Continuous-Discrete Extended Kalman Filter

Due to the high level of observability required and the complexity of solving the

Riccati Equation, the continuous extended Kalman filter can be simplified as a

continuous-discrete extended Kalman filter. This filter is basically similar to the

ordinary Kalman filter, but the linearizing procedures are added to it. A flow chart

of the continuous-discrete Extended Kalman filter algorithm is shown in Figure 3-7.



Figure 3-6: Flow chat of the extended Kalman filter.
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Update error covariance

T t + 1
Pt+11t = AtPtAT - GtQtGt

Figure 3-7: Flow chat of the continuous-discrete extended Kalman filter.
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3.3 Adaptive Extended Kalman Filter

To identify time-varying structural parameters, applications of the forgetting factor

are widely used throughout different estimation methods. The constant forgetting

factor approach needs a trade-off between noise and accuracy, and sometimes it is

inconvenient for implementation. Therefore, a variable forgetting factor approach

was developed to perform a better estimation. This approach indicates the variance

of parameters, but it fails to point out the exact varying parameter. To overcome

this drawback, Yang et al. [49] proposed a new technique to track the time-varying

parameters.

The idea is minimizing the estimation error by implementing an adaptive factor

so that the filter can accurately track the parameters. The adaptive factor can

be determined using the measurement outputs y. Suppose a residual error e and a

predicted output error e are given by

et+1= yt+1 - h(st+1, t) (3.75)

et+1 = yt+1 - h(,t+11t, t) (3.76)

where the relation between h(s.t+1, t) and h(st+11t, t) can be expressed as

h(st+1, t) = h(st+1p, t) + Ht[&t+1 - st+11t] (3.77)

where Ht+1 is . Substituting Equation 3.22, 3.76, and 3.77 into 3.75; and
axxt+i=xt+1

taking the expected values, we obtain

t+ = (I - Ht+Kt+)E[et+1et+1 ](I - Ht+1Kt+1)T (3.78)



Define S as the predicted error covariance which means St+1 = E[et+1et+1]. Also,

the residual error covariance can be described as Rt+1 (E[et+1lE+1] = E[vt+1V 1

Rt+1). Substituting the Kalman gain of Equation 3.33 into 3.78, the predicted error

covariance can be written as

St+1 = (Ht+1Pt+ut H T+1 + Rt+1)R-,(Ht+1,Pt+tH i 1 + Rt+1 )T (3.79)

Since the error covariance P is composed of the estimation error, Yang et al.

proposed an adaptive error covariance to perform better tracking ability. The adaptive

error covariance can be described in terms of the adaptive factor as

Pt+M1 t = t+1[AtPtit A]@4+1 + GtQtGT (3.80)

where 1 is the adaptive factor matrix. The error covariance involves @; therefore, the

predicted error covariance also involves 1. The ideal adaptive factor matrix is the one

that can provide accurate estimations; therefore, it can be determined by minimizing

an objective function J[Ot(J,)] which is a function of estimated error:

= f(t) -O(t -1) (3.81)
J[Ot(t+i)] = (

i=1 Oi(t - 1)

where 0, is the parameters to be estimated. Minimizing the objective function is the

key in this adaptive filter, but the relation between the predicted error covariance and

the adaptive factor matrix as described in Equation 3.79 has to be satisfied. In other

words, Equation 3.79 provides a condition to determine the adaptive factor matrix.

The condition sometimes is too restrictive to determine the adaptive factor matrix;

hence, a less restrictive condition is applied:



St+1 - (Ht+1±t+1\tHt+1 + Rt+1)Rt+11(Ht+1t+1\t H7i+ Rt+i) <3 (3.82)

where ||e|| is a Frobenius norm and 3 is the allowed error magnitude. To access this

constrained optimization problem, an initial estimate of 4 t+1 is needed. Yang et al.

suggested that 4)t+1 can be a diagonal matrix with unity for known state variables.

For the other diagonal elements (unknown state variables), the initial estimation can

be obtained from

1

= t+1I (3.83)

where #2+1 is a variable forgetting factor and it can be computed from

-Tb + VTy2 - 4TaTc
Ot+1= 2Ta I t+ 1 (3.84)

where Ta = tr[T1Rt1 Tf], T = tr[T1R- 1Tf + T2Re- 1T], and Te = tr[T 2R-1Tf| -

tr[St+1], with T1 = Ht+1At PrtAI Ht+1 and T2 = Ht+1Qt+1 Hi+1 + Rt+1

For estimating the initial adaptive factor matrix and implementing the constrained

condition, the predicted output error covariance St+1 should be evaluated. Similarly,

Yang et al. provided a recursive evaluation for St+1 as

St+1 = Et+1/Ft+1 (3.85)

where Et+1 = et+1ie± +1+ and Ft+1 = 1 ± .+ 5 can be computed from Equation

3.84. The suggested initial values for EO and FO are both zero, and the constant z is

suggested to be within the range of 0 < z < 1.



3.4 Chapter Summary

In this chapter, we put to work the theory of the Kalman filter. The flow charts

presented in each section provide a step by step implementation of different types

of the Kalman filter, which can be adopted for different applications. When dealing

with linear model, the ordinary Kalman filter is robust enough to perform accurate

estimation. But for nonlinear system, the extended Kalman filter is not highly reli-

able. For example, the uncertainty of measurement transition matrix Ht gives rise to

inaccurate residual error so that the residual error fails to correct the state estima-

tion. To date, much research has focused on reducing the uncertainty of the extended

Kalman filter.

In the end of this chapter, an adaptive extended Kalman filter was introduced, and

it is basically a combination of an optimization algorithm and the extended Kalman

filter. The adaptive extended Kalman filter will be widely employed throughout the

simulation part in Chapter 4.



Chapter 4

Numerical Simulation and Results

In this chapter, linear and nonlinear structures with single-degree-of-freedom (SDOF)

and multi-degree-of-freedom (MODF) will be simulated. The input control force is

El Centro earthquake throughout all the simulation cases. The El Centro earthquake

accelerogram is shown in Figure 4-1. The adaptive extended Kalman filter was im-

plemented for estimating constant parameters in nonlinear systems and time-varying

parameters in both linear and nonlinear systems. The E0 , FO, and z in Equation 3.85

were selected to be 0, 0, and 0.5, respectively, for all the simulation cases which uti-

lize the adaptive extended Kalman filter. The tolerance error 5 in Equation 3.82 was

set to be 10-4 and the sampling frequency is 200Hz. Measurements having different

levels of white noise were considered to evaluate the effects of noise on parametric

estimations. Simulation results with different levels of noise covariance were also

presented to determine which noise covariance is the best selection for our models.

