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ABSTRACT

A higher order closure turbulence model, using

the full level 3 equations (Mellor and Yamada, 1974;

Yamada and Mellor, 1975) is described in detail. A new

formulation for the length scale, Z, which appears in each

of the modeled terms, is employed. Equilibrium boundary

conditions for the second moments are applied at the

lower boundary.

Day 33-34 of the Wangara experiment is simulated.

Surface temperature and mixing ratio are predicted with

a ground thermodynamics model. The effect of the inclusion

of the Coriolis terms of the second moment equations on

the results is evaluated and is found to be small.

The similarity functions A, B, C, and D are

evaluated. Vertically averaged variables are used in



the deficit relations (Arya, 1977, 1978). With this

formulation, the similarity functions C and D are found to

be equal in the unstable boundary layer. In the stable

boundary layer D appears to be smaller than C.
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1. INTRODUCTION

The random nature of turbulence makes the study

of turbulent flows difficult. For this reason, it is

convenient to use a statistical approach to turbulence

problems, based on the concept of ensemble averaging. An

ensemble average refers to an average taken over a collec-

tion of an infinite number of observations for which the*

mean conditions are identical. Due to the randomness and

irregularity of turbulence, the details of each realization

are different even though the mean conditions are the same.

It is impossible to obtain an ensemble average from real

atmospheric data because mean conditions are never identical.

Certainly it is not possible to obtain an infinite number

of instantaneous measurements over which to average.

One must adopt an ergodic hypothesis, that is, an assumption

regarding the equivalence of different types of averages,

to establish the equality of an ensemble average over an

infinite number of observations with a time average over

an infinitely long averaging period under conditions

of stationary flow (Lumley and Panofsky, 1964; Busch, 1973).

A finite averaging time will yield an estimate with an

accuracy which increases as the order of the moment being

averaged decreases (Wyngaard, 1973). For the time scales

involved in atmospheric turbulence, it is possible to relate

ensemble averages to measurable time averages.
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The statistical approach, however, results in a

situation in which the number of unknowns exceeds the

number of equations. It is necessary, therefore, to make

simplifying modeling assumptions in order to obtain

closure.

Mellor and Yamada (1974) describe a hierarchy of

turbulence closure models. Based on a systematic simplifica-

tion of the appropriate equations, four model levels are

produced. The most complex (level 4) model requires the

solution of prognostic simultaneous partial differential

equations for all of the components of the Reynolds stress

tensor, the heat flux vector, and the temperature variance,

as well as for the components of the mean flow and the

mean potential temperature. If water vapor is to be

included in the model, additional equations for moisture

variables need to be solved. The most simplified (level 1)

model is a set of diagnostic algebraic equations correspond-

ing to a mixing length model. The level 3 model, to be

used in this study, represents an intermediate degree of

complexity. As shownby Mellor and Yamada, the choice of

the level 3 model represents a compromise between the small

increase in relative accuracy obtained with a level 4 model

and the resulting large increase in computation time.

The level 3 model is a subset of a group of

models called Mean Turbulent Field (MTF) closure models

(Mellor and Herring, 1973). MTF closure models consist
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of two subsets, Mean Turbulent Energy (MTE) and Mean

Reynolds Stress (MRS) closure models. Because the

turbulence energy in level 3 is calculated prognostically

while the individual components of the Reynolds stress

tensor are calculated diagnostically, the level 3 model

falls into the category of MTE closure.

Yamada and Mellor (1975) use the level 3 model

to simulate the Wangard boundary layer data. The present

model differs from Yamada's and Mellor's model in several

important respects:

i) A ground thermodynamics model predicts
the surface temperature and mixing ratio.

ii) The full level 3 moisture equations are
employed.

iii) Equilibrium boundary conditions for the
prognostic turbulence variables are applied
at the lower boundary.

iv) A new formulation for the length scale, Z,
is used.

v) The Coriolis terms are included.

vi) A 5 second time step and a staggered grid
system are used.

The model is used to simulate Day 33-34 of the

Wangara experiment, and the results compared to those

of Yamada and Mellor (1975). The effect of the Coriolis

terms on turbulent fluxes in the PBL is evaluated by

turning these terms on and off in the model and examining

the results. Finally, the functions A, B, C, and D of

similarity theory are evaluated.
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2. DEVELOPMENT OF THE BASIC EQUATIONS

2.1 Equations for the Mean Variables

The variables of interest are the velocity com-

ponents u. (i = 1,2,3), potential temperature 0, pressure P,

and water vapor mixing ratio R. The basic equations govern-

ing these variables are:

Continuity equation

(1)auk 0
3xk

Momentum equations

au. au 1 p+ 0
at u xk 0o 3 3

au.

3kt k E xk axk

(2)

Thermodynamic energy equation

0+ u = kT ) +at Uk 3 Tax k axk

Water vapor equation

3R u3R 9 R

+t uk ) ''x x

(3)

(4)
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where S is the coefficient of thermal expansion,

f k = (o,f y,f) is the Coriolis parameter, v is the kinematic

viscosity, kt is the thermal diffusivity, p is the density,

n is the kinematic diffusivity for water vapor, and a is

the longwave flux divergence. The Einstein summation con-

vention is employed so that whenever an index is repeated

in a term, summation is implied. e jkt is the alternating

unit tensor and 6.. is the Kronecker delta.

l if j,k,2Z = (1,2,3), (2,3,1), or (3,1,2)

Ejk 0 if any index is repeated

-1 if j,k,Z = (3,2,1), (2,1,3), or (1,3,2)

0 i f i /j

3 1 if i =j

The effects of evaporation and condensation of water are

not included. The Boussinesq approximation, in which

density is treated as constant except when it is multiplied

by g (in which case it is allowed to be temperature

dependent),has been used (Busch, 1973; Mellor, 1973).

Each variable can be represented as a sum of a

mean part and a fluctuating part.

u. = u. = u! (4a)
1 1 1

U + e'(4b)
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P = P + P'

R = R + r'

(4c)

(4d)

The overbar signifies an ensemble average.

To obtain equations for the mean variables, average equations

(1-4).

auk
= 0 (6)

k

1ap[u~ k" = k +F~lk x- + gO63IUU. +O I. 3
-jk9 k E

au.
+3x

axk aXk

[~uko + ue']
= kT aT xk

(8)
xk)

+R a-

2.2

[R uk + r'u ] = a

Equations for the Second Moments

Equations (1-4) contain second order correlations

of perturbation quantities of the form uju. In order

to evaluate these second moments, first obtain equations

(9)

4;t +

DO+ 3at ax

(7)



for the fluctuating components by subtracting equations

(6-9) from equations (1-4). Using equations (4a-4d) yields:

au'
-- = 0
axk

- + x [u.u' + u!uk + u!u' - uu] =

1 + - E f u' + v a
pO x 3 jkk k 3xk

au'

k

(10)

(11)

ao + a
at ax k

arl a
at xk

[luke' + ulii + ue'

[ukr' + ukif + ukr'

- u 6'] = kT ( )k k

- u' r'] = - (-)
kak ax k

To obtain an equation for u!u!, multiply equation (11) by
I J

u! and use the continuity equations (6) and (11):

au+ a u + u
ui + u! [u~u 'iat iak k jk 3 1u~k

= -u! a () + Sgu.'6i ax. p i 3.J 0 J
-E f u'u'jkZ k i Z

aL au!
+ ua (x1)1 axk axk

(12)

(13)

(14)
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A second equation is then obtained by switching the indexes i

and j in equation (14). Adding this equation to equation (14),

and using continuity and averaging, yields the prognostic

second moment Reynolds stress equations:

+u. + __ au. a __

- (u~u'.) + u!u --- l + uu - u uu
at i 1 a 3xk I k xk a +k 1

+ a (u!u!u ) = Sg[u!6'6 + u!6
axk .J 3 3]

a u!p' up'

-E fuuua - - ajkZ k i C ik ku u a3x. px x. p
3 PO 00o

u! u!a uu!au! au!
+ P ~ + au-J) + a ~-(~~~ 2v 1 auj
PO ax xx xk axk axk axk

(15)

Equation (7) requires that the second moment

u!u! be known in order to find u. Equation (15), an
I J J

equation for u!u!, contains the third moment uju!u . An

equation for the n th moment will contain a term with the

(n+l)th moment. In other words, the number of equations is

less than the number of unknowns and the problem is

not closed. In order to obtain closure, the unknown moments

are parameterized in terms of known quantities. This

parameterization is, however, an approximation. The

approximations are not necessarily more physically valid



than parameterizations of second moments in terms of mean

quantities, as in less complex models. However, the fact

that the approximations are made at a higher order allows

one to hope that the results will be less sensitive to the

parameterization. The results of models using this higher

order closure technique support this notion.

In the case i # j, p uur represents a flux of j0 1 J

momentum by the i turbulent component. The interpretation

of the terms of equation (15) is as follows:

at 3

represents the local time rate of change of the
ensemble averaged turbulent momentum flux i3!Vu
(normalized by density) j

au. au.

u.'u -a + u ug 1
1 ~ u 3xk k

represents the mechanical production of Reynolds
stress due to an interaction of the mean velocity
gradient with the Reynolds stress

- - ufu!uk axk 1

represents advection of Reynolds stress by the
mean wind



a
x (u u ui)
k 13

is the triple correlation term which represents
the turbulent flux of ulu! by the fluctuating
component uk (i.e., turbulent diffusion)

Sg[u!6'6 + T'6
i .3 3.

