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ABSTRACT

Sr, Nd and Pb isotopic analyses of 477 samples representing 30 islands or
island groups, 3 seamounts or seamount chains, 2 oceanic ridges and 1 oceanic
plateau [for a total of 36 geographic features] are compiled to form a
comprehensive oceanic island basalt [OIB] data set. These samples are
supplemented by 90 selected mid-ocean ridge basalt [MORB] samples to give
adequate representation to MORB as an oceanic basalt end-member. This
comprehensive data set is used to infer information about the Earth's mantle.
Principal component analysis of the OIB+MORB data set shows that the first
three principal components account for 97.5% of the variance of the data. Thus,
only four mantle end-member components [EMI, EMII, HIMU and DMM I are
required to completely encompass the range of known isotopic values. Each
sample is expressed in terms of percentages of the four mantle components,
assuming linear mixing. There is significant correlation between location and
isotopic signature within geographic features, but not between them, so
discrimination analysis of the viability of separating the oceanic islands into those
lying inside and outside Hart's (1984, 1988) DUPAL belt is performed on the
feature level and yields positive results.

A "continuous layer model" is applied to the mantle component percentage
data to solve for the spherical harmonic coefficients using approximation
methods. Only the degrees 0-5 coefficients can be solved for since there are only
36 features. The EMI and HIMU percentage data sets must be filtered to avoid
aliasing. Due to the nature of the data, the coefficients must be solved for using
singular value decomposition [SVD], versus the least squares method. The F-test
provides an objective way to estimate the number of singular values to retain
when solving with SVD. With respect to the behavior of geophysics control data



sets, only the degree 2 spherical harmonic coefficients for the mantle components
can be estimated with a reasonable level of confidence with this method.

Applying a "delta-function model" removes the problem of aliasing and
simplifies the spherical harmonic coefficient solutions from integration on the
globe to summation over the geographic features due to the properties of delta-
functions. With respect to the behavior of geophysics control data sets, at least
the degree 2 spherical harmonic coefficients for the mantle components can be
estimated with confidence, if not the degrees 3 and 4 as well. Delta-function
model solutions are, to some extent, controlled by the nonuniform feature
distribution, while the continuous layer model solutions are not.

The mantle component amplitude spectra, for both models, show power at
all degrees, with no one degree dominating. The DUPAL components [EMI,
EMII and HIMU], for both models, correlate well with the degree 2 geoid,
indicating a deep origin for the components since the degrees 2-3 geoid is
inferred to result from topography at the core-mantle boundary. The DUPAL
and DMM components, for both models, correlate well [and negatively] at degree
3 with the velocity anomalies of the Clayton-Comer seismic tomography model
in the 2500-2900 km depth range [immediately above the core mantle boundary].
The EMII component correlates well [and positively] at degree 5 with the
velocity anomalies of the Clayton-Comer model in the 700-1290 km depth range,
indicating a subduction related origin. Similar positive correlations for the geoid
in the upper lower mantle indicate that subducted slabs extend beyond the 670
km seismic discontinuity and support a whole-mantle convection model.

Thesis Supervisor: Dr. Stanley R. Hart
Title: Senior Scientist, Woods Hole Oceanographic Institution
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CHAPTER 1

INTRODUCTION

PREVIOUS WORK

That the Earth's mantle is heterogeneous is no longer a subject of

controversy among geochemists, but the composition, the location and the

geometry of these heterogeneities is very much in question. Direct sampling is

not an option for studying the chemistry of most of the mantle, so products of

indirect sampling, such as oceanic island basalts [OIB's] and mid-ocean ridge

basalts [MORBI, are invaluable for revealing the nature of the inaccessible

mantle. Though the OIB's may be contaminated by interactions with the

lithosphere or may sample large vertical sections of the mantle, they still retain

the signature of their original source.

Using various statistical methods and models, previous workers have

defined what they believe to be the number of mantle component end-members

required to represent the variation in the oceanic mantle data [OIB+MORBI.

Early on, Zindler et al. (1982) used factor analysis to evaluate the oceanic data in

five dimensions. Their analysis indicated that the oceanic data define a plane Ithe

"mantle plane"], described by the mixing of three chemically independent

components, two undifferentiated or slightly enriched mantle components and

one MORB-type or depleted mantle component.

Other workers have chosen five groups or components to represent the

data. Using a series of two-dimensional isotopic plots, White (1985) divided the

oceanic data into five distinct basalt groups [MORB, St. Helena, Kerguelen,

Society, and Hawaii]. He concedes that the five groups may be end-members

which mix to form intermediate compositions, but he believes that each group

either represents a distinct, internally homogeneous reservoir or that each group
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is composed of a number of isotopically similar reservoirs. Likewise, Li et al.

(1991) proposed fives extremes, using non-linear mapping: Atlantic MORB

[DMM], St. Helena [HIMU], Walvis [EMI], Samoa [EMII] and D5 [EMIII]. Non-

linear mapping approximately preserves the geometric structure of the data by

maintaining interpoint distances. Four of the five extremes of Li et al. (1991)

are based solidly on samples trends from islands, but the D5 extreme is based

only on that one sample. More data is needed to substantiate their fifth extreme.

By far the majority of analyses indicate the existence of four end-member

components for the oceanic mantle data. Using two-dimensional plots, Zindler

and Hart (1986) defined the following four end-member components: depleted

MORB mantle [DMM], high U/Pb mantle [HIMU], and two enriched mantle

components [EMI and EMII], with possibly two other components prevalent

mantle composition [PREMA] and bulk silicate Earth [BSE]. Eigenvector

analyses by Allegre et al. (1987) agree with the four component model of

Zindler and Hart (1986). The four extremes of Allegre et al. (1987) are

[correspond to]: extreme MORB [DMM]; St. Helena, Tubuai and Mangaf islands

[HIMU]; Kerguelen, Gough, Tristan da Cunha and Raratonga islands IEMI; and

Sao Miguel and Atui islands [EMII]. Hart (1988), using an augmented data set

and two-dimensional plots, concluded that the four end-members proposed by

Zindler and Hart (1986) are valid representations of the extremes of the oceanic

data. He resolves White's (1985) groupings into his own four component system

as follows [White = Hart]: MORB = DMM, Society = EMII, St. Helena = HIMU,

Hawaii = EMI, with the suggestion that White's fifth group, Kerguelen, is a

mixture of EMI and EMII. In addition, Li et al. (1991) also noted a tetrahedral

structure to the data, when using factor analysis with varimax rotation, with the

following four extremes: Atlantic MORB [DMM], Mangaia [HIMU], Samoa

[EMII] and Walvis[EMI].



One scenario for the genesis of the three unusual mantle components is put

forth by Hart (1988). He proposes that HIMU, enriched in U, is probably

generated by intra-mantle metasomatism, that EMI corresponds to a slightly

modified bulk-earth compositon and that EMII can be explained by the recycling

of sediments during subduction. The proposed formation mechanisms in no way

limit the geometry of the mantle needed to generate the heterogeneities and, as

such, a wide variety of models have been proposed. A whole mantle convection

model might portray the enriched mantle components as blobs floating around in

a depleted mantle matrix (Zindler and Hart, 1986) or perhaps as an accumulated

layer of subducted oceanic crust and sediment at the core-mantle boundary that

reaches the surface in mantle plumes (Hofmann and White, 1982). A two-layer

convection model might rely on a depleted upper mantle feeding the mid-ocean

ridges and an enriched lower mantle feeding oceanic islands via mantle plumes

(Dupre and Allegre, 1983) or require a depleted upper mantle, a primitive lower

mantle and an accumulated layer of subducted oceanic crust and sediment at the

670 km discontinuity that supplies the enriched components via mantle plumes

(White, 1985; Allegre and Turcotte, 1985). Anderson (1985) even proposes a

three-layer convective model with the geochemical contrasts occurring only in

the upper mantle with a depleted lower part that supplies the mid-ocean ridges

and an enriched upper part from subduction of oceanic crust and sediment.

A deep origin for the enriched components is indicated by Hart's (1984)

large-scale isotopic anomaly, the DUPAL anomaly, characterized by the

concentration of the enriched mantle components in a band from 2' S to 600 S.

Qualitatively, countours of the anomaly criteria [A7/4, A8/4 and ASr (Hart,

1984)] correspond to long-wavelength [and thus deep] geophysical quantities

(Hart, 1988). Other researchers oppose this deep origin interpretation, citing the

nonuniform distribution of hotspots as the reason for the pattern (White, 1985)
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or arguing that the DUPAL compositions occur in scattered locations and do not

cover a coherent geographic area (Allegre et al., 1987).

The purpose of this thesis is three-fold: (1) to address once again the issue

of the number of mantle end-member components needed to represent the

oceanic mantle data, (2) to statistically test the viability of the PUPAL distinction

as a means of characterizing the OIB data and (3) to try to pinpoint the source

depth of the enriched mantle components by expanding their relative abundances

in spherical harmonics and comparing their expansions to those of known

geophysical quantities.

DATA

The majority of this study focuses on Sr, Nd and Pb isotopic analyses of

volcanic rocks from oceanic islands, seamounts, ridges, and plateaus. All of

these geographic features overlie oceanic crust, with the exception of Nunivak

Island on the Alaskan Continental Shelf, and none of them is directly associated

with seafloor spreading, with the exception of Iceland, which has a mixture of

mid-ocean ridge and hotspot influences. Essentially, the data set is that compiled

by Zindler et al. (1982) and later augmented by Hart (1988), with some

additional recent analyses (Appendix). Samples in the data set are mainly basalt,

with some gabbros and trachybasalts; trachytes and other silica-rich rocks

relative to basalt [roughly Si0 2 > 50%] are excluded. The majority of the

samples are of Cenozoic age, with the exception of the Walvis Ridge, Rio Grande

Rise and New England Seamounts samples, with ages up to 100 Ma. If a choice

is given, analyses of leached samples are preferred over analyses of unleached

samples. In addition, only single samples for which there are Sr, Nd and Pb

analyses are included. For consistency, Sr data is adjusted to 0,70800 1 E&A

standard] or 0.71022 [NBS SRM 987 standard] and Nd data is adjusted to
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0.512640 [BCR-1 standard] or 0.511862 [La Jolla standard] or 0.511296 [Spex

standard].

In this data set, referred to as the OIB data set, there are 477 samples

representing 30 islands or island groups, 3 seamounts or seamount chains, 2

aseismic oceanic ridges and 1 oceanic plateau (Figure 1.1 and Table 1.1). The

isotopic means and standard deviations for the OIB data are listed in Table 1.2.

Since MORB is considered to be one of the mantle component end-

members (Zindler et al., 1982; White, 1985; Zindler and Hart, 1986; Hart,

1988), any attempt to choose end-members should include MORB data. For this

reason, a second data set is created using the OIB data and a selection of 90

MORB samples (Appendix), the OIB+MORB data set (Table 1.3). The criteria

for choosing OIB samples applies to the MORB samples as well. Isotopic means

and standard deviations for the OIB+MORB data are listed in Table 1.2.

ORGANIZATION

The main thust of this work is to characterize the OIB data and to search

for possible correlations between the geochemical signatures of OIB's and

geophysical quantities, such as the geoid and seismic tomography, that might help

pinpoint the depth[s] of the OIB reservoir[s].

Chapter 2 explores the nature of the OIB isotope data. With the help of

principal component analysis, the data is expressed in terms of percentages of

four mantle component end-members. Spatial correlation testing reveals the

relationship between geographic distance from island to island and feature to

feature and the "isotopic distance" between samples. Discrimination analysis,

both nearest-neighbor and graphical, is used to test the viability of separating the

oceanic islands into two groups, inside and outside the DUPAL belt.
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Chapter 3 applies a "continuous layer model" to the mantle component

data, as an assumed geometry for the OIB reservoir, in order to solve for the

spherical harmonic coefficients. The problem of aliasing is addressed with the

relationship of variation in mantle components to distance between features.

Approximation methods are used to solve for the coefficients. Geophysical data

sets are constructed, using GEM-L2 geoid coefficients, to serve as controls

against which to judge the success of the approximation methods.

