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ABSTRACT

This thesis investigates continental deformation at many different spatial and temporal
scales and at several plate-tectonic settings. Our main purpose is to understand how the
continental crust behaves under applied forces, both over geologic times and over shorter
time scales such as the seismic cycle. The thesis consists of separate investigations of
long-term and short-term plate boundary deformation and also a two-part study
investigating the interactions between deformation at these two time scales.

In the first part of the thesis we investigate the long-term flexural elastic response of the
lithosphere to vertical loads due to normal faulting and extension. Our study suggests that
high topography in the Stara Planina range in Central Bulgaria is probably related to
flexural footwall uplift in response to Pliocene to Quaternary normal faulting in this region.
In the second part we focus on small scale deformation on an individual brittle fault in the
upper crust and study how frictional properties and constitutive behavior of the fault,
described by laboratory-derived rate- and state-variable friction laws, govern the nucleation
of earthquakes. The last part of the thesis investigates how the average rheologic properties
of the crust govern deformation at a strike-slip plate boundary. In particular, we study the
growth and evolution of fault networks within the upper crust over geologic times and how
this process interacts with deformation at deeper crustal levels. Short time scale
deformation such as sudden brittle failure on upper crustal faults is combined with long-
term elastic and viscoelastic responses in the upper crust. Our results indicate that the
rheology of the lower crust places strong controls on the nature and growth of fault
networks at a strike-slip plate boundary.

Thesis Supervisor: Leigh Royden
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Chapter 1

Introduction

Patterns of deformation observed at the surface within continents are considerably more

complex and variable than those in oceanic settings, due to inherent complexities of

lithology and structure within the continental crust. Deformation within continents occurs

on a wide range of length and time scales, but to study plate boundary deformation we

focus on two classes of behavior: long spatial and temporal scale distributed deformation

which occurs over geologic times (>100 km, >106 yr) and short spatio-temporal scale

deformation, such as associated with the earthquake cycle. The first class of deformation

includes, for example, flexural responses to plate loading and large-scale viscous flow in

the lower crust, whereas the second includes localized seismic and aseismic faulting and

distributed transient responses to stress accumulation between earthquakes.

The complexity of continental deformation, which involves many different length and

time scales, does not allow straightforward interpretation of surface deformation patterns

(e.g., topography, seismicity patterns, or strain rates observed using geodetic methods) in

terms of the overall rheologic structure within continents. Using geodynamic models of the

continental lithosphere, we explore the relationships between surface manifestations of

deformation and the rheologic structure of the lithosphere at depth. In Chapters 2 and 3,

we present separate investigations of long-term (geologic) and short-term (seismic)

continental deformation which are highly simplified because we focus on a particular length

and time scale.

Chapter 2 is a study of large-scale lithospheric flexure, used to model the broad features

of surface deformation in the Stara Planina Range in central Bulgaria. The results of our

modeling, in conjunction with geologic and geomorphologic arguments, suggest that



topography in the Stara Planina is not due to Mesozoic shortening events as previously

believed, but is a result of Pliocene-Quaternary flexural uplift. We show that forces on the

lithosphere due to unloading on Pliocene-Quaternary normal faults to the south of the range

are sufficient to cause uplift of the Stara Planina and thus give rise to present-day

topography. An extremely low effective elastic thickness of the lithosphere (~3 km) is

required in this region to match observed topography, suggesting that the lithosphere

beneath the Stara Planina is significantly weaker than beneath the Moesian platform to the

north.

In Chapter 3 we present a model of the onset of frictional instability on faults during the

pre-seismic (nucleation) phase of an earthquake. Frictional properties of brittle faults in the

upper crust control the slip distributions on them and to a large extent govern the stress

accumulations adjacent to the faults. We study one aspect of the slip distribution on faults,

namely the amount and duration of slip prior to an earthquake, using a simple spring-slider

model of a homogeneous fault. To model the frictional constitutive behavior of faults,

laboratory-derived rate and state variable friction laws are used. By solving the equations

of motion of the system coupled to the constitutive laws for friction, we derive an

approximate definition of the onset of unstable slip. This definition allows us to identify

the pre-seismic phase of motion and determine the role of friction constitutive parameters in

governing the amount of pre-seismic slip.

While these studies illuminate various aspects of each class of deformation, in order to

understand how the crust evolves in time, we need to include the interactions between the

two classes of deformation. For example, although the broadest features of regional scale

deformation may be described using a continuum model of the crust (e.g., a viscous fluid

as in Buck, 1991 or Royden, 1996), long-term deformation at plate boundaries must

involve the growth and evolution of large-scale brittle fault networks within the upper crust

which may represent zones of significant strain localization. In particular, the evolution of



deformation must involve interactions between continuous deformation and new and old

(pre-existing) zones of weakness such as faults.

Chapters 4 and 5 address these issues in an idealized model of a strike-slip plate

boundary, focusing on the complexities which arise from the interaction of brittle faulting

and continuous strain, and how such interactions are related to the strength profile of the

crust with depth. We study the extent to which the continuum rheologic structure of the

crust governs the nature and evolution of localized deformation within fault networks in the

upper crust. For example, we investigate the effects of a weak lower crustal layer (which

may undergo large-scale viscous flow) on the growth and dynamics of upper crustal brittle

faults. First, a simple analytic model to determine the general character of the deformation

is presented (Chapter 4) and second, a more detailed, numerical (finite-difference) approach

(Chapter 5). In both parts a linear viscoelastic rheology is used for the crust and primarily

elastic or primarily viscous behavior is specified at different crustal levels by varying the

viscosity structure with depth. We represent faulting by static elastic dislocations, which

are imposed when a critical stress threshold for failure (either fracture of a new fault or

sliding on a pre-existing one) is exceeded. As we are interested here in the evolution of

crustal deformation, we do not model mantle motions; instead deformation in both models

is driven by imposed basal mantle velocities.

The main objective in Chapter 4, the analytic model, is to simplify the problem as

much as possible in order to understand the coupling between deformation in the upper and

lower parts of the crust. We therefore specify a fixed depth of faulting (confined to the

uppermost crust) and divide the crust into two layers with different viscosities. By varying

the viscosity of each layer and also the viscosity contrast between layers, we establish

general controls on the width of the deformation zone at the surface and the number and

spacing of faults in the upper crust. In Chapter 5 we allow variable depth of faulting,

determined by stresses within the crust itself, and include the effect of far-field plate



motions by driving the model at the edges (in addition to basal velocities at the Moho). The

viscosity of the crust is allowed to vary continuously with depth so that we specify a

smooth transition from primarily elastic behavior in the upper crust to either primarily

elastic or primarily viscous behavior in the lower crust. We study the time-evolution of

deformation within the crust and the relation between surface deformation features such as

episodic faulting and complex strain-rate patterns, and the deeper rheologic structure of the

crust.
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Chapter 2

Flexural Uplift of the Stara Planina Range, Central Bulgaria'

ABSTRACT

The Stara Planina is an east-west-trending range within the Balkan belt in central Bulgaria.

This topographically high mountain range was the site of Mesozoic through early Cenozoic

thrusting and convergence, and its high topography is generally thought to have resulted from

crustal shortening associated with those events. However, uplift of this belt appears to be much

younger than the age of thrusting and correlates instead with the age of Pliocene-Quaternary

normal faulting along the southern side of the range. Flexural modeling indicates the morphology

of the range is consistent with flexural uplift of footwall rocks during Pliocene-Quaternary

displacement on south-dipping normal faults bounding the south side of the mountains, provided

that the effective elastic plate thickness of 12 km under the Moesian platform is reduced to about 3

km under the Stara Planina. This small value of elastic plate thickness under the Stara Planina is

similar to values observed in the Basin and Range Province of the western United States, and

suggests that weakening of the lithosphere is due to heating of the lithosphere during extension,

perhaps to the point that large-scale flow of material is possible within the lower crust. Because

weakening is observed to affect the Moesian lithosphere for approximately 10 km beyond (north

of) the surface expression of extension, this study suggests that processes within the uppermost

mantle, such as convection, play an active role in the extension process. The results of this study

also suggest that much of the topographic relief in thrust belts where convergence is accompanied

by coeval extension in the upper plate (or "back arc"), such as in the Apennines, may be a flexural

1 Roy, M., L. H. Royden, B. C. Burchfiel, Tz. Tzankov, and R. Nakov, Flexural uplift of the Stara Planina range,
Central Bulgaria, Basin Research, 8, 143-156, 1996.



response to unloading during normal faulting, rather than a direct response to crustal shortening in

the thrust belt.

INTRODUCTION

Most active and recently active orogenic belts are associated with high topography (Argand,

1924). Earth scientists have generally attributed the development of these topographically high

mountain belts to isostatic compensation for crustal thickening and shortening during convergence

(Figure 2.1a). However, another mechanism for the creation of linear belts of high topography

was recognized as early as 1950 by Vening Meinesz (1950). He pointed out that within

extensional domains, topographically high mountains could be created during normal faulting by

unloading and buoyancy driven flexural uplift of the footwall (Figure 2.lb). While it seems clear

that the high topography in many orogenic belts is the result of isostatic compensation for crustal

thickening, such as in the Andes and the Himalaya, there are others in which crustal shortening is

accompanied or overprinted by extension of the overriding plate and the relative roles of

shortening and extension in the creation of high topography is unclear.

The territory of Bulgaria has been greatly deformed by Mesozoic to Early Tertiary convergence

and crustal thickening as part of the Alpine orogenic system, and the topographically high

mountains of Bulgaria are generally supposed to be the direct result of Alpine crustal shortening

(Figure 2.2). However, recent mapping within Bulgaria has shown that Miocene and younger

normal faults, some with very large displacement, are present throughout much of Bulgaria (e.g.

Dinter and Royden, 1993; Zagorchev, 1992; Tzankov et al., 1995) and Miocene to Recent

extensional subsidence has occurred throughout much of central eastern Bulgaria.

A good example of the superposition of extensional and compressional structures occurs in the

Stara Planina range within the Balkan belt in central Bulgaria. Shortening of the Stara Planina

occurred during Mesozoic to Early Tertiary time, whereas extension occurred from Pliocene to

Recent time and is currently active (Figure 2.2). Like much of the rest of Bulgaria, the topography

of the Stara Planina range has been thought to be due to Mesozoic thrusting, and the role of

extension in controlling the topography of the Stara Planina has been largely ignored. In this



paper we test the idea that most of the topographic relief within the Stara Planina may be due to

young extensional deformation by examining the geometrical relationships between topography

and normal faulting in the Stara Planina and the role of isostasy in creating footwall uplift during

normal faulting.

GEOLOGIC SETTING

The Stara Planina, located in central Bulgaria, is an east-west trending range of mountains that

is commonly thought to have developed antithetically to north-dipping subduction of the Vardar

Ocean to the south (Burchfiel, 1980). North-directed thrusting occurred episodically within the

Stara Planina from Triassic to early Tertiary time, and the frontal thrust faults of the mountain belt

override upper Cretaceous and, in places, lower Tertiary sedimentary rocks of the Moesian

platform (Boyanov et al., 1989). The Moesian Platform north of the Stara Planina forms an

intermediate foreland between the north-vergent nappes of the Stara Planina and the south-vergent

nappes of the South Carpathians (Figure 2.2). Along the southern margin of the Moesian foreland

there is little evidence for the development of a foredeep basin adjacent to the Stara Planina. In

contrast, there is a well-developed foredeep basin of middle to late Miocene age along the northern

margin of the Moesian platform adjacent to the South Carpathians. The formation of this basin

(referred to as the South Carpathian foredeep in following sections) was roughly coeval with the

last major episode of thrusting and shortening in the South Carpathians (Sandulescu 1975, 1980;

Paraschiv 1979).

To the south of the Stara Planina lies a broad zone of Miocene to Recent extension, which is

approximately 150 km in width (Tzankov et al., 1995). The northern limit of this zone is a linear

east-west-trending chain of Pliocene-Quaternary half-grabens situated immediately adjacent to the

topographically high Stara Planina. To the north, this chain of grabens is bounded by the Stara

Planina and to the south by the Sredna Gora range. In the central part of this chain, subsidence

began in latest Miocene to Pliocene time as indicated by the presence of Pliocene and some upper

Miocene sediments in the lower part of the graben fill (Figure 2.3 and Tzankov et al., 1995). In

the eastern and western parts of the chain subsidence began in Quaternary time and Pliocene



13

sediments are absent. Typical thicknesses of sedimentary fill within the grabens are approximately

500-1000 m of predominantly Pliocene and Quaternary rocks (Tzankov et al., 1995). Faulting

within the graben system appears to be currently active (Tzankov et al., 1995).

Along the entire length of the graben chain, the dominant extensional structures are south-

dipping normal faults that bound the northern edge of the grabens. The normal-fault surfaces are

well exposed in many places along the southern margin of the Stara Planina, where some are

observed to dip gently southward at about 100 to 200 (Tzankov et al., 1995). The fault surfaces

themselves are typically planar microbrecciated surfaces that parallel the hillslope at the foot of the

Stara Planina, and are reminiscent of the microbrecciated surfaces observed on low-angle normal

faults within the Basin and Range Province (e.g. Wernicke and Axen, 1988). Geological relations

on the south side of the Stara Planina indicate that in places south-dipping normal faults are

exposed for considerable distances up the southern slope of the mountains (Figure 2.3 and

Tzankov et al., 1996). This observation strongly suggests that the southern slope of the Stara

Planina represents the exhumed, partially eroded footwall of the graben-forming normal faults.

If this interpretation is correct, the topographic relief associated with the Stara Planina is coeval

with the initiation of normal faulting along the south side of the mountains, indicating that uplift of

the Stara Planina is of Pliocene-Quaternary age. Thus, the topography in the Stara Planina would

be primarily due to footwall uplift as a result of young normal faulting rather than to Mesozoic

thrusting. In the following sections we examine the topographic data in the Stara Planina to

determine whether the geometry of the range is consistent with the morphology of a flexurally

uplifted footwall.

Topography in the Stara Planina

North-south topographic profiles through the Stara Planina show a pronounced asymmetry

(Figure 2.4a). The southern slope of the mountains is relatively steep with a horizontal distance

between the bottom of the slope and the peaks of about 15 km. The northern slope of the

mountains is relatively gentle with a horizontal distance between the bottom of the slope and the

peaks of about 100 km. This morphology is reminiscent of that produced by footwall uplift

III OIJ11 - In'1141I



during normal faulting (Vening-Meinesz, 1950; Wernicke and Axen, 1988) and suggests that the

northern flank of the Stara Planina represents an originally horizontal to sub-horizontal surface

uplifted by flexural unloading during Pliocene-Quaternary normal faulting on the southern side of

the range. A coarsely contoured topographic map of the Stara Planina (Figure 2.5) shows that the

northern slope of the Stara Planina is a nearly planar surface gently warped around an east-

trending axis, consistent with the interpretation that this surface has been flexurally uplifted to its

present position.

The northern slope of the Stara Planina consists of nappes containing folded Mesozoic and

early Cenozoic sedimentary cover of the Moesian platform (Figure 2.4b). Because of the absence

of late Cenozoic rocks on this slope, we do not have precise constraints on the timing of uplift of

this surface. However, its grossly planar morphology, coupled with deep incision by young

rivers, suggests that uplift has been very recent. In addition, the steep valley profile of the Iskar

River, which flows northward across the highest part of the western Stara Planina, strongly

suggests that incision of this river is of a young age. Because downcutting of the river must have

kept pace with uplift of the mountains, the uplift must also be of a comparably young age.

The absence of Upper Tertiary and Quaternary rocks on the northern slope of the Stara Planina

makes it difficult to constrain the pre-uplift elevation of this surface. However, north of the Stara

Planina sedimentary facies of the Moesian platform indicate that this region was covered by a

broad deltaic to fluvial platform in Pliocene-Quaternary time (Steininger et al., 1985). At the

beginning of Pliocene time much of the region was covered by shallow waters of the Paratethys

Sea, but by the end of Pliocene time the entire region became emergent and sedimentation

continued with fluvial deposition. Thus the region north of the Stara Planina appears to have been

a broad, sub-horizontal plain with an initial elevation near that of modern sea level throughout

Pliocene-Quaternary time.

Taken together, the arguments presented in this section strongly suggest that the present

topographic expression of the Stara Planina is the result of flexural unloading of footwall rocks

during normal faulting on the south side of the mountains. In addition, the data indicate that the

uplift of the mountains to their present topographic elevation is of Pliocene-Quaternary age. If this



interpretation is correct, then the topographic mountains of the Stara Planina have little relationship

to the older Mesozoic and Early Tertiary shortening events within the orogenic belt (except insofar

as older structures may have localized the position of younger normal faults). The topography of

the mountain belt can therefore be almost entirely characterized as the result of extension and

flexural uplift. In the following sections we test the feasibility of this hypothesis through flexural

analysis of surface slopes on the north side of the Stara Planina.

TOPOGRAPHY, GRAVITY AND DEFLECTION DATA

Topographic data in Bulgaria were obtained from a 1:500,000 scale topographic map

contoured at 50 m intervals for elevations less than 200 m, 100 m intervals for elevations less than

1000 m and 200 m intervals elsewhere (Stoyanova, 1986). Topographic data in Romania were

obtained from the Digital Bathymetric Data Base 5 (DBDB5) topographic data set (Defense

Mapping Agency). (A comparison of DBDB5 data from Bulgaria with a smoothed version of

topography from Stoyanova (1986) shows good agreement.) Topographic profiles were

generated by averaging data over a 40 km wide swath centered on each profile (Figure 2.6). All

profiles were smoothed using a 5-point moving window average (data spacing is roughly 2 km in

Bulgaria and 10 km in Romania). Gravity profiles in Bulgaria were obtained from unpublished

data; no gravity data were available for Romania (Figure 2.7).

For the following analyses, quantitative estimates of deflection are needed for two different

time periods. Deflection data are needed to constrain the total flexural deflection of the Moesian

platform, which can be approximated as the end-Cretaceous to Recent vertical motion of the

platform, and to constrain the the Quaternary deflection of the platform. Because Cretaceous

sedimentary rocks consist of platformal deposits (mainly platform carbonates), the Moesian

platform must have been near sea level throughout Cretaceous time. Thus the total flexural

deflection of the Moesian platform can be defined as the current depth (or elevation) of the top of

the Cretaceous section.

On the north side of the Moesian platform, beneath the South Carpathian foredeep, the total

flexural deflection is given by the depth to the base of the Neogene, where Neogene rocks sit



unconformably on Mesozoic platform carbonates (Paraschiv, 1979). On the south side of the

Moesian platform, immediately north of the thrust sheets of the Stara Planina, Upper Cretaceous

platform carbonates are exposed at the surface where they are overthrust from the south by nappes

of the Stara Planina (probably in Early Tertiary time, Figure 2.4b). Thus the total (end-Cretaceous

to Recent) deflection at this point can be approximated as its modem elevation, approximately 100

m above sea level. (Although there is older platform subsidence of the Moesian foreland, there is

no evidence for older flexural subsidence or for the development of a southward deepening

foredeep basin of Cretaceous or early Cenozoic age adjacent to the Stara Planina.)

Throughout most of Pliocene-Quaternary time, the surface elevation of the Moesian platform

was near and slightly above sea level, based on the depositional environment of Pliocene-

Quaternary sedimentary rocks (see preceding section). Thus we assume in earliest Quaternary

time this surface was horizontal to subhorizontal and slightly above sea level. Quaternary

deflection can then be defined as the present elevation of the base Quaternary or, as Quaternary

sediments are everywhere thin, as the present surface elevation of the platform.

On the north slope of the Stara Planina, Pliocene-Quaternary rocks are absent. In our analysis

we assume that at the beginning of Quaternary time this surface was planar and horizontal, and had

the same elevation as the rest of the Moesian platform to the north. Quaternary deflection of the

Stara Planina is thus defined by the current elevation of the northern Stara Planina, with several

possible adjustments due to minor short wavelength irregularities in topography. For example, at

the northern edge of the Stara Planina river channels and associated topographic depressions trend

approximately east-west, parallel to the mountains. If these east-trending topographic features

primarily represent pre-existing topography with little erosion in the river channels, then the

elevation of the river valleys should give the best estimate of the vertical deflection of the

underlying lithosphere. Alternatively, if these east-west trending topographic features primarily

represent young downcutting of the river valleys, then the elevation of the ridge tops should give

the best estimate of the vertical deflection of the underlying lithosphere.

PLIOCENE-QUATERNARY FLEXURE OF A UNIFORM RIGIDITY PLATE



If the northern slope of the Stara Planina is formed by flexural uplift of an originally horizontal

to sub-horizontal surface, then the modem topography of the northern slope and of regions north

of the Stara Planina should be a measure of the flexural bending of the underlying lithosphere. In

particular, the vertical deflection of the surface from an originally horizontal position to the

warped, slightly eroded, and locally incised surface defined by modem topography should reflect

the flexural response to unloading of the underlying lithosphere by normal faulting on the south

side of the Stara Planina.

In our analysis we first test whether this modem topography is consistent with deflection of a

uniformly strong Moesian lithosphere. We use the method of Kruse and Royden (1994) for

flexure of an elastic plate to obtain the best flexural fit to specified topography and deflection (and

gravity) data. We assume that the effective plate end is located at the crest of the Stara Planina and

solve for the flexural rigidity of the Moesian lithosphere, the initial surface elevation of the

Moesian plate (constrained to be above sea level), and the bending moment and shear stress

applied to the plate end.

The flexural rigidities that provide the best fits to topography on profiles A and B from the

western Stara Planina correspond to effective elastic plate thicknesses of Te=2 0 and 10 kin,

respectively (Figure 2.8 and Table 2.1). In the rest of this paper, we will refer interchangeably to

the terms "flexural rigidity", D, and "effective elastic plate thickness", Te, where we have used the

value of E = 8.lxlO1 0 Pa for Young's modulus and v= 0.25 for Poisson's ratio. In our opinion,

neither of these fits are acceptable because they underestimate the slope at the crest of the range and

misfit the northern half of the profiles. If a subset of the topographic data is used to constrain the

plate flexure (using only ridge tops or only valley bottoms), the fit does not improve substantially.

Thus profiles A and B cannot be adequately fit by flexure of a uniformly strong plate. On the

other hand, topographic data on profiles D and E from the eastern Stara Planina are adequately fit

by flexure of a uniformly strong plate (best fitting Te=30 km on both profiles). However, because

the lithosphere appears to be only gently flexed along these profiles, the plate strength is not very

well constrained and a broad range of plate strengths provide adequate fits.



