# RADIATION DAMAGE IN ROCK-FORMING MINERALS

by

#### ROBERT EARL SCOTT

# B.S., Massachusetts Institute of Technology (1976)

## SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

## MASTER OF SCIENCE

at the

## MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1977

Signature of Author...... Department of Earth and Planetary Sciences, May 12, 1977

Certified by..... Thesis Supervisor

Accepted by. Chairperson, Departmental Committee on Theses



## ACKNOWLEDGEMENTS

My utmost thanks to Dr. Robert L. Huguenin for his suggestion of the topic, invaluable advice, great willingness, continued encouragement and considerable time he gave me.

My gratitude to Professor Roger G. Burns for taking me on as one of his advisees during the absence of Professor Thomas B. McCord.

Thanks are also due to Professor Robert L. Coble for his comments, suggestions, advice and efforts in providing me with invaluable information.

I am very grateful to the Remote Sensing Laboratory for providing me with financial support in the form of research assistantship.

My thanks are extended to Ms. Kristine L. Andersen for her advice, enthusiasm and encouragement throughout my studies.

Finally, my utmost praise to my dear friends: Gary S. Isaacs, Jean Harrison, Colin Gardinier and Adrian Middleton whose patience, continuous encouragement and great understanding were immeasureable.

But my warmest and greatest thanks goes to my father, mother, brother, sisters, my niece Sharon and God, without whom life would have no meaning.

To all of the above individuals and to all whom I might have omitted; I offer my sincere thanks.

то

my

cousin,

the late Leonard Charles Mosley

# RADIATION DAMAGE IN ROCK-FORMING MINERALS

#### by

#### ROBERT EARL SCOTT

Submitted to the Department of Earth and Planetary Sciences on May 12, 1977, in partial fulfillment of the requirements for the Degree of Master of Science

#### ABSTRACT

The apparent absence of metal coatings, produced by solarwind sputtering, on lunar samples indicates that the solar wind does not modify the soils to the extent predicted by laboratory studies. This suggests that the sputtering efficiency of the solar wind is somehow decreased in the lunar environment.

The model for backward sputtering of metals and oxides has been reviewed. The predicted sputtering yields of metals and oxides in comparison with the experimental yield values turns out to differ by at least a factor of 3 or better. For example, the predicted yield for Cu and Fe at 1.85keV are 0.014 and 0.035, respectively, and the experimental values are 0.03 and 0.009, respectively.

The sputtering yields of metals and oxides, obtained from modified theories of sputtering by Sigmund and Kelly, are used in conjunction with the solar wind plasma-lunar surface magnetic field interaction model to estimate the sputtering rates. The predicted order of enrichment of metals in lunar soils is in very good agreement with the order of enrichment determined from ESCA studies of lunar samples.

The interaction of the lunar surface magnetic fields with the solar-wind protons has been reviewed. The solar-wind protons are predicted to be completely stood off at the Apollo 16 landing site, and their mean kinetic energies are reduced at other sites. At the Apollo 12 landing site, for example, the protons lose about 30-80% of their nominal (lkeV) incident kinetic energy. The loss in proton energy by interaction with compressed magnetic fields reduces substantially the sputtering efficiency of the solar wind. The unexpected low abundances of metal surface coatings can now possibly be explained.

THESIS SUPERVISOR: Roger G. Burns TITLE: Professor of Geochemistry

# TABLE OF CONTENTS

|      | TITLE PAGE1                                                                                                                                                                                                                                                                                                                  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | ACKNOWLEDGEMENTS2                                                                                                                                                                                                                                                                                                            |
|      | ABSTRACT                                                                                                                                                                                                                                                                                                                     |
|      | TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                            |
|      | LIST OF FIGURES AND TABLES7                                                                                                                                                                                                                                                                                                  |
|      | INTRODUCTION15                                                                                                                                                                                                                                                                                                               |
| Ι.   | <ul> <li>BACKWARD SPUTTERING OF METALS AND OXIDES BY</li> <li>HYDROGEN IONS</li></ul>                                                                                                                                                                                                                                        |
| II.  | SPUTTERING EFFECTS ON THE LUNAR SURFACE.41A. Lunar Magnetic Field41B. Reduction of the Mean Kinetic Energy of<br>Solar-Wind Protons at the Lunar Surface<br>by Magnetic Field Interaction.42C. Fraction of Sputtered Atoms that Escape<br>from the Moon.43D. Fraction of Sputtered Molecules that<br>Escape from the Moon.45 |
| III. | PREFERENTIAL SPUTTERING: METHOD FOR PREDICTING<br>THE ORDER OF ENRICHMENT OF METALS                                                                                                                                                                                                                                          |
| IV.  | SUMMARY                                                                                                                                                                                                                                                                                                                      |
|      | APPENDIX I                                                                                                                                                                                                                                                                                                                   |
|      | APPENDIX II                                                                                                                                                                                                                                                                                                                  |
|      | REFERENCES                                                                                                                                                                                                                                                                                                                   |
|      | TABLES                                                                                                                                                                                                                                                                                                                       |

FIGURES......110

# LIST OF FIGURES AND TABLES

.

| I. | FIGU | RES                                                   |
|----|------|-------------------------------------------------------|
|    | 1.   | Geometry of Sputtering Calculation                    |
|    | 2.   | Factor $\alpha$ in Eq.(25) for protons and deuterons  |
|    |      | incident on a heavy target                            |
|    | 2a.  | Variation of the sputtering yield with angle          |
|    |      | of incidence for Ar+ ions incident on poly-           |
|    |      | crystalline copper                                    |
|    | 3.   | Sputtering vields for H <sup>+</sup> ions incident on |
|    |      | aluminum                                              |
|    | 4.   | Sputtering vields for H <sup>+</sup> ions incident on |
|    | •••• | aluminum                                              |
|    | 5.   | Sputtering vields for H <sup>+</sup> ions incident on |
|    |      | calcium                                               |
|    | 6.   | Sputtering vields for H <sup>+</sup> ions incident on |
|    | 0.   | calcium                                               |
|    | 7.   | Sputtering vields for H <sup>+</sup> ions incident on |
|    |      | chromium                                              |
|    | 8.   | Sputtering vields for H <sup>+</sup> ions incident on |
|    | 01   | chromium                                              |
|    | 9.   | Sputtering vields for H <sup>+</sup> ions incident on |
|    |      | copper                                                |
|    | 10.  | Sputtering yields for H <sup>+</sup> ions incident on |
|    |      | copper                                                |
|    | 11.  | Sputtering vields for H <sup>+</sup> ions incident on |
|    |      | gold                                                  |
|    | 12.  | Sputtering vields for H <sup>+</sup> ions incident on |
|    |      | gold                                                  |
|    | 13.  | Sputtering vields for H <sup>+</sup> ions incident on |
|    |      | iron                                                  |
|    | 14.  | Sputtering vields for H <sup>+</sup> ions incident on |
|    |      | iron                                                  |
|    | 15.  | Sputtering yields for H <sup>+</sup> ions incident on |
|    |      | magnesium                                             |
|    | 16.  | Sputtering yields for H+ ions incident on             |
|    |      | magnesium                                             |
|    | 17.  | Sputtering yields for H <sup>+</sup> ions incident on |
|    |      | manganese                                             |
|    | 18.  | Sputtering yields for H <sup>+</sup> ions incident on |
|    |      | manganese                                             |
|    | 19.  | Sputtering yields for H <sup>+</sup> ions incident on |
|    |      | nickel                                                |
|    | 20.  | Sputtering yields for H <sup>+</sup> ions incident on |
|    |      | nickel                                                |
|    | 21.  | Sputtering yields for H <sup>+</sup> ions incident on |
|    |      | oxygen                                                |
|    | 22.  | Sputtering yields for H <sup>+</sup> ions incident on |
|    |      | oxygen                                                |

| 23.  | Sputtering yields for H <sup>+</sup> ions  | incident on         |
|------|--------------------------------------------|---------------------|
|      | potassium                                  |                     |
| 24.  | Sputtering yields for H <sup>+</sup> ions  | incident on         |
|      | potassium                                  |                     |
| 25.  | sputtering yields for H' lons              | incident on         |
| 26   | Sputtering vields for H <sup>+</sup> ions  | incident on         |
| 20.  | silver                                     |                     |
| 27.  | Sputtering yields for H <sup>+</sup> ions  | incident on         |
|      | silicon                                    |                     |
| 28.  | Sputtering yields for H <sup>+</sup> ions  | incident on         |
| • •  | silicon                                    |                     |
| 29.  | Sputtering yields for H+ ions              | incident on         |
| 20   | Soulum                                     | incident on         |
| 50.  | sodium                                     |                     |
| 31.  | Sputtering vields for H <sup>+</sup> ions  | incident on         |
|      | titanium                                   |                     |
| 32.  | Sputtering yields for H <sup>+</sup> ions  | incident on         |
|      | titanium                                   |                     |
| 33.  | Sputtering yields for H+ ions              | incident on         |
| 24   | Zinc                                       | ingident on         |
| 34.  | sputtering yields for H' fons              | 142                 |
| 35.  | Variation of the sputtering v              | ield with angle     |
|      | of incidence for $H^+$ ions on a           | luminum             |
| 36.  | Variation of the sputtering y              | ield with angle     |
|      | of incidence for H <sup>+</sup> ions on c  | alcium144           |
| 37.  | Variation of the sputtering y              | ield with angle     |
| 20   | of incidence for H <sup>+</sup> ions on c. | hromium145          |
| 38.  | of incidence for Ht ions on G              | opper 146           |
| 39   | Variation of the sputtering v              | ield with angle     |
| 55.  | of incidence for H <sup>+</sup> ions on g  | old                 |
| 40.  | Variation of the sputtering y              | ield with angle     |
|      | of incidence for H <sup>+</sup> ions on i  | ron148              |
| 41.  | Variation of the sputtering y              | ield with angle     |
|      | of incidence for H <sup>+</sup> ions on m  | agnesium149         |
| 42.  | Variation of the sputtering y              | ield with angle     |
| 13   | Variation of the sputtering V              | ield with angle     |
| 47.  | of incidence for $H^+$ ions on n           | ickel               |
| 44.  | Variation of the sputtering y              | ield with angle     |
|      | of incidence for H+ ions on p              | otassium152         |
| 45.  | Variation of the sputtering y              | ield with angle     |
|      | of incidence for H <sup>+</sup> ions on s  | 11ver               |
| 45a. | variation of the sputtering y              | rera with angle 154 |
|      | or fuctuence for HT fous on s              | Outuille            |

-

8

•

Variation of the sputtering yield with angle 46. of incidence for H<sup>+</sup> ions on titanium......155 Variation of the sputtering yield with angle 47. of incidence for H+ ions on zinc.....156 Velocity distribution of ejected atoms for 48. H<sup>+</sup> ions incident on aluminum.....157 Velocity distribution of ejected atoms for 49. H<sup>+</sup> ions incident on calcium.....158 Velocity distribution of ejected atoms for 50. H<sup>+</sup> ions incident on chromium.....159 Velocity distribution of ejected atoms for 51. H<sup>+</sup> ions incident on copper.....160 Velocity distribution of ejected atoms for 52. H+ ions incident on gold.....161 Velocity distribution of ejected atoms for 53. H+ ions incident on iron.....162 Velocity distribution of ejected atoms for 54. H+ ions incident on magnesium.....163 Velocity distribution of ejected atoms for 55. H<sup>+</sup> ions incident on manganese.....164 Velocity distribution of ejected atoms for 56. H+ ions incident on nickel.....165 Velocity distribution of ejected atoms for 57. H+ ions incident on potassium.....166 Velocity distribution of ejected atoms for 58. H+ ions incident on silicon.....167 Velocity distribution of ejected atoms for 59. H<sup>+</sup> ions incident on silver.....168 Velocity distribution of ejected atoms for 60. H+ ions incident on sodium.....169 Velocity distribution of ejected atoms for 61. H<sup>+</sup> ions incident on titanium.....170 Velocity distribution of ejected atoms for 62. H+ ions incident on zinc.....171 Sputtering yields for H<sup>+</sup> ions incident on 63. 64. Sputtering yields for H+ ions incident on 65. 66. Sputtering yields for H+ ions incident on Fe<sub>2</sub>O<sub>3</sub>......175 Sputtering yields for H+ ions incident on 67. Sputtering yields for H+ ions incident on 68. Sputtering yields for H+ ions incident on 69. 

| 70. | Sputtering yields for H <sup>+</sup> ions incident on    |
|-----|----------------------------------------------------------|
|     | TiO <sub>2</sub>                                         |
| 71. | Variation of the sputtering yield with angle             |
|     | of incidence for H <sup>+</sup> ions on Al O             |
| 72. | Variation of the sputtering yield with angle             |
| •   | of incidence for H <sup>+</sup> ions on CaO181           |
| 73. | Variation of the sputtering yield with angle             |
|     | of incidence for H <sup>+</sup> ions on FeO182           |
| 74. | Variation of the sputtering yield with angle             |
|     | of incidence for H <sup>+</sup> ions on Fe O183          |
| 75. | Variation of the sputtering yield with angle             |
|     | of incidence for H <sup>+</sup> ions on Fe O184          |
| 76. | Variation of the sputtering yield with angle             |
|     | of incidence for H <sup>+</sup> ions on MgO185           |
| 77. | Variation of the sputtering yield with angle             |
| 70  | of incidence for H <sup>+</sup> lons on MnO              |
| /8. | Variation of the sputtering yield with angle             |
| 70  | Of incluence for H' lons on Tio                          |
| 19. | for ut iong ingident on Al O                             |
| 00  | Velocity distribution of ciested meloculos               |
| 80. | for H <sup>±</sup> ions incident on CaO                  |
| 81  | Velocity distribution of ejected molecules               |
| 01. | for Ht jons incident on Fe0                              |
| 82. | Velocity distribution of ejected molecules               |
| 02. | for H <sup>+</sup> ions incident on Fe.O                 |
| 83. | Velocity distribution of ejected molecules               |
|     | for H <sup>+</sup> ions incident on Fe.O                 |
| 84. | Velocity distribution of ejected molecules               |
|     | for H <sup>+</sup> ions incident on MgO                  |
| 85. | Velocity distribution of ejected molecules               |
|     | for H+ ions incident on MnO194                           |
| 86. | Velocity distribution of ejected molecules               |
|     | for H <sup>+</sup> ions incident on TiO <sub>2</sub> 195 |
|     | -                                                        |

| II. | TABL | JES                                                                                                               |
|-----|------|-------------------------------------------------------------------------------------------------------------------|
|     | 1.   | Effective depth of origin of sputtered atoms24                                                                    |
|     | 2.   | Reduced nuclear stopping cross section $s_n(\varepsilon)$                                                         |
|     |      | for Thomas-Fermi interaction                                                                                      |
|     | 3.   | Calculated a, , E* and U, for various targets28                                                                   |
|     | 4.   | Averages over the range distribution                                                                              |
|     | 5.   | Calculated $\langle \Delta X^2 \rangle / \langle X \rangle^2$ and $\langle Y^2 \rangle / \langle X \rangle^2$ for |
|     |      | various targets                                                                                                   |
|     | 6.   | Calculated $E_{T}$ , $V_{p}$ , and $E_{p}$ for aluminum                                                           |
|     |      | bombarded by H <sup>+</sup> ions75                                                                                |

-

| 7.   | Calculated $\overline{E}_{T}$ , $V_{p}$ , and $E_{p}$ for calcium         |
|------|---------------------------------------------------------------------------|
| 8.   | bombarded by $H^+$ ions                                                   |
| 9.   | bombarded by H <sup>+</sup> ions                                          |
| 10.  | bombarded by $H^+$ ions                                                   |
| 11.  | bombarded by H <sup>+</sup> ions                                          |
| 12.  | bombarded by H <sup>+</sup> ions                                          |
| 13.  | bombarded by H <sup>+</sup> ions                                          |
| 14.  | bombarded by H <sup>+</sup> ions                                          |
| 15.  | bombarded by H <sup>+</sup> ions                                          |
| 16.  | bombarded by $H^+$ ions                                                   |
| 17.  | bombarded by $H^+$ ions                                                   |
| 18.  | bombarded by $\rm H^+$ ions                                               |
| 19.  | bombarded by H <sup>+</sup> ions                                          |
| 20.  | bombarded by H <sup>+</sup> ions                                          |
| 20a. | bombarded by $H^+$ ions                                                   |
| 21.  | bombarded by $H^+$ ions                                                   |
| 22.  | Sputtering yield of oxides for H <sup>+</sup> ions at<br>normal incidence |

| 23.        | Tabulation of the moments $\langle \Delta X^2 \rangle / \langle X \rangle^2$ and                         |
|------------|----------------------------------------------------------------------------------------------------------|
| 24.        | Molecular weight and binding energy of                                                                   |
| 25.        | Calculated $E_{T}$ , $V_{p}$ , and $E_{p}$ for $Al_2O_3$                                                 |
| 26.        | bombarded by ${\rm H}^+$ ions                                                                            |
| 27.        | bombarded by H <sup>+</sup> ions                                                                         |
| 28.        | bombarded by H <sup>+</sup> ions                                                                         |
| 29.        | bombarded by H <sup>+</sup> ions                                                                         |
| 30.        | bombarded by H <sup>+</sup> ions                                                                         |
| 31.        | bombarded by $\rm H^+$ ions                                                                              |
| 32.        | bombarded by H <sup>+</sup> ions                                                                         |
| 33.        | bombarded by H <sup>+</sup> ions                                                                         |
| 34.<br>35. | Summary of lunar remanent magnetic field                                                                 |
| 36.        | to total magnetic field pressure                                                                         |
| 37.        | <pre>lunar surface</pre>                                                                                 |
|            | bombarded by $H^+$ ions                                                                                  |
| 38.        | Calculated $F_T$ and $F_p$ for calcium                                                                   |
| 39.        | bombarded by $\text{H}^+$ ions95 Calculated $\text{F}_{\text{T}}$ and $\text{F}_{\text{p}}$ for chromium |
| 40.        | bombarded by $\text{H}^+$ ions96 Calculated $\text{F}_{\rm T}$ and $\text{F}_{\rm p}$ for copper         |
|            | bombarded by H <sup>+</sup> ions96                                                                       |

| 41. | Calculated $F_{T}$ and $F_{p}$ for gold                                                        |
|-----|------------------------------------------------------------------------------------------------|
| 42. | bombarded by $H^+$ ions                                                                        |
| 43. | bombarded by $H^+$ ions                                                                        |
| 44. | bombarded by H <sup>+</sup> ions                                                               |
| 45. | bombarded by H <sup>+</sup> ions                                                               |
| 46. | bombarded by $H^+$ ions                                                                        |
| 47. | bombarded by H <sup>+</sup> ions                                                               |
| 48. | bombarded by ${\rm H}^+$ ions100 Calculated ${\rm F}_{\rm T}$ and ${\rm F}_{\rm p}$ for silver |
| 49. | bombarded by $H^+$ ions100<br>Calculated $F_T$ and $F_p$ for sodium                            |
| 50. | bombarded by $\rm H^+$ ions101 Calculated $\rm F_{T}$ and $\rm F_{p}$ for titanium             |
| 51. | bombarded by $H^+$ ions                                                                        |
| 52. | bombarded by $H^+$ ions                                                                        |
| 53. | bombarded by $H^+$ ions102<br>Calculated $F_T$ and $F_p$ for $Al_2O_3$                         |
| 54. | bombarded by $\rm H^+$ ions103 Calculated $\rm F_{T}$ and $\rm F_{p}$ for CaO                  |
| 55. | bombarded by $H^+$ ions103<br>Calculated $F_T$ and $F_p$ for FeO                               |
| 56. | bombarded by $H^+$ ions                                                                        |
|     | bombarded by H <sup>+</sup> ions104                                                            |

| 57.         | Calculated $F_{T}$ and $F_{p}$ for $Fe_{3}O_{4}$                                                   |
|-------------|----------------------------------------------------------------------------------------------------|
| 58.         | bombarded by $\rm H^+$ ions105 Calculated $\rm F_{T}$ and $\rm F_{p}$ for MgO                      |
| 59 <b>.</b> | bombarded by ${\rm H}^+$ ions105 Calculated ${\rm F}_{\rm T}$ and ${\rm F}_{\rm p}$ for MnO        |
| 60.         | bombarded by $\rm H^+$ ions106 Calculated $\rm F_{T}$ and $\rm F_{p}$ for TiO $_2$                 |
| 61.         | bombarded by H <sup>+</sup> ions106<br>Sputtering rates at Moon under solar-wind<br>bombardment107 |
| 62.         | Comparison of $\Delta H_{s}(M)$ and $\Delta H_{D}(O)$ for some ele-                                |
|             | ments occuring in lunar soils109                                                                   |

## INTRODUCTION

For many years the apparent absence of metal coatings, produced by solar-wind sputtering, on the lunar surface has been the subject of controversy. According to Hapke et al. [1975], the lunar fines are enriched in metallic Fe relative to the lunar crystalline rocks. The rocks typically have on the order of 0.1% Fe, while the fines contain about 0.5% Fe, much of which is in the superparamagnetic size range (<100Å). Surfaces of many of the grains in the fines are coated with an amorphous layer about 0.1 um thick and are enriched in Fe. However, there is some conflicting evidence concerning the Fe. Both the fraction of grains containing Fe and the degree of Fe enrichment are correlated with the albedo. The fines are deficient in oxygen relative to the crystalline rocks, although the extent to which this is due to the excess Fe or due to a separate phenomenon is not clear. This suggests that the sputtering efficiency of the solar-wind protons is somehow decreased in the lunar enviroment.

In this thesis, sputtering yields of metal/oxide targets by hydrogen ions are computed from modified theories of sputtering by Sigmund [1969] and Kelly [1973], respectively. The interaction of solar-wind plasma with localized surface magnetic fields and their effect on the sputtering efficiency of solar-wind protons near the lunar surface is discussed. The effects of sputtering on the composition of lunar surface materials are discussed, and the order of enrichment of metals in lunar surface materials is considered.

#### I. BACKWARD SPUTTERING OF METALS AND OXIDES BY HYDROGEN IONS

In the energy range leV to 2keV, very little experimental data on the sputtering yield, S(atoms/ion), of metals and oxides by hydrogen ions is available. Grølund and Moore [1960] used electromagnetically analyzed ionic beams from a radiofrequency source to study the sputtering yield for hydrogen ions normally incident on Ag atoms at energies from 2 to 12keV. KenKnight and Wehner [1964] obtained sputtering yield data for hydrogen molecular ions normally incident on Be, Al, Ti, V, Fe, Co, Ni, Cu, Zr, Mo, Pd, Aq, Ta, W, Re, Ir, Pt, and Au at 7keV by drilling holes in thin target foils with magnetically separated hydrogen beams  $(H_2^+ \text{ and } H_3^+)$ . Wehner et al. [1964a] obtained yield data for metals (Cu, Fe) at 1.85keV and Oxides (Al<sub>2</sub>O<sub>3</sub>, TiO<sub>1.86</sub>, FeO<sub>1.5</sub>, Fe<sub>2</sub>O<sub>3</sub>, SiO,) at ~7.0keV with the mass separation method. The results for protons can be inferred from the data provided by KenKnight and Wehner [1964] and Wehner et al. [1964a] since the hydrogen atoms sputter independently.

It will be the object of the following section to review a theoretical model for sputtering developed by Sigmund [1969]. We will show that although the theory applies only to ions with masses much greater than that of hygrogen, an approximation can be made that will alleviate this matter.

A. Theory of Sputtering

According to Sigmund [1969], the sputtering of a metal target by energetic ions or recoil atoms is assumed to result from cas-

cades of atomic collisions. The sputtering is calculated under the assumption of random slowing down in an infinite medium. An intergrodifferential equation for the yield is developed from the general Boltzmann transport equation given by Eq.(1)

$$-\frac{1}{\sqrt{2}} \frac{\partial}{\partial t} G(x, \overline{v}, \overline{v}, t) - \eta \frac{\partial}{\partial x} G(x, \overline{v}, \overline{v}, t) = N \int d\sigma \left[ G(x, \overline{v}, \overline{v}, \overline{v}, t) - G(x, \overline{v}, \overline{v}, \overline{v}, t) \right]$$
(1)

where 
$$\mathbf{v} = |\vec{\mathbf{v}}| \equiv \text{magnitude of arbitrary velocity vector}$$
  
of an atom in a plane x=0 at a time t=0,  
N  $\equiv$  density of target atoms  
do  $\equiv$  differential cross section  $[=d\sigma(\vec{\mathbf{v}}, \vec{\mathbf{v}}', \vec{\mathbf{v}}'')$   
 $=k(\vec{\mathbf{v}}, \vec{\mathbf{v}}', \vec{\mathbf{v}}'')d^3\mathbf{v}'d^3\mathbf{v}''],$   
G(x, $\vec{\mathbf{v}}_{\circ}, \vec{\mathbf{v}}, t)d^3\mathbf{v}_{\circ}dx \equiv \text{average number of atoms moving at time t in}$   
layer (x, dx) with velocity (v<sub>o</sub>, d<sup>3</sup>v<sub>o</sub>),  
v<sub>o</sub>  $\equiv$  velocity of atoms in a plane at time t,  
v'  $\equiv$  velocity of scattered particle,  
v''  $\equiv$  velocity of recoiling atom,  
 $\eta \equiv v_x/v.$ 

The sputtering yield for backward sputtering of a metal target with a plane surface at x=0 (see fig.l) is then

$$S = \int d^{3}v_{o} |v_{ox}| \int_{0}^{\infty} dt G(0, \vec{v}_{o}, \vec{v}, t)$$
(2)

where the integration over  $d^3v_{\circ}$  extends over all  $\vec{v}_{\circ}$  with negative x components large enough to overcome surface binding forces. Multiplying Eq.(1) by dt and integrating over the interval (0, $\infty$ ) we have

$$-\frac{1}{\sqrt{2}}\delta(x)\delta(\vec{v}-\vec{v}_0) - \eta \frac{\partial}{\partial x}F(x,\vec{v}_0,v) = N \int d\sigma \left[F(x,\vec{v}_0,\vec{v}) - F(x,\vec{v}_0,\vec{v}') - F(x,\vec{v}_0,\vec{v}')\right]$$
(3)





where 
$$F(x, \vec{v}, \vec{v}) = \int_{0}^{\infty} G(x, \vec{v}, v) dt$$

 $F(x, \overline{v}_{o}, \overline{v})|v_{ox}|d^{3}v_{o} \equiv$  total number of atoms that penetrate the plane x with a velocity  $(\overline{v}_{o}, d^{3}v_{o})$ during the development of the collision cascade

 $G(x, \vec{v}, \vec{v}, t=0) = \delta(x)\delta(\vec{v}-\vec{v}) \equiv$  one starting particle and  $G(x, \vec{v}, \vec{v}, \infty) = 0$  since all starting particles have slowed down

below any finite velocity v<sub>o</sub>.

If we consider only backward sputtering and introduce the function

$$H(x,\vec{v}) = \int d^3 v_0 |v_{0x}| F(x,\vec{v}_0,\vec{v})$$

with

$$\begin{split} n_{\circ} &= v_{\circ X}/v \leq 0 \\ E_{\circ} &= M_{2}v_{\circ}^{2}/2 \geq U(n_{\circ}) \\ M_{2} &\equiv \text{mass of the metal target atom} \end{split}$$

where  $U(\eta_o)$  is the surface binding energy that, in general, depends on the direction of ejection, characterized by the direction cosine  $\eta_o$ , Eq.(3) takes the following form

$$\delta(x)\int \frac{|v_{ox}|}{v} \,\delta(\vec{v}-\vec{v}_{o})\,d^{3}v_{o} - \eta \,\frac{\partial}{\partial x} \,H(x,\vec{v}) = N \int d\sigma \left[H(x,\vec{v}) - H(x,\vec{v}) - H(x,\vec{v})\right]$$
(4)

Introducing the function

$$\Theta(\xi) = 1 \cdot \text{for } \xi > 0$$
  
= 0 for  $\xi < 0$ 

and satisfying the condition  $E_o = M_2 v_o^2/2 \ge U(\eta_o)$  and  $\eta_o = v_{oX}/v_o \le 0$ , Eq.(4) can be rewritten as

$$-\delta(x)\eta\Theta(-\eta)\Theta(E-U(\eta))-\eta\frac{\partial}{\partial x}H(x,\vec{v})=N\int\!d\sigma\left[H(x,\vec{v})-H(x,\vec{v}')\right]$$
(5)

By introducing energy instead of velocity variables, we finally obtain

$$-\delta(x) \eta \Theta(-\eta) \Theta(E-U(\eta)) - \eta \frac{\partial}{\partial x} H(x, E, \eta)$$

$$= N \int d\sigma \left[ H(x, E, \eta) - H(x, E', \eta') - H(x, E'', \eta'') \right]$$
(6)

where E',  $\eta$ ', E" and  $\eta$ " are the energies and directional cosines with respect to the x-axis of the scattered and recoiling particle respectively.