Models without adding additional noise, with Signal to Noise Ratio (SNR)=50 noise,

and with SNR=20 noise were performed for all cases. For evaluating the effects of

measurement noise covariance, the process noise covariance was fixed to be 10- 7I

throughout the whole cases. For evaluating the effects of process noise covariance,

the measurement noise covariance was fixed to be 1I.



El Centro Eearthquake (North-South Component)
May 18 1940
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Figure 4-1: El Centro earthquake accelerogram.

4.1 Single-Degree-of-Freedom Model

Both linear and nonlinear elastic structures were considered in this section, and Mat-

lab codes were programmed to perform these simulations. The properties of the

structural models and simulation results were presented as follows.

4.1.1 Linear Elastic Structure

In order to compute the displacements, velocities, and accelerations of a structure

due to a ground excitation (earthquake), the dynamic motion equation of a structure

was implemented in SIMULINK. Consider the motion of equation of a linear SDOF

structure subjected to an earthquake acceleration ag is given by

mi + c± + kx = -mag (4.1)

where m is mass; c is damping coefficient; k is stiffness; and i, i,and x are acceler-

ations, velocities, and displacements, respectively. Equation 4.1 can be described in



state space representation as mentioned in Chapter 3:

S0 I z 0
J=[ k -Tnic]Lj+ a,

x m i m c z-

In our linear SDOF

described as

structural model, the state vector and measured quantity can be

x

k

C

+w(t)
k

iii

-a9 - (X4x 2 + X3Xi)/m

0

0

y = z + a. + v(t) = -(X 4x 2 + x 3 x1)/m + v(t) (4.5)

Note that k and m are the unknown parameters desired to be identified. The struc-

tural properties of the model are shown in Table 4.1.

Table 4.1: Structural properties of the linear SDOF model.
Structural Properties Magnitudes Units

m 500 kg
k 50000 N/m
c 300 Ns/m

Estimated parameters can be obtained by plugging Equation 4.4 and 4.5 into the

(4.2)

(4.3)

(4.4)+w(t)



ordinary Kalman filter algorithm and incorporating initial estimations of state space

variables. The initial estimations of state space variables do not need to be close to

the true values because the Kalman filter can recursively correct the predicted values

and eventually produce the accurate values. Table 4.2 shows the initial estimations

of this model.

Table 4.2: Initial estimations for state parameters of the linear SDOF model.
State parameters Magnitudes Units

x 0 m
1± 0 m/s
k 30000 N/m
c 200 Ns/m

Two tuned noise covariances (measurement noise covariance and process noise

covariance) were selected as shown in Table 4.3. A discussion on influences of different

levels of noise covariances will be followed.

Table 4.3: Noise covariances of the linear SDOF model.
Noise covariances Magnitudes

Measurement 1
Process 10-7I4

The initial selection of the error covariance Polo only effects the convergent speed

[5], and we selected Polo = diag[1, 1, 107, 107] for this case. In order to know the

effects of noise on estimated results, noise of SNR equals to 20 (5% noise) and 50 (2%

noise) were added to the measured acceleration. Due to the high quality of sensors

manufacturing, the nosie produced by sensors is very small; therefore, SNR equals to

20 and 50 are actually overestimated. Figure 4-2 and 4-3 show the estimated values

of stiffness and damping coefficient with different levels of noise.

The results show that the Kalman filter accurately estimates stiffness, but con-

sistently overestimates damping. The reason why the damping coefficient was not

estimated accurately is because the damping in a structure is usually small (3 to 5%)

and this makes it difficult to estimate correctly. Obviously, the Kalman filter can

filter out noise and produce accurate results.



Estimated stiffness and damping coefficient from different levels of noise with

measurement noise covariance R equals to 0.1, 1, 10, 100 and process noise covariance

Q equals to 10-'I4, 10-6I4, 10-I4, 10-84 are presented. Figure 4-4 and 4-5 show the

effects of R on estimating stiffness and damping coefficient for the case of SNR=20;

Figure 4-6 and 4-7 show the results for the case of SNR=50.

Figure 4-8 and 4-9 show the effects of Q on estimated stiffness and damping

coefficient for SNR=20 case. Figure 4-10 and 4-11 show the results for SNR=50

case. It was found that smaller R and Q can produce better estimations and quicker

convergence on both estimated stiffness and damping coefficient.
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Figure 4-2: Comparison of estimated stiffness of the linear SDOF model with different
levels of noise.
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Figure 4-3: Comparison of estimated damping coefficient of the linear SDOF model
with different levels of noise.
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Figure 4-4: Comparison of estimated stiffness with different levels of measurement
noise covariance (R) of the linear SDOF model (SNR=20).
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Figure 4-5: Comparison of estimated damping coefficient with different levels of mea-
surement noise covariance (R) of the linear SDOF model (SNR=20).

6

E
4



X 104

0 5 10 15 20 25
Time (Second)

30 35 40

Figure 4-6: Comparison of estimated stiffness with different levels of measurement
noise covariance (R) of the linear SDOF model (SNR=50).

Figure 4-7: Comparison of estimated damping coefficient with different levels of mea-
surement noise covariance (R) of the linear SDOF model (SNR=50).
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Figure 4-8: Comparison of estimated stiffness with different
covariance (Q) of the linear SDOF model (SNR=20).
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Figure 4-9: Comparison of estimated damping coefficient with different levels of pro-
cess noise covariance (Q) of the linear SDOF model (SNR=20).
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For simulating damage in a structure, a sigmoid function was adopted to illustrate a

sudden change in stiffness. A sigmoid function is a mathematical function which can

be described as

S(t) 1 + e -a(xc) (4.6)

where a controls the slope and c controls the position. Figure 4-12 shows a sigmoid

function with a = -5 and c = 1. Sigmoid functions are differentiable throughout the

function and have either a non-positive or non-negative slope only.

0.8-

0.6-

0.4-

0.2-

0

-0.2
-5 0 5

t

Figure 4-12: Sigmoid function.

A sudden change of stiffness from 50kN/m to 40kN/m was applied to the model.

All the initial settings and selections are same as the model with constant stiffness.

For estimating a sudden change in stiffness, the adaptive extended Kalman filter has

to be implemented.

Figure 4-13 and 4-14 show the results for different levels of noise with the noise

covariance shown in Table 4.3. It was found that the adaptive extended Kalman filter

can track the changing stiffness well, but for the case of SNR=20, there exists slight

instability after the stiffness drops.



Figure 4-15 and 4-16 show the results of different levels of measurement noise

covariance for the case of SNR=20 with Q = 10-7 I4. Figure 4-17 and 4-18 show the

results of different levels of measurement noise covariance for the case of SNR=50

with Q = 10-7 I4. From the figures, we found that for the case of SNR=20, larger

R can produce better estimations, but for the case of SNR=50, noise is too small to

affect the estimated values, as a result, it is not critical to select a particular R value.