J j i3.

represents the bouyant production (or destruction)
of Reynolds stress

E fu'u' + f uujkk ki Z ikYkj Z

represents the effect of Coriolis forces on the
Reynolds stress

1 [ a3a(up') + a (u p')]

represents the effect of the pressure perturbation-
velocity perturbation correlation on Reynolds
stress destruction

au! au'
( + )ax

p 3 3x

is the "energy redistribution" or "return to isotrcpy"
term representing the way the pressure-velocity
gradient correlation distributes energy among the
three energy components
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au.'u! au. Du!ffi 1 (..L.) - 2v 1i 3a
axk aXk axk axk

represents the viscous diffusion and viscous dissipa-
tion of Reynolds stress

In the case i = j, equation (15) is an equation for

the i component of the turbulence energy. Summing the

2,2.
individual components, with q = u.' , gives the turbulence

kinetic energy equation.

u. 2u2a 2 au a 2 L U
(/2) k u uk (xk a

U! 2
- Sgu6'63. - I + a [

1 PO a ak 2

au! au!
1 1 (16)

The Coriolis terms do not appear in equation (16)

because the Coriolis force cannot contribute to the total

turbulent kinetic energy. Likewise, the energy redistribu-

tion term of the Reynolds stress equation is not present in

the total kinetic energy budget because its role is to

redistribute energy without contributing to the total.

The interpretation of the terms of equation (16) is

analogous to that of the Reynolds stress equation.
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To obtain an equation for the heat flux vector

u!', first multiply equation (12) by u! and equation (11)
1 J

by e' and average to obtain

u' ') -- ' + [uku 0' + uiau a + uu']a~(3' at kJ UIN

au! aut au!

- 6 -l - 0 ' -- T e - =k( , 3uk axk xk axk Txk

- kT - -- (17)
axk axk

and,

au! a__ __ _ __ _

0' = a [u u 6' + u! ' uat axk k +I Ik 3O] U +uk

a~l U! 30' 1 elap + ae2
+uk U xk xk o a3

a a!au! e
-E f u'0' + v - (0' -- 1) - v -a-

jk k Z xk ak x xk

(18)

Adding equations (17) and (18), and using continuity,

yields the desired heat flux equation:

a M ') + [~u u a' + u u6k' - k u - ]
at J ax k U II kTu3 Dx k axk



24

1 3 p' 36'+(p'e') + sjk ku ii'' = 2g'73 + p xP0  ax ~ jk~k ~ gO r 3. p0  ax.O

au! a,.J
- (k + v) -aue u- u _ .

Tax k a k~ IU a k u axk

(19)

-
An equation for the potential temperature variance 0'

is obtained by multiplying equation (12) by e', using

continuity, and averaging.

3, 2 + -~~ q 2 3
at k [uu' ] = -2u O 6

+k a ( ) ae ae (20)
T axk axk T axk D

The terms of equations (19) and (20) are of the same form

as those of equation (15). Their interpretation is analogous.

Equation (9) requires the turbulent moisture flux

u'r'. An equation for u!r' is obtained by multiplying

equation (11) by r' and multiplying equation (13) by u3.

Averaging these equations and adding them yields:

a (u'r') + - [ r + u' r u vr' a
t k 3 3 3 ax k axk



+ $ (p'r') + ek u r = agr'6' 6 + p ar'
o aX 3 p aX0 ( x - u u 0 uxr'

au! __ au.

k k k

(21)

An equation for the potential temperature-mixing

ratio covariance O'r' is also necessary because it appears

in equation (21). Multiplying equation (12) by r' and

equation (13) by 6', averaging, and adding yields:

a (3'3r' +6a(6'r') + [uke'r' + uG'r' - j6' - - k r ae
at axk k a x T axk

30' 3r' DR 3= - (n+k) ua' r- - - r - (22)axk * xk -xk

An equation for the mixing ratio variance, r' , is

obtained by multiplying equation (13) by r'. After using

continuity and averaging:

a 2 3 a - 2 a3r'2
(r + [ukr' + u r' i = -2 ukr' + 2

xk axk

r2n ar' (23)
3xk axk



3. MODELING OF THE EQUATIONS

3.1 The Modeling Assumptions

It is necessary to parameterize the unknown variables

of the equations in order to obtain closure. It is also

desirable to neglect small terms that do not affect the

results so that unnecessary complexity is avoided and

computation time is minimized. The system of equations con-

sists of equations (7-9), (15), and (19-23).. These

equations are summarized in Table I. The terms to be

modeled have been doubly underlined. The numbers

associated with each line correspond to the numbered modeling

assumptions which are collected into Table II.

The modeling assumptions in Table II are of two

types. The first type concerns terms containing unknown

variables, i.e., variables for which there are no equations

in Table I expressing the variable in terms of only other

known variables. The parameterization of these terms is

required by closure considerations. The triple correlation

terms are of this type. The other type of assumption con-

cerns terms which are known (in terms of other variables)

but are small in the planetary boundary layer (PBL), or

are difficult (although possible given the set of equations

in Table I) to evaluate and are assumed small in the PBL.

The Coriolis terms are of the second type. They have been

neglected in the models of Mellor and Yamada, 1974, 1975,
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Table I

Unmodeled Equations for the Mean Variables and
the Second Moments

-LI Equations for the mean flow

4 AA.
(7) ---- +A i 4AsA4,#

30 ) AoU+LAI ax

a. A~

13

(8)

(9) -

+ CI £t P~

4 -

~Xic

+ I

I2 Ax + r AA#

Second moment equations

)+ AA -

41 x Oc

+ -

-x E..i.A 4

AA4k# + Mkr - ~A4~Mj

4 O f

~'~ 4,C.dA4 <E

I( 1
-I

I
t- Q~ , '~ I V

t A-4AAj

?C,

-IuX 1

(s) Cr.)

4-

(4,)
o - 4-

I I

- _
zC %.> ~

+C0

(15) ( "IA(-' I44

(3)

yk O;k
a X-V (

(C)(S)
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(,0)

4 - -

*t
'h"I ____ ___

- (k, +0)

(itl

xAA k Go
-t -

- 0 1 1
+ Ma AA + 

--- -.-

(,3)

4 y -A
+ AA #C

4 -

- 2 -- -
~, ( er'

Cu,
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and Donaldson, 1973. Wyngaard et al., 1974, however, discuss

the importance of the Coriolis terms in the Reynolds stress

budget. In this study an option has been included in the

model to turn the Coriolis terms on or off to allow their

importance to be evaluated. Both modeling options appear

in Table II.

One of the basic modeling assumptions contained

in the model is the energy redistribution assumption of

Rotta (1951). The total turbulence kinetic energy (per

unit mass) is the sum of three components:

1 2 1 ~~ 2 + 2
q = g(uj + u + u.)

The term p' (3u!/ax + au!/ax.) appears in the equations

for the individual components of the turbulence energy,

but not in the equation for the total turbulence kinetic

energy (equation 16). As has already been noted, the role

of tnis term is to redistribute the energy among the three

components of energy without contributing to the total. The

redistribution term is therefore modeled as:

au. But 6.. au. au.

p' (--. + ~--) = - (u!u! - 2 q2 ) + Cq2(- + -3x, ax. 3Z 1 j 3 ax.
I i 1 J i

where C is a constant and Z1 is a length scale which will
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be prescribed. Characteristic of this formulation is that a

departure from isotropy of the Reynolds stress tensor will

result in a tendency back toward isotropy.

"Return to isotropy" terms also appear in equations

(19) and (21) as p' 36' and p' ar' respectively.
p ax. p ax

0 3 0 J

An analogous formulation is adopted for these terms:

PO x - 392 3 o ax m 2 j

A second length scale k2 is introduced.

It is necessary to model the triple correlation

term k 1 u), representing a diffusion of Reynolds

stress, in terms of known second moments. A symmetric con-

struction in i, j, and k, using second moments, is:

(u uau- au au! I
-- (U.! -a [-qX {( 3 ) + ( )axk 1 3 3xk 1 axk ax j ai

This formulation represents a down gradient diffusion of

Reynolds stress.

The triple correlation terms (u! 6') and

- (u!u r') are modeled as down gradient turbulent diffusion

of potential temperature-velocity covariance and mixing

ratio-velocity covariance, respectively.



aue au e'
-Xk ( a 2 ax + a k

aur' au! r'
- (u'u r') - [-qX 2 ( i + )

axk 2 ax j axk

Analogously, the third moments involving potential

temperature variance-velocity correlation, potential

temperature-mixing ratio-velocity correlation and mixing

ratio variance are also modeled as down gradient turbulent

diffusion.

2 a 2 2
axk ~ axk x

-- (UO ' ) = -- -qX alr-

3xk k q 3  axk

a a. 3r'
- xk (u r ') = --- [-qX3  ax k

The variables A , A2 and X3 are diffusion length scales

which are prescribed.

