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Abstract

This thesis proposes a novel framework called transient imaging for image formation and scene

understanding through impulse illumination and time images. Using time-of-flight cameras and

multi-path analysis of global light transport, we pioneer new algorithms and systems for scene un-

derstanding through time images. We demonstrate that our proposed transient imaging framework

provides opportunities to accomplish tasks that are well beyond the reach of existing imaging tech-

nology. For example, one can infer the geometry of not only the visible but also the hidden parts of

a scene, enabling us to look around corners.
Traditional cameras estimate intensity per pixel I(x, y). Our transient imaging camera proto-

type captures a 3D time-image I(x, y, t) for each pixel and uses an ultra-short pulse laser for flash

illumination. Emerging technologies are supporting cameras with a temporal-profile per pixel at

picosecond resolution, allowing us to capture an ultra-high speed time-image. This time-image

contains the time profile of irradiance at a sensor pixel. The speed of light is relevant at these

imaging time scales, and the transient properties of light transport come into play. In particular we

furnish a novel framework for reconstructing scene geometry of hidden planar scenes. We experi-

mentally corroborated our theory with free space hardware experiments using a femtosecond laser

and a picosecond accurate sensing device.
The ability to infer the structure of hidden scene elements, unobservable by both the camera and

illumination source, will create a range of new computer vision opportunities.

Thesis Supervisor: Ramesh Raskar
Title: Associate Professor of Media Arts and Sciences, Program in Media Arts and Sciences
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Chapter 1

Introduction

How can we use time-of-flight cameras for performing multi-path analysis of global light transport?

If so, then how can this allow the design of new algorithms and systems for scene understanding

through time images? What are the tasks that this new reasoning can accomplish that are well

beyond the reach of modem imaging technology? Can we use such a framework for estimating 3D

geometry and appearance of not only visible but also hidden parts of a scene? Can we infer object

shapes, motion reflection around an opaque occluder? Can you automatically label the objects

in the scene based on their material index (wood, mirror, glass etc.) using a single image? We

propose a novel theoretical framework for image formation and scene understanding using impulse

illumination and time images. We call this framework Transient imaging. We also propose the

design of an ultrafast imaging device based on this framework which we term as a Transient imaging

camera. We used our inverse algorithms and measurements collected using the transient imaging

camera to estimate the hidden scene geometry from a fixed single viewpoint.

1.1 Motivation

Light is a very rich signal and carries information that allows us to observe and interpret the world

around us. Mathematically, light rays may be represented using Light fields [1]. The light field

or the Plenoptic function describes the amount of light traveling in every direction through every



Figure 1-1: Can you look around the corner into a room with no imaging device in the line of sight?
We have demonstrated that by emitting short pulses (labeled 1-2), and analyzing multi-bounce re-
flection from the door (4-1), we can infer hidden geometry even if the intermediate bounces (3) are
not visible. Our transient imaging camera prototype comprises of (a) Femtosecond laser illumina-
tion (b) Picosecond-accurate detectors and (c) an Ultrafast sampling oscilloscope. We measured
the Space Time Impulse Response (STIR) of a scene (d) containing a hidden 1-0-1 barcode and
reconstructed the hidden barcode positions.

Hidden
Person

Aulti-Bounc
reflections
from door
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': (x, y, z)

Figure 1-2: Parameterizing a ray in 3D space by position (x, y, z) and direction (9, #).

point in space at any wavelength at any point in time. Michael Faraday was the first to propose

that light should be interpreted as a field, much like the magnetic fields. The phrase light field

was coined by Alexander Gershun in a classic paper on the radiometric properties of light in three-

dimensional space (1936). The phrase has been redefined by researchers in computer graphics as the

plenoptic function L(x, y, z, 0, #, A, t) which is a function of three spatial dimensions, two angular

dimensions, wavelength and time (see Figure 1-2). The time parameter is usually ignored since

traditionally all measurements are made in steady state, where the ray intensities do not change over

time. The plenoptic function encodes information about the scene and has a lot of structure which

governed by the scene properties. The simplest example is the encoding of the reflectance of scene

elements in the light field. A ordinary digital camera captures this information into a 2D color image

I(x, y, c) by marginalizing L(x, y, z, 9, #, A, t) and sampling the wavelength as:

I(x, y, c) = j j J J L(x, y, z, 9, #, A, t)6(A - c) (1.1)
/Te

In a traditional camera, the light incident at a pixel is integrated along angular, temporal and wave-

length dimensions during the exposure time to record a single intensity value. Traditional cameras

sense a limited 2D projection of the complete light field of the scene as defined by Equation 1.1.



Many distinct scenes result in identical projections, and thus identical pixel values. Hence it is very

difficult to use traditional imaging to estimate properties such as the depth of a mirror, the position

of a sheet of glass, or the overall scale of a scene because these properties are not directly observable

in the RGB values reported by a traditional camera. Another seemingly impossible problem is to

estimate the structure and geometry of scene elements that are occluded from the camera and the

light source. Since no light signal from the hidden scene parts will directly reach the sensor, the re-

flectance information of hidden scene elements gets blurred with the visible scene information in a

non recoverable manner. If we can resolve this information, it allow us to look around corners with-

out being in the direct line of sight (see Figure 1-1). In a room-sized environment, a microsecond

long exposure (integration) time is long enough for a light impulse to fully traverse all the possible

multi-paths introduced due to inter-reflections between scene elements and reach steady state. Tra-

ditional video cameras sample light very slowly compared to the time scale at which the transient

properties of light come into play.

It is also possible to sample other geometric dimensions of the plenoptic function. Light field

cameras [2,3] sample both the incident angle of light and the spatial location. They have paved the

way for powerful algorithms to perform many unconventional tasks such as extended depth of field,

refocusing after a photo has been taken and depth estimation from fixed viewpoint. We propose that

time sampling the incident light will provide even more powerful tools. The research community

has extensive experience building complex models of light transport, visibility, and imaging, but

none of these models take into account the transient nature of light and attempt to solve practical

vision problems using it. Our work seeks to investigate the theoretical models necessary to explain

imaging under these conditions, build hardware to validate these theories, and then develop the

hardware into a generally useful tool.