Figure 4-19 and 4-20 show the results of different levels of process noise covariance

for the case of SNR=20 with R = 1. Figure 4-21 and 4-22 show the results of different

levels of process noise covariance for the case of SNR=50 with R = 1. The results

reveal that a larger process noise covariance leads to less accurate estimations for

the case of SNR=20. In particular, results from model with Q = 10-5 14 are almost

diverged. It was also found that different values of Q make no difference for SNR=50.

In summary, the ordinary Kalman filter produces the best performances on esti-

mating stiffness and damping coefficient with process noise covariance being 10-8 and

measurement noise covariance being 0.1; the adaptive extended Kalman filter used

for simulating stiffness dropping generates the best performances with process noise

covariance being 10-8 and measurement noise covariance being 100. As expected, a

system with less noise is less affected by noise covariances.
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Figure 4-13: Comparison of estimated stiffness with different levels of noise for the
cases of stiffness dropping of the linear SDOF model.
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Figure 4-14: Comparison of estimated damping coefficient with different levels of
noise for the case of stiffness dropping of the linear SDOF model.
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Figure 4-19: Comparison of estimated stiffness with different levels of process noise
covariance (Q) for the case of stiffness dropping of the linear SDOF model (SNR=20).
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Figure 4-21: Comparison of estimated stiffness with different levels of process noise
covariance (Q) for the case of stiffness dropping of the linear SDOF model (SNR=50).
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Figure 4-22: Comparison of estimated damping coefficient with different levels of
process noise covariance (Q) for the case of stiffness dropping of the linear SDOF
model (SNR=50).
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4.1.2 Nonlinear Elastic Structure

The adaptive extended Kalman filter was implemented to perform parametric esti-

mations for nonlinear elastic model, and the model was designed as

mz + cd + k1x + k2x2 = -ma (4.7)

where m is mass; c is damping coefficient; ki is the stiffness related to linear terms;

and k2 is the stiffness related to nonlinear parts. Equation 4.7 can be written in state

space representation:

0 I x

.i -m-1k1 -m-1c .1[-] .. - -K - (4.8)
0 0 x2 0

- m-1k2 0 :k2 - m a

The state vector and measured output are described as

x X1

X= k1  = X (4.9)

C X5



X2

-a - (x 5x 2 + x 3x 1 + x 4 x1)/mn

0

0

+ w(t)

y = ± + a9 + v(t) = -(x 4x 2 + x3x1 + x4x2)/M + v(t)

(4.10)

(4.11)

The structural properties, initial estimations, and noise covariances are shown in

Table 4.4, 4.5, and 4.6, respectively. The initial selection for the error covariance is

Polo = diag[1, 1, 107, 107, 107].

Table 4.4: Structural properties of the nonlinear SDOF model.
Structural Properties Magnitudes Units

rn 500 kg
k1 50000 N/m
k2 50000 N/m
c 300 Ns/m

Table 4.5: Initial estimations for state parameters of the nonlinear SDOF model.
State parameters Magnitudes Units

x 0 m
1 0 m/s
k1  30000 N/m
k2 30000 N/m
c 200 Ns/m

Table 4.6: Noise covariances of the nonlinear SDOF model.
Noise covariances Magnitudes

Measurement 1
Process 10-7I5

+ W(t) =



Figure 4-23, 4-24, and 4-25 show the estimated stiffness and damping coefficient

of the nonlinear model with noise of SNR=20, noise of SNR=50, and noise free. It

was found that for ki and c, the estimated values are acceptable for all levels of noise.

However, noise with SNR=20 has a significant effect on the estimated k2 leading to

instability. The possible reason for that is because an earthquake consists of different

levels of frequency, and the huge range of frequencies may give rise to inaccurate

parametric estimations.
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Figure 4-23: Comparison of estimated stiffness (ki) of the nonlinear SDOF model
with different levels of noise.
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Figure 4-25: Comparison of estimated damping coefficient of the nonlinear SDOF
model with different levels of noise.



Figure 4-26, 4-27, and 4-28 show the estimated results of different levels of mea-

surement noise covariance for the case of noise with SNR=20 where the process noise

covariance remains 10- . Figure 4-29, 4-30, and 4-31 show the estimated results for

the case of noise with SNR=50. It was found that for the cases of SNR=20 the filter

generates good estimations on ki and damping, but k2 is unacceptable. For the cases

of SNR=50, an arbitrary measurement noise covariance may be applied.

Figure 4-32 through 4-37 illustrates the impacts of different levels of process noise

covariance on the simulated results for the cases of SNR=20 and 50. Similarly, the

Q values are from 10-5 I5 to 10-815 with an interval of 10-15, and the measurement

noise covariance is set to be 1. As shown in the images for the case of SNR=20, a

smaller process noise covariance generates better estimations on ki and damping, but

k2 diverges. For the case of SNR=50, there is no preference selection of process noise

covariance.
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Figure 4-26: Comparison of estimated stiffness (ki) with different levels of measure-
ment noise covariance (R) of the nonlinear SDOF model (SNR=20).
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Figure 4-27: Comparison of estimated stiffness (k2 ) with different levels of measure-
ment noise covariance (R) of the nonlinear SDOF model (SNR=20).
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Figure 4-28: Comparison of estimated damping coefficient with different levels of
measurement noise covariance (R) of the nonlinear SDOF model (SNR=20).
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Figure 4-29: Comparison of estimated stiffness (ki) with
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Figure 4-30: Comparison of estimated stiffness (k2 ) with different levels of measure-
ment noise covariance (R) of the nonlinear SDOF model (SNR=50).
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Figure 4-31: Comparison of estimated damping coefficient with different levels of
measurement noise covariance (R) of the nonlinear SDOF model (SNR=50).
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Figure 4-32: Comparison of estimated stiffness (ki) with different levels of process
noise covariance (Q) of the nonlinear SDOF model (SNR=20).
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Figure 4-33: Comparison of estimated stiffness (k2) with different levels of process
noise covariance (Q) of the nonlinear SDOF model (SNR=20).
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Figure 4-34: Comparison of estimated damping coefficient with different levels of
process noise covariance (Q) of the nonlinear SDOF model (SNR=20).

x 10
4

7
- Esimated value with Q=10~5

6.5- - EstImated value with Q=10-
- Estimated value with Q=10 7

6 - EstImated value with Q=10-8
- True value

5.5
E
z

4.5-

4.