Kolmogoroff (1941) hypothesized the isotropy of

small-scale turbulence. In accordance with this widely

accepted hypothesis, the viscous dissipation term

2v(3u!/3x) (au!/ax) is modeled as proportional to q33.xk ju!Dk



for i=j, and is neglected for the nonisotropic components

i / j.

au! au' - 3
2v-

The dissipation term kT(3O'/axk)(36'/axk) is

similarly taken to be proportional to the potential tempera-

ture variance.

2ko36 ael -2 q- 61
2 kT ax A2

Analogously, the dissipation terms for r'e' and r' areV

modeled as:

(+k ) ar 2 a- r'6'''T' axk ax k A2

3r' ar' -211- 2 q r"
3xk axk A2

A1 and A2 are dissipation length scales which are

prescribed.

The remaining modeling assumptions in Table

concern diffusion terms of the form - - [k U! 36 +
axk 3 axk

II
Zut

Ok
In the PBL these terms are relatively small, and we neglect

them.
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T3 j

[riu! +r 4

3ak

hout ar'

ar'[rn6'- +

[2T2
aXk

=0

=0

Inserting the modeling assumptions (1-27) from

Table II into the appropriate equations in Table I will

yield the modeled level 4 equations. The complete level

4 model consists of equations (7-9), and (24-29).
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3.2 The Level 3 Model Equations

Mellor and Yamada (1974) make use of the fact that

the departure from isotropy of atmospheric turbulence is

small, to simplify equations (24-29) even further. Defining

non-dimensional departures from isotropy, a.. and b.:

2u~u! E (6j + a. .)q a.. =0
13 3 11

~71/2u!6' b q( )/
I i

The level 3 and level 2 models neglect terms of order a2

and b2. The two levels are distinguished by the fact that

the tendency, advection, and diffusion terms are assumed

to be of order a or b in level 3 and order a2 or b2 in

level 2. The result for the level 3 model of interest here

is that equations (24-29), representing 15 prognostic

equations for second moments, are reduced to 4 prognostic

equations with 11 diagnostic equations. The prognostic

equations are for q , , e'r' and r'2. The mean variables

require the solution of an additional five prognostic

equations. The level 3 model, therefore, consists of a

total of 9 prognostic differential equations and 11 diagnostic

equations. The level 3 equations are collected into

Table III. Equations (26), (28), and (29) are unchanged.
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Table III

Level 3 Model Equations
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In the PBL, the horizontal length scale is much

greater than the vertical scale height. The final equations,

therefore, contain only z derivatives of perturbation

quantities. Neglecting advection of mean velocity and

mean mixing ratio by the mean wind while retaining tempera-

ture advection (because it may be estimated by the thermal

wind relationship) will yield equations (34-37) for the

mean variables. In this model, the vertical velocity,

w, has been set equal to zero at all levels. Also,

virtual potential temperature, EvI is used to take into

account the presence of water vapor and its effect on density.

The term of equation (9) containing the kinematic dif-

fusivity of water vapor is neglected.

au- fv a(WWI) - ap (34)at az p ax

av +-f a =) 1 ap 35

-- + ~ v + - v - -a (w'O') + a (36)at ax ay az

=- (w'r') (37)

An estimation of the horizontal virtual potential

temperature gradient can be obtained as follows (Hess,



1959). Geostrophically,

1 aP
u = - -- --

g fpo 0 y

1 ax
V =- --

g fp 3x

therefore, - a inPfv = RTax
g ax

Taking a 2 derivative of this expression and using the

hydrostatic approximation,

a ln P
ax T

R (- ) - ( ( )axT

- v -

Therefore,
afT fi I
ax az

with G = T + (1 + 0.61R)v z
vv d

aT
ax

fT
V

g

(38)

(39)

(40)v
-X-



30 fT au
similarly, g -- (41)

ay g 3z

The approximations (38-41) in equations (34-37)

will yield the final equations (42-45) for the mean variables.

All the final equations appear in Table IV.

The final equations for the second moments are

obtained from the equations of Table III by neglecting

advection by the mean wind and retaining only vertical

derivatives of perturbation variables in an analogous

fashion with the procedure for the mean variable equations.

The results are equations (46-61) in Table IV. Equations

(46, 50, 51, and 52) represent only three independent

equations because q2  2. The Coriolis terms appear

in all the appropriate equations in Table IV.
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The Final Level 3 Model Equations
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3.3 The Length Scale Formulation

The level 3 equations contain three types of length

scales. The A's are dissipation length scales. The

X's and Z's are diffusion and return-to-isotropy length

scales, respectively. Every modeled term (see Table II)

contains one of these length scales. Mellor and Yamada

(1974) assume all the length scales are proportional and

are given by:

(zl1 2 ,A1 ,A21'11X2 'X3) =

(0.78, 0.79, 15.0, 8.0, 0.23, 0.23, 0.23)k (62)

They evaluate k using Blackadar's interpolation formula

(Blackadar, 1962).

z = kz (63)
z1 +
0

Therefore,

k +kz as z+ 0

as z +
0

Mellor and Yamada proposed equation (64) as a

formulation for % based on the turbulence energy profile.
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zqdz

t,= a d , a constant (64)

f' qdz

In the analysis of Yamada and Mellor (1975), a

was assumed to be 0.10. A sensitivity test, however, showed

that the mean variables were fairly insensitive to a 50%

reduction in a. The turbulence quantities, unfortunately,

are not insensitive to the value of a.

Using a typical early afternoon distribution of

2
q , 9(z) is evaluated for values for a of 0.05 and 0.10

(Figure 1). The PBL top (h) is indicated. The length scale

is within 10% of Z at about z/h = 0.5 for a = 0.05 and

at z/h = 0.7 for a = 0.10. Above this, Z changes very

little.

A new determination of k (equations 65) is proposed

which yields a Z(z) profile similar in shape in the PBL

to Deardorff's (1973, 1974) profile of the turbulence

energy dissipation length scale. Figure 2 shows Z(z) for

the same q2 distribution as Figure 1.

h{zqdz

£ = a(z) h (65a)
0qdz



48

where,

h
aiz <. h

h/2 - z h
cX(z) = 1 a - / ) (-t 2 ) < z < h (65b)

a 2 h < z

a = (0.10, 0.05) (65c)

As one moves from h/2 down to the ground, the length

scale decreases toward zero. As the ground is approached,

the characteristic size of the turbulent eddies is limited

by z, the distance to the solid boundary. The length scale

approaches kz. For large z, the influence of the ground in

limiting the characteristic eddy size diminishes quickly.

As z increases beyond h/2, however, there is another factor

influencing the turbulence structure, and that is the

temperature inversion base at h. The larger turbulent

eddies are probably found in the middle of the PBL, where

the distance away from any damping influence on their size

is maximized.

Above h, Deardorff (1974) points out that k

increases with height because the perturbation energy is

contained in gravity waves exhibting little diffusion or

dissipation of energy. The perturbation energy contained
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in this region is negligible compared to q2 in the PBL,

and the length scale formulation above h has little effect

on the turbulence structure in the PBL.

The length scale formulation represented by

equation (64) (Figure 1) does not allow the stably stratified

layer above the PBL to have any influence on reducing the

characteristic eddy size (and therefore the length scale).

Equations (65), however, force Z to approach, in the

region z > h/2, a smaller, constant value. For these

reasons, we have adopted this formulation for Z.
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4. BOUNDARY CONDITIONS

4.1 Mean Variables

It is necessary to provide an upper and a lower

boundary condition for each prognostic variable in order to

find solutions of the level 3 equations. A staggered grid

is used in which the mean variables are defined at the integer

grid point levels. Turbulence variables and z derivatives

of mean quantities are defined at the half integer grid

points. The lowest integer grid point is at the roughness

height, z,(0.01 m). The top of the grid (grid point

43.5) is at 2022 m. Appendix B contains a more complete

description of the grid system.

The definition of the roughness height provides the

lower boundary conditions for u and v:

u (z ) = 0.0 (66)

v (z ) = 0.0 (67)

A simplified, single layer ground thermodynacmis

model (H a forcing, Deardorff, 1978) was used to predict

the values of Gv and R at z . The ground temperature,

Tg, is predicted by the model based on net radiative heating

(or cooling), phase changes of the ground water (or frost),

and the heat flux at grid point 1/2 (0.07 m). The value

of Gv (z ) is assumed to be equal to the virtual potential



ground temperature 0v (0). )v (z0 ), therefore, is probably

somewhat too high during unstable conditions and slightly

underestimated during stable conditions.

The mixing ratio at z0 is determined utilizing soil

wetness parameters and the turbulent moisture flux at 0.07 m.

The upper boundary conditions are applied at the

2022 m level. The vertical virtual potential temperature

gradient is assumed to approach a constant (stable) value.

