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ABSTRACT

Traditional cancer treatment strategies include systemic chemotherapy, external beam
radiation, and surgical excision. Chemotherapy is nonspecific, and targets all rapidly
dividing cells. External beam radiation and surgery only target known cancer sites.
However, targeted therapeutics, such as antibodies, will bind to all cancer cells that
express the targeted antigen, including small metastases that are invisible by current
imaging technology. In the past decade, nine antibodies have been approved for the
treatment of cancer and are demonstrating moderate success in the clinic. Some of these
antibodies have intrinsic toxic effects and block the interaction of growth factors or
induce cell death. Other antibodies are conjugated to drugs, toxins, or radioactive
isotopes. Unfortunately, antibodies exhibit slow clearance from the body and exposure of
healthy tissues to toxins or radiation can result in undesirable side effects that limit the
doses that can be safety administered to the patient.

We have used rational engineering design and mathematical modeling to develop a
novel pretargeted radioimmunotherapy (PRIT) approach for the treatment of cancer. In
PRIT, a bifunctional antibody is administered and allowed to bind to a cancer antigen.
After sufficient tumor uptake of the antibody, a small molecule carrying a radionuclide is
administered and captured by the pretargeted antibody while unbound molecules clear
rapidly from the body. PRIT combines the high binding specificity of antibodies with the
rapid clearance properties of small molecules. We have identified a small molecule metal
chelate, DOTA, which exhibits rapid whole-body clearance and that has demonstrated
safety in humans. We engineered a high-affinity antibody fragment specific to DOTA
and subsequently engineered a novel bispecific antibody (bsAb) construct with specificity
for both DOTA and carcinoembryonic antigen (CEA). The bsAb exhibits retention of
parental affinities, in vivo stability, and tumor targeting. The engineered PRIT approach
was tested in a mouse tumor model and demonstrates excellent DOTA capture at the site
of the tumor with the best 48 hour tumor to blood and tumor to kidney ratios reported to
date for CEA targeting. The PRIT approach developed here can be easily applied to other
disease targets and has the potential to impact clinical cancer radioimmunotherapy.
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CHAPTER 1. INTRODUCTION

1. INTRODUCTION

1.1. Antibodies in Cancer Treatment

Traditional cancer treatment strategies include chemotherapy, external beam radiation

and surgical excision. Chemotherapy is nonspecific and targets all rapidly dividing cells

resulting in undesirable side effects. In addition, tumors can become resistant to

chemotherapy. External beam radiation and surgery are only able to target known tumor

sites, and will miss undetectable metastases. In the past decade, the development of

targeted antibody therapeutics has demonstrated significant improvements in cancer

treatment, increasing the number of patient responses to treatment for several types of

cancer (Hudson and Souriau 2003; Nayeem and Khan 2006; Tassev and Cheung 2009;

Weiner et al. 2009).

Antibodies are proteins made by the immune system to target foreign pathogens.

Each antibody is highly specific for a particular antigen or target. Antibodies can be

engineered with specificity to surface receptors on cancer cells. These antibodies can

either be naked or conjugated to drugs, toxins, or radioactive metal atoms. Naked

antibodies can target cancer cells for recognition and destruction by the immune system

(Iannello and Ahmad 2005). Naked antibodies can also block the interaction of growth

factors and signaling molecules with cancer cell receptors, reducing proliferation and

metastasis (Capdevila et al. 2009). Unfortunately, similar to chemotherapy, cancer can

become resistant to antibody therapy over time and certain aggressive forms of cancer

show no response at all (Garber 2003; Hopper-Borge et al. 2009).

There are current efforts to conjugate tumor-targeting antibodies to

chemotherapeutics, toxins, and radioisotopes. It is believed that antibody-mediated

delivery of these substances will increase tumor toxicity and decrease normal tissue

toxicity. Most chemotherapeutics and toxins need to be delivered to the cytoplasm of a

cell to induce cell death. This requires the targeting of each individual cancer cell, a

relatively daunting task due to tumor vascular heterogeneity, high tumor pressure limiting

convection, and non-functional and transiently-functional blood vessels. Therapeutic
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radioisotopes, however, have path lengths on the order of 10 to 1000 cell diameters

(Cutler et al. 2000) and therefore not every cell would require antibody targeting in order

to deliver cytotoxic doses of ionizing radiation to the entire tumor. Therapy using

radioisotope-conjugated antibodies, or radioimmunotherapy, is thus a very active area of

research.

1.2. Radioimmunotherapy

Ibritumomab tiuxetan and tositumomab are two radioimmunotherapy agents currently

approved by the FDA for the treatment of certain types of Non-Hodgkin's lymphoma.

These agents are both radioisotope-conjugated antibodies specific to the cell surface

antigen CD20 and have demonstrated patient responses in CD20-positive B-cell Non-

Hodgkin's lymphoma when chemotherapy and rituximab, a naked antibody, fail (Homing

et al. 2005; Park and Press 2007). However, despite the clinical responses to ibritumomab

tiuxetan and tositumomab, most chemotherapy- and rituximab-resistant patents relapse

and die.

The radioactive dose that can be delivered to a tumor is limited by the dose-limiting

organ. In radioimmunotherapy of Non-Hodgkin's lymphoma, the bone marrow is the

dose-limiting organ due to the radiosensitivity of bone marrow and long antibody

circulation times in the blood, resulting in significant blood cumulative activity. In

addition, low levels of CD20 expression have been observed in marrow, and marrow

involvement occurs in some patients. A time course of radioimmunotherapy imaging of a

patient with Non-Hodgkin's lymphoma is shown in Figure 1.1. Note the high activity in

the heart and large blood vessels at early times indicating high blood activity. The tumor

is not visible above background until after several days. It is thought that if the

administered radioactivity could be cleared faster from non-tumor tissues, higher doses

could be administered, higher tumor radioactive doses could be achieved, and

significantly more cancer cures would be observed in the clinic.



CHAPTER 1. INTRODUCTION

Heart Tumor
Spleen

Liver

Large Blood
Vessel

Radionuclide
lh * 4h l d * 3d * 6d *

Figure 1.1 Radioimmunotherapy. A schematic of a radioimmunotherapy agent (left) and a
radioimmunotherapy imaging time course of a Non-Hodgkin's lymphoma patient (right). Figure courtesy
of Dr. Tony Parker.

In addition to improving treatment for Non-Hodgkin's lymphoma, a blood cancer,

higher tumor radioactive doses may allow radioimmunotherapy to successfully treat solid

tumors. Solid tumors are significantly more challenging to treat with antibody-based

technology, due to high intra-tumoral pressure (Baxter and Jain 1989) resulting in

transport limitations of the antibody crossing the capillary wall (Thurber et al. 2008).

Because of the low permeability coefficient of antibodies across the vasculature, large

antibody concentrations are needed to obtain sufficient solid tumor penetration. Systemic

exposure of healthy tissues to radiation due to the slow antibody plasma clearance

mentioned above limits the dose that can be safely administered.

If the delivery of the targeting antibody could be separated from the delivery of the

radioisotope, significantly higher tumor to non-tumor ratios could be achieved. If one

could wait until after the antibody had localized to the tumor (day 3 or later in Figure 1.1)

to "turn on" or deliver the radiation, higher tumor doses and lower nonspecific doses

would be realized. Thus, we are interested in a technology called pretargeted

radioimmunotherapy (PRIT).

