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ABSTRACT

Two-thirds of the Earth's surface has been formed along a global system of
spreading centers that are presently manifested in several different structural forms,
including the classic rift valley of the Mid-Atlantic Ridge, the more morphologically
subdued East Pacific Rise, and the pronounced en echelon structure of the
Reykjanes Peninsula within southwestern Iceland. In this thesis, each of these
different spreading centers is investigated with microearthquake studies or
tomographic inversion of travel times. Results of these studies are used to
constrain the spatial variability of physical properties and processes beneath the
axis of spreading and, together with other observations, the temporal
characteristics of crustal accretion and rifting.

In Chapter 2 the theoretical basis of seismic body-wave travel-time tomography
and techniques for the simultaneous inversion for hypocentral parameters and
velocity structure are reviewed. A functional analysis approach assures that the
theoretical results are independent of model parameterization. An important
aspect of this review is the demonstration that travel time anomalies due to path
and source effects are nearly independent. The discussion of the simultaneous
inverse technique examines theoretically the dependence of tomographic images
on the parameterization of the velocity model. In particular, the effects of
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parameterization on model resolution are examined, and it is shown that an
optimum set of parameters averages velocity over localized volumes. Chapter 2
ends with the presentation of the results of tomographic inversions of synthetic data
generated for a model of the axial magma chamber postulated to exist beneath the
East Pacific Rise. These inversions demonstrate the power of the tomographic
method for imaging three-dimensional structure on a scale appropriate to
heterogeneity along a spreading ridge axis.

Chapter 3 is the first of two chapters that present the results of a
microearthquake experiment carried out within the median valley of the
Mid-Atlantic Ridge near 23° N during a three week period in early 1982. In this
chapter, the experiment site, the seismic network, the relocation of instruments by
acoustic ranging, the hypocenter location method, and the treatment of arrival time
data are described. Moreover, hypocentral parameters of the 26 largest
microearthquakes are reported; 18 of these events have epicenters and focal
depths which are resolvable to within £1 km formal error at the 95% confidence
level. Microearthquakes occur beneath the inner floor of the median valley and
have focal depths generally between 5 and 8 km beneath the seafloor. Composite
fault plane solutions for two spatially related groups of microearthquakes beneath
the inner floor indicate normal faulting along fault planes that dip at angles of 30°
or more. Microearthquakes also occur beneath the steep eastern inner rift
mountains. The rift mountain earthquakes have nominal focal depths of 5-7 km
and epicenters as distant as 10-15 km from the center of the median valley. The
depth distribution and source mechanisms of these microearthquakes are
interpreted to indicate that this segment of ridge axis is undergoing brittle failure
under extension to a depth of at least 7-8 km.

In Chapter 4, the population of earthquakes considered in Chapter 3 is doubled
and is used to define seismicity trends, to improve source mechanisms, and to
estimate seismic moment and source dimensions of selected events. From a total
of 53 microearthquakes, 23 are located beneath the inner floor and the epicenters
of 20 of these occur within approximately 1 km of a line which strikes N25°E; this
seismicity trend is over 17 km in length. For 12 events located along the seismicity
trend, the composite fault plane solutions clearly indicate normal faulting along
planes that dip near 45°. The seismic moments of inner floor microearthquakes
are in the range 10171020 dyn cm, and a B value of 0.8+0.2 is determined for
events with moments greater than 1018dyn cm. Epicenters of rift mountain
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earthquakes do not appear to define linear trends; however, over a 24 hour period
a high concentration of activity within a small area was observed. The seismic
moments of events beneath the inner rift mountains vary between 1018 and 1020
dyn cm and define a B value of 0.5+0.1.

Also in Chapter 4, a tomographic inversion of travel times from earthquakes
and local shots indicates a region of relatively lower velocities at 1-5 km depth
beneath the central portion of the median valley inner floor, presumably the site of
most recent crustal accretion. Results of microearthquake analysis and
tomographic inversion are synthesized with local bathymetry and the record of
larger earthquakes in the region to suggest that this section of the median valley
has been undergoing continued horizontal extension and modest block rotation
without crustal-level magma injection for at least the last 104 yr.

In Chapter 5, the simultaneous inverse technique is applied to a
microearthquake data set collected at the Hengill central volcano and geothermal
complex in southwestern Iceland. Arrival time data from 153 well-located
microearthquakes and 2 shots, as recorded by 20 vertical component
seismometers, are used to image velocity heterogeneity within a 14 x 15 x 6 km3
volume that underlies the high-temperature Hengill geothermal field. The dense
distribution of sources and receivers within the volume to be imaged permits
structure to be resolved to within £1 and 2 km in the vertical and horizontal
directions, respectively. The final model of stuctural heterogeneity is characterized
by distinct bodies of anomously high velocities: two of these bodies are continuous
from the surface to a depth of about 3 km, and each is associated with a site of past
volcanic eruption; the third body of high velocity lies beneath the center of the
active geothermal field at depths of 3-4 km.

The results of this thesis demonstrate that microearthquake surveying and
seismic tomography are powerful tools for investigating the spatial variability of the
dynamic processes that accompany the generation and early evolution of oceanic
lithosphere.
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CHAPTER 1. INTRODUCTION

Oceanic spreading centers are responsible for the formation of two-thirds of
the Earth's surface. Within a spreading center, the thermal and mechanical
structure of the lithosphere and the geology and morphology of the seafloor are
controlled by the complex interplay of magmatic, tectonic, and hydrothermal
processes. These are all dynamic processes that exhibit strong spatial and
temporal dependencies. Moreover, while an individual process may manifest
itself on the seafloor -- possibly as a volcano, an upliffed mountain range, or a
hydrothermal vent field -- the majority of the dynamic activity invariably occurs at
some depth. Any attempt to understand the mechanics of oceanic spreading
centers necessarily requires knowledge of the dynamic processes operating
directly beneath the axis of accretion.

In recent years, working models of oceanic spreading centers have evolved
from two-dimensional, steady state idealizations to more realistic,
three-dimensional, and time dependent systems. The new dimension added to
the working models is the pervasive along-strike variability of mid-ocean ridge
processes. Initially, this longitudinal variability was inferred from the along-strike
discontinuities in seafloor magnetic anomalies [Schouten and White, 1980,
Schouten and Kilitgord, 1982, 1983]. These magnetic discontinuities can be
observed off-axis, where the crust is many millions of years old, and are typically
spaced at intervals of 50-80 km [Schouten and Klitgord, 1982, 1983]. On the
basis of these data, it was proposed that a maximum in axial magmatism occurs
midway between the axial loci of observed magnetic discontinuities, which are
manifested either as large-offset or 'zero-offset’ fracture zones [Schouten and
White, 1980]. Theoretical studies of viscous flow provided a physical mechanism

for local maxima in the axial magmatic budget [Whitehead et al., 1984, Crane,
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1985; Schouten et al., 1985]. The hypothetical structural unit, consisting of a local
maximum of magmatism bounded by along-axis minima (i.e., magnetic
discontinuities), became known as a spreading center segment or cell.

This simple model of cellular segmentation provides an improved, but
controversial, working hypothesis for mid-ocean ridge studies. One consequence
of the segmentation hypothesis is that the quantity of magma emplaced within the
crust varies systematically along axis and within a single cellular unit. However,
while many observations collected near fracture zones are apparently consistent
with along-axis variations in magmatic volume [e.g., Detrick and Purdy, 1980;
Cormier et al., 1984; Mutter and Detrick, 1984; Fox and Gallo, 1984; Langmuir and
Bender, 1984], other causative mechanisms for the variation are equally plausible.
For example, Fox and Gallo [1984] argue that the presence of old and thick
lithosphere near a ridge-transform intersection constitutes a cold thermal
boundary that effectively reduces partial melting within the nearby upper mantle;
geochemical studies support this scenario [Bender et al., 1984]. Away from
fracture zones, recent geochemical data collected at closely spaced intervals on
the East Pacific Rise have demonstrated that petrologically distinct magmatic units
occur within a single ridge segment that is tectonically defined by fracture zones or
overlapping spreading centers [Langmuir et al., 1986]. The existence of distinct
magmatic units within a spreading cell is not predicted by the simple segmentation
hypothesis. As yet, the original magnetic data [Schouten and White, 1980;
Schouten and Klitgord, 1982, 1983] and axial morphology [Whitehead et al., 1985;
Crane, 1985; Schouten et al., 1985] remain the best supporting evidence for a
segmented ocean ridge system.

Current three-dimensional and time-dependent descriptions of oceanic
spreading centers can be rigorously tested by collecting data that are sensitive to

the spatial variability of physical properties and processes. By conducting several



13

experiments on ridge axes in different stages of evolution and different rates of
spreading it should also be possible to infer the temporal evolution of magmatic
and tectonic activity at a given segment. Because the fundamental axial
processes of magmatism, tectonism, and hydrothermal circulation predominantly
evolve at depth, it is necessary to collect data that directly sample the crust and
lithosphere beneath the axis of accretion.

Two geophysical methods, microearthquake surveying and seismic
tomography, are excellent tools for mapping physical processes and properties
that vary in time and in three dimensions. Microearthquake observations provide
direct evidence of physical processes occurring kilometers beneath the seafloor.
The cause of a dynamic event at depth can be distinguished by observing the
spatial and temporal distribution of seismicity and microearthquake source
characteristics. For example, tectonic stresses initiate seismogenic shear faulting,
magma migration can be accompanied by seismic harmonic tremor, and
hydrothermal cooling of a hot rock mass creates thermal contraction stresses and
possibly seismogenic tensile failure. The documentation of along-axis variations
in microearthquake characteristics is thus a straightforward means of testing
further both the segmentation hypothesis and the details of intracellular
processes.

Seismic tomography, the three-dimensional mapping of seismic velocity
structure, is an important new tool that promises to revolutionize studies of oceanic
spreading centers. The appeal of seismic tomography is its potential for imaging
three-dimensional physical properties over a wide spectrum of length scales,
including, for example, cross-borehole images of the upper crust near regions of
hydrothermal venting, reconstruction of velocity anomalies characterizing axial
magma chambers, and maps of physical properties within the upwelling mantle

beneath seafloor spreading centers. Several fundamental improvements in the
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descriptive and theoretical modeis of oceanic ridges await the detailed
three-dimensional mapping of velocity structure. For example, a long-standing
fundamental question is the size and shape of axial magma chambers along
oceanic ridge segements [Macdonald, 1982].