3.5-

3

2.5
0 5 10 15 20 25 30 35 40

Time (Second)

Figure 4-35: Comparison of estimated stiffness (ki) with different levels of process
noise covariance (Q) of the nonlinear SDOF model (SNR=50).



x 10,

0 5 10 15 20 25 30 35 40
Time (Second)

Figure 4-36: Comparison of estimated stiffness (k2 ) with different levels of process
noise covariance (Q) of the nonlinear SDOF model (SNR=50).
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Likewise, a simulated damage in a structure is performed. Stiffness ki in the non-

linear model is dropped from 50kN/m to 40kN/m, and other structural characteristics

remain unchanged. Figure 4-38 through 4-40 shows the results of different levels of

external noise. Obviously, estimated stiffness ki is accurate, estimated damping is

acceptable, but the filter does not work well on estimating stiffness k2 -

Figure 4-41 through 4-46 illustrates the estimated stiffness and damping coefficient

for the noise-added model with different levels of measurement noise covariance where

process noise covariance is fixed to be 10 15. The results show that for the case of

SNR=20, a larger R makes the model more stable; however, estimated stiffness k2 is

diverged for all the selections of R. As for the case of SNR=50, a smaller Q generates

better estimations on stiffness k2. Hence, a smaller Q is preferred for low noise case.

Figure 4-47 through 4-52 presents the effects of different levels of process noise

covariance with fixed R = 1. The results reveal that a smaller process noise covariance

produces better estimations for the case of SNR=20. But for the case of SNR=50,

a larger process noise covariance is preferred because it generates better estimations

on stiffness k2.

To summarize, for both constant and time-varying stiffness cases, process noise

covariance being 10-8 and measurement noise covariance being 100 are the ones per-

forming the best estimations. However, for stiffness related to nonlinear terms, the

proposed filter does not work well.
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Figure 4-38: Comparison of estimated stiffness (ki) with different levels of noise for
the case of stiffness dropping of the nonlinear SDOF model.
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Figure 4-39: Comparison of estimated stiffness (k2 ) with different levels of noise for
the case of stiffness dropping of the nonlinear SDOF model.
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Figure 4-40: Comparison of estimated damping coefficient with different levels of
noise for the case of stiffness dropping of the nonlinear SDOF model.

6.5
- Estimated value with R=0. 1

6 - Estimated value with R=1
- Estimated value with R=10

--- Estimated value with R=100
- True value

-5
E
z

. 4.5 -

0 4

3.5-

3

2.5-

2-
0 5 10 15 20 25 30 35 40

Time (Second)

Figure 4-41: Comparison of estimated stiffness (ki) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear SDOF
model (SNR=20).
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Figure 4-42: Comparison of estimated stiffness (k2) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear SDOF
model (SNR=20).
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Figure 4-44: Comparison of estimated stiffness (ki) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear SDOF
model (SNR=50).

x 10,

- Estimated value with R=0. 1
4. - Estimated value with R=1

- Estimated value with R=10
- Estimated value with R=100

True value

-2 -
E

1 -A

0-

-1

-2

-3-

4
0 5 10 15 20 25 30 35 40

Time (Second)

Figure 4-45: Comparison of estimated stiffness (k2 ) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear SDOF
model (SNR=50).
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Figure 4-47: Comparison of estimated stiffness (ki) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear SDOF model
(SNR=20).
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Figure 4-48: Comparison of estimated stiffness (k2) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear SDOF model
(SNR=20).
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Figure 4-49: Comparison of estimated damping coefficient with different levels of
process noise covariance (Q) for the case of stiffness dropping of the nonlinear SDOF
model (SNR=20).
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Figure 4-50: Comparison of estimated stiffness (ki) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear SDOF model
(SNR=50).
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Figure 4-51: Comparison of estimated stiffness (k2 ) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear SDOF model
(SNR=50).
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Figure 4-52: Comparison of estimated damping coefficient with different levels of
process noise covariance (Q) for the case of stiffness dropping of the nonlinear SDOF
model (SNR=50).

4.2 Multi-Degree-of-Freedom Model

In this section, a three-degree-of-freedom (3DOF) linear model and a two-degree-of-

freedom (2DOF) nonlinear model are considered. The simulation results were carried

out by implementing the adaptive extended Kalman filter to all cases.

4.2.1 Linear Elastic Structure

The motion of equations of a 3DOF linear elastic model, which is an imitation of

a three-story building, subjected to an external excitation can be written in a state

space representation as
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m 0 0 21

0 m 0 z2
0 0 m 2 3

Ci + C2

+ -C 2  C

0

k1 + k2

+ -k 2

0

-C 2  0 i

2 + C 3 -C3 x 2

.C3  C3  - - - (4.12)
-k 2  0 x1 m

k2 +k 3 -k 3  x 2  =-ag m

-k 3 k3 X3 m

where ki, k2, and k3 are the stiffness in the first, second, and third floor, respectively;

likewise, c1 , c2 , and c3 are the damping coefficient in the first, second , and third floor.

The state space representation has the following state vector and measured output:

x 1

X2

±1

X3

C2

ki

k2

ka3

c1

C2

C3

x 1

X2

X3

X4

X5

X6

x7

x8

xlo
X10

X11

X12

(4.13)
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' 2 X 5

3 X6

-ag - (X10 X4 + X7 Xl)/m

2 -ag - (X11X5 + X8X 2 )m

X 3  -ag - (X12 X6 + X9 X3 ) m
$= . + w(t) = +±w(t) (4.14)

k1 0

k2 0

k3 0

61  0
62 0

C3  0

+1 + ag -(X1OX4 + Xil) m

Y = x2 + ag + v(t) = -(X 11 X5 + X8X 2)/m + v(t) (4.15)

x3 +g --(X12X6 + X9X3) m

where k and c are the parameters desired to be estimated. The structural properties,

the initial estimations of the state parameters, and the noise covariances are stated in

Table 4.7, 4.8,and 4.9, respectively. As for the initial error covariance, it was selected

to be P010 = diag[1, 1, 1, 1, 1, 1, 107, 107, 107, 107 107, 107].

Table 4.7: Structural properties of the linear 3DOF model.
Structural Properties Magnitudes Units

rn 500 kg
k1 = k2= k3 50000 N/m
Ci = C2 = C3 300 Ns/m
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Table 4.8: Initial estimations for state parameters of the linear 3DOF model.
State parameters Magnitudes Units

X1=X2=X3 0 m
S1 = 2 = is 3 0 m/s

k= k2 = k3 30000 N/m
C= C2 = C3 200 Ns/m

Table 4.9: Noise covariances of the linear 3DOF model.
Noise covariances Magnitudes

Measurement 113
Process 10-7I12

As shown in Figure 4-53 through 4-58, the adaptive extended Kalman filter gen-

erates an accurate estimation on stiffness, although there is an over estimation on

damping coefficient. It was also found that the model with noise of SNR=20 is less

stable than the others, but it basically gives acceptable estimations.