1.3. Pretargeted Radioimmunotherapy

PRIT decouples the pharmacokinetics of antibody targeting and radionuclide

delivery, and has been shown to increase efficacy and decrease toxicity in both

~~~~NOW
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preclinical (Kraeber-Bodere et al. 1999; Axworthy et al. 2000; Gautherot et al. 2000;

Pagel et al. 2003; Sharkey et al. 2003; Karacay et al. 2005) and clinical models (Knox et

al. 2000; Kraeber-Bodere et al. 2006). In PRIT, the antibody is administered first and

allowed to bind to the targeted surface receptor on the cancer cells. Then, a chelated

radionuclide is administered and "captured" by the antibody retained at the site of the

cancer (Figure 1.2). With this two step process, the small radionuclide molecule diffuses

rapidly throughout the body and is cleared quickly, significantly reducing the non-

specific radiation associated with directly-conjugated antibodies.

The idea of PRIT was originally published over 20 years ago (Goodwin et al. 1988).

The first PRIT technology was based on the high affinity binding of streptavidin and

biotin for radionuclide capture (Paganelli et al. 1991). While this system has

demonstrated excellent proof of concept, there are several major reasons why this

strategy is not clinically viable. Streptavidin is a bacterial protein and is highly

immunogenic in humans. Endogenous levels of biotin (also known as vitamin H)

compete with biotinylated metal-chelate-conjugates (Hamblett et al. 2002). In addition,

streptavidin exhibits high uptake in the kidney, where it remains accessible to binding by

biotinylated hapten (Forster et al. 2006). A seminal clinical trial of pretargeted

radioimmunotherapy using streptavidin resulted in delayed nephrotoxicity and several

patient deaths due to kidney toxicity (Knox et al. 2000).

In light of these issues, bispecific antibodies with alternative capture methods are

under development. One system involves an antibody fragment specific to "'In-DTPA in

a chemically conjugated Fab-based bispecific antibody format (Barbet et al. 1998;

Kraeber-Bodere et al. 2006). However, the anti-DPTA antibody fragment exhibits

significantly lower affinity to chelated metals other than indium, limiting the utility of

this system. Another pretargeted system developed recently uses a Fab specific to a small

peptide hapten and a novel protein domain tethered Fab-based bispecific antibody

construct (Sharkey et al. 2003). However, nontrivial synthesis of the peptide chelate and

bispecific antibody is required. In addition, the biodistribution and safety of the peptide

chelate is unknown in humans. Both of these pretargeted radioimmunotherapy systems

use relatively small bispecific antibody constructs with no Fc domain (antibody constant
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region). Published experimental data demonstrate that IgG-like molecules with retained

Fc domain result in significantly higher tumor uptake than smaller fragments.

Tumor-specific antibody is
administered

Antibody clears slowly from
the circulation (a synthetic

clearing/blocking agent can
be administered if needed)

Radioactive hapten is
administered

Blood

O
O

O0

Radioactive hapten clears
rapidly through the kidneys

4rt.1*-,O

oto

0 Radionuclide-carrying hapten

SI Bispecific Antibody

-- Cancer Antigen

Figure 1.2 A schematic of pretargeted radioimmunotherapy.

Tumor

4
*O

&
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1.4. Introduction to the Thesis

In this thesis, we present a new approach to pretargeted radioimmunotherapy, based

on rational engineering design and mathematical modeling.

DOTA (Figure 1.3) was selected as the radionuclide-carrying hapten, due to its ability

to chelate trivalent metal cations and its favorable clearance properties and demonstrated

safety in humans. DOTA chelated to gadolinium (Gd-DOTA) has extensive clinical

history as a magnetic resonance imaging (MRI) contrast agent and has an excellent safety

profile (Le Mignon et al. 1990; Bourrinet et al. 2007). Gd-DOTA diffuses rapidly, and

exhibits rapid renal clearance.

To use DOTA for PRIT, a high-affinity antibody to DOTA metal chelates is needed.

An anti-DOTA antibody with relatively weak affinity has been previously isolated and

characterized (Goodwin et al. 1994; Corneillie et al. 2003; Corneillie et al. 2003). We

synthesized a single chain variable fragment (scFv) from the variable domains of this

antibody and used yeast surface display and directed evolution to affinity mature the

scFv. The end goal for the affinity maturation was determined by mathematical modeling.

Mathematical modeling and subsequent affinity maturation are described in Chapter 2.

-02C O/\ C0 2
N N

N N

-o2C CO2-
DOTA

Figure 1.3 Molecular structure of DOTA. DOTA chelates trivalent metal cations (M 3
+).

The next step in developing a pretargeted radioimmunotherapy system is the design

of a bispecific antibody with tumor targeting properties. In chapter 3 of this thesis, we

describe a novel IgG-like bispecific antibody topology constructed as an scFv fusion to

the C-terminus of an IgG light chain. A bispecific antibody of this format was
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synthesized containing the engineered high affinity DOTA-binding scFv and an IgG

specific to carcinoembryonic antigen (CEA), a tumor antigen expressed in about 50% of

colorectal, stomach, liver, and pancreatic carcinomas.

In an effort to minimize hapten retention in normal tissues, a series of DOTA-based

derivatives were evaluated for blood clearance and organ biodistribution in vivo. 177Lu-

labeled DOTA, DOTA-biotin, a di-DOTA tyrosine lysine peptide, and DOTA-

aminobenzene were evaluated. This study is described in Chapter 4.

We tested our rationally designed system in a mouse xenograft tumor model and

demonstrate tumor targeting of the bsAb, and DOTA capture at the site of the tumor,

which are presented in Chapter 5. An IgG-like bsAb will result in high tumor uptake but

also slow systemic clearance resulting in residual bsAb in the blood. We thus engineered

a novel dextran-based blocking agent to reduce DOTA binding to residual bispecific

antibody. We determine tumor to background ratios for our engineered three-step

approach and present quantitative biodistribution data and SPECT/CT images.

Affinity maturation of the anti-DOTA scFv described in chapter 2 resulted in an

antibody fragment that binds with different affinities to DOTA, depending on the

coordination chemistry of the chelated metal and the absence or presence of a small

benzene adduct to one of the carbons of the macrocycle. This effect resulted in an

excellent system to study the impact of affinity on small molecule tumor targeting in

vivo. Using two different isotopes and two different DOTA-based derivatives, we were

able to analyze the affect of affinity over three orders of magnitude in a systematic

fashion in vivo in tumor-bearing mice (presented in chapter 5). This type of systematic

study of the effect of affinity on small molecule tumor uptake in vivo has not been

possible previously.
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2. AFFINITY MATURATION OF DOTA-SPECIFIC ANTIBODY

2.1. Abstract

We aim to engineer high-affinity binders to DOTA chelates for use in PRIT

applications. We mathematically modeled antibody and hapten pharmacokinetics to

analyze hapten tumor retention as a function of hapten binding affinity. Modeling

predicts that for high antigen density and saturating bsAb dose, a hapten binding affinity

of 100 picomolar (pM) is needed for near-maximal hapten retention. Motivated by model

predictions, we used directed evolution and yeast surface display to affinity mature the

2D12.5 antibody to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA),

reformatted as a single chain variable fragment (scFv). Affinity maturation resulted in a

1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2 ± 1.9

picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and

gadolinium with similar picomolar affinity and indium chelates with low nanomolar

affinity. When engineered into a bispecific antibody construct targeting

carcinoembryonic antigen (CEA), pretargeted high-affinity scFv results in significantly

higher tumor retention of a l'In-DOTA hapten compared to pretargeted wild-type scFv

in a xenograft mouse model. We anticipate that this engineered versatile, high-affinity

DOTA-chelate-binding scFv will prove useful in developing pretargeted imaging and

therapy protocols.
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2.2. Introduction

The first PRIT reagents used the high-affinity binding of streptavidin to biotin for

radionuclide capture. However, this approach is limited by streptavidin immunogenicity,

kidney localization, and endogenous biotin binding to streptavidin. Second generation

PRIT approaches employ bispecific antibodies (bsAb) with specificity for both cancer

antigen and chelated radionuclide (Goldenberg et al. 2007). An approach with a

bispecific antibody recognizing an indium EDTA derivative has been studied previously

(Stickney et al. 1991). Because antibodies to metal chelates generally exhibit relatively

weak binding, researchers have taken advantage of avidity and developed bivalent

haptens to improve tumor retention of the radiometal chelate (Le Doussal et al. 1989;

Janevik-Ivanovska et al. 1997; Sharkey et al. 2003; Kraeber-Bodere et al. 2006;

Goldenberg et al. 2007). Another approach to improve hapten tumor retention uses an

engineered redox-reactive group in the radiometal chelate to attach covalently to a free

thiol in the antibody (Corneillie et al. 2004). However, it remains a challenge to maintain

the free thiol during antibody production, purification and delivery.

We present here an alternative approach using DOTA as the radionuclide-carrying

hapten. DOTA-metal-complexes are essentially irreversible under physiological

conditions and demonstrate higher thermodynamic stability than linear DTPA and EDTA

complexes for many metals including gadolinium, yttrium, and lutetium (Camera et al.

1994; Byegard et al. 1999; Penfield and Reilly 2008). DOTA-gadolinium (DOTA-Gd)

has extensive clinical history as an MRI contrast agent (Le Mignon et al. 1990). DOTA-

Gd diffuses rapidly, and exhibits rapid renal clearance. A monoclonal DOTA-binding

antibody, 2D12.5, was previously isolated from an immunized mouse (Goodwin et al.

1994; Lubic et al. 2001). 2D12.5 binds to DOTA chelates of all lanthanides with similar

nanomolar affinity (Goodwin et al. 1994; Corneillie et al. 2003) and to DOTA chelated to

indium and copper with weaker affinity (Comeillie et al. 2004). This promiscuity in

binding is an unusual property, as other anti-metal-chelate antibodies generally bind only

one or two chelated metals with significant affinity (Love et al. 1993; Blake et al. 2001).
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The goal of the present study was to develop a high-affinity antibody to DOTA

chelates, starting from the 2D12.5 antibody. A high-affinity DOTA binder will enable the

use of simply DOTA as the pretargeted hapten.

There are many display systems used to engineer proteins to increase affinity,

specificity, and stability, including phage, mRNA, and bacterial display. These display

systems provide a direct connection between genotype and phenotype by linking the

protein of interest with its genetic encoding material. We have chosen to use yeast

surface display in our affinity maturation efforts presented here. In yeast surface display,

a plasmid containing the gene of interest is contained episomally within the yeast cell

while the encoded protein is expressed on the surface. Yeast surface display allows the

use of the eukaryotic expression bias of yeast, allowing for engineering of complex

proteins that require posttranslational modifications such as foldase and chaperone

mediated assembly. A recent study showed that yeast display allows for the selection of

proteins that are nonfunctional when expressed on phage (Bowley et al. 2007). In

addition to eukaryotic expression, yeast surface display allows for fluorescence activated

cell sorting (FACS) to be used allowing for high throughput quantitative screening of

protein expression and antigen binding in real time. Normalization for protein expression

used with two-color FACS allows for fine affinity discrimination between clones

(VanAntwerp and Wittrup 2000). In addition, expedient characterization of binding

kinetics as well as thermal stability of proteins can be performed without time consuming

soluble expression and purification.
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2.3. Materials and Methods

2.3.1. Mathematical Modeling

The PRIT models developed here are straightforward extensions of two model

systems developed and described by Thurber and colleagues (Thurber et al. 2007). The

micrometastasis model uses spherical geometry and assumes diffusion-only transport.

The vascularized tumor model uses cylindrical geometry around capillaries. Numerical

simulations were performed in MATLAB (The MathWorks, Framingham, MA). Details

of the mathematical models are provided in the appendix (section 7.1).

PRIT simulations were performed for a 1 g vascularized tumor and a 400 jtm

diameter micrometastasis assuming a 70 kg human with 3.5 L of plasma volume. An

IgG-like bispecific antibody is given as a bolus dose of 7 jtmol at time zero. The hapten is

given as a bolus dose of 350 nmol with 5 GBq initial activity at 72 h. The model

implements a clearing/blocking step 24 h before hapten dosing, in which 99.9% of bsAb

hapten binding sites are blocked in the blood compartment. After hapten dosing, unbound

hapten concentration in the blood is calculated as the initial hapten concentration minus

hapten binding sites in the blood from unblocked residual antibody. The model assumes a
90Y radionuclide that has a residualization half life of 120 h after cellular internalization.

2.3.2. Synthesis of DOTA Compounds

DOTA (Macrocyclics M-140) and DOTA-Bn (S-2-(4-Aminobenzyl)-1,4,7,10-

tetraazacyclododecane tetraacetic acid; Macrocyclics B-200) were dissolved in 0.4 M

sodium acetate, pH 5.2, as stock solutions.

DOTA-Bn-biotin was synthesized by dissolving Amine-PEG 3-Biotin (Pierce 21347)

and p-SCN-Bn-DOTA (S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-

tetraacetic acid; Macrocyclics B-205) in dimethyl sulfoxide (DMSO) with a 10-fold

molar excess of triethylamine (VWR #EM-TX1200-5). The reaction mixture was

vortexed at room temperature for 3 h, and then purified by high performance liquid

chromatography (HPLC). HPLC purification was performed on a C-18 reverse-phase
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column (Agilent Model 1100 HPLC, 1 x 25 cm, buffer A = 0.05% trifluoroacetic acid

(TFA), buffer B = 0.0425% TFA in 80% acetonitrile, 2 - 100% B gradient for 98 min).

Flow through was monitored by absorbance detection at 280 nm. Fractions containing

DOTA-Bn-biotin were confirmed using matrix assisted laser desorption instrument time

of flight (MALDI-TOF) mass spectrometry (Applied Biosystems Model Voyager DE-

STR). Chemical purity was assessed by analytical HPLC (Agilent Model 1100 HPLC,

2.1 x 150 mm, buffer A = 0.05% TFA, buffer B = 0.0425% TFA in 80% acetonitrile, 2-

100% B gradient for 45 min). DOTA-Bn-biotin concentration was determined using a

biotin quantitation kit (Pierce 28005) following the manufacturer's instructions.

(+)-(2S)-2-(4-Aminobutyl)- 1,4,7,1 0-tetra-azacyclododecane- 1,4,7,1 0-tetrayltetra-

acetic acid (DOTA-alkyl) has been synthesized previously (Cox et al. 1990). Here, it was

synthesized following the procedure of Takenouchi et al. (Takenouchi et al. 1993)

starting with the compound H-Lys(Boc)-OMe (Bachem, E-1620). H-Lys(Boc)-OMe was

treated stepwise with methyl bromoacetate and diethylenetriamine to obtain tert-butyl 4-

(3,12-dioxo-1,4,7,10-tetraazacyclododecan-2-yl)butylcarbamate. Borane-THF complex

(Ashweek et al. 2003) was used to reduce the carboxylic amides followed by

trifluoroacetic acid Boc deprotection to obtain 4-(1,4,7,10-tetraazacyclododecan-2-

yl)butan-l-amine. This compound was subsequently reacted with biotin-xx, SSE

(Invitrogen, B-6352) in DMSO with a 10 fold molar excess of triethylamine for 3 h

vortexing at room temperature to form DOTA-alkyl-biotin. In all synthesis steps

compounds were purified by HPLC and their identity and purity confirmed by mass

spectrometry with a Waters (Milford, MA) LCT electrospray time-of-flight (ES-TOF)

liquid chromatography mass spectrometry (LC/MS) or by MALDI-TOF as described

above.

Metal complexes of each DOTA derivative (see Figure 2.2 for chemical structures)

were prepared as follows. Yttrium nitrate hexahydrate, lutetium (III) chloride

hexahydrate, indium (III) chloride, gallium (III) nitrate hydrate, and gadolinium (III)

chloride hexahydrate were purchased from Sigma and prepared as stock solutions in 0.4

M sodium acetate pH 5.2. To a 2 mM (for DOTA and DOTA-Bn) or 400 gM (for

DOTA-Bn-biotin) solution of the chelating agent, a 5-fold molar excess of the metal
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stock solution was added and chelated by overnight rotation at room temperature. The pH

was adjusted to 7 with 10 M NaOH and the complex was diluted with phosphate buffered

saline with 0.1% bovine serum albumin (PBSA) to a final concentration of 1 mM (for

DOTA and DOTA-Bn) or 200 jtM (for DOTA-Bn-biotin). For gadolinium chelates, an

identical metal loading procedure was used except that the complexation reaction took

place at 80C for 12 h in a thermocycler. Complete complexation of the chelator was

confirmed by LC/MS using a 75 gtm x 150 mm C18 column (Magic C18 from Michrom

Bioresources).

2.3.3. Kinetic Characterization

KD Measurements for DOTA-Bn-biotin-metal

Equilibrium dissociation constants (KD) for binding of yeast surface-displayed scFv

to biotinylated DOTA complexes at 370C were determined in triplicate by titration as

described by Chao et al. (Chao et al. 2006). Briefly, yeast expressing an scFv clone on

their surface were grown, washed with PBSA and incubated with various concentrations

of DOTA-Bn-biotin-metal long enough to allow for at least a 95% approach to

equilibrium. Generally, 5 x 105 induced cells were used for each concentration point.

When antigen concentrations less than 10 pM were assayed, the titration was performed

with 2.5 x 104 induced and 7.5 x 105 non-induced cells to ensure antigen excess over the

scFv without requiring impractically large volumes. The addition of non-induced cells

aids pelleting during centrifugation (Hackel et al. 2008). When antigen concentrations

greater than 100 nM were used, non-specific antigen binding to the yeast surface was

taken into account. Yeast expressing an irrelevant scFv on their surface were treated in

the same manner as the yeast displaying the scFv of interest, and mean total

phycoerythrein fluorescence (MFUtot) due to non-specific binding was measured by flow

cytometry and averaged over three replicates. This value was subtracted from the MFUtot

for the yeast of interest, and the data was fit by least-squares regression.

KD Measurements for DOTA-metal and DOTA-Bn-metal
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To determine the KD for scFv binding to nonbiotinylated haptens, the above protocol

was modified to a competition-based assay as follows. After determining the KD for scFv

binding to DOTA-Bn-biotin-Y, a titration was set up with 100 pM DOTA-Bn-biotin-Y,

2.5 x 105 cells per tube, and varying concentrations of the nonbiotinylated complex.

Incubation, staining, and flow cytometry analysis was the same as that for biotinylated

antigen. MFUtot as a function of the concentration of the nonbiotinylated antigen ([Ag]),

normalization constant (MFUrange), minimal total mean fluorescence (MFUmin), KD for

DOTA-Bn-biotin-Y (KD,biot), DOTA-Bn-biotin-Y concentration ([Agbiot]), and KD for the

antigen of interest (KD) follows this modified equation:

MFUw"g x [Agbo,]
MFU,, = MFU + +

KDbt + [Agt ]+ ( KD boAg]

The data was fit by least squares regression as before, varying MFUmin, MFUrange and KD.

Dissociation Kinetics

To determine the dissociation rate, ko, for DOTA-Bn-biotin complexes, cells were

induced and washed as above, and 1 x 107 cells were incubated in 1 mL PBSA with 1 nM

DOTA-Bn-biotin-metal for 1 h to reach saturation. Subsequently, the yeast were washed

with 1 mL PBSA, resuspended in 1 mL PBSA with 1 gM (excess) non-biotinylated

antigen as competitor and split into 100 uL aliquots. These aliquots were incubated at

37oC for different lengths of time, then washed with cold PBSA and left on ice. All

samples were simultaneously stained with streptavidin-phycoerythrein for 10-20 min and

analyzed by flow cytometry. The data was fit to the following equation by least squares

regression, varying MFUmin, MFUrange and koff:

MFU,, = MFU. + MFU,,ge - k 'ft

For nonbiotinylated antigens, the procedure was identical except that initial saturation

was with the nonbiotinylated antigen and DOTA-Bn-biotin-metal was used as

competitor. The data followed the expression:

MFU, = MFU + FU,,g (1- e-k
t)
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2.3.4. Affinity Maturation

The 2D12.5 scFv served as our starting point and was subjected to nine rounds of

directed evolution by random mutagenesis and subsequent selection for improved binding

using yeast surface display as described by Chao and colleagues (Chao et al. 2006) and

adapted as follows.

Mutagenesis

To counteract the mutational bias of error-prone PCR, mutagenesis at each round was

also performed with the Mutazyme mutagenesis kit (Stratagene) according to the

manufacturer's instructions, and the resulting mutagenized DNA was pooled with that

obtained by error-prone PCR. All other steps were carried out as described (Chao et al.

2006).

Selection

Each round of mutagenesis resulted in a library size of 0.5-4 x10 7 and was sorted 2-3

times by flow cytometry for improved binders. At least five times the estimated library

diversity was labeled for cell sorting. Staining was performed by equilibrium incubation

at a biotinylated DOTA-Y concentration of approximately 1/3 of the average KD of the

previous library (in early rounds) or by saturation with antigen followed by dissociation

for 2-3 dissociation half-times (in later rounds), and subsequent labeling with

streptavidin-phycoerythrein. To label for full-length scFv expression, the yeast were also

stained with a mouse anti-HA (clone 12CA5, Roche Applied Science) or a mouse anti-

cmyc (clone 9e10, Covance) primary antibody and a goat anti-mouse Alexa-647

(Invitrogen) secondary antibody. Yeast expressing the best 0.01-0.1% of binders were

collected. Periodically, the antigen was alternated between DOTA-Bn-biotin-Y and

DOTA-alkyl-biotin-Y.

Disulfide stabilization and glycosylation knockout.

The N-linked glycosylation site in the heavy chain of the scFv was removed and a

disulfide bond between the heavy and light chain was introduced during the seventh
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mutagenesis of the affinity maturation. This was accomplished by introducing through

PCR site-directed mutagenesis the mutations N88E or N88D, Q111C, and L179C

(numbering corresponds to the scFv sequence; Figure 2.3C).

Selection of clones.

Individual clones were isolated by transforming XL-1 blue chemically competent E.

coli (Stratagene) with plasmid DNA isolated from the yeast library (Zymoprep II Kit,