The best fitting initial elevation of the pre-uplift topographic surface (or initial water depth) is

between 40 and 120 m above modem sea level. Although the initial water depths for profiles A

and B are quite different (40 m for profile A and 120 m for profile B), these numbers may not be

meaningful estimates of the initial elevation along these profiles because of the poor fits to

topographic data. Along profiles D and E however, the initial water depths obtained are

approximately 100 m for both profiles. This elevation is consistent with the expected elevation of

a broad, sub-horizontal deltaic platform near sea level. In addition it is also consistent with the

average present-day elevation of Moesian platform (50-150 m) in the vicinity of the Danube river

floodplain north of the Stara Planina.

We conclude that if the topography on the northern slope of the Stara Planina is the result of

flexure of the underlying lithosphere, then the strength of the lithosphere changes from north to

south, at least on profiles A and B. In particular, the best fitting models for profiles A and B in

Figure 2.8 have lower curvature than indicated by the topographic data for x =0-25 km and have

higher curvature than indicated by the topographic data for x =25-150 km. This suggests that the

flexural strength in the southernmost parts of profiles A and B is significantly lower than the

flexural strength of the rest of the Moesian platform. In the next section we examine the effect of

assuming that the strength of the Moesian lithosphere may be significantly lower beneath the

southernmost parts of profiles A-E than on the northern and central parts of these profiles.

FLEXURE OF A TWO-RIGIDITY PLATE

In this section we treat the Moesian lithosphere as a continuous elastic sheet with two regions

of different strength. Within each region the flexural rigidity is uniform. Provided that the width

of the transition zone between these two regions is narrow compared to the flexural wavelength(s)

of the lithosphere, it can be approximated as a zone of zero width. In this approximation the

transition zone will be a discrete point on each of profiles A-E. At the boundary between the two

regions the shear stress, bending moment, slope and deflection are constrained to be continuous.

Thus three variables determine the strength distribution on each profile (the flexural rigidities of the

northern and southern regions, and the lateral position of the transition point).



We first make an independent estimate of the flexural rigidity of the northern zone, which

probably composes most of the Moesian platform. Then, after determining the strength of the

northern zone, we need to solve only for the strength of the southernmost part of the Moesian

platform and the location of the transition between the regions of differing strengths from the

Quaternary deflection data.

How can we estimate the flexural rigidity of the northern Moesian platform? Flexure in the

central and northern regions of the Moesian platform should be determined primarily by the

flexural rigidity of the underlying lithosphere. Provided that the zone of significantly weaker

lithosphere is confined to the southernmost portion of the Moesian platform (x=0-25 km? on

profiles A and B), then the flexural rigidity of this weak zone will not greatly influence the flexure

of the central and northern parts of the Moesian platform. Although the central and northern parts

of the Moesian platform were not greatly flexed during Quaternary time (Figure 2.8), they show

significant Mesozoic through Quaternary flexure (Figures 2.4b and 2.7). This occurred in

response to Mesozoic to Early Tertiary overthrusting along the southern margin of the platform

and Miocene overthrusting along the northern margin of the platform (see section on geologic

setting). (Most of the older subsidence of the Moesian platform appears to be regional, probably

due to thermal cooling of the lithosphere, and not flexural in origin.) We can therefore use the

total (Mesozoic to Quaternary) flexural deflection of the central and northern Moesian lithosphere

to estimate the flexural rigidity of the northern part of the platform.

Total (Mesozoic to Recent) Flexure of the Moesian Platform

In the northern part of the Moesian platform, the depth to the base of the South Carpathian

foredeep (base Miocene) is a measure of the total flexural deflection of the plate. In the central part

of the Moesian platform, the deflection of the lithosphere can be constrained to be zero

immediately north of the thrust sheets of the Stara Planina (x =60 km). In the central to southern

part of the Moesian platform the flexure can be constrained by gravity data (although gravity data

from the southernmost portion of the platform may be affected by the zone of weaker lithosphere).



In analyzing the total deflection of the central and northern Moesian platform, we assume that

the flexural rigidity of the lithosphere is uniform in this region and that the effective plate ends are

located at the topographic crest of the Stara Planina in the south and at the deepest part of the South

Carpathian foredeep basin in the north (x=0 and 220 km on Figure 2.9). The flexural deflection at

the southern plate end is not tightly constrained (see discussion above) but must be consistent with

the deflection of the central and northern parts of the Moesian platform, and with the gravity data.

The best fits to the deflection and gravity data are obtained with flexural rigidities corresponding to

Te =12 and 20 km (Figure 2.9). The flexural profiles for Te=20 km are unable to match the

condition that the deflection be approximately zero immediately north of the thrust sheets of the

Stara Planina (x =60 km). Thus the best fitting effective elastic thickness which is also consistent

with the deflection of the central Moesian platform is Te=12 km (parameters are listed in Table

2.2). The flexural rigidity corresponding to this fit is D =1.24x10 22 Nm.

Pliocene-Quaternary Flexure in the Stara Planina

The total flexural deflection of a plate with position-dependent flexural rigidity is governed by

the simplified equation (in one dimension)

d2 d2,,(X)D(x) w Ix+ Apgw 1{x)=t (x)pegdx2  dx2 - (2.1)

where D is the flexural rigidity, w(x) is the deflection, Ap is the density contrast responsible for

the restoring force and t(x) is the distributed (topographic) load on the plate. Under the

assumption that the Moesian lithosphere consists of two regions of uniform rigidity, we can divide

a north-south profile though the Moesian platform into a northern region corresponding to the part

of the plate between x=xt and x= o and a southern region between x=O and x=xt where xt is the

location of the transition point. The solutions for the deflection in these two regions, Wsouth (x)

and wnorth (x), can be written as:



wsouth (x)=aicos( -exp(- ) +bisi ) exp(- X )+
\suth; \ south south \ Asouth

+clco s(~t exrp - xt'~ + di si( t'~ ) exd -'~ + wO
asouthI 'southl + southi nsouth) (2.2)

and

Wnorth (x )=a2 co ex - x ~t)+ b2 Sin ' ex - + WOunrt! north! anoth Uorthi (2.3)

where wo is the initial water depth, assumed to be uniform for the whole plate. The six

coefficients ai, a2, bi, b2, ci, and di are related by matching four boundary conditions at x =xt,

(the continuity of deflection, slope, bending moment and vertical shear stress), leaving only two

independent coefficients to determine the best fitting plate flexure. For a given value of xt, we

solve for the best fitting flexural profile using a modified version of the method outlined in Kruse

and Royden (1994), where the flexural rigidity of the north-central Moesian platform is

constrained to be Dnorth =1.24x10 22 Nm (Tenrth =12 km), and the coefficients a,b,c and d are

constrained by matching boundary conditions at x =xt and solving for the bending moment and

vertical shear force at x=0. For each profile, we consider a range of transition points to determine

the best fitting value of xt.

Fits to profiles A and B using an elastic plate with two rigidities are significantly improved

over those obtained using a plate with uniform rigidity (compare Figures 2.10 and 2.11 to Figure

2.8). Topographic slopes near the highest part of the western Stara Planina are matched well

using a lower flexural rigidity in the southernmost part of the Moesian platform and the fit to the

topography of the flatter central and northern parts of the Moesian platform is also much

improved. The best fitting flexural rigidity in the southern region of both profiles A and B is

Dsouth =1.94x10 20 Nm (corresponding to Teso,,th =3 km) and the best fitting value for xt for both

profiles is 10 km (parameters listed in Table 2.3). The flexural fits obtained for transition points xt

>20 km are not significantly better than those obtained with a uniform rigidity plate. In particular,

the best fitting range of transition point locations is about 7 km < xt < 12 km for both profiles A



and B. The initial topographic elevation obtained for both profiles is about 40 m and is in good

agreement with the constraints on the pre-uplift elevation of the Moesian platform (see previous

section).

In order to investigate the effects of pre-existing topography and erosion, we use a subset of

the topographic data, either the tops of ridges only (Figure 2.12) or the bottoms of valleys only

(Figure 2.13), to constrain the flexure of the lithosphere. The best fitting parameters using these

data sets are in the range Tesouth= 3-4 km for both profiles A and B, and xt=10 km for profile A

and xt =10-12 km for profile B. These parameters are in agreement with those found using the

full data sets.

In the eastern parts of the range, a two-rigidity elastic plate model does not provide significant

improvements to the flexural fits to profiles D and E. For a wide range of transition points the best

fitting value of the flexural rigidity in the southern part of the Moesian platform is approximately

equal to that in the central and northern parts. These results suggest that the zone of lower flexural

rigidity in the southernmost part of the Moesian platform underlies the western Stara Planina and

does not extend significantly to the east.

Normal-Fault Geometry and Crustal Thinning

The analysis above suggests that modern topography in the Stara Planina is consistent with

flexural footwall uplift due to Pliocene-Quaternary unloading on normal-faults to the south of the

mountains, and that it is not the direct result of crustal shortening across the mountain belt. Using

the results above, we calculate the buoyancy forces required to drive the observed flexural uplift,

and therefore estimate the amount of mass removed by extension.

Figure 2.14a illustrates how crustal thinning occurs above a normal-fault as a result of material

removed during normal motion on the fault. If isostatic uplift of the footwall is neglected, the

resulting geometry is that shown in Figure 2.14a. When isostatic uplift of the footwall is

included, the resulting geometry is that shown in Figure 2.14c, where the volume of material

removed during normal faulting is indicated by the shaded region. In Figure 2.14c,b, we estimate

the geometry and volume of the material removed during normal faulting in the region south of the



Stara Planina, by solving equation (2.1) in this region for an effective elastic plate thickness of

Te= 3 km. The boundary conditions applied are that the deflection, w(x), and the horizontal

gradient of deflection, dw/dx, at the crest of the Stara Planina match those computed for the

deflection on the north side of the Stara Planina in the preceding section (and that w goes to zero

far south of the Stara Planina). The total material removed during normal faulting is then the

difference between the deflection computed on the south side of the Stara Planina and the observed

topography, as shown in Figure 2.14b,c.

The results of this computation indicate that flexural uplift of the north side of the Stara Planina

is consistent with thinning of the hangingwall, during extension, over a distance of several tens of

kilometers south of the Stara Planina, with a maximum thinning of approximately 5 km (and a

maximum crustal thinning of about 15%). This is small compared to the large magnitudes of

unroofing observed in some core complexes in the Basin and Range Province (e.g. Wernicke and

Axen, 1988, Block and Royden, 1990), and agrees well with the apparently shallow levels of

exposure south of the Stara Planina. It is also of note that the deflection shown in Figure 2.14c

for the south side of the Stara Planina yields a vertical shear stress at the crest of the range of

1.3x1011 Nm-1. This value agrees well with the vertical shear stresses computed at the crest of the

range for flexure of the region north of the Stara Planina: 2x10 11 Nm-1 for Profile A and 1x10 11

Nm-1 for Profile B.

Figure 2.14b shows the reconstructed geometry of the normal-fault system on the south side

of the Stara Planina prior to movement on the normal-fault. Near the surface the geometry of the

incipient normal-fault can be estimated reasonable well because it is assumed to coincide with the

south slope of the Stara Planina and the northern margin of the Quaternary grabens. This indicates

an initial dip for this part of the fault of about 200. Below about 5 km depth the fault geometry is

unconstrained, except that it must be deeper than the base of the material removed during faulting

and probably flattens with depth in a listric geometry (Tzankov et al., 1995).



DISCUSSION AND CONCLUSIONS

The modern topography of the Mesozoic to early Tertiary thrust belt of the Stara Planina in

Bulgaria appears to be almost entirely due to post-Miocene extensional processes. Because

shortening and extensional events are temporally separated within the Stara Planina, the role of

young normal faulting in the development of high topography can be clearly distinguished from

the role of older convergent deformation in this region. The flexural modelling presented in this

paper suggests that much of the morphology and modern topographic relief within the Stara

Planina is the result of buoyancy-driven footwall uplift in response to (Neogene-Quaternary)

normal faulting to the south of the range.

The Stara Planina, Sredna Gora and the topographically low sub-Balkan graben system are the

northernmost elements of a broad Neogene extensional system that comprises much of southern

Bulgaria and includes the Thracian Basin. The analysis presented here suggests that the modern

topographic relief of much of this region could be the result of Neogene-Quaternary extension.

For example, the topographically high region of the Rhodope "massif" of southern Bulgaria and

northern Greece is bounded by Neogene (and older) normal faults that dip away from Rhodope,

so that the uplifted regions lie in the footwalls of these young normal-faults. We suggest that,

similar to the Stara Planina, the Rhodope "massif" has been uplifted by flexural unloading during

normal faulting (see also Dinter and Royden, 1993). Other morphologic features related to young

normal faulting probably include the Sredna Gora, which in our interpretation represent tilted and

rotated blocks contained within the hangingwall of the normal fault system present on the south

side of the Stara Planina.

Heat flow measurements within the Thracian Basin and the sub-Balkan graben system show

that this extended region is the site of high surface heat flow, indicating that surface extension is

related to regional extension and heating within the mantle. It is interesting that surface heat flow

values generally decrease northward across the Stara Planina, and that the Stara Planina separate

the zone of elevated heat flow to the south from regions of lower heat flow to the north (Cermak et

al., 1979; Velinov and Boyadjieva, 1981; Velinov, 1986). This suggests that the northern limit of



heating within the lithosphere is approximately coincident with the northern limit of surface

extension.

The flexural rigidity of the lithosphere beneath the Stara Planina is probably also related to the

thermal structure beneath the northern edge of this extensional region. In particular, the effective

elastic thickness of the Moesian plate changes from Tenrth =12 km in the central and northern parts

of the Moesian platform to about Teso,,th =3 km near the topographic crest of the central Stara

Planina. The 3 km value of Te obtained for the western Stara Planina is similar to that obtained for

the Basin and Range Province of the western United States, and suggests that the Moesian

lithosphere beneath the Stara Planina is sufficiently hot to allow for large-scale ductile flow within

the lower crust (Block and Royden, 1990, Kaufman and Royden, 1994). We propose that the

part of the Moesian lithosphere underlying the Stara Planina (at least in the central part of the

range) was greatly weakened during post-Miocene extension, and that the Moesian lithosphere

was probably uniformly strong prior to this event.

The flexural modeling presented in this paper indicates that the northern limit of the zone of

weak lithosphere lies approximately 10 km north of the crest of the Stara Planina. This is also 10

km north of the surface exposure of major normal faults and probably at least several tens of

kilometers north of where the south-dipping normal faults penetrate to lower crustal or upper

mantle depths (see Tzankov et al., 1995, Figure 10). This suggests that heating and weakening of

mantle and lower crustal lithosphere extends significantly beyond (north of) the region of crustal

extension. It is highly unlikely that this is due to lateral diffusion of heat from beneath the

extended region because the characteristic time for diffusion across a distance of 30 km is about 10

my, significantly greater than the age of initiation of extension in the sub-Balkan graben system.

In addition, the amount of heating needed to reduce the effective plate thickness from 12 to 3 km is

probably too large to be due to lateral diffusion over these distances. One possibility that is

consistent with the observations is that the lithosphere adjacent to the zone of upper crustal

extension has been heated and weakened by active processes (e.g. convection) within the

uppermost mantle beneath and adjacent to the region of crustal extension (see, for example, Buck,



1986). If this hypothesis is correct, then it indicates that the mantle must play a very active role in

the extension process in Bulgaria.

The idea that the high topography observed within thrust belts with back-arc extension might

be due primarily to extensional deformation behind the thrust belt is radically different from

traditional notions about the development of high topography within thrust belts. In the Stara

Planina, the temporal separation between younger extensional and older shortening events allowed

us to determine the role of extension in the development of high topography in this region.

However, in mountain belts in which crustal shortening is accompanied by coeval extension of the

overriding plate immediately adjacent to the zone of thrusting (Figure 2. 1d), the role of extension

in generating high topography is more difficult to isolate. Our results suggest that in such

orogenic belts extension and flexural unloading of footwall rocks during normal faulting may be

responsible for a significant portion of the topographic relief.

For example, within the Apennines the spatial relationship between normal faulting and the

locus of high topography is nearly identical to that observed within the Stara Planina, and

significant normal faulting begins immediately behind the topographic crest of the range (Bally et

al., 1986, 1988). This suggests the possibility that uplift of the topographically high regions of

the Apennines may be controlled in large part by extensional unloading of the footwall of normal

faults within the extensional region, rather than to crustal shortening and thickening beneath the

orogen. Other regions of high topography that are commonly supposed to be due to crustal

shortening, but that we believe may be partially due to footwall uplift during normal faulting,

include the Olympos region of northern Greece and mountains of the East Carpathian orogen.



27

ACKNOWLEDGEMENTS

This work is part of a cooperative project between the Geological Institute of the Bulgarian

Academy of Sciences and M. I. T. It was supported by both sides. Support was provided by the

Geological Institute and by National Academy of Science, Exchange Program for Eastern Europe,

and a grant from the International Division of the National Science Foundation grant INT 9216217

awarded to B. C. Burchfiel and L. H. Royden. Part of the work on this project was completed at

California Institute of Technology from 1991-1992 by L. H. Royden while supported by a

Visiting Fellowship for Women from the National Science Foundation.



REFERENCES

Argand, E., 1924, La tectonique de l'Asie, Proc. 13th Int. Geol. Congr. Brussels, 7, 171-372.

Bally, A. W., L. Burbi, J. C. Cooper and R. Ghelardone, 1986, La tettonica di scollamento

dell'Appennino Centrale, paper presented at 73rd National Congress of Geology of Central

Italy, Rome, Sept. 30 to Oct. 4, 1986.

Bally, A. W., L. Burbi, C. Cooper and R. Ghelardone, 1988, Balanced sections and seismic

reflection profiles across the central Apennines, Memorie della Societa Geologica Italiana,

257-310.

Block L. and L. H. Royden, 1990, Core complex geometries and regional scale flow in the lower

crust, Tectonics, 9, no. 4, 557-567.

Boyanov I., Ch. Dabovski, P. Gocev, A. Charkovske, V. Kostadinov, Tz. Tzankov, I.

Zagorcev, 1989, A new view of the Alpine tectonic evolution of Bulgaria, Geol.

Rhodopica, 1, 107-121.

Buck, R. W., 1986, Small-slace convection induced by passive rifting: the cause for uplift of rift

shoulders, Earth and Planetary Science Letters, 77, 362-372.

Burchfiel, B. C., 1980, Geology of Romania, GSA Special Paper.

Cermak, V. and L. Rybach, 1979, (eds.) Terrestrial heat flow in Europe, Scientific report - Inter-

union Commision on Geodynamics, No. 58, Springer-Verlag.

Dinter, D. A., and L. H. Royden, 1993, Late Cenozoic extension in northeastern Greece: Strymon

Valley detachment and Rhodope metamorphic core complex, Geology, 21, 45-48.

Kaufman P. S. and L. H. Royden, 1994, Lower crustal flow in an extensional setting: Constraints

from the Halloran Hills region, eastern Mojave Desert, California, Journal of Geophysical

Research, 99, 15,723-15,739.

Kruse, S. E. and L. H. Royden, 1994, Bending and unbending of an elastic lithosphere: The

Cenozoic history of the Apennine and Dinaride foredeep basins, Tectonics, 13, 278-302.

Paraschiv, D., 1979, Romanian oil and gas fields, Geophysical Prospecting and Exploration,

Series A, No. 13, 1-382.



Sandulescu, M., 1975, Essai de synthese structurale des Carpathes, Bull. Dov. Gaol. Fr., Parin,

XVII, n.3, 299-358.

Sandulescu, M., 1980, Analyse geotectonique des chaines alpines situdes autour de la Mer Noire

occidentale, Ann. Inst. Geol. Geophys., Bucuresti, LVI, 5-54.

Steininger, F. F., J. Senes, K. Kleemann, F. R6gl, 1985, Neogene Mediterranean Tethys and

Paratethys, Vol. 1, Institute of Paleontology, University of Vienna, Vienna, Austria.

Stoyanova, D., ed., 1986, Topographic map of the Peoples's Republic of Bulgaria, scale:

1:500000, Primary Directorate for Geodesy, Cartography and Cadastre, Bureau of

Cartography, Sofia.

Tsankov, Tz., R. Angelova, R. Nakov, B.C. Burchfiel and L. Royden, 1996, Basin Research, 8.

Velinov, T., 1986, Geothermal field in Bulgaria, Reviews Bulgarian Geol. Soc., v. XLVII, part i,

p. 1-18 (in Bulgarian with English abstract).

Velinov, T. and K. Boyadjieva, 1981, Geotermichni izsledvania v Bulgaria (Geothermal studies in

Bulgaria), Tehnika, Sofia (in Bulgarian).

Vening-Meinesz, F. A., 1950, Les "grabens" africains, resultat de compression ou de tension

dans la croute terrestre?, Bulletin of the Royal Colonial Institute of Belgium, 21, 539-552.

Wernicke, B. and Axen, G. J., 1988, On the role of isostasy in the evolution of normal fault

systems, Geology, 16, p. 848-851.

Zagorchev, I., 1992, Neotectonic development of the Struma (Kraistid) Lineament, southwest

Bulgaria and northern Greece, Geological Magazine, 129, 197-222.



Table 2.1. Best Fitting Flexural Rigidities and Flexural Coefficients for Loading on One Side of a
Plate of Uniform Rigidity, Quaternary Flexure.

a(km) b(km) c(km) d(km) wo(km) D(Nm)b Te(km)c rms
a misfit

Profile 0.9666 -2.3665

1.5185 -0.9046

0.5441 -1.8712

Profile 0.4523 -1.7228
E

0 0.1200 7.67e22

0 0.0408 5.76e22

0 0.1042 1.94e23

0 0.1001 1.94e23

22 0.0635

5 0.1417

30 0.0698

30 0.0683

a wo is the initial water depth obtained in the inversions.
b Flexural rigidity
c Effective elastic plate thickness.

Profile
B

Profile
D
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Table 2.2. Best Fitting Flexural Rigidities and Flexural Coefficients for Loading on Both Sides of
a Plate of Uniform Rigidity, Pliocene Flexure in the Carpathian Foredeep, Profile D

a(km) b(km) c(km) d(km) wo(km)a D(Nm)b Te(km)c rms
misfit

1.32320 0.34482 -1.15183 3.64516 -0.03277 5.76e22 20 46.5321

-2.47400 7.07581 -0.89128 3.50566 -0.13625 1.244e22 12 41.0083

a wo is the initial water depth
b Flexural rigidity
c Effective elastic plate thickn

obtained in the inversions.