The vertical derivatives of u, V, and R are assumed to be

zero (Yamada and Mellor, 1975; Deardorff, 1973). Therefore,

at 2022 m,

v = 0.001 k/m

R= 0

(68)

(69a,b,c)

4.2 Second Moments

The second moments requiring boundary conditions

ar: 2 2 2
are: q ,e' , r' , and r'E'. The lower boundary conditionsv v

are obtained by assuming each of the preceding variables

is in equilibrium at the lowest half integer grid point

(0.07 m). The time derivatives of equations (46-49),

therefore, vanish, yielding:

=v 0



q2(0.07 m) = {- [q a

- 2v'w' + 2Sgw'O' }3zV

- 2u'w'

(70)

A 2
, (0.07 m) = 2q{3 [qX3  3 ]

2 A [ 3
r' (0.07 m) = Tq - . I[qX 3 7 ]

- 2w'' }V

vaz

A ar' vaz
r'e' (0.07 m) = { [ql2 v - w' w'r' }

(73)

The calculated value of the ratio

r' l/(r2 - V)l/2, at z = 0.07 m, was sometimes in
v v

excess of 1. Whenever this occurred, equation (73) was

replaced by:

r'' =(r
- 61)1/2 z = 0.07 m.v

(74)

This restriction of r'e' was applied only at the lowestv

grid point. Wyngaard et al. (1978) reported observed

r'-6O correlation coefficients, above a warm evaporatingv

surface, very close to unity.

Yamada and Mellor (1975) utilize boundary condi-

tions for q2 and 0'2 of the form:v

54

(71)

(72)
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q 2(0) 2 u (75)

2

(0) = C2 H (76)

where (C ,C2) = (0.61, 2.4),

2 2 2 1/2
u= [(-u'w'(0)) + (-v'w' (0)) ] ,

and

H = -w'' (0)

The model with equations (70-71) as boundary conditions

2 2 2 2 2
yields ratios q /u, and e' ut/H within a few percent of

C and C2 , respectively. The equilibrium boundary condi-

tions, therefore, are consistent with observed surface

turbulence structure, yet do not require the use of

empirical constants.

The upper boundary conditions for the second

moments consist of the requirements that q , ' , r ,v

and r'Q' vanish at the upper boundary (2022 m).
v

q2 0 , 2 0 (76a,b)

r' =0 , rev =0 (76c,d)
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The 2022 m level is sufficiently high to ensure the

PBL is contained within the grid, and the turbulence moments

can be expected to quickly approach zero outside of the

PBL.
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5. SOLUTION OF THE EQUATIONS

5.1 Reducing the Prognostic Equations
into a Single Form

When the mean velocity components are expressed in

complex form, u + iv, equations (42-49) can be reduced to

a single form:

S =-__ (P a ) -P (77)
at az 1 3z 2 3

where $ is the variable to be incremented in time.

Table V summarizes the discussion to follow and contains

the P's ,for each $.

The Reynolds stress and heat flux equations

(50-58) are 9 simultaneous equations. Yamada and

Mellor (1974) provide a solution of the equations with

the Coriolis terms omitted. The Coriolis terms, however,

complicate these equations considerably. Appendix A con-

tains the details of a solution of the 9 equations with

the Coriolis terms, utilizing a back-substitution method.

The solution for u'w' and Vw' is shown to reduce to

Yamada's and Mellor's solution in the special case of no

Coriolis terms. Also contained in Appendix A is the

solution of the 3 moisture flux equations.

Due to the complexity of the expressions for u'w',

v'w', and w'0', the flux divergence terms of equations (42-44)

are identified with P3 in Table V. The moisture flux



Table V

Representation of the Prognostic Equations in a Standard Form

Equation P2  PNo. 123

42, 43 vc 0 if ifvcg

fT au av
44 0v 0 0 v - g - u - (w'e')

g z z az v

45 R K 0 - -R
w az

46 q2 qq-2uw' 2q - 2v'w' + 2fgw'6'
____3 1 A_ __ __ __ _ __ __ __ __ _

2q lo -3

47 617 qX 9 -2wrv
v 3 A v az

48 q2 + A --w + B
A2 vz

49 r93 A -2w'r'

v =u +iv, v u + iv , v =u + iv'
c cg g g c
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divergence term of equation (45), however, is written as:

(-w'r') = (K R) (78)

where Kw and yR are evaluated in Appendix A.

The identification of the terms of the second

moment equations (46-49) with the P's is straightforward.

It was necessary, however, to write the w' r' term of

equation (48) as:

wir' = [Ar'O' - B] (79)

where A and B are evaluated in Appendix A. Equation (79)

allows the r'6' dependence of w'r' to be evaluated implicitly,v

thereby eliminating some numerical stability problems which

were encountered with the r'O' equation.v

5.2 Finite-Difference Approximation

A transformed coordinate system is used in the

model. Vertical derivatives of any quantity, $,are evaluated

by:

=a. - 1$ (80)
azi. j j+1/2

Equation (80) is the finite-difference form of equation (B-3)



(see Appendix B). Equation (77) is approximated with the

following finite-difference equation:

k+l k

2 {[(Pla) k+ + (P a) ] k+ - [P a) +

+t 2P 1 k~ + k +l k +kl

k k k+1 k k k+1
+ 2(P 1a) J+ (P 1a) ]$ + [(P1a) + (P 1a) ]

- (P2) k+ + (P3 ) (81)

(Yamada and Mellor, 1975).

This finite difference scheme is an implicit scheme

2
with truncation errors of order 6t and (6x) (Richtmyer

and Morton, 1967).

The P1 for equation (45), i.e., K w, is not defined

at the integer grid points, but only at half integer grid

levels. The terms of equation (81) involving [(P a)j+

+ (P a) -.]/2 are therefore replaced by (P a)j/

The Gaussian elimination method is used to solve

the implicit finite difference equation (from Richtmyer

and Morton, 1967). Expressing equation (81) in the follow-

ing form:

k k+l k k+l k k+l k
-A + B.k -C $k 1 = D (82)
1 j+1 3 J -3

where the coefficients A., B., C., and D are all known



at time step k. Solutions are assumed to be of the form:

k+1 E = k+1 e ( eJ J j+1 I

with j = j-1, equation (83) becomes:

(83)

(84)k+l
$. E k+1 F 1= E. $ + F.

Inserting equation (84) into equation

A. 
k+1 +

B. - C.E. j+1
J J J-1

D + C F j-

B. - C.E.J J J-l

and comparing equation (83) with (85) , gives expressions

for E. and F..
J J

A.

E. = B. CEE B - C IE

D. + C.F.

j B - C E1

(86)

(87)

Applying the appropriate bottom boundary conditions

will yield E and F1 . Knowing E, and F1 , as well as the

coefficients A, B, C, and D, E2 and F2 can be determined

k+l
j

(82)8,

(85)



62

with equations (86-87). Applying this procedure for each

level, all the E's and F's can be determined.

The upper boundary conditions and equation (83) can

be used to determine $ at the top level. Because all the

E's and F's are now known, equation (83) can be used to

determine all the $'s, at time step k+l, from the top level

down to the bottom.



6. SIMULATION OF DAY 33 OF THE WANGARA EXPERIMENT

6.1 Initial Conditions

Initial values for the mean variables, u, v, v

and R are the observed values at 0900 hours of Day 33 of

the Wangara Experiment (Figures 3-5). Clarke et al. (1971)

tabulate values for these variables at 50 m intervals below

1000 m and at 100 m intervals between 1000 m and 2000 m.

Values at the grid levels are interpolated from the observed

values. The Tv profile has been smoothed in the region

400-800 m to remove a slightly unstable lapse rate in that

area. Initial values for the turbulence variables are

generated by running the model for 1 hour starting with

guessed values for the second moments (Yamada and Mellor,

1975). The initial and subsequent values of the geostrophic

wind components, u and v , were also calculated in the

same way as Yamada and Mellor, using their data.

6.2 Results

The time-height variation of the velocity components

u and v are presented in Figures 6 and 7. Agreement with

the results of Yamada and Mellor and with observations is

good. The nearly constant velocity profiles in the mixed

layer during the day and the development of a low-level

nocturnal jet are features of the velocity profiles noted

by Yamada and Mellor which are also apparent in Figures 6

and 7.



64

2000---'

1800-

1600-

1400-

1200-

1000-

800-

600-

400-

200-

- 0 0 I 2 3 4 5 6 7 8 9

VIRTUAL TEMPERATURE, fv (*C)

Fig. 3. Initial profile for virtual temperature,

V



65

2000

1800 -

1600 -

1400"-

1200 -
E

1000 -

00-

400 -

200 -

0 1 2 3 4 5

WATER VAPOR MIXING RATIO, R (g/kg)

Fig. 4. Initial profile for water vapor mixing
ratio, R.



66

2000

1800-

1600-

1400-

1200-
E-

1000-

800

600-

400

200-

-3 -2 -1 0 1

VELOCITY COMPONENTS 0 AND V m/ s)

Fig. 5. Initial profiles for the eastward velocity
component, u!, and the northward velocity
component, v.



U (m/s)
2000

1500

1-1000 -

500- -2 -2 -4 -6 -8 -10

10-02

100 -
10 12 14 16 18 20 22 24 2 4 6 8

DAY

TIME (HOUR) 33134

Fig. 6. Variation of the calculated mean velocity component, u, as -

a function of time and height.