This problem is inspired by the cumulative technological advances in ultra-fast imaging and pho-

tonics in the past decades. We exploit the fact that it is now possible to capture light at exteremely

short time scales. Light travels about 1 foot/nanosecond 1, and we already have commercial ultra-

fast imaging hardware that is capable of sampling light at even sub-picosecond scales. Ultra-fast

illumination sources such as femtosecond lasers have been available for decades. The combination

11 ns = 10-9 seconds. Precisely light travels 0.3mm in 1 picosecond = 1012 seconds.



of the ultra-fast sensing and illumination is the backbone of modern imaging systems that are based

on time-of-flight, such as LIght Detection and Ranging (LIDAR) [4-8] for depth and 3-dimensional

geoimetry sensing, two-photon microscopy and Optical Coherence Tomography ( [9,10]). However,

all these techniques so far have only addressed the problem of structural reconstruction (for example

3-dimensional geometry of scenes and shape of biological samples). Note that it is well known that

light scatters in a scene and takes a complex multipath from illumination source -- scene elements

-+ sensor [11-13]. This process is termed as light transport. But because light travels so fast, we

need ultra-fast light sampling to resolve these multipaths.

Ordinary cameras do not operate at short enough exposures times; in an ordinary real world scene,

given 1 millisecond (1000 foot in light distance travel), light starting from the source would com-

pletely traverse all the possible distinct multipath in the scene and reach a steady state. Hence all

the light multipath is lost during ordinary exposure time scales (integration of light incident on the

sensor over time). Nevertheless, camera based 2-dimensional intensity images I(x, y) have long

been used to observe and interpret scenes. New sensors and algorithms for scene understanding

will clearly benefit many application areas such as robotics, industrial applications, user interfaces

and surveillance. We propose a new camera design that captures a 3D time-image I(x, y, t). This

3-dimensional time image is created by continuously time sampling the incoming irradiance at each

pixel at location (x, y). Note that we had already mentioned that the plenoptic function as well the

illumination are all functions of time and the steady state light transport is a special case in which

all of these functions are constant over time.

The goal of an imaging device is to capture the scene it is exposed to, and to reconstruct the most

faithful computer processable representation of the actual scene. We need theoretical models so that

we may be able to make inferences and estimations from that recorded data. From the imaging per-

spective, there are extremely good models for image formation in steady state light transport using

the ordinary 2-dimensional cameras, and algorithms for the inverse problem of scene understanding.

These have been well whetted and well understood (for example, the pinhole model and homogra-

phy [14]). But no such models exist for time image formation (I(x, y, t)) and for studying time

delayed multipath light propagation. Since we are now dealing with signal waveforms I(x, y, t)

which are a function of time rather than just intensities, it is natural to ask signal processing ques-



tions, and formulate physically reaslitic models based on ideas from dynamical systems, filtering

and sampling theory. Moreover, in order to develop a practical imaging implementation based on

our theory we need a good characterization of noise in time image formation, and the notions of

uncertainty and sensitivity. We are proposing a completely new domain where all the traditional

notions related to system parameters, design and analysis need to be extended for time resolved

computational imaging. We propose to study, model and exploit the benefits of temporal multi-

path diversity in light transport for the development of novel signal processing theory and practical

imaging devices based on our framework.

1.2 Problem and Solution

Our methods exploit the dynamics of light transport. Critical to our work is the distinction between

steady-state and transient light transport. Traditional cameras capture 2D images which are projec-

tions of light field generated by steady-state light transport. This corresponds to the familiar case

of global light transport equilibrium, in which the speed of light is infinity and it is conveniently

assumed that light takes no time to traverse all the different multi-paths in the scene to reach the

state of steady state light transport. In transient imaging, we eschew this simplification. An impulse

of light evolves into a complex pattern in time. The dynamics of transient light transport can be

extremely complex, even for a simple scene. Recent advances in ultra-high speed imaging have

made it possible to sample light as it travels 0.3 millimeter in 1 picosecond (1 picosecond = 10-12

seconds). At this scale, it is possible to reason about the individual paths light takes within a scene.

This allows direct observation of properties such as distance, and the difference between primary

and secondary reflections.

In our formulation we considered a scene composed of small discrete planar facets with unknown

3D positions and distances, also containing hidden elements. Our camera model comprised of a

generalized sensor and a pulsed illumination source. Each sensor pixel observes a unique patch in

the scene. It also continuously time samples the incoming irradiance, creating a 3D time image,

I(xi, yi, t). The pulsed illumination source generates arbitrarily short duration and directional im-

pulse rays. Unlike a traditional 2D camera pixel, which measures the total number of photons, a



transient imaging camera sensor measures photon arrival rate as a function of time at each pixel.

The Ray impulse response captured using a transient imaging camera is a 5D function. By modeling

the propagation and interaction of the light rays with scene elements at femtosecond time scales (1

femtosecond = 10-15 seconds), we estimate scene properties like depth and 3D geometry.

We propose a conceptual framework for scene understanding through the modeling and analysis of

global light transport using time images. We explore new opportunities in multi-path analysis of

light transport using time-of-flight sensors. Our approach to scene understanding is four-fold (also

see Figure 1-3:

1 Measure the scene's transient photometric response function using the directional time-of-

flight camera and active impulse illumination.

2 Estimate the structure and geometry of the scene using the observed STIR.

3 Use the estimated structure and geometry along with aprior models of surface light scattering

properties to infer the scene reflectance.

4 Higher order inference engines can be constructed that use the estimated scene properties for

higher level scene abstraction and understanding.

We corroborate our theoretical framework with experiments conducted using a prototype transient

imaging camera. Our experiments demonstrate feasibility but not a full-fledged imaging apparatus.

In particular, we intend this prototype (Figure 1-1) to show that it is feasible to reason about multi-

bounce global transport using the 5D STIR. Our solution to the problem of single viewpoint looking

around corners using transient imaging can be summarized in the pseudo-equation: 2-dimensional

single viewpoint projection + 1-dimensional time sampling = 4-dimensional multiple viewpoint

illumination and sensing.

1.3 Related Work

Transient imaging is a new imaging domain. To our best knowledge, neither the transient light

transport theory nor the presented imaging experiments have ever been conceived in literature. The
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Figure 1-4: How can you look around corners in this scene?