Figure 4-59 through 4-64 shows the influences of different levels of measurement noise

covariance with fixed process noise covariance Q = 10--7I12 for the system with noise of

SNR=20. As for the case of SNR=50, the results are shown in Figure 4-65 through 4-

70. It was found that for the case of SNR=20, a larger measurement noise covariance

produces better estimations, particularly for estimated k3 and c3 . For the case of

SNR=50, it seems there is no significant difference using different values of R.

Figure 4-71 through 4-76 illustrates the influences of different levels of process noise

covariance with fixed measurement noise covariance R = 113 for the system with

noise of SNR=20; Figure 4-77 through 4-82 shows the results for the case of SNR=50.

Obviously, a larger process noise covariance results in better estimations, especially

for estimating k3 , c2 , and c3 . For the case of SNR=50, influences due to different

levels of process noise covariance is inconspicuous.
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Figure 4-55: Comparison of estimated stiffness (k3) of the linear 3DOF model with
different levels of noise.
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Figure 4-56: Comparison of estimated damping coefficient (c1) of the linear 3DOF
model with different levels of noise.
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Figure 4-57: Comparison of estimated damping coefficient (c2) of the linear 3DOF
model with different levels of noise.
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Figure 4-58: Comparison of estimated damping coefficient (c3) of the linear 3DOF
model with different levels of noise.
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Figure 4-59: Comparison of estimated stiffness (ki) with different levels of measure-
ment noise covariance (R) of the linear 3DOF model (SNR=20).
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Figure 4-60: Comparison of estimated stiffness (k2) with different levels of measure-
ment noise covariance (R) of the linear 3DOF model (SNR=20).
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Figure 4-61: Comparison of estimated stiffness (k3) with different
ment noise covariance (R) of the linear 3DOF model (SNR=20).
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Figure 4-63: Comparison of estimated damping coefficient (c2)
of measurement noise covariance (R) of the linear 3DOF model
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Figure 4-64: Comparison of estimated damping coefficient (c3) with different levels
of measurement noise covariance (R) of the linear 3DOF model (SNR=20).
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Figure 4-65: Comparison of estimated stiffness (ki) with different levels of measure-
ment noise covariance (R) of the linear 3DOF model (SNR=50).
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Figure 4-66: Comparison of estimated stiffness (k2) with different levels of measure-
ment noise covariance (R) of the linear 3DOF model (SNR=50).
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Figure 4-67: Comparison of estimated stiffness (k3 ) with different levels of measure-
ment noise covariance (R) of the linear 3DOF model (SNR=50).
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Figure 4-68: Comparison of estimated damping coefficient (c1) with different levels
of measurement noise covariance (R) of the linear 3DOF model (SNR=50).
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Figure 4-70: Comparison of estimated damping coefficient (c3) with different levels
of measurement noise covariance (R) of the linear 3DOF model (SNR=50).
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Figure 4-71: Comparison of estimated stiffness (ki) with different levels of process
noise covariance (Q) of the linear 3DOF model (SNR=20).
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Figure 4-72: Comparison of estimated stiffness (k2 ) with different
noise covariance (Q) of the linear 3DOF model (SNR=20).
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Figure 4-73: Comparison of estimated stiffness (k3 ) with different levels of process
noise covariance (Q) of the linear 3DOF model (SNR=20).
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Figure 4-74: Comparison of estimated damping coefficient (c1) with
of process noise covariance (Q) of the linear 3DOF model (SNR=20).
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Figure 4-75: Comparison of estimated damping coefficient (c2) with different levels
of process noise covariance (Q) of the linear 3DOF model (SNR=20).
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Figure 4-76: Comparison of estimated damping coefficient (c3) with different levels
of process noise covariance (Q) of the linear 3DOF model (SNR=20).
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Figure 4-77: Comparison of estimated stiffness (ki) with different levels of process
noise covariance (Q) of the linear 3DOF model (SNR=50).
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Figure 4-78: Comparison of estimated stiffness (k2 ) with different levels of process
noise covariance (Q) of the linear 3DOF model (SNR=50).
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Figure 4-79: Comparison of estimated stiffness (k) with different
noise covariance (Q) of the linear 3DOF model (SNR=50).
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Figure 4-80: Comparison of estimated damping coefficient (ci) with different levels
of process noise covariance (Q) of the linear 3DOF model (SNR=50).
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Figure 4-81: Comparison of estimated damping coefficient (c2) with
of process noise covariance (Q) of the linear 3DOF model (SNR=50).
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Figure 4-82: Comparison of estimated damping coefficient (c3) with
of process noise covariance (Q) of the linear 3DOF model (SNR=50).
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For simulating damage occurrence in a real structure, the stiffness in the first

floor (ki) and in the third floor (k3) are designed to be dropped from 50 kN/m to

40 kN/m in our model. Other initial selections and settings are same as those in the

non-dropped case.

Figure 4-83 through 4-88 illustrates the estimated results of different external noise

levels. It was found that models with lower noise generate accurate estimations. One

thing deserved to be mentioned is that there exists a little jump at around 20 second

for estimated k2 , c1 , c2 , c3 , which means the unchanged parameters reveal that other

parameters are altered in the system.

Figure 4-89 through 4-94 exhibits the effects of different levels of measurement

noise covariance on the simulation results with fixed process noise covariance Q =

10--112 for the model with noise of SNR=20. Figure 4-95 through 4-100 shows the

effects for the case of SNR=50. As expected, a larger R produces better estimations

for the case of SNR=20, and there is no conspicuous difference for the case of SNR=50.

Likewise, the influences of process noise covariance were evaluated with fixed inea-

surement noise covariance R = 113, and the results are shown in Figure 4-101 to 4-112.

Figure 4-101 to 4-106 is for the case of model with noise of SNR=20, and Figure 4-107

to 4-112 is for the case of model with SNR=50. The results show that a smaller Q
provides a more stable parametric estimation for the case of SNR=20. As for the case

of SNR=50, the estimated parameters are rarely distinct.

To sum up, process noise covariance being 10 8 and measurement noise covari-

ance being 100 are the preferred choice for both constant and time-varying stiffness

cases. Although R=100 converges slower than other values, overall, it results in better

estimations.
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Figure 4-84: Comparison of estimated stiffness (k2 ) with
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Figure 4-85: Comparison of estimated stiffness (k3 ) with different levels of noise for
the case of stiffness dropping of the linear 3DOF model.
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Figure 4-86: Comparison of estimated damping coefficient (c1) with different levels
of noise for the case of stiffness dropping of the linear 3DOF model.
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Figure 4-87: Comparison of estimated damping coefficient (c2) with different levels
of noise for the case of stiffness dropping of the linear 3DOF model.