Table 2.3. Best Fitting Flexural Rigidities and Flexural Coefficients for Loading on One Side of a
Plate of Changing Rigiditya, Quaternary Flexure.

a(km) b(km) c(km) d(km) wo xt D
(km)b (km)c (Nm)d

0.8659 -0.3470

0.7754 -0.4877

0 0 0.0373 10 1.94e20 3 0.1218

0 0 0.0364 10 1.94e21 3 0.0758

a Flexural rigidity for x > xt is fixed at D=5.76e22Nm, but can vary for 0 <x <xt.
b wo is the initial water depth obtained in the inversions.
c xt is the x-coordinate of the point at which the plate changes rigidity.
d Dl here is for the region 0 < x < xt.
e Effective elastic plate thickness Tel here is for the region 0 < x < xt.
f Profiles D and E did not give significantly better fits with a two-rigidity model than a uniform

rigidity one.

Tel
(km)e

rms
misfit

Profile
A

Profile
B

Profile
Df

Profile
Ef
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FIGURE CAPTIONS

Figure 2.1. Mechanisms for generating high topography via shortening and extension. (a) At

convergent boundaries high topography is formed by crustal thickening; (b) In extensional settings

high topography is formed by uplift and rotation of footwall due isostatic compensation during

normal faulting; (c) Mechanisms (a) and (b) operating in the same orogenic belt where thrusting

and extension are widely separated in time, such as in the Stara Planina range, where thrusting is

Mesozoic-Early Tertiary and the extension is Quaternary; (d) Mechanisms (a) and (b) operating

together during coeval thrusting and "back-arc" extension.

Figure 2.2. (a) Major tectonic elements of central-eastern Europe, with the territory of Bulgaria

indicated by a heavy line; (b) Major topographic features of Bulgaria with the location of the Sub-

Balkan graben system shown in black. Other Middle Miocene and younger extensional basins are

shown with closely spaced dots and late Neogene deposition along the Moesian plain is shown

with widely spaced dots. SB = Sofia graben, M = Mesta graben, S = Struma graben. (Figure

modified from Tzankov et al.,1996.)

Figure 2.3. Simplified north-south cross-sections across the sub-Balkan graben system and

corresponding approximately to profiles A (top) and B (bottom) on Figure 2.5. Graben fill is

shown by dotted and cross-hatched areas and arrows show sense of motion on graben-bounding

normal faults.

Figure 2.4(a) North-south topographic profile across the Stara Planina along Profile C. Arrows

show the position of the Quaternary grabens on the south side of the range and the position of the

frontal thrust fault of the Stara Planina. (b) Cross-section along profile C constructed from surface

geological data and unpublished seismic and drilling data. pP = pre-Permian metamorphic rocks;

Trlu = base Triassic unconformity; J3Kla,b = Upper Jurassic - Lower Cretaceous sedimentary
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rocks in surface outcrop; Kla,b = Lower Cretaceous sedimentary rocks exposed at the surface;

K2 = Upper Cretaceous sedimentary rocks. Details of hanging wall structure above the Mesozoic

foreland sequence cannot be resolved on the seismic section. No vertical exaggeration.

Figure 2.5. Smoothed topographic map of the central Stara Planina, after Stoyanova (1986), and

locations of profiles A-E. The east-trending dark solid line indicates the locations of the highest

topographic points along the range. Stippled regions to the south of the range are extensional

grabens bounded on the south side by the Sredna Gora mountains. Thick barbed lines indicate

south dipping normal faults (barbs on the hanging wall).

Figure 2.6. Topographic data for profiles A-E. Profile C contains data with no lateral average;

other profiles contain data averaged across a 40 km wide swath. All data was smoothed using a

five-point moving window average. By definition, x=O corresponds to the crest of the Stara

Planina. The thick solid line shows Quaternary grabens on the south side of the Stara Planina.

Figure 2.7.(a) Deflection data used to constrain the flexure of the Moesian platform along profile

C. Smaller dots indicate the depth to base Neogene beneath the South Carpathian foredeep.

Larger dot is the location of the frontal thrusts of the Stara Planina. (b) Bouguer gravity data along

Profile C.

Figure 2.8. Best fitting flexural solutions for profiles A, B, D and E as described in the text for a

uniformly strong plate with Te=10 km (solid line) and Te=20 km (dashed line). Profiles D and E

are reasonably well fit by flexure of a uniformly strong plate while Profiles A and B are not.

Figure 2.9. Best-fitting flexural solutions for profile C using a uniformly strong plate with Te=12

and 20 km, using a simultaneous joint solution for deflection and gravity data. (a) Fit to deflection

data. Star indicates the toe of Mesozoic-Early Tertiary thrust sheets. (b) Fit to gravity data. (c)

RMS-misfit as a function of Te. Stars show Te=12 and 20 km.



Figure 2.10. Best flexural solutions for profile A using a two-rigidity plate as described in the

text. Dots show the transition between effective elastic plate strength Tel (small values of x) and

effective elastic plate strength Te2 (large values of x). Dark line shows topographic data, lighter

line shows flexural solution. Right-hand panels (ii) show rms-misfit as a function of Te.

Transition point is defined to be x=10 km (a), x=15 km (b) and x=5 km (c).

Figure 2.11. Best flexural solutions for profile B using a two-rigidity plate as described in the

text. Dots show the transition between effective elastic plate strength Tel (small values of x) and

effective elastic plate strength Te2 (large values of x). Dark line shows topographic data, lighter

line shows flexural solution. Right-hand panels (ii) show rms-misfit as a function of Te.

Transition point is defined to be x=10 km (a), x=15 km (b) and x=5 km (c).

Figure 2.12. Best flexural solutions for profile B using a two-rigidity plate as described in the

text, and using topographic data from ridges only. Dots show the transition between effective

elastic plate strength Tel (small values of x) and effective elastic plate strength Te2 (large values of

x). Dark line shows topographic data, lighter line shows flexural solution. Right-hand panels (ii)

show rms-misfit as a function of Te. Transition point is defined to be x=10 km (a), x=15 km (b)

and x=5 km (c).

Figure 2.13. Best flexural solutions for profile B using a two-rigidity plate as described in the

text, and using topographic data from valleys only. Dots show the transition between effective

elastic plate strength Tel (small values of x) and effective elastic plate strength Te2 (large values of

x). Dark line shows topographic data, lighter line shows flexural solution. Right-hand panels (ii)

show rms-misfit as a function of Te. Transition point is defined to be x=10 km (a), x=15 km (b)

and x=20 km (c).
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Figure 2.14. (a) Schematic representation of crustal thinning as a result of displacement on a

normal fault, neglecting isostatic uplift of the footwall. Shaded area indicates the material removed

during extension. (b) Material removed from above the south-dipping normal faults that bound the

Stara Planina and the Sub-Balkan graben system, computed as described in text. Reconstruction

neglects isostatic response to unloading, giving pre-faulting geometry. Shaded and cross-hatched

areas indicate material to be removed during extension, cross-hatched area shows region of graben

sediments. (c) Same as (b) but with the inclusion of isostatic response to unloading.



Figure 2.1



Figure 2.2



-> N

near Profile A
2166 m

1203 m
1000 m

OmomI near Profile B

Om

Late Miocene - Pliocene 0 2 km
I I

.-- Quaternary
10 km

I I I I

2276 m

1000 m

-Om



Profile C
1500i

Graben N

1000 
Frontal thrusts

500 +
0 0 20 40 60 80 100 120 140 160

kilometres



Crest of
Stara Planina

,/

I I I

0 5 10 km

3000 m

0

- 5000 m



300

2 200

4oo

N A Bkilometres

0 10 20 30 40 50

topographic crest _ormal sub-Balkan
of Stara Planina -u- grabens



2000

1000 -EI

Profile A

0
0 50 100 150 200 250 300

u,200 0

Profile B
1000

0'
0 50 100 150 200 250 300

u20 00

Profile C
1000 -

0 50 100 150 200 250 300

u2000 I

Profile D
1000

01:o
0 50 100 150 200 250 300

2000
Ld

1000

0
0 50 100 150 200 250

kilometres

I I



Deflection data along Profile C a

- *

- *

- * -

'0

100 150 20I 250

Gravity data along Profile C D

100 150 200 250

Figure 2.7

500

0

-500

-1000

-1500

-20004

10

0

-10

-20

S
*.**~.*** .. %ijo

- 0
S

S

S

- S
0

0

0'
- S

5%
I..'.



Uniform rigidity = 7.2Oe2lNm and 5.76e22Nm, Te=10km and 20km

1500

1000
500

0

1500- PfrfieD

0-
-500

- . .Profile E

-500'
0 100 150 200 250

Figure 2.8

ProfileiB -
-. - .- . -. N.. . . . . . . . . . . .

- - -- - - -

1500
1000

500



Profile C
I I i I i

/
L___ ___ I___ ___

0~~-
N

N
N

N

L~ _ ~L - 1 J - I I I -

20 40 60 80 100 120
kilometres

140 160 180 200

20 40 60 80 100 120 140 160 180 200
kilometres

dashes (long): Te = 20 km
solid line: Te = 12 km
dashes (short): Te = 0 km

6100

50

10 20 30 40

Figure 2.9

1000

-1000 F

0

-20 '
0

is I

4UUU

'



(I) (II)
1500 Best fit, D=1.94e20Nm, Tel=3km, xt=lOkm 0.14

1000

' 500 E 0.135

0 ---------------------------- --------------------------

0.13

-5000 50 100 150 200 250 2Te (k)

1500

5000 
-46 e O m 0.135m,,

E 0.135

50 0- - - - - - - - - - - - - -

-500 1 -- 1 1 0.132 4 6
0 50 100 150 200 250 2Te (km) 6

150010.1500 $~,=5.76e19Nm, Tel=2km, xt=-5km -01
C

1000 -0.15

a 500 --
E 0.14

0-- -- -- -- - -- - -- -- -- -- -- -- - -- -- --- --

00.13
-11 500 50 100 150 200 250 2 4 6

kilometres Te (km)

CD



Best fit, D=1.94e20Nn, Tel=3km, xt=10km1500

1000

500

0

-500

1500

1000

500-

0.

-500
0

1500

1000 -

500 -

0-

50 100 150 200 250

kilometres

50 100 150 200 250

(ii)

2 4

Te (km)

0.12

0.1

0.08

2 4

Te (km)

0.12

0.1

0.08

2 4

Te (km)
-500 L

0



1500

1000

500

-500' 5 1 1
0 50 100 150 200 250

D=4.6le2ONm, Tel=4knm, xt=25km ~

-N

-- - - - -.. .. . .. .

100 150
kilometres

200

0.06

0.05

0.04

0.03

0.06

0.05

0.04

0.03
250

(ii)

1 2 3
Te (km)

2 4 6

Te (km)

2 4 6
Te (km)

1500

1000*

500

-500 '



(i)

50 100 150 200 250

50 100 150 200 250

50 100 150 200 250
kilometres

1500

1000-

500 -

0-

-500 -
0

.

m 0.15

0.1

00i

2 4 6
Te (km)

1500

1000

500

0

-500

1500

1000

500

-500

a

b

C

2 4 6
Te (km)

Un 0.15

0.1
2 4 6
Te (km)



-0N a
future topographic crest

hanging wall

listric normal fault fowl

b

hanging wall 
owlfootwall

-5000 -

inferred fault geometry

-10000- - -

-60 -50 -40 -30 -20 -10 0 10 20

6000 -
--- topography

- - - deflection, Te 3 km
4000- 'Ai shear stress

1PN/m

E 2000 -

0
-60 -50 -40 -30 -20 -10 0 10 20

x(km)

Figure 2.14



Chapter 3

Earthquake Nucleation on Model Faults With Rate and State-

Dependent Friction: The Effects of Inertial

ABSTRACT

Laboratory studies suggest that earthquake nucleation involves a transition from quasi-

static slip when inertial effects are negligible, to inertia-driven, dynamic motion. This

transition occurs via quasi-dynamic motion, during which the effects of inertia become

increasingly important. The characteristics of this transition, which depend on frictional

properties of the fault, determine the observability of earthquake nucleation by seismic,

geodetic, or other means. By investigating the role of inertia during nucleation, we obtain a

quantitative definition of the limiting velocity Vin, which marks the end of quasi-dynamic

motion and the onset of instability. For reasonable friction parameters and fault widths, we

obtain estimates of Vin for crustal faults. To study the roles of inertia, stiffness, and

friction parameters on preseismic motion, we simulate triggered instabilities in a 1 -D model

of a homogeneous fault, with rate and state variable friction. In most of our simulations,

triggering is achieved by applying a stress perturbation to an initially creeping fault under

steady-state friction. We also investigate triggering on faults which are initially locked and

over-stressed compared to their nominal frictional strength, due to time-dependent healing.

We study the amount, UP, and duration, T,, of preseismic slip as a function of system

mass m, and other model parameters. For crustal faults, we interpret the relevant mass as a

1 Roy, M. and C. Marone, Earthquake nucleation on model faults with rate- and state-dependent friction:
Effects of inertia, J. Geophys. Res., 101, 13,919-13,932, 1996. Copyright 1996 by the American
Geophysical Union.



product of density and fault width, and find that wider fault zones result in smaller UP and

larger Tp. Both Up and T, are proportional to the system stiffness K, the characteristic slip

distance Dc, and the friction constitutive parameter a, and inversely proportional to the size

of the triggering event. We find greater Up and Tp for constitutive laws which allow

strengthening at zero velocity, compared to laws that require slip or a combination of slip

and aging for state evolution. In contrast to quasi-static modeling, our simulations suggest

a minimum stress perturbation criterion for instability, which may be interpreted in terms of

a strain threshold for triggered seismicity.

INTRODUCTION

There is growing evidence from laboratory data, seismic observations, and theoretical

modeling that earthquake nucleation involves an identifiable transition from quasi-static

creep to dynamically driven motion [Scholz et al., 1972; Dieterich, 1978, 198 1a, 1986,

1992; Okubo and Dieterich, 1984; Ohnaka and Kuwahara, 1990; Shibazaki and Matsu'ura,

1992, 1995; Iio, 1992, 1995; Ohnaka, 1993; Abercrombie and Mori, 1994; Baumberger et

al., 1994, Kato et al., 1994; Ellsworth and Beroza, 1995]. This transition involves the

accumulation of finite fault slip, suggesting that time- and state-dependent frictional

behavior play a key role in the nucleation process. Laboratory friction experiments show

that pre-instability motion consists of an initial, steady creep phase during which motion is

quasi-static, followed by slow but self-driven acceleration [Scholz et al., 1972; Dieterich,

198 1a; Ohnaka and Yamashita, 1989; Kato et al, 1994]. Such quasi-dynamic motion may

produce distinct seismic and geodetic signatures, however, these signatures and the extent

to which crustal faults reproduce laboratory behavior depends on details of the frictional

properties. Thus a central problem in identifying and interpreting characteristics of



earthquake nucleation is that of understanding the effect of friction parameters on the

transition from quasi-static to dynamic slip.

Previous theoretical studies of earthquake nucleation use arbitrary velocity cut-offs to

denote the onset of the onset of instability and assume that the nucleation process is purely

quasi-static [Dieterich, 1986, 1992; Rice and Tse, 1986], but see Gu and Wong [1991] and

Weeks [1993]. As a result, these studies do not fully model quasi-dynamic acceleration

prior to the onset of instability. Other studies, which have included the effects of inertia

[e.g., Sleep, 1995a,b; Segall and Rice, 1995], have focused primarily on shear heating,

compaction, and dilation as they relate to instability. These studies do not define the

transition from quasi-static to dynamic slip, nor do they address the role of friction in

determining characteristics of preseismic slip and earthquake nucleation.

In this study, we investigate the effect of friction parameters, friction laws, and inertia

on preseismic slip and quasi-dynamic motion preceding earthquake-like instability. We

derive, via the equations of motion, a quantitative definition of the transition from quasi-

static to dynamic slip. To focus on the friction parameters and constitutive formulations

and avoid the complicating effects of geometry, we use a single-degree-of-freedom elastic

model of a homogeneous fault (Figure 3.1). Friction is assumed to obey rate and state

variable constitutive laws and fault normal stress is constant. We do not consider effects of

rupture growth or dynamic rupture propagation, nor do we account for dilation,

compaction, or shear heating. We investigate the amount, UP, and duration, Tp, of

preseismic slip as a function of mass per unit fault area m, stiffness K, stress perturbation

'q, and the friction parameters and constitutive formulation. In the majority of our

simulations, we trigger instability by applying a stress perturbation to a fault undergoing

slow creep under steady-state friction. In addition, we also consider cases in which the

fault is initially locked and over-stressed due to time-dependent frictional strengthening.



We define two distinct phases of motion during preseismic nucleation: a quasi-static

phase, with a limiting slip velocity of Vqs, and a quasi-dynamic phase, which involves

slow acceleration to a limiting velocity Vin. The velocity Vin defines the point at which

motion becomes inertia-dominated. We find that this definition is consistent with unstable

motion as predicted by a linear stability analysis. In the limit of negligible system mass, the

duration of quasi-dynamic motion approaches zero, and we recover the purely quasi-static

nucleation process assumed by Dieterich [1986, 1992].

In the following section, we describe the rate and state variable constitutive laws used

in the simulations and derive the limiting velocities Vqs and Vin. Next, we present the

results of our simulations to illuminate the effects of inertia and constitutive parameters on

preseismic nucleation. By varying mass with all other parameters fixed, we determine its

role during preseismic nucleation.

RATE AND STATE VARIABLE CONSTITUTIVE LAWS

Laboratory studies indicate that rock friction is a function of both instantaneous sliding

velocity ("rate") and sliding history ("state") [Dieterich 1979, 1981b; Ruina, 1980, 1983;

Scholz, 1990]. Two types of rate/state friction laws have been proposed to account for

different types of state evolution [e.g., Beeler et al., 1994; Perrin et al., 1995]. In this

paper we explore three specific rate/state constitutive laws, however, we focus primarily on

the type of law proposed by Dieterich [1979]:

= +aln +bln Dj (3.1)
(VO ) D( )

d-= 1V .p (3.2)
dt Dc



Here, p is the coefficient of friction, V is the instantaneous sliding velocity, Vo is a

constant reference velocity for which steady-state friction is po, yf is the state variable, and

Dc is a characteristic slip distance. The terms a, b, and Dc are constitutive parameters

determined experimentally [e.g., Dieterich, 1979; Tullis and Weeks, 1988; Marone et al.,

1990; Reinen and Weeks, 1994]. The second and third terms in equation (3.1) represent

the instantaneous velocity and state dependence of friction, respectively. Equation (3.2)

describes friction state evolution and indicates that state cannot change instantaneously, but

rather evolves with time t and characteristic displacement Dc. This relation allows for

friction evolution during stationary contact, in contrast to another law we use and describe

more fully below, in which friction evolution requires finite slip [Ruina, 1983].

Because rate/state friction laws have been discussed in detail [e.g., Rice and Gu, 1983;

Tullis, 1988; Scholz, 1990; Linker and Dieterich, 1992] we restrict attention here to a few

key points. Figure 3.2 shows the friction response described by (3.1) and (3.2) to a step

change in velocity. The parameter a scales the instantaneous friction increase at constant

state and b scales friction evolution over characteristic slip distance Dc. The change in

steady-state friction scales with (a-b) and from (3.2) the steady-state value of the state

parameter yf is Dc/V. If a<b, the evolution effect outweighs the direct effect and friction

exhibits so-called velocity weakening (Figure 3.2). For b<a, steady-state friction increases

with velocity (so-called velocity strengthening).

Velocity weakening frictional behavior is a necessary condition for instability [Rice and

Ruina, 1983], and from numerous seismic observations, such as the depth-frequency

distribution of seismicity [e.g., Marone and Scholz, 1988; Blanpied et al., 1991], we infer

(a-b)< 0 for the seismogenic region of crustal faults. Thus, in our simulations we set (a-

b)<0 and use parameter ranges consistent with laboratory results [Dieterich, 1979; Marone

and Cox, 1994; Reinen et al., 1994; Blanpied et al., 1995].



TRANSITION FROM QUASI-STATIC TO DYNAMIC SLIP

In the context of our model, fault slip and rupture nucleation is determined by the

equation of motion of the mass coupled to the constitutive formulation for fault friction.

We begin by defining a limiting velocity for quasi-static motion, using solutions to the

linearized equations of motion, and then consider the transition from quasi-static to

dynamic motion.

Following Rice and Ruina [1983], the equation of motion of a spring-slider system,

initially at steady-state, but subjected to an arbitrary perturbing stress q(t) may be written:

mi(t) = T, - Kx(t) - r(t) + q(t), (3.3)

where m is the mass per unit area, t is shear stress given by yua where a is normal stress,

to is steady-state shear stress, K is stiffness, x(t) is the change in slider position, and dots

indicate time derivatives. From a linear stability analysis of this equation coupled to the

constitutive law (3.1) and (3.2) [Rice and Ruina, 1983], the critical stiffness for unstable

motion is:

-a(b-a) [ mVn2] (34K = c 11+ cra . (3.4)

Linearized Equations of Motion

Assuming that the perturbing force is a Heaviside function, q(t)=q0o(t), the position

and velocity of the slider for t>O are: s(t) = Vt + x(t) and V(t) = V + .(t), respectively.

In addition, the state variable is perturbed from its steady-state value, IF(t)= Dc/Vo + (t).

Substituting these expressions into equation (3.3) and writing k=K/a we obtain linearized



equations for the perturbed quantities valid for t>O (neglecting all terms that are of second

or higher order in the perturbations),

.. (kx t) ax(t) _bV og(t)
mx(t) =a -kx(t) - at)bot + qO (3.5)

VO Dc

m3 (t)= - V + . (3.5)

W Dc Vo

Quasi-static Limit

In the limit of quasi-static motion the acceleration term in equation (3.5) is negligible so

that 0 = Kx(t) + (aai(t)/V0 ) + (abV0 (t)/D) - q0 . The critical stiffness is then Ke = ofb-

a)/Dc [Ruina, 1980; Gu et al., 1984], which is equivalent to equation (3.4) when

mVo2 /aaDc <<1, i.e. at small steady-state velocities. As steady-state velocity increases,

when mV 0
2 /aaDc ~1, motion is no longer quasi-static. Thus, we define the limiting

velocity for quasi-static motion Vqs as

Vqs = -aD (3.7)m

Equation (3.7) indicates that for initial, steady-state velocity V< Vqs, motion will begin

quasi-statically. The velocity Vqs is defined in terms of steady-state velocities, and we use

it as an upper bound for the quasi-static phase of motion. For a, a and Dc values consistent

with field and laboratory estimates, and taking m=pr, where p is density and r is a relevant

fault dimension -such as the nucleation patch radius, Vqs is much greater than creep

velocities on geologic faults (<10-9 m/s). Thus, a fault undergoing interseismic, creep-type

motion driven by plate tectonic loading satisfies our condition for quasi-static motion.