Chapter 4 applies a "delta-function model" to the mantle component data

to provide a mathematically more robust solution for the spherical harmonic

coefficients. The delta-function approximation removes the problem of aliasing,

but generates a solution dependent upon feature location. The same geophysical

data sets are used again to judge the success of the delta-function approximation.

Chapter 5 compares the mantle component spherical harmonic solutions

for the two models in terms of their amplitude spectra, how well they correlate

with the geoid, how they are affected by the nonuniform feature distribution and

how well they correlate with the Clayton-Comer seismic tomography model.

The implications of these results and recommendations for further research are

discussed.
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Table 1.1. Geographic features represented in the OIB data set, with their
components, number of samples [in braces] and references indicated.

Feature Components References

Ascension [5] 7,34,35
Amsterdam/St. Paul [11]

Amsterdam [5] 38
St. Paul [6] 38

Azores [6]
Faial [1] 22
Sio Miguel [5] 1,8

Balleny [3] 19
Cameroon Line [18]

Bioko [5] 17,18
Pagalu [1] 18
Principe [3] 18
Sho Tom6 [9] 17,18

Cape Verde Islands [41]
Fogo [6] 14
Maio [9] 8,14
Sao Antao [10] 8,14
Sao Tiago [13] 14
Sao Vincente [3] 14

Christmas [13] 19
Cocos [3] 3
Comores Archipelago [14] 38
Cook-Austral Islands [26]

Aitutaki [4] 1,21
Atui [6] 1,21
Mangia [5] 1,21
Mauke [3] 1,21
Raratonga [8] 1,21,23

Crozet Islands [9] 38
Fernando de Noronha [16] 1,13
Galapagos Islands [11] 39
Gough [2] 1
Hawaiian Islands [73]

Hawaii [14] 28,32
Kahoolawe [13] 37
Kauai [2] 28
Lanai [4] 37
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Table 1.1. Continued.

Feature Components References

Hawaiian Islands [73]
Loihi [15] 27
Maui [3] 28
Molokai [5] 28
Oahu [17] 29

Iceland [7] 20
Juan Fernandez Islands [4] 15
Kerguelen Plateau [41]

Heard Island [9] 2,3()
Kerguelen Island [20] 12,30,38
Kerguelen Plateau [12] 26,36

Louisville Seamount Chain [4] 6
Marion/Prince Edward [4] 19
Marquesas Archipelago [11] 10,11,33
Mascareignes [8]

Mauritius [1]1
Reunion [7] 38

New England Seamounts [6] 31
Nunivak [2] 25
Pitcairn [19] 41
Ponape [1] 19
Sala Y Gomez [1]
Samoa Islands [34]

Manu'a [4] 42
Savai'i [8] 42
Tutuila [9] 23.42
Upolu [13] 2342

San Felix/San Ambrosio [5]
San Felix [4] 15
San Ambrosio[1] 15

S himada Seamount [1] 16
Society Ridge [9]

Mehetia [2] 9
Moua Pilhaa [1] 9
Tahaa [1] 40
Teahitia [4] 9
dredge [1] 9

St. Helena [31] ?, 4,7,T)



17

Table 1.1. Continued.

Feature Components References

Trinidade [1] 1
Tristan de Cunha [5] 7,22
Tubuai-Austral Islands [22]

Marotiri [1] 5
Raevavae [1] 1
Rapa [3] 5,23
Rimatara [4] ?,21
Rurutu [4] 21,23
Tubuai [9] 5

Walvis Ridge [10] 24

11n the reference column, a "?" indicates a sample with an unknown reference.

Reference guide: [1] Allegre et al., 1987; [2] Barling and Goldstein, 1990; [31
Castillo et al., 1988; [4] Chaffey et al., 1989; [5] Chauvel et al., 1991; 161 Cheng
et al., 1988; [7] Cohen and O'Nions, 1982a; [8] Davies et al., 1989; [91 Devey et
al., 1990; [10] Duncan et al., 1986; [11] Dupuy et al., 1987; [12] Gautier et al.,
1990; [13] Gerlach et al., 1987; [14] Gerlach et al., 1988; [15] Gerlach et al.,
1986; [16] Graham, 1987; [17] Halliday et al., 1990; [18] Halliday et al., 1988;
[19] Hart, 1988; [20] Hart, unpublished; [21] Nakamura and Tatsumoto, 1988;
[22] Newsom et al., 1986; [23] Palacz and Saunders, 1986; [24] Richardson et al.,
1982; [25] Roden, 1982; [26] Salters, 1989; [27] Staudigel et al., 1984; [28] Stille
et al., 1986; [29] Stille et al., 1983; [30] Storey et al., 1988; [31] Taras and Hart,
1987; [32] Tatsumoto, 1978; [33] Vidal et al., 1984; [34] Weis, 1983: [351 Weis et
al., 1987; [36] Weis et al., 1989; [37] West et al., 1987; [38] White, unpublished;
[39] White and Hofmann, 1982; [40] White et al., 1989; 141] Woodhead and
McColloch, 1989; [42] Wright and White, 1987.
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Table 1.2. Isotopic means and standard deviations1 for the OIB and the
OIB+MORB data sets.

Nd

OIB 2

Mean
Std Dev

OIB+MORB 3

Mean
Std Dev

0.703943
0.000892

0.703752
0.000936

0.512825
0.000145

0.512869
0.000170

19.065
0.880

18.939
0.870

Ilsotopic variance is the square of the standard deviation.
2Mean and standard deviation based on 477 samples.
3Mean and standard deviation based on 567 samples..

6/4Pb 7/4Pb 8/4Pb

15.586
0.093

15.571
0.093

38.965
0.693

38.799
0.748
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Table 1.3. Sample locations for the MORB data in the OIB+MORB data set,
with the number of samples [in braces] and references indicated.

Location

Atlantic Ocean [22]

Pacific Ocean
East Pacific Rise [6]
Galapagos Ridge [13]
Gorda Ridge [8]
Juan de Fuca Ridge [6]

Indian Ocean [10]
E Indian Ridge [7]
SE Indian Ridge [12]
SW Indian Ridge [6]

References

2,5

5,7
5,7
7
7

1,5
4

Reference guide: [1] Cohen and O'Nions, 1982b; [2] Cohen et al., 1980; [31
Hamelin and Allegre, 1985; [4] Hamelin et al., 1986; [5] Ito et al., 1987; 161 Klein
et al., 1988; [7] White et al., 1987.
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Fig. 1.1. Global distribution of oceanic island basalt samples. The triangles represent the 36 geographic features with the
following number key: [11 Ascension, [2] Amsterdam/St. Paul, [31 Azores, [4] Balleny, [5] Cameroon Line, [6] Cape
Verde Islands, [7] Christmas, [81 Cocos, [9] Comores Archipelago, [101 Cook-Austral Islands, [11] Crozet Islands, [12]
Fernando de Noronha, [13] Galapagos Islands, [14] Gough, [15] Hawaiian Islands, [16] Iceland, [17] Juan Fernandez
Islands, [18] Kerguelen Plateau, [19] Louisville Seamount Chain, [20] Marion/Prince Edward, [21] Marquesas
Archipelago, [22] Mascareignes, [23] New England Seamounts, [24] Nunivak, [25] Pitcairn, [26] Ponape, [27] Sala Y
Gomez, [28] Samoa Islands, [29] San Felix/San Ambrosio, [30] Shimada Seamount, [311 Society Ridge, [32] St. Helena,
[33] Trinidade, [34] Tristan de Cunha, [35] Tubuai-Austral Islands, [36] Walvis Ridge.
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CHAPTER 2

MATHEMATICAL AND STATISTICAL METHODS OF DATA ANALYSIS

INTRODUCTION

When dealing with a multidimentional data set with dimension greater

than three, it is impossible to visualize the shape of the data in that space. This

makes it difficult to choose "end-members" for the data, where end-members are

interpreted as the vertices of the smallest simplex, with linear or nonlinear edges,

that completely encloses all the data points. Previous work using two-

dimensional plots to estimate the groups or end-members (Zindler et al., 1982;

White, 1985; Zindler and Hart, 1986) can be misleading since those plots are

projections of a higher-dimensional shape. For this study, it is possible to reduce

the dimensionality of the OIB+MORB data set, via principal component analysis,

and still retain its general shape, making it possible to choose end-members in

three-dimensions.

For the OIB data set, the data locations [oceanic islands] are not distributed

evenly about the globe. This prompts the question as to whether there is any

relationship between location and isotopic signature. To address this, a spatial

correlation test (Mantel, 1967) is used to test for a correlation between the

geographic distance and the "isotopic distance" between samples. In addition, a

count is kept of the number of times a sample's isotopic "nearest-neighbor"

occurs within the same island and within the same geographic feature.

Finally, the globe has been divided by Hart (1984, 1988) into the islands

lying inside the DUPAL belt, from 20 S to 600 S, and those lying outside. To see

if there is statistical justification for separating the data into these two different

populations, isotopic nearest-neighbor discriminant analysis is performed on the

data set to obtain a misclassification error rate. The significance of this error
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rate is based upon a randomization test of Solow (1990). While giving

promising results, the randomization test for significance is inconclusive because

spatial correlation within geographic features has not been accounted for. As an

alternative, discrimination between isotopic signatures on the scale of geographic

features inside and outside the DUPAL belt is addressed graphically.

PRINCIPAL COMPONENT ANALYSIS

Theory

Principal component analysis can be viewed as a coordinate system

transformation, but one that has particular properties. It generates a new set of

variables, the principal components, that are linear combinations of the original

variables:
5

Zi =I e;j Xj =1,.,
j=1

where the Zg's are the principal components, the egj's are the transformation

coefficients, and the X 's are the original isotope measurements (X1 = 87 Sr/86Sr,

X2 = 14 3 Nd/ 14 4 Nd, X 3 = 2 0 6 Pb/2 0 4 Pb, X4 = 2 0 7 Pb/2 04 Pb, X5 = 2 08Ph/2 04 Pb).

The principal components have the following properties:

(1) Zg and Z are uncorrelated, for all i, j

(2) Variance(ZI) 2 Variance(Z 2 ) - Variance(Z 5 )
5

(3) for all i, e = 1
j=1

The transformation coefficients are the elements of the unit eigenvectors of the 5

x 5 data covariance matrix. Because the isotopic ratios are on different scales,

the data set must be normalized in order for all of the isotopes to be treated
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equally in the analysis. One way to do this is to take each sample and for every

isotope subtract the mean and divide by the standard deviation (Table 1.2):

y .. i - Xj

where Xij is thejth isotopic ratio for the ith sample, etc. This method weights

the information provided by all five isotopes equally. Alternatively, Allegre et

al. (1987) develop their own empirical norm, the "geologic norm", that takes

analytical errors into account and is designed to give equal weight to all isotopes

except 207 Pb/204 Pb, which has the largest analytical error.

Application to the OIB+MORB Data Set

Because DMM [depleted MORB mantle] is one of the proposed mantle

end-member components, I have chosen to do principal component analysis using

all of the oceanic island data [477 samples] plus a wide selection of MORB data

[90 samples]. The covariance matrix for the OIB+MORB data set and its

eigenvectors and eigenvalues are shown in Table 2.1. The sum of the

eigenvalues is the trace of the covariance matrix, ie. the sum of the diagonal

elements. This is equal to 5 because the diagonal elements of the covariance

matrix, the scaled isotope variances, are all 1. To find out how much of the

variance of the scaled data set is accounted for by each eigenvector, and thus each

principal component, divide the corresponding eigenvalue by 5. The first three

principal components account for 97.5% of the variance of the data set.

Therefore it is reasonable to use the three-dimension principal component data

set to select end-member components. This has important implications for the

OIB+MORB data set. In n-dimensional space, the polygon containing the fewest
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vertices [n+1] is a simplex. Thus, the OIB+MORB data set would require six

end-member components to completely define it, if it spanned the entire five-

dimensional space. The fact that it can be adequately represented in three-

dimensions implies that the OIB+MORB data set requires only four end-member

components.