V (m/ s)

10 12 14 16 18 20 22 24 2 4 6 8
DAY

TIME (HOUR) 33 34

Fig. 7. Variation of the calculated mean velocity
as a function of time and height.

component



69

Figure 8 contains the mean virtual potential tempera-

ture variation. The rapid growth of the mixed layer with

nearly constant jv can be seen. The surface layer is

super-adiabatic during the late -morning and afternoon

hours as solar radiation heats the ground. A strong

surface inversion develops after sunset. The time varia-

tion of the ground 0v, predicted by the ground thermodynamics

model is shown in Figure 9. Agreement with Deardorff's

(1974) values is good. The fall of the ground temperature

after sunset is halted by the freezing of ground water,

which releases latent heat. The ice is slow to melt

during the morning of Day 34. This is a deficiency of the

single layer ground model which keeps the ground temperature

at 0*C until the ground ice in the entire layer has melted.

Examination of the observed jv variation (Yamada

and Mellor, 1975) indicates that the daytime temperatures

in Figure 8 are slightly too high. This can be attributed

to the assumption that 0 (ground) = 0v (z0). The air

temperature and heat flux at z are somewnat overestimated

during the day, yielding a warmer mixed layer. As a test,

an additional simulation was run with 0v (z) reduced by

about 8% (by increasing the ground albedo from 0.2 to 0.3).

The resulting Gv variation matched the observations very

closely (also see Figure 28).

Yamada and Mellor reported that the longwave flux

divergence term of the 0v equation influenced the predicted
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nighttime 0v values measurably. Our neglect of the radia-

tion term explains the warmer nighttime 0 values in-

dicated in Figure 8.

The mean water vapor mixing ratio, R, is shown

in Figure 10. R (z ) is shown in Figure 11. Moisture in

the surface layer increases in the morning as the ground

water evaporates. As the mixed layer develops from

1000-1200 hours, the surface moisture is carried upward

(resulting in the bulge of the 3.5 and 4.0 contour lines at

this time). The afternoon boundary layer dries out because

the moisture flux at the boundary layer top exceeds the

surface moisture flux as all the soil moisture evaporates.

The time-height variation of twice the turbulence

kinetic energy is shown in Figure 12. The development of

the strong daytime turbulence is due to bouyant generation

(see Figure 13). Stress production and diffusion are

negligible except close to the ground. At the end of the

day bouyant generation becomes small or negative. The

dissipation of turbulence energy, proportional to q3 is now

unopposed and quickly eliminates most of the turbulence. A

second effect is the variation of the length scale (Figure 14).

As the level of turbulence in the boundary layer decreases,

the length scale also decreases. Dissipation, being pro-

portional to l/Z, increases for a given value of q3

Figure 14 compares closely with the variation of Z calculated

by Yamada and Mellor (1975) in the region z < 500 m.
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Their formulation, however, continues to increase Z with

height, approaching a constant limiting value. Equations (65)

force Z to decrease in the upper portion of the boundary

layer to a smaller, constant value in the stable region

above the boundary layer.

The boundary layer height, h, used in the calcula-

tion of Z, is of interest itself. It is defined here

as the layer of the atmosphere containing essentially all

the dissipation of turbulence kinetic energy. The model

calculates h by integrating the dissipation of q2 up from

the ground until adding the dissipation in the next grid

layer to the integration adds less than 1% of total inte-

grated amount below this level. At this point, the inte-

gration stops, and h is determined. This definition of h

yields boundary layer heights at, or within, 1 grid point

of the base of the temperature inversion during the day,

yet also gives a reasonable estimate for the boundary layer

height at night, when identification of h from 0v or R

profiles is difficult. Figure 15 shows h and the U

profiles for 1100 and 1200 hours. The turbulence kinetic

energy profiles for these times is shown in Figure 16.

The evolution of the boundary layer height (Figure 17) is

interesting. h grows rapidly in the morning hours, then

more slowly in the afternoon. About an hour after sunset

the boundary layer height crashes to a small, more or less

constant value (108 m) through most of the night.
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The time-height variation or the virtual potential

2temperature variance, 0' , is shown in Figure 18. The
v

maximum values of el2 are found at the z grid level duringv 0

the day, and approximately 20-50 m above the ground at

night. The e' budget, Figure 19, shows a balance betweenv

gradient production and dissipation of 6 throughout thev

entire boundary layer.

The r' time-height variation, Figure 20, shows

two areas of high mixing ratio variance, at the ground and

at the boundary layer top. The gradient production of

r' , Figure 21, is strongest near the PBL top where the

R profile decreases rapidly with height. Diffusion is.

important only around h, tending to decrease r' just

above h and increase r' at h. The production of r'

is negligible throughout the mixed layer, except in a shallow

layer near the ground.

Figure 22 contains the mixing ratio-virtual potential

temperature correlation, r'e', as a function of time andv

height. The model yields positive values for r'0'v

throughout the boundary layer during the day. In the stable

region above the boundary layer, where 6v rapidly increasesv

and R rapidly decreases with height, negative values of

r'6' occur. Throughout the shallow nighttime boundary layerv

(about 100 m), r'0' is negative. Figure 23 reveals that

the dissipation term and the production term are in balance
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everywhere. Dissipation and production change signs above

h where r'O' is negative.
V

The variation of the diagnostically determined

Reynolds stresses (u'w', v'w'), vertical heat flux

(w'e') and vertical moisture flux (w'r') as a function of

height and time are presented in Figures 24-27. Small

negative values of the heat flux (2-8% of the surface heat

flux) were calculated just above the afternoon boundary

layer top. Yamada and Mellor (1975) reported downward heat

fluxes above the PBL top of a maximum of 2% of the surface

values. Deardorff's (1974) model calculates an average

negative heat flux of 13% of the surface value.

The surface (z level) values of w'6', w'r' ,

and the friction velocity, u,, are shown in Figures 28-30.

The results of Deardorff (1974) and Yamada and Mellor

(1975) are also shown, when available, on these figures

for comparison. The surface moisture flux compares well

with Deardorff's. The calculated high values of w'O'v

have already been attributed to the assumption v (z ) = v

(ground).

Values of the individual turbulence energy components

in the unstable boundary layer show an anisotropic distribu-

tion. The components u' and v' are approximately

equal. The vertical energy component, w' , however, is

usually more than twice the other two components. This

is due to the direct transfer of bouyant energy to the w'



U I w i M 2 s'2 )

10 12 14 16 18 20 22 24 2 4 6 8

DAY
TIME (HOURS) 33134

Fig. 24. Variation of the calculated Reynolds stress component,
u'w', as a function of time and height.

E



10 12 14 16 18 20 22 24 2 4 6 8

DAY
TIME (HOURS) 33134

Fig. 25. Variation of the calculated Reynolds stress component,
v'w', as a function of time and height.

2000

w
I'500

v'iw' ( M 2 '' )



I m S~'*K )

TIME (HOURS)

Fig. 26. Variation of the heat flux component, w'T', as a
function of time and height. V

2000

1500

1000
E

500

100
10

DAY
33134

w ' fv



w r' X 10 (m s' g k )

10 12 14 16 18 20 22 24 2 4 6 8
TIME (HOURS)

DAY

Fig. 27.

33134

Variation of the moisture flux component, w'rT, as a
function of time and height.

200

1500

1000

500



10 12 14 16 18 20 22 24 2 4 6 8
TAY

TIME (HOU RS) 33134

Fig. 28. Calculated surface heat flux for two
values of the surface albedo, as a function
of time. The values of Deardorff (1974),
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95

- 10 12 14 16 18 20 22 24 2 4 6 8

TIME (HOURS)

0 AY
33 34

Fig. 29. Calculated surface moisture flux as
a function of time. The results of
Deardorff (1974) are also shown.

40

30

20

t
0

E

0

11.

I-
(n
0



0.50 - 1 l i l t $ I

0,45-

0.40-

0.35-

0,30-

0,25

I-A

0.20 - VAMAOAa MELLOR (1975){
0.)

z0.15

S0.10

La.
0.05-

10 12 14 16 18 20 22 24 2 4 6 8

DAY
TIME (HOURS) 33:34

Fig. 30. Calculated friction velocity, u,, as
a function of time. The results of
Yamada and Mellor (1975) are also
shown.



97

2,0

-Il -0.8 -0.6 -0.4 -0,2 0.0 0.2 0.4 0.6 0.8 L.O

.
0.765

CORRELATION COEFFICIENT

wI &e

w' 6,'

Fig. 31. The correlation coefficient for w'-6'
as a function of z/h, for 1300 hoursV
and 2000 hours, Day 33.



98

component (Deardorff, 1973). The return-to-isotropy

(pressure correlation) term, proportional to 1/2, tries

to eliminate this anisotropy. The bouyant energy - w'

energy transfer is exemplified in Figure 31. The w'-O'
V

correlation coefficient is a high constant value (.765)

throughout the daytime PBL. The nocturnal (8:00 pm) boundary

layer profile of the correlation coefficient clearly does

not exhibit this behavior.
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7. EFFECTS OF THE CORIOLIS TERMS ON TURBULENT

FLUXES IN THE PBL

Most higher order closure models of the PBL con-

tain assumptions to the effect that the Coriolis terms of

the turbulence moment equations are negligible (e.g.,

Mellor and Yamada, 1974, 1975). Wyngaard et al. (1974),

however, discuss the importance of the Coriolis terms in the

Reynolds stress equations. In order to evaluate the

importance of these terms in influencing the results in

the simulated boundary layer, runs were made in which the

rotation terms were included (turned on) and set equal to

zero (turned off).