The sputter yield is given by

$$S(E,\eta) = H(x=0,E,\eta)$$
. (7)

Expanding H in terms of the Legendre polynomials (P\_L(\eta)) we have

$$H(x, E, \eta) = \sum_{l=0}^{\infty} (2l+1) H_{g}(x, E) P_{g}(\eta)$$
(8)

Multiplying Eq.(6) by  $P_{l}(\eta)$  and integrating over all possible  $\eta\,(\eta\,\leq\,0)$  we find that

$$S(x) Q_{g}(E) - \frac{\partial}{\partial x} [\chi H_{g_{-1}}(x, E) + (\chi + 1) H_{g_{+1}}(x, E)]$$

$$= (2\chi + 1) N \int d\sigma [H_{g}(x, E) - P_{g}(\cos \phi') H_{g}(x, E') \qquad (9)$$

$$- P_{g}(\cos \phi'') H_{g}(x, E'')]$$

(10

where

 $Q_{g}(E) = \frac{2l+l}{2} \int_{-l}^{0} (-\eta) d\eta \ \Theta(E-U(\eta)) \ P_{g}(\eta)$ 

$$H_{f}^{n}(E) = \int_{-\infty}^{+\infty} X^{n} H_{g}(x, E) dx \qquad (11)$$

we have

$$\begin{split} \partial_{no} Q_{g}(E) - n \left[ l H_{g-1}^{n-1}(E) + (l+1) H_{g+1}^{n-1}(E) \right] &= (2l+1) N \int d\sigma \left[ H_{g}^{n}(E) \right] (12) \\ &- P_{g}(\cos \varphi') H_{g}^{n}(E') - P_{g}(\cos \varphi'') H_{g}^{n}(E'') \right] \end{split}$$

with 
$$\delta_{n_0} \equiv \int_{-\infty}^{+\infty} \delta(x) x^n dx$$

If we separate elastic from inelastic (electronic) collisions using a method proposed by Lindhard et al. [1963], Eq.(12) becomes

$$\delta_{no} Q_{\mu}(E) - n \left[ \chi H_{\mu-1}^{n-1}(E) + (\chi+1) H_{\mu+1}^{n-1}(E) \right] = (2\chi+1) N S_{\mu}(E) \frac{d}{dE} H_{\mu}^{n}(E) + (2\chi+1) N \int_{T=0}^{E} d\sigma(E,T) \left[ H_{\mu}^{n}(E) - P_{\mu}(\cos \varphi') H_{\mu}^{n}(E-T) \right]$$
(13)  
-  $P_{\mu}(\cos \varphi'') H_{\mu}^{n}(T) \right]$ 

 $\begin{array}{l} {}_{S_{e}} & \equiv \mbox{ electronic stopping cross section,} \\ d \ (E,T) & \equiv \mbox{ differential cross section for elastic scattering,} \\ & \cos \, \phi' & \equiv \ (1-T/E)^{1/2} \ + \ (1-M_{2}/M_{1}) \ (T/E) \ (1-T/E)^{-1/2}/2, \\ & \cos \, \phi'' & \equiv \ (T/T_{m})^{1/2}, \\ & T_{m} & \equiv \ [4M_{1}M_{2}/(M_{1} \ + \ M_{2})^{2}] E \Xi \ \mbox{maximum recoil energy,} \\ & M_{1} & \equiv \ \mbox{mass of ion.} \end{array}$ 

For n=0 Eq.(13) yields

$$Q_{g}(E) = (2l+1) N \int_{T=0}^{E} d\tau(E,T) \left[H_{g}^{\circ}(E) - P_{g}(\cos \beta')H_{g}^{\circ}(E-T) - P_{g}(\cos \beta'')H_{g}^{\circ}(T)\right]^{(14)}$$

where it is assumed that  $S_e(E)=0$ . With  $d\sigma(E,T) = CNE^m T^{-1-m} dT$ , ( $0 \le m \le 1$ ) the following expressions are given for the source terms in Eq.(10)

$$Q_{0}(E) = \frac{1}{4}(I - U_{0}/E)$$
(15a  

$$Q_{1}(E) = \frac{1}{2}[-I + (U_{0}/E)^{3/2}]$$
(15b  

$$Q_{2}(E) = \frac{5}{16}[I + 2U_{0}/E - 3(U_{0}/E)^{2}],$$
(15c  

$$Q_{3}(E) = \frac{7}{4}[-(U_{0}/E)^{3/2} + (U_{0}/E)^{5/2}]$$
(15d

where we have used the identity  $U(n_o) = U_o/n_o^2$ . For  $E < U_o$ , the source term takes on the following value

$$Q_{\ell}^{\circ}(E) = 0$$
$$H_{\ell}^{\circ}(E) = 0.$$

and

The following expressions for the leading terms of an asymptotic expansion, in powers of E, of the moment  $H_{\ell}^{\circ}(E)$  is given below.

$$H_{0}^{*}(E) \sim \frac{1}{\Psi(1) - \Psi(1-m)} \frac{m}{1-2m} \frac{E}{8NCU, 1-2m} + \frac{1}{-1/m} \frac{E^{2m}}{-1/m} \frac{E^{2m}}{8NC}$$

16b)  $H_{1}^{0}(E) \sim \frac{-i}{\Psi(1) - \Psi(1-m)} \frac{m}{1-4m} \frac{E^{1/2}}{4 N C U_{5}^{1/2-2m}} + \frac{4}{1/m} \frac{E^{2m}}{1/m} \frac{1}{1/m} \frac{E^{2m}}{1/m} \frac{1}{1/m} \frac{E^{2m}}{1/m} \frac{1}{1/m} \frac{$ 

16c) 
$$H_2^{\circ}(E) \sim -\frac{1}{1/m + 3/(1+m) + 3B(-m, 2+2m) + 2B(1-m, 2m)} \frac{E^{2m}}{BNC}$$

where  $B(\xi,\eta) \equiv Beta \text{ function} = \Gamma(\xi)\Gamma(\eta)/\Gamma(\xi+\eta)$  $\Psi(\xi) \equiv Digamma \text{ function} = d/d\xi(\ln\Gamma(\xi))$ 

For m=0 Eqs.(16a-16d) take the following form (see Appendix I)

$$H_{o}^{*}(E) \sim \frac{1}{8 \Psi'(I)} \frac{E}{NC_{o}U_{o}}$$
 (17a)

$$H_{1}^{o}(E) \sim \frac{1}{4 \Psi'(1)} \frac{E'^{1/2}}{N C_{o} U_{o}^{1/2}}$$
 (17b)

$$H_{*}^{*}(E) \sim 0$$
 (17c)

| with  | Ψ'(ξ) : | = | $d/d\xi(\Psi(\xi))$ , | Ψ'(l) | = | $\pi^{2}/6$ |     |
|-------|---------|---|-----------------------|-------|---|-------------|-----|
|       | C。 ·    | = | πλ <b>。</b> a²/2      |       |   |             | (10 |
| where | λο      | = | 24                    |       |   |             | (10 |
|       | a       | = | 0.219Å.               |       |   |             |     |

The moment  $H_{\circ}^{\circ}(E)$  is the leading term at all energies  $E^{>>U_{\circ}}$ and it has the asymptotic form given by Eq.(17a). The moment  $H_{\circ}^{\circ}(E)$ is the integral of  $H_{\circ}(x,E)$  over all x. It determines the number of atoms penetrating a plane at an arbitrary position x with a certain minimum energy when there is a homogeneous isotropic source of recoiling atoms throughout an infinite medium.

Since  $H_{\circ}^{\circ}(E)$  is proportional to E, for elastic scattering, E

in Eq.(17a) is replaced by v(E), so that Eq.(17a) takes the form

$$H_{\circ}^{\circ}(E) = \frac{1}{8\Psi'(1)} \frac{\nu(E)}{NC_{\circ}U_{\circ}}$$
 (19)

where v(E)/E is the fraction of the energy that is not lost to ionization during the slowing down process.

Using the expression

$$\int_{-\infty}^{\infty} dx F(x, E, \eta) = v(E)$$

and Eqs.(8,11 and 18), Eq.(19) can be rewritten as

$$H(x, E, \gamma) = \frac{3}{4\pi^2} \frac{F(x, E, \gamma)}{NC_0 U_0}$$
(20)

where  $\Delta x = 3/4NC_{\circ}$  is the expression for the effective depth of origin of sputtered atoms. The effective sputterind depth  $\Delta x$  is given for a few metals and metal oxides in Table 1.

The sputtering yield of a metal target for normally incident ions is given by

$$S(E) = \Lambda \propto N S_{n}(E)$$
 (21)

where  $S_n(E) = [1/(1-m)] C \gamma^{1-m} E^{1-2m}$  is the elastic stopping power of the ion,  $\alpha$  is the factor that depends only on m and  $M_2/M_1$  and  $\Lambda = (3/4\pi^2)(1/NC_oU_o)$ .

If the energy of the impinging ion, E, is less than some limiting energy

| Metal | Δx (Å) | Oxide                          | Δx (Å) |
|-------|--------|--------------------------------|--------|
| Al    | 15.4   | Al <sub>2</sub> O <sub>3</sub> | 10.4   |
| Ag    | 3.9    | CaO                            | 12.4   |
| Au    | 2.1    | $Cr_2O_3$                      | 8.0    |
| Ca    | 26.7   | FeO                            | 7.2    |
| Cr    | 5.8    | Fe203                          | 7.9    |
| Cu    | 4.8    | Fe304                          | 8.0    |
| Fe    | 5.3    | MgŌ                            | 11.6   |
| K     | 48.1   | MnO                            | 7.7    |
| Mg    | 23.9   | TiO <sub>2</sub>               | 9.8    |
| Mn    | 5.7    |                                |        |
| Na    | 42.7   |                                |        |
| Ni    | 4.7    |                                |        |
| Si    | 17.9   | . · · ·                        |        |
| Ti    | 9.1    |                                |        |
| Zn    | 5.8    |                                |        |

Table 1. Effective depth of origin of sputtered atoms.

$$E^{*} = \left(\frac{3\lambda_{1/3}}{2\lambda_{*}}\right)^{3/2} \frac{M_{1} + M_{2}}{M_{2}} \left(\frac{a_{12}}{a}\right)^{3} \frac{Z_{1}Z_{2}e^{2}}{a_{12}}$$
(22)

with

$$a_{1/3}^{1/3} = 0.219 \text{\AA}^{1/3}$$

$$a_{12}^{0} = 0.8853(Z_{1}^{2/3} + Z_{2}^{2/3})^{-1/2}$$

$$Z_{1}^{0} \equiv \text{ atomic number of ion}$$

$$Z_{2}^{0} \equiv \text{ atomic number of metal target atom}$$

the elastic stopping power assumes the following form

$$S_n(E) = C_o T_m.$$
<sup>(23)</sup>

For E>E\*, in the elastic collision region, Eq.(23) becomes

$$S_n(E) = 4\pi Z_1 Z_2 e^2 a_{12} [M_1 / (M_1 + M_2)] S_n(E)$$
 (24)

where  $\varepsilon = [M_2 E/(M_1 + M_2)]/[Z_1 Z_2 e^2/a_{12}]$  and  $s_n(\varepsilon)$  is the universal function tabulated in Table 2.

| з     | s <sub>n</sub> (ε) | ε   | s <sub>n</sub> (ε) |
|-------|--------------------|-----|--------------------|
| 0.002 | 0.120              | 0.4 | 0.405              |
| 0.004 | 0.154              | 1.0 | 0.356              |
| 0.01  | 0.211              | 2.0 | 0.291              |
| 0.02  | 0.261              | 4.0 | 0.214              |
| 0.04  | 0.311              | 10  | 0.128              |
| 0.1   | 0.372              | 20  | 0.0813             |
| 0.2   | 0.403              | 40  | 0.0493             |
|       |                    |     |                    |

Table 2. Reduced nuclear stopping cross section  $s_n(\epsilon)$  for Thomas-Fermi interaction. [From Sigmund, 1969].

Utilizing the expressions given by Eqs.(23 and 24), Eq.(21) can be written in its final form,

$$S(E) = (3/4\pi^2) \alpha T_m / U_o E < E^4$$
 (25)

$$S(E) = \frac{0.0420 \cdot \alpha \cdot 4\pi Z_1 Z_2 e^2 a_{12} [M_1 / (M_1 + M_2)] s_n(E)}{U_1 A^2} \qquad E > E^*$$
(25)

Expression (25) holds only for  $M_1 \ge M_2$ . In the case of proton sputtering  $M_1 << M_2$ . This implies that expression (25) is invalid unless the parameter  $\alpha$  is improved by a method described in the next section.

# B. Sputtering Yields of Metals for Protons at Normal Incidence

Before calculating the yield curves of metals, we have to make a decision concerning the parameter  $\alpha$  shown in figure 2 and the surface binding condition.

Figure 2 shows  $\alpha$  as a function of  $\varepsilon$  for protons and deuterons. The curves are rough estimates. In order to improve  $\alpha$ , we scaled it to the sputtering yield value of Ag for normally incident H<sup>+</sup> at 2keV provided by Grolund and Moore [1960]. We found that a better estimate of  $\alpha$  is given by the following expression

$$\alpha' = \alpha/2.$$

For metals, the surface binding energy  $U_{\circ}$  is equal to the measured sublimation energy.

In Table 3, we have computed  $a_{12}$ , E\* and listed the sublimation energy (U<sub>o</sub>), the atomic number (Z<sub>2</sub>) and the mass (M<sub>2</sub>) of the following metals: Al, Ca, Cr, Cu, Au, Fe, Mg, Ni, K, Ag, Na, Ti and Zn.

From Eq.(25) and the data provided by Fig.(2), Tables 2 and 3, the yield curves were calculated for the metals listed in Table 3 (see Figures 3-34).



Fig. 2. Factor α in Eq.(25) for protons and deuterons incident on a heavy target. [From Sigmund, 1969].

| Metal | a <sub>12</sub> (Å) | E*(eV) | $U_o(eV/atom)^1$ | <sup>Z</sup> 2 | M <sub>2</sub> (amu) |
|-------|---------------------|--------|------------------|----------------|----------------------|
| Al    | 0.1833              | 13.5   | 3.34             | 13             | 26.98154             |
| Ca    | 0.1619              | 17.3   | 1.825            | 20             | 40.08                |
| Cr    | 0.1535              | 18.5   | 4.10             | 24             | 51.996               |
| Cu    | 0.1450              | 19.9   | 3.50             | 29             | 63.546               |
| Au    | 0.1063              | 28.8   | 3.78             | 79             | 196.9665             |
| Fe    | 0.1498              | 19.1   | 4.29             | 26             | 55.847               |
| Mq    | 0.1875              | 14.1   | 1.53             | 12             | 24.312               |
| Mn    | 0.1516              | 18.8   | 2.98             | 25             | 54.938               |
| Ni    | 0.1465              | 19.8   | 4.435            | 28             | 58.71                |
| К     | 0.1644              | 30.0   | 0.941            | 19             | 39.09                |
| Aq    | 0.1251              | 23.8   | 2.96             | . 47           | 107.868              |
| Si    | 0.1795              | 15.0   | 4.64             | 14             | 28.086               |
| Na    | 0.1921              | 13.6   | 1.13             | 11             | 22.9898              |
| Ti    | 0.1575              | 18.0   | 4.855            | 22             | 47.9                 |
| Zn    | 0.1435              | 20.3   | 1.35             | 30             | 65.38                |

Table 3.

Calculated  $a_{12}$ , E\*, and U<sub>o</sub> for various targets. <sup>1</sup>From C. Kittel [1976]

Grølund and Moore [1960] reports yield values for  $H^+$  ions incident on Ag targets (see Fig. 26). The predicted sputtering yields are slightly larger than Grolund and Moore's reported values by a factor of  $\sim$ 1.3. The agreement with theory is surprisingly good.

KenKnight and Wehner [1964] reports yield data for light ions  $(H_2^+, H_3^+)$  incident on Al, Au, Fe, Ni, and Ti at 7keV, and on Cu at energies from 1 to 5keV. The results for protons were deduced from the data provided by KenKnight and Wehner [see Figs.(4, 10, 12, 14, 20, 26 and 30)]. The predicted sputtering yields differ from KenKnight and Wehner's reported values by a factor which ranges from 1.04 for Cu to 2.9 for Fe.

Wehner [1964] reports yield values for H<sup>+</sup> ions on Fe and Cu targets at 1.85keV [see figs.(10,14)]. The predicted sputtering yields in this case differ from the reported values by a factor of 2.1 for Cu and 3.9 for Fe.

The agreement between theoretical and experimental values at low energies are not as good for Fe as it was in the case of Ag and Cu. This discrepancy can be explained as follows:

1) The assumption of random slowing down and of binary collisions may break down at low energies. There may be a small contribution from focused collision sequences. The quantitative effect on the sputtering yield will depend on the target.

2) The uncertainty of the low-energy cross section, as defined

f

by  $d\sigma = C_o dT/T$ , aafects the numerical factor in front of Eq.(20), the value of  $C_o$  (that may depend on the target), and the dependence on  $U_o$ .

3) The surface binding condition  $U(\eta_o) = U_o/\eta_o^2$  affects the numerical factor in front of Eq.(20); the value of U<sub>o</sub> is not known from first principles but determines the magnitude of the yield.

4) The assumption of a plane surface may influence the magnitude of the yield. So long as surface roughness is on a scale that is small compared to the dimensions of the cascades, its effect on the sputtering yield will often average out. Surface roughness on a large scale, however, will tend to increase the yield. The quantitative effect depends on the geometry and can be estimated when the shape of the surface is known.

5) The assumption of an infinite medium may also affect the flux of low-energy recoils. [Sigmund, 1969]

There is no way of estimating the uncertainty in the theoretical sputtering yield values from the above points, but from comparison of both theoretical and experimental data one has to expect an uncertainty of at least a factor of 2 and in some cases 3.

# C. <u>Variation of Sputtering Yield with Angle of Incidence for</u> <u>Metals</u>

In Section I.B. we reported sputtering yield values for normally incident hydrogen ions. It appears most reasonable to consider the variation of the sputtering yield with the angle of incidence.

According to Sigmund [1969], the dependence of the sputtering yield  $S(E,\eta)$  on the angle of incidence,  $\eta$ , can be estimated by the following expression

$$\frac{S(E,\eta)}{S(E,1)} = \left(\eta^2 + (1-\eta^2) \frac{\langle \Upsilon^2 \rangle}{\langle \Delta X^2 \rangle}\right)^{-1/2} = Exp \left[\frac{\langle X \rangle^2}{2\langle \Delta X^2 \rangle} \left(1 + \frac{\eta^2}{1-\eta^2} \frac{\langle \Delta X^2 \rangle}{\langle \Upsilon^2 \rangle}\right)^{-1}\right] (26)$$

where S(E,1) is the yield for perpendicular incidence. The moments  $\langle X \rangle$ ,  $\langle \Delta X^2 \rangle$ , and  $\langle Y^2 \rangle$  were tabulated by Sigmund and Sanders [1967] and are given in Table 4.

| M <sub>2</sub> /M <sub>1</sub>    | $\frac{\langle X \rangle}{E/NC_1}$                 | $\frac{\langle \Delta X^2 \rangle}{\langle X \rangle^2}$ | $\frac{\langle Y^2 \rangle}{\langle X \rangle^2}$  | <xy<sup>2&gt;<br/><x><y<sup>2&gt;</y<sup></x></xy<sup> | $\frac{\langle \nabla X_3 \rangle}{\langle X \rangle_3}$ |
|-----------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|
| 1/10<br>1/4<br>1/2<br>1<br>2<br>4 | 0.842<br>0.577<br>0.453<br>0.369<br>0.297<br>0.229 | 0.058<br>0.125<br>0.195<br>0.275<br>0.409<br>0.170       | 0.018<br>0.044<br>0.089<br>0.176<br>0.343<br>0.674 | 1.07<br>1.16<br>1.20<br>1.20<br>1.16<br>1.12           | 0.007<br>0.021<br>0.043<br>0.079<br>0.135<br>0.221       |
| 10                                | 0.153                                              | 1.684                                                    | 1.671                                              | 1.07                                                   | 0.345                                                    |

Table 4. Averages over the range distribution.  $M_1 \neq M_2$ .  $d\sigma_1 = C_1 E^{-1} 2 T^{-3} 2 dT$ . [From Sigmund and Sanders, 1967].

The values of  $\langle \Delta X^2 \rangle / \langle X \rangle^2$  and  $\langle Y^2 \rangle / \langle X \rangle^2$  for  $M_2/M_1 > 10$  were computed by fitting the best straight line of the form y=ax+b and a power curve of the form y=ax<sup>b</sup>, respectively, to the data points given in Table 4 [see Table 5 and Appendix II].

Inserting the values of  $\langle \Delta X^2 \rangle / \langle X \rangle^2$  and  $\langle Y^2 \rangle / \langle X \rangle^2$  into Eq.(26), we obtain the variation of yield with  $\eta$  [see Figs.(35-47)]. According to Sigmund [1969], the sputtering yield goes through a

| Metal |    | M <sub>2</sub> /M <sub>1</sub> | <_x <sup>2</sup> >,              | / <x><sup>2</sup> <y<sup>2&gt;</y<sup></x>        | / <x>2</x> |
|-------|----|--------------------------------|----------------------------------|---------------------------------------------------|------------|
| Al    |    | 26.8                           | 4.363                            | 4.40                                              | 9          |
| Ca    |    | 39.8                           | 6.437                            | 6.50                                              | 5          |
| Cr    |    | 51.6                           | 8.320                            | 8.39                                              | 7          |
| Cu    |    | 63.0                           | 10.139                           | 10.21                                             | 8 .        |
| Au    |    | 195.4                          | 31.263                           | 31.09                                             | 8          |
| Fe    |    | 55.4                           | 8.926                            | 9.00                                              | 5          |
| Mg    |    | 24.1                           | 3.932                            | 3.97                                              | 2          |
| Mn    |    | 54.5                           | 8.782                            | 8.86                                              | 1          |
| Ni    |    | 58.2                           | 9.373                            | 9.45                                              | 2          |
| K     |    | 38.8                           | 6.277                            | 6.34                                              | 4          |
| Si    |    | 27.9                           | 4.538                            | 4.58                                              | 7          |
| Ag    |    | 107.0                          | 17.159                           | 17.20                                             | 1          |
| Na    |    | 22.8                           | 3.725                            | 3.76                                              | 1          |
| Ti    |    | 47.5                           | 7.666                            | 7.74                                              | 0          |
| Zn    |    | 64.9                           | 10.442                           | 10.52                                             | 1          |
| Table | 5. | Calculated                     | $<\Delta x^2 > / ^2$ and $< y^2$ | <sup>2</sup> >/ <x><sup>2</sup> for various t</x> | argets.    |

maximum at very oblique incidence and approaches zero for  $0=90^{\circ}$ . This maximum cannot be explained on the basis of the assumption of an infinite medium. There will be a certain glancing angle at which the repulsive action of the surface atoms is strong enough to prevent the ions from penetrating into the metal target, and this angle will be a function of the structure of the target's surface.

Dupp and Scharmann [1966], Cheney and Pitkin [1965], and Colombie [1964] reported values of the ratio S(E,n)/S(E,1) for Ar<sup>+</sup> ion incident on polycrystalline copper (see Fig. 2a). The agreement between theoretical prediction and experimental data is quite good for  $0 \le 70^{\circ}$ .

## D. Velocity Distribution of Sputtered Atoms

In a later section we will be conserned with the fraction of atoms that escape the Moon by natural sputtering. To calculate this we need the velocity distribution of sputtered atoms.

The average energy  $\overline{E}_{T}$  transferred to a target atom by a collision with an energetic ion is given by the following expression

$$\overline{E}_{T} = [2M_{1}M_{2}/(M_{1}+M_{2})^{2}] E_{i} \qquad (27)$$

where  $E_i$  is the energy of the impinging ion. The number of atoms ejected from the target, having a velocity between v and v+dv, is given by the expression below

$$\int dv = 2\pi N \left(\frac{3M_2}{\pi \bar{E}_T}\right)^{3/2} v^2 \exp\left[-3M_2 v^2/4\bar{E}_T\right] \exp\left[-3E_b/2\bar{E}_T\right] dv \qquad (28)$$



Fig. 2a. Variation of the sputtering yield with angle of incidence for Ar<sup>+</sup> ions incident on polycrystalline copper. Thick solid curve: Eq.(26): thin solid curve: 1/cos Θ. [From Sigmund , 1969].

where f is known as the Maxwell-Boltzmann distribution function and  $E_b$  is the surface binding energy of the target. The most probable velocity,  $v_p$ , of the recoil atoms can be obtained by finding the velocity at which the function f has a maximum value. It is given by the equation

$$df/dv = 0.$$
 (29)

From Eq.(28) we obtain

$$2\pi N \left(\frac{3M_2}{\pi \bar{E}_T}\right)^{3/2} \exp\left[-3E_b/2\bar{E}_T\right] \frac{d}{dv} \left[v^2 \exp\left(-3M_2v^2/4\bar{E}_T\right)\right] = 0$$
  
$$\frac{d}{dv} \left[v^2 \exp\left(-3M_2v^2/4\bar{E}_T\right)\right] = 0$$

 $2v \exp \left[-3M_{2}v^{2}/4\tilde{E}_{T}\right] - v^{2} \left(3M_{2}/4\tilde{E}_{T}\right) 2v \exp \left[-3M_{2}v^{2}/4\tilde{E}_{T}\right] = 0$   $\left[1 - v^{2} \left(3M_{2}/4\tilde{E}_{T}\right)\right] = 0$ 

Therefore

$$v_p = 2\sqrt{E_r}/3M_2$$
  
 $E_p = M_2 v_p^2/2$  (30)

In Tables 6-20,  $v_p$ ,  $E_p$  and  $\overline{E}_T$  are tabulated for various targets.

The velocity distribution, df/dv, of the recoil atoms ejected can be obtained by differentiating the Maxwell-Boltzmann distribution function f with respect to the velocity v. It is given by the following equation,

$$\frac{df}{dv} = 4\pi \left(\frac{3M_2}{\pi \bar{E}_{\tau}}\right)^{3/2} v \left(1 - \frac{3M_2}{4\bar{E}_{\tau}}v^2\right) E \times P\left[-3E_b/2\bar{E}_{\tau}\right] E \times P\left[-3M_2v^2/4\bar{E}_{\tau}\right] \quad (31)$$

Substitution of the values for  $M_2$ ,  $E_b$  abd  $E_T$  into Eq.(31) gives us the velocity distribution for various targets [see Figs.(48-62)]. Note that the velocity.distribution of the sputtered atoms peak heavily at very small velocities (3-9km/sec) in comparison with the velocities of the incident protons [(1.4-4.4)xl0<sup>2</sup>km/sec].

E. Sputtering Yields of Oxides for Protons at Normal Incidence

The sputtering behavior of oxides is different from that of metals. According to Kelly and Lam [1973], the sputtering behavior of oxides is in some cases "normal" in the sense of following Sigmund's theory of collisional sputtering. In other cases the behavior is "abnormal", in that the collisional sputtering is supplemented by thermal sputtering or by oxygen sputtering.

The collisional sputtering yield of oxides cannot be explained by Sigmund's theory. Instead, two approximations were used: One is to use Eq.(25) with the mean atomic weight of the oxide substituted; while the other is to use Eq.(25) in a form which is weighted for the mole fractions of metal and oxygen,

 $S = X_{METAL} S(M_{METAL}) + X_{OXYGEN} S(M_{OXYGEN})$ (32)

where

X = [(A/E)]/[(A/E) + (100-A)/B],A = weighted percent of solute, B = molecular weight of solvent, E = molecular weight of solute.
The sputtering yields are tabulated with the aid of Figs.(3-34). The results are shown in Figs.(63-70).

Wehner [1964] reports yield values for light ions  $(H_2^+, H_3^+)$ incident on  $Al_2O_3$ ,  $TiO_2$ , FeO,  $Fe_2O_3$  and  $SiO_2$  at 6-7keV [Table 21]. The results for protons were deduced from the data in Table 21 [see Table 22]. The predicted sputtering yields differ from Wehner's reported values by a factor of 2 except in the case of  $SiO_2$ , which differs by a factor of 8.4. This discrepancy may be accounted for by oxygen sputterind and/or thermal sputtering.