Zymo research) and plating on agar plates containing ampicillin. Individual colonies were

picked and grown in liquid medium overnight and plasmid DNA was isolated using the

Qiagen Miniprep kit. The plasmid DNA was sequenced and transformed back into yeast

with the EZ yeast transformation kit (Zymo Research). Clonal yeast cultures were grown

and their kinetic parameters determined.

2.3.5. Bispecific Antibody Construction

An IgG-like bispecific antibody that binds to CEA and DOTA was engineered from a

high-affinity Sm3e antibody (Graff et al. 2004) and the C8.2.5 scFv. Characterization of

this bispecific antibody is described in Chapter 3. An analogous bispecific antibody with

the wild-type 2D12.5ds scFv was also constructed by ligating the 2D12.5ds scFv into the

light chain plasmid between the Nhe 1 and Sall restriction sites. The bispecific antibodies

were produced in transient HEK293 culture and purified by protein A chromatography as

described in Chapter 3.

2.3.6. Radiolabeling

The HPLC/mass spectrometry platform used for purification of radioactive small

molecules has been described in detail (Humblet et al. 2006; Misra et al. 2007). DOTA-

Bn was dissolved at 5 mM in ammonium acetate pH 5.5. 1-2 mCi "'InCl 3 (Cardinal

Health, Dublin, OH) were added to the metal chelate and incubated for 1 h at 900 C. The

radiolabeled compound was purified by RP-HPLC with gamma detection on a 4.6 x 75

mm Symmetry C18 column using a linear gradient from 0% to 100% B over 15 minutes,

at a flow rate of 1 mL/min, where A = water and B = acetonitrile with 0.1% formic acid.
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2.3.7. Xenograft Mouse Model

All animal handling was performed in accordance with Beth Israel Deaconess

Medical Center (BIDMC) Institutional Animal Care and Use Committee (IACUC).

LS174T human colorectal carcinoma cells (CL 188) were obtained from American Type

Culture Collection and maintained under standard conditions and confirmed to be

negative for mycoplasma and mouse pathogens by the Yale Virology Lab. Xenografts

were established in 5-6 week-old male NCRU-nu/nu mice (Taconic Farms) by

subcutaneous injection of 1-2 x 106 LS174T cells into the flank of the mouse. After 8-10

days, tumors were 0.1 - 0.5 g in size. 30 ug of bispecific antibody was injected

intravenously followed 24 h later by intravenous injection of 1.3 pmol "'In-labeled

DOTA-Bn. Mice were euthanized 24 h later by intraperitoneal injection of pentobarbital,

a method consistent with the recommendations of the Panel on Euthanasia of the

American Veterinary Medical Association. Tumors were resected, washed in PBS,

weighed, and counted with a model 1470 Wallac Wizard (Perken Elmer, Wellesley, MA)

10-detector gamma counter. A Students t-test was used to examine the differences

between the experimental groups.



CHAPTER 2. AFFINITY MATURATION OF DOTA-SPECIFIC ANTIBODY

2.4. Results

2.4.1. Mathematical Modeling

We mathematically modeled the effect of DOTA-binding affinity on the delivery of

ionizing radiation in PRIT. Two mathematical models were implemented that simulate

PRIT based on previously validated models, one that simulates antibody distribution in

vascularized tumors and the other in micrometastases (Thurber et al. 2007). These two

types of tumors were considered separately due to different modes of transport. For

micrometastases, antibody and hapten diffuses into the tumor mass from the surrounding

interstitial fluid. While there may be some transport from surrounding interstitial fluid

into the edges of large vascularized tumors, the majority of antibody and hapten transport

occurs across the tumor vasculature.

We extended both models to account for hapten kinetics, assuming an IgG-like bsAb

with specificity to CEA, with a 15 h internalization half-time (Schmidt et al. 2008). We

used a bsAb blood concentration of 2 gLM as an input variable. We expect this initial

concentration to essentially saturate the antigen binding sites for vascularized tumors

from both modeling predictions and from Fenwick and colleagues (Fenwick et al. 1989),

who demonstrated that antibody doses of several hundreds of micrograms, or more, are

required to obtain saturation in a mouse xenograft model. PRIT model timing and dosing

parameters are similar to that of a recent Phase II human trial (Knox et al. 2000) with

bsAb dosing at time 0, followed by a clearing/blocking step at 48 h and hapten dosing at

72 h, with an initial hapten blood concentration of 100 nM. Our model predicts that this

hapten dose will saturate the pretargeted bsAb binding sites in the vascularized tumor.

Note that bsAb and hapten doses are orders of magnitude above those predicted to

saturate micrometastases. The model assumes a 70 kg man and 2-compartment

pharmacokinetic parameters for antibody and hapten. A detailed description of all model

parameters is provided in the appendix (section 7.1.4).

PRIT model simulations were run, varying the hapten dissociation rate while keeping

the association rate constant. We simulated hapten concentration in the tumor as a

function of time and total cumulative activity assuming a 90Y radionuclide over a time
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interval of 15 days. Hapten retention in vascular tumors (Figure 2.1A) and

micrometastases (Figure 2.1B) were predicted over a hapten KD range of six orders of

magnitude. The half-time of residualization of DOTA chelates after internalization is

assumed to be 120 h (estimated from (Shih et al. 1994)). We examined the effect of

varying the association rate while maintaining a constant KD and found no significant

difference in hapten retention for typical hapten association rates (5x105 - 5x107 M-'s-1),

demonstrating that the relevant parameter is KD.

For the aforementioned PRIT conditions, we predict that a hapten KD greater than 100

pM will allow significant hapten retention for both vascularized tumors and

micrometastases. This prediction is in agreement with other modeling analyses of tumor

targeting of small molecules (Schmidt and Wittrup 2009).

A Vascular Tumor B Micrometastasis
1.2 1.2

S1.0 j 1.0

0.8 -0.8

0.6 lpM 0.6
-10 pM 1 pM

0.4-100M 0.4-1 pM

S 8 410 pM
00.2 M 0.2 -100 pM

10 nM -1 nM
0 -10 nM 0 __10 nM

S12 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 100nM
Time (days) Time (days)

ODY Cumulative activity
KD (GBq s)

0Y Cumulative activity
Ko (MBq s)

100 nM 18 100 nM 0.1
10 nM 82 10 nM 0.9
1 nM 184 1 nM 2.9

100 pM 274 100 pM 5.0
10 pM 318 10 pM 7.5
1 pM 330 1 pM 10.0

ko= 0 369 ka = 0 11.1

Figure 2.1 Hapten retention in tumors as a function of hapten binding affinity. PRIT simulations were
performed assuming a vascularized tumor (A) and a small micrometastasis (B) with human
pharmacokinetic parameters. The hapten concentration in the tumor as a function of time was plotted for
various dissociation constants (indicated by arrows). The cumulative activity for a 90Y radionuclide is
tabulated for various KD values and also for a theoretical koff equal to zero. Cumulative activity units are
gigabecquerel seconds (GBq s) for the vascularized tumor and megabequerel seconds (MBq s) for
micrometastases.



CHAPTER 2. AFFINITY MATURATION OF DOTA-SPECIFIC ANTIBODY

2.4.2. Affinity Maturation

We affinity matured the 2D12.5 antibody fragment against biotinylated DOTA-Y by

directed evolution. We used biotinylated DOTA-Y in order to probe binding using a

streptavidin-fluorophore secondary label and flow cytometry, as DOTA-Y itself

possesses no intrinsic fluorescent properties. The gene encoding the variable domains of

the 2D12.5 DOTA-binding antibody in an scFv format (Figure 2.3C) was synthesized

from its published sequence (Corneillie et al. 2003). The scFv was subsequently

subjected to nine rounds of affinity maturation. Yeast expressing 2D12.5 scFv variants

were labeled for expression and with either DOTA-Bn-biotin-Y or DOTA-alkyl-biotin-Y

(Figure 2.2) followed by streptavidin-phycoerythrein and sorted by flow cytometry to

select the highest affinity clones. The antigen was periodically switched to minimize

selection of variants with mutations that conferred binding improvement to the linker

region. During the seventh mutagenesis, we introduced an intramolecular disulfide bond

between the heavy and light variable regions of the scFv (Reiter et al. 1996) and removed

the N-linked glycosylation site in the heavy chain. These additional mutations may

improve stability and result in simpler downstream processing of the scFv.

Sequences and kinetic constants were determined for several clones from libraries 8.2

(8 rounds of mutagenesis followed by 2 sorts) and 9.3 (9 rounds of mutagenesis and 3

sorts). All clones from library 9.3 had lost the disulfide bond between the heavy and light

chain and were consequently discarded. Of the clones from library 8.2, C8.2.5 retained

the disulfide bond and bound most tightly to DOTA-Bn-biotin-Y.
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Figure 2.2 Chemical Structures. Chemical structures of the DOTA variants used in this study with
trivalent metal cations.
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Figure 2.3 Mutations resulting from affinity maturation. Mutations accrued through eight rounds of
affinity maturation are highlighted in blue in the x-ray crystal structure of the 2D12.5 Fab (A) and a
magnified view of the binding pocket (B). Panels A and B were generated with PyMol based on the
research collaboration for structural bioinformatics (RCSB) protein data bank entry 1NC2 (Corneillie et al.
2003). Panel C shows the sequence alignment of the 2D12.5ds and C8.2.5 scFvs. Residues within 5
Angstroms of the hapten from the 2D12.5 crystal structure are highlighted in yellow; the (Gly 4Ser)3 linker
is highlighted in grey. Note that the residue numbering is different from that for the crystal structure of the
Fab.
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2.4.3. C8.2.5 Mutant

The sequence (Figure 2.3C) of the high-affinity C8.2.5 scFv differs from 2D12.5ds

(the original 2D12.5 scFv with the addition of the intramolecular disulfide bond and

removed glycosylation site) at 15 amino acid positions. The spatial distribution in the

crystal structure of wild-type 2D12.5 is depicted in Figure 2.3A and 2.3B. Only one

mutation, N53(L)H (numbering corresponds to the 2D12.5 antigen-binding fragment

(Fab) for which the crystal structure was determined (Corneillie et al. 2003)), occurred

within 5 Angstroms of the bound hapten, indicating that most mutations enhanced

affinity via subtle structural perturbations remote from the binding interface.

2.4.4. Kinetic Characterization

The kinetic properties of both 2D12.5ds and C8.2.5 were characterized and are

summarized in Tables 2.1 and 2.2 and in Figures 2.4 and 2.5. The affinity of the scFv to

DOTA-Bn-biotin-Y was improved by 3 orders of magnitude, from nanomolar to single-

digit picomolar. The dissociation half-time for DOTA-Bn-biotin-Y increased from 5.5

min for 2D12.5ds to just over 5 hours for C8.2.5 (Table 2.2 and Figure 2.5).

Table 2.1 Equilibrium dissociation constants for various DOTA compounds
scFV Ipten Metal Kp* n

2D12.5ds DO TA-Bn-Biotin Y 3.7 h 3.6 nM 3
CS 2.5 D 0 TA-Bn-Biotin Y 82 h 1.9 pM 3

DO TA-Bn Y 15.4 k 2.0 pM 3
Lu 10B & 2.5 pM 3
Gd 341D 5.3 pM 2
n 111 0.04 nM 2

Ga 52 12 nM 2
DOTA Y 103 - 35 pM 3

Lu 390 a 14 pM 2
Gd 149 - 6 pM 2
In 23.7 a 3.7 nM 2
Ga 216 . 26 nM 2

Kp given as meanr SD.
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Table 2.2 Dissociation half-lives for various DOTA compounds
Dissociatin halflives far yeast surf aedisplayed scFvs bound to

DO TAcomple xs
scFv H aten Metal Dissociation haflfe *

2D12.5ds DO TA-Bn-Biotin Y 55 a 1.3
C82.5 DO TA-Bn-Biotin Y 302 k 13

DO TA-Bn Y 53.1 h 2.3
DOTA Y 3.5 & 0.7

Lu 38 & 0.4
*Calculate d as h(2)&gffad given in minutes as meSD far n=3
e xeriments.

Figure 2.4 Metal specificity of improved mutant. Competition equilibrium isotherms for C8.2.5
scFv displayed on the surface of yeast for binding to DOTA-metal (A) and DOTA-Bn-metal (B) complexes
measured with a competition-based assay. It should be noted that 100 pM DOTA-Bn-biotin-Y is the
detected label. The binding constant for the competitor will follow a Cheng-Prusoff relationship as
described in Materials & Methods.
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1.2

S DOTA '\ oc 0.8 ".0 --- DOTA-Bn * c

0.1 1 10 100 1000

Time (min)

Figure 2.5 Improved mutant dissociation curves to DOTA variants. Dissociation curves for C8.2.5
scFv and yttrium complexes of different DOTA variants. For the nonbiotinylated haptens, the fractionalsaturation plotted is 1-(fractional saturation with competitor (DOTA-Bn-biotin-Y)).

The high-affinity clone C8.2.5 binds DOTA-Bn-biotin-Y, DOTA-Bn-Y, and DOTA-

Y with equilibrium dissociation constants of 8.2 + 1.9 pM, 15.4 + 2.0 pM, and 103 + 35

pM, respectively. The addition of the benzene ring and biotin moiety may change the

charge distribution of the DOTA epitope, altering the affinity. It is also possible that there

are some binding interactions between the scFv and the benzene ring and biotin linker

region. The affinity differences between these various yttrium chelates are reflected in

their dissociation half-lives (Table 2.2 and Figure 2.5).

DOTA complexes of lutetium and gadolinium were bound by C8.2.5 similarly to

those of yttrium (Table 2.1 and Figure 2.4). The high-affinity scFv also binds indium and

gallium chelates with nanomolar affinity. All DOTA-metal chelates were bound by

C8.2.5 with about an order of magnitude weaker affinity than the respective DOTA-Bn

metal chelate.

Complete metal complexation of DOTA was confirmed using LC/MS as described in

the materials and methods. However, LC/MS may not be able to distinguish the

thermodynamically stable complex from intermediates that may form (Moreau et al.

2004). To confirm that the kinetic characterization described above was not influenced by

the presence of intermediate complexes, the DOTA-Bn metal complexes were incubated

for an additional 12 h at 800 C; the measured binding affinities of these DOTA-Bn
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complexes to C8.2.5 were essentially the same as those described above (data not

shown).

2.4.5. Analysis of Tumor Targeting In Vivo

The C8.2.5 scFv was engineered into an IgG-like bispecific antibody as a C-terminal

fusion to the light chain of a CEA-targeting Sm3e IgG (Chapter 3). The bispecific

antibody retains parental affinities of both the C8.2.5 scFv and Sm3e IgG and also

exhibits IgG-like blood clearance and tumor targeting in vivo (Chapter 3). Mice injected

with 30 ug C8.2.5 bispecific antibody 24 hours prior to "11In-DOTA-Bn administration

exhibit significantly greater tumor uptake of the hapten 24 hours later, compared to an

analogous bispecific antibody containing the wild-type 2D12.5ds scFv and "'In-DOTA-

Bn only (Figure 2.6), demonstrating improved retention of the "'In-DOTA-Bn at the site

of the tumor for the affinity matured scFv.

0.5%
S111In-DOTABn only

N Pretargeted: C825 bsAb

0.4% - Pretargeted: ds2D12.5 bsAb

O 0.3%
In

L.

E 0.2%
I-

0.1% -

0.0%

Figure 2.6 Comparison of high-affinity and wild-type scFv pretargeting in vivo. 24 h post injection
hapten tumor retention in xenograft mice pretargeted with C8.2.5 bispecific antibody compared to
2D12.5ds bispecific antibody and .In-DOTA-Bn hapten alone. n = 3, error bars are s.d.; * P < 0.05.

li
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2.5. Discussion

In this study, we have used a mathematical model of PRIT to predict the maximum

achievable cumulative activity in the tumor as a function of antibody binding affinity to

the radiometal chelate. While other mathematical models of PRIT have been developed

(Zhu et al. 1998; Liu et al. 2007), for the present work we exclusively used published

measured parameters without any curve fitting. Hapten retention at the site of the tumor

depends on a large number of factors, including the hapten dissociation rate, rebinding of

dissociated hapten, diffusion rate, capillary permeability, hapten pharmacokinetics in the

blood, and antigen internalization. For therapeutic applications, it is desired that the

hapten is retained at the site of the tumor until the majority of radioactive decays have

occurred.

From predicted hapten tumor concentrations, we have calculated tumor cumulative

activities for a 90Y radionuclide. It would be straightforward to further calculate doses to

the tumor assuming spherical geometry and published S-values for 90Y (Siegel and Stabin

1994). However, we have not presented dose estimates, as we expect the model to

provide qualitative trends but due to significant heterogeneity in many of the model

parameters, we do not expect accurate predictions of true clinical doses.

Motivated by mathematical modeling, we used directed evolution and yeast surface

display to affinity mature the 2D12.5 scFv to biotinylated DOTA-Y with a goal of low

picomolar affinity. The resulting high-affinity clone not only binds DOTA-Y chelates but

also lutetium and gadolinium chelates with low picomolar affinity and indium and

gallium chelates with nanomolar affinity. While the 2D12.5 Fab binds the DOTA

chelates of all lanthanides with similar nanomolar affinity and indium DOTA chelates

with micromolar affinity (Butlin and Meares 2006), it was not a priori obvious that this

versatility would persist throughout the affinity maturation. The engineered high-affinity

clone possesses mutations that significantly improve binding to several metal chelates,

despite selective pressure only toward the yttrium chelate. This promiscuous binding is

highly advantageous in further preclinical and clinical development of a bispecific agent
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containing the C8.2.5 scFv for pretargeting, as it allows metals (with their different

radioactive properties) to be varied and used with the same bsAb.

Interestingly, the metals whose complexes are bound by C8.2.5 most tightly -

yttrium, lutetium, and gadolinium - are chelated by DOTA with identical coordination

chemistry, having a coordination number of 9 with one crystalline water molecule in the

complex. Indium and gallium, in contrast, are chelated by DOTA with coordination

numbers of 8 and 6, respectively. This leads us to hypothesize that C8.2.5 may bind all

lanthanides with low-picomolar affinities, as they are known to form nonacoordinate

chelates with DOTA. This suggests further potential biotechnological applications for

C8.2.5, exploiting for example the luminescence of Tb and Eu.

The nature of the accumulated mutations in C8.2.5 is similar to that previously

observed for engineering extremely high-affinity binders from a moderate binder to the

same antigen (Midelfort et al. 2004). Most mutations occurred away from the binding

interface, many of them at second-shell residues, and are conservative with respect to

physicochemical properties. This indicates that enhanced binding stems from slight

structural adjustments, rather than novel direct binding contacts to the hapten.

Determining a crystal structure for C8.2.5 bound to DOTA-Y would enable a more

detailed analysis of the binding interactions.

Based on our model, we predict that our high-affinity scFv will effect approximately

4-fold higher cumulative activities in vascularized tumors and 8-fold higher cumulative

activities in micrometastases when compared to the wild type 2D12.5 antibody (for 90 Y

radionuclides) for the model conditions. We also predict that any further improvement in

affinity to yttrium chelates would result in no more than a two-fold increase in

cumulative activity in micrometastases and would have no significant effect in

vascularized tumors. Four-fold and eight-fold improvements in cumulative activity may

seem modest for an affinity improvement of three orders of magnitude. However, these

predictions are based on the selection of a highly expressing cancer antigen and

saturating bsAb and hapten doses (similar to optimized doses tested previously in

pretargeted radioimmunotherapy studies in the clinic (Knox et al. 2000)). While sub-
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saturating bsAb doses, lower antigen densities, and smaller hapten doses would result in

more striking cumulative activity increases for hapten affinity improvements, they would

also result in significantly lower tumor cumulative activities overall.

We demonstrate that the in vitro affinity maturation of 2D12.5 results in a significant

improvement in hapten retention in vivo in a xenograft mouse model, where we compare

bispecific antibodies constructed with the high-affinity C8.2.5 scFv and the wild-type

2D12.5 scFv (Figure 2.6). We have utilized a bispecific antibody that is a C-terminal

scFv fusion to the light chain of an IgG (chapter 3).

While IgG-like bispecific antibodies are expected to result in significantly higher

tumor accumulation than smaller antibody fragments due to slower blood clearance

(Olafsen et al. 2006; Schneider et al. 2009), a considerable amount of antibody will likely

remain in the blood at the time of hapten dosing. Thus a clearing/blocking step will be

necessary to minimize hapten binding to residual bsAb in the blood. While three-step

pretargeted radioimmunotherapy is more complex than proposed two-step approaches

(Barbet et al. 1998; Sharkey et al. 2003), it may result in higher tumor doses for a given

amount of bispecific antibody (due to a higher concentration of hapten binding sites

accumulating in the tumor) and possible antibody dependent cell-mediated cytotoxicity

(ADCC) and complement dependent cytotoxicity (CDC) due to the retained Fc domain.

Based on the model results, hapten retention is expected to be similar for DOTA-Bn-

Y with a 10 pM affinity and DOTA-Y with a 100 pM affinity under antigen saturation for

highly expressed tumor targets. Either DOTA or DOTA-Bn could be used with this

system; in Chapter 4 we show that 177Lu-DOTA-Bn exhibits similar blood clearance and

biodistribution as 177Lu-DOTA.

We have engineered a versatile, DOTA-chelate-binding scFv with picomolar binding

to yttrium, lutetium, and gadolinium chelates and nanomolar binding to indium and

gallium chelates. Our approach comprised mathematical modeling of the

pharmacokinetics of the bsAb and the metal chelate for the treatment of both

micrometastatic disease and vascularized tumors to derive design specifications, and
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protein engineering via directed evolution using yeast surface display to achieve the

desired outcome experimentally. We anticipate that the high-affinity DOTA-binding

C8.2.5 scFv will prove useful for pretargeted imaging with positron emission tomography

using 86Y and single photon emission computed tomography using "11In and pretargeted

therapy with beta-emitters 177Lu and 90Y. C8.2.5 may also be useful for targeted MRI

with multivalent macromolecular contrast agents containing DOTA-Gd.
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3. IGG-LIKE BISPECIFIC ANTIBODY TOPOLOGY

3.1. Abstract

Here we present a bispecific antibody (bsAb) format in which a disulfide-stabilized

scFv is fused to the C-terminus of the light chain of an IgG to create an IgG-scFv

bifunctional antibody. When expressed in mammalian cells and purified by one-step

protein A chromatography, the bispecific antibody retains parental affinities of each

binding domain, exhibits IgG-like stability, and demonstrates in vivo IgG-like tumor

targeting and blood clearance. We demonstrate here that the light chain of an IgG can be