A comparison of eigenvalues and corresponding percentages of variance

from this study and from Allegre et al. (1987) for OIB+ MORB and OIB data

sets is presented in Table 2.2. It should be noted that the OIB eigenvalues from

this study are found using a separate covariance matrix derived from the 477

OIB samples alone, as is done by Allegre et al. (1987). Their analysis yielded

similar results for a three-dimensional fit to the data [OIB+MORB: 99.2% versus

97.5%; OIB: 98.8% versus 97.3%]. Part of the small difference that does exist

may be due to the fact that they used a smaller data set [OIB+MORB: 91 samples

versus 567 samples; OIB: 53 samples versus 477], in addition to the different

methods used to scale the data.

The procedure outlined above for computing principal components is

compacted into matrix form, Z = EY, with exact solutions:

Z11 ....... .ZN el 12 e 13 e 14 e15  Y11 . . . . . . .YIN
Z21 .. .. ... .Z2N . .21 -. . .- --- 2N

Z31 . . . . . Z3N = '' 31 -. ---- 3N
Z41 - ------ Z4N -51 e52 e53 e54 e55  Y41 . . . . .  4N

_Z51 -....... . .5N- -A51 -....... Y5N.

where N = the number of samples [567], the Ye's are the normalized isotopic

values and the eigenvectors are the rows of the matrix E. Three two-

dimensional plots of the first three principal components, with general end-

member regions indicated, (Figs. 2.1, 2.2 and 2.3) are presented for comparison

with those of Allegre et al. (1987) (Fig. 2.4). Plotting the principal component
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values for the samples versus each other is the same as plotting the projection of

the OIB+MORB population onto its eigenvector planes as they have done. The

two sets of plots are very similar, but mirror images of each other. This is

simply because the eigenvectors used were of opposite sign, in no way affecting

the validity of either set of plots.

Mantle End-Member Components

In three-dimensional space the principal component data form a

tetrahedron (Fig. 2.5). It should be noted that the tetrahedron is not aligned with

the principal component axes, so two-dimensional plots of the principal

component data do not give an exact indication of the location of the extreme

points. End-member component values are chosen by eye at the extremes of the

tetrahedron using a rotating three-dimensional plotting program.

First, the "nonlinear" end-member points are chosen, those that just form

the vertices of the tetrahedron (Table 2.3). These end-members are referred to

as "nonlinear" because they define the vertices of the smallest simplex enclosing

the data points which has linear and nonlinear edges. In geometry, a simplex is

defined as a polygon with planar faces, but I am extending this definition to

encompass polygons containing nonplanar faces as well. The purpose of

choosing particular end-member points is to be able to express all of the sample

points as a combination of the four end-member components, for later use in

spherical harmonic expansions. Though linear mixing is believed to exist

between HIMU and EMI (Hart et al., 1986) and HIMU and DMM (H lart, 1988),

more complicated mixing arrays are probable amongst the other components.

Since no models exist for the nonlinear mixing arrays, it is easiest to represent

the sample points as a linear combination of the end-member points. Thus, it is

necessary to find the vertices of the smallest simplex with planar faces that
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encloses as many data points as possible; these vertices are the "linear" end-

members. These end-members are chosen by rotating the figure to look at the

four sides of the tetrahedron edge on and moving out the "nonlinear" end-

members until the planar-sided tetrahedron defined by linear mixing expands to

contain as many sample points as possible, without becoming overly extreme

(Table 2.4). This is an admittedly subjective process, but more accurate than

choosing end-members using two dimensional plots. Figures 2.6 - 2.9 show the

four views normal to each of the tetrahedron faces.

When assuming linear mixing, the simplex defined by the final chosen

"linear" end-member points excludes only 13 OIB data points, out of 477, and 3

MORB data points out of 90 (Table 2.5), compared to the 85 GIB and 49 MORB

data points excluded when using the "nonlinear" end-member values. The

excluded points will have negative amounts of some of the end-members and will

not be used in spherical harmonic expansions.

The end-member values selected in principal component space are

converted back into normalized isotope values (Tables 2.3 and 2.4) by

substituting zeros [the mean value for each principal component] for the fourth

and fifth principal components in the Z matrix:

C 11...... C14 - 11 e 12 e13 e14 e15  ~- Z11 ....... Z14
C21 ....... C24  . Z2 1 . . . . . .. Z24
C31 ....... .C34 = :: Z31 .. .. ... .Z34
C41 . . . . . . . .C44 _ e51  52 e53 e54 e55  0 ........ 0
C51 ....... C54_ 0 . . .. .

where Cig is the normalized 87Sr/ 86Sr ratio for the ith end-member component,

and so forth. There is some error involved in this process, but because the

variances of the fourth and fifth principal components are small, the error is

small. To compute these errors, the entire OIB+MORB data set is transformed
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into principal components; the fourth and fifth principal components are

dropped; the approximate normalized isotope values are computed as above; and

these values are then unnormalized and compared to the actual isotope values.

The average absolute errors for this transformation are fairly small compared to

the isotope standard deviations (Table 2.6). Compared to the range of analytical

errors, all of the transformation errors are reasonable except the one for
206Pb/ 204Pb, which is approximately 6x larger than its analytical error (Table

2.6).

Finally, the samples are computed as percentages of the four "linear" end-

members:

C11.......C 14  Yli
C21 . . . . . .. C24 Pij Y2j
C3 1 . . . . . . C34 P2j y3-
C4 1 . . . . . .. C44 p3j Y4j
C51 . . . . . .. C54 Y5j
1........11

where pgj is the percentage of the ith end-member component for the jth sample

and Y is the ith normalized isotope value for the jth sample. The C matrix is

the normalized end-member isotope value matrix computed from above with an

additional row of ones. This row of ones and the one included in the Y vector

define a constraint that the sum of the percentages add up to 1. This is necessary

to provide useful positive results between 0 and 1 since the tetrahedron is not a

four-component composition diagram, but resides in Euclidean space. QR

decomposition is used to solve this over-determined system of equations. It

decomposes the C matrix into two matrices: Q [orthogonal] and R I upper

triangular]: QRp = Y, with solutions: pest = R-lQTY.
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SPATIAL CORRELATION TESTING

Methodology

In order to check for spatial correlation, a paired distance approach is

employed, as outlined in Mantel (1967), using geographic and isotopic distances.

The geographic distance used is that of an arc on a sphere connecting any two

sample locations, ie. a great circle distance (Turcotte and Schubert, 1982). The

angle Ag1 between the two locations I and J on the sphere (Fig. 2.10) is given by:

Ag = cos- I[cos e; cos et + sin ej sin 6i cos (9p-9;)]

where Og and pg are the colatitude and longitude of location I and 0j and ej are

the colatitude and longitude of location J. The surface distance s between / and .

is:

S;1 = RAj

where R is the radius of the earth [R = 6378.139 km]. The isotopic distance used

is the generalized Euclidean distance in multidimensions scaled by the variances

of the isotopic ratios. Scaling by the variances of the isotopic ratios is necessary

to keep the distance measurement from being dominated by the isotopic ratio

with the largest variance, 206 Pb/204 Pb (Table 1.2). For any two samples Xg and

Xj, the isotopic distance between them, d, is:

dij= (Xi - Xj)TV-im -X X)

where



Xii
X2i

Xi= X3i
X4;

_X5t_

is the isotope vector for ith sample [X1i is the 87Sr/ 86Sr ratio of the ith sample,

etc.] and V is the diagonal variance matrix. A similar distance measurement,

called Mahalanobis distance (Manly, 1986) was considered, but not used because

it utilizes the covariance matrix. Covariance is a meaningful measurement when

the data is normally distributed (elliptical) in space. From the three-dimensional

principal component plots (Figs. 2.5-2.9), it is apparent that the data set is not

elliptical, so covariance is a meaningless measurement concerning the nature of

the data.

Next, the correlation between the two distances for all the samples is

calculated. The key to Mantel's (1967) technique is to determine the significance

of this observed correlation by creating random pairings of the sample locations

and isotopic signatures, calculating the appropriate distances, and computing

their correlation, thus constructing a distribution against which the observed

value can be judged. This distribution is that of the correlation under the null

hypothesis that the geographic distances are matched to the isotopic distances at

random.

Zindler and Hart (1986) noted a relationship between the scale length of a

geographic feature and the isotopic range of that feature. Basically, they

concluded that the largest isotopic ranges occur in the largest geographic

features, while small isotopic ranges may occur in small or large features. This

implies a correlation between the within-feature geographic distance and the

within-feature isotopic distance. The paired distance correlation method outlined

above computes the correlation between geographic and isotopic distances both
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within features and between features. In using this method, it is possible that any

correlation within the features may be masked by a lack of correlation between

the features. As an additonal check for within-feature correlation, a count is

kept of the number of times a sample's isotopic nearest-neighbor [the sample that

is the smallest isotopic distance from the sample in question] occurs within the

same island and within the same island group [or island, if an island is not part of

a larger group]. The counts are performed both for the observed data and for

the random permutations. Those from the random permutations can be used, as

before, to judge the significance of the observed counts. The larger scale

geographic divisions of the data set into island groups and the remaining solitary

islands (Table 2.7) will be referred to from this point on as features.

Application to the OIB Data Set

For this application, the OIB data is used since only oceanic island

interrelationships are of interest. Two 477 x 477 distance matrices are calculated

for the geographic and isotopic distances between samples. For the observed

data, the correlation between the distance matrices is 0.1756 and the within island

and feature nearest-neighbor occurrence rates are 61.4% and 76.7%,

respectively (Table 2.8). The occurrence rates within islands and features appear

significant and are confirmed so by randomization, as none of the generated

occurrence rates are as large as the observed rates for 100 permutations (Table

2.8). The correlation, on the other hand, is small, but attains significance

compared to the randomization values which are all less than the observed value

(Table 2.8). Thus, both methods indicate that there is spatial correlation between

sample location and isotopic signature and the correlation that exists between

samples within the same geographic feature seems to dominate.
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Treating the samples inside and outside the DUPAL belt separately and

then testing for spatial correlation yields results similar to those obtained with

the whole data set (Table 2.8).

It is not clear if all of the spatial correlation is due to the correlation

within the features. There may be some additional spatial correlation between

features. To check this, the appropriate samples are averaged to get an average

isotopic signature and location for each feature (Table 2.7). Using all of the

features both inside and outside the DUPAL belt, the observed correlation is

0.1584 with a significance level of 0.13 [there are 13 permutations, out of 100,

that have correlations higher than the observed correlation] (Table 2.8). Thus, it

appears that there is spatial correlation between features. However, if there is a

distinction between features inside and outside the DUPAL belt, this distinction

may manifest itself as spatial correlation when testing all of the features at once.

Testing the features inside and outside the DUPAL belt separately results in

correlations of 0.0685 and 0.2645 with significance levels of 0.95 and 0.51,

respectively (Table 2.8). These results indicate that there is no significant spatial

correlation between the features, but that there is a distinction between features

inside and outside the DUPAL belt.

DISCRIMINANT ANALYSIS

Isotopic Nearest-Neighbor Discriminant Analysis

Methodology. Without taking account of spatial correlation, the validity

of the division of the OIB data into samples inside and outside the DUPAL belt is

addressed using isotopic nearest-neighbor as a discrimination rule. Using the

isotopic distance measure outlined earlier, a given sample's isotopic nearest-

neighbor is the sample that is the smallest isotopic distance away.
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For the discriminant analysis, the assumption is made that the selected

sample's location is unknown, so it is assigned the location of its isotopic nearest-

neighbor. This assigned location is compared to the actual location; if they are

different, it is a misclassification. A count is kept of the number of

misclassifications to calculate an error rate.

Solow (1990) proposes a randomization technique for judging the

estimated misclassification probability or error rate. The importance of the

misclassification error rate is to test the null hypothesis that there is no

difference between the samples inside and outside the DUPAL belt. This is a

trivial matter if the sampling distribution of the error rate under the null

hypothesis is known, but in this case it is not. A simple but effective way to

judge the significance of the observed error rate is to construct a randomization

distribution under the null hypothesis that the pairing of isotopic signatures and

locations inside or outside the DUPAL belt occurs by chance. Applying the

randomization technique to the data, the samples retain their isotopic signature,

so their isotopic nearest-neighbor remains the same, but they are randomly

assigned to locations inside and outside the belt. The discriminant analysis is

done, as described above, with this new randomly constructed data set to get its

misclassification error rate. Then the process is repeated to construct the

distribution.