This figure describes how light travels in a scene containing some hidden elements. The transient imaging

camera has a flash capable of sending out extremely short and highly directional pulses of light such as shown

here in red. A laser is an example of such a device. This short pulse will bounce off the wooden door say

and it will spread out and scatter in all different directions. We call this first reflection or first scattering of

light from the door, the first bounce. Some of the light from this 1st bounce travels directly back towards the

camera and could form an image of the door. The rest of the light travels inside the room and some of it hits

the hidden person and creates a second scattering which we call the second bounce. Clearly because there is

no camera that has the hidden person in the line of sight, the light from the second bounce cannot be used to

create a photo of the person or estimate his location in the room. However, some of the light from the second
bounce travels back towards the diffuse door to create a third bounce. Now because the door is visible to

the camera, the light from third bounce can be captured at the camera and perhaps if we are smart enough, it

may be used to create a photo of the hidden person. Note that only a very small fraction of the light from the

hidden person reaches back to the camera having undergone severe attenuation during the 3 bounces. Most

of the light reaching the camera is directly from the door and hence the signal that contains the information

regarding the hidden person is buried in the signal from the door. The final image captured is hence of the

door and NOT of the hidden person. If we replace the wooden door with a mirrot, we will be able to, very

clearly see what's inside the room. This is because mirror does not scatter the information which means that

mirror is like an all-pass filter whereas a diffuser is scatters the light information in all directions and behaves

as a very lossy low pass filter. We are going to demonstrate a way using time resolved computational imaging

to turn that wooden diffused door into a mirror. We do this by exploiting the fact that light travels at a finite

speed. Combining a novel theory that we have proposed for analyzing time delayed of propagation of light,

with ultrafast sensing and active femtosecond illumination we can use information contained in higher order

light bounces to reconstruct hidden scene geometry from a fixed viewpoint.



basic differences between transient imaging and related imaging methods are summarized as:

" Theoretical models and experimental methods to analyze global light transport do not perform

temporal multipath analysis. They are all based on steady state image capture using traditional

cameras. There are no models for time variant light transport primarily because it was thought

it would not lead to development of practical hardware implementations. Transient imaging

is a novel theoretical model for modeling the dynamics of light transport.

" Data driven methods for reflectance capture require multi-view point illumination and cam-

eras. Transient imaging is single view point, single exposure and can achieve competitive

results compared to the 8D light transport capture systems.

" Techniques such as LIDAR which exploit the time varying (dynamical) nature of the plenoptic

function do not consider the multipath since there are no good models for time variant light

multipath. In fact all ultra-fast techniques are line of sight methods for maximizing the SNR

through multipath rejection. LIDAR is also not robust to detecting highly specular objects.

* Optical Coherence Tomography (OCT) works in millimeter sized biological samples. Tran-

sient imaging achieves high quality 3D reconstruction for real world multi-scale scenes using

free space femtosecond laser illumination.

For the sake of completeness we also present a brief survey of related work comparing in detail

the key differences between existing systems and our approach. Also see Figure 1-5 for a quick

comparison of transient imaging with other popular imaging methods.

1.3.1 Theoretical Prior Art

Models for Global Light Transport: Light often follows a complex path between the emitter

and sensor. A description of steady-state light transport in a scene is referred to as the rendering

equation [15]. Extensions have been described to include time in light transport [16]. In [17], Raskar

and Davis proposed inverse analysis using a 5D time-light transport matrix to recover geometric

and photometric scene parameters. In addition, Smith et. al. [18] proposed a modification of the
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rendering equation via a transient rendering framework. Accurate measurement of physical scene

properties is called inverse-rendering [19]. Complex models have been developed for reconstructing

specular [20], transparent [21], Lambertian [22] scenes and joint lighting and reflectance [23].

Capturing and Analysis of Light Transport: Recent work in image-based modeling and compu-

tational photography has also shown several methods for capturing steady-state light transport [13].

The incident illumination is represented as a 4D illumination field and the resultant radiance is rep-

resented as a 4D view field. Taken together, the 8D reflectance field represents all time-invariant

interaction of a scene. Our work is influenced by the following pioneering efforts in steady-state

global light transport analysis. Nayar et. al. decomposed an image into its direct and indirect

components under the assumption that the scene has no high-frequency components [11]. Seitz

et. al. [12] have decomposed images into multi-bounce components under the assumption that the

scene is Lambertian. Although the dual photography approach [13] can see an object hidden from

a camera, it requires a projector in the object's line of sight. Our method exploits transient, rather

than steady-state transport, to estimate more challenging scene properties.

1.3.2 Hardware and Experimental Prior Art

SONAR: (SOund Navigation And Ranging), is a technique that uses sound propagation in a medium

such as air or water to detect and locate remote objects. The speed of sound is six orders of magni-

tude slower than the speed of light, and therefore easier to detect. Nevertheless work in SONAR has

produced intricate models of the effects of many surfaces with complicated scattering properties.

LIDAR: (LIght Detection And Ranging) systems modulate light, typically on the order of nanosec-

onds, and measure the phase of the reflected signal to determine depth [4]. Flash LIDAR systems

use a 2D imager to provide fast measurement of full depth maps [5, 6]. Importantly, a number

of companies (Canesta, MESA, 3DV, PMD) are pushing this technology towards consumer price

points. The quality of phase estimation can be improved by simulating the expected shape of the

reflected signal or estimating the effect of ambient light [7]. Separately detecting multiple peaks

in the sensor response can allow two surfaces, such as a forest canopy and a ground plane, to be

detected, and waveform analysis can detect surface discontinuities [8].



LIDAR systems have been very successful in some circumstances, but they work well only for

certain types of surface reflectance, and do little to help estimate other global properties such as re-

lationship between scene patches. In addition they are used in restrictive configurations by carefully

placing emitters near the receivers. What is needed is a generalized sensor which fundamentally

records a greater portion of the light transport in a scene. This sensor could then be used to design

new algorithms and specialized sensing methods.

Time-gated imaging captures a gated image, I(x, y, t,), by integrating the reflected pulse of light

over extremely short windows. Multiple captures at incremental time windows, t6, allow the time

image I(x, y, t) to be captured at up to 100 picosecond accuracy. Nanosecond windows are used for

imaging tanks at the range of kilometers and picosecond gating allows imaging in turbid water. It

is possible to construct the transient photometric response function using gated imagers, e.g. Busck

et. al show a TPRF measured to 100 picosecond accuracy.

Streak cameras: Streak cameras are ultrafast photonic recorders which deposit photons across a

spatial dimension, rather than integrating them in a single pixel. Using a 2D array, I(x, y6, t) can

be measured. Sweeping the fixed direction, ydelta , allows I(x, y, t) to be captured. Picosecond

streak cameras have been available for decades [24]. Modem research systems can function in the

attosecond range [25].

Femtosecond Imaging: Optical coherence tomography (OCT) [9], an interferometric technique,

and two-photon microscopy [10], using fluorescence, allow high-quality, micrometer-resolution 3D

imaging of biological tissue. Both these methods are based on pulsed femtosecond illumination.

Femtosecond windows also allow ballistic photons to be separated from scattered photons while

imaging in biological tissue.

Advanced cameras and sensors observe and interpret scenes by relying on computational geometry

and signal processing tools. Common methods use a suitable EM spectrum to see through a specific

type of an occluder. We instead propose an approach that exploits light bouncing and reflecting

from objects around the corner. This makes our approach independent of the type of occluder.