Wehner et al. [1963] studied the effects of  $H^+$  bombardment of  $Al_2O_3$ , CuO, Cu<sub>2</sub>O, FeO, Fe<sub>2</sub>O<sub>3</sub>, and various rock powders at a temperature of 300°C. The results can be summarized as follows:

1) The surface of many materials, after sufficient bombardment, becomes covered with a brittle crust in which individual dust particles become cemented together by sputtered atoms. In Al<sub>2</sub>O<sub>3</sub>only very little or very fragile crusting is observed. The crust is thicker in more loosely packed places or materials.

2) The surface layer of many compounds becomes enriched with metal atoms. Black CuO is first converted into red  $Cu_2O$  before becoming covered with a very porous Cu layer. The red  $Fe_2O_3$  converts into  $Fe_3O_4$ , then to ferromagnetic FeO, and finally Fe metal traces appear on the surface. The reduction to a composition richer in metal and the formation of a "metal black" causes a darkening of the surface in most cases. In the process of breaking up mol-

ecules under bombardment and of sputtering atoms back and forth, oxygen atoms are more likely to escape from the surface than metal atoms.

3) As previously note for metal oxides, whenever a crust is formed it has a fibrous structure with closely spaced needles and spires and deep small holes all aligned in the direction of the ion bombardment. The predominance of microscopically very steep walls is evidenced by the fact that the surface looks rather dark when viewed in isotropic light, but becomes shiny when illuminated and viewed from the same oblique angle.

Another effect of sputtering the oxides with hydrogen ions is that water molecules can form by implantation of H<sup>+</sup> and incipient formation of OH. The water molecules can be driven from the target by thermall y heating the oxide or bombarding it with ultraviolet radiation [R.L. Huguenin, personal communication].

## F. <u>Variation of Sputtering Yield with Angle of Incidence for</u> <u>Metal Oxides</u>

The procedure for estimating the dependence of the sputtering yield,  $S(E,\eta)$ , on the angle of incidence  $\eta$  in the case of oxides is quite similar to that used in the case of metals. Recalling Eq.(26) we have

$$\frac{S(E,\eta)}{S(E,1)} = (\eta^2 + (1-\eta^2) \frac{\langle \gamma^2 \rangle}{\langle \Delta x^2 \rangle})^{-1/2} \quad Exp \left[ \frac{\langle x \rangle^2}{2 \langle \Delta x^2 \rangle} \left( 1 + \frac{\eta^2}{1-\eta^2} \frac{\langle \Delta x^2 \rangle}{\langle \gamma^2 \rangle} \right)^{-1} \right]$$

The necessary moments are tabulated in Table 23. Using the infor-

mation provided by Table 23 we obtained an estimate of the dependence of the sputtering yield on the angle of incidence [see Figs. (71-78)] and we note thatfor heavier oxides (Fe<sub>3</sub>O<sub>4</sub>) the difference between S(E,n) for normal incidence and grazing incidence is small in comparison with the lighter oxides (MgO,CaO).

G. Velocity Distribution of Sputtered Molecules

In a later section we will be concerned with the order of enrichment of oxides in the lunar material. In order to calculate the fraction of oxides which remain in the surface, we need to calculate the escape velocity of oxides which are representative of the lunar surface.

Utilizing the information provided by Table 24 and Eqs.(27 and 30) we are able to compute  $v_p$ ,  $E_p$  as well as  $\overline{E}_T$  for metal oxides (see Tables 25-32). Substitution of the values for  $M_2$ ,  $E_b$ and  $E_T$  into Eq.(31) yields the velocity distributions [see Figs. (79-86)]. Note that at  $E_i$ =lkeV the velocity distribution of the sputtered molecules peaks heavily at v=(1-2km/sec) for the heavier oxides and at v=(3-4km/sec) for the lighter ones. Statistically more light than heavy molecules should be given sufficient energy to escape the solid during sputtering, therefore MgO would be sputtered in preference to  $Fe_3O_4$ . The collisional sputtering model indicates that the major oxides should be enriched in proportion to their molecular weights and predicts the following order of enrichment:  $Fe_3O_4 > Fe_2O_3 > Al_2O_3 > TiO_2 > FeO > MnO > CaO > MgO.$  As we

will discuss in a later section, the actual order of enrichment observed is  $Al_2O_3$ >FeO>CaO>MgO>TiO\_2 for Lunar Maria and  $Al_2O_3$ >CaO> MgO>FeO>TiO\_2 for Lunar Highlands [Taylor, 1975] (see Table 33). There is no explanation, at the writing of this thesis, for the discrepancy in the ordering of TiO\_2.

#### II. SPUTTERING EFFECTS ON THE LUNAR SURFACE

The lunar surface is continually bombarded by intense solar radiation. The surface is unprotected by an atmosphere or strong magnetic field; thus solar illumination is unattenuated at all wavelengths and high energy protons and other ions are allowed to reach the surface. Laboratory studies of the interaction of the solar wind with the surface indicate that the optical properties and composition of the soil should have been greatly modified. One of the predicted modifications is that the soil particles should be coated with metallic Fe, produced by solar-wind sputtering. When lunar samples were returned to the earth, metal coatings were not found. The apparent absence of metal coatings indicates that the solar wind does not modify the soils to the predicted extent.

In Section B, I will show that the solar-wind protons are reduced in energy by interaction with surface magnetic fields; thus their sputtering efficiency is greatly reduced. If this is true, then the observed low abundances of metal surface coatings can be at least in part explained.

# A. Lunar Magnetic Field

The magnetic fields associated with the electrical currents produced by electromagnetic excitation of the Moon were measured at the Apollo landing sites. Steady remanent magnetic fields were measured on the lunar surface at the Apollo 12, 14, 15 and 16 landing sites by a surface magnetometer. Table 34 gives the magnitudes of the remanent fields at these sites.

Lin et al. [1976] were able to measure lunar surface magnetic fields down to a spatial scale of 7km by the electron reflection method. The area observed extends from 15°E to 50°E longitude at  $\sim$ 5°S latitude. The field strengths range up to  $\sim$ 10<sup>2</sup> $\gamma$ , averaged over the resolution element (see Table 34).

# B. Reduction of the Mean Kinetic Energy of Solar-Wind Protons at the Lunar Surface by Magnetic Field Interaction

According to Scott [1976], the streaming solar-wind plasma has a magnetic field associated with it, which exerts a magnetic 'pressure' on the remanent magnetic fields associated with the lunar surface. This pressure acts to compress the surface field. If the local surface field is strong enough, it can stop the wind before it reaches the surface, i.e. a bow shock is formed. A weaker field would not stop the wind, but would reduce its incident energy at the surface.

In order to determine to what extent the protons are slowed by the magnetic field compression, it is necessary to determine the strengths of the local remanent fields. Steady remanent fields have been measured at nine surface sites during the Apollo 12, 14, 15 and 16 missions and also in the region located at ~5°S latitude, 15°E-50°E longitude.

The ratio of the plasma pressure to the total magnetic pressure is expressed as

$$\beta = n_{\rm D} m_{\rm D} v_{\rm S}^2 / (B_{\rm S+}^2 / 8\pi)$$
 (33)

where  $B_{st} = B_s + \Delta B$  is the total surface compressed field,

J

The values for  $\beta \leq 1$  implies that the steady remanent field is compressed to the stagnation magnitude required to stand off the solar wind.  $\beta \geq 1$  implies that the steady remanent field is not compressed to the stagnation magnitude required to stand off the solarwind plasma (see Table 35).

The compressed remanent field reduces the mean energy and velocity of the protons at one site by as much as 459eV and 1.1x10<sup>2</sup> km/sec, respectively. Such reduction iv incident proton energies would substantially reduce the sputtering efficiency of the protons.

In order to arrive at a reliable estimate of the sputtering rates on the lunar surface, the flux, incident energy of the proton and the sputtering yields of lunar soils have to be known. Assuming a flux of 4x10<sup>8</sup> protons/cm<sup>2</sup> sec [Formisano and Moreno, 1971] and using the data in Table 35 and Figs.(3-34 and 63-70), an estimate of the sputtering rates on the lunar surface is obtained (see Table 36).

C. Fraction of Sputtered Atoms that Escape from the Moon

In order to obtain an estimate of the amount of material lost from the Moon (metal coatings, oxides), we have to compute the

43

and

fraction of sputtered atoms/molecules with velocities greater than the lunar escape velocity ( $v_e=2.4$ km/sec).

The fraction of sputtered atoms with velocities greater than the lunar escape velocity can be determined by integrating fdv from  $v=v_e$  to  $v=+\infty$ . It is given by the equation

$$F_{\tau} = \int_{V_{e}}^{\infty} 2\pi \left(\frac{3M_{2}}{\pi \tilde{E}_{\tau}}\right)^{3/2} v^{2} \exp\left[-3M_{2}v^{2}/4\bar{E}_{\tau}\right] \exp\left[-3E_{b}/2\bar{E}_{\tau}\right] dv \qquad (34)$$

This gives

$$F_{\tau} = \int_{0}^{\infty} 2\pi \left(\frac{3M_{2}}{\pi \bar{E}_{\tau}}\right)^{3/2} v^{2} \exp\left[-3M_{2}v^{2}/4\bar{E}_{\tau}\right] \exp\left[-3E_{b}/2\bar{E}_{\tau}\right] dv$$

$$-\int_{0}^{Ve} 2\pi \left(\frac{3M_{2}}{\pi \bar{E}_{\tau}}\right)^{3/2} v^{2} \exp\left[-3M_{2}v^{2}/4\bar{E}_{\tau}\right] \exp\left[-3E_{b}/2\bar{E}_{\tau}\right] dv$$

$$F_{\tau} = \exp\left[-3E_{b}/2\bar{E}_{\tau}\right] (1 - \int_{0}^{Ve} 2\pi \left(\frac{3M_{2}}{\pi \bar{E}_{\tau}}\right)^{3/2} v^{2} \exp\left[-3M_{2}v^{2}/4\bar{E}_{\tau}\right] dv\right) \quad (35)$$
The change of variable  $v = \left[(\zeta+1)/2\right]v_{e}$  converts Eq. (35) to
$$F_{\tau} = \exp\left[-3E_{b}/2\bar{E}_{\tau}\right] (1 - 2\pi \left(\frac{3M_{2}}{\pi \bar{E}_{\tau}}\right)^{3/2} \int_{-1}^{1} \left[\left(\frac{\zeta+1}{2}\right)v_{e}\right]^{2} \exp\left\{-3M_{2}\left[\left(\frac{\zeta+1}{2}\right)v_{e}\right]^{2}/4\bar{E}_{\tau}\right\} d\zeta$$

Eq.(36) may be approximated by the following expression

$$F_{T} \simeq \exp\left[-3E_{b}/2\bar{E}_{T}\right]\left(1-2\pi\left(\frac{Y}{\pi}\right)^{3/2}\sum_{k=1}^{n}A_{k}\mathcal{F}(x_{k})\right)$$
(36)

with  $\gamma = 3M_2/\overline{E}_T$  $x_k \equiv \text{Gaussian arguments}$  $A_k \equiv \text{Gaussian weights}$ 

and 
$$\mathcal{J}(X_{k}) = \left[ \left( \frac{X_{k}+1}{2} \right) v_{e} \right]^{2} E \times P \left[ - Y \left( \left( \frac{X_{k}+1}{2} \right) v_{e} \right)^{2} / 4 \right]$$

Because velocities of the sputtered atoms depend on their masses as well as the surface binding energy of the target being bombarded, larger fractions of the lighter species will escape the lunar surface. According to Cassidy and Hapke [1975], the probable fraction of sputtered atoms lost,  $F_p$ , is assumed to be  $0.5F_T$  since it is assumed that half of the atoms will have a velocity component in the downward direction (see Tables 37-52).

D. Fraction of Sputtered Molecules that Escape from the Moon

The fraction of sputtered molecules with velocities greater than the lunar escape velocity were calculated (see Tables 53-60). Comparison of the fraction  $F_T$  for metal oxides and their corresponding metals indicates that  $F_T$  is a strong function of  $E_b$  as well as  $M_2$ . This suggests that there would be some preferential retention of heavy oxides with high binding energies. The predicted order of enrichment using surface binding energies as well as molecular weights is:  $Fe_2O_3 > Fe_3O_4 > Al_2O_3 > FeO > MnO > TiO_2 > CaO > MgO$ . This order tends to be in better agreement with the order observed.

## III. PREFERENTIAL SPUTTERING: METHOD FOR PREDICTING THE ORDER OF ENRICHMENT OF METALS

The escape rate (amount of material lost by the Moon) may be estimated by multiplying the sputtering yield of metals/oxides by the probable fraction lost,  $F_p$  (see Table 61).

The order of enrichment of metals in the lunar surface material, however, can be best explained by a thermodynamic model proposed by Pillinger et al. [1976].

According to Pillinger et al. [1976], the transfer of momentum concept is a good initial working hypothesis for the prediction of the order of enrichment, but because it does not take into consideration the nature of the bonding between atoms, it cannot completely explain preferential sputtering either for lunar materials or two element compounds. They found that preferential sputtering will occur to give a metal when:  $\Delta H_{s}(M)$  [sublimation energy of the metal] >  $\Delta H_{D}(O)/y$  (the heat of dissociation/oxygen atom) or when  $\Delta H_{s}(M)/[\Delta H_{D}(O)/y] > 1$ . The values of  $\Delta H_{s}(M)$ ,  $\Delta H_{D}(O)/y$  and  $\Delta H_{s}(M)/[H_{D}(O)/y]$  are given in Table 62.

The thermodynamic model explains much more satisfactorily the data obtained from the lunar samples. Of the major elements only iron would be converted to metal; titanium by virtue of its conversion to lower oxides, e.g.  $\text{Ti}_2\text{O}_3$ , would also be enriched relative to oxygen. The calculated preferential sputtering factors gives the order of enrichment: Fe>Ti>Si>Al>Ca>Mg which agrees with the order of enrichment observed during surface analysis by ESCA [Housley and Grant, 1975] and our predicted order of enrichment

(see Table 61).

#### IV. SUMMARY

The model for backward sputtering of metals/oxides as proposed by Sigmund [1969] and Kelly [1973], respectively, has been reviewed.

Sigmund's theory is valid only for  $M_1 \ge M_2$ . In order to apply Sigmund's theory to proton sputtering  $(M_1 << M_2)$ , we have therefore had to consider an approximation. The quantity  $\alpha$ , which depends only on  $M_2/M_1$ , was improved by substituting experimental S values into the analytical S deduced by Sigmund [1969].

The predicted sputtering yields of metals/oxides, in comparison with the experimental yield values, turns out to differ by at least a factor of 3 or better. For example, the predicted values for Cu and Fe at 1.85keV are 0.014 and 0.035, representively, and the experimental values are 0.03 and 0.009, respectively.

The sputtering yields of metals/oxides, obtained from modified theories of sputtering by Sigmund and Kelly, are used in conjunction with the solar wind plasma- lunar surface magnetic field interaction model to estimate the sputtering rates at the lunar surface.

The interaction of the lunar surface magnetic fields with the solar-wind protons has been reviewed. According to the magnetic compression model, the streaming solar-wind plasma has a magnetic field associated with it, which exerts a magnetic 'pressure' on the remanent magnetic fields associated with the lunar surface. This pressure compresses the surface field. If the local surface field is strong enough, it can stop the wind before

it reaches the surface, i.e. a bow shock is formed. A weaker field would not stop the solar wind, but would reduce its incident energy at the surface.

The solar-wind protons are predicted to be completely stoodoff at the Apollo 16 landing site, and their mean kinetic energies reduced at other sites. At the Apollo 12 landing site, for example, the protons lose about 30-80% of their nominal (lkeV) incident energies [Scott, 1976].

The loss in proton energy by interaction with compressed magnetic fields can have a substantial effect on the sputtering efficiency of the solar wind. When high energy solar-wind ions impact lunar soil, the kinetic energy is converted to thermal energy. Since the protons are small ( $\sim 10^{-9}$  cm.) in comparison to grains in the lunar soil, the thermal energy is confined to a region of atomic dimensions, and dissociation (sputtering) occurs. The number of atoms dissociated per incident ion (sputtering yield) is simply dependent on the ion energy.

Sputtering rates fall off precipitously with reductions in incident ion energies. From the data of Wehner [1963] and others it appears that a minimum ion energy of near 20-50eV is required for sputtering to occur. The loss of 30-80% in the ion energy at the Apollo 12 landing site should reduce substantially the sputtering efficiency. Sputtering efficiencies at other regions of the Moon will similarly be low; thus the unexpected low abundances of metal surface coatings predicted to have been produced by sput-

tering can now be possibly explained.

Laboratory work is needed to determine the dependence of sputtering yield on incident ion energies for lunar-like soils, in order to test the proposed interaction model.

#### APPENDIX I

# Solutions of the Integral Equation Governing the Sputtering Yield of Polycrystalline Targets

In Section I.A. we analyzed the integral equation

$$S = \int d^{3} v_{o} |v_{ox}| \int_{0}^{\infty} dt G(0, \vec{v}_{o}, \vec{v}, t)$$

that determines the number of atoms that have sufficient energy to overcome the surface binding forces of the target. The solutions given were asymptotically exact in the limit of high ion energy. In this section the above integral equation will be analyzed with the aid of a method proposed by Robinson [1963;1968].

The average number of atoms moving in a layer (x,dx) at time t with velocity  $(\vec{v}_{\circ}, d^3v_{\circ})$  is represented by the function

$$G(x, \overline{\nabla}_{o}, \overline{\nabla}, t) d^{3}v_{o} dx$$
 (I.1)

The number of atoms with velocity  $(\vec{v}_o, d^3 v_o)$  penetrating the layer x in a time interval dt is given by

$$G(x, \overline{v}, \overline{v}, t) d^3v_a |v_{ax}| dt$$
 (I.2)

where

 $v_{ox}$  = the x-component of  $\vec{v}_{o}$ .

The sputtering yield for backward sputtering of a solid with a plane surface at x=0 is given by

$$S = \int d^{3}v_{\bullet} |v_{\bullet x}| \int_{0}^{\infty} dt G(0, \overline{v}, \overline{v}, t) \qquad (I.3)$$

where the integration over  $d^3v_{\circ}$  extends over all  $\vec{v}_{\circ}$  with negative x-components large enough to overcome surface binding forces.

In an isotropic and homogeneous target, the function

 $G(x, \vec{y}_o, \vec{v}, t)$  will satisfy the Boltzmann's equation

$$\frac{\partial}{\partial t} G(x, \vec{v}_{o}, \vec{v}_{o}, t) - \eta \frac{\partial}{\partial x} G(x, \vec{v}_{o}, \vec{v}, t) = N \int d\sigma \left[ G(x, \vec{v}_{o}, \vec{v}, t) - G(x, \vec{v}_{o}, \vec{v}, t) \right]$$
(I.4)

Consider a particle initially at x=0 moving at t=0. After a time t= $\delta$ t, it may or may not have made a collision. The probability of making or not making a collision is given by

$$G(x, \vec{v}_0, \vec{v}, t) = N \vee \delta t \int d\sigma \left[ G(x, \vec{v}_0, \vec{v}', t) + G(x, \vec{v}_0, \vec{v}', t) + \left[ (1 - N \vee \delta t \int d\sigma \right] G(x - \eta \vee \delta t, \vec{v}_0, \vec{v}, t - \delta t) \right]$$

$$(I.5)$$

where the first term on the right-hand side of Eq.(I.5) expresses the probability of making a collision and the second term is the probability for not making a collision.

Let  $G(\delta t) = G(x - \eta v \delta t, v_0, v_0, t - \delta t)$  and  $\chi = x - \eta v \delta t, \tau = t - \delta t$ Therfore

$$G(st) = G(X, \vec{v}, \vec{v}, \vec{v})$$

 $\frac{d G(\delta t)}{d \delta t} = \frac{\delta G}{\delta \chi} \frac{d \chi}{d \delta t} + \frac{\delta G}{\delta \overline{\chi}} \frac{d \overline{\chi}_{\delta}}{d \delta t} + \frac{\delta G}{\delta \overline{\chi}} \frac{d \overline{\chi}}{d \delta t} + \frac{\delta G}{\delta \overline{\chi}} \frac{d \overline{\chi}}{d \delta t} + \frac{\delta G}{\delta \overline{\chi}} \frac{d \overline{\chi}}{d \delta t} (I.6)$ 

and since  $[d\chi/d\delta t] = -\eta v$ ,  $[d\bar{v}_0/d\delta t] = [d\bar{v}/d\delta t] = 0$ ,  $[d\tau/d\delta t] = -1$ 

$$G'(\delta t) = -\eta v \frac{\partial G}{\partial x} - \frac{\partial G}{\partial t}$$

$$G'(\delta) = -\eta v \frac{\partial G}{\partial x} - \frac{\partial G}{\partial t}$$
(I.7)

The Taylor series expansion for  $G(\delta t)$  is

$$G(\delta t) = G(0) + G'(0) \delta t + \frac{G''(0)}{2!} (\delta t)^2 + \cdots + \frac{G^{(n)}(0)}{n!} (\delta t)^n + \cdots$$

$$G(x-\eta v \delta t, \overline{v}, \overline{v}, t-\delta t) = G(x, \overline{v}, \overline{v}, t) - (\eta v \frac{\partial G}{\partial x} + \frac{\partial G}{\partial t}) \delta t + \cdots$$
(I.8

Substituting Eq.(I.8) into Eq.(I.5) we have

$$G(x, \vec{v}, \vec{v}, t) = Nv\delta t \int d\sigma \left[G(x, \vec{v}, \vec{v}, \vec{v}, t) + G(x, \vec{v}, \vec{v}', t)\right]$$

$$+ (1 - Nv\delta t \int d\sigma \left[G(x, \vec{v}, \vec{v}, t) - (\eta v \frac{\partial G}{\partial x} + \frac{\partial G}{\partial t}) \delta t\right]$$

$$(I.9)$$

$$G(x, \overline{v}, \overline{v}, t) = Nv \delta t \int d\sigma \left[ G(x, \overline{v}, \overline{v}', t) + G(x, \overline{v}, \overline{v}'', t) \right]$$

$$+ G(x, \overline{v}, \overline{v}, t) - (\eta v \frac{\partial G}{\partial x} + \frac{\partial G}{\partial t}) \delta t$$

$$- Nv \delta t \int d\sigma G(x, \overline{v}, \overline{v}, t) + Nv \delta t^{2} \int d\sigma (\eta v \frac{\partial G}{\partial x} + \frac{\partial G}{\partial t})$$

$$(I.10)$$

Neglecting the last term on the right-hand side of Eq.(I.10) we obtain

$$(\eta \vee \frac{\partial G}{\partial x} + \frac{\partial G}{\partial t}) \delta t = N \vee \delta t \int d\sigma \left[ G(x, \vec{v}, \vec{v}', t) + G(x, \vec{v}, \vec{v}', t) \right] - N \vee \delta t \int d\sigma G(x, \vec{v}, \vec{v}, t)$$

anđ

$$-\eta \frac{\partial G}{\partial x} - \frac{1}{\sqrt{2}} \frac{\partial G}{\partial t} = N \int d\sigma \left[ G(x, \overline{v}_{a}, \overline{v}, t) - G(x, \overline{v}_{a}, \overline{v}', t) - G(x, \overline{v}_{a}, \overline{v}'', t) \right] (I.11)$$

Now we introduce the function

$$F(x, \vec{v}_{\delta}, \vec{v}) = \int_{0}^{\infty} G(x, \vec{v}_{\delta}, \vec{v}) dt \quad (I.12)$$

where  $F(x, \vec{v}_{o}, \vec{v}) | v_{ox} | d^{5} v_{o}$  is the total number of atoms that penetrate the plane x with a velocity  $(\vec{v}_{o}, d^{3}v_{o})$ .  $F(x, \vec{v}_{o}, \vec{v})$  satisfies

or

an equation that follows from Eq.(1.4) by integration over t.

Rewriting Eq.(I.4)

$$-\frac{1}{\sqrt{2}} \frac{\partial}{\partial t} G(x, \vec{v}_{o}, v, t) - \eta \frac{\partial}{\partial x} G(x, \vec{v}_{o}, \vec{v}, t) = N \int d\sigma \left[ G(x, \vec{v}_{o}, \vec{v}, t) - G(x, \vec{v}_{o}, \vec{v}, t) - G(x, \vec{v}_{o}, \vec{v}, t) - G(x, \vec{v}_{o}, \vec{v}, t) \right]$$

multiplying through by dt and integrating we have

$$-\frac{1}{v}\int_{0}^{\infty}\frac{\partial}{\partial t}G(x,\vec{v}_{0},\vec{v}_{1}t) dt - \eta \int_{0}^{\infty}\frac{\partial}{\partial x}G(x,\vec{v}_{0},\vec{v}_{1}t) dt = N \int d\sigma \left[\int_{0}^{\infty}G(x,\vec{v}_{0},\vec{v}_{1}t) dt - \int_{0}^{\infty}G(x,\vec{v}_{1},\vec{v}_{1}t) dt\right]$$
(I.13)

Utilizing expression (I.12), Eq.(I.13) assumes the form

$$-\frac{1}{V}G(x,\vec{v}_{0},\vec{v},t)\Big|_{0}^{\infty} -\eta \frac{\partial}{\partial x}F(x,\vec{v}_{0},\vec{v}) = N\int d\sigma \left[F(x,\vec{v}_{0},\vec{v}) - F(x,\vec{v}_{0},\vec{v}') - F(x,\vec{v}_{0},\vec{v}')\right]$$
(I.14)

$$-\frac{1}{\sqrt{5}}\delta(x)\delta(\vec{v}-\vec{v}_{0}) - \eta \stackrel{Q}{\partial x}F(x,\vec{v}_{0},\vec{v}) = N\int d\sigma \left[F(x,\vec{v}_{0},\vec{v}-F(x,\vec{v}_{0},\vec{v}') - F(x,\vec{v}_{0},\vec{v}')\right]$$
(1.15)

where we have made the assumption that

$$G(x, \vec{v}, \vec{v}, t=0) = \delta(x) \delta(\vec{v} - \vec{v}_{s})$$
 (I.16)

represents one starting particle, and

$$G(x, \vec{v}_{0}, \vec{v}, \infty) = 0 \qquad (I.17)$$

since at  $t=\infty$  all atoms have slowed down below any finite velocity

yo.

Considering only backward sputtering and introducing the function

$$H(x,v) = \int d^{3}v_{o} |v_{ox}| F(x, \vec{v}_{o}, \vec{v}) \qquad (I.18)$$

where

 $\begin{array}{ll} n_{\circ} &= \, y_{\circ X} / v \, \leq \, 0 \,, \\ E_{\circ} &= \, M_{2} \, v_{o}^{2} / 2 \, \geq \, U(n_{\circ}) \,, \\ M_{2} &\equiv \, \text{mass of target atom} \,, \\ U(n_{\circ}) &\equiv \, \text{surface binding energy} \,. \end{array} \tag{I.19}$ 

 $H(x, \vec{\nabla})$  represents the sputtering yield of a target atom for the case that the source is at x=0 and the sputtered surface in the plane x. Recalling Eq.(I.15)

$$\frac{1}{2} \delta(x) \delta(\vec{v} - \vec{v}_{\delta}) - \eta \frac{\partial}{\partial x} F(x, \vec{v}_{\delta}, \vec{v}) = N \int d\sigma \left[ F(x, \vec{v}_{\delta}, \vec{v}) - F(x, \vec{v}_{\delta}, \vec{v}') - F(x, \vec{v}_{\delta}, \vec{v}') \right]$$
(I.20)

and multiplying it by  $|\mathtt{v}_{\circ\, x}|\,,$  integrating over  $\breve{\mathtt{v}}_{\circ}$  we have

$$\int \frac{|v_{ox}|}{v} \delta(x) \delta(\vec{v} - \vec{v}_{o}) d^{3}v_{o} - \eta \int \frac{\partial}{\partial x} |v_{ox}| F(x, \vec{v}_{o}, \vec{v}) d^{3}v_{o} \qquad (I.21)$$

$$= N \int d\sigma \int d^{3}v_{o} \left[ |v_{ox}| \left\{ F(x, \vec{v}_{o}, \vec{v}) - F(x, \vec{v}_{o}, \vec{v}') - F(x, \vec{v}_{o}, \vec{v}') \right\} \right]$$

$$\delta(x) \int \frac{|v_{ox}|}{v} \delta(\vec{v} - \vec{v}_{o}) d^{3}v_{o} - \mathcal{I} \frac{\partial}{\partial x} \int |v_{ox}| F(x, \vec{v}_{o}, \vec{v}) d^{3}v_{o} \qquad (I.22)$$
$$= N \int d\sigma \int d^{3}v_{o} \left[ |v_{ox}| \left\{ F(x, \vec{v}_{o}, \vec{v} - F(x, \vec{v}_{o}, \vec{v}') - F(x, \vec{v}_{o}, \vec{v}') \right\} \right]$$

$$\delta(x) \int \frac{|V_{0x}|}{v} \delta(\vec{v} - \vec{v}_{0}) d^{3}v_{0} - \eta \frac{\partial}{\partial x} H(x, v) = N \int d\sigma \left[H(x, v) - H(x, \vec{v}') - H(x, \vec{v}')\right]$$
(I.23)

Introducing the function

$$\Theta(\xi) = 1 \text{ for } \xi > 0$$
  
= 0 for  $\xi < 0$ 

and satisfying the condition given by expression (I.19), Eq.(I.23) can be rewritten as

$$-\delta(x) \eta \Theta(-\eta) \Theta(E-U(\eta)) - \eta \frac{\lambda}{\partial x} H(x, \vec{v}) = N \int d\sigma \left[ H(x, \vec{v}) - (I.24) - H(x, \vec{v}) - H(x, \vec{v}) \right]$$

In a random medium  $H(x, \vec{v})$  is a function of x, v, and  $\eta$ , the directional cosine, but not on the azimuth of  $\vec{v}$  with respect to the x-axis. Introduction of energy, E, instead of velocity variables, we have

$$-\delta(x) \gamma \Theta(-\eta) \Theta(E - U(\eta)) - \eta \frac{\partial}{\partial x} H(x, E, \eta)$$

$$= N \int d\sigma \left[ H(x, E, \eta) - H(x, E', \eta') - H(x, E', \eta'') \right]$$

where E',  $\eta$ ', E" and  $\eta$ " are the energies and directional cosines with respect to the x-axis of the scattered and recoiling particle, respectively.