Application to the OIB data set. For the OIB data set, the observed

misclassification rate is 7.3% and the randomization error rate ranges from

35.2% to 53.7%. Superficially, it appears that describing the data as two

populations residing inside and outside the DUPAL belt is viable. However, the

within-feature spatial correlation has not been accounted for in this analysis. If

76.7% of the time, a sample's isotopic nearest-neighbor is located within the

same geographic feature, then it seems obvious that the misclassification error
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rate would be small. The observed error rate itself is not incorrect, but the

randomization distribution of error rates against which it is being judged is

incorrect. In order for the significance of the observed error rate to be properly

judged, the spatial correlation must be preserved in the randomization process.

In this case, preserving the spatial correlation is too complicated to pursue when

other methods may provide the desired information.

Graphical Discrimination of Geographic Features

As shown earlier, the correlation between isotopic distance and the

geographic distance within features is very strong. A way around this spatial

correlation is to look for differences between populations inside and outside the

DUPAL belt on the feature level. The averaged isotopic values for the features

(Table 2.7) are scaled by the mean and standard deviation of the isotopes derived

from the entire OIB+MORB data set (Table 1.2) and expressed in terms of

principal components using the eigenvectors of the OIB+MORB correlation

matrix (Table 2.1).

The first three principal components are plotted to look for differences in

features inside and outside the DUPAL belt, with the general direction of the

end-members indicated (Figs. 2.11-2.13). On all of the plots, but especially Z3

versus Z2 , most of the features outside the belt cluster in a band between DMM

and HIMU, with the exception of the Hawaiian islands [the Koolau volcanics on

Oahu show a strong EMI signature (Hart, 1988)], Shimada Seamount [which also

has an EMI signature (Hart, 1988)], and the Azores [Sdo Miguel has a strong

EMII signature (Hart, 1988)]. Essentially, the features outside the DUPAL belt,

with few exceptions, occupy only part of the available isotopic space, while

features inside the belt occupy all of the available isotopic space, including some

overlap with features outside. This is essentially the relationship found by Hart
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(1988), not that the two populations are totally separated, but that one population

contains isotopic signatures that the other does not. It is important that this two

population distinction is still valid on the feature level. Since it is still apparent

at this larger scale [not just sample to sample] the geochemical signatures of the

oceanic island basalts do have a long wavelength component to them, making it

feasible to attempt to quantify these signatures using spherical harmonic

expansions.

In addition to this graphical presentation, the discrimination analysis can

also be done on the feature level, but the variances of the isotopes within each

feature must be accounted for in some way.

SUMMARY

Mathematical and statistical methods to explore and characterize the OIB

and MORB data reveal these main points:

- OIB+MORB data require only four mantle end-member components to

completely span the range of known isotopic values.

- Choosing the mantle end-member components can be made easier land

more accurate] with the use of principal component analysis.

. Within geographic features, there is a significant correlation between

location and isotopic signature, but between geographic features, there

is not.
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- Graphical discrimination of geographic features shows that the

distinction between islands inside and outside the DUPAL belt is

viable.

- The existence of the DUPAL anomaly on the feature level indicates

that the anomaly has a long wavelength component to it.
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Table 2.1. Covariance matrix' of the five isotopes with its eigenvectors and
eigenvalues.

Covariance Matrix

Isotope Yi Y2 Y3 Y4 Y5

Yi 1.000000 -0.796442 -0.273004 -0.019107 0.061599
Y2 1.000000 0.054987 -0.170370 -0.295078
Y3 1.000000 0.901205 0.894577
Y4 1.000000 0.901429
Y5I .000000

Eigenvector Matrix

Isotope I II III IV V

Y1 -0.017647 0.699432 0.682362 - -0.174033 -0.120738
Y2 -0.122196 -0.683457 0.679315 -0.179201 0.156120
Y3 0.565079 -0.195210 0.019019 -0.235936 -0.765867
Y4 0.574974 -0.006763 0.249290 0.753098 0.200145
Y5 0.578661 0.074352 -0.102014 -0.561051 0.578307

Eigenvalues 2.830 1.861 0.183 0.091 0.035

Percentage of total variance accounted for by each eigenvector

56.6 37.2 3.7 1.8 0.7

1Only the upper half of the covariance matrix is shown since it is symmetric.

All eigenvector values are rounded to six decimal places from the fourteen
decimal accuracy used in the calculations.

Covariance matrix is calculated using 477 OIB and 90 MORB samples.
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Table 2.2. Comparison of eigenvalues and percentages of variance accounted for
by the corresponding eigenvectors from this study and from Allegre et a.
(1987)1 for OIB+MORB and OIB data sets.

OIB+MORB I II III IV V

2 2.830 1.861 0.183 0.091 0.035
[56.6%] [37.2%] [3.7%] [1.8%] [0.7%

3Allegre 3.20 1.61 0.15 0.03 0.01
et al. [64.0%] [32.2%] [3.0%] [0.6%] [0.2%]

OIB I II III IV V

4 3.047 1.568 0.249 0.099 0.037
[60.9%] [31.4%] [5.0%] [2.0%] 10.7%l

5Allegre 2.85 1.87 0.22 0.05 0.0 1
et al. [57.0%] [37.4%] [4.4%] [1.0%] 10.2%1

1Eigenvalues from Allegre et al. (1987) are converted to scaled eigenvalues that
add up to 5 for comparison with eigenvalues from this study.

Percentages of variance accounted for by the corresponding eigenvectors are
indicated in parentheses.

2Based on 567 samples.
3Based on 91 samples.
4Based on 477 samples.
5Based on 53 samples.
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Table 2.3. "Nonlinear" end-member component values in principal component
space and the transformed values in isotope space.

End-Members in Principal Component Space

Zi Z2 Z3

EMI -2.0 3.6 -1.3
EMII 1.0 4.0 2.2
HIMU 5.0 -1.3 -0.25
DMM -3.75 -2.9 0.4

End-Members in Isotope Space

X1 X2 X3 X4 X5

EMI 0.705311 0.512343 17.322 15.431 38.232
EMII 0.707759 0.512638 18.788 15.673 39.287
HIMU 0.702659 0.512887 21.615 15.833 40.911
DMM 0.702171 0.513329 17.594 15.381 36.983
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Table 2.4. "Linear" end-member component values, based upon linear mixing,
in principal component space and the transformed values in isotope space.

End-Members in Principal Component Space

Zi Z2 Z3

EMI -2.4 3.6 -1.6
EMII 1.8 4.5 2.6
HIMU 6.0 -1.9 -0.6
DMM -4.3 -3.7 0.35

End-Members in Isotope Space

X1 X2 X3 X4 X5

EMI 0.705126 0.512316 17.121 15.403 38.082
EMII 0.708329 0.512609 19.103 15.724 39.630
HIMU 0.702026 0.512896 22.203 15.879 41.337
DMM 0.701624 0.513428 17.459 15.351 36.704
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Table 2.5. Samples excluded from linear mixing tetrahedral volume.1

Location Sample Number Row Number 2

Azores, Sdo Miguel SMID 32
SM49 36

Galapagos E35 173
Gough 10 175
Hawaii 69Tan2 200
Kerguelen Plateau DR02/12 279

DR08 282
747c- I 2r-4-45-46 292
747c-16r-2-81-84 294

Marquesas uap 11 329
Pitcairn, Pulwana 642 370
St. Helena 37 469

237 482

Atlantic Ocean AD3-3 535
SW Indian Ridge Dl 536

D5 539

10IB samples excluded from the volume will not be used in spherical harmonic
expansions.

2Indicates row number of the data set included in Appendix A.
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Table 2.6. Average absolute errors in transforming three-dimensional principal
component data into five-dimensional isotope data, with their ratio to isotope
standard deviations and comparison to analytical errors.

X1 X2 X3 X4 X5

Average absolute error [for 567 samples]

0.000041 0.000008 0.111 0.016 0.111

Ratio of average absolute error to standard deviation 1

0.043802 0.047124 0.128 0.170 0.149

Absolute Error Percentage Range 2  Analytical Error Range

X1 0.00580 to 0.00584% 0.003 to 0.01%
X 2 0.001558 to 0.001561% 0.003 to 0.01%
X3 0.225 to 0.330%/amu 0.03 to 0.05%/amu
X4 0.0337 to 0.0347%/amu 0.03 to 0.05%/amu
X5 0.068 to 0.075%/amu 0.03 to 0.05%/amu

1Isotopic standard deviations for the OIB+MORB data set are indicated in Table
1.2.

2 Absolute error percentage ranges are calculated using the average absolute
errors and the ranges of the isotopes in the OIB+MORB data set:

X1 0.702290 to 0.707400
X2 0.512376 to 0.513290
X3 16.943 to 21.755
X4 15.406 to 15.862
X5 37.235 to 40.619



Table 2.7. Average isotopic signatures and locations of the
represented in the OIB data set with the number of samples

geographic features [island groups, islands, ridges, seamounts]
Iin braces].

Feature Sr Nd 6/4Pb 7/4Pb 8/4Pb Lat Long

Ascension [5] 0.702830 0.513036 19.421 15.612 38.916 -7.95 -14.37

Amsterdam/St. Paul [11] 0.703733 0.512879 18.879 15.585 39.131 -38.33 77.59

Azores [6] 0.704572 0.512806 19.707 15.703 39.810 38.50 -28.00

Balleny [31 0.702938 0.512967 19.752 15.600 39.359 -67.53 -168.88

Cameroon Line [18] 0.703143 0.512901 20.020 15.672 39.758 1.03 6.10

Cape Verde Islands [41] 0.703414 0.512839 19.254 15.580 39.026 15.80 -24.24

Christmas [13] 0.704403 0.512690 18.639 15.605 38.742 -10.50 105.67

Cocos [3] 0.703030 0.512991 19.234 15.589 38.973 5.54 -87.08

Comores Archipelago [14] 0.703415 0.512817 19.615 15.609 39.479 -12.09 43.76

Cook-Austral Islands [26] 0.704124 0.512774 19.565 15.623 39.412 -20.37 -158.56

Crozet Islands [9] 0.703997 0.512849 18.929 15.587 39.037 -46.45 52.00



Table 2.7. Continued.

Feature Sr Nd 6/4Pb 7/4P1b 8/4Pb Lat Long

Fernando de Noronha [161 0.704111 0.512809 19.409 15.634 39.331 -3.83 -32.42

Galapagos Islands [11] 0.703118 0.512988 19.076 15.564 38.692 -0.39 -90.70

Gough [2] 0.705095 0.512538 18.445 15.624 38.990 -40.33 -10.00

Hawaiian Islands [73] 0.703760 0.512934 18.188 15.462 37.899 19.76 -156.09
0)

Iceland [7] 0.703106 0.513037 18.453 15.484 38.106 64.75 -17.65

Juan Fernandez Islands [41 0.703659 0.512842 19.121 15.604 38.961 -33.62 -78.83

Kerguelen Plateau [41 j 0.705061 0.512660 18.259 15.555 38.646 -52.92 73.15

Louisville Searnount Chain 141 0.703576 0.512916 19.271 15.610 38.991 -45.22 -154.40

Marion/Prince Edward [4] 0.703298 0.512930 18.562 15.540 38.367 -46.92 37.75

Marquesas Archipelago [11] 0.704239 0.512805 19.362 15.604 39.258 -9.09 -139.84

Mascareignes [8] 0.704143 0.512853 18.855 15.580 38.919 -20.75 56.50



Table 2.7. Continued.

Feature Sr Nd 6/4Pb 7/4Pb 8/4Pb Lat Long

New England Seamounts [6] 0.703373 0.512850 20.155 15.629 39.907 37.86 -61.61

Nunivak [2] 0.702900 0.513110 18.588 15.471 38.088 60.00 -166.00

Pitcairn [19] 0.703994 0.512714 18.132 15.490 38.879 -20.07 -130.10

Ponape [1] 0.703287 0.512973 18.462 15.489 38.289 6.93 158.32

Sala Y Gomez [1] 0.703220 0.512898 19.865 15.640 39.670 -26.47 -105.47

Samoa Islands [34] 0.705535 0.512753 18.914 15.607 39.071 -14.08 -171.10

San Felix/San Ambrosio [5] 0.704089 0.512610 19.079 15.581 39.029 -26.42 -79.98

Shimada Seamount [1] 0.704843 0.512640 19.046 15.681 39.354 16.87 -117.47

Society Ridge [9] 0.704811 0.512795 19.128 15.592 38.915 -17.57 -149.14

St. Helena [31] 0.702874 0.512908 20.682 15.764 39.983 -15.97 -5.72

Trinidade[1] 0.703803 0.512708 19.116 15.601 39.110 -20.50 -29.42



Table 2.7. Continued.