Experiments in this proposal are the first attempt at free-space use of femto-laser illumination in

contrast to their established use in optical fibers or millimeter-scale biological samples. All the



existing methods based on time sampling of light make no use of global light transport reasoning to

infer scene characteristics. They instead image in a single direction time-gated window to improve

SNR and reject multi-path scattering. This paper shows that complex global reasoning about scene

content is possible given a measured multi-path time profile.

1.4 Contributions

We made the following specific contributions through this thesis:

" Developed a theoretical framework called Inverse transient light transport for estimating the

geometry of scenes that may contain elements occluded from both the camera and illumina-

tion.

" We proposed a transient imaging camera model which time samples incident light continu-

ously and uses spatio-temporal impulse illumination as the light source.

" We built a proof-of-concept hardware prototype comprising a femtosecond laser and a di-

rectionally sensitive, picosecond accurate photo sensor array, intensified CCD cameras and

picosecond streak cameras to demonstrate the practical use of transient imaging theory. Us-

ing our prototype, we demonstrated all the key functionalities required in an imaging device:

geometry, photometry, multi-bounce (multi-path) light separation and free-space functioning.

" We also demonstrated how our proposed imaging model enables novel scene understanding

which allows us to look around the corner without any device in the line of sight. In particular,

we reconstruct the structure and geometry of of hidden planar lambertian scenes using our

transient imaging theory and camera prototype. We have verified this through both simulation

and experiments.



Chapter 2

Transient Imaging Framework

In this chapter we describe the theoretical foundations of transient imaging. Critical to our work

is the distinction between steady-state and transient light transport. Steady-state light transport

assumes equilibrium in global illumination. It corresponds to the familiar case in computer vision

or graphics, in which the speed of light is conventionally assumed to be infinite, taking no time

to cross any distance. The irradiant flux (rate of incident photons) is conveniently assumed to be

constant and not a function of time. Videos may be interpreted as a sequence of images of different

but static worlds because the exposure time of each frame is sufficiently long. They sample light

very slowly compared to the time scale at which the transient properties of light come into play.

In a room-sized environment, a microsecond exposure (integration) time is long enough for a light

impulse to fully traverse all the possible multi-paths introduced due to inter-reflections between

scene elements and reach steady state.

In our transient light transport framework, we assume that the speed of light is some finite value and

light takes a finite amount of time to travel from one scene point to the other. As light scatters around

a scene, it takes different paths, and longer paths take a longer time to traverse. Even a single pulse of

light can evolve into a complicated pattern in time. The dynamics of transient light transport can be

extremely complex, even for a simple scene. The theory of light transport describes the interaction

of light rays with a scene. Incident illumination provides first set of light rays that travel towards

other elements in the scene and the camera. The direct bounce is followed by a complex pattern of



inter-reflections whose dynamics is governed by the scene geometry and material properties of the

scene elements. This process continues until an equilibrium light flow is attained.

2.1 Formulation and Terminology

We consider a scene S (figure 2-1) composed of M small planar facets (patches with unit area)

pi,... pM with geometry G = {Z, D, N, V} comprising of the patch positions Z = [zi, . . . , ZM]

where each zi E R 3; the distance matrix D = [dij] where di = dji is the Euclidean distance

between patches pi and pj; the relative orientation matrix N = [rfi,... , n^j] consists of unit surface

normal vectors ni E R3 at patch pi with respect to a fixed coordinate system; and the visibility

matrix V - [vij] where vij = ogi = 0 or 1 depending on whether or not patch pi is occluded from

pj. For analytical convenience, we consider the camera (observer) and illumination (source) as a

single patch denoted by po. All the analysis that follows can be generalized to include multiple

sources and the observer at an arbitrary position in the scene.

We introduce a variation of the rendering equation [15], [26] in which we represent the time light

takes to traverse distances within the scene by a finite delay. Let t denote a discrete time instant and

{Lij : i, j = 0, ... , M} be the set of radiances for rays that travel between scene patches. Transient

light transport is governed by the following dynamical equation which we term as transient light

transport equation:

M

Lij [t] = Eij [t] + ( fkij Lki [t - 6 ki] (2.1)
k=0

Equation 2.1 states that the scalar ray radiance Lij [t] leaving patch pi towards pj at time t is the

sum of emissive radiance Eig [t] and the form factor weighted delay sum of the radiances from other

patches. For simplicity, let the speed of light c = 1. Then the propagation delay 6ij is equal to the

distance dij (see figure 2-2). We assume that all delays 6ij are integer multiples of a unit delay. the

The scalar weights fkij or form factors denote the proportion of light incident from patch Pk on to
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Figure 2-1: A scene consisting of M = 5 patches and the illumination-camera patch po. The patches
have different spatial coordinates (zf, zy, zr), orientations ni and relative visibility between patches
vij. The patches also have different material properties, for instance p4 is diffused, p4 is translucent
and p5 is a mirror.

pi that will be directed towards pj:

fki,= Pkij ( 3 cos(Oin)cos(6ot) V
|z- zi | /

where Pkij is the directional reflectance which depends on the material property and obeys Helmholtz

reciprocity (Pkij = Pjik), Oij, is the incident angle and 0out is the viewing angle (see figure 2-3).

Additionally, if the patch does not interact with itself and then fkij = 0 for k = i or i = j. We

assume that the scene is static and material properties are constant over the imaging interval. The

source and observer patch po does not participate in inter-reflections: fjoj = 0; i, j = 0, . . . , M.

We model illumination using the emitter patch po. All other patches in the scene are non-emissive,

Egg [t] = 0 : i = 1, ... ,M;j = 0, ... ,M;t = 0, ... , oo. Illumination is the set of radiances

{Eog [t] : Vj = 1, ... , M; t = 0, ... , oo} representing the light emitted towards all scene patches at

different time instants. The outgoing light at patch pi is the vector of directional radiances L [i, t] =

[Lio [t],... , LiM [t]] and for the entire scene we have the transient light transport vector L [t] =

(z ,z ,zi2)
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Figure 2-2: A ray impulse E 02 [t] directed towards patch P2 at time t. This ray illuminates P2 at time
instant t + 602 and generates the directional radiance vector [L20 [t + 6], L 21 [t], L23 [t]]. These light
rays travel towards the camera po and scene patches pi and p3 resulting in global illumination

[L [1, t], . . . , L [M, t]] which contains (M(M - 1) + M) scalar irradiances. We can only observe

the projection of L [t] that is directed towards the camera po. At each time t we record a vector of

M intensity values LC[t] = [Lio[t - 610],... , Lyo[t - 6 Mo0T

L [t + 4] p .
Pk L (t -9J

Lki (t] ;L [t]

pi
Figure 2-3: Scalar form factors fkij are the proportion of light incident from patch pk on to pi that
will be directed towards pj



2.2 Transient Imaging Camera

The transient imaging camera model comprises a generalized sensor and a pulsed illumination

source. Each sensor pixel observes a unique patch in the scene. It also continuously time samples

the incoming irradiance, creating a 3D time image, I(xi, yi, t) (see Figure 2-4. The pixel at sensor

position (xi, yi) observes the patch pi over time. The pulsed illumination source generates arbitrar-

ily short duration and directional impulse rays. The direction of an impulse ray aimed at patch pi

is specified by (0j, #j). The sensor and illumination are synchronized for precise measurement of

Time Difference Of Arrival (TDOA).

t

One time profile per pixel

Figure 2-4: Transient Imaging Camera captures a 3D time image in response to a ray impulse
illumination.