The sputter yield is given by

$$S(E, \eta) = H(x=0, E, \eta),$$
 (I.26)

Expanding H interms of Legendre polynomials we have

$$H(x, E, \eta) = \sum_{k=0}^{\infty} (2l+1) H_k(x, E) P_k(\eta)$$
 (I.27

where  $P_{\ell}(\eta)$  are Legendre polynomials.

Eq.(I.25) is multiplied by  $P_{l}(\eta)$  and integrate over  $\eta$  with the condition  $\eta{\leq}0.$ 

$$\int_{-1}^{1} -\delta(x) \eta \Theta(-\eta) \Theta(E - U(\eta)) P_{g}(\eta) d\eta - \int_{-1}^{1} \eta \frac{\partial}{\partial x} H(x, E, \eta) P_{g}(\eta)$$
(I.28)  
=  $N \int d\sigma \left[ \int_{-1}^{1} \{ H(x, E, \eta) - H(x, E', \eta') - H(x, E'', \eta'') \} P_{g}(\eta) d\eta \right]$   
$$\int_{-1}^{1} -\delta(x) \eta \Theta(-\eta) \Theta(E - U(\eta)) P_{g}(\eta) d\eta - \int_{-1}^{1} \eta \frac{\partial}{\partial x} \sum_{k} (2k+1) H_{g}(x, E) P_{g}(\eta) P_{g}(\eta) d\eta$$
=  $N \int d\sigma \left[ \int_{-1}^{1} \{ \sum_{k}' H_{g}(x, E) P_{g}(\eta) P_{g}(\eta) - \sum_{k}' H_{g}(x, E') P_{g}(\eta) P_{g}(\eta') \right] d\eta$ (I.29)  
$$- \sum_{k}' H_{g}(x, E'') P_{g}(\eta) P_{g}(\eta'') d\eta$$

Using the follwing relation between the  $P_{l}(\eta)$ 's

$$(2l+1) \ \eta \ P_{k}(\eta) = (l+1) \ P_{k+1}(\eta) + l \ P_{k-1}(\eta)$$
(I.30)

the following equation is obtained.

$$\int_{-1}^{1} -\delta(x) \eta \Theta(-\eta) \Theta(E-U(\eta)) P_{2}(\eta) d\eta - \int_{-1}^{1} \frac{\partial}{\partial x} \sum_{k=0}^{\infty} \left[ (2k+1) \left\{ \frac{k+1}{2k+1} + H_{k+1}(x,E) + \frac{k}{2k+1} + H_{k-1}(x,E) \right\} P_{2}(\eta) P_{2}(\eta) d\eta =$$

$$= N \int d\sigma \left[ (2k+1) \int_{-1}^{1} \left\{ \sum_{k=0}^{\infty} H_{k}(x,E) P_{k}(\eta) P_{k}(\eta) - H_{k}(x,E') P_{k}(\eta) P_{k}(\eta') \right\} (I.31) - H_{k}(x,E'') P_{k}(\eta) P_{k}(\eta') \right]$$

Using the following relations

$$\int_{-1}^{1} P_{2}(\eta) P_{2}(\eta) d\eta = \frac{2}{2^{2+1}}$$
(I.32)

$$\frac{2l+1}{2}\int_{-1}^{1}H(x, E, \eta) P_{l}(\eta) d\eta = H_{l}(x, E) \quad (I.32)$$

the above equation becomes

$$\int_{-1}^{1} -\delta(x) \eta \,\Theta(z-U(\eta)) \,P_{\mu}(\eta) \,d\eta - \left(\frac{2}{2\ell+1}\right) \frac{\lambda}{\partial x} \left\{ (\ell+1) \,H_{\ell+1}(x,E) + \ell \,H_{\ell-1}(x,E) \right\}$$

$$= N \int d\sigma \left[ (2\ell+1) \left(\frac{2}{2\ell+1}\right) \,H_{\ell}(x,E) - \left(\frac{2\ell+1}{2}\right) \,H_{\ell}(x,E') \,P_{\ell}(\eta') \int_{-1}^{1} P_{\ell}(\eta) \,d\eta \qquad (I.33)$$

$$- \left(\frac{2\ell+1}{2}\right) \,H_{\ell}(x,E') \,P_{\ell}(\eta'') \int_{-1}^{1} P_{\ell}(\eta) \,d\eta$$

Using the relation

$$\int_{0}^{1} P_{g}(\eta) \, d\eta = \begin{cases} 1 & g=0 \\ 0 & g=2,4,6,\dots \\ (-1)^{(k-1)/2} & \frac{(k-1)!}{2^{\frac{k}{2}(\frac{k+1}{2})!}(\frac{k-1}{2})!} & g=1,3,5,\dots \end{cases}$$
(I.35)

Eq.(I.34) has the final form

$$\begin{aligned} \delta(x) Q_{g}(E) &= \frac{\partial}{\partial x} \left[ \mathcal{R}H_{g-1}(x,E) + (g+1) H_{g+1}(x,E) \right] \\ &= (2g+1) N \int d\sigma \left[ H_{g}(x,E) - P_{g}(\cos \varphi') H_{g}(x,E') - P_{g}(\cos \varphi'') H_{g}(x,E'') \right] \end{aligned}$$

where

$$Q_{\ell}(E) = \frac{2\ell+1}{2} \int_{-1}^{0} (-\eta) \, d\eta \, \Theta(E - U(\eta)) P_{\ell}(\eta) \quad (I.37)$$

and

 $\phi'$   $\Xi$  laboratory scattering angle of scattered atom,  $\phi''$   $\Xi$  laboratory scattering angle of recoiling atom.

Introducing the moment

$$H_{g}^{n}(E) = \int_{-\infty}^{\infty} x^{n} H_{g}(x, E) dx \qquad (I.38)$$

multiplying Eq.(I.36) by  $x^n$  and integrating we have

$$Q_{\ell}(E) \int_{-\infty}^{\infty} \delta(x) x^{n} dx - \frac{\partial}{\partial x} \left[ \int_{-\infty}^{\infty} lx^{n} H_{\ell-1}(x, E) dx + \int_{-\infty}^{\infty} (l+1) x^{n} H_{\ell+1}(x, E) dx \right]$$
  
=  $(2l+1) N \int d\sigma \left[ \int_{-\infty}^{\infty} x^{n} H_{\ell}(x, E) dx - \int_{-\infty}^{\infty} P_{\ell}(\cos \varphi') x^{n} H_{\ell}(x, E') dx - \int_{-\infty}^{\infty} P_{\ell}(\cos \varphi'') x^{n} H_{\ell}(x, E'') dx \right]$   
 $= \int_{-\infty}^{\infty} P_{\ell}(\cos \varphi'') x^{n} H_{\ell}(x, E'') dx \left[ (1.39) \right]$ 

$$Q_{g}(E) \int_{-\infty}^{\infty} \delta(x) x^{n} dx - n \left[ \int_{-\infty}^{\infty} g x^{n-1} H_{g-1}(x, E) dx + \int_{-\infty}^{\infty} (g+1) x^{n-1} H_{g+1}(x, E) dx \right]$$
  
=  $(2g+1) N \int d\sigma \left[ \int_{-\infty}^{\infty} x^{n} H_{g}(x, E) dx - \int_{-\infty}^{\infty} x^{n} H_{g}(x, E') P_{g}(\cos \phi') dx - \int_{-\infty}^{\infty} x^{n} H_{g}(x, E'') P_{g}(\cos \phi'') dx \right]$   
 $- \int_{-\infty}^{\infty} x^{n} H_{g}(x, E'') P_{g}(\cos \phi'') dx \left[ (1.40) \right]$ 

With

$$\int_{-\infty}^{\infty} \delta(x) x^{n} dx = \delta_{n0}$$

we have

$$\delta_{no} Q_{\mu}(E) - n \left[ L H_{L-i}^{n-i}(E) + (l+i) H_{L+i}^{n-i}(E) \right] = (2l+i) N \int dr \left[ H_{\mu}^{n}(E) - (I.41) - H_{\mu}^{n}(E') P_{\mu}(\cos \varphi') - H_{\mu}^{n}(E'') P_{\mu}(\cos \varphi'') \right]$$

The terms which include the elastic and inelastic (electronic) collisions can be separated by using the method given by Lindhard

et al. [1963]. This yields

$$\delta_{no} \ Q_{g}(E) - n \left[ l H_{g-1}^{n-1}(E) + (l+1) H_{g+1}^{n-1}(E) \right] = (2l+1) S_{e}(E) \frac{d}{dE} H_{g}^{n}(E) + (2l+1) N \int_{T=0}^{E} d\sigma(E,T) \left[ H_{g}^{n}(E) - H_{g}^{n}(E-T) P_{g}(\cos \beta') - H_{g}^{n}(T) P_{g}(\cos \beta'') \right]$$

where  $S_e(E)$  is the electronic stopping cross section,  $d\sigma(E,T)$  is the differential cross section for elastic scattering, T is the recoil energy, and

$$\begin{array}{rcl} \cos \, \phi' &=& (1 - T/E)^{1/2} \, + \, [(1 - M_2/M_1) \, (T/E) \, (1 - T/E)^{-1/2}]/2 \\ \cos \, \phi'' &=& (T/T_m)^{1/2} \\ T_m &=& \gamma E & (I.43) \\ \gamma &=& 4 M_1 M_2 / (M_1 + M_2)^2 \\ M_1 &\equiv& \text{mass of incident ion} \end{array}$$

For n=0 Eq.(I.41) becomes

$$Q_{g}(E) = (2l+1) N \int_{T=0}^{E} d\sigma(E,T) \left[ H_{g}^{\circ}(E) - P_{g}(\cos \phi') H_{g}^{\circ}(E-T) - P_{g}(\cos \phi'') H_{g}^{\circ}(T) \right] (I.44)$$

An especially useful approximation of  $d\sigma$  (Thomas-Fermi cross section) is the power approximation, where

$$d\sigma = CE^{-m}T^{-1-m} dT$$

and m is a number between 0 and 1. Eq.(1.44) becomes

$$Q_{\mu}(E) = (21+1) N C E^{-m} \int_{0}^{E} \frac{dT}{T^{1+m}} [H_{\mu}^{\circ}(E) - P_{\mu}((1 - T/E))^{1/2} + (1 - M_{2}/M_{1})(T/E)((1 - T/E)^{-1/2})/2$$
(I.45)
$$\times H_{\mu}^{\circ}(E - T) - P_{\mu}((T/T_{m})^{1/2}) H_{\mu}^{\circ}(T)]$$

for  $M_1 = M_2$  we have

$$Q_{i}(E) = (2l+1)NCE^{*m} \int_{0}^{E} dT/T^{i+m} \left[ H_{j}^{*}(E) - P_{j}((i-T/E)^{1/2}) H_{j}^{0}(E-T) - -P_{j}((T/E)^{1/2}) H_{j}^{*}(T) \right]$$

where we assumed  $S_e(E) = 0$ .

Now we proceed to solve the integral given by Eq.(I.44). We use the procedure which has been described by Robinson [1965;1968]. Rewriting Eq.(I.44) we have

$$Q_{g}(E) = (2l+1) \int_{0}^{E} d\sigma(E,T) \left[ H_{g}^{\circ}(E) - P_{g}((1-T/E)^{1/2}) H_{g}^{\circ}(E-T) - P_{g}((T/E)^{1/2}) H_{g}^{\circ}(T) \right]$$

Let's consider the case for l=0. The above equation takes the following form

$$Q_{o}(E) = \int_{0}^{E} d\sigma(E,T) [H_{o}^{*}(E) - H_{o}^{*}(E-T) - H_{o}^{*}(T)]$$

where we have made use of the relation

$$P_{0}(\eta) = 1.$$

With the Thomas-Fermis cross section approximated by the power approximation

$$d\sigma(E,T) = CNE^{-m}T^{-1-m}dT \qquad (I.46)$$

we have

$$Q_{o}(E) = CNE^{-m} \int_{0}^{E} \frac{dT}{T^{1+m}} \left[ H_{o}^{o}(E) - H_{o}^{o}(E-T) - H_{o}^{o}(T) \right] \quad (I.47)$$

H<sub>0</sub><sup>o</sup>(E) ≡ the integral of H<sub>0</sub>(x,E) over all x; i.e. determines the number of atoms penetrating a plane at an arbitrary position x with a certain minimum energy, when there is a homogeneous isotropic source of recoiling atoms throughout an infinite medium.

$$H_{\circ}^{\circ}(E) = 0 \text{ for } E>U_{\circ}$$

$$1 \text{ for } U_{\circ} < E < 2U_{\circ}$$
(I.48)

 $U_{\circ}$  being the surface binding energy. With m fixed Robinson calculated the asymptotic solution

$$H_{o}^{*}(E) \sim \xi(m) \frac{E}{2U_{o}}$$
 for U>>2U<sub>o</sub> (I.49)

with

$$\xi(m) = 2(2^{m} - 1)/[\Psi(1) - \Psi(1-m)]$$

where  $\xi=1$  at m=-1 (hard-sphere scattering),  $\xi=(12/\pi^2)\ln 2=0.84$  at m=0 and  $\xi=0$  at m=1.

If m in Eq.(I.49) is a function of E [m=m(E)], the function  $H_{\circ}^{\circ}(E)$  is nonlinear over most of the energy range. For fixed m we have

$$\frac{\delta E}{E} = \frac{i}{E} \int_{0}^{E} \frac{dE'}{S(E')} \int_{0}^{U_{0}} CE'^{(-m)} T^{-i-m} T dT$$

$$= \frac{1}{E} \int_{0}^{E} \frac{dE'}{\frac{1}{1-m} CE'^{(i-2m)}} \int_{0}^{U_{0}} CE'^{(-m)} T^{-m} dT$$

$$= \frac{1}{CE} \frac{(i-m)}{2m} E'^{2m} \Big|_{0}^{E} CE'^{(-m)} \frac{T^{(i-m)}}{(i-m)} \Big|_{0}^{U_{0}}$$

$$= \frac{1}{E} \left( \frac{1}{2m} \right) E^{2m} \cdot E^{-m} U_{0}^{(i-m)}$$

$$= \frac{1}{2m} \left[ \frac{U_{0}}{E} \right]^{(i-m)} (I.50)$$

where

$$S(E) = \int_{0}^{E} d\sigma(E,T) = \frac{1}{1-m} CE^{1-2m}$$

is the elastic stopping power. From Eq.(I.50) we see that  $\delta E/E$  increases with m. In the keV region and below where m $\leq 0.5$ ,  $\delta E/E$ 

will always be <<l for E>>U. This shows that m in the expression  $\xi(m)$  cannot be determined by Eq.(I.50). Therefore we replace Eq. (I.50) by

$$m = m(2U_o)$$
. (I.51)

If  $\xi = \xi[m(2U_o)]$  is inserted into Eq.(I.49),  $H_o^{\circ}(E)$  becomes linear for  $E^{>>}2U_{\circ}$ . It is possible to obtain Eq.(I.49) if the power m in the cross section, Eq.(I.50) is allowed to vary from step to step. First we consider one single step

$$m(E) = m_{o} \text{ for } 2U_{o} \leq E \leq U_{1}$$

$$= m_{1} \text{ for } E > U_{1}$$
(I.52)

where  $m_1 > m_0$  and  $E_2 > 2U_0$ . For  $E \le E_1$  we can utilize the exact solution given by Robinson [1965;1968]. For m=m.

$$H_{o}^{*}(E) = \frac{1}{2\pi i} \frac{1}{NC} \int_{a-i\infty}^{a+i\infty} ds \left(\frac{E}{2U_{o}}\right)^{5} \frac{k(s,m_{o})}{F(s,m_{o})}$$
(I.53)

where

$$F(s,m) = 1 - \frac{\Gamma(s)\Gamma(1-m)}{\Gamma(s-m)}$$
 (1.54)

$$k(s,m) = \frac{1-2^{m}}{5} + \frac{s-m}{5} \left[ 2^{s} B_{1/2}(s, 1-m) - B(s, 1-m) \right] (I.55)$$

$$C = \frac{1}{2} \pi \lambda_{m} a_{22}^{2} \left( 2 Z_{2}^{2} e^{2} / a_{22} \right)^{2m} (I.56)$$

(I.56

and a is some arbitrary real number > 1. 
$$B(s, l-m)$$
 and  $B_{1/2}(s, l-m)$   
are the Beta and incomplete Beta functions, respectively. The  
integrand in Eq.(I.53) has singularities at roots s, of the equa-

tion 
$$F(s_1, m) = 0$$
 and  $s_0 = 1$ ,  $-1 < s_1 < 0$ ,  $-2 < s_2 < -1$ , etc

With

$$F(s_i, m_o) = 0$$

we have

$$\frac{\Gamma(s) \Gamma(1-m_o)}{\Gamma(s-m_o)} = 1$$

$$\frac{\Gamma(s-m_o)}{\Gamma(s-m_o)} = \frac{\Gamma(s-m_o)}{\Gamma(1-m_o)} = \frac{\Gamma(s-m_o)}{\Gamma(1-m_o)}$$

Using Sterling's formula we have

$$\Gamma(z) \sim e^{-z} z^{2^{-1/2}} (2\pi)^{1/2} \left[ 1 + \frac{1}{12z} + \frac{1}{288z^2} - \frac{159}{51840z^3} - \frac{571}{2488320z^4} \right] \neq \cdots$$
  
$$\therefore \Gamma(1-m) \sim e^{m^{-1}} (1-m)^{(1-m)^{-1/2}} (2\pi)^{1/2} \left[ 1 + \frac{1}{12(1-m)} + \frac{1}{288(1-m)^2} - \frac{159}{51840(1-m^3)} \right] + \cdots$$
  
$$\Gamma(5-m) \sim e^{m^{-5}} (5-m)^{(5-m)^{-1/2}} (2\pi)^{1/2} \left[ 1 + \frac{1}{12(5-m)} + \frac{1}{288(5-m)^2} - \frac{159}{51840(5-m)^3} \right] + \cdots$$

$$\Gamma(s) = \frac{\Gamma(s-m)}{\Gamma(1-m)} = \frac{e^{m-1}(s-m)}{e^{m-1}(1-m)} \frac{(2m)^{1/2}\left[1 + \frac{1}{12(s-m)}\right]}{(2m)^{1/2}\left[1 + \frac{1}{12(1-m)}\right]}$$
$$\geq e^{1-5} \frac{(s-m)^{(1/2-m)}\left[1 + \frac{1}{12(s-m)}\right]}{(1-m)^{(1/2-m)}\left[1 + \frac{1}{12(s-m)}\right]}$$

$$e^{-5} 5^{5-1/2} (2\pi)^{1/2} [1 + \frac{1}{125}] = e^{1-5} \frac{(5-1/2-m)}{(1-m)} [1 + \frac{1}{12(5-m)}]$$
(I.58)  
$$\frac{(1-m)}{(1-m)} [1 + \frac{1}{12(1-m)}]$$

For  $s_o=1$  we have from Eq.(I.58) that

$$e^{-1} (2\pi)^{1/2} [1 + \frac{1}{12}] \approx e^{\circ}$$
  
 $1 = \frac{\sqrt{2\pi}}{e} [1 + \frac{1}{12}]$   
 $1 \approx (0.9990)$ 

so that  $s_o=1$  is one root of Eq.(I.57). The poles of the function  $k(s,m_o)$  in Eq.(I.53) are cancelled by the poles of the denominator so that the integrand is regular outside the real axis. The path of integration  $C_1$  (Fig.A.1) can be transformed to  $C_2$  that encloses the real axis for  $s \le 1$  in the positive direction. Utilizing the residue



Fig. A.l

theorem 
$$(\oint_{c} f(z)dz = 2\pi i \sum_{k=1}^{n} R_{ES} f(a_{k}))$$
 we have  

$$H_{o}^{o}(E) = \sum_{i=1}^{\infty} A_{i}(E/2u_{o})^{si}(1/NC) \quad (I.59)$$
where

$$H_{o}^{o}(E) = \sum_{i=0}^{\infty} \frac{1-2^{m}}{S_{i}} + \frac{S_{i}-m_{o}}{S_{i}} \left[2^{S_{i}}B_{i/2}(S_{i,1}-m_{o}) - B(S_{i,1}-m_{o})\right]}{\Psi(S_{i}-m_{o}) - \Psi(S_{i})} \left(\frac{E}{2U_{o}}\right)^{S_{i}} \frac{1}{NC} \quad (I.60)$$

$$A_{i} = \frac{k(S_{i,m_{o}})}{\Psi(S_{i}-m_{o}) - \Psi(S_{i})} \quad ; \quad \Psi(x) = \frac{d}{dx} \ln \Gamma(x) \quad (I.61)$$

For i=0,  $s_o=1$  Eq.(I.60) takes the following form

$$H_{o}^{o}(E) = \frac{(1-2^{m}) + (1-m_{o})[B_{1/2}(1, 1-m_{o}) - B(1, 1-m_{o})]}{\Psi(1-m_{o}) - \Psi(1)} \left(\frac{E}{2U_{o}}\right) \frac{1}{NC}$$

$$H_{0}^{*}(E) = \frac{1-2^{m}}{\Psi(1-m_{0})-\Psi(1)} - \frac{(1-m_{0})\left[B_{1/2}\left(1,1-m_{0}\right)-B(1,1-m_{0})\right]}{\Psi(1-m_{0})-\Psi(1)}\left(\frac{E}{2U_{0}}\right)\frac{1}{NC}$$

$$= \frac{1-2^{m}}{\Psi(1-m_{0})-\Psi(1)} - \frac{(1-m_{0})\left[\Gamma(1)\Gamma(1-m_{0})/\Gamma(2-m_{0})-\frac{E}{2U_{0}}\right]\frac{1}{NC}}{2\left[\Psi(1-m_{0})-\Psi(1)\right]}\left(\frac{E}{2U_{0}}\right)\frac{1}{NC}$$

$$= \frac{1-2^{m}}{\Psi(1-m_{0})-\Psi(1)} - \frac{(1-m_{0})\left[\frac{\Gamma(1)\Gamma(1-m_{0})}{(1-m_{0})\Gamma(1-m_{0})}\right]}{2\left[\Psi(1-m_{0})+\Psi(1)\right]}\left(\frac{E}{2U_{0}}\right)\frac{1}{NC}$$

$$= \frac{1-2^{m}}{\Psi(1-m_{0})-\Psi(1)} - \frac{\frac{1}{2}}{\left[\Psi(1-m_{0})-\Psi(1)\right]}\left(\frac{E}{2U_{0}}\right)\frac{1}{NC}$$

For m=0, i.e.  $E \le E_1$ , we obtain (using L'Hopital's Rule)

$$H_{o}^{\bullet}(E) = \frac{\ln 2}{2 \Psi'(1)} \frac{E}{NCU_{o}}$$
 (I.62)

Now we wish to calculate  $\Psi'(1)$ . We have

$$\left[\frac{d}{d\xi} \Psi(\xi)\right]_{\xi=1} = \left\{\frac{d}{d\xi} \left[\Psi(\xi+1)\right]\right\}_{\xi=0}$$

$$\left[\frac{d}{d\xi}\Psi(1+\xi)\right]_{f=0} = \left[\sum_{k=1}^{\infty} (k+\xi)^{-2}\right]_{f=0}$$
$$= \sum_{k=1}^{\infty} k^{-2}$$
$$= \pi^{2}/6$$

Eq.(I.62) takes the form

$$H_{a}^{*} = 3 \ln 2 / \pi^{2} [E / N C_{o} U_{o}] (I.63)$$

Eq.(I.63) differs from Eq.(17a) by a factor of  $1/4\ln 2$ . The difference occurs because in our analysis of the integral equation using Robinson's method, we solved the equation for  $E \ge 2U_{\circ}$ . On the otherhand Sigmund solved the equation for  $E \ge U_{\circ}$ .

#### APPENDIX II

### CURVE FITTING

## A. Linear Least Square Fit

In Section I.C., the values of  $\langle \Delta X^2 \rangle / \langle X \rangle^2$  and  $\langle Y^2 \rangle / \langle X \rangle^2$  were computed by the method of least squares for  $M_2/M_1 > 10$ , since Sigmund and Sanders [1967] only computed values for  $0.1 \le M_2/M_1 \le 10$ . In this section we will explain the technique of linear regression by the method of least squares.

First we will illustrate the simplest kind of least squares fit, that which is often called a simple linear regression. We will fit a straight line

$$y = a_0 + a_1 x$$
 (II.1)

to the data points in Table 4. The moment  $\langle \Delta X^2 \rangle / \langle X \rangle^2$  is plotted as a function of  $M_2/M_1$ . The least squares coefficients are determined from the set of N data points  $(x_i, y_i)$  in the following manner. The function to be minimized is:

$$f(a_{o}, a_{i}) = \sum_{i=1}^{N} [y(x_{i}) - y_{i}]^{2}$$
(II.2)  
=  $\sum_{i=1}^{N} [a_{o} + a_{i}x_{i} - y_{i}]^{2}$ (II.3)

Differentiating, we obtain the two normal equations

$$\frac{\partial f}{\partial a_0} = \sum_{i}^{\prime} 2(a_0 + a_i \times_i - y_i) = 0 \quad (II.4)$$

$$\frac{\partial f}{\partial a_0} = \sum_{i}^{\prime} 2(a_0 + a_i \times_i - y_i) \times_i = 0 \quad (II.5)$$

or

$$a_{o} N + a_{i} \sum x_{i} = \sum y_{i} \qquad (II.6)$$
$$a_{o} \sum x_{i} + a_{i} \sum x_{i}^{2} = \sum x_{i} y_{i} \qquad (II.7)$$

Using Cramer's rule

$$\mathbf{a}_{o} = \frac{\left| \sum_{\mathbf{y}_{i}} \sum_{\mathbf{x}_{i}} \sum_{\mathbf{x}_{i}} \right|}{\left| \sum_{\mathbf{x}_{i} \mathbf{y}_{i}} \sum_{\mathbf{x}_{i}^{2}} \right|} \qquad \mathbf{a}_{i} = \frac{\left| \sum_{\mathbf{x}_{i}} \sum_{\mathbf{y}_{i}} \sum_{\mathbf{y}_{i}} \right|}{\left| \sum_{\mathbf{x}_{i}} \sum_{\mathbf{x}_{i}} \sum_{\mathbf{x}_{i}^{2}} \right|} \qquad (II.8)$$

Finally, we obtain the expressions for the least squares coefficients in terms of sums of the  $x_i$  and  $y_i$ :

$$a_{o} = \frac{\sum_{Y_{i}} \sum_{X_{i}} - \sum_{X_{i} Y_{i}} \sum_{X_{i}}}{N \sum_{X_{i}}^{2} - (\sum_{X_{i}})^{2}}$$
(II.9)  
$$a_{i} = \frac{N \sum_{X_{i} Y_{i}} - \sum_{X_{i}} \sum_{Y_{i}}}{N \sum_{X_{i}}^{2} - (\sum_{X_{i}})^{2}}$$
(II.10)

where

$$x = M_2/M_1$$
  
 $y = \langle \Delta X^2 \rangle / \langle X \rangle^2$ .