Feature Sr Nd 6/4Pb1 7/4Pb 8/4P)b Lat Long

Tristan de Cunha [5] 0.705004 0.512545 18.476 15.518 38.867 -37.10 -12.28

Tubuai-Austral Islands [22] 0.703110 0.512882 20.533 15.733 39.876 -23.84 -148.26

Walvis Ridge [10] 0.704696 0.512542 17.885 15.492 38.430 -30.28 -7.05
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Table 2.8. Correlations between geographic and isotopic distance matrices and
island/feature isotopic nearest-neighbor occurrence rates for all samples in the
OIB data set and samples inside and outside the DUPAL belt. Correlations for all
the geographic features and those inside and outside the DUPAL belt are also
given.

Correlation Randomization Rangel

OIB 0.1756 -0.0077 to 0.0224
Inside DUPAL 0.0641 -0.0035 to 0.0343
Outside DUPAL 0.6142 -0.0045 to 0.0699

Island Occurrence Rate Randomization Rangel

OIB 61.4% 1.0% to 3.6%
Inside DUPAL 63.6% 1.6% to 6.2%
Outside DUPAL 47.1% 1.7% to 11.0%

Feature Occurrence Rate Randomization Rangel

OIB 76.7% 3.4% to 10.0%
Inside DUPAL 71.5% 4.2% to 11.1%
Outside DUPAL 75.6% 19.2% to 35.5%

Correlation Randomization Rangel Significance
Level

Features 0.1584 0.0369 to 0.2075 0.13
Inside DUPAL 0.0685 0.0350 to 0.2807 0.95
Outside DUPAL 0.2645 0.0649 to 0.6602 0.51

lRandomization ranges based upon 100 random permutations.
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Fig. 2.2. Plot of the third principal component versus the first principal
component for the OIB+MORB data set. Symbols: x = MORB data, open circle
= OIB samples inside the DUPAL belt, black diamond = samples outside the
DUPAL belt. General mantle end-member component regions are indicated.



52

-9 0
N - DMM ! 0

HIMU xl * & o 0

10o D
-1 - - 0 0

-2 -- --- -- ---- - -- ----- -- --- ----- - ---- ---I-- ----

-4 -3 -2 -1 0 1 2 3 4

Z2

Fig. 2.3. Plot of the third principal component versus the second principal
component for the OIB+MORB data set. Symbols: x = MOR B data, open circle
= OIB samples inside the DUPAL belt, black diamond = samples outside the
DUPAL belt. General mantle end-member component regions are indicated.
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OIB+MORB data set from an analysis done by Allegre et al. (1987). These plots
are the mirror images of the ones done for this analysis because the chosen
eigenvectors for the two analyses are of opposite sign.
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Fig. 2.5. Three-dimensional view of the OIB+MORB principal component data.
Axes: X = Z1, Y = Z2, Z = Z3. Symbols for the end-member components: + =
EMI, x = EMII, diamond = HIMU, square = DMM.
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Fig. 2.6. Three-dimensional view of the OIB+MORB principal component data
parallel to the EMI-EMII-HIMU plane. Symbols for the end-member
components: + = EMI, x = EMII, diamond = HIMU, square = DMM.
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Fig. 2.7. Three-dimensional view of the OIB+MORB principal component data
parallel to the EMI-EMII-DMM plane. Symbols for the end-member
components: + = EMI, x = EMII, diamond = HIMU, square = DMM.
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Fig. 2.8. Three-dimensional view of the OIB+MORB principal component data
parallel to the EMI-HIMU-DMM plane. Symbols for the end-member
components: + = EMI, x = EMII, diamond = HIMU, square = DMM.
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Fig. 2.9. Three-dimensional view of the OIB+MORB principal component data
parallel to the EMII-HIMU-DMM plane. Symbols for the end-member
components: + = EMI, x = EMIL, diamond = HIMU, square = DMM.
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Fig. 2.10. Geometry for determining the surface distance s between locations I
and J on the globe, where 6 and (p are colatitude and longitude and A is the angle
between the two locations taken from the center of the Earth. From Turcotte
and Schubert (1982).
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general directions of the mantle end-member component regions are indicated.
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Fig. 2.13. Plot of the third principal component versus the second principal
component for the 36 geographic features. Symbols: open circle = features
inside the DUPAL belt, black diamond = features outside the DUPAL belt.
Labeled points: 1 = Hawaiian Islands, 2 = Shimada Seamount, 3 = Azores. The
general directions of the mantle end-member component regions are indicated.
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CHAPTER 3

SPHERICAL HARMONIC REPRESENTATION OF ISOTOPIC
SIGNATURES: THE CONTINUOUS LAYER MODEL

INTRODUCTION

Hart (1984) contoured world maps of OIB isotope data for his three

DUPAL anomaly criteria [ASr > 40; A7/4 > 3; A8/4 > 401. These maps show a

concentrated band spanning approximately 600 of latitude, centered on 30'-40'S,

with pronounced highs for the anomaly criteria in a region from the South

Atlantic to the Indian Ocean [ASr, A7/4, A8/4] and in the central Pacific [ASr,

A8/4]. Qualitatively, Hart (1984, 1988) believes this geochemical anomaly

correlates with other geophysical anomalies: the slab-corrected geoid (Hager,

1984), deep mantle P-wave tomography maps (Dziewonski, 1984), slow P-wave

regions at the core/mantle boundary (Creager and Jordan, 1986) and equatorial

anomalies in the core (Le Mou6l et al., 1985). These geophysical anomaly

patterns are typically expanded in terms of spherical harmonics, therefore any

attempt to make a quantitative comparison between geochemical and geophysical

patterns requires expanding the geochemistry data in spherical harmonics as

well.

Expansion of the geochemistry data is approached in two ways, based

upon an assumed geometry for the OIB geochemical reservoir. The first

approach, the "continuous layer model" discussed in this chapter, assumes that

the OIB reservoir is a continuous layer [not ruling out heterogeneities within this

layer] and tries to reconstruct this layer. Plumes from this layer only sample the

continuous geochemical "function" in discrete locations. With the geochemistry

"function" unknown, the spherical harmonic coefficients must be solved for

using least squares, singular value decomposition or a similar method that will

approximate the values of the geochemistry "function" where there is no data.
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The second approach, the "delta-function model" discussed in Chapter 4, assumes

that the OIB reservoir is composed of a series of point sources, each feeding a

separate plume. In this case, the geochemistry "function" is known and can be

represented as a series of delta-functions. The spherical harmonic coefficients

can be solved for directly with the simplification from integration to summation

allowed by the delta-function approximation.

The continuous layer model and the delta-function model are not meant to

suggest two end-member possibilities for OIB source geometry. Rather, the

delta-function model can be regarded as an approximation of the continuous

layer model that gives a mathematically robust solution for the spherical

harmonic coefficients. In regard to the oceanic crust model of Hofmann and

White (1982), the continuous layer model corresponds to the accumulated layer

of subducted oceanic crust, with the plume-forming instabilities occurring at

discrete locations within this layer. The delta-function model can also be

reconciled with the accumulated layer model, with the stipulation that discrete

pockets [point sources] within this layer form and feed individual instabilities.

For the purposes of minimizing small scale variations [ie. variations

within a single island or island chain I in the geochemistry "function" that cannot

be accurately represented with the incomplete global data coverage, this spherical

harmonic study is based on the averaged isotopic signatures of the 36 geographic

features (Table 2.6). These average isotopic values are converted to mantle-end

member component percentages (Table 3.1), as outlined in Chapter 2, to form

the data matrices used in the expansions.

SPHERICAL HARMONIC BASICS

Spherical harmonics, Y'(O,p), are a set of orthonormal functions over the

unit sphere:
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Y (,<p)=/ (21+1)(1-m)! P7(cosO) eimP
V4xc(l+m)!

where I is the degree of the expansion, m is the order of the expansion, 6 is

colatitude [0 = nt/2 - latitude; O 6]irj and (p is longitude [-itpsnl. The

functions eimW form a complete set of orthogonal functions in the index m on the

interval -nt<pir and the associated Legendre polynomials Pf(cos6) form a

similar set in the index I for each m value on the interval -1!cosO 1 (Jackson,

1975). Therefore their product forms a complete orthogonal set on the surface

of the unit sphere in the two indices 1,m. The spherical harmonic functions used

in this analysis are normalized by the square root term so that their integrated

square over the sphere is unity [in most geophysics applications, the functions are

normalized so that the integrated square over the sphere is 47cl:

-

d(PJ d(coSO)Xi (O9(P)*Y7(O'(p)=

where the asterisk denotes coqpplex conjugation.

Any function f(6,p) can be expanded in spherical harmonics:

L 1
f(O,<p)= C7Y(O,<p)

1={0 m=-I

where L is the maximum degree of the expansion and C7 are complex spherical

harmonic coefficients. Written in a more explicit form, the equation becomes:

/{,<)= (21+1)(1-m)! Pf(cos6)[Amcosip + B'/"sinmtp2
144) M0m)!
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where Af and B' are real spherical harmonic coefficients. When expanding a

function from degrees 0 to L, the number of coefficients that need to be
L

21+1
calculated is: 1 There are actually an additional [L+1 ] coefficients

involved, but for m = 0, sinmp = 0, so B1 = 0. It is important to realize that

only having 36 features limits the possible spherical harmonic expansion to

degree 5, in order to avoid a purely underdetermined problem.

MANTLE END-MEMBER COMPONENTS

When attempting to use inverse methods to solve for the harmonic

coefficients of an unknown function, careful attention must be paid to the

variation of the data as a function of distance to avoid the problem of aliasing.

For a simple two-dimensional case, aliasing occurs if the sampling interval is

longer than half the shortest wavelength of the function sampled, causing the

sampled points to show a periodicity that does not exist in the original data. The

minimum distance between any two geographic features in the OIB feature data

set is 33.396 km, but the distance between features is not constant. Plots of data

variation versus distance between data locations make it possible to select a

mininum sampling distance based on the shortest distance required to get the

maximum data variation. This minimum sampling distance then controls the

minimum degree to which the data must be expanded in order to adequately

represent the data in spherical harmonics without aliasing. The relationship

between wavelength and degree is:
2rtR

V(1+1)
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where X is the wavelength [k = 2*(sampling distance)], R is the radius of the

earth [R = 6378.139 km] and 1 is degree. Solving for degree in terms of

wavelength:

-1+ +4

2

Variation-Distance Relationships

For variation-distance relationships, the distance measure is the angle Aij

[in degrees] from the center of the earth between any two locations / and . Isee

Chapter 2] and the variation measure is the absolute value of the difference

between the mantle component percentages at those locations. The angle Ag/ can

be transformed into a great circle distance in km by converting Ag- to radians and

multiplying by the radius of the earth R.

Plots of absolute difference versus angle for the four mantle components

(Figs. 3.1-3.4) show the maximum variation in the components occurring on

very short distance scales for the EMI and HIMU components and moderate

distance scales for the EMII and DMM components. Based upon these plots, the

minimum sampling distances [in degrees] are - 14.5' for EMI and HIMU, ~ 390

for EMIT and - 570 for DMM. These correspond to expansions out to degrees

12, 4 and 3, respectively. For the current problem, the EMII and DMM data sets

can be expanded in spherical harmonics as they are, but the EMI and HIMU data

sets require some additional manipulation.

Variation Reduction by Categorizing Features

Separation of the geographic features into populations located inside and

outside the DUPAL belt [20S to 60 0S] does not result in two distinct isotopic

populations [Chapter 2]. Essentially, one population [outside the belt] defines a

___L
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small field in isotopic space, while the other population [inside the belt] defines a

larger field that overlaps with the smaller field (Fig. 3.5). A possible source of

the large, small-scale isotopic variation exhibited by the EMI and HIMU data sets

is the juxtaposition, due to the overlap in isotope space, of features having a

strong DUPAL signature next to those that do not. If it is possible to separate

DUPAL-type features [those features showing a strong DUPAL signature] from

DMM-type features, this separation might reduce the small-scale variation within

these two populations and thus reduce the degree to which the population data

must be expanded.