extended with an scFv without affecting IgG function and stability. This format serves as

a standardized platform for the construction of functional bispecific antibodies.



CHAPTER 3. IGG-LIKE BISPECIFIC ANTIBODY TOPOLOGY

3.2. Introduction

While monoclonal antibodies have shown success in the clinic for a variety of

diseases (Hudson and Souriau 2003), multi-specific antibodies, with an ability to bind to

more than one target, may further improve clinical efficacy via novel mechanisms. Multi-

specific antibodies have been engineered for a variety of applications including enhanced

antibody-dependent cell-mediated cytotoxicity (ADCC) (Garcia de Palazzo et al. 1992;

McCall et al. 2001), tumor surface-receptor blocking and downregulation (Lu et al.

2005), simultaneous binding to two soluble effector molecules (Wu et al. 2007), and

pretargeting tumor cells for the subsequent capture of radionuclides (Boerman et al.

2003), drugs (Ford et al. 2001), and prodrugs (Bagshawe 2006).

Early efforts to produce bispecific antibodies included chemical conjugation of two

antibodies or fragments thereof (Graziano and Guptill 2004) or co-expression of two

antibodies with different specificities through the hybrid hybridoma technique (Menard et

al. 1989). Unfortunately, the conditions required for chemical conjugation can inactivate,

unfold, or aggregate the bsAb, while the hybrid hybridoma technique not only produces

the desired bsAb but also undesired products from mispairing necessitating complex

purification schemes. In 1996, Carter and colleagues described a "knobs into holes"

method, wherein different but complementary mutations introduced into the CH3

domains favor heterodimerization. In the past decade, several other formats of multi-

specific antibodies have been synthesized by recombinant methods to produce scFv

fusions or diabodies, scFv Fc fusions, and single variable domain IgGs, among others

(Coloma and Morrison 1997; Kontermann 2005; Marvin and Zhu 2005; Shen et al. 2007;

Wu et al. 2007). In addition, Goldenberg and colleagues have developed a "dock and

lock" method for creating multi-specific antibodies, in which one antibody fragment is

fused to a peptide regulatory subunit of cAMP-dependent protein kinase and another

antibody fragment to a peptide anchoring domain of A kinase anchor protein, where the

two peptides have natural affinity for each other (Rossi et al. 2006; Goldenberg et al.

2008). A recent format that appears to possess good stability is the dual-variable-domain

IgG that extends both the heavy chain and the light chain with the N-terminal addition of

a second set of variable domains; however, the physical proximity of the two binding
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sites may be sterically problematic for certain pairs of antigen binding domains (Wu et al.

2007). In addition, the authors mention that significant construct optimization is often

required to preserve the parental affinities as both the orientation of the variable domains

and the linkers between them appear to be critical to functional and expression.

We present here a novel bispecific antibody design as a C-terminal fusion of a

disulfide-stabilized scFv to the light chain of an IgG. It can be expressed in mammalian

cell culture and purified to homogeneity by protein A chromatography. Here, we test

three different versions of this new bsAb construct with specificity to different cell

surface protein targets and small molecule haptens. Simultaneous binding, affinity, and in

vitro stability are assessed, as are in vivo blood clearance and tumor targeting.
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3.3. Materials and Methods

3.3.1. Construction of Bispecific Antibodies

The bispecific format was designed as an scFv fusion to the C-terminus of the light

chain of an IgG. The heavy chain is the same as that of an IgG1 and was subcloned into

the mammalian expression vector gwiz, purchased from Aldevron (Fargo, ND). The light

chain is constructed as leader-FLAG-VL-CK-(Gly 4Ser) 2-scFv-cmyc, where VL is the

variable light domain, Cic is the kappa light chain constant domain, and FLAG and cmyc

are N- and C-terminal epitope tags, respectively. It was cloned into a separate gwiz

plasmid. Both plasmids were transiently co-expressed in HEK293 cells (cat. no. R790-

07) purchased from Invitrogen (Carlsbad, CA). HEK293 cells were grown in flasks on an

orbital shaker platform at 140 rpm at 370 C, 5% CO 2 and subcultured following the

manufacturer's protocol. Co-transfection was performed with polyethyleneimine (PEI) as

the transfection reagent. Briefly, HEK293 cells were subcultured to a cell density of 0.5 -

0.7 x 106 cells/mL 24 h before transfection. Immediately before transfection, cell density

was adjusted to 1 x 106 cells/mL. 500 tg of each purified plasmid (1 mg/mL) was added

to 19 mL Optipro (Invitrogen). 2 mL of 1 mg/mL PEI pH 7.0 (MW 25,000) purchased

from Polysciences (Warrington, PA) dissolved in water was added to 18 mL Optipro.

Both solutions were incubated at room temperature for 5 min. The DNA/optipro solution

was added to the PEI/optipro solution and incubated for 10 min at room temperature and

added drop-wise to 1 L HEK293 culture. The supernatant was collected 6-8 d after

transfection. Antibodies were purified by protein A chromatography (Thermo Fisher

Scientific, Rockford, IL) following the manufacturer's instructions.

Specific constructs were made by overlap extension PCR and QuikChange

mutagenesis. The Sm3e/C825 bsAb was cloned and produced as described above using

the VH and VL domains from the affinity-matured anti-CEA Sm3e scFv (Graff et al.

2004) and the disulfide-stabilized C8.2.5 scFv. The Sm3e/4m5.3 bsAb substituted a

4m5.3 scFv that is a femtomolar fluorescein binder (Boder et al. 2000) disulfide-

stabilized by introducing two cysteine residues, S43C in the VL domain and Q105C in

the VH domain (Reiter et al. 1996). The A33/4m5.3 bsAb uses the VH and VL domains
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from an A33 humanized Fab fragment (Rader et al. JBC 2000) for the IgG binding

domains. Sm3e IgG and A33 IgG plasmids were produced by introducing two stop

codons in the light chain immediately following the CK sequence via QuikChange PCR.

The C-terminus of the A33 IgG light chain was extended by an 18 amino acid peptide

((G4S) 2LPETGGSG), to make the construct A33 IgG + peptide. A33 IgG + peptide was

disulfide stabilized by introducing two different pairs of cysteine residues, VL G100C

and VH G44C (dsl) and VL V43C and VH Q105C (ds2) (Reiter et al. 1996). The

appendix (section 7.2) contains sequence information for all constructs.

3.3.2. Gel Electrophoresis and Western Blotting

Culture expression media was analyzed by Western blot using a horseradish

peroxidase (HRP) conjugated goat anti-human Fc antibody (Thermo Fisher Scientific)

and an HRP conjugated goat anti-human K light chain antibody purchased from AbD

Serotec (Raleigh, NC). Purified bsAb and IgG were analyzed by SDS-PAGE and

quantified by absorbance at 280 nm.

3.3.3. Synthesis of Small Molecule Compounds

DOTA-biotin was synthesized by adding p-SCN-Bn-DOTA (S-2-(4-

Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid) purchased from

Macrocyclics (Dallas, TX) to Amine-PEG 3-Biotin (Thermo Fisher Scientific) in dimethyl

sulfoxide (DMSO) purchased from Sigma Aldrich (St. Louis, MO) with a 10-fold molar

excess of triethylamine (TEA) purchased from VWR (West Chester, PA). The reaction

mixture was vortexed at room temperature for 3 h, and purified by high performance

liquid chromatography (HPLC) on a C-18 reverse-phase column (Agilent Model 1100

HPLC, 1 x 25 cm, buffer A = 0.05% trifluoroacetic acid (TFA), buffer B = 0.0425% TFA

in 80% acetonitrile, 2 - 100% B gradient for 98 min). Flow through was monitored by

absorbance detection at 280 nm. Fractions containing DOTA-biotin were confirmed

using matrix-assisted laser desorption/ionization - time of flight (MALDI-TOF) mass

spectrometry (Applied Biosystems Model Voyager DE-STR).
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DOTA-647 was synthesized by adding 1 mM p-SCN-Bn-DOTA to 1 mM Alexa

Fluor 647 cadaverine (Invitrogen) in DMSO with 40 mM TEA overnight at room

temperature, with rotation. DOTA-647 was purified by HPLC as described above.

Yttrium complexes of DOTA conjugates were prepared by incubating a molar excess of

yttrium nitrate hexahydrate (Sigma Aldrich) with the DOTA conjugates in 0.4 M sodium

acetate pH 5.2 buffer overnight at room temperature. The pH was adjusted to 7.0 with 10

M sodium hydroxide and the solution was diluted with PBSA.

Fluorescein-647 (Fl-647) was synthesized by adding 1 mM fluorescein-5-EX,

succinimidyl ester (Invitrogen) to 1 mM Alexa Fluor 647 cadaverine in DMSO with 40

mM TEA and rotating overnight at room temperature and used without further

purification.

3.3.4. Simultaneous Binding Assay

105 trypsinized LS174T cells were washed with 500 gL PBS with 0.1% bovine serum

albumin (PBSA) and incubated with 50 nM bsAb or IgG for 1 h at room temperature.

Cells were subsequently incubated with 100 nM fluorescein (Fl) purchased from

Invitrogen, 100 nM DOTA-biotin chelated with yttrium (DOTA-Y-biotin), 50 nM bsAb,

or 100 gL PBSA, followed by incubation with 20 nM DOTA-Y-647 or FITC-647 and

analysis by flow cytometry. All incubations were performed for 30 min on ice followed

by washing once with PBSA unless otherwise indicated.

3.3.5. Affinity Measurements

CEA binding affinities for the Sm3e/C825 bsAb and Sm3e IgG were measured using

fixed LS174T cells incubated with varying concentrations of bsAb or IgG overnight at

370 C. Cells were subsequently incubated with a 1:200 dilution of protein A Alexa Fluor

647 (Invitrogen) and analyzed by flow cytometry. The affinity of the Sm3e/C825 bsAb

for DOTA-yttrium (DOTA-Y) was measured by incubating 100 nM bsAb on the surface

of fixed LS174T cells for 1.5 h at room temperature. Cells were incubated with varying

concentrations of DOTA-647 loaded with yttrium (DOTA-Y-647) for 2 h at 370 C before



CHAPTER 3. IGG-LIKE BISPECIFIC ANTIBODY TOPOLOGY

analysis by flow cytometry. Yeast expressing the C8.2.5 scFv on their surface were

grown and induced as described (Chao et al. 2006). Cells were incubated with varying

concentrations of DOTA-Y-647 for 2 h at 370 C and analyzed by flow cytometry. All

affinities are reported as mean -t standard deviation calculated from at least two

replicates.

3.3.6. Fast Protein Liquid Chromatography

IgG purified from human plasma (Sigma Aldrich), and purified Sm3e IgG and

Sm3e/C825 bsAb were analyzed by FPLC size exclusion chromatography (Pharmacia

Biotech Superdex 200 column) and monitored by absorbance at 280 nm and data were

normalized.

3.3.7. Thermal Stability Assay

IgG and bsAb were incubated in PBSA for various times at 370 C. Antigen binding

activity was analyzed with a magnetic bead flow cytometry assay. 20 nM IgG or bsAb

was incubated with Protein A beads (Invitrogen) at room temperature for 1 h. Beads were

washed and incubated with 20 nM biotinylated CEA (Graff et al. 2004) or 620 nM A33-

HIS6 followed by incubation with 1:200 dilution of anti-his Alexa Fluor 647 (Qiagen,

Valencia, CA) or streptavidin Alexa Fluor 647 (Invitrogen), and analyzed by flow

cytometry. A33-HIS6 was synthesized by transient HEK cell transfection as described

above with 1 mg A33-HIS6 gwiz plasmid transfected per liter of culture. A33-HIS6 was

purified by TALON metal affinity resin (Clontech, Mountain View, CA) following the

manufacturer's protocol. The A33-HIS6 gwiz plasmid was constructed by cloning the

A33 signal sequence and gene from a bacculovirus plasmid (Joosten et al. 2004) and

inserting a C-terminal hexahistidine.

3.3.8. Serum Stability Assay

Sm3e IgG and Sm3e/C825 bsAb were incubated in either PBSA or 50% mouse serum

(Invitrogen) in PBSA for various times at 370 C. Binding activity was analyzed with a
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magnetic bead flow cytometry assay where 8.1 x 106 biotin binder beads (Invitrogen)

were incubated with 20 nM biotinylated CEA in 300 gtL PBSA overnight at 40C with

rotation. 105 CEA-coated beads were washed and incubated with 50 nM IgG or bsAb for

1 h at room temperature followed by incubation with 20 nM DOTA-Y-647 or 1:100

dilution of chicken anti-cmyc (Invitrogen) followed by incubation with 1:200 dilution of

goat anti-chicken Alexa Fluor 647 (Invitrogen). Beads were washed and analyzed by

flow cytometry.

3.3.9. Radiolabeling

IgG and bsAb protein were conjugated to p-SCN-Bn-DTPA (Macrocyclics) as

described (Cooper et al. 2006). Concentrated DTPA-labeled protein was incubated with -

1 mCi "11InCl3 (Cardinal Health, Dublin, OH) for 30 min at room temperature. The

protein was diluted with 500 pL saline and concentrated to approximately 50 gIL using

Vivaspin 5000 MWCO spin columns (Sartorius Stedim Biotech, Aubagne, France). The

11'In-labeled protein was diluted with 500 g1 L saline and concentrated twice more.

3.3.10. In Vivo Blood Clearance and Tumor Uptake

All animal handling was performed in accordance with BIDMC IACUC guidelines.

LS174T human colorectal carcinoma cells (CL 188) were obtained from American Type

Culture Collection (Manassas, VA) and C6 rat glioma cells were obtained from Brian W.

Pogue (Dartmouth Medical School). Both cell lines were maintained under standard

conditions and confirmed to be negative for mycoplasma and mouse pathogens by the

Yale Virology Lab. Xenografts were established in 5-6 week-old male NCRU-nu/nu mice

(Taconic Farms, Hudson, NY) by subcutaneous injection of 1-2 x 106 LS174T cells into

the left flank and 1-2 x 106 C6 cells into the right flank of each mouse. After 8-10 days,

tumors were 0.1 - 0.5 g in mass. 500 pg of "'In-labeled protein was injected

intravenously in 100 pL saline. Blood samples of 10-15 gL were collected from the tail

vein at various times and counted on a model 1470 Wallac Wizard (Perken Elmer,

Wellesley, MA) 10-detector gamma counter. Mice were euthanized by intraperitoneal

injection of pentobarbital, a method consistent with the recommendations of the Panel on
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Euthanasia of the American Veterinary Medical Association. Tumors were resected,

washed in PBS, weighed, and counted as described above.
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3.4. Results

3.4.1. Plasmid Design and Expression in HEK293 Cells

We have designed a bispecific antibody as a C-terminal fusion to the light chain of an

IgG (Figure 3.1). The heavy chain is identical to that of an IgG. The light chain is

constructed by extending an IgG light chain with a C-terminal (Gly 4Ser)2 linker followed

by an scFv. In this study, the light chain is constructed with an N-terminal FLAG tag and

C-terminal cmyc tag for characterization purposes. The fully assembled bsAb contains

two heavy and two light chains, and is tetravalent with two IgG binding domains and two

scFv binding domains.

FLAG- N N N ' *Tumor a ntigen
binding

A (GlySer),

A (Gly 4Ser)3  C C Hapten binding

CMYC-C C

Heavy Light Fully assembled
chain chain bispecific antibody

Figure 3.1 Design of IgG light chain C-terminal scFv fusion. Pictorial representation of heavy
chain, light chain, and fully assembled bsAb with indicated N- and C- termini. The light chain is modified
with an scFv fusion to the C-terminus, while a completely na'fve heavy chain is preserved.

We synthesized a bsAb of this format that binds to the carcinoembryonic antigen

(CEA) and to complexes of the metal chelate, DOTA. The Sm3e/C825 bsAb was

constructed from an Sm3e IgG and a DOTA-binding scFv, C8.2.5, by cloning heavy and

light variable domains from the picomolar affinity Sm3e scFv (Graff et al. 2004) into a

plasmid containing human IgG1 constant heavy domains and kappa constant light chain

domain. The C8.2.5 scFv was subsequently cloned into the light chain plasmid

immediately following the C-terminus of the Ci gene. The heavy and light chain

expression plasmids were transiently co-transfected into HEK293 mammalian cells.

Secreted antibody was purified from cell culture supernatants by protein A

chromatography. Yields of both Sm3e IgG and Sm3e/C825 bsAb were -5-7 mg/L.

~i-i-ii~-iiiiiiiiiiiiii;
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Non-reducing SDS-page gel electrophoresis of purified bsAb displays a species with

a molecular weight of -200 kDa (Figure 3.2A). Under reducing conditions, the bsAb

gives rise to two bands, both at around 50 kDa, as the scFv fusion increases the molecular

weight of the light chain to -50 kDa. Size exclusion chromatography of purified bsAb

shows a single dominant peak with a small amount of higher molecular weight species,

similar to that observed for recombinant IgG and for IgG purified from human plasma

(Figure 3.2B).

A
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76 k

bsAb (R) IgG (R) bsAb IgG

-4

52k ,- an

38 k
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24 k
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Figure 3.2 Characterization of bispecific antibody construct. Gel electrophoresis of reduced (R) and
nonreduced Sm3e/C825 bsAb and Sm3e IgG (A). Size exclusion chromatography of Sm3e/C825 bsAb,
Sm3e IgG, and IgG purified from human plasma (B).

MMMB
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3.4.2. Simultaneous Binding to Tumor Surface Antigen and Soluble Hapten

Bispecific antibody function was tested using CEA-expressing LS174T cells

incubated with Sm3e/C825 bsAb followed by Alexa Fluor 647 conjugated DOTA loaded

with nonradioactive yttrium (DOTA-Y-647). These samples exhibited a positive 647

signal, demonstrating bsAb simultaneous binding of both cell-surface CEA and soluble

DOTA-Y-647. Control samples in which CEA or hapten epitopes were blocked showed

no significant fluorescence (Figure 3.3A). Similarly, LS174T cells incubated with

monospecific Sm3e IgG followed by DOTA-Y-647 exhibited no significant fluorescence.

Reagents

1st 2nd 3rd

Sm3e/C825 DOTAY-647

Sm3e/C825 DOTAY-biotin DOTAY-647

Sm3e IgG DOTAY-647

Sm3e IgG Sm3e/C825 DOTAY-647

Reagents

1st 2nd 3rd

Sm3e/4m53 FI-647

Sm3e/4m53 FI FI-647

Sm3e IgG FI-647

Sm3e igG

ALEXA 647

Reagents
Ist 2nd 3rd

A33/4m53 F-647

A33/4m53 FI FI-647

A33 IgG FI-647

- - - A33 IgG A33/4m53 FI-647

100 101 102 103 104
1 ALEXA 647T I

Figure 3.3 Simultaneous binding to cell surface antigen and hapten. Flow cytometry data of
Sm3e/C825 bsAb (A), Sm3e/4m5.3 (B), and A33/4m5.3 (C) binding to cell surface antigen expressed on
LS174T cells and soluble hapten. Legends show labeling scheme for sequential incubations.

Sm3e/4m53 FI-647
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We produced two additional bsAbs of the same format. Sm3e/4M5.3 binds to CEA

and fluorescein, and A33/4M5.3 binds to the A33 antigen, a colon cancer immunotherapy

target (Welt et al. 1990), and fluorescein. The 4M5.3 scFv was constructed by disulfide

stabilizing the femtomolar fluorescein binding scFv 4M5.3 (Boder et al. 2000).

Introduction of the disulfide bond does not significantly affect the binding affinity of the

scFv (data not shown). The A33/4M5.3 bsAb was made by fusing an A33 antibody to

ds4m5.3. The A33 IgG was constructed with heavy and light variable domains from an

A33 humanized rabbit Fab (Rader et al. 2000). Both the Sm3e/4M5.3 (Figure 3.3B) and

A33/4M5.3 (Figure 3.3C) bsAbs exhibited simultaneous binding to tumor surface antigen

and soluble hapten.

3.4.3. Inter-Chain Disulfide Bond Formation

It was observed that when both IgG and bsAb were boiled prior to Western blot

analysis, the molecules dissociate and exhibit a laddering effect with bands observed at

molecular weights that correspond to the fully assembled molecule with two heavy chains

and two light chains (H2L2) and partially assembled molecules (H2L and H2) (data not

shown). The laddering of the bsAb is more significant compared to that of the IgG, likely

due to more incomplete disulfide bond formation between the light and heavy chains of

the bsAb due to the fusion of the scFv domain to the C-terminal Cr cysteine.

To test this theory, we synthesized the A33 IgG with a light chain C-terminal Gly4Ser

based 18 amino acid peptide, which exhibited the same laddering effect as the bsAb

under boiling conditions (Figure 3.4). In order to restore covalent linkage between the

heavy and light chains, a disulfide bond was introduced between the A33 IgG variable

light and variable heavy domains (the IgG portion of the bsAb). Two different pairs of

cysteine mutations were tested (Reiter et al. 1996). This alternative site of disulfide

stabilization significantly reduced the laddering effect such that it was similar to that

observed for the IgG and suggests that variable domain disulfide stabilization of the IgG

allows formation of a covalent bond between the heavy and light chains that can

substitute for the normal position at the CK C-terminus.
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Figure 3.4 Disulfide stabilization of IgG. Western blot analysis detecting heavy and light chains of
A33 IgG and A33 IgG extended by an 18 amino acid peptide (IgG + peptide) shows that extension of the
light chain beyond the C-terminal CK cysteine disrupts disulfide bond formation. Two different pairs of
cysteine mutations (dsl and ds2) introduce disulfide stabilization of the IgG variable domains and
demonstrate reformation of a covalent linkage between light and heavy chains.

3.4.4. Sm3e/C825 Retains Binding Affinity of Parent IgG and scFv

The affinity of IgG and scFv binding domains for the Sm3e/C825 bsAb were

measured using cell binding assays. The bsAb binding affinity for CEA expressing

LS174T cells was similar to that of the Sm3e IgG and the scFv binding affinity for

soluble DOTA-Y-647 was similar to that of the scFv alone, expressed on the surface of

yeast (Table 3.1).

Likewise, the affinity of the A33/4M5.3 bsAb to A33 antigen expressing LS174T

cells was measured to be 647 t 108 pM, within 2-fold to that measured for the A33 IgG,

303 ± 9 pM.

Table 3.1 Equilibrium dissociation constants
CEA KD DOTA-Y-647 KD A33 antigen KD

Sm3e/C825 bsAb 87 t 55 pM 1.7 ± 0.2 pM
Sm3e IgG 54 t 21 pM
C825 scFv - 5.5 t 0.1 pM -
A33/4m5.3 bsAb - 647 : 108 pM
A33 IgG - 303 ± 9 pM
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3.4.5. Bispecific Antibodies Retain Stability of Parent IgGs

The thermal stability of the bsAb construct was tested by incubation at 370 C in

PBSA. Both Sm3e/C825 and Sm3e/4M5.3 bispecific antibodies exhibited similar CEA

binding activity as the Sm3e IgG after 7 days (Figure 3.5A). A33/4M5.3 also exhibited

similar stability as the A33 IgG (Figure 3.5B).
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Figure 3.5 Bispecific antibody thermal and serum stability. Thermal stability of various IgGs and

bsAbs over 7 days at 370 C in PBSA detecting CEA binding (A) or A33 antigen binding (B). Serum

stability of Sm3e/C825 bsAb over 7 days at 37 0C in 50% mouse serum detecting cmyc retention (C) or

DOTA-Y-647 binding (D).

3.4.6. Stability of Bispecific Antibody Construct in Serum

Serum stability of the Sm3e/C825 bsAb was tested by incubation at 370 C in 50%

mouse serum and compared to bsAb incubated in PBSA. After 7 days in PBSA, bsAb

bound to CEA coated beads showed no loss of the C-terminal cmyc tag and retained

about 90% of its DOTA-binding activity (Figures 3.5C and 3.5D), indicating thermal

stability of the scFv and retention of assembled bsAb with simultaneous binding function.