The quality of the least squares fit to the data points provided is given by the expression

$$\Gamma^{2} = \frac{\left[N\sum_{x_{i}} y_{i} - \sum_{x_{i}} y_{i}\right]^{2}}{N\left[N\sum_{x_{i}} x_{i}^{2} - (\sum_{x_{i}})^{2}\right]\left[N\sum_{y_{i}} y_{i}^{2} - (\sum_{y_{i}})^{2}\right]} \quad (II.11)$$

The value of  $r^2$  will lie between 0 and 1. The closer  $r^2$  is to 1, the better the fit.

Least-squaring the data provided by Table 4 we find that  $a_0=0.15955$ ,  $a_1=0.08686$  and  $r^2=0.99800$ .

II. Power Curve Fit

We wil fit a power curve

$$y = a_0 x^{a_1}$$
 ( $a_0 > 0$ ) (II.12)

to the data points in Table 4. The moment  $\langle Y^2 \rangle / \langle X \rangle^2$  is plotted as a function of  $M_2/M_1$ . By writing Eq.(II.12) as

 $\ln y = a_1 \ln x + \ln a_0 \qquad (II.13)$ 

the problem can be solved as a linear regression problem. Using the same procedure of Section I we find that

$$a_{i} = \frac{N \sum (\ln y_{i}) \sum (\ln x_{i}) - (\sum \ln x_{i}) (\sum \ln y_{i})}{N \sum (\ln x_{i})^{2} - (\sum \ln x_{i})^{2}}$$
(II.14)

$$a_{o} = EXP\left[\frac{1}{N}\left(\sum \ln y_{i} - a_{i}\sum \ln x_{i}\right)\right] \qquad (II.15)$$

where

and

$$\Gamma^{2} = \frac{\left[N\sum_{i}^{2}(\ln x_{i})(\ln y_{i}) - (\sum_{i}\ln x_{i})(\sum_{i}\ln y_{i})\right]^{2}}{N\left[N\sum_{i}^{2}(\ln x_{i})^{2} - (\sum_{i}\ln x_{i})^{2}\right]\left[N\sum_{i}^{2}(\ln y_{i})^{2} - (\sum_{i}\ln y_{i})^{2}\right]} (II.16)$$

Fitting a power curve to the data points provided by Table 4 find that  $a_0=0.17381$ ,  $a_1=0.98330$  and  $r^2=0.99997$ . [Hewlett-Packard HP-25 <u>Applications Programs</u>, 1975].

#### REFERENCES

- 1. Cassidy, W., and B. Hapke, Effects of darkening on surfaces of airless bodies, <u>Science</u>, <u>172</u>, 716-718, 1971.
- 2. Cheney, K.B., and E.T. Pitkin, J. Appl. Phys., 36, 3542, 1965.
- 3. Colombie', N., Thesis, University of Toulouse, 1964 (unpublished).
- Dyal, P., C.W. Parkin, and W.D. Daily, Surface magnetometer experiments: Internal properties and lunar field interactions with the solar plasma, <u>Proc.Lunar Sci. Conf. 3rd.</u>, 2287-2307, 1972.
- 5. Dupp, G. and A. Scharmann, Z. Physik, 194, 448, 1966.
- 6. Formisano, V., and G. Moreno, <u>Rivista del Nuovo Cimento</u>, <u>1</u>, 365, 1971.
- Grølund, F., and W.J. Moore, Sputtering of silver by light ions with energies from 2 to 12keV, <u>The Journal of Chemical</u> Physics, 32, 1540-1545, 1960.
- Hapke, B., W. Cassidy and E. Wells, Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith, The Moon, 13, 339-353, 1975.
- 9. Housley, R.M. and R.M. Grant, ESCA studies of lunar surface chemistry, Proc. Sixth Lunar Sci. Conf., 3269-3275, 1975.
- Kelly, R. and N.Q. Lam, The sputtering of oxides part I: A survey of the experimental results, <u>Radiation Effects</u>, <u>19</u>, 39-47, 1973.
- 11. KenKnight, C.E. and G.K. Wehner, Sputtering of metals by hydrogen ions, Journal of Applied Physics, 35, 322-326, 1964.
- 12. Kittel, C., Introduction to Solid State Physics, John Wiley & Sons, Inc., New York, 1976, p.78.
- 13. Lin, R.P., K.A. Anderson, R.E. McGuire, and J.E. McCoy, Fine scale lunar surface magnetic fields detected by the electron reflection method, Lunar Science VII: Revised Abstracts of Papers Presented at the Seventh Lunar Science Conference, 492-494, 1976.
- 14. Lindhard, J., V. Nielsen, M. Scharff, and P.V. Thomsen, Integral equations governing radiation effects (Notes on atomic collisions, II), <u>Matematisk-fysiske Meddelelser udgivet af</u> <u>Det Kongelige Danske Videnskabernes Selskab</u>, <u>Bind 33</u>, 1-42, 1963.
- 15. Lindhard, J., M. Scharff and H.E. Schiøtt, Range consepts and heavy ion ranges (Notes on atomic collisions, II), <u>Matematisk-fysiske Meddelelser udgivet af Det Kongelige Danske Videnskabernes Selskab, Bind 33, nr. 14, 1-42, 1963.</u>
- 16. Molchanov, V.A. and V.G. Tel'kovskii, <u>Dolk. Akad. Nauk SSSR</u>, <u>136</u>, 801, 1961 [English transl.: <u>Soviet Physics - Doklady</u>, <u>6</u>, 137, 1961].
- Robinson, M.T., The influence of the scattering law on the radiation damage displacement cascade, <u>Philosophical Magazine</u>, 12, 741-765, 1965.
- Robinson, M.T., The influence of the scattering law on the radiation damage displacement cascade. II, <u>Philosophical</u> Magazine, 17, 639-642, 1968.
- 19. Rol, P.K., J.M. Fluit, and J. Kistemaker, Physica, <u>26</u>, 1000, 1960.
- 20. Scott, R.E., Thesis, <u>Massachusetts Institute of Technology</u>, 1976 (unpublished).
- 21. Sigmund, P. and J.B. Sanders, in <u>Proceedings of the Interna-</u> tional Conference on "Application of Ion Beams to Semiconductor Technology," edited by P. Glotin (Editions Ophrys, Paris, 1967), p.228.
- 22. Sigmund, P., Theory of sputtering.I. Sputtering yield of amorphous and polycrystalline targets, <u>Physical Review</u>, <u>184</u>, 383-416, 1969.
- 23. Taylor, R.S., <u>Lunar Science: A Post-Apollo View</u>, Pergamon Press, Inc., New York, 1975.
- 24. Wehner, G.K., Sputtering effects on the moon's surface, <u>General Mills Third Quarterly Status Report Covering Period</u> 25 October 1963 to 24 January 1964 (unpublished).
- 25. Wehner, G.K., D.L. Rosenberg and C.E. KenKnight, Investigation of sputtering effects on the moon's surface, <u>General</u> <u>Mills Fourth Quarterly Status Report Covering Period 25 January 1964a to 24 April 1964a (unpublished).</u>

## TABLES

| Energy of Incident $H^+$ (eV) | $\overline{E}_{T}(eV)$ | V <sub>p</sub> (km/sec) | E <sub>p</sub> (eV) |
|-------------------------------|------------------------|-------------------------|---------------------|
| 1000                          | 69.4                   | 18.2                    | 46.3                |
| 900                           | 62.5                   | .17.3                   | 41.7                |
| 800                           | 55.5                   | 16.3                    | 37.0                |
| 700                           | 48.6                   | 15.2                    | 32.4                |
| 600                           | 41.7                   | 14.1                    | 27.8                |
| 500                           | 37.7.                  | 12.9                    | 23.1                |
| 400                           | 27.8                   | 11.5                    | 18.5                |
| 300                           | 20.8                   | 10.0                    | 13.9                |
| 200                           | 13.9                   | 8.1                     | 9.3                 |
| 100                           | 6.9                    | 5.8                     | 4.6                 |
| 50                            | 3.5                    | 4.1                     | 2.3                 |
| 10                            | 0.7                    | 1.8                     | 0.5                 |
| 1                             | 0.1                    | 0.6                     | 0.05                |

| Table | 6. | Calculated | $\overline{E}_{T}$ , | v <sub>p</sub> , | and | <sup>Е</sup> р | for | aluminum | bombarded | by | нŤ |
|-------|----|------------|----------------------|------------------|-----|----------------|-----|----------|-----------|----|----|
|-------|----|------------|----------------------|------------------|-----|----------------|-----|----------|-----------|----|----|

| Energy of | Incident H <sup>+</sup> (eV)              | $\overline{\mathrm{E}}_{\mathrm{T}}^{}$ (eV) | V <sub>p</sub> (km/sec) | E <sub>p</sub> (eV)   |
|-----------|-------------------------------------------|----------------------------------------------|-------------------------|-----------------------|
|           | 1000                                      | 47.9                                         | 12.4                    | 31.9                  |
|           | 900                                       | 43.1                                         | 11.8                    | 28.7                  |
| •         | 800                                       | 38.3                                         | 11.1                    | 25.5                  |
|           | 700                                       | 33.5                                         | 10.4                    | 22.3                  |
|           | 600                                       | 28.7                                         | 9.6                     | 19.1                  |
|           | 500                                       | 23.9                                         | 8.8                     | 16.0                  |
|           | 400                                       | 19.1                                         | 7.8                     | 12.8                  |
|           | 300                                       | 14.4                                         | 6.8                     | 9.6                   |
|           | 200                                       | 9.5                                          | 5.5                     | 6.4                   |
|           | 100                                       | 4.7                                          | 3.9                     | 3.2                   |
|           | 50                                        | 2.4                                          | 2.8                     | 1.6                   |
|           | 10                                        | 0.5                                          | 1.2                     | 0.3                   |
|           | 1                                         | 0.05                                         | 0.4                     | 0.03                  |
| Table 7.  | Calculated $\overline{E}_{T}$ , $V_{p}$ , | and E for                                    | calcium bombar          | ded by H <sup>+</sup> |

| Energy of | Incident H <sup>+</sup> (eV) | $\overline{E}_{T}(eV)$ | V <sub>p</sub> (km/sec) | E <sub>p</sub> (eV) |
|-----------|------------------------------|------------------------|-------------------------|---------------------|
| ·         | 1000                         | 37.4                   | 9.6                     | 24.9                |
|           | 900                          | 33.6                   | 9.1                     | 22.4                |
|           | 800                          | 29.8                   | 8.6                     | 19.9                |
| •         | 700                          | 26.1                   | 8.0                     | 17.4                |
| - · ·     | 600                          | 22.4                   | 7.4                     | 14.9                |
| •         | 500                          | 18.7                   | 6.8                     | 12.5                |
|           | 400                          | 14.9                   | 6.1                     | 10.0                |
|           | 300                          | 11.2                   | 5.3                     | 7.5                 |
|           | 200                          | 7.5                    | 4.3                     | 5.0                 |
|           | 100                          | 3.7                    | 3.0                     | 2.5                 |
|           | 50                           | 1.9                    | 2.1                     | 1.3                 |
|           | 10                           | 0.4                    | 0.9                     | 0.3                 |
|           | 1                            | 0.04                   | 0.3                     | 0.03                |

| Table |
|-------|
|-------|

8.

Calculated  $\overline{E}_{T}$ ,  $V_{p}$ , and  $E_{p}$  for chromium bombarded by  $H^{+}$ 

| Energy of Incident H <sup>+</sup> (eV) | $\overline{\mathrm{E}}_{\mathrm{T}}^{}$ (eV) | $v_{p}$ (km/sec) | E <sub>p</sub> (eV) |
|----------------------------------------|----------------------------------------------|------------------|---------------------|
| 1000                                   | 30.7                                         | 7.9              | 20.5                |
| 900                                    | 27.7                                         | 7.5              | 18.5                |
| 800                                    | 24.6                                         | 7.1              | 16.4                |
| 700                                    | 21.5                                         | 6.6              | 14.4                |
| 600                                    | 18.4                                         | 6.1              | 12.3                |
| 500                                    | 15.4                                         | 5.6              | 10.3                |
| 400                                    | 12.3                                         | 5.0              | 8.2                 |
| 300                                    | 9.2                                          | 4.3              | 6.2                 |
| 200                                    | 6.1                                          | 3.5              | 4.1                 |
| 100                                    | 3.1                                          | 2.5              | 2.1                 |
| 50                                     | 1.5                                          | 1.8              | 1.0                 |
| 10                                     | 0.3                                          | 0.8              | 0.2                 |
| 1                                      | 0.03                                         | 0.2              | 0.02                |
| •                                      |                                              |                  |                     |

Table

9. Calculated  $\overline{E}_{T}$ ,  $V_{p}$ , and  $E_{p}$  for copper bombarded by  $H^{+}$ 

| Energy of | Incident $H^+$ | (eV)                              | $\overline{E}_{T}(eV)$ | V <sub>p</sub> (km/sec) | E <sub>p</sub> (eV) |
|-----------|----------------|-----------------------------------|------------------------|-------------------------|---------------------|
|           | 1000           |                                   | 10.1                   | 2.6                     | 6.8 <sup>.</sup>    |
|           | 900            |                                   | 9.1                    | 2.4                     | 6.1                 |
|           | 800            |                                   | 8.1                    | 2.3                     | 5.4                 |
|           | 700            |                                   | 7.1                    | 2.2                     | 4.7                 |
|           | 600            |                                   | 6.1                    | 2.0                     | 4.1                 |
|           | 500            |                                   | 5.1                    | 1.8                     | 3.4                 |
|           | 400            |                                   | 4.1                    | 1.6 <sup>.</sup>        | 2.7                 |
|           | 300            |                                   | 3.0                    | 1.4                     | 2.0                 |
|           | 200            |                                   | 2.0                    | 1.2                     | 1.4                 |
|           | 100            |                                   | 1.0                    | 0.8                     | 0.7                 |
|           | 50             |                                   | 0.5                    | 0.6                     | 0.3                 |
|           | 10             |                                   | 0.1                    | 0.3                     | 0.1                 |
|           | 1              |                                   | 0.01                   | 0.1                     | 0.01                |
| Table 10. | Calculated     | Ē <sub>T</sub> , v <sub>p</sub> , | and E for              | gold bombarded          | by H <sup>+</sup>   |

| 8.9<br>8.5<br>8.0<br>7.5<br>6.9 | 23.2<br>20.9<br>18.6<br>16.3<br>13.9                 |
|---------------------------------|------------------------------------------------------|
| 8.5<br>8.0<br>7.5<br>6.9        | 20.9<br>18.6<br>16.3<br>13.9                         |
| 8.0<br>7.5<br>6.9               | 18.6<br>16.3<br>13.9                                 |
| 7.5<br>6.9                      | 16.3<br>13.9                                         |
| 6.9                             | 13.9                                                 |
|                                 |                                                      |
| 6.3                             | 11.6                                                 |
| 5.7                             | 9.3                                                  |
| 4.9                             | 7.0                                                  |
| 4.0                             | 4.6                                                  |
| 2.8                             | 2.3                                                  |
| 2.0                             | 1.2                                                  |
| 0.9                             | 0.2                                                  |
| 0.3                             | 0.03                                                 |
|                                 | 6.3<br>5.7<br>4.9<br>4.0<br>2.8<br>2.0<br>0.9<br>0.3 |

Table 11. Calculated  $\overline{E}_{T}$ ,  $V_{p}$ , and  $E_{p}$  for iron bombarded by  $H^{+}$ 

| Energy of | Incident H <sup>+</sup> (eV) | $\overline{\mathrm{E}}_{\mathrm{T}}(\mathrm{eV})$ | V <sub>p</sub> (km/sec) | E <sub>p</sub> (eV) |
|-----------|------------------------------|---------------------------------------------------|-------------------------|---------------------|
|           | 1000                         | 35.4                                              | 9.1                     | 23.6                |
|           | 900                          | 31.8                                              | 8.6                     | 21.2                |
|           | 800                          | 28.3                                              | 8.1                     | 18.9                |
|           | 700                          | 24.7                                              | 7.6                     | 16.5                |
|           | 600                          | 21.2                                              | 7.1                     | 14.2                |
| •         | 500                          | 17.7                                              | 6.4                     | 11.8                |
|           | 400                          | 14.2                                              | 5.8                     | 9.4                 |
|           | 300 .                        | 10.6                                              | 5.0                     | 7.1                 |
|           | 200                          | 7.1                                               | 4.1                     | 4.7                 |
|           | 100                          | 3.5                                               | 2.9                     | 2.4                 |
|           | 50                           | 1.8                                               | 2.0                     | 1.2                 |
|           | 10                           | 0.4                                               | 0.9                     | 0.2                 |
|           | 1                            | 0.04                                              | 2.9                     | 0.03                |

Table 12. Calculated  $\overline{E}_{T}$ ,  $V_{p}$ , and  $E_{p}$  for manganese be

| bombarded | by | н+ |
|-----------|----|----|
| bombarded | by | Н  |

| Energy of Incident $H^{+}(eV)$ | $\overline{\mathrm{E}}_{\mathrm{T}}$ (eV) | Vp(km/sec) | E <sub>p</sub> (eV) |
|--------------------------------|-------------------------------------------|------------|---------------------|
| 1000                           | 76.4                                      | 20.1       | 51.0                |
| 900                            | 68.8                                      | 19.1       | 45.9                |
| 800                            | 61.2                                      | 18.0       | 40.8                |
| 700                            | 53.5                                      | 16.8       | 35.7                |
| 600                            | 45.9                                      | 15.6       | 30.6                |
| 500                            | 38.2                                      | 14.2       | 25.5                |
| 400                            | 30.6                                      | 12.7       | 20.4                |
| 300                            | 22.9                                      | 11.0       | 15.3                |
| 200                            | 15.3                                      | 9.0        | 10.2                |
| 100                            | 7.6                                       | 6.4        | 5.1                 |
| 50                             | 3.8                                       | 4.5        | 2:6                 |
| 10                             | 0.8                                       | 2.0        | 0.5                 |
| 1                              | 0.1                                       | 0.6        | 0.1                 |

Table 13. Calculated  $\overline{E}_{T}$ ,  $V_{p}$ , and  $E_{p}$  for magnesium bombarded by  $H^{+}$ 

| Energy of | Incident H <sup>+</sup> (eV)   | $\overline{\mathrm{E}}_{\mathrm{T}}(\mathrm{eV})$ | $v_{p}^{(km/sec)}$ | E <sub>p</sub> (eV)  |
|-----------|--------------------------------|---------------------------------------------------|--------------------|----------------------|
| •         | 1000                           | 33.2                                              | 8.5                | 22.1 <sup>.</sup>    |
|           | 900                            | 29.9                                              | 8.1                | 19.9                 |
|           | 800                            | 26.5                                              | 7.6                | 17.7                 |
| •         | 700                            | 23.2                                              | 7.1                | 15.5                 |
|           | 600                            | 19.9                                              | 6.6                | 13.3                 |
| •         | 500                            | 16.6                                              | 6.0                | 11.1                 |
|           | 400                            | 13.3                                              | 5.4                | 8.9                  |
|           | 300                            | 10.0                                              | 4.7                | 6.6                  |
|           | 200                            | 6.6                                               | 3.8                | 4.4                  |
|           | 100                            | 3.3                                               | 2.7                | 2.2                  |
|           | 50                             | 1.7                                               | 1.9                | 1.1                  |
|           | 10                             | 0.3                                               | 0.9                | 0.2                  |
|           | 1                              | 0.03                                              | 0.3                | 0.02                 |
| Table 14. | Calculated $\overline{E}_{T'}$ | $v_{p}$ , and $E_{p}$ for                         | nickel bombard     | ed by H <sup>+</sup> |

| Energy of | Incident H'(eV)                   | $\overline{\mathrm{E}}_{\mathrm{T}}^{}$ (eV) | V (km/sec)      | E <sub>p</sub> (eV)       |
|-----------|-----------------------------------|----------------------------------------------|-----------------|---------------------------|
|           | 1000                              | 49.0                                         | 12.7            | 32.7                      |
|           | 900                               | 44.1                                         | 12.1            | 29.4                      |
|           | 800                               | 39.2                                         | 11.4            | 26.1                      |
|           | 700                               | 34.3                                         | 10.6            | 22.9                      |
|           | 600                               | 29.4                                         | 9.8             | 19.6                      |
|           | 500                               | 24.5                                         | 9.0             | 16.3                      |
|           | 400                               | 19.6                                         | 8.0             | 13.1                      |
|           | 300                               | 14.7                                         | 7.0             | 9.8                       |
|           | 200                               | 9.8                                          | 5.7             | 6.5                       |
|           | 100                               | 4.9                                          | 4.0             | 3.3                       |
|           | 50                                | 2.5                                          | 2.8             | 1.6                       |
|           | 10                                | 0.5                                          | 1.3             | 0.3                       |
| i.        | 1                                 | 0.05                                         | 0.4             | 0.04                      |
| Table 15. | Calculated $\overline{E}_{T}$ , V | $p'$ and $E_p f$                             | or potassium bo | mbarded by H <sup>+</sup> |

| Energy of Incident H <sup>+</sup> (eV) | $\overline{E}_{T}(eV)$ | V <sub>p</sub> (km/sec) | $E_{p}(eV)$ |
|----------------------------------------|------------------------|-------------------------|-------------|
| 1000                                   | 66.9                   | 17.5                    | 44.6        |
| 900                                    | 60.2                   | .16.6                   | 40.3        |
| 800                                    | 53.5                   | 15.7                    | 35.7        |
| 700                                    | 46.8                   | 14.6                    | 31.2        |
| 600                                    | 40.1                   | 13.6                    | 26.8        |
| 500                                    | 33.4                   | 12.4                    | 22.3        |
| 400                                    | 26.8                   | 11.1                    | 17.8        |
| .300                                   | 20.1                   | 9.6                     | 13.4        |
| 200                                    | 13.4                   | 7.8                     | 8.9         |
| 100                                    | 6.7                    | 5.5                     | 4.5         |
| 50                                     | 3.3                    | 3.9                     | 2.2         |
| 10                                     | 0.7                    | 1.8                     | 0.5         |
| 1                                      | 0.07                   | 0.6                     | 0.1         |

|       |     |            |                  |     |     |   |     |         |           |    | +  |
|-------|-----|------------|------------------|-----|-----|---|-----|---------|-----------|----|----|
| Table | 16. | Calculated | E <sub>m</sub> , | V_, | and | E | for | silicon | bombarded | by | н' |
|       |     |            | - T.             | 0   |     | 0 |     |         |           |    |    |

| Energy of | Incident H <sup>+</sup> (eV)    | $\overline{\mathrm{E}}_{\mathrm{T}}$ (eV) | V <sub>p</sub> (km/s | ec) E <sub>p</sub> (eV) |
|-----------|---------------------------------|-------------------------------------------|----------------------|-------------------------|
|           | 1000                            | 18.3                                      | 4.7                  | 12.2                    |
|           | 900                             | 16.5                                      | 4.4                  | 11.0                    |
|           | 800                             | 14.7                                      | 4.2                  | 9.8                     |
|           | 700                             | 12.8                                      | 3.9                  | 8.6                     |
|           | 600                             | 11.0                                      | 3.6                  | 7.3                     |
|           | 500                             | 9.2                                       | 3.3                  | 6.1                     |
|           | 400                             | 7.3                                       | 3.0                  | 4.9                     |
|           | 300                             | 5.5                                       | 2.6                  | 3.7                     |
|           | 200                             | 3.7                                       | 2.1                  | 2.5                     |
|           | 100                             | 1.8                                       | 1.5                  | 1.2                     |
|           | 50                              | 0.9                                       | 1.0                  | 0.6                     |
|           | 10                              | 0.2                                       | 0.5                  | 0.1                     |
|           | 1                               | 0.02                                      | 0.1                  | 0.01                    |
| Table 17. | Calculated $\overline{E}_{T}$ , | $V_{p}$ , and $E_{p}$                     | for silver           | bombarded by $H^+$      |

| Energy of Incident H <sup>+</sup> (eV) | $\overline{E}_{T}(eV)$ | V <sub>p</sub> (km/sec) | E <sub>P</sub> (eV) |
|----------------------------------------|------------------------|-------------------------|---------------------|
| 1000                                   | 80.5                   | 21.2                    | 53.7                |
| 900                                    | 72.4                   | 20.1                    | 48.3                |
| 800                                    | 64.4                   | 19.0                    | 42.9                |
| 700                                    | 56.3                   | 17.8                    | 37.6                |
| 600                                    | 48.3                   | 16.4                    | 32.2                |
| 500                                    | 40.2.                  | 15.0                    | 26.8                |
| 400                                    | 32.2                   | 13.4                    | 21.5                |
| 300                                    | 24.1                   | 11.6                    | 16.1                |
| 200                                    | 16.1                   | 9.5                     | 10.7                |
| 100                                    | 8.0                    | 6.7                     | 5.4                 |
| 50                                     | 4.0                    | 4.7                     | 2.7                 |
| 10                                     | 0.8                    | 2.1                     | 0.5                 |
| 1                                      | 0.1                    | 0.7                     | 0.1                 |
|                                        |                        |                         |                     |

| Table | 18. | Calculated | $\overline{E}_{T}$ , | V <sub>p</sub> , | and | Б | for | sodium | bombarded | by | Н ' |
|-------|-----|------------|----------------------|------------------|-----|---|-----|--------|-----------|----|-----|
|-------|-----|------------|----------------------|------------------|-----|---|-----|--------|-----------|----|-----|

| Energy of | Incident H <sup>+</sup> (eV)    |                  | $\overline{\mathrm{E}}_{\mathrm{T}}(\mathrm{eV})$ |     | V <sub>p</sub> (km/sec | 2)     | E <sub>p</sub> (eV) |      |
|-----------|---------------------------------|------------------|---------------------------------------------------|-----|------------------------|--------|---------------------|------|
|           | 1000                            |                  | 40.4                                              |     | 10.4                   |        | 26.9                |      |
|           | 900                             |                  | 36.3                                              |     | 9.9                    |        | 24.2                |      |
|           | 800                             |                  | 32.3                                              |     | 9.3                    |        | 21.5                |      |
|           | 700                             |                  | 28.3                                              |     | 8.7                    |        | 18.8                |      |
|           | 600                             |                  | 24.2                                              |     | 8.1                    |        | 16.2                |      |
|           | 500                             |                  | 20.2                                              |     | 7.4                    |        | 13.5                |      |
|           | 400                             |                  | 16.1                                              |     | 6.6                    |        | 10.8                |      |
|           | 300                             |                  | 12.1                                              |     | 5.7                    |        | 8.1                 |      |
|           | 200                             |                  | 8.1                                               |     | 4.7                    |        | 5.4                 |      |
|           | 100                             |                  | 4.0                                               |     | 3.3                    |        | 2.7                 |      |
|           | 50                              |                  | 2.0                                               |     | 2.3                    |        | 1.4                 |      |
|           | 10                              |                  | 0.4                                               |     | 1.0                    |        | 0.3                 |      |
|           | 1                               |                  | 0.04                                              |     | 0.3                    |        | 0.03                |      |
| Table 19. | Calculated $\overline{E}_{T}$ , | v <sub>p</sub> , | and Ep                                            | for | titanium               | bombar | ded by              | . н+ |

| Energy of | Incident H <sup>+</sup> (eV)              | $\overline{E}_{T}(eV)$ | V <sub>p</sub> (km/sec) | E <sub>p</sub> (eV) |
|-----------|-------------------------------------------|------------------------|-------------------------|---------------------|
|           | 1000                                      | 29.9                   | 7.7                     | 19.9                |
|           | 900                                       | 26.9                   | 7.3                     | 17.9                |
|           | 800                                       | 23.9                   | 6.9                     | 16.0                |
|           | 700                                       | 20.9                   | 6.4                     | 14.0                |
|           | 600                                       | 17.9                   | 5.9                     | 12.0                |
| •         | 500                                       | 15.0                   | 5.4                     | 10.0                |
|           | 400                                       | 12.0                   | 4.9                     | 8.0                 |
|           | 300 .                                     | 9.0                    | 4.2                     | 6.0                 |
|           | 200                                       | 6.0                    | 3.4                     | 4.0                 |
|           | 100                                       | 3.0                    | 2.4                     | 2.0                 |
|           | 50                                        | 1.5                    | 1.7                     | 1.0                 |
|           | 10                                        | 0.3                    | 0.8                     | 0.2                 |
|           | 1                                         | 0.03                   | 0.2                     | 0.02                |
| Table 20. | Calculated $\overline{E}_{T}$ , $V_{p}$ , | and E for              | zinc bombarded          | by H <sup>+</sup>   |

| Energy of | Incident H <sup>+</sup> (eV)      | $\overline{\mathrm{E}}_{\mathrm{T}}$ (eV) | V (km/sec)      | E <sub>p</sub> (eV) |
|-----------|-----------------------------------|-------------------------------------------|-----------------|---------------------|
|           | 1000                              | 111.5                                     | 30.0            | 74.4                |
|           | 900                               | 100.4                                     | 28.4            | 66.9                |
|           | 800                               | 89.2                                      | 26.8            | 59.5                |
|           | 700                               | 78.1                                      | 25.1            | 52.1                |
|           | 600                               | 66.9                                      | 23.2            | 44.6                |
|           | 500                               | 55.7                                      | 21.1            | 37.2                |
|           | 400                               | 44.6                                      | 18.9            | 29.7                |
|           | 300                               | 33.5                                      | 16.4            | 22.3                |
|           | 200                               | 22.3                                      | 13.3            | 14.9                |
|           | 100                               | 11.2                                      | 9.5             | 7.4                 |
|           | 50                                | 5.6                                       | 6.7             | 3:7                 |
|           | 10                                | 1.1                                       | 3.0             | 0.7                 |
|           | 1                                 | 0.1                                       | 0.9             | 0.1                 |
| Table 20a | Calculated $\overline{E}_{T}$ , V | $V_{p}$ , and $E_{p}$ for                 | or oxygen bomba | arded by $H^+$      |

| Oxide                          | keV        | $10^{3}S_{H_{2}^{+}}$ | 10 <sup>3</sup> S <sub>H<sup>+</sup><sub>3</sub></sub> | Comment              |
|--------------------------------|------------|-----------------------|--------------------------------------------------------|----------------------|
| Al <sub>2</sub> O <sub>3</sub> | 7.0        | 10.5                  | 15.0                                                   |                      |
| $\mathtt{TiO}_{\mathbf{X}}$    | 6.0        | 7.5                   | 12.9                                                   | x=1.86<br>beam_shift |
| FeO <sub>x</sub>               | 6.5        | 12.7                  | 20.4                                                   | x=1.86               |
| $Fe_2O_3$<br>SiO <sub>2</sub>  | 7.0<br>7.5 | 9.4<br>83.0           | 12.8<br>92.0                                           | uniformity (?)       |