Since the goal is to separate DUPAL-type features from DMM-type

features, a logical starting place is to look at the spatial distribution of different

percentage categories of the DMM component in three-dimensional principal

component space (Fig. 3.6). Six DMM percentage categories I<10%, 10-20%,

20-30%, 30-40%, 40-50%, >50%] can be distinguished as six separate point

groupings. Most striking is a large spatial separation that occurs within the 30-

40% category for a small percentage difference [Louisville - 31.84%, Balleny -

32.17%, Cocos - 38.53%]. This is a reasonable place to separate the DUPAL-

type features from the DMM-type features, with a boundary value of 32%

DMM, for simplicity. The resulting 27 DUPAL-type features and 9 DMM-type

features, with their percentage of the DMM component are listed in Table 3.2.

There are too few DMM-type features to draw any conclusions from plots

of absolute difference versus angle. For the DUPAL-type features, plots of

absolute difference versus angle of the DUPAL components [EMI, EMII and

HIMU] show no reduction in the small-scale variation, while that of DMM does,

with an increase in sampling distance from - 570 to 890 (Figs. 3.7-3.10). In

retrospect, this is an obvious result of the artificial separation performed. The

percentage categories are basically parallel slices through the tetrahedron that
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move from a broad base of lower percentages to a peak of high percentages

approaching an end-member component apex on the tetrahedron [like a ternary

diagram]. It is true that these slices can separate DMM-type features from

DUPAL-type features, but only the variation of the DMM percentages are

reduced. To reduce the variation of the individual DUPAL components using

this method, EMI-type features would have to be distinguished from non-EMI-

type features, etc. This would generate four different, though overlapping, sets

of features to use to characterize the four different components. Manipulation of

the data set in this way is not desirable, so another method must be pursued in the

attempt to reduce small-scale data variation.

Variation Reduction by Filtering

Another method to reduce small-scale variation [and hopefully enhance

any long wavelength component] is to filter the data set in some way. Here, a

simple circular filter, of fixed radius, is applied to each feature location. The

new data values assigned to that feature location are the means of the mantle

component percentages of the feature locations that fall within the circle. To

ensure that there are always at least two features falling within the circle, the

radius of this circle is determined by the longest distance to the nearest feature

location. Nunivak Island is the most isolated feature with the nearest feature

being the Hawaiian Islands at an angular distance [from the center of the earth I of

40.86*. The circle radius is then 40.90, for simplicity.

Plots of absolute difference versus angle for the filtered data set yield

interesting results (Figs. 3.11-3.14). All of the mantle component data sets show

a reduction in small-scale variation, except EMII, which shows an increase in

variation, with a decrease in angular sampling distance from - 390 to 27'

[expansions to degrees 4 and 7, respectively]. The remaining plots show an
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increase in angular sampling distance from ~ 14.50 to 370 [expansions to degrees

12 and 5, respectively] for EMI, an increase from - 570 to 1020 [expansions to

degrees 3 and 2, respectively] for DMM and a dramatic increase from - 14.5' to

830 [expansions to degrees 12 and 2, respectively] for HIMU. Now that the

small-scale variation has been significantly reduced by filtering, the filtered EMI

and HIMU data sets can also be expanded in spherical harmonics.

INSIGHTS FROM GEOPHYSICAL DATA

It is unclear how accurate the spherical harmonic expansions of the OIB

feature data set will be due to the limited global coverage and the highly variable

nature of the data. In an attempt to address these problems, three geophysical

data sets, with different variance characteristics, are constructed with the same

limited coverage to provide a sort of control set against which qualitative

comparisons can be made. Geoid, gravity and gravity gradient anomalies are the

chosen geophysical measures because their coefficients are well known and they

form a kind of continuum from the long wavelength [low degree] dominance in

the geoid signature to the short wavelength [high degree] dominance in the

gravity gradient signature (Fig. 3.15). Techniques applied to the mantle

component data, to solve for the spherical harmonic coefficients, are also applied

to these constructed data sets to see how closely the actual geophysical

coefficients can be approximated.

Construction of Geophysical Data Sets

The gravitational potential V, in spherical harmonics as a function of

radial distance r, is given by:
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V - GM IR
R Ir

+0

1=2
l+1 (21+1Xl-m)! P7(cos0) [Afcosmp + B sinmp]
m=0 4n(l+m)!

where G is the gravitational constant [G = 6.6726x10- 11 m3/kg-s 2], M is the

mass of the earth [M = 5.973x1024 kg] and R is the radius of the earth in meters

(Stacey, 1977). The gravitational potential anomaly [8V = Vobserved -

Vtheoretical] is:

+ / (21+1)(1-m)!

1=2 m=O 41(1+m)!
P(cos6)[Amcosmp + Bfsinmp]

which can be converted to the geoid anomaly SN (in m) by dividing by

g = -GM/R2 :

00

[Amcosmqp + Bmsinm(p]

The geoid anomalies calculated here are referenced to a theoretical hydrostatic

sphere to remove the effect of the earth's rotation (Hager, 1984). Gravity is the

derivative of the gravitational potential with respect to radial distance, so the

radial gravity anomaly is:

3r =DOr

R r +2
R M-=

(21+1)l-m)! P7T(cose) [Amcosmp + Bmsinmp]
4B(l+m)!

Gravity gradient is the derivative of gravity with respect to radial distance, so

the radial gravity gradient anomaly is:

8y= - GM.L
R

3V
9

R)+1

m=O

=GM
R 1=2

(21+1)(1-m)! 17 coso)
4TcG+m)!
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SF (45gr)
ar

GM (l+1)(1+2) R +3 (21+1)(l-m)! P'(cosO)[Amcosm(p + Bmsinm(p])
R \1=2 R 2 kr m=0 V 4n(l+m)!I

Evaluating at r = R and using the spherical harmonic coefficients 2-20 from the

GEM-L2 model (Lerch et al., 1982), the equations simplify to:

(20 1
&V = R (2l+1)(l-m)! P7'(cos6) [Afcosm(p + Blsinim(p]

1=2 m=O 47T(1+m)!

Sr = GM ( +1) (21+1)(1-m)! P7 (cos)[A'cosm(p + Bmsinm(p]
R 2 \1=2 m=0 V 4(l+m)!

= -rr GM (1+1)(1+2) (21-+1)(-m)! P (cosO) [Amcosmp + B7 sinm(p
R 3 \1=2 m=0m

It is important to note that the GEM-L2 coefficients must be multiplied by Yf4n

before they are plugged into these equations to be consistent with the spherical

harmonic normalization used in this study. The three geophysical control data

sets are constructed by calculating the values of the geoid, gravity and gravity

gradient anomalies at the 36 feature locations (Table 3.3).

Variation-Distance Relationships

The different characteristics of the contructed geophysical data sets are

apparent in plots of absolute difference versus angle (Figs. 3.16-3.18). The

geoid plot shows a clean and fairly symmetric degree 2 pattern, with an angular

sampling distance of ~ 1020. The gravity plot is a little more dispersed, with
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weaker symmetry and an angular sampling distance of ~ 950 [expansion to degree

2]. Finally, the gravity gradient plot shows even more dispersion and an angular

sampling distance of ~ 670 [expansion to degree 3]. A comparison of these plots

to those for the mantle components clearly illustrates the complexity of the

geochemistry data. Even the gravity gradient data [dominated by short

wavelength energy] appears to have less small-scale variation [larger angular

sampling distance] than all of the mantle component data sets.

Variation Reduction by Filtering

The same circular filter technique outlined above is applied to the

geophysics data to see its effect (Figs. 3.19-3.21). The filtered geoid data set

retains its strong degree 2 signature [angular sampling distance ~ 93], but there

is a slight increase in the dispersion of the data points. Like the geoid, the

filtered gravity data maintains its angular sampling distance [~ 930] and it shows

a slight decrease in data dispersion. The gravity gradient data is most affected by

the filtering process. The data dispersion due to large variation at small and

large angles is reduced. In addition, the angular sampling distance is increased to

~ 770, corresponding to spherical harmonic expansion to degree 2.

EXPANSION OF GEOPHYSICAL AND GEOCHEMICAL DATA SETS

By choosing the sampling distances based upon the inherent variation-

distance relationships of the different data sets, the problem of aliasing is

eliminated. Of course, the location patterns that result from spherical harmonic

expansions may not represent the true patterns as they exist in the mantle, but

without a more extensive global data set, there is no way to better approximate

the true pattern. Coefficients will be found for all six geophysical data sets
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[filtered and unfiltered], for the EMII and DMM data sets and for the filtered

EMI and HIMU data sets.

Solving for the spherical harmonic coefficients needed to expand a given

function is a linear inverse problem. More specifically, the expansion of the

mantle components or geophysical measures is a discrete linear inverse problem,

since the data are discrete observations. The terminology and symbology used

here to discuss inverse problems is that of Menke (1989). Values of the mantle

components or geophysical measures at the feature locations form a vector of

data values d [Nxl I. The unknown spherical harmonic coefficients form a

vector of model parameters m [Mxl]. Relating the two is the data kernel matrix

G [NxM], composed of Legendre polynomials [functions of colatitude] combined

with sine and cosines [functions of longitude]. In matrix form the equation is:

Gm = d, or written out more explicitly:

P0(cos90) ... I PlL(cos0O) cosLeo L P(cosOO) sinLepo A0  ~do

o A L
L P(cosN) ... 4 L(coSON) cosLWN 1 JL(coSON) sinLpN- L _ dN-

where L is the maximum degree of the expansion, N is the number of data

observations and 4 is the normalization factor mentioned earlier.

Least Squares Method

Theory. If the equation Gm = d provides enough information to uniquely

determine the model parameters or the best fit to the model parameters, then

solving for the spherical harmonic coefficients from degrees 0 to 5 is an even-

determined problem [N = 36, M = 36] and solving for the coefficients from
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degrees 0 to <5 is an overdetermined problem [N = 36, M <36]. For an

overdetermined system of equations Gm = d, with more equations than

unknowns, there is no exact solution. The least squares method finds the model

parameters that minimize the error between the observed data and the predicted

data, ie. it minimizes the L2 norm of the prediction error:

L2 norm: |Ie|12 1ei 2 , where e; = dbs- dm

When solving for the model parameters m [spherical harmonic coefficients], it is

best to use QR decompositon. The normal equations GTGm = GTd lead to the

solution: mest = (GTG)-lGTd, but if GTG is ill-conditioned, then taking its

inverse leads to inaccurate solutions. QR decomposition is more accurate than

the normal equations for ill-conditioned matrices. It decomposes the data kernel

matrix G into two matrices: Q [orthogonal] and R [upper triangular]: QRm =

d, with solutions: mest = R-lQTd.

Application. As a test of the viability of the least squares method, the

spherical harmonic coefficients for the EMII percentage data and the geoid

anomaly data are solved for in nested groupings from degrees 0-1 up to degrees

0-5. As the data is expanded out to greater degrees, the coefficients should

decrease smoothly. Table 3.4 shows how the degree 2 coefficients vary as the

two data sets are expanded out to progressively higher degrees. Only the A0 and

A2 coefficients for the geoid and the Ag coefficient for EMII decrease smoothly

for the degrees 0-2 through degrees 0-4 expansions. The other coefficients

either get larger or oscillate. When solving the even-determined system [degrees

0-5], all of the coefficients experience a large increase or decrease, indicating a

very unstable solution.
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Since the geoid coefficients are known, the correlations [by degree]

between the actual coefficients and the computed coefficients for the nested

groupings can be calculated. The correlation coefficient rg for two sets of

coefficients [A1,B1] and [A2,B2] is given by the ratio of covariance to variance

at each harmonic degree (Richards and Hager, 1988):

[Al'A2m + Bl'B2']

m=O

I T [(A) + (Bl F1 [(A2± + (B27)2
m=O m=O

Correlations with the actual geoid coefficients can only be made at degrees 2 and

higher since the actual degree 0 and I coefficients are zero. Correlations of the

actual geoid coefficients to those calculated using least squares are:

Expansion Correlation Coefficient [rg]

Degree 2 Degree 3 Degree 4 Degree 5

Degrees 0-2 0.046 --- ---

Degrees 0-3 0.960 0.794 --- ---

Degrees 0-4 0.884 0.469 0.597 ---

Degrees 0-5 -0.219 -0.105 -0.035 0.031

The expansion for degrees 0-3 shows the best correlation, but there is no

consistency from expansion to expansion. Since the least squares solutions do not

exhibit consistent, stable behavior, it appears that the system Gm = d does not

provide enough information to uniquely determine the model parameters [or a

best estimate for them]. This indicates that the system is not even- or
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overdetermined, but mixed-determined [neither completely overdetermined nor

completely underdetermined] and requires a more sophisticated method to solve

for the coefficients.