The inclusion of the Coriolis terms in the u!u!
1 J

and u!6' equations presented no problems other than to

increase the complexity of the equations. Computational

problems, however, were encountered with the level 3 moisture

equations with rotation. An examination of equations (A-16 -

A-18) for w'r' indicates that the effect of the Coriolis

terms will be to increase the moisture flux if the momentum

flux is in the same direction (upward or downward) as the

moisture flux. If the momentum is in the opposite direction

of the moisture flux, the Coriolis terms tend to decrease

w'r'. Consider a situation in which 3R/az = 0. Equation

(A-21) reduces to:

w' r' = Ar'' v (87)
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A is defined by equation (A-22). Equation (48) is

approximately:

(r'6') - w'r' - r'6

= -(A v+ q r' (88)

Usually the second term in parentheses dominates in the

unstable boundary layer. In the stable region above the

boundary layer, the first term is usually larger. An analysis

of the terms of equation (A-22) reveals:

2

A ~ gq (89)

q + 9k2 qfy li

The turbulence in the region above the boundary layer is

3.weak, indicating q is a small positive number. Since fy

is positive, a.region of au/3z < 0 can make A negative.

This occurred in the stable region above h. Equation (88)

reduces to:

(r'O') C r'O' (90)at v 1 v

where C1  -A 3 > 0. The resulting solution is a growing

exponential.
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In order to evaluate the effects of the Coriolis

terms in the u.u' and u.'' equations it was necessary toi 3 i v

set fy = fz = 0 in the moisture equations above the PBL

top. The moisture equations are decoupled from the other

equations. No moisture variable is used in the calculation

of uu!, or u.6' and, therefore, the Reynolds stresses and
i 3 i v

heat fluxes are unaffected by this change in the u!r'

equations. In addition, the area of interest is the boundary

layer, and in this region, no restriction on fy or fz was

necessary.

Figures 32-35 contain u'w', v'w', w '', andv

w'r' profiles for runs with and without this Coriolis

terms. There is no difference in the linear w'0' profilev

throughout the boundary layer (Figure 34). The w'r'

profile also shows little sensitivity to the inclusion of

rotation. The Reynolds stresscomponents u'w' and v'w',

however, are influenced somewhat (Figures 32-33). The u'w'

profile retains the same shape as without rotation, but

the v'w' profile is- flattened.

None of the prognostic turbulence equations con-

2 ~~
tains Coriolis terms. Their inclusion affects q , 6'v

r' and r'0' only through the diagnostically determined

u!u!, u.'', and u.r' equations. Time-height variation plots
i 3 i v i

for the mean variables and the prognostic turbulence variables

are almost identical for runs with and without the Coriolis

terms. The effects of the Coriolis terms, therefore, are
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felt mainly in the details of the uIw' and v'w' profiles.

These terms can therefore usually be safely neglected.
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8. EVALUATION OF THE SIMILARITY FUNCTIONS

A, B, C AND D

8.1 Definition of the Scales and Derivation
of A, B, C, and D

The similarity theory proposed by Monin and

Obukhov (1954) assumes, for a stationary, horizontally

homogeneous flow, that the surface layer profiles of all

mean and turbulent variables, when appropriately non-

dimensionalized, are universal functions of a small number

of dimensionless parameters. The theory is applied in

the surface layer where the Reynolds stress, and the heat

and moisture fluxes may be considered constant with height.

It is assumed that the surface layer structure is determined

by the dimensional variables:

z, z , g/G ,u,, w' 0 , w'r' . (91)

The flow is assumed to be of sufficiently high Reynolds

number so that the kinematic viscosity, thermal diffusivity,

and water vapor diffusivity need not be included in (91).

It is possible to form two dimensionless combinations of

these dimensional variables:

z/z 0 , z/L (92)



108
3

-U,
where, L = is the Monin-Obukhov

K(g/G )w'e'
VO Ov0 v 0

length, and K is the von Karman constant, which is tra-

ditionally included in the definition of L.

The assumption that (91) contains all the relevant

information needed to specify the structure of the surface

layer implies that the non-dimensional forms of the mean

velocity components, virtual potential temperature, and

mixing ratio must be functions of only z/z0 and z/L. The

appropriate scaling factor to nondimensionalize the velocity

components is the friction velocity u,. Scaling factors

for virtual potential temperature and mixing ratio are ob-

tained from (91) and are given by:

v0

K, = (93)

R; = 0 .(4
* Ku (94)

Therefore, in the surface layer,

u = F (z/z0 , z/L) (95)

* 0
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V - O= F3 (z/z0 , z/L) (97)

0 = F 4 (z/z0 , z/L) (98)

In this section, the velocity components u and v

are in surface coordinates, i.e., u is defined to be in the

direction of the surface wind and v is perpendicular to it.

If the non-dimensional vertical gradients of u,

v, 0V, and ~A are assumed to be independent of z/z0 (Monin

and Obukhov, 1954), it is possible to identify the z/z0

dependence of the mean variables as logarithmic.

Equations (96-98) can be written in the form:

U = [ln (z/z0 ) - m(z/L)] (99)

= 0 (100)
U*

. V 0 Pr

K_ Pr [ln (z/z ) -h (z/L)] (101)
K o

*

R K Pr [ln (z/z - $(z/L)] (102)
R* K 0 R



For the remainder of the PBL, above the surface

layer, Monin-Obukhov similarity theory does not apply, and

the parameters in (91) do not suffice to determine the

structure. The roughness parameter, z0 , is not important

for z >> z0 , and can be eliminated from the list. Other

effects, such as rotation and baroclinicity, should be

included. The height of the PBL, h, representing externally

determined influences, such as diurnal heating, subsidence,

etc., must also be included. The similarity theory applied

to the region of the PBL above the surface layer is called

Ekman layer similarity theory.

Ekman layer similarity theory has evolved through

the years and is based on the work of many people. Kazanski

and Monin (1960, 1961), Csanady (1967), Gill (1968),

Blackadar and Tennekes (1968), Clarke and Hess (1973),

Deardorff (1972a,b), Hess (1973), Arya and Wyngaard (1975),

and others have contributed to its development. In an

analogous fashion with the surface layer, the non-dimensional

forms of the mean variables can be represented as universal

functions of non-dimensional combinations. The Ekman layer

relations are:

u - u
uum G 1 (z/h, h/L, IfIh/u*) (103)

v - v

u* m G2 (z/h, h/L, iflh/u*) (104)



ill

j - jv v

_* m= G3 (z/h, h/L, jfIh/u*) (105)

R - RK

R* m G4 (z/h, h/L, Iflh/u,) (106)

The variables uM' m' av , and Rm used in the
Vm

deficit relations (103-106) are PBL mean values of velocity,

virtual potential temperature, and mixing ratio.

1 = h Xdz, X =u, v, e , R (107)

0

The use of the PBL averaged quantities allows the effects

of baroclinicity to be included implicitly, and thus simpli-

fies the analysis (Arya, 1978).

The relations (99-102) apply in the surface layer,

while (103-106) are their counterparts in the rest of

the boundary layer. Assuming there is a transition region,

or matching layer, in which both sets of relations apply,

it is possible to obtain the following relations:

-- u
S [ln (z/z - $ (z/L)] m + G (z/h, h/L, jfIh/u,)

u* K 0 m u, 1

(108)
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Writing ln(z/z ) as ln(z/h) + ln(h/z ), and absorbing the

z/h dependence into the unknown function G1 yields:

KU

ln(h/z) - -- = G (z/h, h/L, fIh/u*) (109)

The function G', however, must be independent of z because

the left hand side of (94) is independent of z. Eliminating

the z dependence of G , and calling the unknown function A,

we obtain:

u
A(h/L, Iflh/u*) = ln(h/z ) - K - (110)

A similar matching argument for the relations

(100-102, 104-106) yields the other universal similarity

functions B, C, and D.

Kv

B(h/L, Ifln/u*) = - -- sign f (111)

e. - e

C(h/L, IfIh/u*) = ln(h/z0 ) + K[ vo (112)

D (h/L fI h/u,) = ln(h/z ) + K[ 0R m (113)



113

Attempts have been made to determine the similarity

functions from an empirical data base. Clarke and Hess

(1974) evaluated A and B using the geostrophic wind in

their definition instead of um and vm, and assumed

h = u,/If I. Melgarejo and Deardorff (1974) used the components

of the wind u and v at the PBL top, h, in the deficit rela-

tions. The PBL top was determined by profiles of Ov

and R (unstable conditions) or u and v (stable conditions).

Both studies, however, show a large amount of scatter in

the data points, especially on the stable side. Arya

(1975) reanalyzed the data of previous studies in an

attempt to reduce the huge amcunts of scatter. The re-

sults, although somewhat better, still retain considerable

scatter.