Table 21. Sputtering yield of oxides for  $H_2^+$  and  $H_3^+$  ions at normal incidence. [From Wehner, 1964].

| Oxide                          | keV | s <sub>H</sub> + | S <sub>H</sub> +(Eq.32) |
|--------------------------------|-----|------------------|-------------------------|
| Al_O                           | 7.0 | 0.005            | 0.010                   |
| 2 3                            | 7.0 | 0.006            | 0.010                   |
| TiO.                           | 6.0 | 0.004            | 0.013                   |
| A                              | 6.5 | 0.004            | 0.011                   |
| FeO <sub>X</sub>               | 6.5 | 0.006            | 0.011                   |
| Fe <sub>2</sub> O <sub>2</sub> | 7.0 | 0.005            | 0.013                   |
| Siố                            | 7.5 | 0.042            | 0.005                   |

Table 22. Sputtering yield of oxides for  $H^+$  at normal incidence. \* Values for  $S_{H^+}$  deduced from data given in Table 21.

| Oxide                          | $M_2/M_1$                      | <\[\] x <sup>2</sup> >/< x> <sup>2</sup>                     | <y<sup>2&gt;/<x><sup>2</sup></x></y<sup> |
|--------------------------------|--------------------------------|--------------------------------------------------------------|------------------------------------------|
| Al <sub>2</sub> O <sub>3</sub> | 101.2                          | 16.227                                                       | 16.278                                   |
| Cao                            | 55.6                           | 8.964                                                        | 9.043                                    |
| Fe0                            | 71.3                           | 11.461                                                       | 11.538                                   |
| Fe <sub>2</sub> O <sub>3</sub> | 158.4                          | 25.366                                                       | 25.304                                   |
| Fe <sub>3</sub> O <sub>4</sub> | 229.7                          | 36.740                                                       | 36.462                                   |
| MgO                            | 40.0                           | 6.468                                                        | 6.536                                    |
| MnO                            | 70.4                           | 11.317                                                       | 11.394                                   |
| TiO <sub>2</sub>               | 79.3                           | 12.735                                                       | 12.808                                   |
| Table 23.                      | Tabulation of t<br>for oxides. | the moments $\langle \Delta X^2 \rangle / \langle X \rangle$ | $^{2}$ and $(Y^{2})/(X)^{2}$             |

| Oxide                          | M <sub>2</sub> (amu) | E <sub>b</sub> (eV) |
|--------------------------------|----------------------|---------------------|
| Al <sub>2</sub> O <sub>3</sub> | 101.96               | 10.01               |
| CaO                            | 56.08                | 8.4                 |
| FeO                            | 71.85                | 13.1                |
| Fe <sub>2</sub> O <sub>3</sub> | 159.69               | 14.3                |
| Fe <sub>3</sub> O <sub>4</sub> | 231.54               | 13.8                |
| MgO                            | 40.31                | 7.9 <sup>1</sup>    |
| MnO                            | 70.94                | 10.6                |
| TiO,                           | 79.9                 | 10.3 <sup>1</sup>   |

Table 24. Molecular weight and binding energy of metal oxides. <sup>1</sup>From Kelly and Lam [1973].

| Energy of | Incident H <sup>+</sup> (eV)                | $\overline{E}_{T}(eV)$ | V <sub>p</sub> (km/sec)                  | E <sub>p</sub> (eV)   |
|-----------|---------------------------------------------|------------------------|------------------------------------------|-----------------------|
|           | 1000                                        | 19.4                   | 4.9                                      | 12.9                  |
|           | 900                                         | 17.4                   | 4.7                                      | 23.3                  |
|           | 800                                         | 15.5                   | 4.4                                      | 11.6                  |
|           | 700                                         | 13.6                   | 4.1                                      | 9.1                   |
|           | 600                                         | 11.6                   | 3.8                                      | 7.8                   |
|           | 500                                         | 9.7                    | 3.5                                      | 6.5                   |
|           | 400                                         | 7.8                    | 3.1                                      | 5.2                   |
|           | 300                                         | 5.8                    | 2.7                                      | 3.9                   |
|           | 200                                         | 3.9                    | 2.2                                      | 2.6                   |
|           | 100                                         | 1.9                    | 1.6                                      | 1.3                   |
|           | 50                                          | 1.0                    | 1.1                                      | 0.7                   |
|           | 10                                          | 0.2                    | 0.5                                      | 0.1                   |
|           | 1                                           | 0.01                   | 0.2                                      | 0.02                  |
| Table 25. | Calculated $\overline{E}_{\pi}$ , $V_{p}$ , | and E <sub>p</sub> for | Al <sub>2</sub> 0 <sub>3</sub> bombarded | l by H <sup>+</sup> . |

| τ. | Р | P | 2 J |
|----|---|---|-----|
|    |   |   |     |
|    |   |   |     |

| Energy of Incident H <sup>+</sup> (eV)    | $\overline{\mathrm{E}}_{\mathrm{T}}^{}(\mathrm{eV})$ | $v_{p}(km/sec)$ | E <sub>p</sub> (eV) |
|-------------------------------------------|------------------------------------------------------|-----------------|---------------------|
| 1000                                      | 34.7                                                 | 8.9             | 23.1                |
| 900                                       | 31.2                                                 | 8.5             | 20.8                |
| 800                                       | 27.8                                                 | 8.0             | 18.5                |
| 700                                       | 24.3                                                 | 7.5             | 16.2                |
| 600                                       | 20.8                                                 | 6.9             | 13.9                |
| 500                                       | 17.3                                                 | 6.3             | 11.6                |
| 400                                       | 13.9                                                 | 5.6             | 9.3                 |
| 300                                       | 10.4                                                 | 4.9             | 6.9                 |
| 200                                       | 6.9                                                  | 4.0             | 4.6                 |
| 100                                       | 3.5                                                  | 2.8             | 2.3                 |
| 50                                        | 1.7                                                  | 2.0             | 1.2                 |
| 10                                        | 0.3                                                  | 0.9             | 0.2                 |
| 1                                         | 0.04                                                 | 0.3             | 0.03                |
| Table 26. Calculated $\overline{E}_{T}$ , | $v_{p}$ , and $E_{p}$ for                            | CaO bombarded   | by H <sup>+</sup>   |

| Energy of Incident H <sup>+</sup> (eV)    | $\overline{E}_{T}(eV)$    | $v_{p}^{km/sec}$ | E <sub>p</sub> (eV) |
|-------------------------------------------|---------------------------|------------------|---------------------|
| 1000                                      | 27.3                      | 7.0              | 18.2                |
| 900                                       | 24.6                      | .6.6             | 16.4                |
| 800                                       | 21.8                      | 6.3              | 14.6                |
| 700                                       | 19.1                      | 5.8              | 12.7                |
| 600                                       | 16.4                      | 5.4              | 10.9                |
| 500                                       | 13.6                      | 4.9              | 9.1                 |
| 400                                       | 10.9                      | 4.4              | 7.3                 |
| 300                                       | 8.2                       | 3.8              | 5.5                 |
| 200                                       | 5.5                       | 3.1              | 3.6                 |
| 100                                       | 2.7                       | 2.2              | 1.8                 |
| 50                                        | 1.4                       | 1.6              | 0.9                 |
| 10                                        | 0.3                       | 0.7              | 0.2                 |
| 1                                         | 0.03                      | 0.2              | 0.02                |
| Table 27. Calculated $\overline{E}_{T}$ , | $v_{p}$ , and $E_{p}$ for | FeO bombarded    | by H <sup>+</sup>   |

Energy of Incident  $H^{+}(eV) = \overline{E}_{T}(eV) = V_{p}(km/sec) = E_{p}(eV)$ 1000 12.5 3.1 8.3 900 11.2 3.0 7.5 800 10.0 2.8 6.7

|           | 700                               | 8.7         | 2.7                                     | 5.8                 |
|-----------|-----------------------------------|-------------|-----------------------------------------|---------------------|
|           | 600                               | 7.5         | 2.5                                     | 5.0                 |
|           | 500                               | 6.2         | 2.2                                     | 4.2                 |
|           | 400                               | 5.0         | 2.0                                     | 3.3                 |
|           | 300                               | 3.7         | 1.7                                     | 2.5                 |
|           | 200                               | 2.5         | 1.4                                     | 1.7                 |
|           | 100                               | 1.2         | 1.0                                     | 0.8                 |
|           | 50                                | 0.6         | 0.7                                     | 0.4                 |
|           | 10                                | 0.1         | 0.3                                     | 0.1                 |
|           | 1                                 | 0.01        | 0.1                                     | 0.01                |
| Table 28. | Calculated $\overline{E}_{T}$ , V | , and E for | Fe <sub>2</sub> 0 <sub>3</sub> bombarde | d by H <sup>+</sup> |

| Energy of | Incident H <sup>+</sup> (eV)                                                          | $\overline{\mathrm{E}}_{\mathrm{T}}^{}$ (eV)                                             | $v_{p}^{(km/sec)}$                                                                      | E <sub>p</sub> (eV)                                                                      |
|-----------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|           | 1000<br>900<br>800<br>700<br>600<br>500<br>400<br>300<br>200<br>100<br>50<br>10<br>10 | 8.6<br>7.8<br>6.9<br>6.0<br>5.2<br>4.3<br>3.5<br>2.6<br>1.7<br>0.9<br>0.4<br>0.1<br>0.01 | 2.2<br>2.1<br>2.0<br>1.8<br>1.7<br>1.5<br>1.4<br>1.2<br>1.0<br>0.7<br>0.5<br>0.2<br>0.1 | 5.8<br>5.2<br>4.6<br>4.0<br>3.5<br>2.9<br>2.3<br>1.8<br>1.2<br>0.6<br>0.3<br>0.1<br>0.01 |
|           |                                                                                       |                                                                                          |                                                                                         |                                                                                          |

Table 29. Calculated  $\overline{E}_{T}$ ,  $V_{p}$ , and  $E_{p}$  for Fe<sub>3</sub>O<sub>4</sub> bombarded by H<sup>+</sup>

| Energy of Incident H <sup>+</sup> (eV) | $\overline{\mathrm{E}}_{\mathrm{T}}$ (eV) | $v_{p}^{(km/sec)}$ | E <sub>p</sub> (eV) |
|----------------------------------------|-------------------------------------------|--------------------|---------------------|
| 1000                                   | 47.6                                      | 12.3               | 31.8                |
| 900                                    | 42.8                                      | 11.7               | 28.6                |
| 800                                    | 38.1                                      | 11.0               | 25.4                |
| 700                                    | 33.3                                      | 10.3               | 22.2                |
| 600                                    | 28.6                                      | 9.6                | 19.0                |
| 500                                    | 23.8                                      | 8.7                | 15.9                |
| 400                                    | 19.0                                      | 7.8                | 12.7                |
| 300                                    | 14.3                                      | 6.8                | 9.5                 |
| 200                                    | 9.5                                       | 5.5                | 6.4                 |
| 100                                    | 4.8                                       | 3.9                | 3.2                 |
| 50                                     | 2.4                                       | 2.8                | 1.6                 |
| 10                                     | 0.5                                       | 1.2                | 0.3                 |
| 1                                      | 0.05                                      | 0.4                | 0.03                |

Table 30. Calculated  $\overline{E}_{T}$ ,  $V_{p}$ , and  $E_{p}$  for MgO bombarded by H<sup>+</sup>

| Energy of | Incident H <sup>+</sup> (eV)                        | $\overline{E}_{T}(eV)$ | V <sub>p</sub> (km/sec) | E <sub>p</sub> (eV) |
|-----------|-----------------------------------------------------|------------------------|-------------------------|---------------------|
|           | 1000                                                | 27.6                   | 7.1                     | 18.4                |
| •         | 900                                                 | 24.9                   | 6.7                     | 16.6                |
|           | 800                                                 | 22.1                   | 6.3                     | 14.7                |
|           | 700                                                 | 19.3                   | 5.9                     | 12.9                |
|           | 600                                                 | 16.6                   | 5.5                     | 11.1                |
|           | 500                                                 | 13.8.                  | 5.0                     | 9.2                 |
|           | 400                                                 | 11.1                   | 4.4                     | 7.4                 |
|           | 300                                                 | 8.3                    | 3.9                     | 5.5                 |
| ,         | 200                                                 | 5.5                    | 3.2                     | 3.7                 |
|           | 100                                                 | 2.8                    | 2.2                     | 1.8                 |
|           | 50                                                  | 1.4                    | 1.6                     | 0.9                 |
|           | 10                                                  | 0.3                    | 0.7                     | 0.2                 |
|           | 1                                                   | 0.03                   | 0.2                     | 0.02                |
| Table 31. | Calculated $\overline{\mathrm{E}}_{\mathrm{T}}$ , V | $p'$ , and $E_p$ for   | MnO bombarded           | by H <sup>+</sup>   |

| Energy of Incident H <sup>+</sup> (eV)      | $\overline{\mathrm{E}}_{\mathrm{T}}$ (eV) | Vp(km/sec)                  | E <sub>p</sub> (eV)   |
|---------------------------------------------|-------------------------------------------|-----------------------------|-----------------------|
| 1000                                        | 24.6                                      | 6.3                         | 16.4                  |
| 900                                         | 22.1                                      | 6.0                         | 14.8                  |
| 800                                         | 19.7                                      | 5.6                         | 13.1                  |
| 700                                         | 17.2                                      | 5.3                         | 11.5                  |
| 600                                         | 14.8                                      | 4.9                         | 9.8                   |
| 500                                         | 12.3                                      | 4.5                         | 8.2                   |
| 400                                         | 9.8                                       | 4.0                         | 6.6                   |
| 300                                         | 7.4                                       | 3.4                         | 4.9                   |
| 200                                         | 4.9                                       | 2.8                         | 3.3                   |
| 100                                         | 2.5                                       | 2.0                         | 1.6                   |
| 50                                          | 1.2                                       | 1.4                         | 0.8                   |
| 10                                          | 0.2                                       | 0.6                         | 0.2                   |
| 1                                           | 0.03                                      | 0.2                         | 0.02                  |
| Table 32. Calculated $\overline{E}_{T}$ , V | p' and E f                                | or TiO <sub>2</sub> bombard | led by H <sup>+</sup> |

| Oxide                          | Maria<br>(wt %) | Highlands<br>(wt %) |
|--------------------------------|-----------------|---------------------|
| SiO <sub>2</sub>               | 45.4            | 45.5                |
| TiO <sub>2</sub>               | 3.9             | 0.6                 |
| Al <sub>2</sub> O <sub>3</sub> | 14.9            | 24.0                |
| FeO                            | 14.1            | 5.9                 |
| MgO                            | 9.2             | 7.5                 |
| CaO                            | 11.8            | 15.9                |
| Na <sub>2</sub> 0              | 0.6             | 0.6                 |
| κ <sub>2</sub> Ο               |                 |                     |

Table 33. Average chemical composition of Lunar Surface Regolith. [From Taylor, 1975].

| Site                   | Coord  | inates . | Field<br>Magnitude(γ) |
|------------------------|--------|----------|-----------------------|
| Apollo 12<br>Apollo 14 | 3.2°5  | 23.4°W   | 38                    |
| Site A                 | 3.2°S  | 17.2°W   | 103                   |
| Site C'                | 2.6°S  | 15.5°W   | 43                    |
| Apollo 15              | 26.1°N | 3.7°E    | 3                     |
| Apollo 16              |        |          |                       |
| ALSEP                  | 8.9°S  | 15.5°E   | 234                   |
| Site 2                 | 9.0°S  | 15,5°E   | 189                   |
| Site 5                 | 9.1°S  | 15.5°E   | 112                   |
| Site 13                | 8.9°S  | 15.5°E   | 327                   |
| FRPS                   | 9.0°S  | 15.5°E   | 113                   |
| Taylor Crater          | 16.0°E | 4.5°S    | 20                    |
| Alfraganus Crater      | 19.0°E | 5.0°S    | . 83                  |
| M. Tranquilitatis      | 26.5°E | 5.0°S    | 86                    |
| Toricelli R            | 29.0°E | 6.0°S    | 30                    |
| Capella CA             | 36.0°E | 6.5°S    | 85                    |
| Capella D              | 39.0°E | 6.5°S    | 75                    |
| Gutenberg G            | 40.5°E | 6.0°S    | 43                    |
| M. Fecunditatis        | 42.5°E | 6.0°S    | 100                   |

Table 34. Summary of Lunar remanent magnetic field. From [Dyal <u>et al.</u>, 1972 and Lin <u>et al.</u>, 1976].

· 91

| Site              | β       | Final Velocity<br>of H <sup>+</sup> (km/sec) | Final Energy<br>of H <sup>+</sup> (eV) |
|-------------------|---------|----------------------------------------------|----------------------------------------|
| Apollo 12         | 2.788   | 351.9                                        | 641.3                                  |
| Apollo 14         | 0 300   | -561 9                                       | 1635 0                                 |
| SILE A            | 0.300   | -201.0                                       | 540 7                                  |
| Site C            | 2.1/0   | 525.I<br>420 7                               | 007 1                                  |
| Apollo 15         | 348.300 | 430.7                                        | 997.1                                  |
| Apollo 16         | 0 074   | 1560 0                                       | 12600 0                                |
| ALSEP             | 0.074   | -1560.0                                      | 12000.0                                |
| Site 2            | 0.113   | -1233.0                                      | 7872.0                                 |
| Site 5            | 0.321   | -639.0                                       | 2115.0                                 |
| Site 13           | 0.038   | -2221.0                                      | 25560.0                                |
| FRPS              | 0.315   | -674.4                                       | 2171.0                                 |
| Taylor Crater     | 10.070  | 417.0                                        | 900.6                                  |
| Alfraganus Crater | 0.584   | -370.5                                       | 711.0                                  |
| M. Tranquilitatis | 0.544   | -401.9                                       | 836.9                                  |
| Toricelli R       | 4.464   | 387.2                                        | 776.4                                  |
| Capella CA        | 0.557   | -391.6                                       | 794.4                                  |
| Capella D         | 0.716   | -276.9                                       | 397.1                                  |
| Gutenberg G       | 2,178   | 323.1                                        | 540.7                                  |
| M. Fecunditatis   | 0.403   | -535.2                                       | 1484.0                                 |

Table 35. The ratio of solar-wind plasma pressure to total magnetic field pressure.

| Site                                  | Oxide      | [Sputtering Rate<br>Atoms/cm <sup>2</sup> year | at Moon]<br>Å/year     | Metal   | [Sputtering Rate<br>Atoms/cm <sup>2</sup> year | at Moon]<br>A/year |
|---------------------------------------|------------|------------------------------------------------|------------------------|---------|------------------------------------------------|--------------------|
| Apollo 12                             | AlaOa      | $0.91 \times 10^{15}$                          | 3.0                    | Al      | $0.69 \times 10^{15}$                          | 2.3                |
| APOILO 12                             |            | 1.61 "                                         | 5.3                    | Ca      | 1.14 "                                         | 3.8                |
|                                       | FeO        | 0.72 "                                         | 2.4                    | Cr      | 0.43 "                                         | 1.4                |
|                                       | MaO        | 1.33 "                                         | 4.4                    | Cu      | 0.41 "                                         | 1.4                |
|                                       | MnO        | 0.81 "                                         | 2.7                    | Fe      | 0.40 "                                         | 1.3                |
|                                       | TiOn       | 0.83 "                                         | 2.8                    | ĸ       | 2.18 "                                         | 7.2                |
|                                       | 1102       | · · · · · ·                                    |                        | Ma      | 1.61 "                                         | 5.3                |
|                                       |            |                                                |                        | Mn      | 0.58 "                                         | 1.9                |
|                                       |            |                                                |                        | Na      | 2.17 "                                         | 7.2                |
|                                       |            |                                                |                        | Si      | 0.51 "                                         | 1.7                |
|                                       |            |                                                |                        | Ti      | 0.38 "                                         | 1.3                |
|                                       |            |                                                | 3 0                    | רב      | $0.69 \times 10^{15}$                          | 2.3                |
|                                       | A1203      |                                                | 53                     | Ca      | 1 1 "                                          | 3.7                |
| Site C                                | CaU<br>FoO | 0.73 "                                         | 2 1                    | Cr      | 0 42 "                                         | 1.4                |
| (Gutenberg G)                         | reo        | 0.75<br>1.22 "                                 | 2. <del>4</del><br>1 1 |         | 0 44 "                                         | 1.5                |
|                                       | MgO        | T.22                                           | 2 7                    | Fo      | 0.40 "                                         | 1.3 W              |
|                                       |            |                                                | 2.7                    | K<br>LG | 2 15 "                                         | 7.1                |
|                                       | 1102       | 0.04                                           | 2.0                    | Ma      | 1 59 "                                         | 5.3                |
|                                       |            |                                                |                        | Mn      | 0.57 "                                         | 1.9                |
|                                       |            |                                                |                        | Na      | 213 "                                          | 7.1                |
|                                       |            |                                                |                        | Si      | 0.51 "                                         | 1.7                |
|                                       |            |                                                |                        | Ti      | 0.37 "                                         | 1.2                |
| · · · · · · · · · · · · · · · · · · · |            | 0.05 - 1015                                    | 2 0                    | ר`ר     | $0.72 \times 10^{15}$                          | 2 /                |
| APOLIO 15                             | AL203      | 0.85 X 10                                      | 2.0                    | AL      |                                                | 2.4                |
| •                                     | CaO        | 1.59                                           | 5.3                    | Ca      |                                                | 15                 |
|                                       | reo        |                                                | 2.2                    |         | 0.45                                           | 1.5                |
|                                       | MgO        | 1.29 "                                         | 4.3                    | Cu      | 0.32                                           |                    |
|                                       | MnO        | 0.76 "                                         | 2.5                    | re      |                                                | 1.4                |
|                                       | T102       | 0.75 "                                         | 2.5                    | K       | 2.2/                                           | 7.5                |
|                                       |            |                                                |                        | мg      |                                                | 2.2                |
|                                       |            |                                                |                        | Mn      | U.61 "                                         |                    |
|                                       |            |                                                |                        | Na      |                                                | 1.0                |
|                                       |            |                                                |                        | Si      | 0.52 "                                         | 1.7                |
|                                       |            |                                                |                        | TI.     | 0.40 "                                         | د.⊥                |

| Site          | Oxide                                                                          | [Sputtering Rate<br>Atoms/cm <sup>2</sup> year                            | at Moon]<br>Å/year                     | Metal                                                         | [Sputtering Rate<br>Atoms/cm <sup>2</sup> year                                                                              | at Moon]<br>Å/year                                                        |
|---------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Taylor Crater | Al <sub>2</sub> O <sub>3</sub><br>CaO<br>FeO<br>MgO<br>MnO<br>TiO2             | 0.86 x 10 <sup>15</sup><br>1.59 "<br>0.68 "<br>1.30 "<br>0.78 "<br>0.77 " | 2.9<br>5.3<br>2.3<br>4.3<br>2.6<br>2.6 | Al<br>Ca<br>Cr<br>Cu<br>Fe<br>K<br>Mg<br>Mn<br>Na<br>Si<br>Ti | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                        | 2.4<br>3.9<br>1.5<br>1.2<br>1.4<br>7.4<br>5.5<br>2.0<br>7.3<br>1.7<br>1.3 |
| Toricelli R   | Al <sub>2</sub> O <sub>3</sub><br>CaO<br>FeO<br>MgO<br>MnO<br>TiO <sub>2</sub> | $0.89 \times 10^{15}$<br>1.59 "<br>0.71 "<br>1.31 "<br>0.76 "<br>0.79 "   | 2.9<br>5.3<br>2.4<br>4.3<br>2.6<br>2.6 | Al<br>Ca<br>Cr<br>Cu<br>Fe<br>K<br>Mg<br>Mn<br>Na<br>Si<br>Ti | 0.71 x 10 <sup>15</sup><br>1.16 "<br>0.44 "<br>0.38 "<br>0.41 "<br>2.22 "<br>1.61 "<br>0.59 "<br>2.18 "<br>0.52 "<br>0.38 " | 2.4<br>3.8<br>1.5<br>1.3<br>1.4<br>7.4<br>5.4<br>2.0<br>7.3<br>1.7<br>1.3 |

Table 36. Estimate of the sputtering rates at the lunar surface.

| Energy of Incident H <sup>+</sup> (eV) | $\mathbf{F}_{\mathbf{T}}$ | Fp     |
|----------------------------------------|---------------------------|--------|
| 1000                                   | 0.929                     | 0.465  |
| 900                                    | 0.921                     | 0.461  |
| 800                                    | 0.912                     | 0.456  |
| 700                                    | 0.899                     | 0.450  |
| 600                                    | 0.883                     | 0.442  |
| 500                                    | 0.871                     | 0.436  |
| 400                                    | 0.830                     | 0.415  |
| 300                                    | 0.778                     | 0.389  |
| 200                                    | 0.685                     | 0.343  |
| 100                                    | 0.463                     | 0.232  |
| 50                                     | 0.207                     | 0.104  |
| 10                                     | 0.0002                    | 0.0001 |
| 1                                      | 0                         | 0      |
|                                        |                           | -      |

Table 37. Calculated  ${\rm F}^{}_{\rm T}$  , and  ${\rm F}^{}_{\rm p}$  for aluminum bombarded by  ${\rm H}^+$ 

| Energy of | Incident H <sup>+</sup> (eV) | ) .     | · •, | $\mathbf{F}_{\mathbf{T}}$ |           | FF | )     |
|-----------|------------------------------|---------|------|---------------------------|-----------|----|-------|
|           | 1000                         |         |      | 0.940                     |           | 0. | 470   |
|           | 900                          |         |      | 0.933                     |           | 0. | 467   |
|           | 800                          |         |      | 0.924                     |           | 0. | 462   |
|           | 700                          |         |      | 0.913                     |           | 0. | 457   |
|           | 600                          |         |      | 0.900                     |           | 0. | 450   |
|           | 500                          |         |      | 0.879                     |           | 0. | 440   |
|           | 400                          |         |      | 0.849                     |           | 0. | 425   |
|           | 300                          |         |      | 0.802                     |           | 0. | 401   |
|           | 200                          |         |      | 0.711                     |           | 0. | 356   |
|           | 100                          |         |      | 0.488                     |           | 0. | 244   |
|           | 50                           |         |      | 0.349                     |           | 0. | 175   |
|           | 10                           |         |      | 0.0002                    | 2         | 0. | .0001 |
|           | 1                            |         |      | 0                         |           |    | 0     |
| Table 38. | Calculated F <sub>T</sub>    | , and F | for  | calcium                   | bombarded | by | н+    |

| Energy of Incident H <sup>+</sup> (eV) | $\mathbf{F}_{\mathbf{T}}$ | $^{ m F}{}_{ m p}$ |
|----------------------------------------|---------------------------|--------------------|
| 1000                                   | 0.837                     | 0.419              |
| 900                                    | 0.822                     | 0.411              |
| 800                                    | 0.802                     | 0.401              |
| 700                                    | 0.776                     | 0.388              |
| 600                                    | 0.742                     | 0.371              |
| 500                                    | 0.698                     | 0.349              |
| 400                                    | 0.635                     | 0.318              |
| 300                                    | 0.542                     | 0.271              |
| 200                                    | 0.392                     | 0.196              |
| 100                                    | 0.144                     | 0.072              |
| 50                                     | 0.018                     | 0.009              |
| 10                                     | 0                         | 0                  |
| 1                                      | 0                         | 0                  |

|       |     |            |                  |     |                           |     |          |           |    | _L. |
|-------|-----|------------|------------------|-----|---------------------------|-----|----------|-----------|----|-----|
| Table | 39. | Calculated | F <sub>T</sub> ′ | and | $^{\mathrm{F}}\mathrm{p}$ | for | chromium | bombarded | by | ΗŤ  |

Energy of Incident H<sup>+</sup>(eV)

 $\mathbf{F}_{\mathbf{T}}$ Fp 1000 0.827 0.414 900 0.808 0.404 800 0.393 700 0.379 0.758 0.361 600 0.722 500 0.674 0.337 0.303 400 0.606 300 0.507 0.254 200 0.351 0.176 100 0.113 0.057 50 0.055 0.028 10 0 0 0 1 0

Table 40.