2.2.1 Space Time Impulse Response

The Space Time Impulse Response or the STIR of a scene S denoted by STIR(S) is a collection

of time images, each captured with an impulse ray aimed the direction (0j, #k), illuminating a single

scene patch pj. This is a 5D function: STIR(xi, yi, 6j, #j, t). We measure the STIR as follows

(see Figure 3-1):



1 For each patch p: j = 1,., M.

la Illuminate pj with an impulse ray (0j, #j).

lb Record time image {I(Xz, yj, t) : i ... M; t = 0 ... T} = STIR(xi, y, O, Oj, It).

In still scenes with static material properties, transient light transport is a Linear and Time Invari-

ant (LTI) process. Hence, the STIR of the scene characterizes its appearance under any general

illumination from a given camera view. Note that this is similar to the characterization of a LTI

system using its time impulse response except that the notion of an impulse in our case extends to

both space and time. We note that the transient light transport equation (Equation 2.1) describes

a MIMO linear time invariant (LTI) system. One of the important properties of an LTI system is

that scaled and time shifted inputs will result in a corresponding scale and time shift in the outputs.

Hence the STIR of the scene can be used to completely characterize its behavior under any general

illumination.

We propose a conceptual framework for scene understanding through the modeling and analysis of

global light transport. The transient imaging camera maps a scene to its space time impulse response

(STIR), but how can we infer the scene structure given its space time impulse response. In the

Chapter 3 we propose an algorithmic framework for looking around corners, i.e., for reconstructing

hidden scene structure for planar layered lambertian scenes.
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Figure 2-5: Measuring the STIR of a scene using the transient imaging camera. We successively
illuminate a single patch at a time and record a 3D time image. Collection of such time images
constitutes the 5D STIR.
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Chapter 3

Hidden Geometry Estimation

Unlike traditional time-of-flight imaging, our goal is to compute the direct distances, d0 , using

the first bounce, and the pairwise distances, dig. Instead of using intrinsic camera calibration, we

exploit second and higher order bounces to estimate scene geometry. First, we use the onset infor-

mation contained in the STIR to estimate pairwise distances. Then we compute a robust isometric

embedding to determine patch coordinates.

3.1 Inverse Geometry Problem

We develop our formulation for a scene with the following strict assumptions:

1 Each patch is visible from all the other patches (vij = 1, Vi, j). If not, then we image locally

with a set of patches for which this is true.

2 The reflectance of each patch pi has a non-zero diffuse component. This assumption ensures

that we are able to estimate direct distances d0 .

In Section 3.1.3, we discuss the extension of our transient imaging framework to scenes consisting

of patches hidden from the camera and illumination.



3.1.1 Distances from STIR

Define 01 = {Oli = 1,..., M} as the set of first onsets: the collection of all time instants, O1

when the pixel observing patch pi receives the first non-zero response while the source illuminates

the same patch pi (Figure 3-1). O is the time taken by the impulse ray originating at po directed

towards pi to arrive back at po after the first bounce; this corresponds to the direct path po - pi -

po. Similarly, we define 02 = {Oli, j = 1, ... ,M; j - i} as the set of second onsets: the

collection of times when the transient imaging camera receives the first non-zero response from a

patch pi while illuminating a different patch pj (Figure 3-1). This corresponds to the multi-path

po - pj - pi- po. O = 0?.. It is straightforward to label the onsets in 01 and 02 because

they correspond to the first non-zero responses in STIR time images.
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Figure 3-1: Measuring the STIR of a scene with 3 patches using the transient imaging camera. We
successively illuminate a single patch and record a 3D time image. Collection of such time images
creates a 5D STIR.



In order to compute D using 01 and 02, we construct the forward distance transform, T 2, of

size (M(M + 1)/2 x M(M + 1)/2) which models the sum of appropriate combinations of path

lengths contained in the distance vector d = vec(D) and relates it to the vector of observed onsets

0. Then we solve the linear system T 2d = 0 to obtain distance estimates d. As an example,

consider a scene with 3 patches (M = 3) as shown in Figure 3-1. The linear system for this scene is

constructed as:

2 0 0 0 0 0 do1 O1

1 1 0 1 0 0 d12 02

1 0 1 0 0 1 d13  0 3
= c

0 0 0 0 2 0 d02 0

0 0 0 1 1 1 d23 23

0 0 0 0 0 2 dos _

For any M, matrix T 2 is full rank and well-conditioned. Due to synchronization errors, device

delays and response times the observed onsets have measurement uncertainties which introduce

errors in distance estimates. We use the redundancy in second onset values (O = O Q) to obtain

multiple estimates, d, and reduce error by averaging them.

3.1.2 Structure from Pairwise Distances

The problem of estimating scene structure, Z, from pairwise distance estimates, D, is equivalent

to finding an isometric embedding Z c RMx3 -- R3 (Algorithm 1, [27]). For computational

convenience we take po to be the origin (zo = (0, 0, 0)). A computer simulation that recovers the

scene structure from noisy distance estimates using the isometric embedding algorithm is shown

in Figure 3-2. We used the estimated coordinates, Z, iteratively to recompute robust distance esti-

mates. The use of convex optimization to compute optimal embeddings in the presence of distance

uncertainties is explained in [27].
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Figure 3-2: (a) Estimating distances in an all-visible scene comprising of 3 rectangles which are
discretized as 49 patches. Note that reflectance is not relevant. (b) Original geometry shows the
surface normals in green. (c) We used noisy 1 st and 2 "d time onsets (Gaussian noise - K(p, -2),
p = device resolution = 250ps and o- - 0.1) to estimate the distances using the T 2 operator
(inset shows enlarged view). (d) This is followed by isometric embedding and surface fitting. The
reconstruction errors are plotted. Color bar shows %-error in reconstructed coordinate values.
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Algorithm 1 IsoEMBED [D]