The similarity theories discussed assume that a

steady-state, horizontally homogeneous situation exists.

In the real atmosphere neither condition is satisfied.

Diurnal variations and large scale changes in the flow

pattern violate the assumption of a steady-state. Changes

in the surface characteristics and horizontal advection

are usually present to violate the horizontal homogeneity

assumption. In addition, it is very difficult to measure

Reynolds stresses or heat and moisture fluxes in the

field. It is not surprising, therefore, that empirical

determinations of the similarity functions contain a

considerable. amount of scatter.
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An alternative approach, the use of a model, has

been used to determine the similarity functions (Arya,

1977; Yamada, 1976; Arya and Wyngaard, 1975). The assump-

tions of horizontal homogeneity and stationarity can be

satisfied using this approach. There is no "measure-

ment error" as with an empirical determination. The main

limitation is the ability of the model, with its modeling

assumptions and approximation-s, to faithfully reproduce

nature.

8.2 Results

The similarity functions A, B, C, and D are

evaluated for five cases and are tabulated with h, u*,

T*, R,, L, RiB, h/zo, h/L, and Iflh/u* (see Tables VI-X).

The bulk Richardson number, RiB, is defined as:

Bgh(e - E )
B -2 -2

u + vm m

In each case, a 24-hour simulation is started

at 0900 hours local time, using the initial conditions

described in section 6.1. The results contained in

section 6.2 are from case B.
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Case Table Surface Albedo Geostrophic Winds

A VI 0.10 Wangara

B VII 0.20 Wangara

C VIII 0.25 Wangara

D IX 0.30 Wangara

E X 0.20 constant

As summarized above, cases A-D use the observed

geostrophic winds from the Wangara experiment, as described

by Yamada and Mellor (1975). Spatially and temporally

constant geostrophic winds are used in case E (u = v

-- 4 m/s).

The similarity function A is plotted as a function

of h/L in Figure 36. Hourly values of A (from Tables VI-X)

are used in the construction of Figure 36. The data for

the 9th and 10th simulated hours (6:00 - 7:00 p.m. local

time) are not used because in this period the boundary

layer height is very rapidly changing. Similarity theory

cannot be expected to do well under these highly non-

stationary conditions. Figures 37-39 are the same as

Figure 36 except for the similarity functions B, C, and D.

On the unstable side, there is a small amount of

scatter in the similarity functions which is probably

attributable to the fact that all values of h/z and

fjh/u, are allowed. In other words, the dependence of

A, B, C, and D on h/z and jflh/u, is not considered in
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List of the Variables in Tables VI - X

t (hours) simulated time starting at 9:00 a.m. local
time (i.e., time = 1 corresponds to 10:00 a.m.,
time = 2 corresponds to 11:00 a.m., etc.)

h Cm) Boundary layer height

u,(m/s) Friction velocity

0* (*K) Scaling factor for virtual potential tempera-
ture (eqn. 93)

R, (gm/gm) Scaling factor for water vapor mixing ratio
(eqn. 94) multiplied by 1000

L (m) Monin-Obukhov length

RiB Bulk Richardson number (eqn. 114)

A Similarity function A

B Similarity function B

C Similarity function C

D Similarity function D

h/z Ratio of boundary layer height to surface
o roughness parameter (z = 0.01 M)

h/L Ratio of boundary layer height to Monin-
Obukhov length

IfIh/u* Ratio of the magnitude of the Coriolis parameter
(f = -8.2 x 10- s-1) to u*/h
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Figures 36-39. Figures 40 (a,b) and 41 (a,b) show isolines

of A, B, C, and D as functions of h/z and h/L for a

restricted range of values of Iflh/u*.
An examinations of Tables VI-X indicates that the

similarity functions C and D are equal (within a few

percent) in the unstable boundary layer. Under stable

conditions, however, C and D do not appear to be equal.

Brutsaert and Chan (1978), analyzing experimental

data, evaluated the similarity functions C and D. With

the height of the inversion as the length scale, 6, they

found D to be about 0.65 C. Their results, however, are

based on the use of 0 (6) and R (6) in the deficit relations

instead of the vertically averaged variables em and R .

As pointed out by Arya (1977, 1978) the use of 0 (6)

and R (6) in the formulation of C and D is less desirable

than the use of the vertically averaged variables because

the results are more sensitive to baroclinicity and

sampling errors.
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9. SUMMARY

A higher order closure turbulence model, using

the full level 3 equations (Mellor and Yamada, 1974;

Yamada and Mellor, 1975) is described in detail in

section 2. A new formulation for the length scale Z,

defined by equations (65a - 65c) is used. This length

scale, appearing in each of the modeling parameterizations

described in section 3, has the same shape in the PBL

as Deardorff's (1974, 1975) profile of the turbulence

energy dissipation length scale.

Equilibrium boundary conditions for the second

moments are applied at the lower boundary. The surface

mixing ratio and potential temperature are predicted

with a single layer ground thermodynamics model (Deardorff,

1978).

The results of a simulation of Day 33-34 of the

Wangara boundary layer are examined in section 6. The

boundary layer grows through the day, reaching a maximum

(1320 m) around 1800 hours (6:00 p.m. local time). About

an hour after sunset, the PBL top falls rapidly to a more

or less constant value of 100-150 m throughout the night.

Twenty-four hour simulations are made both with

ahd without the Coriolis terms. The results are nearly

identical for all the mean and prognostic turbulence

variables. The details of the Reynolds stress components
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u'w' and v'w', however, did show some sensitivity to the

inclusion of the Coriolis terms.

Finally, the similarity functions A, B, C, and D

are evaluated in section 8. Layer-averaged variables are

used in the deficit relations. The similarity functions C

and D are found to be equal in the unstable boundary layer,

although this appears not to be true in the stable boundary

layer.
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APPENDIX A

SOLUTION OF THE DIAGNOSTIC REYNOLDS STRESS, HEAT FLUX,

AND WATER VAPOR FLUX EQUATIONS

The level 3 equations for the Reynolds stress and

the heat flux (equations 50-58) represent a closed set of

9 diagnostic equations. Once the prognostic equations for

the mean variables (u, v, e, R) and the turbulence variables

(q2 ',2) are solved, the individual components of the
V

Reynolds stress tensor and the heat flux vector are determined.

The sclution of the simultaneous equations (50-58),

however, requires a great deal of algebraic work. It is

convenient to represent equations (50-58) in the matrix

form (equations A-1).

The matrix is solved by performing elementary row

reduction operations until all the non-diagonal elements are

zero and the diagonal elements are equal to one. If, at

each step in the matrix manipulation, a new variable is

defined in terms of combinations of previously defined

variables, the answer will be of the form u'u= N where

Nk is defined in terms of M's, and the M's are defined in

terms of L's, etc. This procedure.will lead to the

following:
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B24 A2 7 -A 2 8 (A5 0/A51

B25 A 29 A 28 52 51

B26 A 30 -A 3 3 (A4 8/A51

B27 = A 31 -A 33 (A4 9 /A51

B28 = 32

B29 =1 -A 3 3 (A50/A51

B30 = 34

B 31 = A35 - A33 (A52/A 5l

B = A 48/A5

B33 = A9 /A51

B = A50/A51

B35 A 52 51
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A1  (-a 1 7 X2 ) / (1-X16 2

A2  1/ (1-a16 2

A3  3 3-a 1 8 a 2 )/(1-a1 6 a 2)

A = -a a2 / (1-16a2

A5 a 4 /(1C16 a 2 )
a O

A6 (A -2E2 )/( 16 a2)

A7 = -16 Ct6

A8 176

A = a5

A10 7 18 6

A 11 19 6

A12 8
o 0

A 13 1 B 6E2

A 1 4 = -a1 6a 9 /(-17 at9 )

A15 10 18 9 17 9

A16 1 9a 9 /(-t17 a 9

A 17 a 1 1/(1- )1 7 at9
0 0

A1 8 = (C 1-9 E 2 (1- 1 7 a 9 )

A 19 12 16 14

A20 = 13

A21 17a 4

A at -a a
22 15 18 14

A23 19 14
0

A24 14 2

A25 = 16

A 7 a 7
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27 (18

28 = 19
0

29 = 2

30 1 6 C 2 2 / (1-a 1 8 'X2 2

A3 1  (20-=l7a22 18 22

A32 C 2 1 /(l-t 1 8 2 2 )

A33 -a 1 9 a 2 2/(l-a 1 8 t 2 2

A34 23 1822
0 O

A3 5 = F2-22 E 2)/(1-a )822

A36 -a 1 6 aC2 4 /(l-a g1 9 a 2 4

* 37 -a17a24/(- 19 a,24

*38 -a 1 8 a 2 4 /(1-aga
2 4

0

A39 C2 4 E2/(1-a g1 9 2 4

A40 
2 7

41 = '28

42 29

A43 = a 3 0

A = a3

A45 1

A46 = 25/ l-a1924

A 47 = 26/(-a 19a24

A48 36

A = A37 43(A 47 -A42A46

A50 A38 - 40A46

A51 41A46 - A (A47-A42A46

A52 = 39 - A4 5 (A 4 7-A 42 A46
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0 0 0

at = A5 a = C 2 = F
0 0 0 0

t2 2 + A6 a12 D 3 (22 = 5
0 0 0

a 3  aL1 3  D5  23 = 3
o 0 0

a4 = A a = D 24 =GOt4 =A4 (X14 D1 a24 G1
o 0 0 0

a5 = B5 X15 = 2 + D4 a25 4 G
0 0 0 0

a 6 =B3 1 6 =E 4  a 2 6 =G 2 + G3
0 0 0 0

7X = B2 a17 E + E5 27 = 1
o 0 0

a8 = B 18 6 28 = 3
0 0 0 0

X9 = 2 + C5 a 19 E3 29 = 2
0 0 0

a 1 0 =3 a 2 0 =F 130 2
31 331 20

a%3 1 =13

The finite difference scheme described in section 5

requires that the turbulent moments u'w', v'w', and w'6'
V

be known at time step k in order to solve equations (40-47)

at time step k + 1. From equations (A-2) , we see u'w',

v'w', and w'6' are N5 , N and Ng, respectively. Substi-N6O

tution of the A through M into the N's results in a very

long and complicated expression for each N. The model

calculates the N's by evaluating the intermediate variables
0

(A-M) first.