Inertia-Dominated Limit

At the onset of inertia dominated motion the friction terms in equation (3.5) are negligible

compared to the applied stress and acceleration terms. In this case, the equation for the slip

perturbation x, is approximately that of a simple harmonic oscillator, mi(t) = -Kx(t),

where x(t) = x, exp(iwt) with frequency o = VK/m . We do not consider full dynamic

oscillations of the system, but instead are concerned with the velocity at which the frictional

terms in equation (3.5) are negligible compared to the inertial ones. Setting the sum of the

friction terms in (3.5) to zero, we have -ax(t) / Vo = bc(t)Vo / Dc. Substituting this into

equation (3.6) yields the state variable evolution when motion is inertia-dominated:

D(t)= baIa. (3.8)

From (8), the time scale over which the state variable changes is T = a DIVo(b-a). On

the other hand, the time scale over which velocity changes is Tm= 4Vim. When the

motion is inertia dominated, T << Tm or, Vo >>aDc VIM (b-a)-1 . Thus, we define Vi,

as the limiting velocity at which motion first becomes inertia-dominated:

aD C
Vs = K -. (3.9)

(b-a) mn

Note that this relation differs from estimates based on comparison of the natural period

of vibration T=4WzK with the characteristic friction evolution time Dc/V [e.g., Rice and

Tse, 1986]. In that case, Vin = Dc K/r. Since laboratory data generally show a ~ 2(b-a)

the two estimates do not differ greatly. However, equation (3.9) has the feature that for a

given stiffness, mass, and characteristic friction distance, inertia-dominated motion is

reached earlier when friction exhibits greater velocity weakening and later for cases in

which friction increases more strongly upon an increase in velocity (larger a). Thus, our

estimate has the advantage that it relates Vin, which is closely related to seismic or geodetic



thresholds of observability of earthquake nucleation, with the friction parameters

controlling pre-instability behavior and earthquake nucleation.

Preseismic Motion and Validity of the Definition of Vin

Figure 3.3 illustrates the development of unstable slip in our model. For V<Vin, slip is

either quasi-static (V<Vqs) or quasi-dynamic (Vqs<V<Vin). The time at which V=Vin

marks the end of preseismic slip. To trigger instability, we apply a stress perturbation

defined as the ratio of the perturbed stress to the initial stress 7=qo/r0 . The perturbation is

applied at t=O after which the load-point velocity is fixed at V0 . Initially, frictional and

applied stresses are approximately equal, acceleration is negligible and motion is quasi-

static (quasi-static region in Figure 3.3). The onset of quasi-dynamic motion begins when

velocity weakening causes friction to fall below the applied stress. In this paper, we refer

to inertia-dominated motion (V>Vin) as seismic or dynamic motion.

To verify our definition of the limiting velocity Vin, we check whether our numerical

simulations exhibit instability when V> Vin. Velocity should exceed Vin only for

simulations in which K/Kc<1, i.e. when the conditions for instability are satisfied. Our

numerical simulations do not use the linearized equations, but rather solve the full non-

linear equations of motion. We vary the ratio K/Kc by varying K for constant values of Kc

and its parameters (equation 3.4).

Figure 3.4 shows slip and velocity as a function of time during a set of simulations

with varying K/Kc. Here and in the figures that follow, we use non-dimensional slip, time

and velocity, U' = U/Dc, T' = tVoIDc, V' = V/V 0 , respectively, with primes indicating

dimensionless variables. In each case, velocity increases at about the same rate until

T'=4-10-6, after which it increases sharply for K<Kc (Figure 3.4b). For K>Kc, V never

exceeds Vin and slip never becomes dynamic. Note that Vin increases with K and thus Vin

is lowest in the most unstable case. For K/Kc< 1, V eventually exceeds Vin and thus cases



that satisfy the criteria for unstable slip also exhibit dynamic motion according to our

definition.

SIMULATIONS

We first present simulations of triggered instabilities on faults undergoing steady,

creep-type motion with steady-state friction according to (3.1) and (3.2). In these cases,

the question addressed is: under what conditions will a stress change, for example due to a

nearby earthquake, trigger instability on a fault driven at steady state. On the other hand,

faults may be locked and over-stressed due to time-dependent frictional strengthening. On

such faults, triggering may involve speeding an instability that is already slowly growing.

To investigate these cases, we also present simulations in which the initial friction is higher

than the steady-state value at the initial loading rate.

Parameter ranges

The initial velocity and normal stress for all simulations is V0= 10-9 m/s and -= 100

MPa, respectively, chosen to be comparable to geologic slip rates and a nominal effective

stress value in the seismogenic region of crustal faults. We use a range of stiffnesses from

1 to 5 GPa/m, corresponding to K/Kc values of 0.2 to 0.9. Mass per unit area m is varied

from 101 to 107 kg/m 2 . As we discuss more fully below, the range of m values may be

considered to represent either a range of rupture nucleation dimensions r (taking m=pr and

noting that K ~ G/r, where p is density and G is shear modulus) or a range of fault zone

widths w (taking m=pw). We use values of the friction constitutive parameters consistent

with laboratory data and fault zone modeling estimates: a=0.005 to 0.007, b=0.006 to

0.008 and Dc from 2-10-5 to 2-10-3 m. Higher field-based estimates of Dc exist, based on

its mechanical interpretation and scaling properties [e.g., Marone and Kilgore, 1993],

however, our upper limit is fixed by computational time constraints.

00 01=1=1010110 11 11111111will



Definition of 1mi and Trax

Although the instability criteria K<Kc, (a-b)<O must be satisfied in order to achieve

dynamic motion (e.g., Figure 3.4), inertia and the initial frictional state also play a role in

determining whether slip velocity exceeds Vin Stress perturbations smaller than a critical

size I<fmin will not result in dynamic motion because Vmax< Vin and, hence, the transition

from preseismic to seismic slip is undefined (case C of Figure 3.5). Case B of Figure 3.5

shows 7l~~7min for which Vmax just exceeds Vin. Larger stress perturbations result in

higher maximum velocities and shorter preseismic durations (case A, Figure 3.5). For

stress perturbations larger than an upper limit 7>7max, the system is immediately unstable

with V> Vin. This occurs when the applied stress jump exceeds the instantaneous friction

direct effect, and in this case preseismic slip and duration are zero. Thus, in our

simulations we limit the range of stress perturbations to llmin< 7<7max.

RESULTS

System Mass and Stiffness

Figure 3.6 shows normalized velocity and slip vs. time for simulations with the same

perturbation 71 but different masses. A dot marks the point at which motion changes from

quasi-dynamic to inertia dominated and thus denotes the end of preseismic slip. Larger m

causes longer preseismic duration and smaller preseismic slip (Figure 3.6). This is because

for fixed 1, acceleration is inversely proportional to mass, and thus for larger masses the

velocity is lower during preseismic slip (Figure 3.6b). As a result, slip-dependent

evolution of the state variable requires a longer time, leading to slower velocity weakening

and a longer preseismic duration T, (Figures 3.6 and 3.7). In addition, Vin decreases as

m-12, so larger m yields dynamic motion at lower velocities (Figure 3.6b and inset to

3.6a), leading to smaller preseismic slip Up (Figures 3.6a and 3.7). Note that both Vq, and



Vin are proportional to m-112, so as mass approaches zero Vqs and Vin approach infinity,

consistent with fully quasi-static motion in this limit.

Preseismic behavior is also a function of stiffness and the degree of instability, via

K/Kc. For a range of m, j7 and K values, Figure 3.7 shows the preseismic duration and

slip determined from curves such as in Figure 3.6. At a fixed 11, higher stiffnesses yield

longer preseismic durations and larger preseismic slips. The parameter 7lmin increases with

K/Kc (Figure 3.7), indicating that larger stress perturbations are required to trigger

instability when the system is inherently more stable. In addition, ?1min decreases with

increasing mass, which indicates that larger masses require smaller perturbations to trigger

instability (Figures 3.6 and 3.7).

Perturbation Size

The size of the stress perturbation controls the initial acceleration and average

preseismic velocity, and thus both preseismic slip and duration decrease with increasing r7

(Figure 3.7). For fixed K/Kc and m, we find a log-linear relationship between T, and 17

(Figure 3.7a). As m increases the range of stress perturbations producing preseismic slip

decreases (Figure 3.7). This is due to both a decrease in Timin, and a faster decrease in

Timax. The maximum allowed perturbation decreases with higher m, since the

instantaneous increase in friction decreases with mass (e.g., Figure 3.2).

Characteristic Slip, De

For fixed 17, preseismic slip and duration increase with increasing Dc (Figure 3.8).

Note that both Vqs and Vin increase with Dc and that as Dc goes to zero, Vin becomes small,

and thus motion becomes unstable instantaneously, i.e. UP and T are negligible. The

normalized preseismic duration T' is independent of Dc (Figure 3.8a), indicating linear

increase in Tp with Dc. Preseismic slip increases more rapidly than linearly with Dc (Figure

3.8b). The effect of De on Up varies with the size of the stress perturbation.
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Friction Parameter a (Direct Effect)

We explore the role of the friction direct effect in simulations where we vary a for fixed

values of the other parameters, (a-b), a, 77, Dc, K/Kc, and m. Increasing a leads to an

increase in the duration and amount of preseismic slip (Figures 3.9 and 3.10). The net

stress immediately following the perturbation decreases with increasing a and thus average

preseismic velocity decreases (Figure 3.9b). This effect leads to an increase in the

preseismic duration (Figure 3.9b), whereas the fact that Vin scales as a leads to an increase

in preseismic slip (Figure 3.9a). For fixed a, Up and T, decrease with 77 (Figure 3.10).

Note that by definition the maximum allowed stress perturbation 7ma increases with a.

Rate and State Constitutive Formulation

The above simulations use the constitutive formulation in equations (3.1) and (3.2),

which we refer to as the Dieterich law. We also consider two other rate and state variable

formulations, which we refer to as the Ruina law, [Ruina, 1983], and the Perrin-Rice-

Zheng law, [Perrin et al., 1995]:

1. Ruina Law

p =po +alnV +bln D (3.10)

*=Y!.'j V+ bln -) (3.11)
Dc Yo

2. Perrin-Rice-Zhang (PRZ) law:

u =gp + aln - +blIn { (3.12)

- .2D )(3.13)



These formulations have the same structure as the Dieterich law, but differ in the evolution

of the state variable. In the Ruina law the state variable does not evolve at zero velocity,

but instead slip is required for the state to evolve. The PRZ law retains Dieterich-type state

aging, but uses a modified evolution relation resulting in symmetric friction responses to

velocity increases and decreases, as observed in some laboratory experiments. In all three

cases, the state variable exponentially approaches steady-state over a characteristic distance

Dc (Figure 3.11a). The critical stiffness and limiting velocities for all three laws are

identical to those derived above.

For fixed constitutive parameters the PRZ law evolves the fastest, followed by the

Ruina and Dieterich laws (Figure 3.1 la). Preseismic slip and duration are smallest for the

PRZ law, followed by the Ruina and Dieterich laws (Figure 3.1 lb and c). An

approximately log-linear relation between T' and stress perturbation is observed for each

law below an upper limit in 17 that is lowest for the PRZ law (Figure 3.1 1b). Preseismic

slip is largest for the Dieterich law although Up decreases more rapidly with increasing 17 in

this case.

Locked and Over-stressed Faults

The simulations above start with the fault creeping steadily under steady-state friction.

To investigate the effects of over-stressing, such as for a partially- or fully-locked fault that

has undergone frictional healing, we start with a higher frictional strength than the steady-

state value for a given creep rate. For these simulations, we use the Dieterich friction law.

In this case, dy,/dt=1 when the fault is stationary and thus over-stressing corresponds to

increasing the initial value of / by the interseismic locking time. We studied interseismic

times of 107s and 3-109s (~100 years). All other aspects of the simulations were identical

to the cases described above, including the initial velocity V0. For the over-stressed cases,

we find lower preseismic duration and slip compared to faults with steady state friction
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(Figure 3.12). However, the effect is not large, for example, 100 years of over-stressing

results in a reduction in preseismic duration of = 130s for a nucleation patch roughly 4km

in radius (m=0 7kg/m 2 ) with Dc=10-2m and V0=10-9m/s (Figure 3.12). Over-stressed

faults have lower 17min, but the minimum stress perturbation capable of triggering seismic

slip is still appreciable (Figure 3.12), in contrast to results that do not include inertia

[Dieterich, 1986].

DISCUSSION

Our numerical simulations show that the preseismic duration and time to instability

decreases with increasing perturbation size. In particular, log(Tp) decreases linearly with

the size of the triggering stress perturbation (Figures 3.7, 3.8, 3.10, 3.11 and 3.12). The

slope of this decay is fairly constant, (Alog(Tp)/Ai)=-50, varying somewhat with friction

parameter a (Figure 3.10) and with constitutive formulation (Figure 3.11).

Scaling of Preseismic Duration with Perturbation Size and Aftershock

Occurrence Rate

Our model simulates a fault with homogeneous frictional properties and stress

conditions. Therefore, for a given set of parameters, it yields a single time to failure for a

given stress perturbation. However, our results can be applied to more complex faults if

the initial stress is heterogeneous. In that case, a given triggering event will produce a

range of stress perturbation sizes and potential nucleation sites. Assuming a uniform

distribution of stress perturbations, the number of nucleation sites N triggered by a

perturbation 0i7 is proportional to il, hence Ncc-log(Tp). This indicates that the rate of

triggered events varies inversely with time, dN/dtoc 1/T and thus our relationship between

T, and 17 is consistent with the well-known inverse relationship between aftershock

occurrence rate and time from the mainshock (Omori's law). Our results indicate that over-



stressed regions of the fault may fail earlier than regions driven at the steady-state creep rate

and that instability will be delayed in regions for which the friction parameters a and/or Dc

are larger, such as those of higher roughness or that contain granular fault gouge [Marone

and Kilgore, 1993; Marone and Cox, 1994].

Our modeling results are also consistent with observations showing that the rate of

foreshocks increases rapidly in the days preceding a mainshock [Jones and Molnar, 1979;

Jones, 1984, 1994]. Jones and Molnar [1979] presented a model in which foreshocks are

generated by static fatigue of contact asperities. They assume that static fatigue is a random

process, so that the rate of failure, dN/dt, is proportional to the number of intact asperities,

N, and inversely proportional to the average time to failure, Tf. For static fatigue, the time

to failure decreases exponentially with differential stress 'r: Tf C exp(-T) [Scholz , 1972].

This is consistent with our relation between preseismic duration and stress perturbation size

-log(Tp)oc 17 and dN/dtoc 1/T,, since tj determines the differential stress on a given fault

patch. Therefore our modeling indicates that cumulative failure of asperities within the

nucleation region of an impending earthquake would result in larger stress perturbations

and thus progressively higher rates of seismicity. Thus, it appears that the relationship

between the time to instability and the size of the perturbation is a general feature of

triggered instabilities.

A Model of Nucleation Incorporating Mass

From our numerical simulations, preseismic duration increases with m and both

preseismic slip and average velocity decrease with m. In addition, the limiting velocities

Vqs and Vin vary with m. If one takes m as the product of density and a spatial dimension,

then the problem of applying these results to faults reduces to a problem of identifying the

spatial dimension. For a slipping fault patch, this dimension is the width w perpendicular

to the fault plane, m=pw. Thus, the range of m values considered in our simulations, 101



to 107 kg/m 2 , corresponds to nominal widths of 4 mm to 4 km. This would indicate a

simple scaling between w and preseismic duration, however, w is not independent of

nucleation dimension. From continuity considerations, w must scale with rupture size

w=rn, so that m=prO where r is fault radius and n is a constant depending on factors such

as gouge zone width and microstructure or fault roughness. For example, a scaling

between w and r is predicted by the fractal character of fault roughness, since the maximum

topographic variation on a slipping patch is proportional to the patch radius [Brown and

Scholz, 1985; Power and Tullis, 1992]. These studies would indicate n=1 to 1.5. Thus,

the inertial parameter in our model scales with nucleation zone size.

Nucleation Zone Size. Although our simulations do not explicitly incorporate

growth of the nucleation patch, such growth may be considered in the context of stiffness

variations, taking K~G/r. A requirement for instability and seismic slip is K<Kc, and since

Kc is defined in terms of the constitutive parameters (equation 3.4), the instability condition

is assumed to be met by a reduction in the local stiffness surrounding an expanding

nucleation patch. Following Dieterich [1986], and ignoring for the moment inertial effects,

the critical nucleation patch size rc can be defined in terms of the friction parameters as

follows. For a circular patch of radius r, the relationship between the stress drop A'r and

the maximum offset U at the center is, Ar-=(77r/24)(UG/r) [Chinnery, 1969], where G is

the shear modulus. Interpreting Ar/U as a local stiffness, K varies as r-1 K=(71/24)(G/r)

[Dieterich, 1986]. Therefore, growth of the slipping patch reduces K until the onset of

instability, when K=Kc, and the minimum patch radius for instability is [Dieterich, 1986]:

71r G (.4
rc = 24 Kc (3.14)

For a quasi-static analysis, without inertia, (3.14) provides a functional relationship

between nucleation size and friction parameters. When inertia is included, Kc also depends

on m, which from the above discussion, is related to r. However, for reasonable values of



initial fault creep-rates, Kc is approximately independent of m, that is, the inertial term in

equation (3.4) is << 1 (of order 10-15). Making this approximation, Kc ~ 0. 1/Dc (in units

of MPa/m) for o-100 MPa, Vo= 10- 9 m/s , and (b-a)=10-3 (equation 3.4), where we note

that the scaling between Dc and w suggested by Marone and Kilgore [1993] is not

included. For a circular fault patch and G=30 GPa, this indicates a range of re values from

5 m to 0.5 km for Dc from 2-10-5 m to 2-10-3 m, which is consistent with seismic

estimates of nucleation source dimensions.

Quasi-Dynamic Motion

In the context of our model, preseismic slip and duration are determined by both the

quasi-static and quasi-dynamic phases of motion (Figure 3.3). However, in nature, quasi-

dynamic processes are likely to be much more important for the identification of earthquake

nucleation. Seismic and geodetic detectability of nucleation will scale with slip velocity,

and thus the limiting velocity Vin is a key factor in the interpretation of our results. From

equation (3.9), as the patch radius grows, the local stiffness decreases as r-1 and the

effective mass per unit area increases as r. Thus, Vin varies as r- 1 and as slip progresses

toward instability the limiting velocity for dynamic motion decreases.

We can use our above estimates of rc to estimate Vin for a large-scale fault. At the onset

of instability when r=rc, we assume that the width of the fault zone, w, is approximately rc.

Therefore, the effective mass per unit area ranges from 104 to 106 kg/m 2 for w=rc of 5 in

to 0.5 km. Using these values for m, and setting K=Kc in equation (3.9), Vin ranges from

9. 10-3 to 8-10-1 m/s. These velocities are reasonable since they are significantly higher

than background creep rates on geologic faults (about 10-9 m/s) and slightly lower than

typical earthquake particle velocities, which involve V>Vin.



Minimum Perturbation Size

The parameter flmin sets the lowest perturbation for which sliding velocity reaches Vin;

smaller stress perturbations result in model creep events. In our numerical simulations,

7lmin was determined empirically, however, an analytic solution would allow one to relate

fault zone frictional properties to observations of triggered seismicity thresholds [e.g., Hill

et al., 1993; Gomberg and Bodin, 1994; Gomberg and Davis, 1995; Beresnev and Wen,

1995]. We derive here an approximate analytic form for ijmin.

By definition, Vmax=Vin, for 77=Tmin. When V=Vmax, state variable evolution is fast

relative to velocity changes, and thus 'Pis approximately constant and equal to the steady-

state value 'F=Dc/Vin. Using this approximation in the constitutive law (equation 3.1), and

combining with the equation of motion (3.3), we have (setting mX= 0 in equation 3.3),

(71min - )#o = -k(VoT, - Up) + (a - b)ln( ji. (3.15)

Taking an initial fault slip rate of Vo=10-9 m/s and noting the magnitude of T, from our

simulations: V0 T << U,. Thus Timin can be written:

7,mi, I+ I kUP +(a - b)ln j. (3.16)

This can be simplified further by noting that in the numerical simulations, when 7=7min,

Up/Dc=100, thus:

,min = 1+ 1OOkDc + (a - b)In (3.17)
p,0 _ V )

The utility of equation (3.17) is that given a value of 77min, for example from estimates of

co-seismic static stress changes, one can estimate the fault zone friction parameters and Vin.

Comparison of the analytic approximations for 71min with empirically-derived values from

our numerical simulations indicates reasonable agreement (Figure 3.13). The predicted



71

7 lmin values are given for a range of constitutive parameters, using the numerical preseismic

slip values.

Interpretation of timin in Terms of Triggered Seismicity

In the context of slip on large-scale faults, our stress perturbation represents loading by

a neighboring earthquake. Observations of triggered seismicity can be used to evaluate

Timin if Timin is interpreted as a static stress (strain) threshold required for nucleation:

A=(lmin-1)To=Ge where Ar is the change in shear stress on the fault, and E is the elastic

strain. Taking o= 60 MPa as a nominal frictional strength at seismogenic depths, nominal

71min values from our modeling (1.01-1.05) give stress thresholds of 0.6 to 3 MPa and a

strain threshold of E~(TMmin-1)( 2 -10-3). These stress changes are higher than field

estimates ~0.05 to 0.1 MPa [Reasenberg and Simpson, 1992; Stein et al., 1992; King et

al., 1994]. This indicates either that our estimate of fault strength is too high, although To

would have to be reduced by an order of magnitude, or that 7imin for crustal faults is

significantly lower than the nominal values we obtained, perhaps due to lower effective

stiffness than used in the numerical simulations (Figure 3.13d and e).

This comparison is based on static stress perturbations, however recent observations

indicate a frequency-dependent strain threshold for seismic triggering [Gomberg and Davis,

1995]. We may also compare our results to these observations. In the frequency domain

our Heaviside stress perturbation applied at t=0 has a 1/f spectrum. Using the above shear

stress estimate, the corresponding frequency-dependent strain perturbation is:

2-10- 3(imin--1)
2 7rf 

(318)

Although the specific form of (18) is dictated by our assumption of an instantaneous stress

perturbation, it has the feature that the threshold triggering strain ET is inversely related to

perturbation frequency. Equation (3.18) is compared to the observations of Gomberg and



Davis [1995] by assuming that our flmin value from static loading applies for allf (Figure

3.14). The static and total strain thresholds of Gomberg and Davis [1995] are derived from

observations of triggered seismicity and by a lack of tidal triggering. Their thresholds are

inversely proportional to f, with a proportionality constant equivalent to flmin~ 1.0003. We

note that the inverse scaling between ET andf is consistent with higher 7min for lowerf.