1. Compute hij = . (dji + d~j - d?. Construct Gram

matrix HMx M = [hij]
2. Compute the SVD of H = UEVT
3. Pick 3 largest eigenvalue-vectors E x3, U3Mx 3 V3x M

4. Compute embedding Ze = (E3)/2 V3
5. Rotate and translate to align Z = RZe + T

3.1.3 Scenes with Occluders

We now consider a scene that contains a set of patches (say H) hidden from both the camera and

the source. Hidden surface estimation is viewed as two sub-problems:

1 Labeling third onsets.

2 Inferring distances to hidden patches from integrated path lengths.

To estimate the structures of the hidden patches, we make the following three strong assumptions:

1 The number of hidden patches is known or assumed.

2 All third bounces arrive before fourth and higher order bounces.

3 No two or more distinct third bounces arrive at the same time in the same time profile

STIR(xi, yi, Oj, #j, t = 0...T).

The second assumption is true for scenes that have no inter-reflection amongst hidden patches. The

third assumption is generally valid because we measure the STIR one patch at a time. If a patch, pi,

is hidden from po, then the first and second onsets involving pi cannot be observed, i.e the vector of

distances dH dij pi E H, j = 0, . . . , M cannot be estimated using just 01 and 02. Hence,

we need to consider the set of third onsets, 03- 03 : i, j, k = 1,. .. ,M; i j; j k}, that

corresponds to third bounces. Note that there are O(M) first onsets, O(M 2) second onsets and

O(M 3) third onsets. Also, Euclidean geometry imposes that O.l. = kji. Labeling the onsets



contained in 03 is non-trivial. An important generalization of the hidden patches scenario is to

estimate distances in the case of multiple interactions between hidden patches. If a hidden patch

has at most N inter-reflections with the other hidden patches, then we need to utilize onsets that

correspond to up to (N + 3) bounces i.e. the sets 01, 02... N+3

M. M_ 1 s 2n d

41 q131 431 421 A Visible Patch

121 1411!

I I t 7z
3 t -

Hidden
Patches

Figure 3-3: A scene with M = 4 patches. Patches P2 and p3 are hidden. The blue (first) and
green (second) onsets are a result of directly observing visible patches Pi and p4. The pattern of
arrival of third onsets depends on the relative distance of the hidden patches p2 and p3 from the
visible patches. The onsets that correspond to light traversing the same Euclidean distance are
readily identified. Once the onsets are labeled, they are used to obtain distances that involve hidden
patches.

As a simple example, consider the scene in Figure 3-3. Assume that the patches P2 and P3 are

hidden. We first compute the distances involving visible patches, doi, do4, d14 as explained in Sec-

tion 3.1.2. The distances (d21, d24) and (d31, d34) are not directly observable. Once these distances

are estimated, do2, dos and d23 can be computed using multilateration. Now, we apply our labeling

algorithm to identify third onsets. The onsets, 0241 and Oli4, are readily labeled using TDOA, since

we know the distances to patch p1 and p4. The onsets 0i21, 0131, O424, 0234, 0724, Ois4, O421, Osi

are disambiguated using the facts that 0221 = 0724, OS31 = 0734 and the onsets arrive in different

time profiles of the STIR(S). We sort the remaining onsets based on their arrival times and label



them based on the a priori assumption of the proximity of hidden patches to visible patches. In this

example, w.l.o.g we assume that P2 is closer to pi than p3. Hence, the onset 0321 arrives earlier

than 0,31 (see onset arrival profile in Figure 3-3). This labeling procedure can be generalized for

multiple hidden patches:

1 Estimate the distances to all the visible scene patches (Section 3.1.2) and use the arrival times

to label all third bounce onsets corresponding to visible geometry.

2 Fix an arbitrary ordering of hidden patches based on their proximity to some visible patch.

3 Use arrival times to identify the third onset pairs corresponding to same path length (03 -

03. Label them with the ordering of step 2.

4 Sort the remaining onsets according to their arrival times and use step 2 ordering to label

them.

We construct the distance operator, T 3 , that relates third bounces arrival times involving hidden

patches, OH, and the distances to the hidden patches, dH- We solve the resulting linear system

TAdH = OH and obtain the complete distance set, D. We then estimate the structure, Z, as

discussed in Section 3.1.2. An example of reconstructing hidden 3D geometry is shown in Figure 3-

4.

2 0 0 0 d21 0121- O

1 1 0 0 dO24 - (O + O)/2
___= c

0 0 2 0 d31 031-03

0 0 11 d34 0 34 - (01+ 0)/2
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Figure 3-4: (a) Estimating distances in scenes with hidden patches. Unknown to the estimation
algorithm, the hidden patches are on a plane (shown in black). (b) Original patch geometry. We use
1 st, 2 "d and 3 rd bounce.onsets, our labeling algorithm and the T 3 operator (c) to estimate hidden
geometry. (d) The isometric embedding error plot verifies negligible reconstruction error and near
co-planarity of patches. Onset noise and color bar schemes are same as Figure 3-2.



Chapter 4

Hardware Prototype and Experiments

4.1 Transient Imaging Camera Prototype

The framework developed in Section 3.1 was corroborated with experiments conducted using a pro-

totype transient imaging camera. We demonstrated the feasibility with proof of concept experiments

but not a full-fledged imaging apparatus. In particular, this prototype (Figure 1-1) was developed

with the intent to show that it is feasible to reason about multi-bounce global transport using the

STIR.

A commercially-available reverse-biased silicon photo sensor (Thorlabs FDSO2, $72) was used as

the ultrafast sensor. This sensor has an active area of 250 microns in diameter and a condensing lens

to gather more light. A 5 GHz ultrafast oscilloscope digitized the photo-currents. The least count

was 50 ps (1.5cm light travel). The ray impulse source was a modelocked Ti-Sapphire laser with a

center wavelength of 810 nm, that emitted 50 femtosecond long pulses at a repetition rate of 93.68

MHz. The spatial bandwidth of these pulses greatly exceeds the response bandwidth of the sensor.

The average laser power was 420 milliwatts, corresponding to a peak power of greater than 85 kW.

We were required to sample the incident light with picosecond resolution and be highly sensitive

to a low photon arrival rate. Our depth resolution is limited by the response time of the detector

and digitizer (250 ps, 7.5cm light travel). The high peak power of our laser was critical for reg-



istering SNR above the dark current of our photo sensor. Also, our STIR acquisition times are in

nanoseconds, which allows us to take a large number of exposures and time average them to re-

duce Gaussian noise. In absence of a 2D photo sensor array, we emulated directionality by raster

scanning the scene with a steerable laser and sensor.