Matters are simplified considerably when the Coriolis

terms are omitted. The model has an option to allow the

Coriolis terms to be included or to be set equal to zero.

Mellor and Yamada (1974) evaluated expressions for u'w',

v'w', and w'6' in the case f =f =0. It is possible tov y z



to show that N5 , N6, and N9
reduce to their expressions

in that special case.

With f =f =0,

= NS =E - E,LJ
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(A- 8)

+ ~ )iuj
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4 qAtg ISS~

a
It 3 4,~~ ~ C1@, C i

+ s'ij,'g ~ (;.~)*~ a.,,

(A-9)

(A-10)

Substitution of equations (A-4 to A-10) into (A-3) will

yield, after considerable manipulation, equation (A-ll).

(A-11)

Mellor and Yamada (1974) represent equation

in the form

-u'w' = K a.
m 3z

IE2. - iAxv7=

(A-ll)

(A-12)

7+ 361
7 (00) tit (5-12

1 7 O r
3 [3.A C. */

I I 3a z - ; ;":27 .18 ) Go,, & 7a ]

a-

+ Ftv Aiz A%43 I = z ; O r-
& 06 ;z

.4A'A4i

1., aa) 3. U,

13.Al zz



and

maz
-v'' = Kom

From equations (A-2)

v'w' = N = K E 1 1 (-E 2 1 A4 0 )6 9 8 E10 (l-E21A 40 )

(E2 2 +E21A42A45

- (E 1 9+E 2 1A 4 2A 4 3)

(A-14)

It can be easily shown that:

K9/(av/az) = E1 8/(3a/az)

and

K8 /(aV/az) =E 7/(au/3z)

so ccmparing equation (A-14) with (A-3) and (A-il) yields

The expressions for N5 and N6, therefore, reduce as ex-

pected to Mellor's and Yamada's expressions in the sim-

plified case fy = fz = 0.
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(A- 13)
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Prognostic equations (45, 48) require that w'r'

be known at time step k to calculate R and 7'r' at time
V

step k+l. Once the Reynolds stresses and heat fluxes

(N1-N9 ) have been calculated, the only unknowns at time

step k will be u'r', v'r', and w'r'. Equations (59-61)

are three equations for these three unknowns. The solution

for w'r' is:

ro. -+ -AA 2 (

Expressing w'r' in the form:

- = Kw az R (A-16)

and comparing equations (A-15) and (A-16) yields the follow-

ing expressions for Kw and R'

- (A-17)

9 +
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(A-18)

Once equation (A-16) is solved, u'r' can be

evaluated by:

IVI ~

A I. I

(A-19)

Finally, v'r' is the only unknown and is determined by:

Numerical stability considerations for the r'e'v
equation require w'r' to be expressed as:

w'r' = Ar'O' - B.
v

A comparison of equation (A-21) with equations (A-16

- A-18) yields expressions for A and B:

L 20)

A-2 1)

CI.A " I L a Z.. I z2 t ( e + 4z +- -a 2e ) + 7.-1,12.

( tz , ol-R' 1.2L ) ( 3,9, y3a r'Qv')
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3-fl p ( tz . ' t I )
(A-22)

4 Z~-L43 i~~a -~

+ IA I t -Ar

Is 't~j4 L+4

(A- 23)

3, ( fi ,)'t f

* A 'JL
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APPENDIX B

THE STAGGERED GRID SYSTEM

A 44 point one dimensional staggered grid is used

in the model. The mean variables are defined at integer

grid points and turbulence energies and fluxes are defined

at half integer grid points (see Figure B-l). A trans-

formed coordinate system is used (Yamada and Mellor, 1975)

which provides greater resolution near the ground where

gradients are the largest. The lowest 26 meters contain

3 grid points. Above this level, the distance between

grid points quickly approaches 50 meters and remains nearly

constant with height thereafter. The new vertical coordinate,

C, is defined as:

= a1 z + a 2 ln(z/a 3 ) (B-l)

(a1 ,a2 ,a3) = (0.02, 0.25, 0.01) (B-2)

The z-C values are tabulated in Table (B-l).

Yamada and Mellor evaluate vertical derivatives in the

C coordinate system and that approach is followed here.

The derivative of any quantity, $, is:

4 - a (B-3)
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a
a = a1 + 2 (B-4)

The lower boundary conditions for the mean variables

are applied at C = 0; those for the turbulence variables

are applied at C = 1/2. The upper boundary conditions

(turbulence moments vanish, mean gradients constant) are

evaluated at grid point 43-1/2 (2022 m).
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Table (B-l)

z-G Values (Equation B-l)

zeta z(m) zeta z(m)

0

1/2

1

1-1/2

2

2-1/2

3

3-1/2

4

4-1/2

5

5-1/2

6

6-1/2

7

7-1/2

8

8-1/2

9

9-1/2

10

10-1/2

11

11-1/2

12

12-1/2

13

13-1/2

14

14-1/2

0.01

0.07

0.52

3.14

11.70

26.48

44.88

65.21

86.66

108.81

131.45

154.44

177.69

201.14

224.75

248.49

272.35

296.29

320.32

344.41

368.57

392.77

417.02

441.31

465.64

490.01

514.40

538.82

563.26

587.73

15

15-1/2

16

16-1/2

17

17-1/2

18

18-1/2

19

19-1/2

20

20-1/2

21

21-1/2

22

22-1/2

23

23-1/2

24

24-1/2

25

25-1/2

26

26-1/2

27

27-1/2

28

28-1/2

29

29-1/2

612.22

636.73

661.26

685.80

710.36

734.94

759.53

784.13

808.74

833.37

858.00

882.65

907.30

931.97

956.64

981.32

1006.01

1030.71

1055.41

1080.12

1104.84

1129.57

1154.29

1179.03

1203.77

1228.52

1253.27

1278.02

1302.78

1327.55

zeta

30

30-1/2

31

31-1/2

32

32-1/2

33

33-1/2

34

34-1/2

35

35-1/2

36

36-1/2

37

37-1/2

38

38-1/2

39

39-1/2

40

40-1/2

41

41-1/2

42

42-1/2

43

43-1/2

z(m)

1352.32

1377.09

1401.87

1426.65

1451.43

1476.22

1501.01

1525.81

1550.61

1575.41

1600.21

1625.02

1649.83

1674.64

1699.46

1724.28

1749.10

1773.92

1798.75

1823.58

1848.41

1873.24

1898.08

1922.92

1947.76

1972.60

1997.44

2022.29
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- = 43.5
z = 2022 m

= 43
z = 1997 m

- = 42.5
z = 1973 m

z = 1

z = 0.52 mn

C = 0.5
z = 0.07 m

au av

{- rVrjv g 3z az

g' Vgz azu'w' v'w vaz ' 3z ' }z

2 ~W ~~. u 3v 3
{q , 6v , r , r v' li ~ ~ liRv v a 7 ~

u.uT-, u.'', u.'r', u , V
i 3 1 v I g g

z = 0.01 m
77 7 7-7 /77

Fig. B-1. Staggered grid system used in the model.
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APPENDIX C

Read Input Parameters

Yes
Starting Run )

Read Initial Values
of Second Moments
From Disk

Read Last Values
of Prognostic Variables
from Disk

Call CORIOL
(Call KES for fy = fz = 0)

Calculates Diagnostic Variables
and Derivatives

Enter Main Loop

Produce Plots

Write Values of
Be Restarted Prognostic Variables

to Disk

-
STOP

Fig. C-i. Flowchart of the level 3 model.

Run To



ENTER MAIN LOOP

Call PROG
Calculates Prognostic
Variables at t + 6t

Call GEOTV
Calculates New Values of
u , v

g g

Call LZERO
Calculates Z

0

Call CORIOL
(Call KES for fy=fz=0)

Calculates Diagnostic
Variables and Derivatives

EXIT MAIN LOOP'

Fig. C-l (continued)

150

Call BOUNDC
Ground Thermodynamics
Model
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