0 5 10 15 20 25
Time (Second)

30 35 40

Figure 4-88: Comparison of estimated damping coefficient (c3 ) with different levels
of noise for the case of stiffness dropping of the linear 3DOF model.
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Figure 4-89: Comparison of estimated stiffness (ki) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the linear 3DOF model
(SNR=20).
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Figure 4-90: Comparison of estimated stiffness (k2) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the linear 3DOF model
(SNR=20).
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Figure 4-91: Comparison of estimated stiffness (k3) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the linear 3DOF model
(SNR=20).
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Figure 4-92: Comparison of estimated damping coefficient (ci) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the linear
3DOF model (SNR=20).
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Figure 4-93: Comparison of estimated damping coefficient (c2) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the linear
3DOF model (SNR=20).
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Figure 4-94: Comparison of estimated damping coefficient (c3) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the linear
3DOF model (SNR=20).
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Figure 4-95: Comparison of estimated stiffness (ki) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the linear 3DOF model
(SNR=50).

X 104
7

- Estimated value wt R=O. 1
6.5 - Estimated value with R=1

- Estimated value with R=1.
- Estimated value with R=100

6 -True value

5.5 --

T(oe (Sc-d

35-
4.5 

-

3.5-

0 5 10 15 20 25 30 35 40
Time (Second)

Figure 4-96: Comparison of estimated stiffness (k2) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the linear 3DOF model
(SNR=50).
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Figure 4-97: Comparison of estimated stiffness (k3) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the linear 3DOF model
(SNR=50).
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Figure 4-98: Comparison of estimated damping coefficient (ci) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the linear
3DOF model (SNR=50).

129

Now

- i LIUL),



5000

4000

3000

2000

-10001-

200 5 10 15 20 25 30 35 40
Time (Second)

Figure 4-99: Comparison of estimate
of measurement noise covariance (R)
3DOF model (SNR=50).
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Figure 4-100: Comparison of estimated damping coefficient (c3) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the linear
3DOF model (SNR=50).
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Figure 4-102: Comparison of
noise covariance (Q) for the
(SNR=20).

estimated stiffness (k2) with different levels of process
case of stiffness dropping of the linear 3DOF model
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Figure 4-103: Comparison of
noise covariance (Q) for the
(SNR=20).
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Figure 4-104: Comparison of estimated damping coefficient (c1) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the linear 3DOF
model (SNR=20).
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Figure 4-105: Comparison of estimated damping coefficient (c2) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the linear 3DOF
model (SNR=20).
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Figure 4-106: Comparison of estimated damping coefficient (c3) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the linear 3DOF
model (SNR=20).
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Figure 4-107: Comparison of
noise covariance (Q) for the
(SNR=50).
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Figure 4-108: Comparison of
noise covariance (Q) for the
(SNR=50).

estimated stiffness (k2) with different levels of process
case of stiffness dropping of the linear 3DOF model
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Figure 4-109: Comparison of
noise covariance (Q) for the
(SNR=50).
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Figure 4-110: Comparison of estimated damping coefficient (c1) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the linear 3DOF
model (SNR=50).
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Figure 4-111: Comparison of estimated damping coefficient (c2) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the linear 3DOF
model (SNR=50).
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Figure 4-112: Comparison of estimated damping coefficient (c3 ) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the linear 3DOF
model (SNR=50).
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4.2.2 Nonlinear Elastic Structure

In this section, a 2DOF nonlinear elastic structure is considered, and the adaptive

Kalman filter was implemented to estimate stiffness and damping coefficient. The

designed nonlinear model subjected to an earthquake excitation can be described in

state space representation as

C[ + c 2 -c 2 i 1 kr + k21 -k21  X 1
-C 2  C2 I 2 -k21  k21 I (x2 j

JL J.L- L (4.16)k12 -k22 x{ 2m

+ 0 k22 (X2 - X1)2 mna

where k1u and k21 represent the stiffness for the first floor and the second floor; k12

and k2 2 are the stiffness in the first floor and the second floor related to nonlinear

terms; ci and c2 are the damping coefficient for the first floor and the second floor.

The state vector and measured output are defined as

x1

X2

X3

X4

X5

X6

X7

X8

x9

x10

(4.17)
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kl

k12

k21

k22

61

X2

i2i + g

X3

X4
242

-ag - [X9X3 - X1O(X4 - X3 ) i X5X1 + X6X1

-X 7 (X2 - X1) - X8 (X2 -- X) 2]/r

- ag - [XlO(X4 - X3 ) ± X7(X2 - X1)

X8 (X2 -- 2 2

0

0

0

0

0

0

~ [X 9X3 - X10 (X4 - X3) + X5X1 ± X6x$

-X7(X2 - X1 ) - X8 (X2 -- X1) 2]/

~ X10 (X4 - X3) + X7(X2 - X1 )

+X8(X2 - X) 2 ] /rn

(4.18)

(4.19)

Note that k and c are the parameters desired to be estimated. The structural prop-

erties, the initial estimations of the state parameters, and the noise covariances are

stated in Table 4.10,4.11, and 4.12, respectively. The initial selection of the error

covariance in this model is Po0 = diag[1, 1, 1, 1, 10- 7, 10-7, 10-7, 10 7, 10-7, 10-7].

Table 4.10: Structural properties of the nonlinear 2DOF model.
Structural Properties Magnitudes Units

m 1000 kg
kn = k12  100000 N/m
k21 60000 N/m
k22 50000 N/m
Ci = C2 = C3 1000 Ns/m
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Table 4.11: Initial estimations for state parameters of the nonlinear 2DOF model.
State parameters Magnitudes Units

X1 X2 0 m
'1 = 52 0 m/s
kn= k12 50000 N/m
k21 20000 kN/m
k22 20000 kN/rm
Ci = C2 500 Ns/m

Table 4.12: Noise covariances of the nonlinear 2DOF model.
Noise covariances Magnitudes

Measurement 112
Process 10-7I10

Figure 4-113 to 4-118 shows the estimated stiffness and damping coefficient under

different levels of noise. It was observed that the adaptive extended Kalman filter

generates much more stable estimations for the case with low noise than it with high

noise, especially for estimating nonlinear terms k12 and k22 .

Figure 4-119 through 4-124 shows the influences of different levels of measure-

ment noise covariance with fixed process noise covariance Q = 10-'I10 for the system

with noise of SNR=20. The estimated parameters reveal that a larger value of mea-

surement noise covariance produces better estimations. Figure 4-125 through 4-130

illustrates the results for the case of SNR=50. The results show that the proposed

filter works better for low noise-added case and R is less sensitive compared with the

case of SNR=20.