In this thesis, microearthquake studies and tomographic inversions are used to
investigate the spatial variability of physical processes deep within spreading
centers. In addition, the observed spatial variability of spreading center properties
are used in conjunction with the results of other studies to infer, when possible,
temporal characteristics of magmatism, tectonism, or hydrothermal circulation.
Divergent plate boundaries display several different structural forms, including the
classic rift valley of the Mid-Atlantic Ridge, the more morphologically subdued East
Pacific Rise, or the pronounced en echelon structure of the Reykjanes Peninsula
within southwest Iceland. Each of these different spreading centers is the topic of
a microearthquake or tomographic study in this thesis. These diverse
investigations are unified by a common theme: furthering our knowledge of the
nature of dynamic physical processes at ridge axes and relating these
observations to working hypotheses of the mechanics of divergent lithospheric
plate boundaries.

In Chapter 2, the theoretical basis of seismic body-wave travel-time
tomography and techniques for simultaneous inversion for hypocentral
parameters and heterogeneous velocity structure are reviewed. As part of this
review the fundamental relationships governing the forward problem are derived
from functional analysis; such derivations can be found in the literature, but in
widely scattered references. In comparison with expansion series derivations that
rely on parameterization of the velocity field [e.g., Aki and Lee, 1976], functional
analysis provides an improved understanding of the near-independence of travel

time anomalies due to path and source effects. A particular method of
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simultaneous inversion, due to Thurber [1981, 1983], is discussed in detail. The
presentation of Thurber's method for simultaneous inversion incorporates a
discussion of parameterization and interpretation of model resolution: in
particular, the effects of parameter densification are explored in the context of the
damped-least squares operator. Thurber's method is then applied to synthetic
data generated for a 'typical' East Pacific Rise axial magma chamber. These
inversions of synthetic data are designed to evaluate the efficacy of the
tomographic technique, using realistic configurations of sources and receivers, for
imaging axial magma chambers beneath the fast-spreading East Pacific Rise.
These results demonstrate that current tomographic methods can successfully
image the size and shape of axial magma chambers.

In chapters 3 and 4, the results of a microearthquake experiment in the median
valley of the Mid-Atlantic Ridge south of the Kane Fracture Zone are reported.
This experiment was jointly conducted by the Massachusetts Institute of
Technology and Woods Hole Oceanographic Institution from the R/V Knorr during
February and March 1982. Chapter 3 reports, in addition to the basic techniques
of data analysis, the hypocentral locations of 26 well-recorded events and
composite focal mechanism solutions of selected earthquakes beneath the
median valley inner floor. A fundamental result of this chapter is that observed
microearthquake activity is concentrated 5-8 km beneath the central median valley
floor and that these earthquakes occur predominantly by slip on normal faults
dipping in excess of 30°.

In Chapter 4, the population of earthquakes considered in Chapter 3 is
doubled and is used to define seismicity trends and improved source
mechanisms. In addition, seismic moments and source dimensions are presented
for selected events. Travel time residual data from microearthquakes and local

shots are then inverted to image tomographically the lateral heterogeneity in
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crustal seismic velocity. The earthquake and velocity results are integrated with
the findings of other geological and geophysical studies conducted south of the
Kane Fracture Zone in order to derive a simple model of the recent tectonic
extension and block-faulting of the median valley inner floor.

Chapter 5 reports results of an application of the simultaneous inversion
technique of Thurber [1981, 1983] to a microearthquake data set collected in the
vicinity of the Hengill geothermal area located on the Reykjanes Peninsula within
southwest Iceland [Foulger, 1984]. The Hengill geothermal area has an areal
extent of 70 km2 and is Iceland's principal source of geothermal energy. During
the summer of 1982, an area of approximately roughly 20x20 km?2 encompassing
the geothermal field was the site of a temporary microearthquake network
[Foulger, 1984]. Over a four month period, the 23-station network recorded
approximately 2000 locatable microearthquakes [Foulger, 1984], and from this
extensive catalogue of seismicity 153 of the best-located and -recorded events
were chosen as input to a tomographic inversion. Results of the inversions
provide a detailed image of velocity heterogeneities within a 14x15x6 kms3
volume. These heterogeneities are the consequence of a number of different
processes, including magmatic intrusion, gradual cooling of igneous rock masses,
and compositional variations within individual intrusions.

The results of this thesis support the potential of microearthquake and
tomographic studies for exploring oceanic spreading centers. The tomographic
studies of seismic velocity structure beneath local segments of the East Pacific
Rise (Chapter 2), the Mid-Atlantic Ridge (Chapters 3 and 4), and the Icelandic rift
(Chapter 5) represent a new approach to the seismological study of divergent
lithospheric plate boundaries. Several future experiments designed to image the
three-dimensional nature of physical properties at mid-ocean ridges are

suggested on the basis of these results.
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CHAPTER 2

BODY WAVE TRAVEL TIME INVERSION: THEORY, METHOD, AND EXAMPLE

The inversion of seismic body wave travel time data for heterogeneous
Earth structure is known as seismic tomography. The principle of the
tomographic technique is the reconstruction of a physical property from the
values of its integrals evaluated along a large number of different paths.
Discrete or continuous geophysical inverse theory is usually employed for
this reconstruction. In this chapter, the theory of seismic tomography for
body wave travel time data and a method of inversion, due to Thurber [1981,
1983], are reviewed. In addition, results of a tomographic inversion of
synthetic data, generated from a hypothetical model of the East Pacific
Rise, are presented.

The emphasis in this chapter is on the theoretical analysis of questions
that have arisen in the course of applying tomographic techniques to real
data. In the next section the principles of seismic tomography are reviewed
and, in particular, the near-independence of travel time anomalies due to
hypocentral mislocation and those due to velocity perturbations is
established. Later, in Chapter 4, this result is used to justify
assumptions that permit a tomographic inversion of travel time anomalies
from microearthquakes on the Mid-Atlantic Ridge. In the subsequent section
a tomographic inversion method, due to Thurber [1981, 1983], is described;
emphasis is placed on the effects of velocity model parameterization on the
resolution of the final model. This analysis of model parameterization and
resolution includes ideas that are applied later, in Chapter 5, to the

Icelandic data set.
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PRINCIPLES OF SEISMIC TOMOGRAPHY

All of the tomographic inversions presented in this thesis use
observations of microearthquakes or shots that have been recorded by a local
seismic network whose aperture is on the order of tens of kilometers. The
review of seismic tomography theory is thus limited to the inversion of body
wave travel time data generated by sources that are located within or very
near the volume to be imaged. A more general review is presented by Thurber
and Aki [1987]. The derivations presented in this section are independent
of velocity model parameterization or numerical methods. This general
approach assures that assumptions and results discussed here are intrinsic
to the theory. An important aspect of this review is the demonstration
that, in the limit of small perturbations to either the hypocentral
parameters or velocity structure, the travel time anomalies due to path and
source effects is simply a linear combination of independent terms.

Throughout this section Fermat's principle is used to investigate the
seismic body wave travel time functional

T = fv(r) 'ds (2.1)

where ds is an elemental arc length along the ray path and v(r) is an
inhomogeneous, isotropic velocity field that depends only on the spatial
coordinates r=(x,y,z). The limits of integration are unspecified in (2.1)
since they depend on the application. For example, by choosing the
integration limits in (2.1) to be two fixed points p; and p;, and
specifying a velocity model v.(r), Fermat's principle can be utilized to
derive the well-known differential seismic ray equation [e.g., Aki and

Richards, 1980; Lee and Stewart, 1981]. The differential seismic ray

equation, or simply the ray equation, can then be utilized to calculate a
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stationary travel path P;j; connecting the source and receiver endpoints
p: and pj, respectively, for the medium v.(r). Alternatively,

choosing the limits of integration in (2.1) to be the line or path Py
(calculated for vo(r)), Fermat's principle can be utilized to develop an
approximate, linear relationship for the travel time variation caused by

perturbations of the velocity medium vo(r) [Backus and Gilbert, 1969].

This first-order perturbational relationship is the seismic tomography
equation for body wave travel times. Finally, by permitting the endpoint
pjy of the path P;; to vary, relationships for the partial derivatives of
travel time with respect to hypocentral parameters can be obtained. In the
following three sections, we examine each of the above three variations of

(2.1).

The Differential Ray Equation

A fundamental application of Fermat's principle is the derivation of the
differential seismic ray equation for a general velocity medium v(r). This
particular approach is well-known and the derivation presented here follows

that of Lee and Stewart [1981]. The assumptions are that the velocity model

and its first partial derivatives are continuous functions of the spatial
coordinates and that the seismic wavelength is much shorter than the length
scale of seismic velocity inhomogeneity.

The travel time T between two points p; and p: is expressed by the

functional

P2
T=J v(r)'ds (2.2)
p1
where ds is the elemental arc length along a path. Fermat's principle

requires that the travel time functional be stationary (i.e., 8§T=0) for a
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physically plausible seismic ray path. This constraint provides a means for
deriving the equations that govern the geometry of seismic ray paths.
First, introduce a new parameter q which describes a single position
along the ray path for each value of q
x=x(q), y=y(q), and z=z(q) (2.3)
An infinitesimal ray path element may be expressed as
ds=(x'%+y'2+2'2)!"%dq (2.4)
where a prime indicates a derivative with respect to q. Substituting (2.4)
into (2.2) yields
q2
T=J wdgq (2.5)
q1
where qi and q: are the values associated with p: and p:,

respectively, and

wZ (x' %4y %42 2) % /v(x) (2.6)
Note that the integrand of (2.5) is a function of x,y,z,x',y', and z'.

The variation of the travel time functional is expressed as

. qz
8§T=f &w dq

q1
gz

= (3w 8x + 3w 8y + Jwbz
q: 9x dy 9z

+ 3w 8x' + Iw 8y' + 3w 8z')dq (2.7)
ox' dy' dz'
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Integration by parts of the last three terms in (2.7) yields

qz2
8T= [3w 8x + 3w 8y + 3w 6z]|
ax' ay' dz' q1

q2
-I (d_ 3w - 3w)éxdq
q: dq 9x' ax
(2.8)
q2
-f (d_ 3w - 9w)8ydq
q: dq dy' 3y
q:2
- (d_ 3w - 3w)8zdq
q: dq dz' dz
Now assume that a seismic ray path P,, exists which connects the
endpoints qi and qz. Since the variations §&x, 8y, and 8z
evaluated at the fixed endpoints q: and q. are zero, the first term on
the right hand side of (2.8) vanishes. Fermat's principle states that the
travel time functional is a local minimum with respect to nearby ray paths;
this requires that §T=0 for the path P,,. For a true ray path, (2.8)

and 8T=0 reduce to the following conditions

d dw -3w=0

dq 3x' 3x

4 Bw -dw=0

dq dy' 9y (2.9)
d dw -3w=0

dq 9z’ dz

These equations are recognised as Euler's equations [Hildebrand, 1965].
A change of variables in (2.9) yields the more familiar form of the

differential seismic ray equations. Substituting the definition of w in
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,2)1/2

(2.6) into (2.9) and assuming that q=s and (x'Z+y'Z+x =1 reduce

d (1 dx —8_(1)
ds \v ds IxX\v,
d (1dy -é_(l)

ds \v ds Ay \v, (2.10)

a 14z\- 2 (1
ds \ v ds dz \v

Equations (2.10) are recognized as the differential seismic ray equations

(2.9) to

1]
o

[}
o

]
o

[Lee and Stewart, 1981].