I -:
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After 7 days in serum, the bsAb retained approximately 90% of the c-Myc tag, and about

60% of initial DOTA-binding activity, indicating proteolytic stability but lower scFv

stability in serum.

3.4.7. In Vivo Blood Clearance and Tumor Uptake

"ll'In-labeled Sm3e/C825 bsAb was injected intravenously into nude mice bearing

both LS174T and C6 tumors. LS174T cells express - 4 x 105 CEA antigen per cell

(Thurber and Wittrup 2008). C6 tumors have been used previously as an internal CEA

negative control (Kenanova et al. 2005). Blood samples were taken at various times over

24 h and the activity measured by gamma counting. The blood half-life of the

Sm3e/C825 bsAb is very similar to that of the Sm3e IgG (Figure 3.6), indicating in vivo

stability of the bispecific construct and that the addition of the scFv does not interfere

with FcRn binding (Olafsen et al. 2006). The tumor uptake of the Sm3e/C825 bsAb and

Sm3e IgG were also measured at 24 h and found to be very similar with 19 + 3 %ID/g

and 15 _ 3 %ID/g for the CEA positive LS174T tumors, respectively. The tumor uptake

in the CEA negative C6 tumors was 5.3 + 1.7 %ID/g and 4.0 _ 1.6 %ID/g for the bsAb

and IgG, respectively.

Blood Clearance
40

* Sm3e IgG
* Sm3e/C825 bsAb

30

_ 25
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Figure 3.6 Blood clearance of Sm3e/C825 and Sm3e IgG in mice. Blood activity (mean _ s.d.) time

profile of Sm3e IgG (open diamonds) and Sm3e/C825 (closed diamonds) after a 500 gig intravenous dose in
male nude mice, n = 3. The blood curves were fit by least squares regression to a biexponential function for
Sm3e IgG (dotted line) and Sm3e/C825 (solid line).
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3.5. Discussion

We have engineered a novel bispecific antibody construct as an scFv fusion to the C-

terminus of the light chain of an IgG. Fusing the scFv in this way should minimize steric

hindrance that could obstruct simultaneous binding of both target antigens that might

result from an N-terminal fusion to the light and/or the heavy chain. To date, we have

synthesized several versions of the construct with various IgG and scFv domains, and all

molecules bind simultaneously to their respective targets and retain parental affinities

within two-fold. No linker-length optimization is required for expression and retention of

scFv and IgG binding. The bispecific construct also exhibits IgG-like stability, blood

clearance and in vivo tumor targeting. The bsAb construct appears to work generally to

pair any stable and functionally expressing IgG and scFv into a bispecific format, while

retaining IgG-like properties. However, it should be noted that all of the bsAb constructs

tested in this study have IgG domains that bind to cell surface proteins and scFv domains

that bind to haptens. While we believe that this bsAb construct will also work when the

scFv specificity is a protein target due to flexibility in the Gly 4Ser-based linker and in the

hinge region of the IgG, this has yet to be tested.

Coloma and Morrison also used an scFv for introducing additional specificity to an

IgG, by attaching it to the C-terminus of the heavy chain of an IgG3 (Coloma and

Morrison 1997). They report excellent results obtaining fully-assembled monomeric

functional protein from transfectoma supernatants. However, the IgG-scFv fusion results

in notably faster clearance in an in vivo mouse model compared to the parent IgG. This

may be due to a decrease in FcRn binding possibly from steric hindrance of the attached

scFv.

We are interested in bispecific antibodies for PRIT applications. It is desirable to

preserve the Fc region in a bsAb for pretargeting applications, which will result in

prolonged plasma retention due to FcRn binding and hence increased tumor penetration

(Olafsen et al. 2006; Thurber et al. 2008). Full IgG molecules have demonstrated

significantly higher tumor accumulation compared to minibodies, diabodies, and scFvs

(Schneider et al. 2009). The addition of the scFv to the C-terminus of the IgG light chain
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does not impact blood clearance, indicating that the scFv does not affect FcRn binding to

the bispecific construct. The Fc binding domain may also retain FcyR binding, leading to

ADCC resulting in the potential for additional therapeutic benefit.

The long circulating half-life of the bsAb will result in increased tumor uptake as

discussed above but may also result in significant residual antibody retention in the blood

at the time of hapten dosing. Thus, a clearing agent to quickly clear antibody from the

blood prior to hapten dosing will be necessary to accelerate hapten clearance from the

body. Rapid hapten clearance is necessary for high tumor to background ratios for

imaging and low off-target radiation for therapy.

The Sm3e/C825 bsAb retains approximately 90% of its c-Myc tag at 370 C in serum

after seven days, indicating little if any protease cleavage of the Gly4Ser linker. However,

the binding activity of the C8.2.5 scFv decreases to about 60% after seven days, with a

rapid decrease during the first 24 hours followed by a plateau. The decreased binding

activity does not appear to be pH-mediated as the pH of the serum solution remains

neutral for the length of the experiment (data not shown). Nor does it appear to be simply

due to thermal instability, because 90% of binding is retained after similar incubation at

370 C in PBSA. Thus, the loss of activity may be due to serum protein binding or protein-

or enzyme-assisted denaturation.

One aspect of the bsAb format is an intermolecular disulfide bond between the

variable heavy and variable light domains of the scFv. The open conformation of an scFv

can be prone to aggregation (Reiter et al. 1994; Worn and Pluckthun 2001). Disulfide

stabilization of the scFv should prevent the scFv from assuming an open conformation

and hence reduce the risk of aggregation. In addition, as one would expect, the stability of

the scFv in the bispecific format is limited by the stability of the parent scFv. Thus, it is

important to select highly stable scFvs.

It is interesting to note that attaching an scFv, or even an 18 amino acid flexible

peptide, to the C-terminus of the light chain appears to disrupt formation of the disulfide

bond between the light chain and the heavy chain of the human IgG1. This disulfide bond
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naturally exists at the C-terminal cysteine of the C, domain in IgG1 molecules. It does

not appear to be necessary for function or stability of the bsAb, as all bsAbs tested retain

parental affinities and exhibit excellent serum stability, even after protein A purification

with acidic pH elution. We nevertheless added a disulfide bond between the heavy and

light variable domains of the A33 IgG with peptide to determine if an interdomain

disulfide bond can be introduced in this region to reform a covalent linkage between the

LC and HC. Indeed, both disulfide stabilized versions of the A33 IgG with peptide

exhibited significantly reduced dissociation after boiling, confirming that a covalent bond

between the LC and HC can be reformed. While in this study, a covalent linkage between

the heavy and light chains does not appear necessary for bsAb function or stability, it is

possible that other IgGs may be less stable and require interdomain disulfide stabilization

for stable bsAb construction.

While we have designed this bispecific format to be used for pretargeting approaches,

this platform may be beneficial for other applications requiring bispecific antibodies. We

demonstrate that the light chain of an IgG can be extended with an scFv without affecting

IgG function and stability. Other proteins or peptides, such as affibodies (Nygren 2008),

single variable domains (Harmsen and De Haard 2007), and peptide toxins could be

attached to IgGs in this site specific manner, to yield homogenous IgG fusion products

for targeted delivery. This platform could be used in a straightforward fashion to modify

current FDA-approved antibodies to add additional functionalities. Production and

purification should scale directly with current antibody manufacturing methods. As a

robust modular platform, this bispecific antibody format obviates the need for extensive

optimization of each new combination of binding domains and retains IgG-like properties

both in vitro and in vivo.
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4. CHARACTERIZATION OF DOTA-BASED HAPTENS

4.1. Abstract

In an effort to minimize hapten retention in normal tissues and determine the effect of

various chemical adducts on in vivo properties, a series of DOTA-based small molecule

derivatives were evaluated. Biodistribution and whole-body clearance were evaluated for

177Lu-labeled DOTA, DOTA-biotin, a di-DOTA peptide, and DOTA-aminobenzene in

normal CD1 mice. Kidney, liver, and bone marrow doses were estimated using standard

Medical Internal Radiation Dose (MIRD) methodology. All haptens demonstrated low

tissue and whole-body retention, with 2-4% of the injected dose remaining in mice 4 h

post-injection. The kidney is predicted to be dose-limiting for all 177Lu-labeled haptens

tested with an estimated kidney dose of approximately 0.1 mGy/MBq. We present here a

group of DOTA-based haptens that exhibit rapid clearance and exceptionally low whole-

body retention 4 h post-injection.
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4.2. Introduction

One very important step in the development of PRIT approaches is the selection of

the hapten. The hapten must be nontoxic, not endogenous, not metabolized, and must

clear rapidly from the blood with minimal normal tissue retention (Figure 4.1). While

many small peptides exhibit fast renal clearance, most exhibit significant non-specific

tissue retention (Sharkey et al. 2003; Chen et al. 2004; Chen et al. 2005; Schmitt et al.

2005; Wild et al. 2006; Garrison et al. 2007; Zhang et al. 2007). This background

retention is typically 10-30 %ID at 2 to 4 h post-injection (summarized in Table 4.1).

Significant whole-body retention results in background activity limiting signal-to-

background ratios (SBRs) for imaging and contributing to nonspecific radiation limiting

the maximum tolerated dose for therapy applications. Identifying small molecules with

low whole-body retention is thus necessary for improving both imaging and therapy with

radioisotopes.

Nontarget Tissue Blood Compartment Tumor

W >J< I >-< I
E 0 Cell

0--2 >- >- >- _<

4 ?

<- Antigen )-( Bifunctional antibody 0 Hapten

Figure 4.1 Schematic of PRIT. A pictoral representation of PRIT where a bifunctional antibody is
administered in step 1. In step 2, the antibody is cleared from the body over time and/or with the help of a
synthetic clearing agent (clearing agent not depicted). In step 3, a radiolabeled hapten is administered. In
step 4, the hapten is cleared from the body over time; in this study, we investigate tissue and whole-body
retention of various haptens.
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Table 4.1 Estimation of whole-body retention at 4 hours post-injection for previously published
small peptides

Molecule %ID (retained in Reference
the body)

64Cu-DOTA-RGD > 15 (Chen et al. 2004)
64Cu-DOTA-PEG-E(c(RGDyK)) 2  > 6.7 (Chen et al. 2005)
64Cu-DOTA-8-AOC-BBN > 35 (Garrison et al. 2007)
64Cu-CB-Te2A-8-AOC-BBN > 13 (Garrison et al. 2007)
67Ga-DOTA-PESIN > 8.9 (Zhang et al. 2007)
17 7Lu-DOTA-PESIN > 8.8 (Zhang et al. 2007)
99mTc-depreotide > 31 (Schmitt et al. 2005)
11 In-DTPA-octreotide > 13 (Schmitt et al. 2005)
Lys40(Ahx-DTPA-'In)NH 2 exendin-4 > 93 (Wild et al. 2006)
"'In-IMP-241 > 1.4a (Sharkey et al. 2003)
99 mTc-IMP-243 > 24a (Sharkey et al. 2003)
99mTc-IMP-245 > 2.6a (Sharkey et al. 2003)

a 3 h %ID

The present study focuses on the use of DOTA as a possible hapten for PRIT because

of its ability to chelate a wide variety of isotopes useful for imaging and therapy (Cutler

et al. 2000) and its history of safe use in humans as an MRI contrast agent (chelated to

Gd) (Le Mignon et al. 1990; Bourrinet et al. 2007). DOTA-Gd is nontoxic, not

endogenous, not metabolized, and exhibits rapid blood clearance.

In this chapter, we are interested in investigating the in vivo biodistribution and

clearance of various small molecule haptens to determine the effects of various adducts

on the in vivo properties of DOTA. Currently, it is not known a priori how the addition of

chemical groups will affect the in vivo properties of small molecules. Even small

chemical modifications can drastically change retention and background (Banerjee et al.

2008). Our efforts are two-fold: 1) to increase the knowledge base of in vivo behavior of

various DOTA-based compounds in an effort to develop a more comprehensive

understanding to aid in the future development of molecular imaging and therapeutic

agents with low background, and 2) to determine what form(s) of the DOTA chelate will

result in the fastest blood clearance and lowest whole-body and kidney retention for PRIT

applications. This quantitative analysis is crucial in moving towards an end goal of

minimizing radioisotope retention in normal tissues.
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4.3. Materials and Methods

4.3.1. Reagents

1,4,7,1 O0-Tetraazacyclododecane- 1,4,7,1 0-tetraacetic acid (DOTA), S-2-(R-

Aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA-Bn), DOTA-

biotin-sarcosine (DOTA-biotin), and 1,4,7,10-Tetraazacyclododecane- 1,4,7,10-tetraacetic

acid mono(N-hydroxysuccinimide ester (DOTA-NHS) were purchased from

Macrocyclics (Dallas, TX). Tyrosine-lysine peptide was purchased from Anaspec (San

Jose, CA). All other chemicals were purchased from Sigma-Aldrich (St. Louis, MO) or

Thermo Fisher Scientific (Waltham, MA).

4.3.2. DOTATyrLysDOTA Synthesis

DOTATyrLysDOTA was synthesized by reacting a 10-fold molar excess of DOTA-

NHS with tyrosine-lysine peptide in DMSO in the presence of a 20-fold molar excess of

triethylamine. The reaction was vortexed for 3 h at room temperature. To confirm

completion of the reaction, the reaction mixture was analyzed by reverse-phase HPLC as

described previously (Humblet et al. 2006) using a Waters 4.6 x 150 mm Symmetry C18

column and a linear gradient from 0% to 40% B in 25 minutes at 1 mL/min with A =

water + 0.1% formic acid and B = acetonitrile + 0.1% formic acid. DOTATyrLysDOTA

eluted at a retention time (Rt) = 9.6 minutes as detected by evaporative light scatter

detector (ELSD), with the mass confirmed by electrospray time-of-flight (ES-TOF) mass

spectrometry, calculated m/z 1082.53 [M+H] , found 1083.19 [M+H]+. Preparative

purification was performed on an HPLC system using a 19 x 150 mm Symmetry C18

column with a linear gradient of 0% B to 40% B in 35 minutes with A = water + 0.1%

formic acid and B = acetonitrile + 0.1% formic acid. DOTATyrLysDOTA eluted at Rt =

5.6 minutes using ELSD detection. Fractions containing product were pooled and

lyophilized. Purity was confirmed by analytical HPLC.



CHAPTER 4. CHARACTERIZATION OF DOTA-BASED HAPTENS

4.3.3. Radiolabeling

The HPLC/mass spectrometry platform used for purification of radioactive small

molecules and peptides has been described in detail (Humblet et al. 2006; Misra et al.

2007). Compounds were dissolved at 0.5 mM in ammonium acetate pH 5.6. 1-2 mCi

177LuC13 (PerkinElmer, Waltham, MA) were added to the metal chelate and incubated for

1-2 h at 85-950 C. The radiolabeled compounds were purified by RP-HPLC with gamma

detection on a 4.6 x 75 mm Symmetry C18 column using a linear gradient from 0% to

90% B over 15 minutes, at a flow rate of 1 mL/min, where A = water and B =

acetonitrile. The compounds were then dried under vacuum, resuspended in saline, and

filter-sterilized.

4.3.4. Mouse Model

All animal handling was performed in accordance with BIDMC IACUC guidelines.

CD1 male mice were purchased from Taconic Farms (Germantown, NY). For

biodistribution and clearance testing, 50-150 gCi 177Lu-labeled hapten was injected

intravenously into the mice. Blood was collected from the tail vein using micro-capillary

tubes and counted on a model 1470 Wallac Wizard (Perkin Elmer, Wellesley, MA) 10-

detector gamma counter. Mice were euthanized by intraperitoneal injection of

pentobarbital followed by cervical dislocation, a method consistent with the

recommendations of the Panel on Euthanasia of the American Veterinary Medical

Association. Whole-body retention of radioactivity was measured in a dose calibrator

after removing the bladder en masse. Organs were resected, washed in PBS thrice,

weighed, and counted as described above.

4.3.5. Dosimetry

Radiation doses absorbed by normal tissues other than the red marrow were

calculated according to the MIRD scheme. Percent injected activity in kidneys, liver, and

whole-body were calculated from activity measurements. Isotope decay-adjusted activity

was integrated over time, with a conservative assumption that the 24 h organ %ID

remained constant thereafter for the liver, kidneys, and whole-body. S values (the
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absorbed dose per unit cumulated activity) for 90  131i, and 177Lu were used to calculate

dosimetry estimates in an adult male reference (Stabin and Siegel 2003). The blood

activity data was fit to a biexponential function and used to determine the red marrow

dose as described (Wessels et al. 2004) from blood activity measurements. The activity in

the whole-body was used to estimate the total body cumulative activity used for cross-

dose calculations.

4.3.6. Estimation of Whole-body Retention for Published Haptens

For each molecule, a lower bound for the whole-body %ID was calculated by

summing the %ID of each measured organ from the published average %ID/g multiplied

by the organ weight. Where organ weight information was unavailable, we assumed a 25

g mouse with the following distribution of organ weight percent: blood 8%, skin 11.2%,

adipose 20%, muscle 40%, bone 7.5%, heart 0.43%, lung 0.56%, spleen 0.42%, liver

6.4%, kidneys 1.5%, stomach 0.9%, large intestine 1.78%, small intestine 2.75%,

pancreas 0.3%, and brain 1.38%.
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4.4. Results

The in vivo blood clearance and organ biodistribution of four '77Lu-labeled DOTA

haptens (Figure 4.2) were studied to determine how various small molecule appendages

(aminobenzene, biotin, and a small peptide) affect in vivo tissue retention and clearance

of DOTA. Serial blood samples were taken to determine blood clearance of the haptens

(Figure 4.3). DOTA cleared faster from the blood than the other haptens tested; blood

activity was not distinguishable from background after 2 h. The blood activity for all

other haptens tested was not distinguishable above background after 3 h. Mice were

sacrificed 4 h and 24 h post-injection to determine organ biodistribution (Figure 4.4).

Tissue uptake was relatively low for all haptens. The %ID remaining in the whole animal

was approximately 2-4% at 4 hours and 1-3% at 24 hours for the haptens, significantly

lower than many other small molecule radioisotopes reported in the literature

(summarized in Table 4.1).

o2C \~ /--co oC CO
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DOTA DOTA-Benzene
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" - 0 CH3
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Figure 4.2 Chemical structure of DOTA-based small molecule haptens. Chemical structures of
DOTA-based haptens. M 3+ = trivalent cation metal = 1

77Lu in all experiments presented here.
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Blood Clearance of 1 Lu-DOTA-Based Haptens
4%

* DOTA
N DOTA-benzene
* DOTA-biotin

3% A DOTATyrLysDOTA

21%

.%.......
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Figure 4.3 In vivo clearance of intravenously injected haptens. Blood %ID/g (mean + s.d.) time
profile of haptens after intravenous injection of 50-150 gCi in CD1 mice (n = 3-4). The lines represent fit
exponential curves using least squares regression. By 2 h 177Lu-DOTA blood activity was not
distinguishable from background.



CHAPTER 4. CHARACTERIZATION OF DOTA-BASED HAPTENS

a
6%

5%

4%

2 3%

2%

1%

0%

b
6%

Tissue/Organ Biodistribution 4 Hours Post-Injection

Tissue/Organ Biodistributlon 24 Hours Post-Injection

4C?

0 DOTA
5% E DOTA-benzene

[ DOTA-biotin

4% E DOTATyrLysDOTA

Q 3%

2%

1%

0%

Figure 4.4 In vivo tissue/organ biodistribution of haptens. Tissue/organ %ID/g (mean + s.d.) at 4 h
post-injection (A) and 24 h post-injection (B) of 50-150 tCi hapten in CD1 mice (n = 3-4). Whole-body
retention in carcass is presented as %ID.

From the organ biodistribution data, the radiation dose to the liver, kidney, and bone

marrow was estimated for a 70 kg man for three radioisotopes, 90Y, 131I, and '77Lu (Table

4.2). The self-dose and the total dose (self dose plus cross dose) are provided, where the

whole-body activity was used to determine the cross dose. From the dose estimates, it is

apparent that the cross-dose from the whole-body activity significantly impacts the dose,

increasing the dose by 10- to 70-fold.

--xcc~ I I~--- -- -- II I 1 --
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Table 4.2 Radiation dose estimates for DOTA-based chelates in selected organs
Hapten Organ Organ self-dose (mGy/MBq) Organ self-dose and cross-dose

Hapten Organ Organ self-dose (m(mGy/MBq)

9OY I 17Lu 90Y I1311 17Lu

DOTA Liver 0.014 0.011 0.0053 0.035 0.023 0.010
Kidney 0.17 0.11 0.067 0.19 0.12 0.071
Red Marrow 0.00059 0.00014 0.000096 0.0079 0.0070 0.0015

DOTA-benzene Liver 0.026 0.018 0.0091 0.052 0.035 0.016
Kidney 0.24 0.16 0.096 0.27 0.17 0.10
Red Marrow 0.0011 0.00027 0.00018 0.010 0.010 0.0021

DOTA-biotin Liver 0.016 0.011 0.0055 0.045 0.033 0.014
Kidney 0.15 0.088 0.054 0.18 0.11 0.063
Red Marrow 0.0011 0.00025 0.00017 0.011 0.013 0.0026

DOTATyrLysDOTA Liver 0.018 0.014 0.0068 0.052 0.043 0.018
Kidney 0.23 0.14 0.087 0.26 0.17 0.098

Red Marrow 0.00097 0.00023 0.00016 0.013 0.016 0.0032

The dose limiting toxicities (TDs/5) for the liver, kidney,

from external beam radiation are 30 Gy, 23 Gy, and 1.5 Gy,

and red marrow estimated

respectively (Emami et al.

1991). From the radiation dose estimates for the haptens, the dose-limiting organ is

predicted to be the kidney for all 177Lu-labeled haptens tested with an estimated kidney

dose of approximately 0.1 mGy/MBq and liver and red marrow doses of approximately

0.01-0.02 mGy/MBq and 1-2 x 10-4 mGy/MBq, respectively. However, for 90Y and 131I

isotopes, the dose limiting organ could be either the kidneys or the red marrow, with less

than a two-fold difference predicted between the two organs for the estimated dose

normalized to the respective organ TD5/5. The estimated liver, kidney, and red marrow

doses for 90 Y-labeled haptens are 0.04-0.05 mGy/MBq, 0.2-0.3 mGy/MBq, and 0.01

mGy/MBq, respectively, and 0.02-0.04 mGy/MBq, 0.1-0.2 mGy/MBq, and 0.01-0.02

mGy/MBq, respectively, for 131I labeled haptens.



CHAPTER 4. CHARACTERIZATION OF DOTA-BASED HAPTENS

4.5. Discussion

In this study, we present a group of small molecule DOTA-based compounds that

exhibit rapid blood clearance and result in exceptionally low whole-body retention within

4 h post-injection. While many small molecules exhibit fast blood clearance, they

generally exhibit significant retention in normal tissues (Table 4.1). This background

whole-body retention is typically 10-30% at 2-4 h and results in background radiation