Figure 4-1: Design and Verification of a Transient Imaging Camera. (a) The ray impulses are
recorded after being attenuated by a varying neutral density filter. The peak pulse intensity decreases
linearly with the attenuation. (b) The intensity of the first bounce from a diffuser obeys the inverse
square fall-off pattern. (c) We are able to record pulse intensities that are discernible from the noise
floor even after the ray impulse has been reflected by three (2 diffuse and 1 specular) patches. The
time shifts are linearly proportional to the multi-path length.

Four proof-of-concept experiments (Figure 4-1) were conducted in flatland (2D) to demonstrate the

following key properties of a transient imaging camera: free space functioning, linearity, multi-path

light collection, inverse square intensity falloff and time invariance. Synchronization was achieved

by triggering our pulses based on a reference photo sensor. A small part of the laser pulse was



deflected into a reference photo sensor using a semi-reflective glass patch and all pulse arrivals

(onsets) were measured as TDOA with respect to the reference pulse.

4.2 Hidden Geometry Reconstruction Experiments

The transient imaging prototype was used along with the algorithmic framework developed in Sec-

tion 3.1 to estimate geometry for objects that do not reflect any light to camera due to specularity or

occlusion.

4.2.1 Missing direct reflection

Consider the example shown in Figure 4-2(top) comprising a mirror and a diffuser. In traditional

cameras it is difficult to estimate the distance to a specular surface because there is no direct reflec-

tion received at the camera. Using transient imaging analysis, estimated the distances to specular

surfaces by observing indirect bounces. If we aim the laser, L, towards a mirror (in a known direc-

tion) it will strike an unknown point on M. The reflected light will then illuminate points on the

diffuser. Separately, the position and the depth of the diffuser, x, was estimated via stereo triangu-

lation (using the known angle of the laser beam) or ToF (Section 3.1.2). When the laser illuminates

M, the total path length sensed at a pixel observing D is (z + y + x). Since x is known, the point

M is obtained using conic multilateration. Note that, in dual photography [13], we create the dual

image, i.e. the projector view, but that does not allow 3D estimation. We conducted 3 raster scans

and assumed zi = z2 = Z3 = z. The path lengths zi + xi + yi, i = 1, 2, 3 were estimated using

TDOA. In this experiment, we incurred a position error of 1.1662 cm and a maximum distance error

of 7.14% in coordinate reconstruction by multilateration.

4.2.2 Looking Around the Corner

We demonstrated an example of multi-path analysis in a scene that contains patches which were

not visible to either the camera or the illumination source. Consider the ray diagram shown in



Figure 4-2(bottom). Only light rays that have first bounced off the diffuser reach the hidden patches

P1, P 2, P3. Light that is reflected from the hidden patches (second bounce) can only reach the

camera once it is reflected off the diffuser again (third bounce). The position and depth of the points

on the diffuser were estimated using first bounce onsets. We then raster scanned across the diffuser

and measured the time difference of arrival (TDOA) between the first and third bounce onsets. We

imaged a hidden 1 - 0 - 1 barcode using the first and third bounces off of a single diffuser. We

used sensors, Si and S2, and a femtosecond laser source, L, neither of which had the barcode

in their line of sight. The patches P1 and P3 were ground mirrors and P2 was free space. The

mirrors were aligned to maximize the SNR required for registering a third bounce. The maximum

separation between Pi and P3 was limited to 5 cm because of SNR considerations. The first bounce,

LDiS1 , was recorded by S1, and the two third bounces from the hidden patches, LD 1 P1D4 S2 and

LD 1P3D3S2, arrived at S2 within 200 ps of each other. Our current sensor was not fast enough

and could only record the sum of the two third bounces. The two bounces can be recorded more

accurately with a faster picosecond sensor or separated using deconvolution using S2's impulse

response. As a proof of concept, we computed a high quality estimate by blocking P1 and P3, one

at a time. The reconstruction results are shown in Figure 4-2(bottom). We incurred a maximum

error of 0.9574 cm in coordinate reconstruction.



Figure 4-2: Missing direct reflection (Top): (a) A photo of the setup. (b) Ray diagram describing the light pulse path in 3 raster scans. (c)
Plot showing multilateration using the 3 raster scans data: original and reconstructed scene geometries. (d) Oscilloscope data plot showing
the TDOA between the 2"d bounce and the reference signal. Looking around the corner (Bottom): (a) A photo of the setup showing hidden
1-0-1 barcode. The sensors and the laser are completely shielded from the barcode. (b) Ray diagram tracing the paths of 1st and 3 rd bounces
in the 2 raster scans. (c) Plot showing the scene geometry reconstructed using multilateration. (d) Oscilloscope data plot showing the 1st
bounce and the two separately recorded 3 rd bounces, for both raster scans. Note the very small delay (< 200ps) between two 3rd bounce
arrivals. Please zoom in the PDF version for details.
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Chapter 5

Limitations and Future Work

Transient imaging is in a preliminary stage of theoretical modeling and experimentation. Our work,

as it stands, has several limitations which make it challenging to generalize the transient imaging

method to more complex, general scenes. However, with sophisticated modeling and advanced

instrumentation, it is possible to alleviate these restrictions.

5.1 Theoretical Limitations

Fundamentally, transient imaging is an inverse problem. As with all inverse problems, there are

inherent issues related to robustness and success rate. The inverse light transport problems posed in

Section 3.1 have degenerate cases in which multiple solutions (scenes) exist for the same observ-

able STIR. Some of these issues can be alleviated with the use of suitable prior models for scene

geometry. The resulting parameter estimation problems may be solved using optimization based

regularization schemes and robustness constraints. But it may still not be possible to guarantee

100% accuracy while using transient methods. Importantly, although our additional time-domain

data is noisy, it still restricts the class of solutions to a greater extent than using the more limited

data of traditional cameras.

Novel noise models for the transient imaging camera are required to account for uncertainties due to

light-matter interplay. If two or more scene patches are occluded from each other (vj = 0, i, j #



0), our theoretical model fails. This problem is circumvented by using our transient imaging frame-

work locally, with a subset of scene patches that satisfy our assumptions. The number of STIR

measurements grow polynomially with number of patches, but the onset labeling complexity is

exponential in the number of bounce orders used for inversion. Our framework will benefit from

optimization-based onset labeling to account for time arrival uncertainties. We made a set of strong

a priori assumptions for hidden surface estimation. Statistical regularization schemes, along with

scene geometry priors, will allow us to extend transient reasoning to complex scenes where hidden

surfaces may involve local scattering.