The above derivation shows that, for high frequency waves, an
application of Fermat's principle to the travel time functional (2.2) yields
conditions that can be used to calculate seismic ray paths (2.10) through an
inhomogeneous, isotropic medium. For tomographic applications, we require a
method to solve (2.10). In practice, the determination of a true ray path
between two points can be a computational challenge. A review of numerical

methods is presented in Lee and Stewart [1981], and detailed presentations

of individual techniques are found in Julian and Gubbins [1977] and Pereyra

et al. [1980].

The Seismic Body Wave Tomography Equation: Path Effects

In the last section, equations were derived that determine the ray path
between two fixed points for a given velocity model. Here, we assume that
stationary seismic ray paths have been determined for an initial model v(r),
and we derive an approximate linear relationship between small velocity
perturbations of the initial model 8v(r) and travel time variations

[Backus and Gilbert, 1969; Chou and Booker, 1979]. The general results

presented here are independent of our choice of velocity model

representation.
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The travel time functional for a specified path is

le = .r u(g)ds (2.11)
P],j

where i is a station index, j is a source index, P;; is the seismic ray path

between the j*" source and i‘"

station, and u(r) is the slowness field.

The path P;; satisfies (2.10) for the initial model u(r). Equation (2.11)
is nonlinear in u because of the dependence of P;j on u(r). For example,
consider the effects on (2.11) of a small perturbation Su(r) to the slowness

field. In this case, (2.11) becomes

Ty j(u+du) = f (u+Su)ds (2.12)
P1 3 (u+8u)

where P;j(u+Su) specifies the nonlinear dependence of the travel time
functional on the integration limits. If the slowness perturbations are
small, however, we can assert from Fermat's principle that changes in the
travel time functional with respect to small changes in the integration path
are zero to first order. This assertion simplifies (2.12) to

Tij(u+du) = (u+Su)ds + O(8u?)
Pyy(u) (2.13)

where the integration path is now P;j(u). Dropping the higher-order terms
and utilizing (2.11) results in the following:

5T11 = T;J(IH-SU.) —Tjj(u) = f Su ds
Pij (2.14)

Substitution of v(r)=u(r)”' and evaluation of the variational yields

sTij =J S(V—l) ds

P],J
= - ds §v (2.15)
Pij v Vv

Equation (2.15) is a general statement of the forward problem of seismic
tomography. It is a linear equation, correct to first-order, and it describes

the travel time variations caused by perturbations to the initial velocity
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model v(r). Note that ds/v(r) is simply the incremental time along the
infinitesimal arc length, and 8v(r)/v(r) may be regarded as a fractional
deviation from the original model. Thus the variation of the travel time
functional due to model perturbations is approximated by an integral of travel
time deviations along incremental arc lengths. To date, only a few studies
have investigated the limitations of (2.15) due to nonlinearity [Thurber,

1981; Gubbins, 1981; Pavlis and Booker, 19833 Koch, 1985].

Since a majority of the numerical methods available are based on a
parameterizion of the velocity field, it is worth showing a general parametric
form of (2.15) [Thurber, 1981]. If it is assumed that the velocity model
depends on a finite set of parameters am, then

v(r) = v(r;aiyeecesam) (2.16)
The parameters am in turn may depend on the spatial coordinates in the
following manner
as = a18(ry-r) (2.17)
where §(ro-r) is the Kronecker delta. In this case, the variation of v(r)
is given as
m m (2.18)
§v(r) =L 3v Say = I 3v Ay
i=1 aa‘ i=1 aal
where Aa represents a discrete change in the value of a velocity parameter.
For a general parametric velocity model, equation (2.15) is written as follows

8§Tyy = =f 1 I Jv Aok ds
Pij v(g;m,...,am)z k=1 ad.k (2.19)

In a later section we will define a particular parameterization and evaluate

the partial derivative terms of (2.19).
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Hypocentral Partial Derivatives: Source Effects

The seismic body wave tomography equation (2.15) presented in the previous
section assumes that the ray end points are known. However, earthquake
sources are often used to image heterogeneous structure, requiring that (2.15)
be generalized to include the effects of unknown source time and location. In
this section, equations relating travel time variations to changes in the

location of the source are derived following Lee and Stewart [1981]. An

important result of this derivation is that small source mislocations give
rise to travel time variations which are independent of changes in the ray
path.

Consider the travel time variation that arises from movement of the source
endpoint from point A to a point B near A. Define I'a and [z as the
stationary seismic ray paths connecting points A and B, respectively, to the
receiver endpoint C. Also, specify the variation of the endpoint of the
integration path at the source as 8(r)|a = (8xa, 8ya, 8za).
Equation (2.8) states that the travel time variation incurred by small changes
of the source endpoint is

C

[3w 8x + 3w Sy + dw §z]|
ax' dy' dz' A

8T

-0w|abxa — 3w|a8ya - 3w|aSza
B dy* 9z (2.20)

Note that in this case the three integrals in (2.8) vanish since both paths,
Fa and T's, satisfy Euler's equations. Substituting the definition of
w in (2.6) into (2.20) yields

§T = —dx 1|a 8xa - dy L|a 8ya - dz 1|a 8za
ds v ds v ds v (2.21)

For a given velocity field v(r), the travel time functional is dependent on
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the six coordinates of the endpoints, and this implies the following:

8T = 9T &xa +3T Sya +3T 8za (2.22)
0xa ayA aZA

+ 9T 8xc +3T Syc +3T 8zc¢
aXc ayc aZc

Since the receiver endpoint C is fixed the last three terms in (2.22) vanish,
and comparison of (2.22) with (2.21) yields the relations

8T = -dx 1 [a
dxa ds v

T = -dy 1 |a (2.23)

dT 1
dya ds v

8T = ~dz 1 |a

dza ds v
The above equations state that travel time partial derivatives with respect to
hypocenter location are related to the slowness at the source by the
directional cosines of the emerging ray. An important implication of (2.23)
is that hypocentral partial derivatives are independent of changes in the path
of integration that are caused by source mislocation.

Previously, we have been discussing variations of travel time. However,
since the origin time of an earthquake is unknown, the data recorded by a
seismometer are arrival times. A change in origin time obviously affects all
arrival times identically; the partial derivative with respect to origin time

is unity.

Path and Source Effects Combined

We have demonstrated above that travel time anomalies due to path and
source effects are independent of small changes in the seismic ray path. In
addition, we have shown that path and source effects are coupled only by the

slowness at the earthquake focus (see (2.15) and (2.23)). These results imply
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that a perturbation of the velocity field, away from the source, will not
affect hypocentral partial derivatives. Likewise, a mislocation of the source
by a small amount will not influence the travel time variation caused by
velocity perturbations along the seismic ray path. Since hypocentral partial
derivatives are proportional to the slowness u(r), they are affected only
marginally by small slowness perturbations Su(r) near the source. Thus, in
the 1imit of small slowness anomalies relative to an assumed model, we can
assert that travel time anomalies due to path and source effects are a linear

combination of independent terms [e.g., Pavlis and Booker, 1980]. A general

statement of the forward problem is

4
6T13 = -f ds Sv(r) + L ﬂii X (2.24)
Piy v(r)v(r) *5' 9xx

where 8T:; is the arrival time variation, v(r) is the assumed velocity

model, the hypocentral parameters are symbolized by xx where k=4 denotes
origin time, and the ray path P;j and the hypocentral partial derivatives

are calculated from v(r). It is clear from the derivation of (2.24) that the

sources of arrival time variations are, to first order, independent.

Simultaneous Inversion and Parameter Separation

The interest in this thesis is in the inverse solution of (2.24). Given a
set of body wave arrival time observations, the objective is to utilize (2.24)
to refine an a priori model consisting of the velocity structure and the
hypocentral parameters of a set of earthquakes. An inverse solution of (2.24)
is referred to as a simultaneous inversion. While inverse problems are common
to geophysics, the simultaneous inversion is unusual in that it brings
together, in a single inversion, a continuous function and discrete

parameters. Hence, simultaneous inversion is one form of a 'mixed
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discrete-continuous inverse problem' [Pavlis and Booker, 1980]. Many inverse

problems are unmixed, and separate solution methods are available for each
extreme. Inversions for discrete parameters can be solved, for example, by
the methods of Franklin [1970], Wiggins [1972], or Jackson [1972] while
inversions for continuous functions can be obtained using the methods of

Backus and Gilbert [1967, 1968, 1970]. In this section, we review a

technique, developed by Pavlis and Booker [1980], that separates mixed

discrete-continuous inverse problems into an equivalent set of equations that
are unmixed. This technique is termed parameter separation.
The 1linear, perturbational relationship (2.24) is more compactly written

as

o
]
i

h + <M|m> (2.25)

where, for a single earthquake, b is a d x 1 vector of arrival time residuals,
d is the number of arrival times per event, H is a 4 x 4 matrix of hypocentral
partial derivatives, h is a 4 x 1 vector of hypocentral parameter
perturbations, and the term in triangular brackets is an inner product of
velocity model perturbations m with the kernel M. The residual vector of

arrival times b is defined as

o

= To - Teln,ver (2.26)
where Eo is the vector of observed arrival time data and Ic is a vector of
calculated arrival times for an initial model consisting of hypocentral
parameters h and velocity structure v(r).