This may indicate higher effective Dc and/or lower m for lowerf

Using equation (3.17) with flmin= 1.0003, we can calculate the ranges of K, a-b and De

values which would give rise to a threshold close to that of Gomberg and Davis [1995]

(Figure 3.14). To obtain an 77mi, value consistent with field estimates for Dc and (b-a) (1

mm to 10 cm and 1-5-10-3), respectively, stiffnesses must be in the range 10-1 to 10-2

MPa/m (Figure 3.13d and e), which is consistent with geologic faults having low effective

stiffness [e.g., Walsh, 1971].

CONCLUSIONS

We investigate the effect of friction parameters, constitutive laws, and inertia on

earthquake nucleation through simulations of instabilities in a 1 -D model of a homogeneous

fault. To trigger instabilities, we use a stress perturbation which corresponds to static

stress changes due to nearby earthquakes. Preseismic motion consists of two distinct

phases: quasi-static slip when velocity is less than a limiting value, Vqs, and quasi-dynamic

slip as inertial effects become more important. During dynamic motion, velocity exceeds

the limiting velocity for inertia-driven motion,Vin. From the equations of motion of the

system, we obtain quantitative definitions and estimates of these velocities for crustal faults:

Vqs>10- 9 m/s and Vin =10-3 to 10-1 n/s. In the context of our modeling, the amount and

duration of preseismic slip are governed by fault frictional properties, stiffness and inertia.

The preseismic duration scales directly with mass, and the amount of preseismic slip



decreases with mass. Both the amount and duration of preseismic slip increase with the

ratio of system stiffness to a critical stiffness and the friction constitutive parameters a and

Dc. For a wide range of parameters, we find a log-linear relationship between preseismic

duration and the stress perturbation. This result is consistent with empirically observed

relationships between the rate of aftershock (or foreshock) occurrence and time since (or

prior to) the mainshock [Jones and Molnar, 1979], and with simulations of instabilities in

systems without inertia [Dieterich, 1986]. In contrast to purely quasi-static analysis, our

modeling indicates that triggered instabilities require a minimum static stress threshold,

which depends on the system stiffness and constitutive parameters. We find that the stress

threshold decreases, and preseismic slip and duration are longer for an initially locked and

over-stressed fault. In order to match field-based observations of stress thresholds for

triggered seismicity, we require fault stiffnesses of order 10-1 to 10-2 MPa/m.
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FIGURE CAPTIONS

Figure 3.1. Simple model of a homogeneous fault. An external load is applied to the mass

by imposing motion of the load point with velocity Vioad. The shear stress at the base of

the slider , is determined by rate and state variable friction laws. At steady-state, the shear

stress matches the applied load, and the slider velocity V and the load-point velocity Vload

are constant and equal. The normal stress a, is fixed for all simulations at 100 MPa.

Figure 3.2. Friction response for a step increase in slider velocity at time t]. At times t<t1

friction is at steady-state, p=po. The "direct effect" is the immediate jump in Y following

the velocity step, and the "evolving effect" is the decay in y over a slip distance Dc.

Velocity weakening frictional behavior, (a-b)<0, is shown.

Figure 3.3. Friction (a) and velocity (b) response of the system to a sudden stress

perturbation applied at t=O.

(a). Friction as a function of slip (solid curve). The dashed line shows the

corresponding change in normalized applied force, and the hatchured area shows the

resultant normalized force on the slider. The perturbation is followed by an immediate rise

in y and a period of negligible acceleration (quasi-static slip). With further slip, friction

decays due to velocity weakening and acceleration begins, (quasi-dynamic slip). We define

the onset of dynamic motion when V=Vin. Acceleration continues until the friction and the

applied stress are equal at point X. The absence of non-frictional dissipation, (such as the

emission of seismic radiation) means that the energy lost during deceleration is equal to that

gained during acceleration (i.e. the shaded areas are equal).

(b). The velocity-time function shows a period of low acceleration at low velocities

(quasi-static), before appreciable acceleration occurs (quasi-dynamic). Dashed lines denote



the limiting velocities Vqs and Vin used to define quasi-static (V< Vqs), quasi-dynamic

(<Vqs<V<Vin), and dynamic motion (V>Vin). Preseismic slip is defined as slip occurring

prior to (V= Vin)

Figure 3.4. (a). Slip vs. time curves for numerical simulations using identical initial

velocities, constitutive parameters and slider masses, hence identical Kc, but differing

values of system stiffness, i.e. differing K/Kc. All simulations use 7=1.120 and m= 107

kg/m 2 . Inset: The same data at larger scale to illustrate the unstable slip vs. time function

when K/Kc< 1, and stable motion when K/Kc> 1.

(b). Velocity vs. time curves for the simulations in (a). Dashed lines show Vi,/XVo.

Note that velocity exceeds Vin only in cases where K/Kc<1, i.e.. when unstable motion is

predicted by a linear stability analysis of the equation of motion. Thus, our definition of

V=Vin as the onset of dynamic motion is consistent with these results.

Figure 3.5. Illustration of minimum and maximum stress perturbations used in simulations.

The smallest value of the perturbation, flmin is defined as the minimum value required to

produce seismic slip, case B. At the maximum value, 17max, the applied stress immediately

exceeds the friction direct effect, and thus the preseismic slip and duration are zero (case

A). Normalized velocity vs. time for three cases illustrate the definition of 7min. The

maximum velocity for case B just reaches Vin and thus the stress perturbation is just large

enough to cause dynamic slip. In case A, Vin is exceeded, and in case C, Vi, is never

reached. The friction parameters for each case are identical, but the stress perturbations

vary, flA>?1B>flc.

Figure 3.6. Variation of the preseismic phase with mass. These simulations use a=0.006,

b=0.007, Dc=2-10-5 m, 7=1.120 and K/Kc=0.2.
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(a). Slip vs. time curves for two different slider masses (in kg/m 2). The dots mark the

times at which V= Vin, and thus motion becomes dynamic. Preseismic slip is lower for

larger masses. Inset: Variation of the limiting velocities as a function of mass. Dashed line:

Vqs/Vo, Solid line: Vin/Vo.

(b). Velocity vs. time curves for the simulations in (a). The limiting velocity Vin

decreases with mass, leading to smaller preseismic slip (a), and longer per-seismic

durations.

Figure 3.7. Variation of preseismic slip and duration with mass m, stiffness K, and stress

perturbation ratio 17. The data are shown for the full range of perturbations, 71min to 71max-

For the parameters used in these simulations, o-100 MPa, a=0.006, b=0.007, Dc=2-10-5

m and initial velocity of 10-9 m/s, the critical stiffness is Kc~5 GPa/m.

(a) Left panels: Normalized preseismic duration vs. 17. Simulations for a given slider

mass are plotted on the same panel. Note that there is a log-linear relation between the

duration T, and TI. The slope of this line is roughly independent of mass, ~-50. Duration

scales directly with K/Kc, because the degree of instability decreases with increasing K/Kc.

(b) Right panels: Normalized preseismic slip vs. 71. Preseismic slip scales inversely

with TI and mass and increases with increasing K/Kc.

Figure 3.8. Preseismic duration (left panels) and preseismic slip (right panels) vs. r7 for a

range of Dc values. (K/Kc is fixed at 0.6 in each case by varying the system stiffness K

with other parameters fixed). The normalized duration is independent of Dc, implying that

the duration T, scales with Dc. Preseismic slip Up increases faster than linearly with Dc.
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Figure 3.9. Slip vs. time (a) and velocity vs. time (b) curves for simulations with varying

a. The parameters used are Dc=2-10-5 m, i=1.080, m=10 7 kg/m 2 and K/Ke=0.6. We

use three different values of the parameter a (and change b to keep a-b constant). The dots

in (a) indicate the times at which velocity exceeds Vin and dynamic motion begins. The

dashed lines in (b) indicate Vin/Vo. The limiting velocity for dynamic motion, Vin,

increases with a, as do preseismic slip and duration.

Figure 3.10. Preseismic duration (a) and preseismic slip (b) vs. 77 for different values of

parameter a. For a given stress perturbation, both UP and T, increase with a. Note that by

definition, rirax increases with a because of the increase in the friction direct effect.

Figure 3.11. Comparison among different rate/state variable friction laws. The friction

response to a step change in velocity for the laws is determined by the rate of state variable

evolution (a). Here the initial steady-state p and the instantaneous direct effect, are chosen

to be the same for all laws. Normalized preseismic duration (b) and normalized preseismic

slip (c) are greatest for the Dieterich Law, which has the slowest state evolution, followed

by the Ruina and the Perrin-Rice-Zheng laws.

Figure 3.12. Comparison of preseismic slip and duration for faults which are initially

creeping under steady-state friction with faults that are initially locked and over-stressed.

The simulations use a,--100 MPa, a=0.006, b=0.007, Dc=2-10-5 m K/Kc=0.2, m=10 7

kg/m 2 and initial velocity of 10-9 m/s. We consider two degrees of over-stressing,

corresponding to two intervals over which the fault is locked, 107 s and 3-10-9 s ~ 100 y.

For fixed perturbation size, normalized preseismic duration (a) and normalized preseismic

slip (b) decrease with over-stressing, and are largest for the steady-state case. The



minimum perturbation required for instability, flmin decreases with degree of over-

stressing, although it remains finite.

Figure 3.13. (a)-(c) Comparison of predicted flmin values from equation (3.16) (open

circles), with empirically determined values from simulations (solid circles). The solid

circles in (a) correspond to flmin with fixed stiffness and constitutive parameters but

changing mass (data for K/Kc=0.9 in Figure 3.7). In (b) all parameters except the friction

parameter a are fixed (data in Figure 3.10). In (c) all parameters except the critical slip

distance Dc are fixed (data in Figure 3.8). The friction parameters and preseismic slip Up

used in equation (3.16) to obtain predicted flmin correspond to those in the simulations.

(d) and (e) Predicted values of flmin from equation (3.17) for a range of stiffnesses K

(in MPa/m), with varying friction parameter a (d) and characteristic slip distance Dc (e).

The parameter values in (d) are: Dc=0.2 m, b=0.01, r-100 MPa, m=10 7 kg/m 2 . The

parameter values in (e) are: a=0.006, b=0.007, o'=100 MPa, m=10 7 kg/m 2. The hatchured

lines show field estimates of a co-seismic static stress threshold for triggered seismicity

[Reasenberg and Simpson, 1992]. Note that to obtain flmin values comparable to the field

estimates, we would require low effective stiffnesses for a wide range of a and De values.

Figure 3.14. (Modified from [Gomberg and Davis, 1995]). Comparison of field estimates

of earthquake triggering thresholds [Reasenberg and Simpson, 1992; Gomberg and Davis,

1995], and the spectrum of the lowest threshold obtained from this study (77min=1.01).

The frequency dependence of our threshold derives from our assumption of a Heaviside

stress perturbation. Our threshold corresponds to a static stress change of =0.6 MPa. This

is greater than field estimates [Reasenberg and Simpson, 1992]), which is consistent with
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natural fault zones being more compliant and/or having larger Dc values than in our model

calculations.
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Chapter 4

Fault Systems at a Strike-Slip Plate Boundary (1)

ABSTRACT

This is the first of two companion papers investigating the role of continuum crustal

rheology in governing deformation at a strike-slip plate boundary. Our main goal is to

understand the interaction between continuous deformation and localized brittle failure

and how it governs the growth and evolution of large-scale fault networks. We present an

analytic model of crustal deformation which consists of a two-layer viscoelastic crust,

with uniform shear modulus but depth-varying viscosity, driven by motion of a "plate-

like" mantle beneath. Faulting is represented by static elastic dislocations imposed at a

critical stress threshold for failure, either fracture of a new fault or sliding on a pre-

existing one. Our results suggest that large-scale rheologic stratification within the crust,

such as elastic/brittle behavior in the upper crust and viscous flow in the lower crust,

places strong controls on the overall morphology of the deformation zone as a function of

time and on the growth of fault networks in the upper crust. We show that for a high-

viscosity upper crust underlain by a thin, low-viscosity lower crust, the long-term width

of the deformation zone scales with a dimensionless parameter which depends on the

viscosity contrast and lower crustal thickness. The growth of a large-scale fault network

and the width of the region of localized brittle faulting, relative to the total width of the

deformation zone, is primarily governed by the strength properties within the upper crust

and by the viscosity contrast between the two layers.
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INTRODUCTION

Crustal deformation at active plate margins includes localized strain on networks of

brittle faults within the upper crust and continuous deformation, both within and across

fault-bounded blocks and at lower crustal levels. The interaction between continuous

deformation and brittle faulting and its role in governing the evolution and dynamics of

networks of large-scale faults is mostly unexplored. However, to understand how surface

deformation patterns relate to plate motions, we need to understand this interaction and

how it controls stress transmission within the crust.

Previous studies that have modeled deformation around pre-specified fault zones

suggest that, over inter-seismic times, strain patterns around faults may be understood as

deformation of a continuous elastic or viscoelastic crust (e.g., Rundle and Jackson, 1977;

Li and Rice, 1987; Lyzenga et al., 1991; Senatorski, 1995). On the other hand, studies of

crustal behavior over geologic times suggest that the long-term behavior of deeper parts

of the crust is viscous and may involve large-scale flow in the lower crust (e.g., Block and

Royden, 1990; Buck, 1991). In fact, depending on the time scale of deformation, there is

probably a gradual transition from primarily elastic/brittle behavior in the upper crust to

viscoelastic and viscous behavior in the lower crust (e.g. Sibson, 1984; Scholz, 1988).

This study is composed of two companion papers that explore the role of continuum

or bulk1 crustal rheology in the growth, evolution and dynamics of fault networks at a

strike-slip plate boundary and the extent to which these processes are a natural outgrowth

of crustal rheologic structure. One of our main goals is to understand the complexities of

fault dynamics that arise from the interaction of distributed lower crustal flow and upper

crustal brittle behavior. For example, could large-scale rheologic stratification of the

crust partly govern complex fault dynamics, including basic features such as, growth of

1 Here "bulk" is used to denote all continuous deformation within unfaulted regions of the crust, rather than just the
volumetric strain.



103

multiple fault networks, aperiodic recurrence times, and stress modulation due to failures

on neighboring faults? To what extent does the long-term evolution of a fault network

depend on the interaction between upper and lower crustal deformation? We also study

the overall morphology of the deformation zone (which includes regions of distributed

strain around the plate boundary) and the extent to which it depends on rheologic factors

intrinsic to the crust and on length scales of deformation in the mantle.

The first part of our study, the focus of this paper, considers a simple, two-layer

viscoelastic (Maxwell) model of the crust for which we analytically solve the equations

of motion. By specifying varying viscoelastic properties within the upper and lower

crust, we determine the first-order effects of simple strength stratification on deformation

at a strike-slip plate boundary. One of the main advantages of the analytic approach is

that it allows us to quantify the relationship between the parameters which control crustal

rheologic structure and the morphology of the deformation zone. Using the results of the

analytic approach as a framework for understanding the basic effects of strength

stratification, in the second part (Chapter 5) we set-up a more complex crustal rheologic

structure, with a continuous transition from elastic/brittle to viscous behavior, which is

solved using a numerical approach.

IDEALIZED BULK RHEOLOGY AND BRITTLE FAILURE

A study of the effects of bulk rheology on the evolution and dynamics of brittle faults

requires an idealization of crustal deformation which incorporates continuous behavior at

all crustal levels and localized brittle faulting within the upper crust. We choose a

viscoelastic rheology for distributed deformation in the crust, which allows simple, linear

strain-rate dependence. At time scales that are short compared to the relaxation time

(defined as the ratio of viscosity to shear modulus), the crust behaves primarily as an

elastic medium and on time scales longer than the relaxation time, behavior is dominantly
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viscous. By choosing appropriate values of the viscosity and shear modulus, we allow

for dominantly elastic behavior over short (co- and inter-seismic) times and viscous flow

over longer (geologic) times. Strength stratification is specified by a depth-dependent

relaxation time, for example a long relaxation time in the upper crust and a short one in

the lower crust ensures a primarily elastic upper crust and a primarily viscous lower crust.

We model the crust as a two-layer viscoelastic medium overlying a plate-like mantle

(Figure 4.1), with uniform shear modulus (p) and viscosity ni in the upper layer of

thickness H1 , and viscosity 172 in the lower layer of thickness H2 (H=HI+H2 is the total

crustal thickness). The relaxation time in each layer (Ti and r2) is defined as ri= ri/p. For

simplicity, we assume the plate margin is infinitely long with no variation of properties

along strike, thereby reducing the problem to two-dimensions (Figure 4.1). A single, pre-

existing strike-slip fault is assumed to coincide with the vertical plane of the plate

boundary and the sides of the model region are taken to be far from it, with zero shear

stress acting on the edges (x=tL). Starting from zero initial stresses and strains, we drive

crustal deformation by imposing constant velocity at the Moho (±Vo on either side of the

plate boundary, with a discontinuity at the boundary). (An advantage of choosing a

narrow zone of high shear in the mantle is that broadening of the deformation zone within

the crust will be due to the rheologic structure of the crust, and will not reflect length

scales of deformation in the mantle. This allows us to isolate and focus on the effects of

rheologic stratification within the crust.)

Brittle faulting, which occurs over short time scales, is assumed to be a response to

stress accumulation within the uppermost crust. We represent discrete faults by static

elastic dislocations and incorporate multiple failures assuming that, during faulting, the

entire crust away from the fault plane deforms continuously. Individual elastic solutions

for multiple faulting events are therefore superposed, so that while one fault fails all

others are welded, (i.e. faults rupture independently). (This greatly over-simplifies an
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essentially complex problem (see e.g., Muskhelishvili, 1954; Segall and Pollard, 1980),

however, as we are primarily interested in the long-term evolution of fault networks, we

ignore short-term complex elastic interactions between faults.) The stress change due to

elastic dislocations is added to the pre-failure stresses assuming that faulting does not

change the long-term (background) velocity field. Thus, although faulting leads to a

sudden stress change and, in a viscoelastic crust, to a decaying perturbation to the stress

rate, there are no long-term perturbations to the velocity.

Our idealization of crustal deformation at a strike-slip plate margin is highly

simplified and does not consider complexities arising from geometric or compositional

heterogeneities and ignores non-linear strain-rate dependent rheology and dynamic

rupture propagation. However, it provides sufficient complexity to study the effects of

large-scale strength stratification within the crust on the evolution and dynamics of brittle

fault networks. In addition to an analytic solution, the simplicity of our model has the

advantage of only a few free parameters which determine the rheologic structure of the

crust (p-, '1, 12, H1 , and H2 ), thus restricting the parameter space which needs to be

explored. While this model is not specifically applicable to a particular geologic setting,

it illuminates the basic controlling factors that determine deformation at strike-slip

boundaries in general.

ANALYTIC MODEL OF CRUSTAL DEFORMATION

Continuous Deformation. At an infinite strike-slip plate boundary, non-zero deviatoric

shear stresses act on vertical planes parallel to the boundary, ayx, and on horizontal

planes, ayz, (Figure 4. lb). At equilibrium, these stresses are related to each other by the

equation of motion,

)aZ + = 0  (4.1)
dz dx
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and to the strain rates through the constitutive equations for a (Maxwell) viscoelastic

crust,

dv + __ (4.2a)
dx C T

dv (4.2b

yz =ayz + Ir (4.2b)

where r is relaxation time and v is velocity parallel to the plate boundary.

Solving the equations of motion of the two-layer viscoelastic crust (equations (4.1)

and (4.2)) subject to the boundary conditions described above, we find the velocities and

stresses everywhere (see Appendix). The time dependence of the velocities is

exponential with an effective relaxation time, rI T(k), which depends on wavenumber k ,

T(k) = 'r2 cosh(kH) (43)

T sinh(kHi) sinh(kH2 ) + T2 cosh(kHi) cosh(kH2 )

Since y is fixed (T1/42=M1/12), T(k) depends only on the viscosity contrast between the

two layers and on the thickness of the layers (Figure 4.2). For uniform viscosity T(k)=1

so the relaxation time is simply rl=r2 and is independent of k, HI and H 2 . For non-

uniform viscosity, the relaxation time is a function of wavelength, X=21/k, (Figure4.2).

At short wavelengths (k->oo ), cosh(kx) and sinh(kx) are both =ekx, so that T(k)

approaches the limit r2/(Tl+r2), which, for large viscosity reduction between the upper

and lower crust, is approximately zero (Figure 4.2). At long wavelengths (k-+ 0),

cosh(kx) approaches 1 and sinh(kx) approaches zero, so that T(k)-+ 1 (Figure 4.2).

Width of the deformation zone. The zone of deformation, defined as the region of

high strain rates (velocity gradients), is a strong function of the rheologic structure of the

crust. As faulting is assumed not to influence the long-term velocity, the growth of the

deformation zone as a function of time depends only on the viscosity profile in the crust

and on the shear modulus. From the solution for the velocity (equation 4.A3a in

Appendix), the steady-state velocity profile at the surface is,
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v(x,z,t) 4 T(k) (4.4)
V0  n=1,3[kL cosh(kH)J

where the wavenumber, k, is defined as nr/L.

In a uniform viscosity crust (T(k)=1) the surface velocity profile is independent of

viscosity and is controlled only by the crustal thickness H and the length scale of

deformation in the mantle,

v(x)= Vo tan-1(erx/2H )_ i . (4.5)

In fact, for uniform viscosity the initial velocity field at the start of the deformation is also

the steady-state velocity (the time-dependent term in equation (4.A3a) is zero when

T(k)=1). Thus, for a narrow region of high shear in the mantle, the deformation zone at

the surface of a uniform viscosity crust is narrow at all times (Figure 4.3a; parameters

used here and in following figures are listed in Table 4.1).

In a non-uniform viscosity crust, however, the presence of a weak lower crustal layer

(even a very thin one) causes the zone of deformation to widen with time until it reaches

steady state (see Figure 4.3b for H1=H2=H/2, and Figure 4.3c for H2<<H1 ). When the

thickness of the lower crust is small, although the deformation zone still widens with

time, the width at any given time is less than that for a thick lower crust (compare Figure

4.3b and 4.3c). This can be understood through the behavior of the effective relaxation

time, riT(k), in the limit of high viscosity contrast between the upper and lower crust

(T2<<r1). When the two layers are of approximately equal thickness,

T(k) 
(4.6a)

cosh(kH) sinh2 (kHi)'

while for a very thin lower crustal layer (H2<<H1 ),
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T(k) = 2 1 (4.6b)
cosh(kH) riH 2 ksinh(kH,)

Therefore, for fixed viscosity contrast (Ti/r2) and fixed crustal thickness (H), reducing the

thickness of the lower crust is equivalent to increasing T(k) and thus increasing the

effective relaxation time. The widening of the deformation zone therefore proceeds more

slowly (Figure 4.3c). In addition, the long-term velocity profile at the surface is

proportional to T(k)/cosh(kH) (equation 4.4), so reducing the lower crustal thickness

increases T(k)/cosh(kH) and thus the steady-state velocity everywhere. As a result, the

steady-state width of the deformation zone decreases as the lower crustal thickness is

reduced (Figure 4.4a).