that limits signal to background ratios for imaging and nonspecific radiation that

contributes to maximum tolerated dose for therapy applications. Identifying small

molecules that exhibit whole-body retention less than 5% in only a few hours is thus

necessary for improving both imaging and therapy using radionuclides. The DOTA

molecules we present here should thus prove exceptionally useful for pretargeted

applications with bispecific antibodies. The development of small molecules with even

lower whole-body retention would further improve tumor to off-target ratios.

Other small molecules have been developed for pretargeted applications including

DOTA-biotin as well as small peptide haptens (Barbet et al. 1998; Sharkey et al. 2003).

The streptavidin/90Y-DOTA-biotin PRIT system has been tested clinically and radiation

doses have been estimated from whole-body scintigraphy at approximately 3.5 _ 1.0 and

0.04 : 0.01 mGy/MBq for the kidneys and red marrow, respectively (Knox et al. 2000).

The predicted dose estimates for the 90Y-DOTA-biotin hapten presented here are 0.18

and 0.011 mGy/MBq for the kidney and red marrow, respectively. Thus, the kidney dose

for the hapten is predicted to be about 20-fold lower than that measured in the clinical

PRIT study. This is expected because streptavidin localizes to the kidneys where it

remains accessible to binding by DOTA-biotin (Forster et al. 2006). In a mouse

lymphoma xenograft study, pretargeted DOTA-biotin exhibited about five- to ten-fold

higher kidney uptake than DOTA-biotin alone (Lin et al. 2006). A clinical trial of a

pretargeted system without the use of streptavidin reported an average kidney dose of 0.7

mGy/MBq (Kraeber-Bodere et al. 2006), 5-fold lower than that observed for a

streptavidin-based pretargeted clinical trial (Knox et al. 2000). In addition to high

streptavidin uptake in the kidneys, streptavidin pretargeted systems also suffer from
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endogenous biotin binding to streptavidin (Hamblett et al. 2002). Thus recent efforts have

moved towards approaches using bispecific antibodies with peptide haptens. Sharkey et

al. have developed an approach using peptide-based haptens and an antibody that

recognizes the peptide epitope (Sharkey et al. 2003). While some of these peptide-based

haptens exhibit fast clearance and low tissue uptake, others exhibit significantly slower

whole-body clearance (Sharkey et al. 2003).

We are interested in developing a non-peptide approach using DOTA-based haptens.

It was expected that an approach without using peptides would reduce kidney uptake, as

it is known that peptides exhibit tubular reabsorption and resulting kidney retention (Behr

et al. 1998). However, the data presented here shows no significant difference in kidney

retention between DOTA and the DOTATyrLysDOTA peptide. From MIRD radiation

dose estimates, similar red marrow doses are predicted for DOTA and the peptide.

Nevertheless, DOTA presents some potential advantages as a hapten for PRIT. DOTA is

commercially available in large quantities and thus no further synthesis before

radiolabeling is required. In addition, Gd-DOTA, injected in millimolar quantities for

MRI imaging, has an established safety profile in humans (Bourrinet et al. 2007).

From dosimetry estimates, it is predicted that the dose-limiting toxicity for all of the

hapten molecules radiolabeled with 177Lu is the kidney. However, for 90Y and 131I

isotopes with longer path lengths, whole-body retention of the hapten contributes

significantly to the red marrow dose, resulting in similar estimated doses to TD5/5 ratios

for the kidney and the red marrow. These estimates are for the hapten molecule alone. In

PRIT, residual bispecific antibody in the blood and non-tumor tissue will bind to the

hapten and may significantly alter clearance and biodistribution. Clinical PRIT studies

with 131I without a clearing or blocking agent report hematological toxicity as dose

limiting (Kraeber-Bodere et al. 2006).

Directly radiolabeled antibodies in radioimmunotherapy trials exhibit dose limiting

hematological toxicity, with estimated doses of 2.7 _ 0.9 mGy/MBq to the marrow and

2.4 + 0.6 mGy/MBq dose to the kidneys when using 90Y (Fisher et al. 2009). This

suggests that if residual bispecific antibody is sufficiently low, PRIT will result in
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significantly higher tumor to marrow and tumor to kidney ratios. In addition, the results

presented here suggest that 177Lu may result in lower off-target doses and may be

preferred over 90Y and 131I in PRIT applications; this has also been suggested for

radioimmunotherapy based on a xenograft study (Zacchetti et al. 2009).

In cases where the kidney proves to be the dose-limiting organ, kidney uptake and

radiation dose may be reduced by using diuretics, catheterization, and/or renal protective

agents (Jaggi et al. 2006).

The development of PRIT has allowed the delivery of higher doses of ionizing

radiation to the tumor compared to directly-radiolabeled antibodies. However, these

doses do not yet result in significant cure rates for heavily pre-treated patients with bulky

disease. To fully realize the potential of PRIT, approaches that continue to improve tumor

to normal tissue doses must be developed either through increasing tumor dose or

decreasing normal tissue dose. In the next chapter, we present a novel method for PRIT

using a CEA-specific bsAb, a dextran-based clearing agent, and radiolabeled DOTA. We

demonstrate the best tumor to kidney ratios reported to date for CEA-targeted PRIT.
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5. IN VIvo TUMOR TARGETING

5.1. Abstract

We have recently engineered a high-affinity antibody fragment to DOTA metal

chelates with -10 pM affinity to lutetium and yttrium chelates of DOTA-aminobenzene,

-100 pM affinity to lutetium and yttrium chelates of DOTA, -1 nM affinity to indium

chelates of DOTA-aminobenzene, and -10 nM affinity to indium chelates of DOTA

(Table 2.1). Here, we present a novel three-step method for PRIT using an IgG-scFv

bispecific antibody, a dextran-based clearing agent, and radiolabeled DOTA, and test

proof-of-principle of this system in a xenograft mouse model. In addition, we use this

system to analyze in vivo the affect of small molecule affinity on tumor uptake.

Biodistribution and tumor uptake were evaluated in xenograft mice with CEA-positive

and CEA-negative tumors for ' 77Lu-DOTA, "111In-DOTA-Bn, and "'In-DOTA after

pretargeting with an anti-CEA bsAb. Kidney, liver, and bone marrow doses were

estimated using standard Medical Internal Radiation Dose (MIRD) methodology. The

PRIT method presented here resulted in tumor uptake of 177Lu-DOTA of -14 %ID/g at

24 h and 48 h, tumor-to-kidney ratios of -20 at 24 h and 48 h, and tumor-to-blood ratios

of greater than 300 at 24 h and 48 h. An affinity of -100 pM resulted in 8-fold higher

tumor uptake at 24 hours than an affinity of -1 nM, and 28-fold higher uptake than -10

nM affinity. We present here a novel PRIT method with the highest yet reported 48 h

tumor-to-blood and tumor-to-kidney ratios for CEA targeting. In addition, we report for

the first time a systematic study of the affect of small molecule affinity, over a span of

three orders of magnitude, on tumor uptake.



CHAPTER 5. IN Vivo TUMOR TARGETING

5.2. Introduction

Directly radiolabeled tumor-specific antibodies have been investigated as delivery

vehicles of radioisotopes to tumor cells for over 50 years (Pressman 1957; Larson et al.

1984; Boswell and Brechbiel 2007) and the first radiolabeled antibody was approved by

the FDA for the treatment of Non-Hodgkin's lymphoma in 2002. Unfortunately,

antibodies exhibit long half-lives in the blood resulting in low tumor to blood activity

ratios and consequently low tumor to red marrow dose ratios. Antibody fragments and

other smaller binding scaffolds exhibit faster blood clearance but result in high kidney

and/or liver uptake. Radiolabeled small molecule ligands generally exhibit rapid blood

clearance but result in relatively poor tumor accumulation due to low affinity and/or

specificity for tumor antigen.

The premise of pretargeted radioimmunotherapy is that the exquisite binding

specificity of antibodies can be coupled with the rapid clearance of radiolabeled small

molecules to yield high tumor uptake, yet fast clearance from non-tumor tissue. Over the

past 20 years, various methods of pretargeted radioimmunotherapy have been developed

and tested in preclinical and clinical settings (Gautherot et al. 2000; Knox et al. 2000;

DeNardo et al. 2001; Kraeber-Bodere et al. 2006; Lin et al. 2006; Sharkey et al. 2009).

We present here a novel method for pretargeted radioimmunotherapy using a three-

step procedure with a bispecific antibody, a dextran clearing agent, and radiolabeled

DOTA. To the best of our knowledge, this is the first PRIT method that uses an IgG-like

bispecific antibody that can be produced using current antibody production and

purification methods, eliminating additional development specific to the bsAb. High

bsAb doses on the order required for antigenic saturation are used to achieve a high

concentration of hapten binding sites in the tumor. Bsab dosing is followed by a dextran-

based clearing agent to clear residual bsAb from the blood. The clearing step is followed

by administration of radiolabeled DOTA, a small molecule metal chelate commercially

available in large quantities with proven clinical safety in humans when chelated to

gadolinium and used in millimolar concentrations as an MRI contrast agent (Bourrinet et
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al. 2007). In the present study, we investigate the in vivo efficacy of this new PRIT

system.

A unique feature of our engineered PRIT system is the ability of the anti-DOTA

binding fragment to bind with varying affinities to different DOTA chelates (Chapter 2).

This affords an unprecedented method to systematically analyze the affect of small

molecule binding affinity on tumor uptake in vivo using the same bispecific antibody

molecule with different radiolabeled DOTA chelates. We thus evaluate on a fundamental

level the benefit of improving small molecule affinity in tumor targeting applications and

compare the experimental results to mathematical predictions.
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5.3. Materials and Methods

5.3.1. Reagents

1,4,7,1 O0-Tetraazacyclododecane- 1,4,7,1 0-tetraacetic acid (DOTA), S-2-(R-

Aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA-Bn), and S-2-(4-

Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA-SCN)

were purchased from Macrocyclics (Dallas, TX). All other chemicals were purchased

from Sigma-Aldrich (St. Louis, MO) or Thermo Fisher Scientific (Waltham, MA) unless

specified otherwise.

5.3.2. Synthesis of Dextran-based Clearing Agent

5 mg (10 nmol) of 500 kDa amino dextran purchased from Invitrogen (Carlsbad, CA)

with 136 moles of amine per mole dextran was reacted with 3.7 mg (5.3 jimol) DOTA-

SCN in 1 mL DMSO with 1.9 gL (13.6 jmol) TEA overnight at room temperature with

mild vortexing. The dextran reaction mixture was diluted with 14 mL 0.4 M sodium

acetate pH 5.2 and 53 gmol yttrium nitrate was added. The mixture was incubated

overnight at 370 C, dialyzed against water, and then dried down by vacuum

centrifugation. The dried dextran compound was resuspended in PBS and purified by size

exclusion chromatography using a Superdex 75 10/300 GL column. Fractions containing

the dextran compound were combined, dialyzed against water twice, dried by vacuum

centrifugation, resuspended in saline and 0.2 Lm filtered. The final dextran-DOTA-Y

contained approximately 130 DOTA molecules as assessed by a TNBSA assay (Thermo

Fisher Scientific, Rockford, IL).

5.3.3. Radiolabeling

DOTA compounds were dissolved at 0.5 mM in ammonium acetate pH 5.6. 1-2 mCi

177LuC13 (PerkinElmer, Waltham, MA) or "'InC13 (Cardinal Health, Dublin, OH) were

added to the metal chelate and incubated for 1-2 h at 85-950 C. The radiolabeled

compounds were purified by RP-HPLC (Humblet et al. 2006; Misra et al. 2007) with

gamma detection on a 4.6 x 75 mm Symmetry C18 column using a linear gradient from
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0% to 40% B over 15 minutes, at a flow rate of 1 mL/min, where A = 10 mM TEAA and

B = methanol. The purified compounds were dried under vacuum, resuspended in saline,

and filter-sterilized.

IgG and bsAb protein were conjugated to p-SCN-Bn-DTPA (Macrocyclics) as

described (Cooper et al. 2006). Concentrated DTPA-labeled protein was incubated with -

1 mCi " InC13 for 30 min at room temperature. The protein was diluted with 500 [tL

saline and concentrated to approximately 50 gL using Vivaspin 5000 MWCO spin

columns (Sartorius Stedim Biotech, Aubagne, France). The ""In-labeled protein was

diluted with 500 L saline and concentrated twice more.

"'In-DOTA-dextran was prepared by synthesizing dextran-DOTA as described

above, without loading with cold yttrium. Dextran-DOTA was incubated with 1-2 mCi

1"InC13 for 1 h at 370 C followed by concentration and dilution with saline as described

above.

5.3.4. Animal models

All animal handling was performed in accordance with BIDMC IACUC guidelines.

Male NCRU-nu/nu mice were purchased from Taconic Farms (Germantown, NY). For

biodistribution and tumor uptake, 100-150 gCi 177Lu- or lIn-labeled hapten was injected

intravenously into the mice. Blood was collected from the tail vein using micro-capillary

tubes and counted on a model 1470 Wallac Wizard (Perkin Elmer, Wellesley, MA) 10-

detector gamma counter. Mice were euthanized by intraperitoneal injection of

pentobarbital followed by cervical dislocation, a method consistent with the

recommendations of the Panel on Euthanasia of the American Veterinary Medical

Association. Organs and tumors were resected, washed in PBS thrice, weighed, and

counted as described above.

5.3.5. Dosimetry

Radiation doses absorbed by normal tissues other than the red marrow were

calculated according to the MIRD scheme. Percent injected activity in tumor, kidneys,

liver, blood, and whole-body were calculated from activity measurements. The activity at
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time 0 was assumed to be 4 %ID/g in the kidney and liver, 50 %ID/g in the blood, 0

%ID/g in the tumor and 100% in the whole-body. Isotope decay-adjusted activity was

integrated over time, with a conservative assumption that the 48 h organ %ID remained

constant thereafter. S values for 90Y and 177Lu were used to calculate dosimetry estimates

in an adult male reference (Stabin and Siegel 2003). The red marrow dose was calculated

as described (Wessels et al. 2004) from blood activity measurements. The activity in the

whole-body was used to estimate the total body cumulative activity used for cross-dose

calculations. Tumor doses were calculated from self-dose only using S-factors for a unit

density sphere of size 500 g (the average LS174T tumor size scaled by 2000).

5.3.6. Imaging

SPECT/CT (single photon emission computed tomography/computed tomography)

scans and image analyses were performed using a rodent scanner (NanoSPECT/CT,

Bioscan, Washington, DC) equipped with an 8W x-ray source running at 45 kV (177

pA), and a 48 ptm pitch CMOS-CCD x-ray detector. Mice were anesthetized in an

anesthetic chamber with isoflurane and transferred to a bed on a gantry for imaging

where gas anesthesia was maintained for the duration of the scan. After acquisition of a

CT topogram, helical micro SPECT was performed using a four-headed gamma camera

outfitted with multi-pinhole collimators (1.4 mm) and a total scan time of 45 min. SPECT

images were acquired over 3600 in 24 projections each using a 256 x 256 frame size (1.0

mm pixels). Images were reconstructed with Bioscan HiSPECT iterative reconstruction

software and fused with CT images. Immediately after scanning, mice were sacrificed

and tissues and tumors weighted and counted as described above.
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5.4. Results

The Sm3e/C825 bsAb was produced and purified as described previously (Chapter 3).

24 h biodistribution of the bsAb and the parent Sm3e IgG in male nude mice bearing

CEA-positive (LS174T) and CEA-negative (C6) tumors demonstrated similar specific

accumulation in the antigen-positive tumor with -4-fold higher uptake than the antigen-

negative tumor (Table 5.1). In addition, high activity remained in the blood at 24 h, as

expected, due to slow blood clearance of Fc-containing compounds.

Mice pretargeted with 500 ug bsAb were injected with 11In-DOTA-Bn 24 h later. 4 h

biodistribution showed significantly higher activity in all organs due to binding to bsAb

(appendix Figure 7.1). Of particular note is the high activity in the blood and low tumor

to blood ratio. The high blood activity motivated the development of a clearing/blocking

agent.

We engineered a dextran-based clearing agent, using a 500 kDa aminodextran (-136

amino groups per dextran molecule) conjugated to DOTA. The resulting compound

contained approximately 130 DOTA molecules per dextran. The dextran-DOTA

compound was loaded with non-radioactive yttrium and when injected into pretargeted

mice one hour prior to hapten administration resulted in hapten blood clearance

essentially identical to that of hapten alone (appendix Figure 7.2) suggesting essentially

complete blocking/clearance of residual bsAb in the blood. Dextran-DOTA was

radiolabeled with "'In to characterize the in vivo properties of the dextran agent alone.

Biodistribution and blood clearance of n'In-DOTA-dextran was analyzed in tumor-

bearing mice (Figures 5.1 and 5.2). The dextran agent clears very rapidly from the blood

and exhibits very high uptake in the liver and spleen at 4 h post-injection (p.i.).
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Tnhhe: li1 24 h bini~triutin of 500 ug 1 11n-bsAb and 500 ug '11 1In-IgG.
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Figure 5.1. "1In-DOTA-dextran organ/tissue biodistribution. Organ/tissue biodistribution (mean +

S.D., n=2) of "'In-labeled DOTA-dextran clearing agent 4 h p.i. in tumor bearing mice.
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Sm3e/C825
Organ/tissue bsAb Sm3e IgG

Blood 14 a 1 13 ± 2

Skin 3.3 ± 0.1 2.6 + 1.1

Adipose 5.2 ± 3.1 1.2 t 0.1

Muscle 1.0 ± 0.1 1.0 a 0.1

Bone (femur) 2.2 ± 0.4 1.4 a 0.1

Heart 2.7 ± 0.1 3.0 ± 0.1

Lung 5.7 _ 0.0 3.9 t 0.5

Spleen 7.2 ± 1.0 3.7 _ 0.5

Liver 3.5 t 0.7 2.7 ± 0.6

Kidneys (both) 2.9 ± 0.2 2.5 ± 0.3

Stomach (with contents) 0.56 ± 0.09 0.62 ± 0.01

Sm Intestine 1.4 ± 0.1 1.1 ± 0.1

Lg Intestine 2.8 ± 0.5 2.6 ± 1.4

C6 Tumor 5.3 ± 1.8 4.0 ± 1.6

LS174T Tumor 19 ± 3 15 a 3
%ID/g (mean + s.d.), n =2
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Figure 5.2 'In-DOTA-dextran Blood Clearance. Blood clearance (mean ± S.D., n=2) of iIn-
labeled DOTA-dextran clearing agent in tumor bearing mice.

We next tested a protocol involving all three reagents to determine the efficacy of our

engineered PRIT system. We intravenously injected tumor-bearing mice with 500 jtg

bsAb followed by 250 ug of dextra-DOTA-Y clearing agent 24 h later. After an

additional 1 h, 100-150 ptCi 177Lu-DOTA was injected intravenously. At 4 h post-

injection of radiolabeled DOTA, tumor uptake was 7.44 - 0.41 %ID/g in the antigen-

positive tumor (Table 5.2 and Figure 5.3), 84-fold higher than the tumor uptake observed

for 177Lu-DOTA alone (Table 5.3). Activity was also higher in non-tumor tissue due to

binding of 177Lu-DOTA to residual bsAb in the extravascular compartment. Tumor

uptake in the antigen-negative tumor was 9.82 _± 0.35 %ID/g at 4 h, similar to the

antigen-positive tumor due to nonspecific uptake from enhanced permeability and

retention (EPR) of the bsAb. Over time, the tumor activity in the antigen-negative tumor

decreased to 4.23 ± 0.54 %ID/g at 24 h and 2.89 ± 2.28 %ID/g at 48 h while the tumor

activity in the antigen-positive tumor increased to 14.3 ± 1.8 %ID/g at 24 h and remained

essentially constant at 48 h. The LS 174T tumor to blood ratio increased from 18 ± 2 at 4

.............................
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h to 380 - 90 at 24 h and was greater than 450 at 48 h (Table 5.4). At 48 h, the blood

activity was not measurable above background. The LS174T tumor to kidney ratio

increased from approximately 8 at 4 h to about 20 at 24 and 48 h (Figure 5.4). SPECT/CT

images confirmed the quantitative biodistribution data with high SPECT signal in the

CEA-positive tumors, lower signal in the CEA-negative tumor and no observable signal

in non-tumor tissue (Figure 5.5).

From the PRIT organ biodistribution data, the radiation dose to the kidney, liver, red

marrow, and antigen-positive tumor was estimated for a 70 kg man for 90Y and '77Lu

(Table 5.5). It should be noted that these estimates are generated from mouse

biodistribution data and are thus approximations; human clinical data will be required for

more accurate dosimetry. The estimated doses to the kidney, liver, and red marrow were

calculated from both the self-dose and cross-dose, where the whole-body activity was

used to determine the cross-dose. The estimated dose to the tumor was determined from

self-dose only. The dose limiting toxicities (TD51 5) for the liver, kidney, and red marrow

estimated from external beam radiation are 30 Gy, 23 Gy, and 1.5 Gy, respectively

(Emami et al. 1991). From the radiation dose estimates, the dose-limiting organ is

predicted to be the red marrow for both 90Y-DOTA and 177Lu-DOTA haptens. At a red

marrow dose of 1.5 Gy, the estimated dose to the tumor is 98 Gy for 90Y and 156 Gy for
177Lu. A dose of greater than 50 Gy is generally thought to be sufficient to eradicate most

tumors (Govindan et al. 2000).
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Figure 5.3 '77Lu-DOTA Organ/tissue biodistribution. Organ/tissue biodistribution (mean ± s.d.,
n=3) of 177Lu-labeled DOTA at 4, 24, and 48 h p.i. 500 ug Sm3e/C825 bsAb was injected followed by 250
ug Y-DOTA-dextran clearing agent 24 h later. 100-150 IiCi 177Lu-DOTA was injected 1 h after the clearing
agent.
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Figure 5.4 Pretargeted '77Lu-DOTA tumor/kidney ratios. Tumor/kidney ratios (mean + s.d., n=3) of
177Lu-DOTA at various times.
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Table 5.2 Biodistribution of pretargeted 177Lu-DOTA

a Mice were injected with 500 ug bsAb i.v. 24 h later, mice received 250 ug dextran-DOTA i.v. 1 h
later, mice received 100-150 uCi of 177Lu-DOTA i.v. and were sacrificed at 4, 24, and 48 h p.i. Data given

as mean ± s.d. (%ID/g, n=3). Tumor weights are provided as mean ± s.d. in parentheses.

CEA-positive
tumors

CEA-negative
tumors

24 h 48 h

Figure 5.5 SPECT/CT images of pretargeted 177Lu-DOTA. SPECT/CT maximum intensity
projections of pretargeted tumor mice at 24 h (left) and 48 h (right) p.i. of 177Lu-DOTA.

--
a

Time nost-iniection a

Organ/Tissue 4 h 24 h 48 h
Blood 0.42 _ 0.02 0.04 ± 0.01 < 0.03
Skin 4.68 + 1.06 1.05 ± 0.25 0.71 ± 0.20

Adipose 2.78 ± 1.08 0.67 ± 0.12 0.60 ± 0.29

Muscle 1.56 ± 0.56 0.41 ± 0.24 0.15 ± 0.07

Bone (femur) 1.49 ± 0.38 0.43 ± 0.12 0.24 ± 0.10

Heart 0.25 ± 0.16 0.05 ± 0.01 0.07 ± 0.03

Lung 1.25 ± 0.43 0.37 ± 0.07 0.21 ± 0.04

Spleen 0.39 ± 0.09 0.29 ± 0.09 0.64 ± 0.60

Liver 0.59 ± 0.21 0.51 ± 0.23 0.56 ± 0.35

Kidneys (both) 0.92 ± 0.05 0.88 ± 0.16 0.62 ± 0.19

Stomach (with contents) 0.21 ± 0.12 0.09 ± 0.07 0.22 ± 0.24