The parameter separation technique of Pavlis and Booker [1980] uses a
projection operator to separate a mixed discrete-continuous linear inverse
problem. We can understand the principle of the parameter separation

technique by examining the mixed discrete-continuous linear equations for a
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single earthquake that is well constrained by d arrival time observations,
where d >> 4. In this case, it is implicit that the d x 4 matrix H is
well-determined or full rank. A singular-value decomposition [Lanczos, 1961]

of H is written as

([ = =}

= _T (2.27)

where U is a d x d orthogonal matrix whose columns are data space
eigenvectors, V is a 4 x 4 orthogonal matrix whose columns are parameter space
eigenvectors, A is a d x 4 matrix with only four non-zero entries that are
located along the principal diagonal, and the superscript T denotes

transpose. The matrices U and V are coupled only by the four non-zero

entries, or eigenvalues, of A. This suggests a partition of U as follows:

"

= [I;]p[_lo] (2-28)

where Uy, is d x 4 and composed of the data space eigenvectors coupled to
parameter space eigenvectors by the non-zero eigenvalues. The matrix U, is
d x (d-4) in this case and possesses the useful characteristic that it

annihilates H as follows:

nc
o+

[ =]
[}
o

(2.29)

Equation (2.29) states that the matrix H has no projection onto the data space
sector spanned by the eigenvectors, with trivial eigenvalues, comprising the

subspace U,. This is a well-known result [e.g., Aki and Richards, 1980],

and it is verified by the following expansion

o

URE = UTUAVT = UECU,U. 140"

(2.30)
Since UsUp=0 and the bottom (d-4) rows of A are zero, it is clear

that Ul annihilates H.
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Operating Us on equation (2.25) yields

Usb = Us<M|m> = b (2.31)

where b' is a (d-4) x 1 vector of 'annulled' data [Pavlis and Booker, 1980].

The annulled data can be thought of as a lower dimensional projection of b

onto the data subspace spanned by the eigenvectors of U,. Pavlis and Booker

[1980] have demonstrated that the residual vector b', which is a linear
combination of the original data vector b, is unbiased by initial hypocenter
locations; a similar conclusion was obtained by different reasoning in the
last section. Thus, b' may be used, with a suitable numerical method (e.g.,

Backus and Gilbert [1967, 1968, 1970], Franklin [1970], Wiggins [1972] or,

Jackson [1972]), to estimate model perturbations that are locally independent
of hypocenter locations. Though the above example of parameter separation was
demonstrated for a single event, extension of this result for a suite of

earthquakes is straightforward [Pavlis and Booker, 1980].

Utilization of the parameter separation technique usually involves the
following steps: First, hypocentral parameters are estimated, assuming an
initial velocity‘model, by some nonlinear parameter estimation technique.
Second, a residual vector b is constructed and subsequently operated on by the
data space annihilator to obtain the annulled data. Last, velocity model
perturbations are calculated, and the entire process is repeated until
convergence is achieved.

Spencer and Gubbins [1980] also developed a technique to simultaneously

estimate hypocentral parameters and heterogeneous structure for a
parameterized velocity model. Their development was motivated by the
computational demands of an unseparated simultaneous inversion. Clearly, an

unseparated numerical solution of a parameterized model comprised of 4 x ne.
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+ no parameters (n. and n. are the total number of earthquakes and
velocity model parameters, respectively), where both n. and n. may be in
the hundreds, is computationally inefficient . Use of parameter separation
reduces the rank of the largest matrix requiring inversion to n. x

ne. The technique of Spencer and Gubbins [1980] yields results similar to

those of Pavlis and Booker [1980]. The parameter separation technique for an

unmixed, parameterized problem is not discussed further here.

A PARAMETERIZED FORMULATION: REVIEW OF THURBER'S METHOD

In this section, the general principles of seismic tomography developed
above are applied to the velocity model parameterization of Thurber [1981,
1983]. Given a parametric velocity model, an inversion for velocity structure
becomes the familiar problem of parameter estimation. Topics to be discussed
are the damped least-squares solution to parameterized problems [Franklin,
1970; Wiggins, 19723 Jackson, 1972], the effects of damping on resolution and
covariance of model parameters, and the effects of parameter densification on
resolution of the final model. Ideas developed in this section, particularily
those relating to model resolution, are applied to the Icelandic data set in

Chapter 5.

Velocity Model Parameterization and Model Partial Derivatives

The distinguishing characteristic among the various approaches to the
seismic tomography problem is often the way in which the velocity model is
represented. Heterogeneous earth structure has been parameterized by constant
velocity layers [Crosson, 1976a, b], constant velocity blocks [Aki and Lee,
1976], plane layers constructed of laterally varying blocks with vertically

constant velocity [Benz and Smith, 1984], analytical functions specified by a
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small number of parameters [Spencer and Gubbins, 1980], arbitrarily shaped
averaging volumes [Chou and Booker, 1979], continuous valued functions with a

priori probability density distribution functions [Tarantola and Nercessian,

1984], and interpolatary functions defined by values specified at nodal points
within a three-dimensional grid [Thurber, 1983]. Throughout this thesis the
interpolative method of Thurber will be utilized, for the following reasons:
(1) it is capable of reproducing three-dimensional bodies with characteristic
dimensions on the order of a few kilometers, (2) the representation is general
and does not assume a specific geometry of velocity heterogeneity [e.g.,

Spencer and Gubbins, 1980] and (3) the parameterized model can generate a

continuous velocity field as opposed to discrete block strucures with
discontinuous values of velocity across cell boundaries.

In the interpolation method of Thurber [1981, 1983] a continuous velocity
field is defined by linear interpolation between values defined at a
three-dimensional matrix of m nodes. Nodal locations are fixed prior to an
inversion, and the distribution of nodes throughout the study volume can be
irregular. At a point within the study volume a subset of eight parametric
nodes are utilized to determine a velocity value. These eight nodes lie at
the corners of a box which surrounds the point of interest. Velocity values
at any given point are calculated from the expression [Thurber, 1983]

2 (2.32)

V(ridiseeesam) =L I I a(xi1,¥5,2k)®
1i=13=1k=1

N
N

(1- )

x - xi|)(1-

X2 = X1

Yy - Vi (1~
Y-y

Z - 2Zx
Z2 — 2

Wnlln

i
nMo

where an designates the velocity at a parametric node, r=(x,y,z) is the
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position vector, and the limits of summation are restricted to the eight nodes
that define the box enclosing the point r. The interpolation of wvelocity is
linear in all three coordinate directions, and the resulting field is a
continuous function. First partial derivatives of the velocity field with
respect to the spatial coordinates, however, are discontinuous.

Given the above parameterization, a specific form of the seismic body wave
tomography equations (2.15 and 2.19) can be derived. In particular, an
explicit form of the velocity variation at a point &v(r) due to
perturbations of parametric nodes can be stated. Recalling equation (2.18),

and using equation (2.32), one can now write the following

3 (2.33)
aV(I‘) = L ( L Wnd-n) = Wi
acu ry 8a1 n=t1
Equation (2.18) then reduces to
8
§v(r) =1§1w1Aa1 (2.33)

where the summation is limited to the eight nodes defining the box that

encloses r. Substituting (2.33) into (2.19) yields

8 (2.35)
Sng = —.r 1 I wibax ds
Piy v(rjaises.sam)® **

where it is implied that the summation is evaluated along each incremental arc
of the ray path, and the eight weights and parametric values, respectively

wrx and Aok, vary with r. Equatioﬂ (2.35) is an expression of the

observed travel time variation due to model perturbations in the vicinity of
the path P;j. Note that an observed travel time anomaly is the result of
integrated variations in the velocity field. Because of this, (2.35) is not
useful in its present form for estimating individual velocity parameter

perturbations.
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A relation between travel time variations and individual model parameter
perturbations can be obtained in the following manner. For a given path P,
the travel time variation is a function of the nodal parameters only. Thus we

can write

El

Sng(al,...,am) =1 8T11 Aak (2.36)
k:].aa'k

Comparison of (2.36) and (2.35) results in the expression

m 8 (2.37)
I 8T11 Aak= —f 1 T kaak ds
=1 Bak Pij V(E3®igeoe,am)? =1

Multiplying each side by the Kronecker delta 8.« yields [Thurber, 1983]

8T11 = —f 1 Wn(E) ds (2.38)
datn Py V(E;a13-°'sam)z

Equation (2.38) is a very useful expression that describes the travel time
partial derivative with respect to an individual velocity parameter
perturbation.

For a parameterized velocity model, the matrix equation (2.25) for a
simultaneous inversion becomes

b =

(==

h + MAm (2.39)

where both vectors h and Am are finite dimensional. Equation (2.39) is
similar to (2.25) except that the inner product term in (2.25) is replaced by
the parameterized analog; the vector of velocity model perturbations Am
contains m elements. The matrix M is contains the partial derivatives of
travel time with respect to model parameters; these partial derivatives are
calculated from (2.38).

Parameter separation, when applied to (2.39), yields

b' = Usb = UcMAm (2.40)

In the next section a method is discussed for the inversion of equation (2.40).
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Solution Method

In this section we discuss the solution method employed in the
simultaneous inversion technique of Thurber [1981, 1983]. Following a brief
review of the inverse methods applied to simultaneous inversion, general
definitions are presented of the linear parameter estimation problem and the
resolution, information density, and parameter covariance matrices [Wiggins,

1972; Jackson, 1972]. Both the generalized inverse [e.g., Aki and Richards,

1980] and the damped least squares (DLS) operator are defined, and it is shown
why the DLS operator is superior for under-determined problems. Specific
forms of the resolution, information density, and parameter covariance
matrices are given for the DLS operator, and the effects of damping on these
matrices are discussed.

Seismic tomography is a rapidly evolving method. Coincident with the
development of different velocity model representations —-- parameterized,
functional, or statistical descriptions —- has been the application to seismic
tomography of many geophysical inverse techniques. The variety of inverse

methods is described, for example, by Backus and Gilbert [1967, 1968, 1970],

Franklin [1970], Wiggins [1972], Jackson [1972, 1979], Parker [1975], Sabatier

[1977], and more recently Tarantola and Valette [1982]. Importantly, the full

power of these methods has not been used in tomographic applications that
incorporate real data. Nearly all parameterized approaches to seismic
tomography [e.g., Aki and lLee, 1976; Crosson, 1976a, b; Thurber, 1981, 1983;

Benz and Smith, 1984] have implemented the Levenburg-Marquardt damped-least

squares procedure [Wiggins, 1972; Jackson, 1972, 1979]. In the case of
functional model representations, the Backus-Gilbert formalism has been

adapted to seismic tomography by Chou and Booker [1979] but to date has not

been utilized in a simultaneous inversion of real data for three-dimensional
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structure. More recently, the stochastic inverse, as developed by Franklin

[1970], discussed by Jordan and Franklin [1971] and Jackson [1979], and

generalized to include nonlinear problems by Tarantola and Vallete [1982], was

applied to seismic tomography by Tarantola and Nercessian [1984] and

Nercessian et al. [1984]. T )wever, the generalized nonlinear stochastic

approach of Tarantola and Nercessian [1984] has also not been applied to

simultaneous inversions. This brief review shows that available algorithms
for simultaneous inversion universally use an iterative Levenburg-Marquardt
damped least squares method to optimize parameters of the linear, seismic
tomography perturbation equations. Doubtless, future improvements of the
simultaneous inversion method will include 'second generation' solution
techniques that utilize the full power of geophysical inverse theory.