Singular Value Decompositon Method

Theory. Singular value decompositon, or SVD, is one way to solve a

mixed-determined problem. Its purpose is to partition the system of equations

into an overdetermined part [that can be solved in the least squares sense] and an

underdetermined part [that can be solved assuming some a priori information].

For the general equation Gm = d, it is like a transformation to the system G'm'

= d', where m' is composed of an overdetermined part, m0 and an

underdetermined part mu (Menke, 1989):

Gm =d -- G'm =d [ G ' mr .d"

SVD decomposes the data kernel matrix G into three matrices: G =

UAVT. The matrix U is an NxN matrix of orthonormal [orthogonal and of unit

length] eigenvectors that span the data space S(d). Similarly, the matrix V is an

MxM matrix of orthonormal vectors that span the model parameter space S(m).

The matrix A is an NxM diagonal eigenvector matrix with nonnegative diagonal

elements called singular values, arranged in order of decreasing size. Some of

the singular values may be zero, making it easy to partition the matrix into a

submatrix AP, with p nonzero singular values, and several zero matrices:

A = .P 0. This simplifies the data kernel decomposition to: G = UAPVT

where U and V , are the first p columns of U and V, respectively.
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For the equations Gm = d, the solution is: mest = VAjUTd, called the

natural solution (Menke, 1989). If the equation GM = d is to some degree

underdetermined, A, specifies the combinations of model parameters for which

the equation does provide information; these combinations lie in a subspace of

the model parameter space SP(m). On the other hand, if GM = d is to some

degree overdetermined, then A specifies the combinations of model parameters

that the product Gm is capable of resolving; these products span a subspace of

the data space SP(d). If none of the singular values are zero, there are

undoubtedly some very close to zero that are affecting the solution variance.

One way to reduce the solution variance is to select a cutoff size for the singular

values and exclude any singular values smaller than this [ie. artificially decide the

size of p, the number of nonzero singular values]. This is equivalent to throwing

away some combinations of the model parameters [thus reducing the sizes of UP
and Vs]. However, if the singular values excluded are small, then the solution

will be close to the natural solution, though the data and model resolution will be

worse. This is a classic trade off situation between resolution and variance

(Menke, 1989).

It is also possible to dampen the smaller singular values instead of

throwing them away [equivalent to the damped least squares methodi. The

drawbacks to this method are that the solution is no longer close to the natural

solution, the data and model resolution are worse and the damping parameter

must be determined by trial-and-error. For this study, various methods are used

to try to determine the optimum number of singular values to keep [p] and all

singular values with index > p are dropped.

Desired number of singular values. The first step in determining the

desired number of singular values is to look at the data kernel spectrums [plots of

the size of the singular values versus their index] for the mantle component data
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kernel and the geophysical data kernels (Figs. 3.22-3.25). For the mantle

components, the data kernel G is only a function of location, so it is the same for

all four components. For the geophysical data, the data kernels are constructed

differently, so that all three equations with geoid, gravity and gravity gradient

data are solving for the same spherical harmonic coefficients. With respect to

the mantle component data kernel, terms in the geoid, gravity and gravity

G (l+1)
gradient data kernels are multiplied by the additional factors of R, R2  and

GM (l+1)(l+2)
R 3 , respectively.

For comparison, spectrums for the degrees 0-1, 0-2, 0-3, 0-4 and 0-5

expansions are all plotted, but the emphasis here will be on getting reasonable

results using the degrees 0-5 expansion. All three geophysical spectrums and the

geochemical spectrum for this expansion show the singular values gradually

decreasing in value, with the last five or so singular values being very close to

zero. There is no obvious cutoff size for the singular values apparent in these

plots, so other methods must be used to estimate p.

For the geophysical control set, it is possible to find the number of

singular values p needed to most closely approximate the actual coefficients. The

root mean square error between the actual and estimated geophysical coefficients

is given by:

m et - mestf2

coefficient rms error =
M

where M is the number of coefficients [model parameters]. A plot of coefficient

rms error versus the number of singular values retained (Fig. 3.26) indicates that

30, 26 and 14 singular values should be retained, for geoid, gravity and gravity

gradient, respectively, to most closely approximate the actual coefficients. These
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values are indicated on the data kernel spectrum plots (Figs. 3.22-3.24). It is

important to note that the more a field is dominated by high degree energy, the

fewer singular values it takes for the rms error to explode [at least for these

sparse data sets].

Since the coefficients for the geochemistry data are not known, there is no

way to measure how closely the estimated coefficients match the actual

coefficients. What can be done is to try to match the observed data as closely as

possible, while keeping the solution variance at a minimum. As a first step,

trade-off curves are constructed to bracket the range of p values that balance the

size of the model variance and the spread of the model resolution (Figs. 3.27-

3.30). The size of the model variance is based upon the unit covariance matrix

of the model parameters, which characterizes the degree of error amplification

that occurs in the mapping from data to model parameters (Menke, 1989).

Assuming that the data within the four mantle component vectors and the three

geophysical vectors are uncorrelated and have uniform variance , [a reasonable

assumption for the mantle component vectors based upon the findings in Chapter

2], the covariance matrix of the model parameters is given by:

[cov mest] = G-[cov d]G-gT = oG-y-gT

where G-9 is the generalized inverse, which for singular value decomposition is:

G-9= V-,A 11UT

The unit covariance matrix is:

[covu mest] = a(1Icov mest] = G-9G-GT - VpA 2 T

Finally, the size of the model variance is:

Sie([cov mes) = varu mest varu mest covu mc~ii

where M is the number of model parameters. To summarize, the size of the

model variance is the sum of the variances of the model parameters, which are
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the diagonal elements of the model parameter covariance matrix. With

increasing values of p, the size of the model variance will increase.

Since resolution is optimal when the resolution matrices are identity

matrices, it is possible to quantify the spread of model resolution based on the

size of the off-diagonal elements of the model resolution matrix R (Menke,

1989):

spread(R) =| |R - III=1 [R -I

i=1 j=1

where I is the identity matrix and R = VVT ,[mest = Rmtrue]. With increasing

values of p, the spread of the model resolution will decrease.

Trade-off curves of size of model variance versus spread of model

resolution, as a function of the number of singular values retained, show two

asymptotes [retaining all 36 singular values gives the largest model variance size]

(Figs. 3.27-3.30). The ideal range for p, to balance the two measures, is in the

transition between the asymptotes (Table 3.5).

Another way to try and pin down the desired number of singular values

[to most closely approximate the data] is to look at plots of model rms error and

a variance measure versus the number of singular values retained (Figs. 3.3 1-

3.34). Model rms error is given by:
N

(d 9bs - de

model rms error=

where

dpre = Gmest = GG-9dobs = (UAPVT) (VA-lUJT) dobs = UUTdobs

While VTV, and UTU, are the identity matrix, VVT and U UT are not

necessarily the identity matrix, since U and V do not in general span the

complete data and model spaces (Menke, 1989). The variance measure used is:
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P
variance measure = A ]i

since the solution variance is proportional to A 2. Again , the goal is to use the

plots of these two quantities to select p so that the model rms error and the

solution variance are balanced (Table 3.5).

Choosing ranges for p using trade-off curves and the model rms/variance

curves is a subjective process. The ranges of values are chosen by eye and there

is no objective way to select an optimal value of p from these methods. To make

the process more objective, Jacobson and Shaw (1991) suggest applying a

sequential F-test to SVD problems to find the statistically optimal solution.

Given a null model with q parameters and a larger general model with b

parameters [b > q], testing the null hypothesis that the additional [b - q]

parameters in the general model do not improve the fit to the data [compared to

the null model] requires the use of the F-statistic:

F = (RSSq - RSSb) (n - b)
(b - q) RSSb

where RSSq and RSSb denote the residual sum of squares for the null and general

models, respectfully, and n is the total number of parameters. F has an F-

distribution with (b - q,n - b) degrees of freedom. The residual sum of squares

for a given model is defined as:

RSS = j (di - d
i=1

Values of F can be converted into the probability that the null hypothesis is true,

ie. that the extra parameters do not result in a better fit. Then the quantity [I -

prob(null hypothesis true)] is the significance level of the additional parameters.
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For SVD, the sequential F-test starts by testing the significance of a model

retaining one singular value against a model retaining no singular values, then

continues to test models retaining incrementally more singular values against the

current null model. When a model has reached the 95% significance level

[chosen for this application] or higher, it becomes the null model against which

subsequent models are to be tested, until another model also reaches or surpasses

95% significance and takes its place. Figures 3.35-3.41 show the F-test results

for the geophysical and geochemical data sets and Table 3.5 lists the resulting

optimal p values. In general, it appears that the smoother functions [longer

wavelength] have higher numbers of significant singular values.

For determining the value of p, the three different methods agree quite

well (Table 3.5). The trade-off curves define the largest interval for p, which is

constrained further by the model rms/variance curves. For every data set,

except filtered gravity, the value of p determined by the F-test falls within the

chosen range of the model rms/variance curves. Even so, the F-test p value for

filtered gravity does not fall far outside the model rms/variance range lp = 29

compared to 25] and it does fall within the trade-off range. Since the F-test p

values are in agreement with the other methods and are by far the most objective

estimate from the three methods, these values will be used in calculating the

spherical harmonic coefficients.

Application. How well the estimated spherical harmonic coefficients of

the constructed geophysical data sets correlate with the actual GEM-L2

coefficients is an indicator of how closely the estimated geochemistry coefficients

may be expected to approximate their true coefficients. Three sets of

geophysical SVD coefficient solutions are all correlated with the GEM-L2

coefficients: those that minimize the coefficient rms error and those that

minimize the model error [selected p values from the F-test] for the filtered and
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unfiltered data sets (Table 3.6). Remember that the data kernel matrices G for

gravity and gravity gradient are modified so that their spherical harmonic

coefficients are also estimates of the GEM-L2 coefficients. The correlation

coefficients rg are calculated as outlined above. Plots of rg versus degree include

confidence levels based upon a student's t-test. The test statistic for the t-test is:

T-rgin-2 r/fV!

1-r2 -r2

where n is the number of coefficients at that particular degree [(n - 2) = 21]. T

has a t-distribution with (n - 2) or 21 degrees of freedom. Given a desired

significance level and the degrees of freedom, the value of T can be looked up in

a table. Then the value that rg should have to achieve that significance level can

be calculated and plotted as confidence levels:

rt = -T
21+ T2

For the plots of rg versus 1, the geophysical coefficients estimated by

minimizing the coefficient rms error correlate better than those estimated by

minimizing the model error and, of those, the unfiltered data set correlates better

than the filtered data set. All three sets of coefficients correlate well with the

actual GEM-L2 coefficients at degree 2, except for filtered gravity (Figs. 3.42-

3.44). In all cases, the geoid coefficient estimates correlate the best. In general,

gravity and gravity gradient correlate better at even degrees, with the exception

of the filtered coefficients. For the mantle component coefficients, all this

implies that the degree 2 coefficients are probably good, but beyond that there is

no guarantee. Of the four mantle component percentage data sets that are

expanded, the filtered HIMU data set is unique in that it most closely resembles

the geoid data set in the variation-distance plots (Figs. 3.13 and 3.16). Thus,

there is a good possibility that at least the degree 3 coefficients for this data set

are reasonable as well.
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Correlation coefficients for the actual GEM-L2 coefficients and the

estimated coefficients cannot be calculated at degrees 0 and 1 because those

GEM-L2 coefficients are equal to zero. In contrast, the estimates of these

coefficients from the constructed geophysical data sets are all positive numbers

the same order of magnitude as the rest of the estimated coefficients. This

discrepancy is caused by a sampling bias due to the fact that the oceanic islands

are all hotspot related and hotspots are associated with geoid highs [Richards et

al., 1988]; no geoid lows are sampled to balance these highs. It is unclear how

this bias may affect the estimates of the other coefficients.