Figure 4-131 through 4-136 shows the influences of different levels of process noise

covariance on estimations with fixed measurement noise covariance R = 112 for the

model with noise of SNR=20. Figure 4-137 through 4-142 illustrates the results for

the case of model with SNR=50 noise. As shown in the figures, a smaller selection

of process noise covariance results in better estimations for the case of model with

SNR=20 noise. As for the model with SNR=50 noise, Q has no influence on the

estimated parameters.
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Figure 4-114: Comparison of
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Figure 4-115: Comparison of estimated stiffness (k2 l)

with different levels of noise.
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Figure 4-116: Comparison of estimated stiffness (k22 ) of the nonlinear 2DOF model
with different levels of noise.
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Figure 4-118: Comparison of estimated damping coefficient (c2) of the nonlinear
2DOF model with different levels of noise.
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Figure 4-119: Comparison
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of estimated stiffness (kuj) with different levels of measure-
of the nonlinear 2DOF model (SNR=20).
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Figure 4-120: Comparison of estimated stiffness (k12 ) with different levels of measure-
ment noise covariance (R) of the nonlinear 2DOF model (SNR=20).
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Figure 4-121: Comparison of estimated stiffness (k21 ) with different levels of measure-
ment noise covariance (R) of the nonlinear 2DOF model (SNR=20).
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Figure 4-122: Comparison of estimated stiffness (k22 ) with different levels of measure-
ment noise covariance (R) of the nonlinear 2DOF model (SNR=20).
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Figure 4-124: Comparison of estimated damping coefficient (c2) with different levels
of measurement noise covariance (R) of the nonlinear 2DOF model (SNR=20).
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Figure 4-125: Comparison
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Figure 4-126: Comparison of estimated stiffness (k 2) with different levels of measure-
ment noise covariance (R) of the nonlinear 2DOF model (SNR=50).
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Figure 4-127: Comparison of estimated stiffness (k2j) with different levels of measure-
ment noise covariance (R) of the nonlinear 2DOF model (SNR=50).
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Figure 4-128: Comparison of estimated stiffness (k22 ) with different levels of measure-
ment noise covariance (R) of the nonlinear 2DOF model (SNR=50).
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Figure 4-129: Comparison of estimated damping coefficient (c1) with different levels
of measurement noise covariance (R) of the nonlinear 2DOF model (SNR=50).
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Figure 4-130: Comparison of estimated damping coefficient (c2) with different levels
of measurement noise covariance (R) of the nonlinear 2DOF model (SNR=50).
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Figure 4-131: Comparison of estimated stiffness (kuj) with different levels of process
noise covariance (Q) of the nonlinear 2DOF model (SNR=20).
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Figure 4-132: Comparison of estimated stiffness (k12) with different levels of process
noise covariance (Q) of the nonlinear 2DOF model (SNR=20).
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Figure 4-133: Comparison of estimated stiffness (k21) with different levels of process

noise covariance (Q) of the nonlinear 2DOF model (SNR=20).
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Figure 4-134: Comparison of estimated stiffness (k22) with different levels of process
noise covariance (Q) of the nonlinear 2DOF model (SNR=20).
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Figure 4-135: Comparison of estimated damping coefficient (ci) with different levels
of process noise covariance (Q) of the nonlinear 2DOF model (SNR=20).
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Figure 4-136: Comparison of estimated damping coefficient (c2) with different levels
of process noise covariance (Q) of the nonlinear 2DOF model (SNR=20).
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Figure 4-137: Comparison of estimated stiffness (k11) with different levels of process
noise covariance (Q) of the nonlinear 2DOF model (SNR=50).
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Figure 4-138: Comparison of estimated stiffness (k12) with different levels of process
noise covariance (Q) of the nonlinear 2DOF model (SNR=50).
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Figure 4-139: Comparison of estimated stiffness (k21 ) with different levels of process
noise covariance (Q) of the nonlinear 2DOF model (SNR=50).
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Figure 4-140: Comparison of estimated stiffness (k22) with different levels of process
noise covariance (Q) of the nonlinear 2DOF model (SNR=50).
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Figure 4-141: Comparison of estimated damping coefficient (c1) with different levels
of process noise covariance (Q) of the nonlinear 2DOF model (SNR=50).
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Figure 4-142: Comparison of estimated damping coefficient (c2) with different levels
of process noise covariance (Q) of the nonlinear 2DOF model (SNR=50).
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Likewise, estimations of structural parameters of a system with sudden stiffness

change were carried out. The stiffness in first floor was designed to drop from 100

kN/m to 80kN/m. The structural parameters, initial values, and noise covariance are

same as those in the non-dropped model. Figure 4-143 to 4-148 shows the estimated

stiffness and damping coefficient under different external noise levels. It can be found

that the proposed filter has the ability to pick up the stiffness and damping coefficient;

however, the system with SNR=20 noise does not work well for estimating k1 2 and

k22.

Figure 4-149 through 4-154 shows the comparison of estimated results under dif-

ferent levels of measurement noise covariance with fixed process noise covariance

Q = 10-7I10 for the model having SNR=20 noise. Figure 4-155 through 4-160 illus-

trates the results for the case of model with SNR=50 noise. As shown in the figures,

a larger measurement noise covariance generates better estimations for the case of the

system with SNR=20 noise, but for the system with SNR=50 noise, no significant

influence caused by process noise covariance was found.

Figure 4-161 through 4-166 shows the comparison of estimated results under dif-

ferent levels of process noise covariance with fixed measurement noise covariance

R = 112 for the model having SNR=20 noise. Figure 4-167 through 4-172 illustrates

the results for the model with SNR=50 noise. The figures reveal that the model with

SNR=20 noise is sensitive to the selection of process noise covariance and the sug-

gested selection is a small value to Q. The Low noise-added system performs better

estimations showing that it is less sensitive to Q so that an arbitrary value of Q can

be applied.

In summary, process noise covariance and measurement noise covariance being

10-8 and 100, respectively, result in the best estimations, for both constant and

time-varying stiffness cases. However, the proposed filter fails to accurately estimate

stiffness related to nonlinear terms.
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Figure 4-143: Comparison of estimated stiffness (kul) with different levels of noise for
the case of stiffness dropping of the nonlinear 2DOF model.
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Figure 4-144: Comparison of estimated stiffness (k 2) with different levels of noise for
the case of stiffness dropping of the nonlinear 2DOF model.
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Figure 4-145: Comparison of estimated stiffness (k21) with different
the case of stiffness dropping of the nonlinear 2DOF model.
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Figure 4-146: Comparison of estimated stiffness (k22 ) with different levels of noise for
the case of stiffness dropping of the nonlinear 2DOF model.
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Figure 4-147: Comparison of estimated damping coefficient (ci) with different levels
of noise for the case of stiffness dropping of the nonlinear 2DOF model.
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Figure 4-148: Comparison of estimated damping coefficient (c2) with different levels
of noise for the case of stiffness dropping of the nonlinear 2DOF model.
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Figure 4-149: Comparison of estimated stiffness (kii) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear 2DOF
model (SNR=20).
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Figure 4-150: Comparison of estimated stiffness (k12 ) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear 2DOF
model (SNR=20).
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Figure 4-151: Comparison of estimated stiffness (k2 ) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear 2DOF
model (SNR=20).
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Figure 4-152: Comparison of estimated stiffness (k22) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear 2DOF
model (SNR=20).
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Figure 4-153: Comparison of estimated damping coefficient (c1) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the nonlinear
2DOF model (SNR=20).