Consider a linear matrix equation similar to (2.40), but written in the
following form:

Yy=Ax+e (2.41)

where y is a vector of known n data, x is a vector of m unknown parameters, A
is an n x m matrix, and e is a vector that describes n error contributions.
The errors in e are presumed to have zero mean and covariances known a

priori. In the event of a non-isotropic covariance matrix it is assumed that
a rotation of the data space coordinate axes has been performed to achieve
statistically independent random errors [e.g., Wiggins, 1972; Jackson, 1972].
This rotation is always possible if the a priori covariance matrix is positive
definite. For the body wave tomography problem y naturally becomes a vector
of annulled travel time residuals, x is a vector of model perturbations and A
is the matrix of medium partial derivatives. The error vector e is a linear

sum of random errors (e.g., timing errors) and, possibly, non-random errors; a
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source of non-random error is discussed below. We impose the following
restrictions on (2.41): (1) the number of data n is always greater than the
number of parameters m, causing (2.41) to be overconstrained, and (2) the
number of parameters m is chosen to be greater than the rank of A, or the
number of linearly independent data, implying that (2.41) is underdetermined.
In the case of seismic tomography it is always possible to choose an adequate
number of velocity parameters in order to render (2.41) underdetermined.
Solutions of overconstrained-underdetermined, parameterized linear systems
have been well studied [e.g., Franklin, 1970; Wiggins, 1972; Jackson, 1972,
1979].

We seek solutions to (2.41) in the following form [Wiggins, 1972; Jackson,

1972, 1979]

x = Hy (2.42)

where x* is the vector of estimated parameters and H is a m x n linear
matrix operator. Prior to stating the form of H, we can define three
additional matrix operators that are useful as measures of the quality of a
solution. Substituting (2.41) into (2.42) yields

x" = HAx + He (2.43)

The solution vector 3' expressed in this form is a linear combination, or
filter, of the true vector x plus a component summarizing the contributions of
error, including both random and non-random error [Jackson, 1979]. Wiggins

[1972] and Jackson [1972, 1979] define the resolution matrix of parameters as

(2.44)

(1~}
W 5

The resolution matrix can be interpreted as the filter through which we
observe the true model x in the absence of significant error contributionms.

For well posed problems R=I, where I is the identity matrix, and all



40

parameters are perfectly resolved by the data. When R does not equal I the
estimated parameters are expressed as linear combinations, or averages, of the
true parameters. For the seismic tomography problem, if R is compact as
defined by Wiggins [1972], it yields an estimate of the volume averaged value
of velocity for a given location within the model. The importance of
volume-averaged estimates is discussed in a later section.

The estimated parameter vector x* can be used to predict the data as
follows

¥y = Ax" = A(HAx + He) = AHy (2.45)

*

Y

n
[l 72]
]

where S=AH is the information distribution matrix [Wiggins, 1972]. The
predicted data vector y* is related to the observational data y by the n x n
linear operator S. The elements, or the weights, of S provide a measure of
the linear independence of observed data. For example, if S=I all data are
linearly independent and provide unique information.

The third useful matrix operator is an m x m matrix C that defines the

covariance matrix of estimated model parameters. C is defined as

¢ = E{x"x""} = E{Hy(1y)"}

(2.46)

B E{yy'} B

where E{ } is the expectation operator. Since the observational errors are

uncorrelated random variables with zero mean and unit variance

[N o]
(==

g’ (2.47)

Wiggins [1972] and Jackson [1972] discuss the utility of the resolution,
information density, and covariance operators for optimizing solutions of

(2.41). An optimal inverse solution maximizes the resolution, and minimizes
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the a posteriori covariance of model parameters. Jackson [1979] has
demonstrated that the simultaneous optimization of resolution and covariance

is conceptually similar to the solution methods proposed by Backus and Gilbert

[1968, 1970]. Irrespective of the solution method, underdetermined problems
are fundamentally characterized by the well-known resolution-covariance
trade-off [e.g., Jackson, 1979]. An acceptable form of the inverse operator
must simultaneously optimize some combined measure of resolution and
covariance.

One possible form of the inverse operator H is the Moore-Penrose or

generalized inverse [e.g., Wiggins, 1972; Jackson, 1972; Aki and Richards,

1980]. As the following discussion shows, for ill-conditioned inverse
problems the generalized inverse does not minimize model covariance; this
behavior is in contrast to the method of damped least squares. The
generalized inverse is found by applying the fundamental matrix decomposition
theorem of Lanczos [1961] to the matrix A, to obtain

([ 2
nc

pApVp (2.48)

where Uy, is a n x p matrix of data space eigenvectors, Vp, is a m x p

matrix of parameter space eigenvectors, and A, is a p x p diagonal matrix

of non-zero eigenvalues. For our applications p < m < n, i.e., the inverse
problem is underdetermined and overconstrained. The non-zero eigenvalues of
Ap couple data space and parameter space. The inverse of A is

HY = VpA;'Up (2.50)

where H' denotes the generalized inverse. (The generalized inverse is
equivalent to a least-squares operator when p=m and p<n; a thorough discussion

of the properties of the generalized inverse is presented by Aki and Richards

[1980].) For the generalized inverse, the explicit form of the covariance
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matrix of model parameters is written as

[(Ne}

= T = LA

0 <

pé;zgg (2.51)

Equation (2.51) states that parameter covariance is inversely proportional to
the square of the eigenvalues. Very small or near-zero eigenvalues are common
to ill-conditioned inverse problems for at least two reasons: numerical
inaccuracy or, more fundamentally, inadequate data constraints. Clearly, the

generalized inverse does not optimize the a posteriori covariance of model

parameters that are associated with near-zero eigenvalues. Examination of
(2.50) and (2.42) further suggests that small eigenvalues lead to large model
perturbations. The generalized inverse is thus characterized, in the case of
ill-conditioned problems, as an operator which encourages large perturbations
of poorly constrained model parameters.

A second form of the inverse operator H, and the one utilized by Thurber
[1983], is the DLS operator. The specific form of the DLS operator for linear
problems can be derived by different methods. The most common derivation is
motivated by the indequacies of the generalized inverse, in particular, large
model perturbations associated with small eigenvalues. Recall that the
generalized inverse is solely a least-squares operator, implying that only
observational residuals are minimized. The DLS inverse, however, is the
result of minimizing a weighted sum of observational residuals and Euclidean
model length:

e? = (y-Ax")"(y-Ax") + A (x")"(x") (2.52)

where A is an arbitrary weighting factor. Given a non-zero value of A, an

inverse operator that minimizes €? will damp the contributions of small
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eigenvalues, and their associated eigenvectors, to the solution vector 5'.

If this were not the case, the second term of (2.52) describing Euclidean
model length would grow unacceptably large. The DLS operator fits the data by
preferentially adjusting well-constrained model parameters (parameters
associated with large eigenvalues) while damping or reducing the contributions
of poorly constrained parameters [Wiggins, 1972: Jackson, 1972].

For a non-linear inversion that requires many linearized iterations the
advantage of the DLS method over the generalized inverse may be lessened,
since the cumulative effect of iteration may be a substantial perturbation to
the initial model that is only weakly constrained by the data. In such a
case, the a posteriori covariance, which is calculated for the final iteration
only and not from the cumulative model perturbation, yields an underestimate
of the uncertainty in the poorly constrained model parameters. Inspection of
the solutions at each iteration and a rapid convergence to the final solution
can reduce the likelihood of undesirably large perturbations to poorly
constrained parameters with the DLS method.

A second approach to the derivation of the DLS inverse is to examine an
end-member of the stochastic inverse [Franklin, 1970] when the a priori model
parameter covariance matrix is isotropic and the diagonal elements are equal
[e.g., Wiggins, 1972; Jackson, 1972, 1979]. (An isotropic covariance matrix
implies independent uncorrelated statistics of model parameters.) In this
case, the stochastic inverse is also obtained as an operator which minimizes
¢?. The value of A for a stochastic inverse is not strictly arbitrary
since the stochastic inverse assumes that some statistical knowledge of the
unknown function is known a priori. This statistical knowledge could be in
the form of physical relationships which specify the covariance of model

parameters. However, in the case of non-linear problems that require
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iteration, the use of the stochastic inverse, as defined by Franklin [1970],

is incorrect [Tarantola and Vallete, 1982]. Tarantola and Vallete [1982] have

recently generalized the stochastic inverse, defined originally for linear
problems, to include non-linear problems. However, their method has not yet
been applied to simultaneous inversion. The use of DLS in this thesis is
motivated by a need to limit the size of model pertrubations; no statistical
significance is implied by the value of A.