5.2 Experimental Limitations

Our approach shares practical limitations with existing active illumination systems in terms of power

and use scenarios: the sources must overcome ambient illumination, and only scenes within finite

distance from the camera can be imaged. In addition, we require precise high-frequency pulsed

opto-electronics at a speed and quality that are not currently available at consumer prices. An im-

portant challenge we face is to collect strong multi-path signals. Some of the other immediate

technological challenges we face in implementing transient imaging for real scenarios include fo-

cusing light at extremely high sampling speeds, single photon sensitive detectors etc. Hardware

solutions to some of our challenges may not be available immediately but recent advances trends

in photonics and ultrafast sensing have indicated progress in that direction. Transient imaging may

pose as an impetus to rapid advancements in device physics and photonics.

Direct reflections from scene elements are significantly stronger than light which has traveled a more

complex path, possibly reflecting from diffuse surfaces. Every bounce off a diffuse surface creates

considerable light loss and, thus, impacts the SNR. Thus a major challenge is to collect strong

multi-path signals (requiring single photon sensitivity) with ultra-fast time sampling. Commercial

solutions, such as Intensified CCD cameras, allow image acquisition at very low light levels and at

relatively high gating speeds (200ps or lower). The illumination source must be powerful enough

to overcome ambient light. We expect that solid state lasers will continue to increase in power

and frequency, doing much to alleviate these concerns but in the meanwhile we may make heavy



use of existing LIDAR and OCT hardware in order to demonstrate preliminary applications of this

technique. Also, our current method will not work for scenes which have arbitrarily placed highly

specular objects, though reasoning may be improved with the use of appropriate priors.

Isolating onsets in practice is noisy, as onsets do not arrive at discrete instances; rather, they arrive as

a continuous time profile. Though we have assumed a discrete patch model, future research should

include continuous surface models and utilize tools in differential geometry to model the transport

in general scenes. Additionally, the ray impulses are low pass filtered by the sensor response. All

these reasons cause a broad temporal blur, rather than a sharp distinct onset. Defocus blur causes

some scene patches to correspond to the same camera pixel. We alleviate this by working within

the camera's depth-of-field.

5.3 Future Work

Emerging trends in femtosecond accurate emitters, detectors and nonlinear optics may support

single-shot time-image cameras. Upcoming low-cost solid state lasers will also support ultra-short

operation. The key contribution here is exploration of a new area of algorithms for solving hard

problems in computer vision based on time-image analysis. New research will adapt current work

in structure from motion, segmentation, recognition and tracking to a novel time-image analysis that

resolves shapes in challenging conditions.

We propose to build a hardware prototype that functions in general scenes with better SNR and high

spatio-temporal resolution. We need to develop a robust algorithmic inference framework to process

the captured data-sets and estimate scene geometry. Through collaboration with applied optics and

photonics researchers, we hope to use emerging solid state lasers and optics to build a single-shot

time-image camera and port algorithms to modem processors. In the longer term, multiple problems

need to be addressed to scale the solution beyond a room-sized environment. Ultimately, a hybrid

detector made up of a transient imager and a long wavelength imager will support better scene

understanding in estimating hidden objects.
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Chapter 6

Overview, Applications and Conclusion

6.1 Summary of Approach

The goal of this thesis was to explore the opportunities in multi-path analysis of light transport.

We developed the theoretical basis for analysis and demonstrated potential methods for recovering

scene properties for a range of simple scenarios. Emerging trends in femtosecond accurate emitters,

detectors and nonlinear optics may support single-shot time-image cameras. Upcoming low-cost

solid state lasers will also support ultra-short operation. The key contribution was the exploration

of a new area of algorithms for solving hard problems in computer vision based on time-image

analysis.

If the STIR of the scene is available then it can be directly used to obtain the geometry G of the scene

by solving the inverse geometry problem discussed in Section 3.1. This procedure is be summarized

as:

Algorithm 2 INVERSELIGHTTRANSPORT [STIR(S)]

1. Solve inverse geometry using STIR(S)
- Estimate the distance matrix D using time onsets

- Compute the coordinate set Z using isometric embedding

- Compute the surface normals N using smoothness

assumption



The goal of transient imaging is to explore the opportunities in multi-path analysis of light transport.

We developed the theoretical basis for analysis and demonstrated potential methods for recovering

scene properties for a range of practical, real world scenarios including guidance and control, and,

rescue and planning.

6.2 Applications

Transient imaging will be useful in a range of applications where the inverse imaging problem is

intractable with today's sensors such as back-scatter reconstruction in medical imaging imaging

through scattering medium (including in-contact medical imaging), tracking beyond line of sight in

surveillance and robot path planning, segmentation by estimating material index of each surface in

a single photo, micro machining and optical lithography.

With extended observable structure we will enable better layout understanding for fire and rescue

personnel, and car collision avoidance at blind corners, (also see Figure 6-1). Other applications of

non line-of-sight imaging include real time shape estimation of potential threats around a corner,

computing motion parameters of hidden objects, rescue and planning in high risk environments,

blind assistance, inspection of industrial objects (with hidden surfaces).

Some of the theoretical methods and results we have developed may be used to augment existing

LIDAR imaging for improved 3D reconstruction and better scene understanding. The theoretical

and experimental tools and techniques developed for transient imaging could be extended to other

domains such as acoustics, ultrasound and underwater imaging. It may be hard to identify other such

application areas immediately but as transient imaging becomes a widely used tool, researchers and

engineers will find new uses for its methods.

6.3 Conclusion

Transient imaging opens up a completely new problem domain and it requires its own set of novel

solutions. Although we have demonstrated initial feasibility by proof-of-concept experiments, our



Figure 6-1: Some of the application areas which will benefits from transient imaging and looking
around the corner: rescue and planning, vehicle navigation around blind corners, less-invasive bio-
medical imaging and a new generation of highly mobile and light weight medical scanners.
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research poses more questions than it answers. There are several unexplored interesting possibilities

and future directions. Before transient imaging becomes a field ready tool, we require significant

theoretical and experimental research solving the real world inverse geometry and reflectance prob-

lems. In order to tap the full potential of transient imaging, we need to build dedicated hardware

systems including, long range, semiconductor femtosecond lasers, sub-picosecond accurate, single

photon sensitive detector arrays and powerful on board analog/digital signal processing. This pro-

cess involves bringing together advanced algebraic, differential geometrical models of real world

scene formation, cutting edge and experimental research in applied physics and semiconductors

together with state of art on board computational signal processing.
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