For very thin lower crustal layers, substituting equation (4.6b) in the steady-state

velocity (4.4) we see that the velocity scales with T2/H2T1 or, for fixed crustal thickness,

with the dimensionless parameter HT2/H2T1. The width of the deformation zone therefore

scales inversely with HT2 /H2 z1, decreasing as this ratio increases (for very thin lower

crustal layers this ratio is indicated in parentheses in Figure 4.4a). This scaling relation

holds only for very large viscosity contrast and very thin lower crust. For example, for

HT2/H2 T1=0.03 the scaling relation holds for all values of H2 4 km (771/72>250), but

breaks down for thicker lower crustal layers (Figure 4.4b).

To summarize, the width of the deformation zone in a non-uniform viscosity crust is

strongly controlled by the thickness of the lower crustal layer. In addition, as Figure 4.3

shows, the behavior of a non-uniform viscosity crust is fundamentally different than that

of a uniform viscosity one, suggesting that there may be a wide spectrum of behavior

governed by the amount of viscosity contrast between the upper and lower crust. We

investigate this further by studying the long-term surface velocity profile in a crust with

varying viscosity contrast, but for simplicity, equal thickness upper and lower layers.
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First, consider an elastic upper crust (infinite iD), underlain by a lower crust which

varies from primarily elastic behavior to primarily viscous behavior. When the viscosity

of the upper crust is large, T(k) approaches the limit r2/T1, so that the effective relaxation

time is simply rjT(k)=Tr2 and the steady-state velocity is proportional to T2/Ti (equation

4.4). Therefore, the relevant rheologic parameter which governs the behavior of an

elastic upper crust underlain by a viscoelastic lower crust is T2, the ratio of the lower

crustal viscosity to the shear modulus. When the lower crust is also elastic (large T2) the

deformation zone is narrow at all times, as in a uniform viscosity crust (top curve in

Figure 4.5a). However, when the lower crustal viscosity is reduced, r2/Tl decreases so

that the steady-state velocity actually approaches zero. This means that at steady-state the

velocity profile is flat and the deformation zone is infinitely wide, independent of the

lower crustal viscosity. At intermediate times (long compared to T2 but short compared

to Ti), the deformation zone width is governed by the viscosity of the lower crust: smaller

lower crustal viscosities lead to wider deformation zones (Figure 4.5a).

We now investigate behavior when both the upper and lower crustal layers have

intermediate viscosities. In Figure 4.5b, the upper crust has an intermediate relaxation

time of 1000 years and the lower crustal behavior varies from primarily viscous

(011/172=1000) to the same as that of the upper crust (171/172=1). In Figure 4.5c, the lower

crustal behavior is primarily viscous, but the upper crust varies from viscous (171/172=1) to

primarily elastic behavior (171/172=1000). Figures 4.5b and c show that for intermediate

viscosities in both the upper and lower crust, the steady-state velocity profile scales

simply with the viscosity contrast (curves with the same a11/172 in Figures 4.5b and c are

identical).

Brittle Faulting and Co-seismic Slip. We assume that brittle failure is confined to near-

surface regions of the crust only and that the depth-extent of faulting, D, is fixed. We
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assume that all fault planes intersect the free surface and that stress singularities at the

tips of faults can be ignored as long as we are interested in stresses away from the fault

plane. To distinguish between fracture of a new fault and sliding on a pre-existing one,

we choose a high cohesive strength for fracture (afrac=50 MPa) and a low value for

frictional sliding (Ofric= 1 MPa). The frictional shear stress after failure (either fracture of

a new fault or sliding on a pre-existing one), is assumed to be a fraction of the shear stress

needed to initiate sliding on a pre-existing fault (e.g., we use: fai=0.2 Ufric or 0.8Gfric).

Therefore, the stress change due to fracture of a new fault is much greater than the stress

drop during failure on a pre-existing fault.

At an infinitely long strike-slip boundary the stress orientation ensures that failure

near the surface will occur on vertical planes parallel to the boundary, which have the

same sense of slip as the plate motions (by symmetry). To solve for the evolution of

faulting through time, we superpose the brittle failure criterion on the growth of shear

stress on vertical planes (ayx) near the surface due to tectonic loading (equation 4.A4).

Because faulting is confined to depths 0 z D, we consider changes in shear stress over

these depths in order to determine the occurrence a faulting event. (Note that the

symmetry of the plate boundary requires symmetric faulting on either side, x=±xdis, so we

add contributions from both these faults.) The shear stress immediately after a faulting

event is a sum of pre-failure stress and the elastic stress change due to faulting (we

assume that failure occurs essentially instantaneously, so the medium behaves

elastically). A faulting event can therefore be simply incorporated by re-defining the time

of failure as t=0, resetting the "initial" stresses (in equation 4.A4) to include the stress

change due to faulting (equation 4.A6), and resetting the Fourier coefficient VI(k,0) in

equation (4.A4) to the coefficient just prior to faulting.

Growth of a fault network. Following initial incremental displacements when the

velocity boundary conditions are first applied to the base of the crust, stresses at the
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surface increase with time (equation 4.A4). Faulting at the main plate boundary occurs

when the surface shear stress there exceeds afric=1 MPa (since the depth extent of

faulting is taken to be small, the brittle failure criterion is applied to stresses at the

surface). After faulting, stresses are relieved around the main plate boundary, but remain

high away from it. With continued loading, the stress maximum located off the main

fault plane grows (Figure 4.6a) and causes fracture of a new fault parallel to the boundary

(provided it grows to reach the fracture criterion, Ufrac=50 MPa, Figure 4.6b). The

location of this new fault is primarily governed by the maximum depth of faulting, D

(compare Figures 4.6b and 4.6c).

The growth of a fault network clearly depends on stresses within the upper crust

reaching high enough values to sustain fracture. With time, the process of fracturing new

faults migrates outwards from the plate boundary, until an approximate steady-state is

achieved when the rate of stress accumulation due to far-field loading approximately

matches the rate of stress reduction via faulting. This places a natural constraint on the

upper crustal viscosity. For example, for sufficiently low upper crustal viscosity, even if

the viscosity contrast between the upper and lower crust is great (i.e. the steady-state zone

of deformation is wide, recall Figure 4.5), faulting may not extend far beyond the plate

boundary (Figure 4.7a). In this case, while the region of bulk strain around the plate

boundary extends hundreds of kilometers on either side, brittle failure is confined to a

narrow zone at the plate boundary.

On the other hand, for very large upper crustal viscosity (primarily elastic behavior in

the upper crust) stresses at the surface are greater, and may allow pervasive fracture of

new faults away from the plate boundary over a wide zone within the region of high

background strain rates (Figure 4.7d). In this case the fracturing process begins by

breaking faults successively outwards from the plate boundary at a characteristic spacing

(e.g., =3D in Figure 4.8). The stresses on these faults are relieved by repeating failures,
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but stresses within the fault-bounded blocks grow with time, until they also reach the

fracture criterion at which time the block is sub-divided by a new fault (Figure 4.8d). In a

purely elastic upper crust, this process will lead to an indefinite densification of the fault

network, limited only by the arbitrary calculation grid spacing. Over long times, the

time-averaged behavior of a purely elastic upper crust approaches that of a Coulomb

material undergoing failure everywhere. At intermediate values of the upper crustal

viscosity, the fracture process competes with a decaying rate of stress growth in the upper

crust, leading to a stable, steady-state fault network geometry (Figure 4.7c). Here the

zone of brittle faulting is narrower than for an approximately elastic upper crust, but also

encompasses many parallel faults.

The failure pattern on faults within the network is governed by a combination of two

effects. First, relaxation of the viscoelastic crust leads to a decaying rate of stress growth

and thus to a slow, long-term increase in recurrence times. Second, the modulation of

stresses on faults due to failures on neighboring fault planes lead to complex temporal

variations in recurrence intervals. Stresses on the main fault plane, for example, are

modulated by fracture of secondary faults away from the plate boundary and subsequent

failures on these faults, which leads to scattered recurrence intervals (Figures 4.7d and

4.9). The primary variable which determines the recurrence intervals in our model is the

stress drop during a failure event (compare Figures 4.7a and 4.7b). In our description of

brittle failure, we consider events with two kinds of stress drop, large stress drop for

fracture and a small one for faulting. This leads to a variable pattern of recurrence times,

because stress relief following a large event inhibits faulting around a newly fractured

fault (Figure 4.7d and 4.9). At early times during the evolution of the fault network,

successive fracture of faults at increasing distances away from the plate boundary lead to

long periods of quiescence on the inner faults (Figure 4.9a). The lengths of these periods

are proportional to the stress change on the inner faults, which increases with proximity
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to the newly fractured fault (Figure 4.9a). At intermediate times during the evolution, the

failure pattern is more complicated because of the sub-division of fault-bounded blocks

by fracture between two older faults (Figure 4.9b).

Pre-existing faults. An important assumption which influences our results is that the

crust around the plate margin is previously unfractured. While this assumption allows a

basic understanding of the evolution of stresses in time, it is not likely to be valid in

geologic settings where the crust is pervasively fractured, and may contain active faults

around the plate margin. To investigate the behavior of our model in this limit, we

consider the presence of randomly spaced pre-existing faults within the upper crust. The

evolution of the stress profile and migration of stress outward from the plate boundary in

this case is determined by the stress drop during faulting, the bulk rheologic structure of

the crust, and the spacing of the pre-existing faults themselves.

We study the effect of randomly located pre-existing faults within a relatively high

viscosity upper crust underlain by a low viscosity lower crust (f71/f72=1000). To

investigate how the spacing of pre-existing faults interacts with the "natural" spacing at

which the upper crust fractures (e.g. Figure 4.8), we allow neighboring faults to be

located at random positions within a range of distances from each other. For example, we

first consider a densely pre-fractured crust with randomly located faults with a minimum

spacing of D and a maximum spacing of 4D (Figure 4. 10a). The time evolution of

stresses in this case leads to a simple pattern of outward migration of failure initiation,

where all faulting is on pre-existing faults and no new faults are fractured (Figure 4. 10a

and Figure 4.11 a). The general pattern of increasing recurrence interval as a function of

position away from the plate boundary is due to the decay in background stress rate with

distance (Figure 4.1 la). If the minimum pre-existing fault spacing is allowed to increase,

however, we find that fracture of new faults near the plate boundary occurs when the fault

spacing there exceeds ~~4 to 6D (Figures 4. 10b and 4.1 1b). Far from the plate boundary,
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the fault spacing may be much larger without fracturing of new faults because the rate of

stress growth decays to zero before stresses within fault-bounded blocks reach the

fracture threshold (Figure 4.10b).

DISCUSSION

Time-dependent evolution of the crustal deformation zone at a strike-slip plate

boundary is fundamentally controlled by the viscosity contrast between the upper and

lower crust. In a uniform viscosity crust, the deformation zone is governed only by the

length scale of shear in the mantle and by the crustal thickness. For example, even

deformation in a low viscosity crust will be concentrated when strain in the mantle is

distributed over a narrow region around the plate boundary. A non-uniform viscosity

crust on the other hand, undergoes significant widening of deformation over time scales

of 105 to 106 years depending on the viscosity contrast. (Although the mantle velocity

profile we use is highly idealized, these results are qualitatively unchanged for all profiles

with concentrated strain rates at the boundary.)

The growth of fault networks within the upper crust is intimately controlled by the

viscosity of the upper crust and by the viscosity contrast within the crust, which

determines the overall width of the deformation zone. In the presence of a low viscosity

lower crust, widening of the deformation zone is accompanied by a widening array of

faults in the upper crust. The geometry of the fault network stabilizes as background

stress rates decay over time scales governed by the viscosity contrast. In the extreme

limit of a purely elastic upper crust, the width of the deformation zone increases

indefinitely and fault spacing diminishes without approaching a stable configuration.

Deformation patterns across active fault networks are generally spatially and

temporally complex (e.g., Shen et al., 1996), in part due to the inherent complexities of

fault structure (e.g., step-overs, jogs and other geometric irregularities) and to material
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heterogeneities within the crust (e.g., gouge zones, pore fluids, or differing rock types).

Additional complexities arise through the dynamic rupture process, where non-linear,

strain-rate dependent rheology may govern both faulting and bulk deformation of regions

surrounding faults over co- and post-seismic times. Our results suggest that even in the

absence of non-linear rheology, statistical variations in strength and compositional

properties, and geometric complexities, simple strength stratification within the crust

leads to complex fault evolution and failure histories.

An important limitation of our results is that the evolution of faulting in the model

represents only the long-term behavior of the crust and not deformation over short (co-

and inter-seismic) times. This is due to the assumption that faulting-related velocity

perturbations may be ignored. In a linear viscoelastic crust with faulting confined to the

uppermost regions, such perturbations lead to transient variations in stress which decay

over time scales comparable to the relaxation time in the upper crust (i.e. over long

times). By ignoring these velocity perturbations, we assume that stress transients

associated with high strain rates decay over times much shorter than the upper crustal

relaxation time, perhaps due to effects not included in our model such as non-linear,

strain-rate dependent behavior in the upper crust. While such effects are important when

considering post-seismic relaxation following an earthquake, which may occur on time

scales as short as 10-100 years (e.g., Linker and Rice, 1997, Turcotte et al., 1984), they

may not play a large role in the long-term (geologic) evolution of a fault network.

CONCLUSIONS

The results of our analytic model of crustal deformation suggest that continuum

rheology places strong controls on the width of the zone of deformation and the long-

term evolution of fault networks at a strike slip plate boundary. When the deformation

zone within the mantle is narrow, we find that in a crust with uniform strength properties
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the surface region of high strain remains narrow throughout the history of the plate

boundary. In the presence of a weak lower crustal layer, however, the width grows

significantly with time, and is strongly controlled by the strength contrast between the

upper and lower crust and the thickness of these layers. The evolution of a network of

faults around the main plate boundary is primarily governed by the relaxation time in the

upper crust, and also by the strength contrast between the upper and lower crust. Once a

system of faults has been fractured, repeating failures over the fault network show

complex recurrence patterns due to the modulation of stresses by failures on neighboring

faults.

The simplifications in our model allow only very general, broad interpretations of our

results, and specific application to a particular plate boundary is necessarily limited. The

rheologic signal investigated here is likely to be one part of a complex deformation

process, which is strongly influenced by crustal heterogeneities, geometric roughness of

faults, non-linear strain rate dependent rheology, time dependent mantle motions, pre-

existing weaknesses, etc. The deformation pattern in our model may be made arbitrarily

complex, for example by introducing randomly spaced pre-existing faults, random stress

drops and frictional or fracture thresholds. While these complexities might influence the

failure histories within the fault network, the overall features of the deformation zone,

such as its width, time evolution, and growth and development of a fault network would

remain strong functions of the bulk rheologic structure.
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APPENDIX

Velocities and stresses due to continuous deformation. The equation of motion of the

crust at a strike-slip plate boundary (equation 4.1) combined with the constitutive

equations for a Maxwell solid (4.2) requires that the velocity satisfies the Laplace

equation,

d2v(x,z,t)+ d2v(x,z,t) =0. (4.A1)
dx2 dz2

This equation is solved by assuming that the velocities may be written as Fourier series

with time varying coefficients and applying the boundary conditions:

dv
= 0 (free surface at z = 0) (4.A2a)

dz z=O

=0 (no strain at edges, x = +L) (4.A2b)
dx x=+L

v= v2 at z = Hi (match velocity at interface) (4.A2c)

(Y..(1) =9Y (2) at z = H (match stress on interface). (4.A2d)

(Note that the assumption of no strain at the edges of our model is made to simplify the

calculations. In the numerical model presented in the second part of this study, Chapter

5, this assumption is relaxed and far-field plate motions are imposed as velocity boundary

conditions at the edges.) The velocities are, (a) in the upper layer (for x>O)

v(x,z,t) (k,0) 4 T(k) e-t/zT(k) + 4- T(k) cosh(kz)sin(kx)
V0  n=1,3 kL cosh(kH)) kL cosh(kH)_

(4.A3a)

(b) in the lower layer, z'=z-Hi,
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v(x,z,t) - [ - - sinh(k(z' - H 2 )) 4 -kz' kH
= 12(k, t) sinh(kH- e sin(kx) (4.A3b)

VO n=1,3 _ shk2) kL

where
t

4 cosh(kHi ) 4 T(k) (k) 4 T(k)
V2 (k,t) = - - fi [('r(k,0) e I +- ]

kLcosh(kH kLcosh(kH)

(4.A3c)

where the wavenumber, k, is defined as nir/L and Vi(k,O) is the Fourier coefficient of the

velocity in the upper layer at time t=O. We assume that when the basal velocities are first

applied, the crust undergoes an incremental elastic displacement, which corresponds to

Vi(k,O)=4/kLcosh(kH) (thus at t=O, both velocities and displacements satisfy Laplace's

equation). Note that at each faulting or fracture event, we re-define t=O, so the form of

V (k, 0) changes at each failure (as discussed in the text).

Substituting these equations back into the constitutive equations (4.2), we find the

stresses within each layer, for example, (-yx in the upper layer as a function of time is,

0-,X=(t)=0-,x(0)e-t/1 
+

p LkV1(k,0) 4V(k) R1T(k)1  et/,(k) -- I)/ e )]cosh(kz)cos(kx) +
n=1,3nL3shcH(k)

p -t/r 4V0T(k) cosh(kz)cos(kx). (4.A4)11TI(n=1,3 L cosh(kH)_

Elastic dislocations. The analytic expressions for the stresses and displacements within

an elastic half-space due to a finite dislocation are derived by Chinnery, (1961). Since we

ignore deformation in the mantle, we use these expressions with the important restriction

that the displacements at the Moho due to faulting should be negligible compared with



displacements due to tectonic loading over one earthquake cycle.

parameters, this restricts the depth-extent of dislocations to <10

for the displacements, udis, and shear stress on planes parallel

(modified from Chinnery, 1961, for an infinitely long fault),
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For our range of model

km. The analytic form

to the fault, yxdis, are

udis(x ,z)= tan~ Z +tan-'( +tan-'( J + tan- D+ 1(4.A5)
27r d-z) d+z) D-z) D+z)

and a. dis(x' ,z) = -- d-z + d+z -
X 27r (dd-z)2 +x, 2 , ((d+z)2 +x'2

(D-z D+z (4.A6)
(D- z)2 +x', (D+z) 2 +x, 2 )'

where x'=x-xdis, xdis is the location of the dislocation, z is depth below the surface, d and

D are the burial depth and maximum depth of the fault, respectively, U is the slip on the

fault, and y is the shear modulus. In all calculations we assume that faults intersect the

free surface, so d=0.
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Table 4.1. Model parameters used in figuresa

'i1 (Pa s) ri (yr) 112 (Pa s) r2 (yr) H2 (km) D (km) afaillafric

771, 172 etc. listed on the figures

1060 1042 listed on figure

5x10 23 5x10 5 5x10 20

Figures
4.1 to 4.4

Figure
4.5
(a)b

Figure
4.6

Figure
4.7

(a)

(b)

(c)
(d)

Figure
4.8

Figure
4.9

Figures
4.10 &
4.11c

104

5x 104

5x10 4

5x10 19

5x10 19

1020

105 1020

5x10 22 5x10 4 5x10 20

500

50

50

100
100

500

15 4 and 8

same as Figure 4.7d

5x10 22 5x10 4 1020 100

a In all calculations: p=30 GPa (within the range of laboratory-derived values for crustal
rocks), Vo=17.5 mm/yr (relative slip rate of 35 mm/yr, consistent with long-term
slip rates on the San Andreas fault), and H=30 km.

b In Figures 4.5(b) and (c), parameters are listed on figure.

n/a

n/a

n/a

n/a

0.8

1022

5x10 22

5x10 22

1023

0.8

0.2

0.8

0.2

0.8

0.2
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In Figures 4.10 and 4.11, the only difference between (a) and (b) is the range of spacing
of pre-existing faults.
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FIGURE CAPTIONS

Figure 4.1. (a) Schematic geometry of the model dextral strike-slip plate boundary.

Imposed mantle velocity boundary conditions at the base of the crust (z=H=30

km) are indicated by the small arrows. The mantle velocity profile is a step

function, with V0=i17 mm/yr on either side of the fault. (Note that in our

calculations, the edges of the model, x=±L, are assumed to be much greater than

the crustal thickness.) (b) There are only two non-zero shear stresses, c-x and a-vz,

as indicated.

Figure 4.2. The effective relaxation time in the upper crust as a function of wavelength

for varying viscosity contrasts between the upper and lower crust (the variable

plotted is T(k) in equation (4.3)). For simplicity we have chosen layers of equal

thickness, Hi=H2 , but the results are qualitatively unchanged for other

geometries. As the viscosity ratio approaches 1 (uniform viscosity crust) T(k)

approaches 1, independent of wavelength.

Figure 4.3. Normalized surface velocity profile as a function of position away from the

plate boundary (x=O) at various times (indicated) for (a) a uniform viscosity crust,

(b) and (c) a low viscosity lower crust. In (b) the upper and lower crustal layers

are of the same thickness, whereas in (c) the thickness of the low viscosity lower

crust is very small (2 km). The width of the deformation zone for a non-uniform

viscosity crust grows with time (b and c), however, the rate of growth is slower

for a thinner lower crust (c).

Figure 4.4. (a) Normalized steady-state velocity profile at the surface for fixed upper and

lower crustal viscosity (71/72=1000), but changing lower crustal layer thickness

from 1 m to 15 km. For the thinnest lower crustal layers, the value of the

dimensionless parameter HT2/H2 r1 is indicated by the numbers in parentheses. In

(b) we show velocity profiles for varying viscosity contrast (fl1/fl2=10 to 1000)



125

and lower crustal thickness (H 2=0. 1 to 15 km), but keeping the ratio HT2/H2z 1

fixed at 0.03. The velocity profiles scale with Hr2/H2T1, but only for H2 4 kin,

and 711/12250.

Figure 4.5. Normalized surface velocity profile as a function of position away from the

plate boundary(x=0) at t=10 4 years, for a two-layer viscoelastic crust with equal

layer thicknesses and: (a) infinite viscosity upper crust 77i (elastic upper crust) and

variable lower crustal viscosity 112; (b) fixed intermediate value of i1 and variable

112; and (c) fixed 112 and variable j11. The time at which the profiles are plotted

(t= 104 years) is greater than or comparable to the relaxation time in the upper

crust in (b) and (c). These two panels thus show steady-state behavior. For the

profiles in (a), t is long compared to the lower crustal relaxation time.