0 5 10 15 20 25 30 35 40
Time (Second)

Figure 4-154: Comparison of estimated damping coefficient (c2) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the nonlinear
2DOF model (SNR=20).
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Figure 4-155: Comparison of estimated stiffness (kuj) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear 2DOF
model (SNR=50).
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Figure 4-156: Comparison of estimated stiffness (k12 ) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear 2DOF
model (SNR=50).
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Figure 4-157: Comparison of estimated stiffness (k21) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear 2DOF
model (SNR=50).
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Figure 4-158: Comparison of estimated stiffness (k22 ) with different levels of measure-
ment noise covariance (R) for the case of stiffness dropping of the nonlinear 2DOF
model (SNR=50).

163

x 10"

- Esimated value with R0. 1
- Estimated value with R=.1

8-- Estimated value with R=10
---- Estimated value with R=100

7 - True value

- Estimated value with R=0. 1
- Estimated value with R=1
- EsUmated value with R=10

- Estimated value with R=100 -
True value



i rue vaue
S5000-

4000-

3000

2000
C

E 1000

0-

-1000-

20000 5 10 15 20 25 30 35 40
Time (Second)

Figure 4-159: Comparison of estimated damping coefficient (c1) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the nonlinear
2DOF model (SNR=50).
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Figure 4-160: Comparison of estimated damping coefficient (c2) with different levels
of measurement noise covariance (R) for the case of stiffness dropping of the nonlinear
2DOF model (SNR=50).
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Figure 4-161: Comparison of estimated stiffness (kul) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear 2DOF model
(SNR=20).
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Figure 4-162: Comparison of estimated stiffness (k12 ) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear 2DOF model
(SNR=20).
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Figure 4-163: Comparison of estimated stiffness (k21) with different levels of process

noise covariance (Q) for the case of stiffness dropping of the nonlinear 2DOF model

(SNR=20).

Figure 4-164: Comparison of estimated stiffness (k22) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear 2DOF model
(SNR=20).
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Figure 4-165: Comparison of estimated damping coefficient (c1) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the nonlinear
2DOF model (SNR=20).
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Figure 4-166: Comparison of estimated damping coefficient (c2) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the nonlinear
2DOF model (SNR=20).
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Figure 4-167: Comparison of estimated stiffness (kuj) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear 2DOF model
(SNR=50).
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Figure 4-168: Comparison of estimated stiffness (k12) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear 2DOF model
(SNR=50).
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Figure 4-169: Comparison of estimated stiffness (k21 ) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear 2DOF model
(SNR=50).
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Figure 4-170: Comparison of estimated stiffness (k22) with different levels of process
noise covariance (Q) for the case of stiffness dropping of the nonlinear 2DOF model
(SNR=50).
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Figure 4-171: Comparison of estimated damping coefficient (c1) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the nonlinear
2DOF model (SNR=50).
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Figure 4-172: Comparison of estimated damping coefficient (c2) with different levels
of process noise covariance (Q) for the case of stiffness dropping of the nonlinear
2DOF model (SNR=50).
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4.3 Chapter Summary

The application of the Kalman filter was carried out in this chapter. We implemented

the ordinary Kalman filter to estimate the constant structural parameters of a linear

SDOF dynamical system, and from the results, it was found that the stiffness is accu-

rately estimated, but there exists a slight overestimation on the damping coefficient.

The adaptive extended Kalman filter was utilized to perform estimations on time-

varying parameters in a linear and nonlinear structural system. The results reveal

that the proposed algorithm works well on estimating linear-related parameters for

the dynamical system which has lower level of noise.
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Chapter 5

Conclusion and Outlook

Based on the simulation results in Chapter 4, conclusions of this these work were car-

ried out in this chapter along with recommendations on selection appropriate tunable

noise covariance. The possible direction for further works related to this research is

stated at the end.

5.1 Conclusion

Structural engineers are always taking safety as the primary and most important

concern when designing a structure. Not only because civil structures provide living

spaces and shelter humans from extreme events, but also because they are involved in

the economics and environmental issues. A structure which has self-diagnosis function

to provide information about its health condition is desired. To that end, many

algorithms were proposed to perform system identification and damage detection

in real-time. In this research, an adaptive extended Kalman filter was adopted to

evaluate the health of structures. After implementing the proposed algorithm, some

conclusions were found as fellows:

* The ordinary Kalman filter works well on estimating constant stiffness in linear

structure, but there is a slight overestimation on the damping coefficient. Fortu-

nately, damping is not important when detecting possible damage in structures.
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" The adaptive extended Kalman filter is a technique to estimate structural pa-

rameters for nonlinear systems and for the system with stiffness change. This

method can successfully predict stiffness from low noise-contaminated (2% noise

in our case) data. But similarly, it only provides acceptable estimated damping.

The simulation results also reveal that this mothod can not provide accurate

estimations on parameters related to nonlinear terms.

" High noise-contaminated (5% in our case) data result in inaccurate estimations

and a possible reason is because the broad frequency range of the input forces.

" For the cases of simulating damage in a structure, constant parameters have a

slight jump when damage occurs. This little jump indicates that some structural

parameters may be changed.

" When using the ordinary Kalman filter, the measurement noise covariance and

process noise covariance are suggested to be small like on the order of R = 10-1I

and Q = 10-81.

" The measurement noise covariance and process noise covariance are suggested

to be on the order of 1021 and 10-8I for nonlinear systems and systems with

time-varying parameters. But for low noise-contaminated system, the noise

covariances could be arbitrary numbers.

5.2 Outlook

This section describes future research work relating to the Kalman filter. Accurate

estimations rely on the stability of the Kalman filter so that this issue has received

attention for a long time. . An incorrect observed measurement will lead to inaccurate

estimations, as a result, the estimated parameters can not reflect the true structural

behavior. Therefore, making sure the observed outputs are always correct is an issue

that requires further research.

This thesis provides a technique to narrow the possible damage locations from
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global to local; therefore, in order for the filter to provide accurate results, the lo-

cal damage detection algorithms should also be to be sufficiently accurate. Existing

techniques mostly work for determinate structures only, but civil structures are in-

determinate in reality. A complete strategy for detecting damage in a large-scale

indeterminate structure is always desired.
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