Sm Intestine 0.28 ± 0.02 0.08 ± 0.04 0.14 ± 0.11

Lg Intestine 0.13 ± 0.09 0.52 ± 0.56 0.11 ± 0.04
9.82 ± 0.35 4.23 ± 0.54 2.89 ± 2.28

C6 Tumor (0.26 ± 0.08 g) (0.26 ± 0.07 g) (0.28 ± 0.13 g)
7.44 ± 0.41 14.34 ± 1.83 13.44 ± 3.25

(0.09 + 0.03 g) (0.21 ± 0.10 g) (0.49 ± 0.09 g)
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Table 5.3 Four hour Biodistribution of 177Lu-DOTA in tumor mice.

Organ/tissue %ID/ga
Blood < 0.04

Skin 0.076 ± 0.021

Adipose 0.015 _ 0.009

Muscle 0.014 ± 0.004

Bone (femur) 0.030 ± 0.006

Heart 0.012 ± 0.000

Lung 0.029 ± 0.000

Spleen 0.030 ± 0.002

Liver 0.089 ± 0.010

Kidneys (both) 0.764 ± 0.011

Stomach (with contents) 0.227 ± 0.014

Sm Intestine 0.253 ± 0.072

Lg Intestine 0.080 ± 0.029

C6 Tumor (0.11 ± 0.01 g) 0.112 ± 0.034

LS174T Tumor (0.04 ± 0.02 g) 0.089 ± 0.005
aMice were injected with 100-150 uCi of 'Lu-DOTA

Tumor weights are provided as mean - s.d. in parentheses.
i.v. Data given as mean ± s.d. (%ID/g, n=2).

Table 5.4 Pretargeted tumor/organ ratios.
Time post-injectiona

Organ/tissue 4 h 24 h 48 h

Blood 18 2 380 ± 90 > 450

Skin 1.7 ± 0.4 14 ± 2 20 ± 8

Adipose 3.2 ± 1.5 23 ± 6 28 ± 13

Muscle 5.3 e 1.6 57 ± 41 105 ± 40

Bone (femur) 5.3 ± 1.6 38 ± 16 60 e 19

Heart 49 ± 36 323 ± 108 244 ± 85

Lung 7.2 ± 3.7 39 ± 3 63 ± 6

Spleen 20 ± 5 52 e 12 40 ± 21

Liver 13.9 ± 3.7 33 ± 11 32 ± 13

Kidneys (both) 8.1 ± 0.2 17 ± 3 22 ± 3

Stomach (with contents) 48 ± 22 252 ± 119 276 ± 236

Sm Intestine 27 ± 4 217 ± 76 183 ± 129

Lg Intestine 80 ± 36 83 ± 53 128 ± 16

C6 Tumor 0.7 ± 0.1 3.4 ± 0.3 10 9
LS174T Tumor 1 1 1

aTumor/organ ratios (mean + s.d., n=3) aMice were injected with 500 ug bsAb i.v. 24 h later, mice
received 250 ug dextran-DOTA i.v. 1 h later, mice received 100-150 uCi of 177Lu-DOTA i.v. and were
sacrificed at 4, 24, and 48 h p.i.
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Table 5.5 Radiation dose estimates in selected organs.

Estimated Dose (mG/MBq)
90y 177Lu

Kidney 0.56 0.15
Liver 0.35 0.09

Red Marrow 0.05 0.01
Tumor 3.6 1.1

The pretargeted protocol described above was used to analyze the effect of affinity on

the tumor uptake of radiolabled DOTA. The bsAb exhibits affinities of -10 nM for l'lln-

DOTA, -1 nM for "'In-DOTA-Bn, -100 pM for 177Lu-DOTA, and 10 pM for 177Lu-

DOTA-Bn (Table 2.1). The 24 h organ/tissue biodistribution was determined in tumor-

bearing mice with each of the four radiolabeled DOTA compounds (Figure 5.6 and Table

5.6). SPECT/CT images of one mouse from each set show that at least single digit

nanomolar affinity is needed to observe signal in the antigen-positive tumor (Figure 5.7).

The 24 h activity in the LS174T tumor increased from 0.5 + 0.1 %ID/g for -10 nM

affinity to 1.6 + 0.3 %ID/g for -1 nM affinity to 14.3 + 1.8 %ID/g for -100 pM affinity.

The tumor activity for -10 pM affinity is not significantly different than that of -100 pM

affinity. The activity in the C6 antigen-negative tumor increased with affinity,

presumably due to nonspecific uptake of bsAb. The activity in the non-tumor tissues is

also higher for the higher affinity compounds due to the higher affinity binding to

residual bsAb. The tumor to kidney ratio increased from 1.2 + 0.4 for -10 nM to 17 ± 3

for 100 pM but then decreased to 10 ± 2 for -10 pM affinity due to higher uptake in the

kidney but similar tumor uptake.

The experimental results of 24 h tumor uptake versus affinity were compared to

mathematical predictions based on a previously published compartmental model of tumor

uptake (Schmidt and Wittrup 2009). Vascular permeability was estimated from the two-

pore model of the capillary wall for a 1 kDa molecule. The surface density was estimated

to be 2 x 105 DOTA binding sites per cell based on the 24 h tumor accumulation of bsAb

(Table 5.1), the 24 h activity of the scFv in serum (chapter 3), and the 15 h internalization

rate of CEA resulting in approximately half of the accumulated bsAb to be internalized

and therefore inaccessible to binding. The blood clearance parameters were calculated

from a biexponential fit of the in vivo blood clearance measured for 177Lu-DOTA.
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The experimental results compared well to the model prediction (Figure 5.8) with the

24 h tumor uptake increasing significantly from 1 nM to 100 pM affinity and then

reaching a plateau with an additional improvement in affinity from 100 pM to 10 pM

resulting in no significant improvement in 24 h tumor activity.

20% -

15% -

10% -

5% -

0%

1 177Lu-DOTABn ~ 10 pM
* 177Lu-DOTA ~100 pM
0 11lln-DOTABn ~ 1 nM
E11n-DOTA ~10 nM
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Figure 5.6 Biodistribution of DOTA compounds with varying affinities. Organ/tissue biodistribution 24
h p.i. (mean ± S.D., n=3) of 177Lu-DOTA-Bn, 177Lu-DOTA, "'In-DOTA-Bn, and l'In-DOTA. 500 ug
Sm3e/C825 bsAb was injected followed by 250 ug Y-DOTA-dextran clearing agent 24 h later.
Radiolabeled DOTA was injected 1 h after the clearing agent.
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Table 5.6 24 h Biodistribution of pretargeted 177Lu-DOTA-Bn, 177Lu-DOTA, '"In-DOTA-Bn, and
S11n-DOTA

177Lu-DOTA-Bn 177Lu-DOTA "In-DOTA-Bn "In-DOTA
Blood 0.79 + 0.29 0.04 ± 0.01 0.02 - 0.00 < 0.01

Skin 3.1 _ 0.6 1.05 + 0.25 0.16 + 0.01 0.06 _ 0.01

Adipose 2.7 _ 0.5 0.67 _ 0.12 0.04 + 0.00 0.01 _ 0.00

Muscle 1.0 _ 0.3 0.41 t 0.24 0.04 a 0.00 0.01 t 0.00

Bone (femur) 1.6 + 0.1 0.43 t 0.12 0.04 ± 0.01 0.02 _ 0.00

Heart 0.22 + 0.03 0.05 ± 0.01 0.01 t 0.00 0.01 _ 0.00

Lung 1.3 ± 0.6 0.37 . 0.07 0.03 ± 0.00 0.01 + 0.01

Spleen 2.8 ± 1.0 0.29 ± 0.09 0.04 ± 0.01 0.03 ± 0.00

Liver 2.1 ± 0.3 0.51 ± 0.23 0.05 ± 0.01 0.04 ± 0.00

Kidneys (both) 1.9 ± 0.1 0.88 ± 0.16 0.33 ± 0.11 0.41 ± 0.03

Stomach (with 0.12 ± 0.01 0.09 ± 0.07 0.08 ± 0.05 0.07 ± 0.04
contents)

Sm Intestine 0.40 ± 0.01 0.08 ± 0.04 0.04 ± 0.01 0.03 ± 0.00

Lg Intestine 1.3 ± 0.2 0.52 ± 0.56 0.26 ± 0.09 0.25 ± 0.07

8.4 ± 1.7 4.2 ± 0.5 0.42 ± 0.15 0.14 ± 0.02
(0.21 ± 0.08) (0.26 ± 0.07 g) (0.50 ± 0.36 g) (0.48 ± 0.13 g)

19 + 4 14.3 ± 1.8 1.6 ± 0.3 0.50 ± 0.12
(0.10 + 0.01) (0.21 + 0.10 g) (0.30 ± 0.18 g) (0.45 + 0.24 g)

a Mice were injected with 500 ug bsAb i.v. followed 24 h later by 250 ug dextran-DOTA i.v. and 1 h
later with 100-150 uCi of 177Lu-DOTA-Bn, 1

77Lu-DOTA, ""In-DOTA-Bn, or '1"In-DOTA i.v. and

sacrificed at 24 h p.i. Data is given as mean ± s.d. (%ID/g, n=3). Tumor weights are provided as mean ±

s.d. in parentheses.
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-10 nM -1 nM ~100 pM ~10 pM
Figure 5.7 SPECT/CT images of pretargeted DOTA compounds with varying affinities.

SPECT/CT maximum intensity projections of tumor mice pretargeted with 11 In-DOTA (left), "'In-DOTA-
Bn (left middle), 1

77Lu-DOTA (right middle), and 1
77Lu-DOTA-Bn (right) 24 h p.i.

k15
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0*
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Figure 5.8 24 h tumor uptake for varying affinities: mathematical prediction versus
experimental results. Mathematical prediction (navy line) and experimental data (red circles, mean + s.d.)
of 24 h tumor %ID/g for increasing affinity. Model parameters: tl/2, ke = 120 h, [Ag] = 13.3 x 10-8 M, e =

0.44, [Ab]o = 1 nM, a = 0.096 s", 3 = 0.00051 s-1, A = 0.8, Rcap = 8 jpi, RKrogh = 75 jm, P = 2.4 x 10-7
m/s.
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5.5. Discussion

Here we present a new method for pretargeted radioimmunotherapy that uses an IgG-

scFv bsAb (Chapter 3), a dextran-based clearing agent, and radiolabeled DOTA. The

engineered PRIT system was tested in xenograft mice bearing CEA-positive and CEA-

negative tumors. The bsAb exhibits -100 pM affinity for 177Lu-DOTA. 177Lu-DOTA has

previously been shown to exhibit very rapid whole-body clearance from mice (Chapter

4). Here we demonstrate high LS174T tumor uptake and retention of 177Lu-DOTA with

fast clearance from non-tumor tissue resulting in the highest reported tumor-to-blood and

tumor-to-kidney ratios at 48 h p.i. for CEA targeting.

A significant amount of 177Lu-DOTA uptake is observed in the CEA-negative tumors

at early times. Enhanced permeability and retention (EPR) results in nonspecific tumor

accumulation of high-molecular weight compounds. While approximately 4-fold higher

bsAb uptake is observed in LS174T tumors versus C6 tumors, the difference in hapten

uptake at early times will be less because a significant fraction of the bsAb localized to

the LS174T tumors will be inaccessible due to the 15 h internalization half-life of CEA

(Schmidt et al. 2008), while all bsAb in the C6 tumors will be accessible to hapten

binding. This is consistent with the observation of similar activities in the two tumors at

early times. At later times, unbound antibody intravasates out of the CEA-negative tumor

while CEA-bound antibody in the LS174T tumors internalizes 177Lu-DOTA compounds

where the radiolabel is trapped within the cell.

The PRIT approach presented here originates from a rational engineering design

perspective. We used mathematical modeling to predict the affinity necessary for

efficient hapten capture and retention at the site of the tumor (Chapter 2). We then

engineered an IgG-like bsAb to retain slow blood clearance resulting in high tumor

uptake, retain potentially beneficial secondary immune function, and to allow for

production and purification identical to that of an IgG. We designed our system to use

simply DOTA as the hapten, with no additional synthesis or modification required

eliminating issues with linker cleavage and peptide stability (van Gog et al. 1998; van

Schaijk et al. 2005). DOTA chelated to gadolinium has been administered to human
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subjects in millimolar concentrations and has an established safety profile. DOTA metal

chelates exhibit rapid blood clearance and whole-body clearance observed in mice

(Chapter 4) and humans (Le Mignon et al. 1990). When systematically compared to other

DOTA-based compounds, 177Lu-DOTA exhibits slightly lower liver and intestine uptake

at 4 h p.i. compared to radiolabeled DOTA-biotin and DOTA-Bn in normal CD1 mice

(Chapter 4). This suggests that DOTA exhibits essentially complete renal clearance while

DOTA-biotin and DOTA-Bn exhibit some clearance through bile. This effect may be

more or less pronounced in humans.

The non-tumor tissue clearance of DOTA is not nearly as fast in mice pretargeted

with bsAb, even with the addition of the dextran clearing agent, due to incomplete

clearance resulting in residual antibody. Multiple doses of the clearing agent or infusion

of the clearing agent over a period of time would likely result in more complete bsAb

clearance from non-tumor tissue, as residual bsAb in the extravascular space will recycle

back into the bloodstream over time (Press et al. 2001). A lower mass of dextran may

also improve bsAb clearance; however, improved clearance will need to be balanced with

possible tumor uptake of smaller agents resulting in blocked hapten binding sites.

Not only do we present here excellent tumor:blood ratios but they are demonstrated

despite an exceptionally high dose of bsAb. Other reports of pretargeting methods report

decreasing tumor/blood ratios with increasing bsAb doses (Sharkey et al. 2005; van

Schaijk et al. 2005). Our method results in a high number of hapten binding sites in the

tumor at the time of hapten dosing; this is important as the number of hapten binding sites

is directly related to the number of radioisotopes that can be captured and retained at the

site of the tumor, impacting the maximum possible dose. While three-step pretargeted

radioimmunotherapy adds complexity over two-step procedures, it allows higher doses of

bsAb to be administered resulting in higher achieved tumor doses as well as more

homogenous distribution within the tumor. In addition, it allows for possible secondary

immune effects resulting from the retained Fc domain that may prove significant

(Sharkey et al. 2009). Two-step approaches may be sufficient for molecular imaging

leading to improved cancer screening and staging (Sharkey et al. 2005; Sharkey et al.
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2008). However, it is anticipated that the increased number of hapten binding sites

afforded by three-step approaches will prove critical for therapy.

A unique advantage of the approach developed here is the ability to study the effect

of affinity on the in vivo tumor uptake of radiolabeled DOTA. This is the first time, to our

knowledge, that affinity alone has been analyzed in vivo over three orders of magnitude.

We had the unique ability to parse out affinity, with unaltered internalization kinetics and

Bmax. We show here that -100 picomolar affinity is required for high tumor uptake in this

system with further affinity improvement resulting in no further improvement in tumor

uptake. Based on our experimental results and their excellent correlation to mathematical

prediction, we expect this affinity requirement to pertain to other systems of small

molecule targeting with similar -105 sites/cell surface density.
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6. CONCLUDING REMARKS

Here, we present a novel PRIT approach, based on a systematic engineering design

approach and mathematical modeling. DOTA was selected as the radionuclide-carrying

hapten, based on its favorable pharmacokinetics and safety profile in humans. We

engineered a high-affinity antibody fragment to DOTA with a target affinity motivated by

mathematical modeling. A bispecific antibody construct was then engineered with the

DOTA-binding moiety appended to the C-terminus of the light chain of an anti-CEA IgG.

A three-step PRIT protocol with a dextran-based clearing agent demonstrated excellent

tumor targeting of DOTA-chelated radioisotope and low background in tumor-bearing

mice with tumor-to-blood ratios greater than 300 and tumor-to-kidney ratios of about 20

at 24 hours. This work shows that mathematical modeling can be used to motivate

appropriate design criteria in developing improved agents for tumor targeting.

The promising biodistribution and imaging results presented here support further

preclinical studies in anticipation of an investigational new drug (IND) application to the

FDA. Thus, future work includes preclinical therapy experiments using 90Y and/or 177Lu

in mouse tumor models. These studies will be performed in collaboration with Memorial

Sloan Kettering Cancer Center (MSKCC) and the City of Hope.

Moving forward to clinical trial preparation, all three reagents will require preparation

under current good manufacturing practices cGMP conditions. DOTA is already

available in cGMP-grade from Macrocyclics. Many contract firms (and the City of Hope)

have expertise in producing cGMP-grade antibodies for clinical studies. Because the

bsAb used here is produced and purified in a manner identical to that of IgGs, scale-up

and cGMP manufacturing should not be an issue. Contract organizations to synthesize

cGMP grade compounds such as the dextran clearing agent also exist and this production

should prove relatively straightforward. All three compounds will require successful

completion of no observed adverse effect level (NOAEL) studies in two species (i.e. rat

and dog). We predict no foreseeable issues with the IgG-like bsAb and DOTA

compounds. However, high molecular weight iron-dextran compounds used to treat
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anemia have been previously associated with a low but serious risk of anaphylaxis (Hayat

2008). If issues arise with the dextran compound, it should be relatively easy to develop a

clearing agent with a lower molecular weight dextran or based on a different framework

such as an albumin- or IgG-based compound. However, additional experimentation will

be required to ensure efficacy.

Affinity maturation of the wild-type 2D12.5 DOTA-binding antibody used selection

pressure for improved affinity to yttrium-chelated DOTA. The 2D12.5 antibody exhibits

promiscuity in binding and binds to DOTA chelates of a variety of metals with varying

affinities. It was not known a priori if the selection pressure during affinity maturation

would result in clones with high specificity for yttrium-chelated DOTA and lose affinity

to other DOTA chelates. The clone C8.2.5 that was selected with the highest measured

affinity to yttrium-chelated DOTA also binds the 9-coordinate DOTA chelates of

lutetium and gadolinium with similar affinity, a 1000-fold affinity improvement

compared to the wild-type and no apparent change in promiscuity. In addition, the high

affinity antibody binds 8-coordinate DOTA chelates of indium with nanomolar affinity, a

similar three order of magnitude improvement in affinity. Thus, the engineered high-

affinity antibody fragment may be used for imaging and therapy applications using a

variety of isotopes with different radioactive properties.

90Y, considered a hard beta due to its high energy emissions with maximum particle

energy of 2.27 MeV and -12 mm maximum particle range is currently one of the most

widely used isotopes in radioimmunotherapy applications. Its long range in tissue may

prove especially useful in treating bulk disease with large necrotic regions and

heterogeneous distribution of radioisotope. 177Lu is a soft beta (maximum particle energy

of 0.5 MeV) and is especially promising as it was recently shown to exhibit lower off-

target effects when compared to 90Y in a radioimmunotherapy study in xenograft mice

(Zacchetti et al. 2009) likely due to its shorter particle range (-2 mm maximum range).

177Lu also emits gamma photons allowing imaging by SPECT. While 90 Y, a pure beta

emitter, cannot be used for imaging, 86y can be used for PET imaging prior to or at the

same time as 90Y therapy. 1"'In can also be used for imaging (SPECT) and has been used

clinically for personalized dosimetry for 90Y radioimmunotherapy (Fisher et al. 2009).
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However, the weaker affinity of the 1 lln-DOTA chelate for the bsAb will result in

different biodistribution and thus dosimetry for 90Y therapy is likely best performed using
86y PET.

There is also a very high likelihood that the PRIT system will be compatible with

225Ac, a combined alpha and beta emitter (McDevitt et al. 2001). Nonradioactive

actinium is not available, preventing confirmation of its compatibility thus far.

In addition to compatibility with a variety of radioisotopes, a second aspect of system

modularity comes from the simple attachment of the DOTA-binding scFv to any IgG,

allowing the approach to be used with any validated cancer-specific antibody. Indeed, we

have already developed bispecific antibodies that target A33, a validated colon cancer

antigen, and CD20, an antigen that is currently targeted by several FDA-approved

antibodies for the treatment of Non-Hodgkin's lymphoma. Results from preliminary

PRIT studies targeting A33 are very promising (see appendix 7.3.2) and demonstrate the

versatility of our system.

Because the affinity maturation resulted in an antibody fragment with differing

affinities for different DOTA chelates, we inadvertently developed an excellent system

for the study of the affect of affinity of small molecules on tumor targeting in vivo. By

using two different isotopes, 177Lu and "'In, and two different DOTA chelates, DOTA

and DOTA-aminobenzene, we were able to analyze the affect of affinity over three orders

of magnitude in a systematic fashion in vivo in tumor-bearing mice. This type of

systematic study of the affect of affinity on small molecule tumor uptake in vivo has not

been possible previously and we were thus able to fundamentally explore the affect of

affinity on small molecule uptake for a constant Bmax of approximately 105 binding sites

per cell. We show here that improving affinity from single digit nanomolar to -100 pM

results in a 3-fold higher tumor to kidney ratio and a 4-fold higher tumor to blood ratio at

24 hours post injection. However, additional affinity improvement to -10 pM results in

no further increase in tumor uptake and lower tumor to background ratios due to higher

binding and retention in non-tumor tissue to residual bsAb. It is important to note that
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tumor uptake will be a function of both affinity and Bmax, with lower numbers of binding

sites requiring higher affinity to achieve the same tumor uptake.

As mentioned above, the PRIT system developed here can be used to target any

surface receptor. Thus, an important question is which surface receptor(s) to target. A

good target has 3 properties: 1) specific expression on malignant cells with little to no

expression on normal cells, 2) a relatively slow internalization rate, and 3) high surface

density. Most clinically validated cancer antigens (i.e. EGFR and HER2) are ubiquitous

surface receptors expressed on normal cells and overexpressed on cancer cells. These are

generally not good targets for PRIT. However, antibodies that bind to particular

malignant-specific epitopes of ubiquitous receptors have been identified (Garrett et al.

2009). Other cancer antigens (i.e. CD20, A33, PSMA) are specific to particular tissues

and may be useful targets if the tissue is expendable. One target that appears to be very

specific to tumor cells is human aspartyl (asparaginyl) beta-hydroxylase (HAAH), as it is

normally expressed intraceullarly but translocated to the cell surface in malignant cells

(Lavaissiere et al. 1996; Ince et al. 2000). In addition, HAAH appears to be expressed on

a large variety of tumor types and was detected in 99% of 1000 tumor specimens (Yeung

2005). Unfortunately, anti-HAAH antibodies exhibits a very fast internalization rate

(Yeung et al. 2007) such that administered bsAb would be rapidly internalized and

subsequently inaccessible to hapten binding. The number of hapten capture sites available

at the time of hapten dosing is directly related to the antigen surface density and

internalization rate. A relatively high surface density (> 104 per cell) and a slow

internalization rate (-15 hour half-life or longer) are ideal.

One could imagine a tumor targeting approach that would yield the tumor-to-

background ratios reported here but with a single step. A small molecule with high

affinity for tumor antigen and rapid whole-body clearance would be necessary to achieve

a one-step approach and would result in a much simpler and significantly more

inexpensive therapy. Unfortunately, small molecule ligands developed to date for tumor

targeting generally result in very high background retention (Table 4.1). In addition, most

small molecules exhibit significantly lower affinities than antibodies and other protein

scaffolds, due in part to a smaller surface area from which to derive necessary binding
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contacts. To develop improved tumor-specific small molecules, one needs to focus on

both reducing background in non-tumor tissue and improving affinity. A more

fundamental and mechanistic understanding of the chemical properties that result in

nonspecific binding and whole-body retention of small molecules and peptides is needed.

Small molecules with high affinity for tumor antigens may be identified with

technological improvements in small molecule library design combined with enhanced

screening, selection, and the use of focused libraries. Affinity may be improved for

identified compounds by using multivalent structures to improve affinity through avidity