Figure 4.6. Time evolution of surface stresses leading to fracture of a secondary fault.

While repeated failures occur on the main, plate-bounding fault (x=0), stresses

away from the plate boundary grow with time (a) leading to fracture of a new

fault (b). In (b), the stress profiles prior to and following faulting are shown, with

the dashed vertical line marking the location of the fault. (c) Time evolution of

surface stresses leading to fracture of a secondary fault, as in (b), but with a

deeper extent of faulting.

Figure 4.7. Evolution of fault networks for varying viscosity structure in the upper crust:

(a) and (b) low viscosity, (c) intermediate viscosity, and (d) high viscosity upper

crust. In each panel we plot solid circles at points determined by the location (x-

axis) and time (y-axis) of faulting events. Overlapping solid circles signify short

recurrence intervals and appear as thick lines. Fracture of a new fault is

symbolized by open circles. Each panel shows the development of the fault

network until approximate steady-state has been achieved (note differences in the

time axes, but x-axes are at the same scale). In (a) and (b) the fault network
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consists of a single, plate-bounding fault whereas in (c) and (d), the fault network

grows to varying steady-state geometries determined by the relaxation time in the

upper crust. Panels (a) and (b) show that increasing the stress drop per event

increases the recurrence interval of failures. (The brackets to the right of (d)

indicate the range of data used in Figure 4.9.)

Figure 4.8. Evolution of surface stresses leading to successive fracture of secondary faults

away from the main plate boundary for sufficiently high upper crustal viscosity (a,

b, c and d are in temporal order). The solid line in each panel is the stress profile

and the dashed vertical lines mark the locations of faults. The characteristic

spacing of faults is approximately 3D. In (a), (b) and (c) the fracture process

leads to fracture of new faults successively outwards from the plate boundary,

whereas in (d) stress within a fault-bounded block is high enough to fracture a

new fault within it (arrow).

Figure 4.9. Detailed failure histories at various stages of evolution of the fault network in

Figure 4.7d, for the fault locations indicated to the left of the panels. The thin

vertical lines indicate faulting at the normalized time on the x-axis, whereas the

thick vertical lines show fracture. In (a) we show the early evolution (t/ri=0.2 to

0.5) of the system, with fracture of new faults at successively greater distances

from the plate boundary. In (b) (t/ri=0.6 to 1.3) the failure histories on inner

faults are complicated by fracturing closer in to the plate boundary.

Figure 4.10. Growth of surface shear stress profiles plotted at uniform time intervals

(0.1 TI) for a crust with pre-existing faults at random locations (light dashed lines

below the x-axis), but with a specified range of spacings between faults: (a)

minimum spacing D and maximum spacing 4D, (b) minimum spacing 6D and

maximum spacing 10D (D=8 km with grid size dx=D12). Both panels show a

decaying rate of stress growth so that initially profiles are spaced far apart
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whereas close to steady-state the profiles merge. In (a) all failure occurs on pre-

existing faults and the stress minima correspond to the locations of these faults

while stress maxima lie roughly mid-way between fault-bounded upper crustal

blocks. In (b), however, failure initially occurs only on pre-existing faults, but

fracture of two new faults occurs within the first two blocks adjacent to the plate

boundary (indicated by heavy arrows and heavy lines below the x-axis).

Figure 4.11. Spatio-temporal failure history for (a) the stress evolution shown in Figure

4.10a and (b) the stress evolution in Figure 4.10b. Solid circles mark faulting

events and large open circles (in b) mark fracture at points determined by the

location (x-axis) and time (y-axis) of failure.
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Chapter 5

Fault Systems at a Strike-Slip Plate Boundary (2)

ABSTRACT

This is the second part of a two-part study which investigates the role of continuum

crustal rheology in governing both continuous deformation and the evolution and

dynamics of faulting at a strike-slip plate boundary. We present a numerical model of

deformation within a (Maxwell) viscoelastic crust with uniform elastic properties, but

continuously varying viscosity as a function of depth. Brittle faulting is represented as

static elastic dislocations imposed when a critical stress threshold for failure is exceeded.

Our purpose is to understand the effects of large scale strength stratification within the

crust on the growth and development of upper crustal fault networks and on surface strain

rate patterns. The results presented here are in general agreement with the first part of

our study and, in addition, provide further detailed insight into factors that control the

number, spacing, and geometry of faults and the pattern of surface strain rates within a

fault network.

We find that in the presence of a low viscosity lower crustal layer, the deformation

zone within the upper crust broadens in time and encompasses a large number of

interacting faults. When the lower crust behaves primarily elastically, however, the

deformation zone remains narrow and focused on a single, plate-bounding fault. The

maximum depth of brittle failure is confined to mid-crustal levels in the presence of a low

viscosity lower crust, but extends down to the Moho when the lower and upper crust are

of comparable viscosities. Surface strain rate patterns are far more complex in the
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presence of a low viscosity lower crust, as faulting-induced strain rate perturbations lead

to significant localized strain rate maxima corresponding to failures on a system of

interacting faults.

INTRODUCTION

Brittle faults exist within the upper crust at a wide range of length scales, but much of

the strain localization at active plate boundaries occurs on systems of large scale faults

with widths of order ~101-3 m. In California, for example, strike-slip motion between the

Pacific and North America plates is largely accommodated by seismic and aseismic slip

on the San Andreas and associated strike-slip faults (e.g. Wallace, 1990). The number

and spacing of active large scale faults is highly variable along the strike-slip plate

boundary as indicated, for example, by the spatial distribution of seismicity in California

(e.g., Hill et al., 1990). Although the complexities of fault networks such as the San

Andreas fault system must be greatly influenced by local compositional, geometric, and

rheologic complexities within the crust, we study the extent to which the regional, bulk'

rheologic structure of the crust controls the complexity of deformation and faulting at a

strike-slip plate boundary.

In the first part of our study (Chapter 4) we have shown that even in the presence of

pre-existing zones of weakness, the broad, systematic features of fault networks and the

morphology of the deformation zone at a strike-slip plate boundary may be largely

controlled by the bulk rheologic structure of the crust. This paper is the second part of

this two-part study which investigates how continuum rheologic properties of the crust

(such as large scale strength stratification across the upper and lower crust) control basic

1 Here "bulk" is used to denote all continuous deformation within unfaulted regions of the crust, rather than just the
volumetric strain. From here on, we use "rheologic structure" to denote properties which govern regional-scale
deformational behavior rather than local deformation.
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features of fault networks such as: the maximum depth-extent of faulting and its spatial

variability, the number and spacing of faults, their geometries at depth, and their long-

term evolution. The results of this study allow us to understand what implications, if any,

the broad, large-scale geometry of a fault network at a strike-slip plate boundary has on

the rheology of the crust.

MODEL OF CRUSTAL DEFORMATION

In this paper, as in Chapter 4, we study crustal deformation using an idealized linear

viscoelastic model for the rheology of the crust, which allows simple strain rate

dependence: elastic behavior on short time scales and viscous flow at long time scales.

However, there are several important differences between the numerical model presented

here and the analytic model in Chapter 4. First, instead of a two-layer rheologic structure

to describe the upper and lower crust, we specify a continuous transition between a

"strong" upper crust and a "weaker" lower crust. In addition, although we represent

brittle failure by static elastic dislocations as in Chapter 4, we do not specify the

maximum depth of faulting here but, instead, allow brittle failure to occur at all crustal

levels. The bulk rheologic structure of the crust, which governs the magnitude of

deviatoric stresses at any depth, will naturally restrict brittle behavior to the upper,

"seismogenic" part of the crust. We also assume that fault planes may occur anywhere

within the seismogenic crust and need not intersect the surface, therefore allowing the

possibility of active, buried faults. Using the simple analytic model in Chapter 4 as a

framework for understanding the basic rheologic factors that govern deformation at a

strike-slip plate boundary, we study the evolution of stresses and faulting in detail,

focusing on the variability of the maximum depth of faulting and the geometries of faults

at depth. The effect of large-scale strength stratification within the crust is illustrated by



144

considering deformation with and without the presence of a weak lower crustal layer

underlying a strong upper crust.

The crust is assumed to have a uniform shear modulus but exponentially decaying

viscosity as a function of depth (Figure 5.1a), based on the viscosity profile used in

Royden, (1996). This viscosity structure leads to an exponentially decaying relaxation

time (defined as the ratio of viscosity to shear modulus) as a function of depth,

determined by three free parameters: the viscosity at the surface, T7o, the viscosity decay

length, a, and the shear modulus, p. At time scales that are short compared to the

relaxation time, the crust behaves primarily as an elastic medium and on time scales

longer than the relaxation time, behavior is dominantly viscous. By choosing appropriate

values of the viscosity and shear modulus, we allow for dominantly elastic behavior over

short (co- and inter-seismic) times and viscous flow over longer (geologic) times.

Strength stratification is specified by the depth-dependent relaxation time, for example a

long relaxation time in the upper crust and a short viscosity decay length specifies a

primarily elastic upper crust and a primarily viscous lower crust. Conversely, for the

same relaxation time at the surface, a long viscosity decay length specifies approximately

uniform strength properties within the crust, with primarily elastic behavior at all crustal

levels.

For simplicity, we assume that the plate margin is infinitely long, with no variation of

properties along strike, thereby reducing the problem to two-dimensions (Figure 5.1b).

Starting from zero initial stresses and strains, we drive crustal deformation by imposing

constant velocity of a "plate-like" mantle beneath and by far-field plate motions at the

edges, x=±L (Figure 5.1b). The imposed velocities have a highly idealized profile: ±Vo

on either side of the plate boundary and zero at the boundary (x=O). (An advantage of

choosing a narrow zone of high shear in the mantle is that broadening of the deformation

zone within the crust will be due to the rheologic structure of the crust, and will not
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reflect length scales of deformation in the mantle. This allows us to isolate and focus on

the effects of rheologic stratification within the crust.) A single, pre-existing strike-slip

fault is assumed to coincide with the vertical plane of the plate boundary and the sides of

the model region are taken to be far from it, so that negligible shear stress acts on the

edges (x=±L).

At an infinite strike-slip plate boundary, non-zero deviatoric shear stresses act on

vertical planes parallel to the boundary, ayx, and on horizontal planes, ayz, (Figure 5. 1c).

At equilibrium, these stresses are related to each other by the equation of motion,

dai dciyz( += 0  (5.1)
dz dx

and to the strain rates through the constitutive equations for a (Maxwell) viscoelastic

crust,

p- = c YX+ (5.2a)
dx

dv = yz + yz (5.2b)
dz T

where v is velocity parallel to the plate boundary and r is relaxation time, r=Toe-z/a

(where To is the relaxation time at the surface, ro=lo/l). Combining equations (5.1) and

(5.2) leads to the following equation for the velocity (see Appendix),

d 2 ' d29 1 dv d2 v d2v
Wrkz) + = --- + 2 , (5.3)

dx dz2 ) adz (dx dz2

which is solved numerically by finite difference techniques over the calculation grid (the

crust is discretized into 4 km by 4 km cells, from Oz H=28 km and OxL>>H). At

each time step we calculate displacements by integrating velocity (assuming zero initial

displacements) and stresses by using equation (5.2) (assuming zero initial stresses). Note

that in an elastic crust the left-hand side of equation (5.3) is zero, whereas in a fully

(Newtonian) viscous crust, the right-hand side of equation (5.3) is zero.
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Brittle failure, which occurs over short time scales, is assumed to be an elastic

response to stress accumulation within the crust. Faults are represented by static elastic

dislocations with uniform slip discontinuity (Appendix), imposed at locations determined

by whether the shear stress on vertical planes parallel to the plate boundary, oT), exceeds

the faulting or fracture thresholds (Figure 5.2; parameters used here and in following

figures are listed in Table 5.1). (Note that we focus on a-v because, in the results

presented below, the orientation of optimal brittle failure planes at all fault locations are

nearly vertical and parallel to the boundary. Thus we do not include inclined dislocations

in our analysis although, in principle, these may be incorporated in a similar way.)

As in Chapter 4, we incorporate multiple failures assuming that while one fault fails

all others are welded, so that individual elastic solutions for multiple faulting events are

superposed (i.e. faults are independent, but see Segall and Pollard, 1980). To distinguish

between failure on a pre-existing fault and fracture of a new fault, we choose a high

cohesion (50 MPa) for fracture and a low value for frictional sliding (1 MPa). The brittle

failure threshold increases as a function of depth (overburden) at a rate determined by the

coefficient of friction, assumed constant (0.6) throughout the crust (Figure 5.2). In this

model, brittle failure is allowed to occur at all crustal levels, provided that shear stresses

are high enough. The maximum depth of brittle failure, therefore, is governed directly by

the bulk rheologic structure of the crust and is a function of time and distance away from

the plate boundary.

When the shear stress oTx exceeds the failure criterion at a particular discrete "cell"

within the crust, a static elastic dislocation is imposed there and the stresses and

displacements due to faulting are added to the pre-failure values (faulting is assumed to

be instantaneous, so that the crust behaves elastically). The new stress field is tested

again for breach of the brittle failure envelope and the procedure is repeated until there

are no parts of the crust undergoing faulting or fracture. As a result of the finite grid
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(cell) size in the calculation, there are no stress singularities at the location of the plate

boundary at the Moho and, since stresses are calculated only at the center point of each

cell, stress singularities at the tips of dislocations may be ignored. We assume for

simplicity that the post-failure stress at the center of each dislocation is a fixed fraction

(1/3) of the stress required to initiate sliding on a pre-existing fault (Figure 5.2). As a

result, the stress drop during fracture is much larger than that during slip on a pre-existing

fault.

The exponentially decaying relaxation time as a function of depth, together with the

possibility of fracture at deep levels in this model, means that the relaxation time at the

lower tips of faults is significantly shorter here than in the analytic model of Chapter 4

(where relaxation times at the lowest parts of the faults were the same as that at the

surface). As a result, the faulting-related perturbations to the rate of stress change and to

the background velocity field (strain rates) decay significantly faster in this model than in

Chapter 4 (see Chapter 4 for a discussion). Transient variations in stress rate which, at

any location within the crust, are proportional to the instantaneous stress change there due

to faulting, decay much faster in this model. As a result, we relax an assumption made in

part I: that faulting does not influence the long-term background velocity field, and

instead, study the variations in strain rates during evolution of the fault network.

DEFORMATION OF A HIGH VISCOSITY CRUST

To study deformation within a high viscosity crust which exhibits primarily elastic

behavior at all depths, we choose a high viscosity at the surface (which corresponds to a

long relaxation time, =105 years) and a long viscosity decay length, a=15 km=H/2

(Figure 5.3). This value of a specifies slow variation of the relaxation time with depth

and the surface viscosity (1023 Pa s) is chosen so that behavior of the entire crust is
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mostly elastic until the onset of viscous behavior at the Moho at times greater than ~104

years (Figure 5.3). When mantle displacements are first imposed at the base of the crust,

deformation is initially greatest at the location of the plate boundary at the Moho. At this

time, at any depth within the crust the shear stress ax is greatest on the plane of the plate

boundary, but varies with depth from a minimum at the surface to a maximum at the

Moho. The rate at which ogx increases with depth on the plate-boundary is less than the

rate of growth of the brittle stress threshold with depth, so that the brittle failure threshold

is first exceeded at the surface rather than at depth. Near-surface faulting at the plate

boundary causes two local stress maxima: first, a stress maximum at the surface laterally

displaced from the plate boundary (see Chapter 4, Figure 4.6); and second, a local shear

stress maximum at the plate boundary at depth below the fault plane. These stress

maxima grow in time and cause further faulting at depth and on new fault planes away

from the plate boundary.

The growth of the stress maximum at the surface away from the plate boundary is

governed by the bulk rheology of the crust, which controls background (tectonic) rates of

stress growth and the inherent width of the zone of deformation. From the analytic model

presented in Chapter 4 we expect that time evolution of deformation within an

approximately uniform viscosity crust should not lead to significant widening of the

deformation zone, so that high strain rates should remain concentrated in a narrow region

around the plate boundary. This is indeed observed in the numerical model as most of the

deformation is focused in a narrow region surrounding the main plate-bounding fault,

which develops a large slip discontinuity because of repeated failures (Figure 5.4a).

Once failure initiates at the surface within this narrow deformation zone, tectonic

loading causes growth of the deep-seated local stress maximum at the base of the fault. If

this maximum eventually breaches the local brittle failure envelope, faulting occurs and

the process is repeated at successively deeper levels with time. Within a high viscosity
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crust, the rate of stress growth is high enough that, during 104 years of evolution, the

nodes at which brittle failure occurs lie along the plate boundary and extend from the

surface down to the Moho (Figure 5.5a). The fact that stresses are high enough at deep

crustal levels to allow deep-seated brittle failure violates the restriction that time-

averaged displacements at the Moho due to faulting must be small compared to those due

to tectonic loading (see section on elastic dislocations in Appendix). Thus, although the

location and depth-extent of faulting in Figure 5.5a is correct, the detailed displacement

field (Figure 5.4a) should strictly be modeled using dislocations in a confined elastic

layer rather than in a half-space. The overall features of the deformation, however, such

as the fact that it is concentrated on a single, plate-bounding fault, are robust.

As a result of the simple, narrow deformation zone, strain rates at the surface are

highest at the plate boundary and decrease monotonically with distance away from it

(Figure 5.6a). Long-term viscoelastic relaxation of the crust causes surface strain rates at

any fixed position to decay with time, although the overall strain rate pattern is

unchanging (Figure 5.6a). Local orientations of the principal stress axes within the crust,

together with the brittle failure criterion, are used to determine the orientations of the

optimal failure planes (Figure 5.7a). By symmetry, the infinite plate-margin constrains

these planes to have the same sense of slip as the plate motions (dextral) and, at the

surface or near the plate boundary at depth, to be oriented vertically parallel to the plate

boundary (Figure 5.7a). At deep crustal levels and away from the plate boundary these

planes undergo a slight rotation because of the onset of viscous behavior at depth over

times longer than the lower crustal relaxation time, 104 years (t=1.06x10 4 years in Figure

5.7a). From the optimal failure plane orientations, we see that at the locations of brittle

failure the fault planes are nearly vertical and parallel to the plate boundary (compare

Figures 5.7a and 5.5a). Therefore, the zone of failure encompasses a vertical fault plane

extending from the surface to the Moho, coincident with the plate boundary.
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DEFORMATION IN THE PRESENCE OF A LOW VISCOSITY LOWER CRUST

Keeping the viscosity at the surface fixed, we now choose a short viscosity decay

scale (a=3 km, =H/10), and thus a short lower crustal relaxation time compared to

geologic times (Figure 5.3). Deformation within the lower crust is therefore primarily

viscous (onset of viscous behavior occurs after =10 to 100 years) but behavior in the

upper crust remains dominantly elastic. The analytic model in Chapter 4 suggests that

deformation in the presence of a low viscosity lower crust is highly time-dependent,

marked by a widening region of high strain at the surface. At the base of the crust,

however, the imposed mantle velocities are time-independent, and thus the zone of high

shear at the Moho is narrow at all times. We therefore expect the deformation zone to

widen with time at upper crustal levels, but remain narrow in the lower crust as observed

in Figure 5.4b.

The region of brittle failure is initially at near-surface regions of the plate boundary,

as in a high viscosity crust (panels i and ii in Figure 5.5a and b). Repeated faulting here

gives rise to local stress maxima at depth and at the surface away from the plate margin,

which grow in time and eventually breach the local brittle failure envelope. Since the

plane of the plate boundary is assumed to be a pre-existing fault, failure proceeds to

deeper levels at the plate margin first before fracturing new faults away from it (panel ii

in Figure 5.5b). Therefore, the zone of brittle faulting grows deeper and wider with time

and, over long times, encompasses a broad network of interacting brittle faults (Figures

5.4b and 5.5b). An important difference between these results and behavior in the

presence of a high viscosity lower crust (Figures 4a and 5a) is that the zone of brittle

failure is confined to shallow to mid-crustal levels only ( 10 km) and the depth-extent of

faulting decreases away from the plate margin (Figure 5.5b). The confinement of brittle

behavior to shallow crustal levels arises because of viscous flow in the low viscosity
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lower crust and relaxation of stresses at mid-crustal levels, which prevent stresses on

vertical planes from growing to very large values there (discussed below), thus inhibiting

brittle failure at depth. The decrease in the maximum depth of faulting as a function of

distance from the plate boundary occurs because shear stresses and stress rates generally

decrease away from the plate margin.

The characteristic spacing of faults (e.g., Figure 5.5b) is primarily governed by the

depth-extent of initial, near-surface faulting within the crust (see Chapter 4) and by the

brittle failure criterion. When the values of cohesion for fracture and for faulting are

comparable to each other (only their difference is important, not their absolute

magnitudes), the stress thresholds for fracture of a new fault and sliding on a pre-existing

one are almost equal at all depths. In this case, stresses adjacent to a pre-existing fault

need not be significantly greater than the frictional stress on the fault itself in order to

fracture the adjacent region. Thus with tectonic loading, as stresses adjacent to faults

grow in time they quickly breach the fracture criterion, leading to new faults at a much

finer spacing (e.g. Figure 5.5c, where the spacing is limited by the calculation grid size).

Surface strain rates in the presence of a low-viscosity lower crust are dramatically

different and reflect a complicated pattern of time evolution (Figure 5.6b). Initially,

while the deformation zone is still narrow (width<H, t 3000 years), maximum strain

rates occur at the plate margin. With time however, the widening network of brittle faults

gives rise to significant localized strain-rate maxima at zones of brittle failure away from

the plate margin. Although strain rates remain generally highest at the plate boundary,

fracture of new faults produces occasional periods where the maximum strain rates are

not on the main plate-bounding fault (see Figure 5.6b and Long-term Evolution below).

The local orientations of principal stress directions are determined by the relative

magnitudes of the deviatoric shear stresses, cyx and Uyz, which in turn are determined by

the deformation through the constitutive equations (5.2). When the shear stress on
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horizontal planes, ay)z, is much smaller than that on vertical planes, ayx, the principal

stress orientations (combined with the brittle failure criterion) lead to a nearly vertical

orientation of the optimal failure planes. However, when ayz>>yyx, the optimal failure

planes are nearly horizontal. In a low viscosity lower crustal layer which has undergone

relaxation of stresses related to elastic strains and is therefore flowing viscously, strain

rates (velocity gradients) are directly proportional to residual stresses. Thus if vertical

velocity gradients exceed horizontal ones (dv/z>>dv/dx), as will be the case when the

lower crust achieves steady state, optimal failure planes will be sub-horizontal. As a

result, at times which are long compared to the lower crustal relaxation time (10 to 100

years) but short compared to the upper crustal one (105 years), optimal failure planes will

be oriented vertically at the surface (by symmetry) and within the upper crust, but will

rotate into sub-horizontal positions within the low viscosity lower crust (Figure 5.7b).