The DLS inverse operator that minimizes €?, for a specific value of
A, is

+ A%

I = =]

= (éT

u x>
"

)"ér (2.53)

or, upon substition of the fundamental decomposition of A,

H = Vo{(AZ + N2I) A }US
= = = = = = (2.5[‘)

The term in brackets is a p x p diagonal matrix. Equation (2.54) shows that
the underlying principle of the DLS inverse operator is the modification of
the diagonal matrix of eigenvalues by the addition of the term A% to each
squared eigenvalue. Inspection of the matrix within brackets shows that if

A% is sufficiently large, the adjustments associated with small

eigenvalues are minimized. On the other hand, for well constrained sectors of
parameter space associated with large eigenvalues, the term A? should

assert little influence. The damping term A? alters the spectrum of
eigenvalues, decreasing the contributions of poorly constrained eigenvectors;
this property is similar to the eigenvalue-cutoff scheme of Wiggins [1972],
but, it does not require a computationally cumbersome singular-value
decomposition. Importantly, a non-zero value of A? decreases the

potential number of degrees of freedom for the inverse operator H, since fewer

eigenvalues are effectively non-zero [Wiggins, 1972; Aki and Richards, 1980].
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Instructive forms of the resolution, covariance, and information density
matrices are obtained for the DLS operator by using the fundamental
decomposition theorem and the orthogonal properties of data space and
parameter space eigenvectors. The three matrix forms are:

R = HA = V,{(AZ + A*I) " 'AZ}v;
= "p = = = =

== = = (2.55)
C = HE" = Vp{(A; + \*I)"'A,}7V5

= == = = = = = (2056)
S = AH = Up{(AZ + A?I)"'AZ}UT

= == = = = = = (2.57)

Properties of the above three matrices, including guidelines for their
interpretation, have been discussed by Wiggins [1972] and Jackson [1972, 1979].
A qualitative examination of the model covariance and resolution matrices
demonstrates how the value of A controls the well-known trade-off between
error and resolution. Resolution and covariance matrices, equations (2.55)
and (2.56), respectively, are similar to the extent that the last two terms of
each equation represent a rescaling of parameter space eigenvectors. The
amount of rescaling is a function of the diagonal matrix within brackets, and
for a given matrix A, depends on the value of A. The effect of A on the
diagonal matrices is easily understood by examining typical diagonal elements:

ri = A} (2.58a)

(ATa%? (2.58b)
where r; and c; are the non-zero elements of the diagonal matrices within
the brackets of (2.55) and (2.56), respectively. The magnitudes of r; and
c: control the contribution of parameter space eigenvectors to the
resolution and covariance matrices, respectively. Consider the case of a

small eigenvalue, such that A; << A. In this case, both r; and c;



46

approach zero and, in turn, diminish the contributions of associated parameter
space eigenvectors to the resolution and covariance matrices. Removal of
small eigenvalue contributions from the covariance matrix is clearly
advantageous since an upper limit on model error is imposed [Wiggins, 1972].
However, this diminishes the number of degrees of freedom of the original
data. The number of degrees of freedom (DOF) is given by the trace of the

resolution matrix [Wiggins, 1972; Aki and Richards, 1980]:

DOF = tr(R) = A2 (2.59)
A1+

Ll e K -]
>

Non-zero values of A decrease the potential number of degrees of freedom. A
reduction in the number of degrees of freedom of the data, of course, reduces
the number of averages of model parameters that are independently resolvable
[Wiggins, 1972; Jackson, 1972]. A non-zero value of A simultaneously
improves model variance and degrades resolution.

Choosing a value of A for non-linear DLS is an arbitrary decision. In
making a decision one attempts, by trial and error, to choose a value of A
that stabilizes a solution without severely diminishing resolution. Wiggins
[1972] discusses for a linear problem some guidelines for choosing the correct
number of eigenvectors to include in an inversion. Although Wiggins
recommends a sharp eigenvalue cutoff instead of eigenvalue damping to limit
model variance, his guidelines are still useful for damped linear least
squares. Quantitative approaches to choosing A, however, are of limited
usefulness in non-linear inverse problems. Throughout this thesis, A will
be chosen by trial and error to be the smallest value for which the errors in
the model parameters, i.e., the diagonal elements of the covariance matrix,
are significantly less than the largest velocity perturbations without a

substantial sacrifice in spatial resolution.
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Optimum Parameterization and Interpretation of Resolution

The velocity model parameterization of Thurber [1983] requires a
subjective choice for the distribution of nodal locations. The factors
influencing such a choice and guidelines for an optimum parameterization are
discussed here. For a given data set the resolution of individual model
parameters is affected by the spatial density of nodes. This dependence of
parameter resolution on nodal spacing suggests that the value of resolution
for an individual parameter may not be the best indicator of model

resolution. We make use of a spread function [Backus and Gilbert, 1970;

Menke, 1984] to provide a quantitative measure of the complete resolution
matrix. In Chapter 5, the spread function is shown to be an improved measure
of model resolution compared with the resolution values for individual
parameters.

For tomographic applications, solutions of (2.41) are dependent on the
dimensions of the parameter vector x. This dependence arises because of the
difficulties of representing a continuous velocity field by a few discrete
parameters. Underparameterization of a continuous field can give rise to
non-random basis function error [Jackson; 1979], loss of information due to
poor model fidelity or poor rendering capabilities, and, as described below,
poor utilization of the data. Jackson [1979] has rigorously shown that
inadequate parameterization of a continuous function contaminates the error
vector e in (2.41) with non-random or biasing contributions; the effects of
non-random errors on a non-linear problem are unpredictable. The amount of
non-random error introduced by parameterization is determined by the inability
of the basis functions, or parameters, to describe the true fluctuations of

the unknown function [Jackson, 1979]. For tomographic applications, this
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suggests that increasing the spatial density of nodes will give rise to
decreased effects of non-random error.

In practice, an upper limit on the spatial density of nodes may be imposed
by the distribution of seismic ray paths. For example, over-densification of
velocity model parameters without specifying a priori constraints (e.g., model
smoothness [Parker, 1975] or model autocovariance constraints [Franklin,
1970]) will result in a large number of velocity parameters that are not
influenced by observations. Moreover, unsampled or undersampled velocity
nodes are unperturbed in a DLS inversion since model parameters are assumed to
be independent and uncorrelated; this follows since a DLS inversion is simply
a stochastic inversion for an isotropic model covariance matrix [Franklin,
19703 Jackson, 1979]. Thus, a combination of excessively dense model
parameters with a DLS inversion will produce solutions that are characterized
by artificial patches of unperturbed velocity. In the case of a DLS
inversion, an optimum middle ground between too few or too many parameters can
be found through trial and error as described below.

Given a distribution of seismic rays throughout a study volume, it is a
straightfoward task to add or subtract nodal locations and monitor the
progressive change in velocity parameter coverage. The optimum nodal
distribution maximizes the parameter density and minimizes undersampled
velocity nodes. A useful measure for evaluating velocity parameter coverage

is the distribution of the derivative weight sum (DWS) [C.H. Thurber, personal

communication, 1986]. The DWS provides a relative measure of the density of
seismic rays near a given velocity node. The DWS of the n*'" velocity
parameter an is defined as

(2.60)

DWS(an) = Z £ { J wa(r) ds}
iy Plj
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where i and j are the event and station indices, and the term in brackets is
defined as before (see (2.38)). The value of the DWS depends on the size of
the incremental arc length ds utilized in the numerical evaluation of (2.60);
smaller step lengths yield larger DWS values. Thus we are interested only in
the relative size of the DWS from one parameter to another. In general, an
acceptable distribution of nodal locations should yield values of DWS that
vary slowly between closely spaced nodes; examples of DWS for an optimum nodal
distribution are found in Chapter 5.

The above discussion suggests guidelines for choosing a nodal
distribution. The attention here is on the dependence of the resolution of
model parameters on the spatial density of nodal locations. A fundamental
property of a finite data set is its limited number, say p, of linearly
independent observations; sometimes p is referred to as the potential number
of degrees of freedom [e.g., Wigging, 1972]. In the absence of a priori
constraints [e.g., Franklin, 1970; Jackson, 1979], the value of p is fixed for
a given data set. Moreover, when the unknown model is a continuous function,
such as velocity, a DLS inversion is limited to estimating a maximum of p
linear averages of the unknown continuous function [e.g., Wiggins, 1972;
Jackson, 1972]. For a finite number of m parameters, where m > p, the trace
of the m x m resolution matrix R provides an estimate of the potential number
of degrees of freedom ((2.59), or Wiggins [1972]); the trace of R is simply
the sum of the values of resolution for the m parameters. If the spatial
density of model parameters is increased, m increases while p remains fixed.
Since the trace of R is always less than or equal to p (see (2.59)),
increasing the density of nodal locations effectively reduces the resolution

of model parameters.
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A reduction in the value of resolution for individual parameters, when due
to an increase in the spatial density of nodes, can be a desirable result.

For example, consider the case of approximating a inhomogeneous velocity field
by a finite set of parameters that are uniquely resolved by a given data set,
i.e., R=I. In this case, the resolution matrix R is m x m such that m < p and
tr(R) = m ¢ p. In practice, it is highly improbable that m parameters can be
chosen such that m=p. Thus, a fundamental consequence of uniquely resolving m
< p model parameters is poor utilization of the total information intrinsic to
the data set. In other words, high resolution of individual model parameters
is obtained at the expense of not exploiting the potential number of degrees
of freedom. Increasing the spatial density of nodes may decrease the
resolution of individual model parameters but assures that the full
information content of the data is utilized.

The apparent problem of low values of resolution along the principal
diagonal of R is, in part, misleading. A principal characteristic of
underdetermined inverse problems is a resolution matrix with non-zero
off-diagonal elements [Wiggins, 1972]. Simply examining the principal
diagonal of R is insufficient for underdetermined inversions. Conceptually,
the resolution matrix is a linear filter that prescribes the manner in which
true model parameters are to be linearly averaged in order to obtain the
estimated values of model parameters (see (2.43) and (2.44)). Each row of the

resolution matrix is a 'resolving kernel' [Backus and Gilbert, 1970] or

'averaging vector' [Menke, 1984] for a single model parameter. For a given
parameter, its linear dependence on the values of all other model parameters
is defined by the averaging vector. Since model parameters occupy a volume in
the case of seismic tomography, the linear averaging is also evaluated over a
volume. Thus, for seismic tomography, we can consider the estimates of model

parameters to be volume averaged estimates.
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The question of what is implied by 'good' resolution is easily answered
when the estimates of model parameters are considered averages over a volume.
Wiggins [1972] considered an ideal resolution matrix to be 'compact' if the
averaging vectors were non-zero only near the principal diagonal. The notion
of a compact matrix can be given physical significance in the case of seismic
tomography. There is a natural ordering of the elements of an averaging
vector, and this ordering is simply defined by the spatial location of nodes
within the study volume. One definition of compact is that for a given
parameter, the elements of its averaging vector are zero except for elements
that correspond to nodes located near the parameter of interest. Such a
definition can be stated quantitatively by defining a spread function [Backus
and Gilbert, 1967, 1968; Menke, 1984]. For the present problem, we define the
spread function for a single averaging vector, following Menke [1984], as the

scalar function
1 - 2
S(EP) =("£P")— qi_:lQ(P’Q) qu (2.61)

where r, is the averaging vector of the p'" parameter, Rpq is an element
of the resolution matrix, Q(p,q) is a weighting function defined as the

th
" and q parameter, and m

distance between the nodal locations of the p°®
is the number of parameters. For a compact averaging vector, the spread
function should be close to zero.