(Mammen et al. 1998; Misra et al. 2007; Humblet et al. 2009).

This thesis is evidence that mathematical modeling can be used to guide experimental

efforts in drug development. Many parameters impact tumor targeting (i.e. Bmax, affinity,

vascular permeability, blood clearance, internalization rates) and it is important to

understand on a fundamental level these mechanisms, how they can be manipulated, and

how they interrelate with one another. For example, improving affinity using multivalent

scaffolds has not yet resulted in the expected improvements in tumor uptake in vivo (Liu

et al. 2009), likely due to a corresponding decrease in the vascular permeability of the

molecule. Mathematical modeling needs to be incorporated into drug discovery and

development in order to decrease experimentation by "trial and error" and to improve

understanding when results are not as expected. A systematic method of mathematically

motivated prediction followed by experimental validation should aid in developing

rational, strategized approaches as well as highlight areas where mechanistic

understanding is lacking.
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7. APPENDIX

7.1. Mathematical Modeling

7.1.1. Micrometastasis Model

For micrometastases, the model equations were modified from Graff et al. (Graff and

Wittrup 2003) to include a hapten species (Hap), a bound antibody/hapten complex (Bc),

a free antibody/hapten complex (C), and an internalized hapten (HapI) in addition to the

antibody (Ab), antigen (Ag), and bound antibody (B) species.

a[Ab] A a 2 [Ab] b [Ab] [Ag] + koff_ AlJB] - [Ab] [Hap]+ kofL HCat r 2ar r ) Ab EHap

a[Ag] k k
SRv - kon"b [Ab]*.[Ag]+ koff AB] 

k " 
Ab [Ag] [C]+ kf oJB J-k Ag]

at EAb Ab

a[B] kf, k[B] konAb [Ab] [Ag]-k off_ AB] k on-Ha [B] [Hap] + kof f HB J- k LB]at Ab Hap

[Hap] DHap (r 2  ap] kon Hap [Ab] [Hap]+ koff_ H ap [ B]- Hap]+ koff H B B
at r2 ar \ r EHap Hap

a[Bc] kon [B] [Hap] - koff_ H B + k n-
Ab [Ag] [C]- koff_ AJB ] - k [B

at CHap Ab

-[C] -DAb ,-- ] kHa [Ab]' [Hap] - koff_ H C koAb [Ag].[ C]+ kof IB J
at r ar ar EHap  Ab

[Hapl] ke[B c ] - k,[Hapl]
at

DAb and DHap are the antibody and hapten diffusion constants, r is the radius, kon_Ab

and koff Ab are the association and dissociation rate constants for antibody binding to

antigen, konHap and koff Hap are the association and dissociation rate constants for the

antibody binding to hapten, ke is the internalization rate constant for the antigen, Rsyn is

the synthesis rate of free antigen, and EAb and SHap are the void fractions for antibody and

hapten.

The symmetry boundary condition for the unbound antibody (Ab) is the same at that

in Graff et al. and also applies to the hapten (Hap) and free antibody/hapten complex (C).
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a[Ab] (0 )=0

[Hap] (0) = o
Or

[c] (0)= 0
ar

The boundary condition for antibody at the edge of the sphere is the same as that in

Thurber et al. (Thurber et al. 2007) and also applies to the hapten. The model equations

for biexponential plasma concentrations are:

[Ab 1a,. (t) = [Ab],,.ta, (oAAbe-k"t + BAb e-kAbt

[Hap1 an (t) = [Hap]1 n,0 (4 p-k 1 + B ,ap *ka)

where [Abl]a and [Hap] are the initial plasma concentrations of antibody and

hapten, respectively, AAb and BAb are the fraction of alpha and beta antibody clearance,

AHap and BHap are the fraction of alpha and beta hapten clearance, kl,Ab and k2,Ab are the

antibody alpha and beta phase clearance rate constants, and kl,Hap and k2,Hap are the

hapten alpha and beta phase clearance rate constants. The model equations for the normal

tissue are:

d[Abj
dt = [Abl~ (t)- A[Abl (t)

d[ap r[apl Ha (t)- A[Hap ( t)

where K is the normal capillary transport rate, % is the normal lymphatic clearance

rate, and [Ab]n and [Hap]n are the interstitial normal tissue concentrations of antibody and

hapten. K and k were calculated assuming two compartment pharmacokinetics.

AB(k 2 - k)2  V

(A + B)(Ak 2 + Bk,) V,
Ak2 + Bk,

A+B
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where VT is the volume of the interstitial fluid compartment and Vp is the plasma

volume. The initial conditions are [Ab]n(O) = 0 and [Hap]n(O) = 0. The boundary

conditions are:

[Ab1R,,,ew, = EAb - [Ab],

[naPl, "awuew = 
6 

Hap " [ HajP

where sAb and SHap are the void fractions for the antibody and the hapten. Here, we

assume that the concentration of free antibody/hapten complex in the well mixed normal

tissue is zero.

[C],r... = 0

7.1.2. Vascularized Tumor Model

For the vascularized tumor model, the cylindrical geometry model equations were

modified from Thurber et al. (Thurber et al. 2007):

D[Ab] Ab l ( r [Ab]_ k -
Ab [Ab] [Ag] +koff AJB] - onH[Ab]-[Hap]+ koff H4C]

at r r\ ar / Ab Hap

[Ag] R, - k-Ab [Ab]*[ Ag] + koff_ AB] kAb [Ag] [C]+k f AB J-k Ag]

at Ab EAb

a[B] konAb [Ab] [Ag] - koff AJB] konHaP [B] [Hap] + koff H4B J - k [B]
at CAb EHapa[Hap] 1 on / aHa k n. nB

Hap] DHp on(
r  [Ab].[Hap] + kof _ C] - H[B].[Hap]+ kof HB

at r ar ar EHap Hap

[Bc] kon-HP [B]-[Hap] - koff_ HB kon+ Ab [Ag][C] - koff AB c] - k jBc
at ,Hap EA

a[C] 1 a / 0[C]\ Bk-[C] DAb Ia ra[]) o [Ab] [Hap]- kof_ H c knAb [ Ag].[qC+ kof IB J
at r ar ar ) Hap Ab

a[Hapl = ke[Bc] kr[Hapl]
at

The boundary conditions for the free antibody are the same as that in Thurber et al.

and are similarly applied to the hapten and free antibody/hapten complex. We assume

that the concentration of free antibody/hapten complex in the plasma is zero. The

boundary conditions at the outer edge of the cylinder are:
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[Ab](Jtor)= 0

a[Hap] (RIo )
Or

a[C] ( or)=0
Or

The boundary conditions at the inside edge of the cylinder are:

DAb d[Ab]

PAb drPA -Ar-R,

[Ab]lr-R

CAb

DHp d = [Hap]p - [Hap]r-R

Hap dr - a Hap

DAb (d[C] [ C]r-R

PAb dr Ir-R CAb

7.1.3. Model Equations for Activity

The total activity in the tumor as a function of time was calculated.

A(t) = e- "Hapto (t) Vor
[ Hap]ptam o .Vp

where A is the activity (MBq), Ao is the initial activity (MBq), is the decay rate of

the radionuclide, Haptot(t) is the total hapten concentration in the tumor (Hap + Bc + C +

HapI), and Vtumor is the volume of the tumor.

The cumulative activity in the tumor is therefore:

A..I.t, = f A(t)dt
0

where Acumulative has units MBq-s.
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7.1.4. Definition of Symbols and Model Parameters Used in Simulations

Table 7.1 Symbols and model parameters
Parameter Definition Value Reference
[Ab]n Antibody concentration in normal tissue
[Ab]pasma Antibody concentration in plasma
[Ab]plasma,0  Initial antibody concentration in plasma 2 gM
[Ag] Antigen concentration per total tumor

volume
[Ag]o Initial antigen concentration per total 3 x 107 M (Thurber et al. 2007;

tumor volume Thurber and Wittrup
2008)

[B] Bound antibody-antigen complex
concentration per total tumor volume

[Bc] Bound antigen-antibody-hapten
complex concentration per total tumor
volume

[C] Free antibody-hapten complex
concentration per total tumor volume

[Hap] Free hapten concentration per total
tumor volume

[Hap]n Hapten concentration in normal tissue

[Hap]piasma Hapten concentration in plasma

[Hap]piasma,o Initial hapten concentration in plasma 100 nM
[HapI] Internalized hapten concentration per

total tumor volume
A Tumor activity
Ao Initial hapten activity 5 GBq
AAb Antibody fraction (0-1) of alpha phase .43 (Thurber et al. 2007)

clearance
Ab Free antibody concentration
Acumulative Cumulative tumor activity

AHap Hapten fraction (0-1) of alpha phase .55 (Le Mignon et al.
clearance 1990)

DAb Effective antibody diffusion coefficient 14 x 1012 m2/s (Thurber et al. 2007)

DHap Effective hapten diffusion coefficient 3 x 10-' m /s (Tofts 1997)
Haptot Total hapten concentration per total

tumor volume

kl,Ab Antibody alpha phase clearance rate 1.5 x 10-5 sl  (Thurber et al. 2007)
constant

kl,Hap Hapten alpha phase clearance rate 1.6 x 10.' s-  (Le Mignon et al.
constant 1990)

k2,Ab Antibody beta phase clearance rate 2.2 x 10-6 s- (Thurber et al. 2007)
constant

k2,Hap Hapten beta phase clearance rate 1.3 x 10-4s1 (Le Mignon et al.
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constant 1990)
ke Endocytosis rate constant 1.3 x 105 s1  (Schmidt et al. 2008)
koff,Ab Antibody dissociation rate constant .00001 s-
koff,Hap Hapten dissociation rate constant varies
konAb Antibody binding rate constant 105 M-Is-1
kon,Hap Hapten binding rate constant 5 x 106 M-Is-
kr Residualizing rate constant 1.6 x 10-6 s-1 (Shih et al. 1994)
PAb Antibody capillary permeability 3 x 10-9 m/s (Thurber et al. 2007)
PHap* Hapten capillary permeability 1 x 1 x 10 m/s (Daldrup et al. 1998)
r radius
Rcap Capillary radius 10 gm (Thurber et al. 2007)
Rmetastases Radius of micrometastasis 200 gm
Rsyn Synthesis rate of antigen
Rtumor Radius of cylinder for vascularized 50 jgm (Baish et al. 1996)

tumor

t time
Vp Plasma volume 3.5 liters (Yang et al. 1978)
VT Interstitial fluid volume 12.5 liters (Gauer et al. 1970)
Vtumor, vasc Vascularized tumor volume 1 g
SAb Antibody effective void fraction .1 (Thurber et al. 2007)
6 Hap Hapten effective void fraction .15 (Bogin et al. 2002)

(metastasis),
.38 (vascular)

K Normal capillary transport rate
x Normal lymphatic clearance rate
kr (90Y) Decay rate constant 3 x 10-" s' (Snyder et al. 1975).... .. ..... . .is. ... ass e t t

* It is assumed that the tumor capillary surface to volume ratio (SN) is 200
Gillette 1974) and P = KPS/(SN) where K" is the endothelial transfer coefficient

t For a 70 kg man

cm (Hilmas and
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7.2. DNA Sequences for Gwiz Plasmids

7.2.1. Color Coded Legend

scFv fusion

The DNA sequence for the Sm3e/C825 light chain plasmid is provided in section

7.2.2 and includes the sequence for the entire plasmid. For all other plasmids, only the

DNA sequence of the insert is provided. All inserts reside between the Pstl and Sail

restriction sites in the gwiz plasmid. Key restriction enzyme sites within the insert are

underlined.

7.2.2. Gwiz Plasmid with Sm3e/C825 Light Chain

TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAG
CTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGC
GGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATG
CGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGATTGGCTATTGGCCA
TTGCATACGTTGTATCCATATCATAATATGTACATTTATATTGGCTCATGTCCAACATTACCGC
CATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAG
CCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAA
CGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTT
CCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTA
TCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGC
CCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATT
ACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGA
TTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGAC
TTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGG
GAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGC
TGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGCCGGGAACGGTGCATT
GGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGACTCTATAGGCACAC
CCCTTTGGCTCTTATGCATGCTATACTGTTTTTGGCTTGGGGCCTATACACCCCCGCTTCCTTAT
GCTATAGGTGATGGTATAGCTTAGCCTATAGGTGTGGGTTATTGACCATTATTGACCACTCCCC
TATTGGTGACGATACTTTCCATTACTAATCCATAACATGGCTCTTTGCCACAACTATCTCTATT
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GGCTATATGCCAATACTCTGTCCTTCAGAGACTGACACGGACTCTGTATTTTTACAGGATGGG
GTCCCATTTATTATTTACAAATTCACATATACAACAACGCCGTCCCCCGTGCCCGCAGTTTTTA
TTAAACATAGCGTGGGATCTCCACGCGAATCTCGGGTACGTGTTCCGGACATGGGCTCTTCTC
CGGTAGCGGCGGAGCTTCCACATCCGAGCCGTGGTCCCATGCCTCCAGCGGCTCATGGTCGCT
CGGCAGCTCCTTGCTCCTAACAGTGGAGGCCAGACTTAGGCACAGCACAATGCCCACCACCAC
CAGTGTGCCGCACAAGGCCGTGGCGGTAGGGTATGTGTCTGAAAATGAGGGTGGAGATTGGG
CTCGCACGGCTGACGCAGATGGAAGACTTAAGGCAGCGGCAGAAGAAGATGCAGGCAGCTG
AGTTGTTGTATTICTGATAAGAGTCAGAGGTAACTCGGTTGGGGTGCTGTTAACGGTGGAGGG
CAGTGTAGTCTGAGCAGTACTCGTTGCTGCCGCGGGCGCCACCAGACATAATAGCTGACAGAC

TAACGACAGATCTGTCCAGGTFGTCGCTTATTIGCCrCTT

TGGAATGGTrGGGTGTTAMrGGTCTGGTGGAGGTACTGCTTATAATACTGCTITGATCTAG
ATTGAATATATAGAGATAATTCTAAAAATCAAGT'ITICTTGAAATGAATTCTGCAAGCT
GAAGATACTGCTATGTATATTGTGCTAGAAGAGGTTCUTATCCATATAATTAITTITGATGCTT
GGGG'ITGTGGTACTACTGTTACTGTTTCTTCTGGAGGCGGCGGATCTGGCGGTGGAGGTTCTG
GCGGCGGCGGATCTCAAGCTGUTGUATCAAGAATCTGCTTGACTACTCCTCCAGGTGAAA
CCGTTACTTrGAC'rrGTGGATC'ITCTACTGGTGCTGTTACTGCTTrCTAATTATGCTAATTGGGIT
CAAGAAAAACCAGATCAITrGCTACTGGTYJ7GATTGGTGGTCATAATAATAGACCACCAGGT
GTTCCGGCTAGAYJ=rCTGGTTCTITGATTGGTGATAAAGCTGC1=rGACTATTGCTGGTACTC
AAACTGAAGATGAAGCTATTTAT1TTGTGC'TfGTGGTATTCTGATCAUTGGGTATTGGTGG
TGGTACTAGATTGACTGY=fGGGCGGATCAM

ACGTGTGATCAGATATCGCGGCCGCTCTAGACCAGGCGCCTGGATGCAGATCA
CTTCTGGCTAATAAAAGATCAGAGCTCTAGAGATCTGTGTGTTGGTTTTTTGTGGATCTGCTGT
GCCTTLCTAG7FGCCAGCCATCTGTTGTYJGCCCCTCCCCCGTGCGTTCCYIGACCCTGGAAGGT
GCCACTCCCACTGTCCTTTGCTAATAAAATGAGGAAATTGCATCGCA7FJGTCTGAGTAGGTGT
GATTCTATTCTGGGGGGTGGGGTGGGGCAGCACAGCAAGGGGGAGGATFJGGGAAGACAATAG
CAGGCATGCTGGGGATGCGGTGGGCTCTATGGGTACCTCTCTCTCTCTCTCTCTCTCTCTCTCT
CTCTCTCTCTCTCGGTACCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCGGTACCA
GGTGCTGAAGAATTGACCCGGTTCCTCCTGGGCCAGAAAGAAGCAGGCACATCCCCTTCTCTG
TGACACACCCTGTCCACGCCCCTGGYL'CTITAGTTCCAGCCCCACTCATAGGACACTCATAGCTC
AGGAGGGCTCCGCCTTCAATCCCACCCGCTAAAGTACTTGGAGCGGTCTCTCCCTCCCTCATC
AGCCCACCAAACCAAACCTAGCCTCCAAGAGTGGGAAGAAATTAAAGCAAGATAGGCTATFJA
AGTGCAGAGGGAGAGAAAATGCCTCCAACATGTGAGGAAGTAATGAGAGAAATCATAGAAFr
TCYJCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTGGTTCGGCTGCGGCGAGCGGTATCAG
CTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATG
TGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCA
TAGGCTCCGCCCCGCTGACGAGCATCACAAAAATCGAGGCTCAAGTCAGAGGTGGCGAAACC
CGACAGGACTATAAAGATACCAGGCG1TTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC
CGACCCTGCCGCTTACCGGATACCTGTCCGCCYI'TCTCCCTTCGGGAAGCGTGGCGCTTTGTCA
ATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCA
CGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCC
GGTAAGACACGACTTATGGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGT
ATGTAGGCGGTGCTACAGAGTTLCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACA
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GTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGA
TCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTGTTTGCAAGCAGCAGATTACGCGC
AGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAAC
GAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTT
TTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGT
TACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG
CCTGACTCCGGGGGGGGGGGGCGCTGAGGTCTGCCTCGTGAAGAAGGTGTTGCTGACTCATA
CCAGGCCTGAATCGCCCCATCATCCAGCCAGAAAGTGAGGGAGCCACGGTTGATGAGAGCTT
TGTTGTAGGTGGACCAGTTGGTGATTTTGAACTTTGCTTTGCCACGGAACGGTCTGCGTTGTC
GGGAAGATGCGTGATCTGATCCTTCAACTCAGCAAAAGTTCGATTTATTCAACAAAGCCGCCG
TCCCGTCAAGTCAGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAA
AACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTT
GAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGA
TCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGT
CAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGC
AAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAAT
CACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGAT
CGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGC
GCATCAACAA CACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGCTATTCCCGG
GGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGA
AGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACG
CTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATT
GTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATG
TTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTT
GTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATCTTGTGCAAT
GTAACATCAGAGATTTTGAGACACAACGTGGCTTTCCCCCCCCCCCCATTATTGAAGCATTTAT
CAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGG
GTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACA
TTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC

7.2.3. Sm3e Heavy Chain Insert

106



APPENDIX

7.2.4. A33 Heavy Chain Insert

7.2.5. A33 Heavy Chain dsl Insert
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7.2.6. A33 Heavy Chain ds2 Insert

7.2.7. Sm3e/4M5.3 Light Chain Insert

GGCGGTAGTGGCGGAGGTGGTTCTGCTAGCGACGTCGTTATGACTCAAACACCACTATCACTT
CCTGTTAGTCTAGGTGATCAAGCCTCCATCTCTTGCAGATCTAGTCAGAGCCTCGTACACAGT
AATGGAAACACCTATTTACGTTGGTACCTGCAGAAGCCAGGCCAGTgtCCAAAGGTCCTGATCT
ACAAAGTTTCCAACCGAGTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACA
GATTTCACACTCAAGATCAACAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGCTCTCAA
AGTACACATGTTCCGTGGACGTTCGGTGGAGGCACCAAGCTTGAAATTAAGTCCTCTGCTGAT
GATGCTAAGAAGGATGCTGCTAAGAAGGATGATGCTAAGAAAGATGATGCTAAGAAAGATGG
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TGGCGTCAAACTGGATGAGACTGGAGGAGGC1TGGTGCAACCTGGGGGGGCCATGAAACTCT
CCTGTGTTACCTCTGGATTCACTTTTGGTCACTACTGiATGAACTGGGTCCGCCAGTCTCCAGA
GAAAGGACTGGAGTGGGTAGCACAATTTAGAAACAAACCTTATAATTATGAAACATATTATTC
AGA~rCTGTGAAAGGCAGATTCACCATCTCAAGAGATGATTCCAAAAGTAGTGTCTATCTGCA
AATGAACAACYJ7AAGAGTTGAAGACACGGGTATCTATTACTGTACGGGTGCTTCCTATGGTAT
GGAATACTTGG ~gGACCTCAGTCACCGTCTCCGGATC(

7.2.8. A33/4M5.3 Light Chain Insert

CGCGTGGAGGTGGCGGTAGTGGCGGAGOTGGTTWTGCTAGGGACG-TCGUTATGACTCAAACA
CCACTATCACTTCCTGTTAGTCTAGGTGATCAAGCCTCCATCTCTTGCAGATCTAGTCAGAGCC
TCGTACACAGTAATGGAAACACCTATTTACGTTGGTACCTGCAGAAGCCAGGCCAGTgtCCAA
AGGTCCTGATCTACAAAGTTTCCAACCGAG1TTTCTGGGGTCCCAGACAGG1TCAGTGGCAGTG
GATCAGGGACAGATTL'CACACTCAAGATCAACAGAGTGGAGGCTGAGGATCTGGGAGTITTAT
TTCTGCTCTCAAAGTACACATGTTCCGTGGACGTTCGGTGGAGGCACCAAGCTTGAAATTAAG
TCCTCTGCTGATGATGCTAAGAAGGATGCTGCTAAGAAGGATGATGCTAAGAAAGATGATGC
TAAGAAAGATGGTGGCGTCAAACTGGATGAGACTGGAGGAGGCTJTGGTGCAACCTGGGGGGG
CCATGAAACTCTCCTGTGTrACCTCTG43ATTCACT1TI7GGTCACTACTGGATGAACTGGGTCCG
CCAGTCTCCAGAGAAAGGACTGGAGTGGGTAGCACAATTTAGAAACAAACC'LTATAATTATG
AAACATATJATTCAGATTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGATTCCAAAAGTA
GTGTCTATCTGCAAATGAACAACTTAAGAG~rGAAGACACGGGTATCTATrACTGTACGGGTG
CTTCCTATGGTATGGAATACTTGciGTtgtGGAACCTCAGTCACCGTCTCCGGATCC

7.2.9. A33 IgG + peptide Light Chain Insert
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AGGCGGTTCAGGCGGAGGTGGATCT

7.2.10. A33 IgG + peptide dsl Light Chain Insert

7.2.11. A33 IgG + peptide ds2 Light Chain Insert

CTACCAGAAACTGGAGGTTCAGGI
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7.3. Additional In Vivo Experiments

7.3.1. Pretargeted Experiments with "1In-DOTA-Bn

Initial preliminary pretargeted experiments were performed with "'In-DOTA-Bn,

with an affinity of- 1 nM to the bsAb (chapter 2). Methods describing animal models are

as described in Chapter 5. DOTA-Bn was dissolved at 0.5 mM in ammonium acetate pH

5.6. 1-2 mCi 11 InCl 3 (Cardinal Health, Dublin, OH) were added to the metal chelate and

incubated for 1-2 h at 85-950 C. The radiolabeled compounds were purified by RP-HPLC

(Humblet et al. 2006; Misra et al. 2007) with gamma detection on a 4.6 x 75 mm

Symmetry C18 column using a linear gradient from 0% to 90% B over 15 minutes, at a

flow rate of 1 mL/min, where A = water + 0.01% formic acid (FA) and B = acetonitrile +

0.01% FA. The purified compound was injected as is. It was later determined that the

formic acid and/or acetonitrile result in high spleen and liver uptake and slow blood

clearance, possibly due to microaggregation with serum proteins. Thus, for all

experiments presented in chapter 5, HPLC purification of DOTA compounds was

performed with no formic acid present and compounds were subsequently dried under

vacuum, resuspended in saline, and 0.2 gm filter purified before injection.

Figure 7.1 demonstrates that ilIn-DOTA-Bn binds to the Sm3e/C825 bsAb in vivo,

resulting in significantly higher activity in almost all organs at 4 h p.i. As expected, blood

activity is very high (-9 %ID/g at 4 h p.i.) for pretargeted "'In-DOTA-Bn, due to binding

to residual bsAb in the blood. A clearing/blocking step to remove or block residual bsAb

at the time of hapten dosing will thus be necessary to improve tumor to background

ratios.

We therefore synthesized a 500 kDa dextran-DOTA-Y clearing/blocking agent (see

Chapter 5 for methods). This agent, dosed 24 h after bsAb administration and 1 h prior to

hapten dosing was effective in reducing essentially all "In-DOTA-Bn binding to

residual bsAb in the blood (Figure 7.2).
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Figure 7.1 "'In-DOTA-Bn Organ/Tissue Biodistribution. Organ/tissue activity (mean + s.d., n=2-3)
at 4 h p.i. of- 2 pmol ... In-DOTA-Bn only (blue) or "nIn-DOTA-Bn pretargeted 24 h earlier with 500 ug
Sm3e/C825 bsAb.
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Figure 7.2 "'In-DOTA-Bn Blood Clearance. Blood activity (mean ± s.d., n = 2-3) over time for - 2

pmol "'In-DOTA-Bn only (blue), pretargeted 24 h earlier with 500 ug Sm3e/C825 bsAb (red), or
pretargeted 25 h earlier with 500 ug bsAb with a blocking step of 18 ug dextran-DOTA-Y 1 h earlier
(green).
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7.3.2. Results of Pretargeted Experiments Conducted at Memorial Sloan Kettering

Cancer Center (MSKCC)

MSKCC has performed preliminary experiments with both the Sm3e/C825 bsAb and

an anti-A33 bsAb targeting SW1222 tumors that express both CEA and A33. The anti-

A33 bsAb used here is different from that described in chapter 3, as the anti-A33 IgG

variable domains are derived from the Ludwig humanized A33 antibody (Scott et al.

2005). The preliminary results presented below demonstrate that the engineered

pretargeted radioimmunotherapy system can be used to target multiple antigens. Note that

all bsAbs were iodinated prior to injection. The iodination appears to result in

significantly faster blood clearance of the bsAb than that observed for "'In-DTPA-

labeled bsAb (see results from Chapter 3) and is likely the cause for the lower tumor

uptake values.

12
j 4 hrs p.i.

10- . .24 hrs p.i.
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Figure 7.3 131I-Sm3e/C825 organ/tissue biodistribution at 4 and 24 h. Organ/tissue activity at 4 and

24 h p.i. of 0.02 mg of '3 I-Sm3e/C825 bsAb in SW1222 tumor bearing mice.
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Figure 7.4 131I-Sm3e/C825 dose response. Organ/tissue activity at 24 h p.i. of various doses of 131I-

Sm3e/C825 bsAb in SW1222 tumor bearing mice.
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Figure 7.5 3"11-A33/C825 organ/tissue biodistribution at 4 and 24 h. Organ/tissue activity at 4 and

24 h p.i. of 0.02 of 131I-A33/C825 bsAb in SW1222 tumor bearing mice.
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Figure 7.6 131I-A33/C825 organ/tissue biodistribution with clearing agent. Organ/tissue activity of
'3 1I-A33/C825 bsAb with and without dextran-DOTA-Y clearing agent in SW1222 tumor bearing mice.
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Figure 7.7 BsAb and "'In-DOTA-Bn organ/tissue biodistribution. Organ/tissue activity of 131I-

A33/C825 (nALDO) and 'In-DOTA-Bn in SW1222 tumor bearing mice. 0.2 mg 131I-A33/C825 was
administered at t = 0 h. 31 pmoles dextran-DOTA-Y was administered at t = 24 h and "'In-DOTA-Bn was
administered at t = 28 h. Animals were sacrificed at t = 29 h.
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7.4. HEK293-F Transfection Agents

The expression level of the Sm3e/C825 bsAb in HEK293 cells using various

transfection agents was tested. The results are presented in Table 7.2.

Table 7.2 Sm3e/C825 bsAb HEK293 secretion with different transfection agents
I Yield

116

PEI (25 mL culture, 7 d) 7.4 mg/L
jetPEI (25 mL culture, 7 d) 0.76 mg/L

PEI (1/2 L culture, 7 d) 6 mg/L
XpressNow (1/2 L culture, 7 d) 160 ug/L

PEI (32 mL culture, 15 d) 2.6 mg/L
PEI + 3 mM sodium butyrate + 12.6 mg/L
suppl day 8 (32 mL culture, 15 d)
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