Over geologic times, the distribution of shear stresses within the crust is dramatically

different with and without the presence of a low viscosity lower crust. In a high viscosity

crust, the maximum shear stress ayx is located at the plate boundary at the Moho,

although a small local stress maximum develops off the main fault plane due to near-

surface brittle failure (Figures 5.5a and 5.8a). In the presence of a low viscosity lower

crust however, the maximum cys is at mid-crustal levels on the main fault plane and

significant local stress maxima develop away from the plate margin because of new faults

(Figures 5.5b and 5.8b). As the deformation zone widens, these fault-related stress

maxima appear at increasing distances from the plate margin but at decreasing depths

(due to the smaller depth-extent of faulting away from the plate boundary, Figures 5.5b

and 5.9).

Long-term evolution. The results discussed thus far are based on the early and

intermediate-term evolution of the crust (t=0 to 1.06x104 years~1/10th the relaxation
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time at the surface). We now consider how the brittle fault system and the overall region

of distributed deformation evolve over time scales approaching the relaxation time of the

upper crust (105 years). From the analytic model in Chapter 4 we expect that, over long

times, deformation at the plate margin will reflect a competition between long-term

viscoelastic relaxation, which leads to decaying rates of stress growth, and perturbations

to the stress rate due to faulting. At time scales which are significantly longer than the

upper crustal relaxation time, the system evolves to an approximate steady-state where

the stresses relieved by faulting are approximately balanced by stresses due to tectonic

loading.

Time evolution of shear stress a-yx (Figure 5.9) demonstrates the widening region of

brittle failure which grows to encompass many parallel faults and gives rise to the

complex strain rate pattern observed at the surface (Figures 5.6b and 5.10). Fracture,

which in our model causes a much greater stress drop than failure on a pre-existing fault,

significantly reduces ayx around the newly fractured fault plane. This inhibits failure on

all nearby faults, giving rise to complicated recurrence patterns (Figure 5.10). Figure

5.10 illustrates how faulting and fracture determine the time-varying strain rate patterns

observed at the surface. Fracture events, in particular, cause pronounced local strain rate

maxima centered on the new fault plane and reduce strain rates around the newly

fractured fault. For example, in Figure 5.10(a) the overlapping circles at 12 km and

=3500 years represent near-surface fracture (see caption). This fault plane then continues

to slip in very small events until =5000 years when fracture of a new near-surface fault at

x=24 km shuts off activity. When activity resumes at =6000 years, the fault plane

deepens and fractures at 6 km depth (overlapping triangles). The fault plane deepens

again by fracturing at 10 km depth at =20500 years (Figure 5. 1Oc).

At long times, a system of faults is established at a characteristic spacing, with

repeating failures on each fault (Figure 5.10b and c). Once the fault network is
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established and the upper crust is divided into fault-bounded blocks, there is no

significant fracturing of new faults within these blocks. In Figure 5.10 there are isolated

failures which occur within crustal blocks, but these faults have little activity and long

periods of quiescence (e.g., at x=8 km, t=19000 years and x=32 km, t=14000 years in

5.1Gb and x=44 km, t=2 1000 years in 5. 1Oc). They fracture at depth (related to deep-

seated stress maxima) adjacent to an existing fault, but failures at these locations do not

fracture near-surface regions. These isolated, deep fault planes remain inactive for long

times on the order of 104 years and thus they do not constitute a zone of active strain

localization. This is an important difference between time evolution in this model and the

simple analytic model in Chapter 4 (where fault-bounded upper crustal blocks were

subdivided in time, see Figure 4.7c of Chapter 4), which arises because of the variable

depth of faulting and the fact that buried dislocations are allowed here. The local stress

maxima at depth within fault-bounded blocks in this model are relieved by deep-seated

faulting events on the adjacent faults (the stress drop during faulting in this model

increases linearly with depth). As a result, stress maxima within fault-bounded blocks

grow at a very slow rate, explaining the rarity of fracture within fault-bounded blocks and

the long recurrence times on these fracture planes (Figure 5.10).

The complex evolution of the fault system observed in surface strain rate patterns is

also reflected in the failure histories on the faults themselves. Recurrence intervals at

early times (t<104 years) during the evolution are widely scattered because of the

influence of large-stress drop events such as fracture on nearby faults as the deformation

zone widens (Figure 5.1 1b). At long times however, once a fault network has been

established, the range of recurrence intervals is much narrower on each fault although

they remain disordered. The amount of scatter in the recurrence intervals is a strong

function of distance away from the plate boundary (i.e. the age of the fault), with more

regular failure histories on inner faults and more scattered recurrence intervals (from 10
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to ~200 years) away from the boundary (Figure 5.1 1b). By comparison, failure histories

on the main plate-bounding fault in a high viscosity crust are uniform (Figure 5.11 a; note

that the single isolated point in Figure 5.11 a is due to a long period of quiescence on the

main fault plane when a near-surface fracture event occurs 12 km away; see also Figure

5.5a).

DISCUSSION

The choice of a viscoelastic description for continuous deformation within the crust

allows us to incorporate very high strain rate elastic responses to stress accumulation

(e.g., faulting may thus be represented by static elastic dislocations) into a consistent

picture of the long-term (viscous) rheology of the crust. While there is widespread

evidence in some areas for viscous flow in the lower crust over geologic times (e.g.,

Block and Royden, 1990), the long-term behavior of the upper crust is less well

constrained. Over co-, post-, and inter-seismic times, previous theoretical studies suggest

that deformation in the upper crust may be modeled using either elastic or viscoelastic

rheology (e.g., Cohen, 1980; Li and Rice, 1987; Lyzenga et al., 1991; Linker and Rice,

1997). However, over geologic times, evidence for unrecoverable large-scale strain

within the upper crust may be indicated by the presence of upper crustal folds (such as

over blind thrust faults, or at large strike-slip faults, e.g. the Garlock fault in southern

California). We suggest here that by choosing a very long relaxation time within the

upper crust, we allow permanent deformation over long times and at low strain rates and

also provide a natural transition from primarily elastic behavior in the uppermost crust to

(possibly) viscous flow in the lower crust.

The results above suggest that the relaxation time within the lower crust places strong

controls on the nature and development of fault systems within the upper crust and may

partly control complex failure histories across fault networks. As discussed in Chapter 4,
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the primary effect of a weak lower crustal layer is to broaden the deformation zone in

time, and thus lead to the formation of a network of interacting faults in the upper crust.

In a low viscosity lower crust, stresses at depth are relieved by viscous flow so that

maximum stresses within the crust occur at mid-crustal levels, associated with faulting-

induced stress changes. The maximum depth of brittle failure is restricted to upper- to

mid-crustal levels only ( 10 km in this model), controlled by the prescribed short

relaxation time of the lower crust.

In addition, although brittle failure in our model occurred on planes oriented

vertically parallel to the strike-slip plate boundary, the presence of a low viscosity lower

crust rotates these optimal failure planes at depth into sub-horizontal orientations. This

suggests that vertical faults in the near-surface and mid-crustal regions may extend into

inclined zones of high shear within the weak lower crust. At long times during the

evolution of the model, the concentration of horizontal shear strain (duldx) into vertical

zones in the upper crust which join up with curved ones in the lower crust is consistent

with this interpretation (Figure 5.12).

Surface strain rate patterns are strongly influenced by the rheology of the lower crust.

For example, the presence of a low viscosity lower crustal layer enhances and engenders

complex surface strain rate patterns, whereas a high viscosity lower crustal layer leads to

a simple deformation pattern (Figures 5.6 and 5.10). The modulation of shear stress

acting on a fault by failures on neighboring faults plays a large role in determining failure

histories and scattered recurrence intervals as the fault network evolves. In our model,

where we prescribe two classes of failure sizes, small stress drops for faulting and large

ones for fracture, the complexity in the surface strain rate pattern is primarily influenced

by fracture of new faults (Figure 5.10). In a more general case however, where each

faulting event may itself have some statistical variation in possible stress drops, the strain

rate pattern might be far more complex.
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These results suggest that even in the absence of inherent complexities within the

crust (such as compositional heterogeneities, geometric irregularities of faults, the

presence of weak gouge zones, fluids, etc.), deformation at a pure strike-slip plate

boundary may be complicated simply because of large-scale strength stratification

between the upper and lower crust. As we are mainly interested in the role of crustal

rheology, we have not modeled the effects of complex mantle motions (e.g., distributed

shear) which may further complicate surface deformation patterns. Our results suggest

that, provided mantle motions are simple and reasonably time-independent, a change of a

factor of 103 in lower crustal viscosity can dramatically change the character of

deformation at a strike-slip boundary and determine the distribution and geometry of

large-scale faults within the upper crust.

What implications do these results have on continuum crustal rheology at a strike-slip

plate boundary such as the Pacific-North America boundary in California? Strain rate

and seismicity patterns on the San Andreas fault system suggest that deformation at the

northern and southern regions of the fault system occurs on networks of sub-parallel,

large-scale faults (Hill et al., 1990). In northern California for example, the fault system

consists of the San Andreas, Hayward, Calaveras, and Green Valley faults and in

southern California the fault system includes the Elsinore, San Jacinto, and San Andreas

faults (Figure 5.4 in Hill et al., 1990). In central California, however, seismicity clusters

primarily on the trace of the San Andreas fault (Figure 5.4 in Hill et al., 1990).

The many simplifications and assumptions in our model make it difficult to directly

interpret our results in the context of these observations. For example, complex

deformation in the mantle near the Transverse Ranges severely limits interpreting large-

scale fault network geometries there in terms of a simple, pure strike slip system (e.g.

Weldon and Humphreys, 1986; Humphreys and Hager, 1990). Further to the south

however, and in northern California, provided that the nature of plate motions in the
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mantle is simple, our results suggest that the presence of a system of active, sub-parallel

faults within the network may be consistent with large scale mechanical coupling

between the San Andreas and other associated faults at depth. This is consistent, for

example, with seismic images obtained in the San Francisco Bay Area which suggest the

presence of a large-scale detachment at mid-crustal levels (Brocher et al., 1994). Such a

detachment may serve to effectively transmit stresses at depth between the faults within

the San Andreas system, rather than through the primarily elastic upper crust alone

(Brocher et al., 1994).

Constraints on lower crustal rheology are difficult to obtain from the idealized model

presented here but, it is interesting to note that in the San Francisco Bay area models of

post-seismic relaxation are consistent with relatively short lower crustal relaxation times

(on the order of 101-2 years) and therefore small lower crustal viscosities (e.g., Linker and

Rice, 1997; Rundle and Jackson, 1977). These findings are consistent with predictions of

our model, which suggests that large-scale motion must occur in the lower crust to

facilitate interaction between widely separated faults within the deformation zone.

CONCLUSIONS

The results presented here suggest that the nature of deformation at a strike-slip plate

boundary is strongly controlled by the rheology of the lower crust. For example, in the

presence of a (weak) low viscosity lower crustal layer the width of the zone of

deformation within the upper crust broadens significantly over the history of the plate

margin. Brittle failure occurs on a system of widely spaced faults which interact to form

networks with complicated surface strain rate patterns and failure histories (recurrence

intervals). Faulting-related strain rate perturbations are localized in both space and time

around each failure event, and therefore lead to complex strain rates during the evolution

of the fault system. The fault planes correspond to regions of strain localization within
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the upper crust, which extend into inclined, sub-horizontal zones of high shear in the

lower crust. Maximum shear stresses are confined to shallow to mid-crustal levels

because of viscous flow within the lower crust, which therefore confines brittle failure to

the upper "seismogenic" part of the crust. In contrast, when the lower crust behaves

primarily elastically, deformation in the upper crust is confined to a narrow region around

the plate margin. Brittle failure occurs primarily on the single, plate bounding fault,

which extends from the surface to the Moho. Surface patterns of strain rates in this case

are simple, with maximum strain rates at the plate margin, decreasing monotonically

away from it.
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APPENDIX

Continuous deformation. Equations 5.2a and 5.2b, the constitutive relations for a

Maxwell solid, are differentiated with respect to x and z, respectively, and combined with

the equation of motion (5.1) to obtain an equation for velocity within the crust (equation

5.3). Equation (5.3) is resolved into a system of two coupled equations,

W 22v +d2v (.l
SX Z't x2 gZ 2)

and 'T(dw(x,z,t) 1 dv
dt a dz

which are solved using finite difference techniques, subject to the boundary and initial

conditions:
dv
d =0 (shear stress free surface at z = 0) (5.A3a)
dz z-0

v(x = L,z,t)= VO (match plate velocity at edges, x = +L) (5.A3b)

v = V0 at z = H (match velocity at Moho) (5.A3c)

yx(x, z,0) = ayz(x,z,O) = u(x,z,0) = 0 (zero initial stresses and displacements).

(5.A3d)

Elastic dislocations. The analytic expressions for the stresses and displacements within

an elastic half-space due to a finite dislocation are derived by Chinnery, (1961). Since we

ignore deformation in the mantle, we use these expressions with the important restriction

that the displacements at the Moho due to faulting should be negligible compared with

displacements due to tectonic loading over one earthquake cycle. For our range of model

parameters, this restricts the depth-extent of dislocations to <10 km (at ~10 km depth of

faulting, the Moho displacements due to faulting are less than 1-2% of the displacements

due to tectonic loads). The analytic form for the displacements, udis, and shear stress on
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planes parallel to the fault, o-yxdis, are (modified from Chinnery, 1961, for an infinitely

long fault),

udis(x ,z) 

and

S{tan~ x +tan-' dz + tan- 1
.dis(x ,z) = U d-z i

21r (d-z)2+X'

+tan- (5.A4)

+ d+z _
(d+z)

2 +X,2

D-z
(D - z) 2 +X, 2 (5.A5)_ D+z ,

(D+ Z)2 +x,2'2

where x'=x-xdis, xdis is the location of the dislocation, z is depth below the surface, d and

D are the burial depth and maximum depth of the fault, respectively, U is the slip on the

fault, and y is the shear modulus.
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Table 5.1. Parameters used in figuresa

Figure 5.2 Cohesion for fracture and faulting: 50 MPa and 1 MPa, respectively; p=2800 kg/m 3 ,
coefficient of friction=0.6, g=9.8 m/s2 .

Figure 5.3 a=15 km for high viscosity crust and a=3 km for a low viscosity lower crust

Figure 5.4 L=360 km, afrac=50 MPa + 0.6an, afric=1 MPa + 0.6an, (a) cx=15 km, (b) a=3 kin, (i)
t=528 years, (ii) t=5813 years, (iii) t=8456 years, and (iv) t=10570 years.

Figure 5.5 L=360 km, afrac=50 MPa + 0.6an, afric=1 MPa + 0.6an, (a) a=15 km, (b) a=3 km. In
(c) all parameters as in (b), but: afric=4 8 MPa + 0.6an.

Figure 5.6 L=360 km, frac=50 MPa + 0.6an, afric=1 MPa + 0.6an, (a) =15 km, (b) a=3 km.

Figure 5.7 L=360 km, afrac=5 0 MPa + 0.6 an, fric=1 MPa + 0.6an, tt=1.06x10 4 years, (a) a=15 km,
(b) a=3 km.

L=360 km, frac=50 MPa + 0.6an, afric=1 MPa + 0.6an,
(b) a=3 km.

t=1.06x10 4 years, (a) a=15 km,

Figure 5.9 L=360 km, frac=50 MPa + 0.6an, afric=1 MPa + 0.6 un, a =3 km.

Figure L=360 kin, afrac=50 MPa + 0.6an, cafric=1 MPa + 0.6an, a=3 km.
5.10

Figure L=360 km, afrac=5 0 MPa + 0.6an, afric=1 MPa + 0.6an, a=3 km.
5.11

Figure L=360 km, afrac=50 MPa + 0.6rn, afric=1 MPa + 0.6an, cx=3 km, t=7.399x 104 years.
5.12

a In all calculations: p=30 GPa, VO=35 mm/yr (relative slip rate of 70 mm/yr), 10=1023
Pa s, dx=dz=4 km and H=28 km.

Figure 5.8
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FIGURE CAPTIONS

Figure 5.1. (a) Schematic diagram of (i) the viscosity structure and (ii) elastic properties

used to specify continuum crustal rheology in our model. The maximum viscosity

is at the surface, qo, and decreases exponentially as a function of depth to a

minimum value at the Moho, z=H=28 km. The shear modulus is assumed

constant throughout the crust, p=3 0 GPa. (b) Geometry of the dextral strike-slip

plate boundary, with imposed mantle and far-field plate velocities indicated by the

small arrows. The plane of the main, plate-bounding fault is the y-z plane and L is

taken to be >>H. (c) The only non-zero shear stresses act on vertical planes

parallel to the plate boundary (ayx) and on horizontal planes (ayz).

Figure 5.2. Brittle failure threshold as a function of depth. Failure on a pre-existing fault

plane is determined by afric=1 MPa+0.6an (an=overburden pressure=pgz) and

fracture of a new fault plane is determined by afrac=50 MPa+0.6an. During any

failure even the post-failure shear stress on the fault plane, afail, is assumed to be

1/3 of afric at that depth (dashed line).

Figure 5.3. Relaxation time vs. depth in the two cases studied: a high viscosity crust and

a low viscosity lower crust. For a high viscosity crust, a=15 km so that the

relaxation time at the Moho (z=28 km) is within the same order of magnitude as

that at the surface (0ro=105 years). For a low viscosity lower crust, a=3 km so that

the relaxation time at the Moho is almost four orders of magnitude smaller than

that at the surface.

Figure 5.4. (a) Displacement as a function of depth and position (for x>0) in a high

viscosity crust, at various times during the deformation history (t increases from

(i) to (iv); see Table 5.1). The main fault plane (x=0) is characterized by a sharp

slip discontinuity, with most of the deformation concentrated on this plane. (b)

(i)-(iv) Displacement as a function of depth and position in the presence of a low

Mlm MINEMM1151111al ", ''.
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viscosity lower crust, at various times (Table 5.1). The zone of deformation is

narrow at deep crustal levels at all times but broadens with time in the upper crust

to encompass a region of width ~60 km. Slip discontinuities (which appear as

kinks in the mesh at near surface regions) develop in the upper crust at faults

laterally displaced from the strike-slip plate boundary, with a maximum depth of

brittle failure 10 km.

Figure 5.5. Growth of the brittle failure region over t=0 to 10000 years for (a) a high

viscosity crust and (b) a low viscosity lower crust. Failure initiates at near surface

regions of the plate boundary (x=0) in panel (i) of (a) and (b), but deepens with

time (panel ii). In (a) brittle failure in a high viscosity crust is primarily focused

along the plane of the plate boundary and extends from the surface to the Moho.

In (b) however, the failure region does not extend beyond 10 km depth at the plate

margin, but widens significantly to positions laterally away from the plate

boundary. The maximum depth of faulting decreases with distance from the main

plate-bounding fault and the characteristic spacing or faults is 12 km. In (c) the

failure region for a crust with comparable fracture and failure criteria is shown. In

this case, the spacing of fault planes is much smaller (4 km =dx).

Figure 5.6. Contour plot of surface strain rates (s-1) as a function of time and distance

from the main fault plane in (a) a high viscosity crust and (b) in the presence of a

low viscosity lower crust. The simulation was carried out to 104 years, ~1/10th of

the relaxation time at the surface. Surface strain rates in (a) are maximum on the

main fault plane (x=0) and decay with distance away from the fault. Initially

surface strain rates in (b) are maximum on the main fault plane (x=0) and decay

with distance away from the plate boundary, as in a high viscosity crust (a).

However, strain rates become significantly more complicated in time with

persistent maxima centered in time and space over secondary faulting events away
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from the main fault plane. (Note that the high frequency variations in strain rates

are due to failures. Contour interval is 10-15 s-1.)

Figure 5.7. Orientation of predicted failure planes within the crust at t=1.06x104 years

(a) in an approximately uniform viscosity crust with a=15 km and (b) in the

presence of a low viscosity lower crust. These orientations are obtained by

combining the brittle failure criteria with the local orientations of the principal

stress axes at each node in the model. In (a) the optimal (dextral) failure planes

are nearly vertical throughout the crust. In (b) although the failure planes are

oriented vertically near the surface, local rotations of the principal stress axes

induced by viscous flow in the lower crust cause them to rotate into sub-

horizontal orientations at depth.

Figure 5.8. Shear stress on vertical planes, 0-yx, at t=l.06x10 4 years for (a) a high

viscosity crust and (b) in the presence of a low viscosity lower crust. In (a) the

largest stresses are in the lowermost crust at the plate boundary, although a small

secondary maximum at about 5 km depth is formed due to near-surface faulting

away from the plate margin. At the surface, both the main fault plane and the

secondary maxima are characterized by local shear stress minima. In (b), the

stress maximum on the plate bounding fault is at =10 km depth, with development

of significant off-axis maxima due to fracture of new faults.

Figure 5.9. Long-term evolution of ayx in the presence of a low viscosity lower crust,

showing the development of widening zone of parallel faults at (a) t=4x104 years

and (b) t=7x10 4 years. Compare with Figure 5.8b which shows the shear stresses

at t=1.06x10 4 years.

Figure 5.10. Long-term evolution of surface strain rates in the presence of a low

viscosity lower crust. Each panel shows a gray-shaded contour plot of surface

miominlimigiiii i up 1111
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strain rates (contour intervals as in Figure 5.6), on which we superpose the

locations and times of failure at various depths within the crust: 2 km (circles), 6

km (triangles), and 10 km (squares). Symbol sizes are proportional to the amount

of slip in each event (1 inch=10 m). Note that events with very small slip near the

surface are open circles which are too small to resolve and thus appear as dots.

Fracture at a particular depth is distinguished from failure on a pre-existing fault

plane by plotting several symbols of decreasing size on top of each other.

Compound failure events, which involve simultaneous slip at various depths

appear as overlapping circles, triangles and/or squares, e.g. at x=0 km and t~4000

years.

Figure 5.11. Failure histories on (a) the main plate-bounding fault (x=0 km) in a high

viscosity crust and (b) the plate bounding fault (i) and two secondary faults (ii and

iii) in the presence of a low viscosity lower crust. The minimum recurrence

interval is dt=10 years in all cases.

Figure 5.12. Horizontal shear strain (du/dx) in the presence of a weak lower crust, at

t~7x 104 years. The dark shading indicates high strain areas, which are seen to

extend vertically downwards from the surface and bend in towards the plate

boundary (x=O) at depth.
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