A spread function provides a simple means of quantifying m-dimensional
averaging vectors with a single number. 1In practice, however, an acceptable
upper limit to S(rp) must be chosen subjectively. In Chapter 5, it is shown
for the Icelandic data set that an examination of individual averaging vectors

for a range of values of S(rp,) provides constraints on an acceptable upper

limit. Once an upper limit is established, it is a straightforward task to
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evaluate regions of the model where S(rp) is less than this limit and thus
define the volumes that are well-resolved (see Chapter 5).

The above discussion of model parameterization and resolution,
particularly the use of a spread function to assess model resolution, differs
conceptually from previous studies [e.g, Aki and Lee, 1976; Thurber, 1983;

Benz and Smith, 1984]. For example, Aki and Lee [1976] suggested that a

tomographic image was well-resolved only if the majority of the diagonal
elements of the resolution matrix were close to unity; most studies since Aki
and Lee [1976] have followed this criterion. However, as discussed ;bove,
such a scenario implies underutilization of the data. In contrast with the
underparameterized approach of Aki and Lee [1976], a model parameterization
that follows the guidelines presented in this section will result in diagonal
elements of the resolution matrix that are significantly less than unity. We
argue that the tomographic image is well-resolved despite these smaller values
and, further, that the information content of the data is put to full use with
this approach. Moreover, a resolution matrix with non-zero off-diagonal
elements can be given a physical interpretation that expresses quantitatively
the volume over which velocity is averaged. These concepts are developed

further in Chapter 5.

A SYNTHETIC EXPERIMENT IN SEISMIC TOMOGRAPHY

In order to demonstrate that the tomographic method discussed in the
previous sections is capable of resolving the three dimensional variation of
velocity on a scale appropriate to a spreading ridge axis, we present in this
section the results of several synthetic tomography experiments on a possible
structure along the East Pacific Rise. Scientific understanding of the

dynamics of spreading centers, including such processes as the formation of
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oceanic crust and its thermal and lithologic evolution, the generation and
maintenance of hydrothermal systems, and the emplacement and evolution of
magma chambers and associated ridge-axis morphology all await the quantitative
determination of the size, shape and location of axial magma chambers. The
synthetic experiments presented here represent an initial step toward the
undertaking of a marine experiment specifically designed to image the
three-dimensional seismic velocity structure of the accretion zone.

Two crucial aspects of a East Pacific Rise tomographic experiment are the
network design and the geometry of sources. Natural seismicity associated

with the East Pacific Rise is infrequent and confined to shallow depth

[Riedesel et al., 1982]. The synthetic experiments are thus designed around
the exclusive use of artificial sources. In this section we show that an East
Pacific Rise magma chamber can cause significant travel time variations
relative to a laterally homogeneous crustal model. Specific structures provide
a basis for determining the source-receiver paths that are most useful for
imaging tomographically a mid-crustal magma chamber. From the results of
forward modeling, an experiment design is proposed. Tomographic inversions of
synthetic data, generated for the suggested experimental design and velocity
model, clearly show that three-dimensional structure within spreading centers
can be imaged with current marine seismological methods. This chapter ends
with a discussion of some of the scientific questions which may be addressed

with a marine seismic tomography study of the East Pacific Rise.

Postulated Magma Chamber Structure and its Effect on Travel Times and Ray Patias

The tomographic method is best suited for imaging distinct bodies of
anomalously high- or low-velocity that cause significant and systematic

anomalies in the observed travel time. We begin with a model of seismic
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velocity near an axial magma chamber; the model is hypothetical but it is
abstracted from the interpretation of a number of seismic experiments
undertaken along the East Pacific Rise. The velocity model is combined with
three-dimensional ray tracing methods to estimate the effects of an axial
magma chamber on the travel times and ray paths of P waves from artificial
sources in the water columm.

Many seismic refraction experiments using both sonobuoy and ocean bottom
receivers have been carried out over the crest of the East Pacific Rise during
the past ten years. Several experiments have been interpreted to indicate
the presence of a shallow crustal low-velocity zone that has been presumed to

correspond to a magma chamber. Orcutt et al. [1976] used synthetic seismogram

modelling to infer the presence of a shallow crustal low-velocity zone 2 km
beneath the rise axis seafloor at 9°N. Similar findings have since been

reported by McClain and Lewis [1980] at 23°N, Reid et al. [1977] at 21°N,

McClain et al. [1985] at 13°N, Lewis and Garmany [1982] at 12°N, and Rosendahl

et al. [1976] at 9°N. Bratt and Solomon [1984] used observations of

cross-axis shear wave propagation to argue against the presence of a
substantial magma body beneath the East Pacific Rise axis at 12°N. Bibee
[1979] inferred an axial low-velocity zone at 3°S, but the top of the zone is
subcrustal rather than 1-2 km beneath the sea floor.

The axial velocity structure determined from travel time inversion and

synthetic seismogram modelling by Orcutt et al. [1976] and Reid et al. [1977]

and that determined by two-dimensional ray tracing by McClain et al. [1985]

are shown in Figure 1. All three models show well-developed low velocity
zones. These one-dimensional representations of the structure are suggestive
of the presence of zones of melt or partial melt, but they do not provide

information on the extent of these zones either along or perpendicular to the
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rise axis. Figure 2 shows three cross-sections of the rise axis structure

inferred from two-dimensional ray tracing [Lewis and Garmany, 1982; McClain et

al. 1985] or from closely spaced axis-parallel refraction lines [Rosendahl et
al., 1976]. While pronounced differences are apparent in the shape of the
inferred axial magma body, it is impossible to assess the significance of
these differences for at least two reasons. First, no formal determination of
uncertainty is possible for models of this type. Second, because these are
simply slices through a three-dimensional body, the differences may be a
consequence only of the somewhat different along-axis location of the

cross-sections relative to transforms, axial highs, overlapping spreading

centers, or episodic spreading processes [Macdonald et al., 1984]. A seismic

tomography experiment will overcome both these shortcomings because the
derived structure is genuinely three-dimensional in nature and the results
will be interpreted using a formal inversion method in which the resolution of
the solution is defined quantitatively.

An important recent development is the application of the
common-depth-point multichannel seismic reflection method to studies of

oceanic crustal structure [e.g., Talwani et al., 1982]. The denser coverage

provided by this continuous mapping technique and the resulting spatial
resolution has revolutionized our understanding of the extent and distribution
of intracrustal reflectors, including the prominent reflector thought to mark
the top of the axial magma chamber along the East Pacific Rise. On the axis
of the East Pacific Rise near 9°N, a clear reflector is observed at 0.6 to
0.8s beneath the seafloor having a lateral extent (across axis) of 2-7 km

[Herron et al., 1978, 1980; Stoffa et al., 1980; Hale et al., 1982]. One of

the most thorough analyses of one of these crossings of the axial region is
that of Hale et al. [1982], who document an asymmetry in the reflection

relative to the rise axis.
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Most recently Detrick et al. [1987] carried out an extensive single-ship

and two-ship multichannel survey along the East Pacific Rise between 9° and
13°N. The most fundamental result from their study is the observation that a
continuous axial reflector is present over more than 60% of the imaged length
of the rise axis. The reflector is absent primarily where offsets in the rise
associated with overlapping spreading centers and transforms occur.

On the basis of the refraction and reflection results discussed above, a
hypothetical three-dimensional model of P-wave velocity for an East Pacific
Rise axial magma chamber may be constructed. Figures 3a and b show two cross
sections, one perpendicular and one parallel to the rise axis, of one such
model which is utilized for the synthetic tomography experiments described
below. The low-velocity volume is approximately ellipsoidal, with an
along-axis half length of 3 km, a half thickness of about 1 km, and a half
width of about 2 km. The velocity versus depth through the center of the

low-velocity body is similar to the models of Orcutt et al. [1976] and Hale et

al. [1982] derived from seismic refraction and reflection studies near 9°N on
the East Pacific Rise (Figure 1). The model in Figure 3 has a velocity

anomaly contrast and vertical extent which are significantly smaller than in

the model of McClain et al. [1985] for the East Pacific Rise near 13°N (Figure
2). The top of the low velocity body in Figure 3b is not continuous for more

than 6 km along-axis, in contrast with the findings of Detrick et al. [1987].

Thus, the model in Figure 3 probably underestimates the maximum dimensions and
volume of possible low-velocity magma chambers. Synthetic studies of such a
model should yield conservative tests of the resolving power of the seismic
tomography method.

The objective of the first synthetic experiment was to determine the

general effects of a mid-crustal low-velocity zone on the travel times and ray
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paths of P waves using a forward modeling approach. For simplicity, a
two—-dimensional model of a mid-crustal low-velocity zone was assumed for these
calculations: the model is uniform along axis; transverse to the axis the
structure is given by Figure 3a. Travel times of P waves calculated for this
heterogeneous structure and a laterally homogeneous model were compared for
numerous source-receiver configurations; the laterally homogeneous model is
given by the off-axis structure in Figure 3a and the sources and receivers are
taken to be on a flat seafloor. For both structures, travel times and ray
paths were calculated using a three-dimensional ray tracing routine [Lee and
Stewart, 1981]. Figure 4 shows an example of the difference between travel
times calculated for the heterogeneous and homogeneous models. In this
figure, the mid-crustal low-velocity zone is parallel to the y-axis and
centered on x=10 km, the receiver location is at x=5km, y=0, and the travel
time differences are plotted at the appropriate source locations within the
plane of the figure. For a source located at x=5 and y=10 km, for instance,
the travel times for the heterogeneous model are delayed by about 0.3 s
compared with the homogeneous model. The travel time residual map in Figure 4
can be divided into three regions of distinct anomalies that lie approximately
parallel to the rise axis: regions where x < 12 km are characterized by small
travel time residuals, for 12 < x ¢ 18 km the travel time residual is greater
than 0.2 s, and for x > 18 km the travel time residual averages 0.1 s. While
these three broad regions are well defined, much of the detail of the
travel-time residual map is suspect, because of errors introduced by mixing
first and secondary arrivals. Such errors are difficult to remove with a
forward modelling approach; in Figure 4 they are likely to be most pronounced
for 12 < x < 20 km. From the contour map of Figure 4 it can be inferred that

a tomographic experiment must employ source-receiver separations in excess of
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5-10 km in order to be sensitive to mid-crustal low-velocity zones.