Calculated  $F_{T}$ , and  $F_{p}$  for copper bombarded by  $H^{+}$ 

| Energy of | Incident H <sup>+</sup> (eV) | FT      | Fp    |
|-----------|------------------------------|---------|-------|
|           | 1000                         | - 0.363 | 0.182 |
|           | 900                          | 0.319   | 0.160 |
|           | 800                          | 0.272   | 0.136 |
|           | 700                          | 0.219   | 0.110 |
|           | 600                          | 0.164   | 0.082 |
|           | 500                          | 0.109   | 0.055 |
|           | 400                          | . 0.058 | 0.029 |
|           | 300                          | 0.020   | 0.010 |
|           | 200                          | 0.002   | 0.001 |
|           | 100                          | 0       | 0     |
| ,         | 50                           | 0       | 0     |
|           | 10                           | 0       | 0     |
|           | 1                            | 0       | 0     |

Table 41. Calculated  ${\rm F}^{}_{\rm T}\text{,}$  and  ${\rm F}^{}_{\rm p}$  for gold bombarded by  ${\rm H}^+$ 

| Energy of Incident H <sup>+</sup> (eV) | • F <sub>T</sub> | Fp    |
|----------------------------------------|------------------|-------|
| 1000                                   | 0.820            | 0.410 |
| 900                                    | 0.801            | 0.401 |
| 800                                    | 0.779            | 0.390 |
| 700                                    | 0.750            | 0.375 |
| 600                                    | 0.714            | 0.357 |
| 500                                    | 0.666            | 0.333 |
| 400                                    | 0.599            | 0.300 |
| 300                                    | 0.500            | 0.250 |
| 200                                    | 0.336            | 0.168 |
| 100                                    | 0.111            | 0.056 |
| 50                                     | 0.010            | 0.005 |
| 10                                     | 0                | 0     |
| 1                                      | 0                | . 0   |
| ,                                      |                  |       |

Table 42. Calculated  $F_{T}$ , and  $F_{p}$  for iron bombarded by  $H^{+}$ 

| Energy of Incident H <sup>+</sup> (eV) | , <sup>F</sup> T | Fp    |
|----------------------------------------|------------------|-------|
| 1000                                   | - 0.969          | 0.485 |
| 900                                    | 0.966            | 0.483 |
| 800                                    | 0.961            | 0.481 |
| 700                                    | 0.956            | 0.478 |
| 600                                    | 0.948            | 0.474 |
| 500                                    | 0.939            | 0.470 |
| 400                                    | 0.923            | 0.462 |
| 300                                    | 0.898            | 0.449 |
| 200                                    | 0.849            | 0.425 |
| 100                                    | 0.714            | 0.357 |
| 50                                     | 0.497            | 0.249 |
| 10                                     | 0.021            | 0.011 |
| l                                      | 0                | 0     |

Table 43. Calculated  ${\rm F}^{}_{\rm T},$  and  ${\rm F}^{}_{\rm p}$  for magnesium bombarded by  ${\rm H}^+$ 

| Energy of | Incident H <sup>+</sup> (e' | V)      | F <sub>T</sub>    | Fp                   |
|-----------|-----------------------------|---------|-------------------|----------------------|
|           | 1000                        |         | 0.870             | 0.435                |
|           | 900                         |         | 0.856             | 0.428                |
|           | 800                         |         | 0.839             | 0.420                |
|           | 700                         |         | 0.817             | 0.409                |
|           | 600                         |         | 0.788             | 0.394                |
|           | 500                         |         | 0.750             | 0.375                |
|           | 400                         |         | 0.694             | 0.347                |
|           | 300                         |         | 0.610             | 0.305                |
|           | 200                         |         | 0.467             | 0.234                |
|           | 100                         |         | 0.202             | 0.101                |
|           | 50                          |         | 0.035             | 0.018                |
|           | 10                          |         | 0                 | 0                    |
|           | 1                           |         | 0                 | 0                    |
| Table 44. | Calculated F                | , and F | for manganes<br>P | e bombarded by $H^+$ |

| Energy of Incident H <sup>+</sup> (eV) | FT    | Fp    |
|----------------------------------------|-------|-------|
| 1000                                   | 0.806 | 0.403 |
| 900                                    | 0.786 | 0.393 |
| 800                                    | 0.762 | 0.381 |
| 700                                    | 0.731 | 0.366 |
| 600                                    | 0.693 | 0.347 |
| 500                                    | 0.642 | 0.321 |
| 400                                    | 0.571 | 0.286 |
| . 300                                  | 0.469 | 0.235 |
| 200                                    | 0.314 | 0.157 |
| 100                                    | 0.090 | 0.045 |
| 50                                     | 0.008 | 0.004 |
| 10                                     | 0     | 0     |
| 1                                      | 0     | 0     |

Table 45. Calculated  $F_{T}$ , and  $F_{p}$  for nickel bombarded by  $H^{+}$ 

| Energy of Incident H <sup>+</sup> (eV) | FT    | Fp    |  |  |
|----------------------------------------|-------|-------|--|--|
| 1000                                   | 0.970 | 0.485 |  |  |
| 900                                    | 0.966 | 0.483 |  |  |
| 800                                    | 0.958 | 0.479 |  |  |
| 700                                    | 0.952 | 0.476 |  |  |
| 600                                    | 0.944 | 0.472 |  |  |
| 500                                    | 0.932 | 0.466 |  |  |
| 400                                    | 0.914 | 0.457 |  |  |
| 300                                    | 0.883 | 0.442 |  |  |
| 200                                    | 0.823 | 0.412 |  |  |
| 100                                    | 0.655 | 0.328 |  |  |
| 50                                     | 0.397 | 0.199 |  |  |
| 10                                     | 0.030 | 0.015 |  |  |
| 1                                      | 0     | 0     |  |  |

Table 46. Calculated  $F_{T}$ , and  $F_{p}$  for potassium bombarded by  $H^{+}$ 

| Energy of Incident H <sup>+</sup> (eV) | $\mathbf{F}_{\mathbf{T}}$ | Fp    |
|----------------------------------------|---------------------------|-------|
| 1000                                   | 0.899                     | 0.450 |
| 900                                    | 0.889                     | 0.445 |
| 800                                    | 0.875                     | 0.438 |
| 700                                    | 0.859                     | 0.430 |
| 600                                    | 0.837                     | 0.419 |
| 500                                    | 0.808                     | 0.404 |
| 400                                    | 0.766                     | 0.383 |
| 300                                    | 0.699                     | 0.350 |
| 200                                    | 0.582                     | 0.291 |
| 100                                    | 0.335                     | 0.168 |
| 50                                     | 0.033                     | 0.017 |
| 10                                     | 0                         | 0     |
| 1                                      | 0                         |       |

Table 47. Calculated  $F_{T'}$  and  $F_{p}$  for silicon bombarded by  $H^+$ 

| Energy of Incident H (eV)          | FT                   | F<br>p               |
|------------------------------------|----------------------|----------------------|
| 1000                               | 0.719                | 0.360                |
| 900                                | 0.690                | 0.345                |
| 800                                | 0.655                | 0.328                |
| 700                                | 0.612                | 0.306                |
| 600                                | 0.558                | 0.279                |
| 500                                | 0.489                | 0.245                |
| 400                                | 0.400                | 0.200                |
| 300                                | 0.282                | 0.141                |
| 200                                | 0.138                | 0.069                |
| 100                                | 0.026                | 0.013                |
| 50                                 | 0.0001               | 0.00005              |
| 10                                 | 0                    | 0                    |
| 1                                  | 0                    | 0                    |
| Table 48. Calculated $F_{T}$ , and | F for silver bombard | ed by H <sup>+</sup> |

| Energy of Incident H <sup>+</sup> (eV) | F <sub>T</sub> | Fp    |
|----------------------------------------|----------------|-------|
| 1000                                   | 0.978          | 0.489 |
| 900                                    | 0.976          | 0.488 |
| 800                                    | 0.973          | 0.487 |
| 700                                    | 0.968          | 0.484 |
| 600                                    | 0.964          | 0.482 |
| 500                                    | 0.955          | 0.478 |
| 400                                    | 0.945          | 0.473 |
| 300                                    | 0.927          | 0.464 |
| 200                                    | 0.890          | 0.445 |
| 100                                    | 0.785          | 0.393 |
| 50                                     | 0.603          | 0.302 |
| 10                                     | 0.058          | 0.029 |
| 1                                      | 0              | 0     |
|                                        |                | Ŧ     |

Table 49. Calculated  $F_{T}$ , and  $F_{p}$  for sodium bombarded by  $H^{+}$ 

| Energy of Incident $H^{+}(eV)$ | F <sub>T</sub> | $^{\mathrm{F}}\mathrm{p}$ |  |  |
|--------------------------------|----------------|---------------------------|--|--|
| 1000                           | 0.827          | 0.414                     |  |  |
| 900                            | 0.810          | 0.405                     |  |  |
| 800                            | 0.788          | 0.394                     |  |  |
| 700                            | 0.761          | 0.381                     |  |  |
| 600                            | 0.727          | 0.364                     |  |  |
| 500                            | 0.680          | 0.340                     |  |  |
| 400                            | 0.616          | 0.308                     |  |  |
| 300                            | 0.521          | 0.261                     |  |  |
| 200                            | 0.371          | 0.186                     |  |  |
| 100                            | 0.130          | 0.065                     |  |  |
| 50                             | 0.015          | 0.008                     |  |  |
| 10                             | 0              | 0                         |  |  |
| 1                              | 0              | 0                         |  |  |
|                                |                |                           |  |  |

Table 50. Calculated  $F_{T}$ , and  $F_{p}$  for titanium bombarded by  $H^{+}$ 

| Energy of Incident H <sup>+</sup> (eV) | $^{ m F}{ m r}$ | Fp    |  |  |
|----------------------------------------|-----------------|-------|--|--|
| 1000                                   | 0.915           | 0.458 |  |  |
| 900                                    | 0.905           | 0.453 |  |  |
| 800                                    | 0.892           | 0.446 |  |  |
| 700                                    | 0.876           | 0.438 |  |  |
| 600                                    | 0.854           | 0.427 |  |  |
| 500                                    | 0.824           | 0.412 |  |  |
| 400                                    | . 0.780         | 0.390 |  |  |
| 300                                    | 0.709           | 0.355 |  |  |
| 200                                    | 0.579           | 0.290 |  |  |
| 100                                    | 0.300           | 0.150 |  |  |
| 50                                     | 0.073           | 0.037 |  |  |
| 10                                     | 0               | 0     |  |  |
| l                                      | 0               | 0     |  |  |
|                                        |                 |       |  |  |

Table 51. Calculated  $F_{T}$ , and  $F_{p}$  for zinc bombarded by  $H^{+}$ 

Energy of Incident H<sup>+</sup>(eV)

| of Incident H <sup>+</sup> (eV) | $\mathbf{F}_{\mathbf{T}}$ | $^{\mathrm{F}}_{\mathrm{p}}$ |
|---------------------------------|---------------------------|------------------------------|
| 1000                            | 0.966                     | 0.483                        |
| 900                             | 0.962                     | 0.481                        |
| 800                             | 0.956                     | 0.478                        |
| 700                             | 0.950                     | 0.475                        |
| 600                             | 0.942                     | 0.471                        |
| 500                             | 0.931                     | 0.466                        |
| 400                             | 0.915                     | 0.458                        |
| 300                             | 0.888                     | 0.444                        |
| 200                             | 0.836                     | 0.418                        |
| 100                             | 0.697                     | 0.349                        |
| 50                              | 0.481                     | 0.241                        |
| 10                              | 0.026                     | 0.013                        |
| 1                               | 0                         | 0                            |
|                                 |                           |                              |

Table 52. Calculated  $F_{T}$ , and  $F_{p}$  for oxygen bombarded by  $H^{+}$ 

| Energy of Incident H <sup>+</sup> (eV) | F <sub>T</sub> | Fp    |
|----------------------------------------|----------------|-------|
| 1000                                   | 0.428          | 0.214 |
| 900                                    | 0.388          | 0.194 |
| 800                                    | 0.343          | 0.172 |
| 700                                    | 0.292          | 0.146 |
| 600                                    | 0.236          | 0.118 |
| . 500                                  | 0.174          | 0.087 |
| 400                                    | 0.111          | 0.056 |
| 300                                    | 0.051          | 0.026 |
| 200                                    | 0.011          | 0.006 |
| 100                                    | 0              | 0     |
| 50                                     | 0              | 0     |
| 10                                     | 0              | 0     |
| 1                                      | 0              | 0     |

| Table 53. | Calculated | г <sub>т</sub> , | and F | for | Al 2 <sup>0</sup> 3 | bombarded | by |
|-----------|------------|------------------|-------|-----|---------------------|-----------|----|
|-----------|------------|------------------|-------|-----|---------------------|-----------|----|

| Energy of Incident H <sup>+</sup> (eV) | $\mathbf{F}_{\mathbf{T}}$ | $\mathbf{F}_{\mathbf{p}}$ |  |  |
|----------------------------------------|---------------------------|---------------------------|--|--|
| 1000                                   | 0.686                     | 0.343                     |  |  |
| 900                                    | 0.657                     | 0.329                     |  |  |
| 800                                    | 0.623                     | 0.312                     |  |  |
| 700                                    | 0.581                     | 0.291                     |  |  |
| 600                                    | 0.531                     | 0.266                     |  |  |
| .500                                   | 0.466                     | 0.233                     |  |  |
| 400                                    | 0.383                     | 0.192                     |  |  |
| 300                                    | 0.276                     | 0.138                     |  |  |
| 200                                    | 0.142                     | 0.071                     |  |  |
| 100                                    | 0.019                     | 0.010                     |  |  |
| 50                                     | 0.0003                    | 0.00015                   |  |  |
| 10                                     | 0                         | 0                         |  |  |
| 1                                      | 0                         | 0                         |  |  |
|                                        |                           |                           |  |  |

Table 54. Calculated  $F_{T}$ , and  $F_{p}$  for CaO bombarded by  $H^{+}$ 

н+

| Energy of Incident H <sup>+</sup> (eV) | $\mathbf{F}_{\mathbf{T}}$ | Fp     |  |  |
|----------------------------------------|---------------------------|--------|--|--|
| 1000                                   | 0.474                     | 0.237  |  |  |
| 900                                    | 0.435                     | 0.218  |  |  |
| 800                                    | 0.391                     | 0.196  |  |  |
| 700                                    | 0.341                     | 0.171  |  |  |
| 600                                    | 0.284                     | 0.142  |  |  |
| - 500                                  | 0.220                     | 0.110  |  |  |
| 400                                    | 0.149                     | 0.075  |  |  |
| 300                                    | 0.078                     | 0.039  |  |  |
| 200                                    | 0.021                     | 0.011  |  |  |
| 100                                    | 0.0004                    | 0.0002 |  |  |
| 50                                     | 0                         | 0      |  |  |
| 10                                     | 0                         | 0      |  |  |
| 1                                      | 0                         | 0      |  |  |

| Table 55. Cal | lculated $F_{T}$ , | and | Fр | for | Fe0 | bombarded | by | Η' |
|---------------|--------------------|-----|----|-----|-----|-----------|----|----|
|---------------|--------------------|-----|----|-----|-----|-----------|----|----|

| Energy of Incident H <sup>+</sup> (eV) | F <sub>T</sub> | Fp     |
|----------------------------------------|----------------|--------|
| 1000                                   | 0.138          | 0.069  |
| 900                                    | 0.110          | 0.055  |
| 800                                    | 0.082          | 0.041  |
| 700                                    | 0.056          | 0.028  |
| 600                                    | 0.034          | 0.017  |
| 500                                    | 0.017          | 0.009  |
| 400                                    | 0.006          | 0.003  |
| 300                                    | 0.001          | 0.0005 |
| 200                                    | 0              | 0      |
| 100                                    | 0              | 0      |
| 50                                     | 0              | 0      |
| 10                                     | 0              | 0      |
| 1                                      | 0              | . 0    |
|                                        |                |        |

Table 56. Calculated  $F_{T}$ , and  $F_{p}$  for Fe<sub>2</sub>O<sub>3</sub> bombarded by H<sup>+</sup>

| Energy of Incident H <sup>+</sup> (eV) | $\mathbf{F}_{\mathbf{T}}$ | $\mathbf{F}_{\mathbf{p}}$ |
|----------------------------------------|---------------------------|---------------------------|
| 1000                                   | 0.046                     | 0.023                     |
| 900                                    | 0.032                     | 0.016                     |
| 800                                    | 0.020                     | 0.010                     |
| 700                                    | 0.011                     | 0.006                     |
| 600                                    | 0.005                     | 0.003                     |
| 500                                    | 0.002                     | 0.001                     |
| 400                                    | 0.001                     | 0.0005                    |
| 300                                    | 0.0003                    | 0.00015                   |
| 200                                    | 0                         | 0                         |
| 100                                    | 0                         | 0                         |
| 50                                     | 0                         | 0                         |
| 10                                     | 0                         | 0                         |
| 1                                      | 0                         | 0                         |
|                                        |                           |                           |

Table 57. Calculated  $F_{T'}$  and  $F_p$  for  $Fe_3O_4$  bombarded by H<sup>+</sup>

| Energy of Incident H <sup>+</sup> (eV) | FT    | Fp     |
|----------------------------------------|-------|--------|
| 1000                                   | 0.776 | 0.388  |
| 900                                    | 0.754 | 0.377  |
| 800                                    | 0.727 | 0.364  |
| 700                                    | 0.694 | 0.347  |
| 600                                    | 0.653 | 0.327  |
| 500                                    | 0.599 | 0.300  |
| 400                                    | 0.526 | 0.263  |
| 300                                    | 0.423 | 0.212  |
| 200                                    | 0.272 | 0.136  |
| 100                                    | 0.072 | 0.036  |
| 50                                     | 0.005 | 0.0025 |
| 10                                     | 0     | 0      |
| 1                                      | 0     | 0      |

Table 58. Calculated  $F_{T}$ , and  $F_{p}$  for MgO bombarded by  $H^{+}$ 

| Energy of Incident H <sup>+</sup> (eV) | $\mathbf{F}_{\mathbf{T}}$ | $^{\mathtt{F}}_{	ext{p}}$ |
|----------------------------------------|---------------------------|---------------------------|
| 1000                                   | 0.547                     | 0.274                     |
| 900                                    | 0.511                     | 0.256                     |
| 800                                    | 0.469                     | 0.235                     |
| 700                                    | 0.420                     | 0.210                     |
| 600                                    | 0.362                     | 0.181                     |
| 500                                    | . 0.294                   | 0.147                     |
| 400                                    | 0.215                     | 0.108                     |
| 300                                    | 0.127                     | 0.064                     |
| 200                                    | 0.043                     | 0.022                     |
| 100                                    | 0.002                     | 0.001                     |
| 50                                     | 0                         | . 0                       |
| 10                                     | 0                         | 0                         |
| 1                                      | 0                         | 0                         |
|                                        |                           | +                         |

Table 59. Calculated  $F_{T}$ , and  $F_{p}$  for MnO bombarded by H

Energy of Incident H<sup>+</sup>(eV)

 $\mathbf{F}_{\mathbf{T}}$ 

Fp 0.257 0.514 1000 0.476 0.238 900 0.433 0.217 800 0.192 0.383 700 0.163 600 0.325 0.257 0.129 500 0.088 0.175 400 0.048 300 0.095 0.030 0.015 200 0.0005 0.001 100 0 50 0 0 0 10 0 0 1

Table 60.

Calculated  $F_{T}$ , and  $F_{p}$  for TiO<sub>2</sub> bombarded by H<sup>+</sup>

|               |          | [Loss Rate]                | 0            |          | [Loss Rate]                |          |
|---------------|----------|----------------------------|--------------|----------|----------------------------|----------|
| Site          | Oxide    | Atoms/cm <sup>2</sup> year | Å/year       | Metal    | Atoms/cm <sup>2</sup> year | Ă/year   |
| Apollo 12     | A1203    | 0.12 x 10 <sup>15</sup>    | 0.40         | Al       | 0.31 x 1015                | 1.02     |
| -             | CaÕ      | 0.45 "                     | 1.48         | Ca       | 0.52 "                     | 1.71     |
|               | FeO      | 0.11 "                     | 0.37         | Cr       | 0.16 "                     | 0.54     |
|               | MgO      | 0.45 "                     | 1.98         | Cu       | 0.15 "                     | 0.50     |
|               | MnO      | 0.16 "                     | 0.52         | Fe       | 0.15 "                     | 0.48     |
|               | TiO2     | 0.15 "                     | 0.48         | K        | 1.03 "                     | 3.43     |
|               | -        |                            |              | Mq       | 0.77 "                     | 2.54     |
|               |          |                            |              | Mn       | 0.23 "                     | 0.77     |
|               |          |                            |              | Na       | 1.05 "                     | 3.48     |
|               |          |                            |              | Si       | 0.22 "                     | 0.72     |
|               |          |                            |              | Ti       | 0.14 "                     | 0.49     |
| Apollo 14     | A1202    | $0.09 \times 10^{15}$      | 0.30         | רב       | $0.30 \times 10^{15}$      | 1.00     |
| Site C'       |          | 0.40 "                     | 1,31         | Ca       | 0 49 "                     | 1 64     |
| (Gutenherg G) | FeO      | 0.09 "                     | 0 30         | Cr       | 0 15 "                     | 0 50     |
| (ouccimery of | MaO      | 0.42 "                     | 1 34         | Cu       | 0 15 "                     | 0.50     |
|               | MnO      | 0 13 "                     | 0 44         | Fe       | 0 14 "                     | · 0 46 H |
|               | TiOn     | 0.12 "                     | 0 40         | y N      | 1 01 "                     | 3 34 5   |
|               | 1102     |                            | 0.40         | Ma       | 0 75 "                     | 2 49     |
|               |          | ,                          |              | Mn       | 0.22 "                     | 0 72     |
|               |          |                            |              | Na       | 0.27 "                     | 0 91     |
|               |          |                            |              | Si       | 0.21 "                     | 0.69     |
|               |          |                            |              | Ti       | 0.13 "                     | 0.43     |
| Apollo 15     | <u> </u> | 0 18 - 1015                | 0 60         | ד ה      | $0.22 \times 1015$         | 1 11     |
| NDOITO ID     | C=0      | 0.55 "                     | 1 91         |          | 0.33 x 10                  | 1 96     |
|               | Foo      | 0.55                       | 1.01<br>0.52 | Ca       |                            | 1.00     |
|               | Mao      | 0.50 "                     | 1 66         | CI       | 012 "                      | 0.03     |
|               | MnO      | 0.20 "                     | 1.00         | Cu<br>Eo | 0.13                       | 0.44     |
| ,             | miOo     | 0.10 "                     | 0.09         | re       | 1 10 "                     | 0.59     |
|               | 1102     | 0.19                       | 0.04         | л<br>Ма  |                            | 2.00     |
|               |          |                            |              | Mg       |                            |          |
|               |          |                            |              | MD       | 0.27                       | 0.00     |
|               |          |                            |              | Na<br>c: | 7 7 7 U                    | 3.04     |
|               |          |                            |              | ST<br>DT | 0.23                       | 0.//     |
|               |          |                            |              | · T1     | U.I/ "                     | 0.55     |

|               |          | [Loss Rate]                |        |       | [Loss Rate]                |        |
|---------------|----------|----------------------------|--------|-------|----------------------------|--------|
| Site          | Oxide    | Atoms/cm <sup>2</sup> year | Å/year | Metal | Atoms/cm <sup>2</sup> year | Å/year |
| Tavlor Crater | Al 203   | 0.17 x 10 <sup>15</sup>    | 0.55   | Al    | $0.33 \times 10^{15}$      | 1.10   |
| <i>1</i>      | CaÓ      | 0.52 "                     | 1.13   | Ca    | 0.55 "                     | 1.81   |
|               | FeO      | 0.15 "                     | 0.49   | Cr    | 0.19 "                     | 0.63   |
|               | MqO      | 0.49 "                     | 1.63   | Cu    | 0.14 "                     | 0.47   |
|               | MnO      | 0.20 "                     | 0.66   | Fe    | 0.17 "                     | 0.55   |
|               | TiO2     | 0.18 "                     | 0.61   | К     | 1.08 "                     | 3.59   |
|               | 2        |                            |        | Mg    | 0.79 "                     | 2.62   |
|               |          |                            |        | Mn    | 0.26 "                     | 0.87   |
|               |          | · · · · · ·                |        | Na    | 1.08 "                     | 3.57   |
|               |          |                            |        | Si    | 0.23 "                     | 0.77   |
|               |          |                            |        | Ti    | 0.16 "                     | 0.52   |
| Toricelli R   | A1203    | $0.15 \times 10^{15}$      | 0.49   | A1    | $0.32 \times 10^{15}$      | 1.07   |
|               | CaO      | 0.49 "                     | 1.62   | Ca    | 0.53 "                     | 1.77   |
|               | FeO '    | 0.14 "                     | 0.45   | Cr    | 0.18 "                     | 0.58   |
|               | MqO      | 0.47 "                     | 1.56   | Cu    | 0.15 "                     | 0.49   |
|               | MnO      | 0.17 "                     | 0.58   | Fe    | 0.16 "                     | 0.53 0 |
|               | TiO2     | 0.17 "                     | 0.55   | K     | 1.06 "                     | 3.53 ~ |
|               | <b>4</b> |                            |        | Mq    | 0.77 "                     | 2.57   |
|               | •        | 1                          |        | Mn    | 0.25 "                     | 0.82   |
|               |          | . •                        |        | Na    | 1.06 "                     | 3.52   |
|               |          |                            |        | Si    | 0.23 "                     | 0.75   |
|               |          |                            |        | Ti    | 0.15 "                     | 0.49   |

Table 61. Sputtering rates at Moon under solar-wind bombarment.
| Oxide                          | ∆H <sub>s</sub> (M) | ∆н <sub>D</sub> (О)∕у | ΔH <sub>s</sub> (M)/[ΔH <sub>D</sub> (O)/y] |
|--------------------------------|---------------------|-----------------------|---------------------------------------------|
| Al <sub>2</sub> O <sub>3</sub> | 76                  | 134                   | 0.57                                        |
| CaO                            | 36                  | 151                   | 0.24                                        |
| FeO                            | 84                  | 64                    | 1.31                                        |
| MgO                            | 33                  | 145                   | 0.23                                        |
| SiO <sub>2</sub>               | 87                  | 104                   | 0.84                                        |
| TiO <sub>2</sub>               | 106                 | 114                   | 0.93                                        |
| Ti <sub>2</sub> O <sub>3</sub> | 106                 | 123                   | 0.86                                        |
| Ti <sub>3</sub> O <sub>5</sub> | 106                 | 117                   | 0.91                                        |

Table 62. Comparison of  $\Delta H_{s}(M)$  and  $\Delta H_{D}(O)$  for some elements occuring in lunar soils. [From Pillinger et al., 1976].

## FIGURES



KIE 10 X 10 TO THE CENTIMETER 18 X 25 CM.

46 15 10





46 1510



e 9













## KIEUFFEL & ESSER CO. MADE IN U.S.A.

46 15 10



46 15 10



NTE KEUFFEL & ESSER CO. MADE IN U.S.A.









.

46 15 10



KEUFFEL & ESSER CO. MADE IN U.S.A.

401010

. .



K+E 10 X 10 TO THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADE IN U.S.A.





· `}



KIEUFFEL & ESSER CO. MADE IN U.S.A.







KIELFEL & ESSER CO. MADE IN U.S.A.

46 1510

× 1.











## KIE 10 X 10 TO THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADE IN U.S.A.





...

KEUFFEL & ESSER CO. MADE IN U.S.A.



KEUFFEL & ESSER CO. MADE IN U.S.A.

46 15 10









K+∑ 10 X 10 TO THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADE IN USA.



| <del></del> | <b>I</b> |    |     |    | -  | 1 | 1 |    |        |      |    |            | E | THE | П  | ШП | 11 |        |    |        |      |       |            |    | TT       |              |                         | Hin                   | .11          |              |           |             |                 |                  | :       |             |         | <u> </u>       | [::]       |          | <u></u> |    | 1   |
|-------------|----------|----|-----|----|----|---|---|----|--------|------|----|------------|---|-----|----|----|----|--------|----|--------|------|-------|------------|----|----------|--------------|-------------------------|-----------------------|--------------|--------------|-----------|-------------|-----------------|------------------|---------|-------------|---------|----------------|------------|----------|---------|----|-----|
|             |          |    |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          |    |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          |    |     |    |    |   |   |    |        | 1.1. |    |            |   |     |    |    |    |        |    | F      | ig   |       | 35         | 5. | li li li | Vai          | ria                     | at:                   | io           | n (          | of        | tł          | ne              | s                | ou      | tt          | eŗ      | in             | g          |          |         |    |     |
|             |          |    |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    | -        | yie<br>foi   | el¢<br>r 1              | d v<br>H <sup>+</sup> | vi<br>i      | th<br>ons    | aı<br>s ( | ng.<br>on   | Le<br>a         | o:<br>Lur        | t<br>ni | ın<br>nu    | CI<br>M | de<br>[c       | nc<br>al   | e  <br>- |         |    |     |
|             |          |    | • 1 | 20 |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    | <br> : |      | :1:11 | !!!!!      |    | )<br>    | cu]<br>IIIII | la <sup>.</sup><br>IIII | teo                   | ∄ :<br> :::: | fr(<br> :::: | om<br>I   | Е¢<br> :::: | <b>∃∙</b><br>∷∷ | 2) (<br>لر : : : | 6)      | ].<br> :::: |         | <b> ::::</b> : | <b> </b> : | ::::     |         |    |     |
|             |          | -  |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              | C            | 2         |             |                 |                  |         |             |         |                |            |          |         |    |     |
| -           |          |    | 1   | 00 |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          | C            | Þ                       |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          |    | • 4 |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          | -  |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      | c     | )          |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             | ( • 0 =  | -1 | •0  | 80 |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         | 14 |     |
|             | S (0     |    |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    | 0      |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         | μ  |     |
|             | (0)      | -1 | .0  | 60 |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             | S<br>S   |    |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          |    |     | 10 |    |   |   |    |        |      |    |            |   |     | 0  |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          |    | ••  | 40 |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          |    |     |    |    |   |   |    |        |      |    | 9          | , | -   |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          | 1  | .0  | 20 |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    | -   |
|             |          |    |     |    |    |   |   | (  | ₽      |      |    |            |   |     |    |    |    |        |    |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          | 0  |     | 1  | 8° |   |   | 2( | )•<br> |      | 30 | <b>}</b> ° |   | 4   | ٩° |    |    | 50<br> | 0  |        |      | 6     | ) <b>°</b> |    |          | 7            | ٥°                      |                       |              | 8            | 0°        |             |                 | 90               | •       |             |         | 10             | ) 0 °      |          |         |    |     |
|             |          |    |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        | ÷¢ |        |      |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    |     |
|             |          |    |     |    |    |   |   |    |        |      |    |            |   |     |    |    |    |        |    |        | ++++ |       |            |    |          |              |                         |                       |              |              |           |             |                 |                  |         |             |         |                |            |          |         |    | 1.1 |

K+E 10 X 10 TO THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADE IN U.S.A.

•

461510

•

11

• 1.3 

11

: : : : :

> ÷ 1

Tin p

1

|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    | _                  |   |          |  |
|----------|----|------|-----|----------|--|--|--------------|--|----|--|--|--|---|---|--|--|-----|-----|-----|----|---|-----|----|---------|---|----------|-----------|---------------------------------------|---------|----------|----------|----|--------|----|----------|----------|-----------|-----|------|----------|--------------|----|--------------------|---|----------|--|
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     | ;;; |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    |                    |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    | +                  |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     | -+I | Fi  | g. | , | 36  | 5. |         | V | ar       | i         | at                                    | ic      | n        | 0        | f  | t      | he | 2        | sp       | ut        | te  | er   | in       | g            |    | -                  |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  | ::: |     |     |    |   |     |    |         | У | ie       | 10        | d<br>+                                | wi      | t]       | n<br>    | ar | ng     | le | : (<br>  | of<br>la | i<br>:    | .nc | ci ( | de<br>an | nc<br>1      | ce | Ŧ                  |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   | or<br>n1 | : 1<br>a: | н .<br>t е                            | E<br>De | LOI<br>f | ns<br>ro | m  | n<br>E | a. | a.<br>() | 26       | 10<br>) 1 |     | Ľ    | Ca       |              | -  | 1                  |   |          |  |
|          | -1 | •    | 120 | )—       |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     | H  | H | HE. | H  | 99      |   |          |           |                                       |         |          |          | 1  |        |    |          |          |           |     | :1:: |          |              |    | +                  |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          | ;;;;;    |           |     |      |          |              |    |                    |   |          |  |
| 1        |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    | -                  |   |          |  |
|          | 1  |      | 100 | <b>\</b> |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    |                    |   |          |  |
|          |    |      |     | 1        |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    |                    |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    |                    |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          | ::::<br>:.:: |    |                    |   |          |  |
| 60       | ]  |      | 08( | <b>)</b> |  |  | 1211<br>1111 |  | :: |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    | +                  | - | <b>.</b> |  |
| =0       |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          | 0  |        |    |          | ſ        | ₽─        |     |      |          |              |    |                    |   |          |  |
| S        |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          | 6         |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    |                    |   |          |  |
| (()      |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          | Ī         |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    |                    |   |          |  |
| 0        |    | •    | 001 | 9        |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   | 0   |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    |                    |   |          |  |
| <u> </u> |    |      |     | -        |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    |                    |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  | þ   |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    | _                  |   |          |  |
|          |    |      | 04  | 0—       |  |  |              |  |    |  |  |  |   |   |  |  |     |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    | ++-                |   |          |  |
|          |    |      |     |          |  |  |              |  |    |  |  |  |   |   |  |  | ╞   |     |     |    |   |     |    |         |   |          |           |                                       |         |          |          |    |        |    |          |          |           |     |      |          |              |    | -                  |   |          |  |
| -        |    | <br> |     |          |  |  |              |  |    |  |  |  | ¢ | ) |  |  |     |     |     |    |   |     |    | <u></u> |   |          |           | · · · · · · · · · · · · · · · · · · · |         |          |          |    |        |    |          |          | 1         |     |      |          | <u></u>      |    | <del>. :  </del> : |   |          |  |

driftin. 111111111 :::: 1. ..... 1.020 Φ 10 ----111 Ø Iα° 60° 7p° 80° 100° 50° 9,0° 20° 30° 40° ф a Ð .... Ш ÷


K+∑ 10 X 10 TO THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADE IN U.S.A.

46 1510

.

|                                                       |         | -        |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|-------------------------------------------------------|---------|----------|--------------|-----|------|----|------------------------------------------------|----|-----|----|-----|--------------------|----------|---|-----|----------|-----------|-----|---------------------------------------|-------------|-----|---------------|--------------|-----|-----|---------------------------------------|---|----------|
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     | 1 <b>4</b> 1 - 1 - |          | 1 |     | •        |           |     |                                       |             |     | 1. 1          |              | _1* |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    | FIG | J •                | 38.      | • | Vai | 11a      | atı       | on  | 01                                    | tr<br>tr    | ne  | spi           | utt          | er  | ing | ~ ~                                   |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   | for | с Н<br>С | 1 w<br>7+ | io  | ng<br>ng                              | ing i<br>on |     | OL<br>DD4     | 1n<br>>r     |     | alc | ce<br>n-                              |   |          |
|                                                       | -1.120  |          |              |     |      |    |                                                |    |     |    |     |                    |          |   | lat | ed       | i f       | roi | n E                                   | Eq. (       | (26 | $\frac{2}{1}$ | •            | 10  | uic | u                                     |   |          |
|                                                       |         | -        |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     | · · · · · · · · · · · · · · · · · · · |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       | _1.100_ |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       | -1.080  |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
| <b>)</b>                                              |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   | F        |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          | -         |     |                                       |             | -   |               |              |     |     |                                       | 0 | •        |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     | · · · · · · · · · · · · · · · · · · · |   |          |
| <b>├</b>                                              | 1.060   |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         | <u> </u> |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          | <u>.</u>  |     |                                       |             |     |               |              |     |     |                                       |   | -        |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     | ¢             |              |     |     |                                       |   |          |
|                                                       | _1.040_ |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     | φ        |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    | $\phi$ – |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     | · · · · · · · ·                       |             |     |               |              |     |     |                                       |   | -        |
|                                                       |         |          |              |     |      |    |                                                |    | 4   | >  |     |                    |          |   |     |          | -         |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       | -1.020  |          |              |     |      |    | <u>,                                      </u> |    |     |    |     |                    |          |   |     |          |           |     |                                       |             | ļ   |               |              |     |     |                                       |   |          |
|                                                       |         | -        |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          | -         |     |                                       |             |     |               |              |     |     |                                       |   |          |
|                                                       |         |          |              |     | φ    |    |                                                |    |     |    |     |                    |          |   |     | -        |           |     |                                       |             |     |               | <u> </u>     |     |     |                                       |   |          |
|                                                       |         | 10°      | 2            | 0 ° | 30°- | 40 | o                                              |    | 50  | •  |     | 6                  | 00       |   |     | 00       |           |     | -80                                   | •           |     | -91           | )•           |     | 10  | <b>^</b> •                            |   |          |
|                                                       | ≏       | Ф        |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     | [                                     |             |     |               |              | +   |     |                                       |   |          |
|                                                       |         |          |              |     |      |    |                                                |    |     | φ  |     |                    |          |   |     |          |           |     |                                       |             |     |               |              | -   |     |                                       |   | 1        |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     | -        |           |     |                                       |             |     |               |              |     |     |                                       |   | <u> </u> |
|                                                       |         |          |              |     |      |    |                                                |    |     |    |     |                    |          |   |     |          |           |     |                                       |             |     |               |              |     |     |                                       |   |          |
| <u> La de la </u> |         | 1        | <u>aan a</u> |     |      |    |                                                | шШ | ШіШ | ШШ | ШШ  |                    |          |   |     | dill     |           |     | hi H                                  |             | E   |               | 111 <b> </b> |     |     |                                       |   |          |

|        |        | 1977 - Constantin Constantin Constantin Constantin Constantin Constantin Constantin Constantin Constantin Const<br>Constantin Constantin Constantin Constantin Constantin Constantin Constantin Constantin Constantin Constantin C |       |           |                                       |       |
|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|---------------------------------------|-------|
|        |        |                                                                                                                                                                                                                                    |       | Fig. 39.  | Variation of the sputteri             | lng   |
|        |        |                                                                                                                                                                                                                                    |       |           | yield with angle of incid             | lence |
|        | 1 120  |                                                                                                                                                                                                                                    |       |           | for H <sup>+</sup> ions on gold [calc | 2u-   |
|        |        |                                                                                                                                                                                                                                    |       |           | lated from Eq. (26)].                 |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        | 1.100  |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        | -1.080 |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
| υ<br>Σ |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        | 7.050  |                                                                                                                                                                                                                                    |       |           |                                       |       |
| 0      | -1-060 |                                                                                                                                                                                                                                    |       |           |                                       |       |
| . v    |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        | _1.040 |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        | -1.020 |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       | φ         | φ                                     |       |
|        |        |                                                                                                                                                                                                                                    | •     | 2         |                                       |       |
|        | 10°    | 20°                                                                                                                                                                                                                                | 40° 5 | D°    6p° | 70° 80° 90°                           | 100°  |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       | $\varphi$ |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |
|        |        |                                                                                                                                                                                                                                    |       |           |                                       |       |









|        |         |        | ······································ | ****** |                                                 | ······                                    |  |
|--------|---------|--------|----------------------------------------|--------|-------------------------------------------------|-------------------------------------------|--|
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        | Fig 13                                          | Variation of the sputtering               |  |
|        |         |        |                                        |        | rig. 45.                                        | vield with angle of incidence             |  |
|        |         |        |                                        |        |                                                 | for H <sup>+</sup> ions on nickel [calcu- |  |
|        | 2 700   |        |                                        |        | -                                               | lated from Eq.(26)].                      |  |
|        | -1.120  |        |                                        |        | -<br> : : :  : : :: :: ::: :::: :::: ::::: :::: |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        | -1.100  |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
| ~      |         |        |                                        |        |                                                 |                                           |  |
| 0      | -1.080  |        |                                        |        |                                                 | L.                                        |  |
| =      |         |        |                                        |        |                                                 |                                           |  |
| S      |         |        |                                        |        |                                                 |                                           |  |
| ) (    |         |        |                                        |        |                                                 |                                           |  |
| 0)     | -1.060  |        |                                        |        |                                                 |                                           |  |
| s<br>S |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 | φ                                         |  |
|        | 1 040   |        |                                        |        |                                                 | Φ                                         |  |
|        |         |        |                                        |        | φ                                               |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        | φ      |                                                 |                                           |  |
|        | 1 0 2 0 |        |                                        | 0      |                                                 |                                           |  |
|        | -1.020  |        |                                        |        |                                                 |                                           |  |
|        |         |        | φ                                      |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         | ° 210° | 3 <b>q°</b> 4                          | 9° 59° | 6 <b>0°</b>                                     | 70° 80° 90° 100°                          |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |
|        |         |        |                                        |        |                                                 |                                           |  |

K≠∑ 10 X 10 TO THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADE IN U.S.A.

.

.

46 1510

.

•

|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   | 1111 |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|------|--------------------|------|-----|------|-----|----------|-------------------------|----|-----------------------------------------------|------|--------------|---|--|-----|-----|---------------|-----|---|-----|---|------|---------------------|-----|----|-------------|------|---------------|------------|---------------|-----------|---------|----|-----|---------|-----------|----------|-----------------|-----------------------------------------|
|      |                    | •    |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   | *7.  |                     |     |    | ~ ~~        | ~    | <b>-</b> 1    | - h a      |               |           | . + +   | ~~ | in  | ~       | -         |          |                 |                                         |
| 7    |                    |      |     |      |     | -        | -                       |    |                                               |      |              |   |  |     |     | F.1           | .g. | 4 | .4. | • | va   | ie.                 | 1 d |    | )n<br>i + ł | נט   | ເ<br>ເ        | rle<br>rle | 3 E<br>2 C    | spc<br>of | in      | ci | de  | y<br>nc | e         |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   | f    | $\operatorname{or}$ | H.  | +  | ior         | ıs   | 01            | n p        | pot           | as        | ssi     | um | i [ | са      | 1-        |          |                 |                                         |
|      |                    | -1.] | 20  |      |     |          |                         |    |                                               |      |              |   |  |     |     | •             |     |   |     |   | C١   | ula                 | ate | eđ | fı          | COI  | n I           | Eq         | . (2          | 26)       | ].      |    |     |         | -         |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     | :#:1<br>::::: |     |   |     |   |      |                     |     |    |             | :::: |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          | <u>: ::::</u><br>: :::: |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      | ::::<br>::::: |            |               |           |         |    |     |         |           | $\vdash$ |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    | -1.] | 00  |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
| ···· |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      | ~                  |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      | ů,                 | -1.( | 80  |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               | 0         |         |    |     |         |           |          | 5               |                                         |
|      | 0                  |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             | iC   | ) <u> </u>    |            |               |           |         |    |     |         |           |          | N               |                                         |
|      | Ś                  |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      | (                   | Þ   |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      | $\hat{\mathbf{z}}$ | _1_( | 60  |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      | E C                |      |     |      |     |          |                         |    |                                               |      | <u>iilli</u> |   |  |     |     |               |     | C | 2   |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  | - ( | )   |               |     |   |     |   |      | E E                 |     |    |             | 1111 |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    | -1.( | 40  |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               | <u></u>   |         |    |     |         |           |          | <u></u>         |                                         |
|      |                    |      | 1-1 |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      | φ            |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    | -1.( | 20  |      |     |          |                         |    | <u>,                                     </u> |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               | ::::       | ::::<br>::::: |           | <u></u> |    |     |         | <u> </u>  |          | :::::<br>:::::: | · · · • • • • • • • • • • • • • • • • • |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     | <b>o</b> |                         |    |                                               | 1111 |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     | ±٥°- | - 2 | 0 °      |                         | 30 | ) °                                           |      | 40           | • |  | 5   | ) ° |               |     | 6 | 0°  |   |      | 7                   | 0°  |    |             | 80   | ۰             |            |               | 90        | o       |    |     | q       | <b>)°</b> |          |                 |                                         |
|      |                    | ى م  | P   | ¥    |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      | · · · · · ·   |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     | G   | )             |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     |               |     |   |     |   |      |                     |     |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |
|      |                    |      |     |      |     |          |                         |    |                                               |      |              |   |  |     |     | ΤĦ            |     |   |     |   |      |                     | tin |    |             |      |               |            |               |           |         |    |     |         |           |          |                 |                                         |

|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            | •               |          |     |         |     |         |        | -      |       |         |
|---|--------|-----|----|--------------|--|----|---|--|----|-----------|----------|---|-----|---|-----|---------------------------------|-----|----|---------------|-----|----|----|---------------|----------|------|-----------------------|---------------------------------|----------|----------|-----|---------|-----------------------------------------|-------------|----------|----------|----------|---------------|-----------|---------|------------|-----------------|----------|-----|---------|-----|---------|--------|--------|-------|---------|
|   |        |     | -  |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         | :           |          |          |          |               |           |         |            |                 |          | : 1 | 1       |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     | -       |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    | r  | 1             |          |      |                       | • •                             | 1        | •        |     | •       | 1                                       |             | <u>с</u> |          |          |               |           | 1       | - 1        |                 |          | 1   |         |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               | Ľ   | 10 | ]. | 4             | 45       | •    |                       | Va<br>;                         | r.       | 1a<br>เล |     | 10      | n<br>+۲                                 | 0           | I<br>nn  |          | ne<br>10 | 5             | sp<br>f   | ut<br>; | te<br>n    | er<br>ai        | יו<br>קר | ng  | ~~      |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      | •                     | т<br>т                          | .e<br>vr | н<br>ти  | +   | ⊥∧<br>i | or                                      | 1 (<br>1 () |          | iy.<br>m | re<br>Te | i 1           | 77<br>177 | ר<br>דם | - 110<br>~ |                 | a l      | ່າ  | n–      | 1   |         |        |        |       |         |
|   |        | 120 |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       | la                              | it       | eđ       |     | fr      |                                         | 10          | Ea       | 1.       | (2)      | $\frac{1}{6}$ | 1         | •       | •          | 10              | . u 1    |     | ũ       |     |         |        |        |       | -       |
|   |        | 120 |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    | E. | : <b>1</b> :: |          |      |                       | 1.E                             |          |          |     |         | 1                                       | : F :       |          |          |          | 1             | -         |         |            |                 | 1117     |     | · · ; · | ::: |         | 1      |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 | -        |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         | 1      |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          | ::: |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       |         |
|   |        | 100 |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    | Î             |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        | T     |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   | Ш   |                                 |     | tt |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   | 111 |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       | <u></u> |
| - |        |     |    |              |  |    |   |  |    |           |          | İ |     |   |     |                                 |     |    |               | +++ |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        | -     |         |
| C | ╮┝━┻┥╸ | 080 |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         | -   |         | F      | -      |       |         |
| G |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         | L<br>U | n<br>ວ |       |         |
| Ŭ |        |     |    |              |  |    |   |  |    |           |          |   | ΠÌ  |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          | 111 |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       |         |
|   | 2      |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       | :::     |
| 9 | シ┝᠆ᠯ᠇  | 060 |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        | -     |         |
|   | )   :  |     |    |              |  |    |   |  |    | tti       |          |   |     |   |     |                                 | ΪĦ  |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     | <u></u> |        |        |       | :::     |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 | ŧŀ. |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       |         |
|   | ┈┠╾┸┥╸ | 040 |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         | -   |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               | +++++    |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               | 6         |         |            |                 |          |     |         |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 | φ        |          |     |         |                                         | Ψ           |          |          |          |               | Ŧ         |         |            | :::::<br>:::::: |          | +   |         |     |         |        |        |       |         |
|   |        | 020 |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    | φ_            |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            | <u></u><br>     |          |     |         | -   |         |        |        |       |         |
|   | -      |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     | Ŷ  |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       | <u></u> |
|   |        |     |    |              |  |    |   |  |    |           |          |   | Υ   |   |     |                                 |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         | :::        |                 |          |     |         |     | <u></u> |        | -      |       | ++++    |
|   | -      |     | 10 | 0            |  | 20 | • |  | 30 | ,<br>  0- |          | 2 | 1 d | 0 |     |                                 |     | 50 | •             | #   |    | 6  | 5b.           | <b>o</b> |      |                       | 70                              | )•       |          |     |         | 8(                                      | ) •         |          |          |          | 91            | ) °       |         |            |                 | ] (      | do  | •       |     |         |        |        |       |         |
|   |        |     | ¢  | <u>)    </u> |  | Ť  |   |  |    |           |          |   |     |   |     |                                 |     |    |               |     |    |    |               |          |      | 1:11<br>:111          |                                 |          |          |     |         |                                         |             |          |          |          |               | 1         |         |            |                 |          | 1   |         |     | <u></u> |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    | φ             |     |    |    |               |          |      |                       | $\left  \right  \left  \right $ |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        |       |         |
|   |        |     |    |              |  |    |   |  |    |           |          |   | ┼┼┨ |   |     | $\left  \right  \left  \right $ |     |    |               |     |    |    |               |          |      |                       |                                 |          |          |     |         |                                         |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        | +     |         |
|   |        |     |    |              |  |    |   |  |    |           | <b> </b> |   |     |   |     | $\left  \right  \right $        |     |    |               |     |    |    |               |          | ++++ | $\parallel \parallel$ |                                 |          |          |     |         | $\left\{ \left  \right\rangle \right\}$ |             |          |          |          |               |           |         |            |                 |          |     |         |     |         |        |        | +++++ |         |
|   |        | ЩЩ  |    |              |  |    |   |  |    |           |          |   |     |   |     |                                 |     |    | <u>    </u> i |     |    |    |               |          |      |                       | 1111                            |          |          |     |         |                                         | illi        |          |          | ШЦ       |               | III       |         |            |                 |          |     |         |     |         |        |        |       | ::::    |

•

.







KIELE 10 X 10 TO THE CENTIMETER 18 X 25 CM. KEUFFEL & ESSER CO. MADE IN U.S.A.

1

46 15 10

|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     | -              |      |         |             |             |    |     |    |     |            |                                       |          |       |
|---------------------------------------|--------------|------|-----|------|------------|--|-----|---|---|------------|-------------------------------------------|---------|----|----|-----|-------|-------|----------|-----|-----|----------------|------|---------|-------------|-------------|----|-----|----|-----|------------|---------------------------------------|----------|-------|
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            | ·                                     |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    | Fi | ig. | 4     | 17.   | •        | Var | ia  | ti             | on   | to      | tł          | ne          | sp | utt | er | ing | J          |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          | yie | eld | l_w            | it   | h a     | ing]        | Le.         | of | in  | ci | der | ıce        |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          | for | : H | [ <sup>+</sup> | io   | ns      | on          | zi          | nc | [c  | al | .cu | Lat-       | •                                     |          |       |
|                                       | -1.          | 120- |     |      | -          |  |     |   |   |            |                                           |         |    |    |     | ः स्व | THIP: |          | eα  |     |                | i Eo | 9.•<br> | 20,         | 1 <b>].</b> | 1  |     |    |     | . <b>.</b> | -                                     |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       | <u> </u> |       |
|                                       | 7            | 100  |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
|                                       | <u>1</u>     | 100- |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
| · · · · · · · · · · · · · · · · · · · |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     | +          | ···                                   |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
| 5                                     | 7            | 000  |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
| 0=                                    |              | 000  |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       | H        |       |
| 9                                     |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     | 1          |                                       | 56       |       |
| <br>S                                 |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
| 6                                     | <u> </u>     | 060- |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
| S (                                   |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
|                                       |              | -    |     |      |            |  |     | - |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
| · · · · · · · ·                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    | ,   |    |     |            |                                       |          |       |
|                                       | -1.          | 040  |     |      |            |  |     |   |   |            |                                           | <br>    |    |    |     |       |       |          |     | 6   |                |      | Ť       |             |             |    |     |    |     |            |                                       |          |       |
|                                       |              | -    |     |      |            |  |     |   |   |            | :::::<br>:::::::::::::::::::::::::::::::: | <u></u> |    |    |     |       | ,     |          |     | 1   |                |      |         |             |             |    |     |    |     |            | :<br>                                 |          | :<br> |
|                                       |              |      | -   | <br> |            |  |     |   |   |            |                                           |         |    |    |     | -     |       |          |     |     |                |      |         | <u> </u>    | -           |    |     |    |     |            |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           | 0       | >  |    |     |       |       |          |     |     |                |      |         |             | -           |    |     |    |     |            |                                       |          |       |
|                                       | <u> -</u> ]. | 020  |     |      |            |  |     |   |   | <u> </u>   |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     | <u> </u>   |                                       |          |       |
| - <u>11</u>                           |              |      |     |      |            |  |     |   |   |            |                                           |         |    | [  |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            | · · · · · · · · · · · · · · · · · · · |          |       |
|                                       |              |      | -   |      |            |  | - 0 |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
|                                       |              | 1    | 0°- | 2    | <b>ø</b> ° |  | 30° |   | 4 | <b>) °</b> |                                           | -5      | 0° |    |     | 60    | )•    |          | -   | 70° |                |      | 80      | <b>&gt;</b> |             | 90 | ۰   |    | 1(  | -•0¢       |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     | <b>†</b>   |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         | ٩  |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       |       |          |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |
|                                       |              |      |     |      |            |  |     |   |   |            |                                           |         |    |    |     |       | ШT    | $  \Pi $ |     |     |                |      |         |             |             |    |     |    |     |            |                                       |          |       |







KEUFFEL & ESSER CO. MADE IN U.S.A.

46 7522





v (m/sec)













v (m/sec)









v (m/sec)























46 15 10



|   |  | • |  |  |  |   |  |       |      |   |  |      |   |  |   |      |      |
|---|--|---|--|--|--|---|--|-------|------|---|--|------|---|--|---|------|------|
|   |  |   |  |  |  |   |  |       |      |   |  |      |   |  |   |      |      |
|   |  |   |  |  |  |   |  |       |      |   |  |      |   |  |   |      |      |
|   |  |   |  |  |  |   |  |       |      |   |  |      |   |  |   |      |      |
| 1 |  |   |  |  |  |   |  |       |      |   |  |      |   |  |   |      |      |
| 1 |  |   |  |  |  | 1 |  | 1:000 | 1::: | 1 |  | <br> | , |  | , | <br> | <br> |

## Fig. 69. Sputtering yields for H<sup>+</sup> ions incident on MnO [calculated from Eq.(32)].






46 15 10





KEUFFEL & ESSER CO. MADE IN USA





## KEUFFEL & ESSER CO. MADE IN U.S.A.

















\_









.