A more substantive inference regarding experiment design can be made if
the ray paths calculated for the heterogeneous model are examined. Figure 5
depicts such ray paths superimposed on the velocity contours of Figure 3aj in
this figure the source is at x=5 km. All rays shown in this figure traveled
in a vertical plane perpendicular to the rise axis. Figure 5 clearly shows
how the mid-crustal low-velocity zone distorts the ray paths of the P waves,
and it also suggests that a 'shadow zone' may exist 10-12 km off-axis (x=20-22
km) for this source location. At small source-receiver separations (x < 12-14
km, Figure 5) the ray paths of P waves are unaffected by the low-velocity zone
since their turning point is within the shallow crust. For 12 ¢ x ¢ 20 km,
the first arriving ray paths have turning points about 3-4 km deep; these
paths are noticeably distorted by the low-velocity zone. Also, these ray
paths traverse the low-velocity zone on both their downgoing and upgoing
segments, thus accumulating a sizeable travel time anomaly (Figure 4). At
larger ranges (x > 22 km), the first arriving P waves pass through the
low-velocity zone only once, thus incurring a significant but more modest
travel time delay (Figure 4). Ray paths at these larger ranges have a
simpler, more nearly circular geometry than those that exit the seafloor at

about x = 14 km.

Experimental Design and Results of Synthetic Inversions

Given the above results, a synthetic marine tomographic experiment was
designed, with two following constraints: (1) a seismic network consisting of
15 ocean-bottom instruments was available for deployment, and (2) roughly
300-400 shots were available for insonifying the study area. The seismic

network (Figure 6) has two principal components: (1) stations within 0-10 km
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of the rise axis provide control of upper crustal velocities beneath the rise
axis, and (2) stations greater than 20 km from the axis record data to resolve
deep crustal structure (Figure 5). By avoiding station locations that are
between approximately 10 and 20 km of the axis or that connect ray paths from
shots which travel sub-parallel to the rise axis at depths greater than 2-3 km
beneath the sea-floor, ray paths with complex geometries (Figure 5) and
possible shadow zones are avoided.

Synthetic travel times for the model in Figure 3 and the station-shot
configuration in Figure 6 were calculated by an approximate ray tracing method
(Thurber, 1983] and subsequently inverted to test the resolving power of the
seismic tomography method. Figure 7 shows the results of one inversion for
noise-free travel times and a starting model which was laterally homogeneous
and given by the off-axis structure shown in Figure 3a. Comparison of Figures
7 and 3 demonstrates that seismic imaging is capable of defining the location
and dimensions of anomalous velocity bodies. Also, the velocity contrast is
recovered to a large degree, except for the fine detail of velocity structure
within the center of the low velocity zone. These results indicate that the
inverse method being used can resolve three-dimensional structure.

Of course, a rigorous test of the imaging method should incorporate the
effects of timing errors intrinsic to real observations. This was
investigated by adding random, Gaussian-distributed deviations having zero
mean and a standard deviation of 0.05s, to the synthetic travel times (Figure
8c) and repeating the inversion. Figure 8 shows the results of imaging the
low velocity body in Figure 3 with travel time data that incorporate realistic

timing errors [Bratt and Purdy, 1984]. Again the location and dimensions of

the low velocity body were successfully recovered. Note that the starting

model was a simple laterally homogeneous structure. This may explain the
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partial degradation of the inversion solution compared with the assumed model
(Figure 3). A laterally heterogeneous initial model that incorporates a
priori information, such as the depth to the top of a low-velocity zone, may
improve the inversion results. This point is deserving of further study.

These simple synthetic inversions clearly demonstrate that the seismic
tomography technique can resolve the postulated structure of an East Pacific
Rise magma chamber. Further synthetic studies are required, however, both to
test both the potential of the method to discriminate among competing models
for the size and shape of the axial magma body (e.g., Figure 2) and to
determine the preferred array design for imaging crustal magma chambers. Such
analysis should include variations of the shot-receiver geometry in tandem
with evaluation of the information density matrix [Wiggins, 1972], possible
use of a priori statistical constraints in the inverse problem [Franklin,

1970; Tarantola and Valette, 1982], and development of a methodology to

account for sea floor topography and its effects upon travel times.

Specific Objectives of a Tomography Experiment

The determination of the three-dimensional velocity structure of a
substantial segment of the East Pacific Rise will allow us to address a number

of specific and fundamental problems concerned with magma chamber processes:

a) First of all, what is the size of the magma chamber? What is the
total volume of melt? This is crucial to understanding the thermal
evolution of the crust and to learning about hydrothermal processes.
All models of water circulation in young crust are critically
dependent upon a knowledge of the thermal driving force [e.g.,

Lister, 1974; Strens and Cann, 1982, 1986].
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To what depth do magma bodies extend, i.e., how are both layer 3 and
the Moho formed? Does a substantial body of melt exist to the base

of the crustal column, as inferred by Pallister and Hopson [1981]?

Or is the shallow axial reflector simply the top of a thin layer of

melt only a few hundred meters thick [Dewey and Kidd, 1977; Sleep,

1978]?

What is the cross—section of the magma chamber? Is it simply a wide
dike, an 'onion' shape, or a broad based triangle? This knowledge is
essential to models of magma dynamics, the generation and maintenance

of hydrothermal systems, as well as mechanisms of dike injectiom.

Is there internal structure in the magma chamber? Is it a uniform
body of melt, do prominent zonations exist, or is it a region of

pervasive melt-filled cracks?

What is the along-axis geometry of the magma body? Does a discrete
'blob’' exist beneath the center of each ridge segment that feeds
magma through extensive along-axis fissures? Such a scenario has
been suggested to explain the thin crust beneath fracture zones

[e.g., Sinha and Louden, 1983; White et al., 1984] as well as

along-axis ridge morphology [Francheteau and Ballard, 1983]. The

axial reflector is apparently continuous right up to overlapping

spreading centers and transforms [Detrick et al., 1987], but it is

unlikely that the shape of the magma body remains unchanged in the

vicinity of these thermal anomalies.
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A seismic tomography experiment will provide well-constrained answers to
these critical questions and advance our understanding of how oceanic crust is
created, how magma chambers and hydrothermal systems operate, and how the

principal features of mid-ocean ridge morphology are generated.



63

References

Aki, K., and W.H.K. Lee, 1976. Determination of three-dimensional
velocity anomalies under a seismic array using first P arrival times from
local earthquakes, 1, a homogeneous initial model, J. Geophys. Res., 81,
4381-4399,

Aki, K., and P. Richards, 1980. Quantitative Seismology: Theory and Methods.
San Francisco: Freeman. 932 pp.

Backus, G. E., and J. F. Gilbert, 1967. Numerical application of a formalism
for geophysical inverse problems, Geophys. J. R. Astron. Soc., 13, 247-276.

Backus, G. E., and F. Gilbert, 1968. The resolving power of gross earth
data, Geophys. J. R. Astron. Soc., 16, 169-205.

Backus, G. E., and F. Gilbert, 1969. Constructing P-velocity models to fit
restricted sets of travel time data, Bull. Seismol. Soc. Amer., 59,
1407-1414.

Backus, G. E., and F. Gilbert, 1970. Uniqueness in the inversion of
inaccurate gross earth data, Philos. Trans. R. Soc. London, 266, 123-192.

Benz, H.M., and R.B. Smith, 1984. Simultaneous inversion for lateral velocity
variations and hypocenters in the Yellowstone region using earthquake and
refraction data. J. Geophys. Res., 89, 1208-1220.

Bibee, L.D., 1979. Crustal structure in areas of active crustal accretion,
Ph.D. dissertation, 155 pp., U. of California, San Diego.

Bratt, S.R., and G.M. Purdy, 1984. Structure and variability of oceanic
crust on the flanks of the east Pacific Rise between 11° and 13°N, J.
Geophys. Res., 89, 6111-6125.

Bratt, S.R., and S.C. Solomon, 1984. Compressional and shear wave
structure of the East Pacific Rise at 11°20'N: Constraints from

three—component ocean-bottom seismometer data, J. Geophys. Res., 89,
6095-6110.

Chou, C.W., and J.R. Booker, 1979. A Backus-Gilbert approach to inversion
of travel-time data for three-dimensional velocity structure, Geophys.
J.R. Astron. Soc., 59, 325-344.

Crosson, R.D., 1976a. Crustal structure modeling of earthquake data, 1,
simultaneous least squares estmation of hypocenter and velocity
parameters, J. Geophys. Res., 81, 3036-3046.

Crosson, R.D., 1976b. Crustal structure modeling of earthquake data, 2,
velocity structure of Puget Sound region, Washington, J. Geophys. Res.,
81, 3047-3054.

Detrick, R.S., P. Buhl, J. Mutter, J. Orcutt, J. Madsen and T. Brocher, 1987.
Multi-channel seismic imaging of a crustal magma chamber along the East
Pacific Rise, Nature, 326, 35-4l.



64

Dewey, J.F., and W,S.F. Kidd, 1977. Geometry of plate accretion, Geol. Soc.
Am. Bullo, _8__8_, 960—968‘

Francheteau, J., and R.D. Ballard, 1983. The East Pacific Rise near 21°N,
13°N and 20°S: inferences for along strike variability of axial processes
at mid ocean ridges, Earth Planet. Sci. Lett., 64, 93-116.

Franklin, J.N., 1970. Well posed stochastic extension of ill posed linear
problems, J. Math. Anal. Applic., 31, 682-716.

Hale, L.D., C.J. Morton and N.H. Sleep, 1982. Reinterpretation of seismic
reflection data over the East Pacific Rise, J. Geophys. Res., 87,
7707-7718.

Herron, T.J., P.L. Stoffa and P. Buhl, 1980. Magma chamber and mantle
reflection - East Pacific Rise, Geophys. Res. Lett., 75, 989-992.

Herron, T.J., Ludwig, W.J., Stoffa, P.L., Kan, T.K., and P. Buhl, 1978.
Structure of the East Pacific Rise crest from multichannel seismic
reflection data, J. Geophys. Res., 83, 798-804.

Hildebrand, F.B., 1965. Methods of Applied Mathematics, Englewood, N.J.:
Prentice-Hall, 362 pp.

Jackson, D.D., 1972, Interpretation of inaccurate, insufficient and
inconsistent data, Geophys. J. R. Astron. Soc., 28, 97-110.

Jackson, D.D., 1979. The use of a priori data to resolve non-uniqueness
in linear inversion, Geophys. J. R. Astron. Soc., 57, 137-157.

Jordan, T.H., and J.N. Franklin, 1971. Optimal solutions to a linear inverse
problem in geophysics, Proc. National Acad. Sci, 68, 291-293.

Julian, B.R., and D. Gubbins, 1977, Three dimensional seismic ray tracing,
J. Geophys., 43, 95-113.

Koch, M., 1985. A numerical study on the determination of the 3-D structure
of the lithosphere by linear and non-linear inversion of teleseismic
trave