The continuous layer model degree 2 "functions" for the constructed geoid

data set and the mantle component percentages are reconstructed on a five degree

grid over the globe from 10 6 170 and -180 p!l180 using the calculated

coefficients and the appropriate equations (Figs. 3.45-3.49). It should be noted

that the contoured values are not actual geoid anomaly values or component

percentages, but are deviations from the average [degree 0] geoid anomaly value

or component percentage [average constructed geoid = 13.7 m; average filtered

EMI = 0.27; average EMII = 0.17; average filtered HIMU = 0.31; average DMM

= 0.25]. For comparison, the actual degree 2 geoid is constructed in the same

way using the GEM-L2 coefficients [average geoid = 0.0 ml (Fig. 3.50). The

constructed geoid field agrees well with the actual degree 2 geoid, as already

indicated by the correlation coefficients. For the mantle components, HIMU

resembles the actual geoid field with two essentially equatorial highs in

approximately the same locations; EMI and EMII also have two highs that

undulate above and below the equator with a longitudinal shift of ~350 to the east

with respect to the actual geoid [EMII has less offset than EMI]; and DMM, with

its two highs and two lows resembles none of the other degree 2 expansions.
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Of all the mantle component data sets, filtered HIMU has the best chance

of getting reasonable values for the degree 3 coefficients. The degrees 2-3

function for filtered HIMU is reconstructed as before (Fig. 3.51). This can be

compared to the degrees 2-3 geoid reconstructed from the GEM-L2 coefficients

(Fig. 3.52).

SUMMARY

Viewing the distribution of the OIB reservoir as a continuous layer in the

mantle and using approximation methods to solve for the spherical harmonic

coefficients of its expansion reveals the following:

- The mantle end-member component percentage data have a lot of short

wavelength energy relative to equally limited geoid, gravity and

gravity gradient control data sets.

- With the currently available data, solving for the spherical harmonic

coefficients is a mixed-determined problem, requiring the use of

singular value decomposition [SVD] to get viable solutions.

- The F-test is a simple, objective way to determine the number of

singular values to retain in SVD for the statistically optimal solution.

- With the current data coverage, only the degree 2 spherical harmonic

coefficients can be estimated with a reasonable level of confidence

using SVD.
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- Continuous layer model degree 2 HIMU closely resembles the degree 2

geoid.

- Continuous layer model degree 2 EMI and EMII resemble a longitude-

shifted, undulating degree 2 geoid.

- Continuous layer model degree 2 DMM does not resemble the degree 2

geoid or the degree 2 expansion of any other mantle component.
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Table 3.1. Mantle end-member component percentages1 for the average isotopic signatures of the geographic features
[island groups, islands, ridges, seamounts] represented in the OIB data set with their locations and the number of samples
for each feature [in braces].

Feature %EMI %EMII %HIMU %DMM Lat Long

Ascension [5] 7.71 11.96 38.64 41.69 -7.95 -14.37

Amsterdam/St. Paul [11] 23.12 17.88 29.80 29.20 -29.46 66.48

Azores [6] 11.11 36.26 38.88 13.74 38.50 -28.00 O
cfo

Balleny [3] 14.94 8.21 44.68 32.17 -67.53 -168.88

Cameroon Line [18] 14.25 12.02 51.98 21.75 1.03 6.10

Cape Verde Islands [41] 29.52 8.83 35.59 26.06 15.80 -24.24

Christmas [13] 38.67 21.09 23.00 17.25 -10.50 105.67

Cocos [31 14.08 11.53 35.86 38.53 5.54 -87.08

Comores Archipelago [14] 28.59 8.54 43.50 19.37 -12.09 43.76

Cook-Austral Islands [26] 26.04 20.88 36.86 16.22 -20.37 -158.56



Table 3.1. Continued.

Feature %EMI %EMII %HIMU %DMM Lat Long

Crozet Islands [9] 23.73 21.49 27.44 27.34 -46.45 52.00

Fernando de Noronha [16] 21.68 23.69 34.82 19.80 -3.83 -32.42

Galapagos Islands [11] 16.09 11.95 30.64 41.32 -0.39 -90.70

Gough [2] 50.11 25.99 20.70 3.20 -40.33 -10.00

Hawaiian Islands [73] 28.18 16.09 8.55 47.18 19.76 -156.09

Iceland [71 19.13 10.71 17.35 52.81 64.75 -17.65

Juan Fernandez Islands [4] 25.41 15.53 32.43 26.63 -33.62 -78.83

Kerguelen Plateau [41] 41.82 29.23 11.57 17.39 -52.92 73.15

Louisville Seamount Chain [4] 16.07 18.90 33.18 31.84 -45.22 -154.40

Marion/Prince Edward [4] 25.43 10.87 22.81 40.88 -46.92 37.75

Marquesas Archipelago [11] 23.54 24.18 31.55 20.72 -9.09 -139.84

Mascareignes [8] 22.64 24.39 24.10 28.87 -20.75 56.50



Table 3.1. Continued.

Feature %EMI %EMII %HIMU %DMM Lat Long

New England Seamounts [6] 21.27 10.35 51.38 17.00 37.86 -61.61

Nunivak [2] 12.66 10.45 18.16 58.73 60.00 -166.00

Pitcairn [19] 51.65 6.98 19.79 21.57 -20.07 -130.10

Ponape [1] 24.90 10.26 18.69 46.14 6.93 158.32

Sala Y Gomez [1] 17.13 11.47 48.22 23.18 -26.47 -105.47

Samoa Islands [34] 19.15 47.12 14.85 18.88 -14.08 -171.10

San Felix/San Ambrosio [5] 51.55 7.74 32.63 8.08 -26.42 -79.98

Shimada Seamount [1] 33.05 30.47 30.46 6.01 16.87 -117.47

Society Ridge [9] 21.01 34.70 20.98 23.31 -17.57 -149.14

St. Helena [31] 5.53 12.58 64.64 17.25 -15.97 -5.72

Trinidade[ 1] 40.69 9.44 35.03 14.84 -20.50 -29.42



Table 3.1. Continued.

Feature %EMI %EMII %HIMU %DMM Lat Long

Tristan de Cunha [5] 58.53 18.05 16.72 6.70 -37.10 -12.28

Tubuai-Austral Islands [22] 9.56 13.82 59.70 16.93 -23.84 -148.26

Walvis Ridge [10] 66.28 10.85 11.07 11.80 -30.28 -7.05

1Percentages may not add up to 100 due to rounding.
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Table 3.2. Separation of the OIB feature data set into 27 Dupal-type features and
9 DMM-type features, based upon the percentage of the DMM mantle
component.

Dupal-type Features %DMM

Gough 3.20
Shimada Seamount 6.01
Tristan de Cunha 6.70
San Felix/San Ambrosio 8.08

Walvis Ridge 11.80
Azores 13.74
Trinidade 14.84
Cook-Austral Islands 16.22
Tubuai-Austral Islands 16.93
New England Seamounts 17.00
Christmas 17.25
St. Helena 17.25
Kerguelen Plateau 17.39
Samoa Islands 18.88
Comores Archipelago 19.37
Fernando de Noronha 19.80

Marquesas Archipelago 20.72
Pitcairn 21.57
Cameroon Line 21.75
Sala Y Gomez 23.18
Society Ridge 23.31
Cape Verde Islands 26.06
Juan Fernandez Islands 26.63
Crozet Islands 27.34
Mascareignes 28.87
Amsterdam/St. Paul 29.20

Louisville Seamount Chain 31.84
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Table 3.2. Continued.

DMM-type Features

Balleny
Cocos

Marion/Prince Edward
Galapagos Islands
Ascension
Ponape
Hawaiian Islands

Iceland
Nunivak

%DMM

32.17
38.53

40.88
41.32
41.69
46.14
47.18

52.81
58.73



Table 3.3. Geoid, gravity and gravity gradient anomaly values, calculated using the degrees 2-20 GEM-L2 spherical
harmonic coefficients, at the geographic features [island groups, islands, ridges, seamounts] represented in the OIB data
set with their locations.

Feature GeoidI Gravity2  Gravity Gradient3  Lat Long

Ascension 66.1 29.2 -0.138 -7.95 -14.37

Amsterdam/St. Paul -5.0 0.5 -0.072 -38.33 77.59

Azores 4.6 -2.0 0.098 38.50 -28.00

Balleny -43.5 -23.6 0.206 -67.53 -168.88

Cameroon Line 40.8 11.3 0.039 1.03 6.10

Cape Verde Islands 44.8 13.9 0.043 15.80 -24.24

Christmas 48.5 40.8 -0.556 -10.50 105.67

Cocos -5.9 1.8 -0.216 5.54 -87.08

Comores Archipelago 23.1 9.6 -0.023 -12.09 43.76

Cook-Austral Islands 39.5 29.2 -0.397 -20.37 -158.56



Table 3.3. Continued.

Feature Geoid1  Gravity 2  Gravity Gradient 3  Lat Long

Crozet Islands -25.9 -12.5 0.148 -46.45 52.00

Fernando de Noronha 80.8 43.0 -0.287 -3.83 -32.42

Galapagos Islands -17.5 -14.9 0.134 -0.39 -90.70

Gough 6.5 7.2 -0.100 -40.33 -10.00

Hawaiian Islands 27.7 12.2 -0.079 19.76 -156.09

Iceland -39.8 -15.4 0.037 64.75 -17.65

Juan Fernandez Islands -19.4 -20.3 0.320 -33.62 -78.83

Kerguelen Plateau -35.8 -14.1 0.046 -52.92 73.15

Louisville Seamount Chain 11.6 6.6 0.012 -45.22 -154.40

Marion/Prince Edward -26.2 -11.0 0.093 -46.92 37.75

Marquesas Archipelago 8.6 -7.8 0.265 -9.09 -139.84

Mascareignes 16.4 9.8 -0.088 -20.75 56.50



Table 3.3. Continued.

Feature Geoidl Gravity2  Gravity Gradient 3  Lat Long

New England Seamounts -3.5 2.9 -0.110 37.86 -61.61

Nunivak -15.0 -12.0 0.223 60.00 -166.00

Pitcairn 17.3 11.9 -0.163 -20.07 -130.10

Ponape 41.1 21.5 -0.181 6.93 158.32

Sala Y Gomez 9.3 11.9 -0.140 -26.47 -105.47

Samoa Islands 38.4 17.8 -0.126 -14.08 -171.10

San Felix/San Ambrosio -14.3 -19.0 0.307 -26.42 -79.98

Shimada Seamount -19.0 -12.9 0.141 16.87 -117.47

Society Ridge 24.0 7.5 0.011 -17.57 -149.14

St. Helena 67.5 44.8 -0.507 -15.97 -5.72

Trinidade 62.4 36.7 -0.326 -20.50 -29.42



Table 3.3. Continued.

Feature Geoidi Gravity 2  Gravity Gradient 3  Lat Long

Tristan de Cunha 16.3 9.6 -0.065 -37.10 -12.28

Tubuai-Austral Islands 27.1 12.6 -0.056 -23.84 -148.26

Walvis Ridge 41.9 29.0 -0.298 -30.28 -7.05

1Geoid anomaly values in meters.
2Gravity anomaly values in milligals, where ngal = 10-5 m/s 2.
3Gravity gradient values in eotvos units [EU], where EU = 10-9 1/s2.
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Table 3.4. Change in degree 2 spherical harmonic coefficients for the EMII
percentage data and the geoid anomaly data as the data sets are expanded to
progressively higher degrees.

A0 1 1i 2 B2
Expansions A2  A2  B2  A2  B2

Geoid
Degrees 0-2 -1.491E-05 -1.049E-06 -4.116E06 1.OOIE-05 -6.258E-06

Degrees 0-3 -1.511E-05 2.881E-06 1.551E-06 6.610E-06 -8.569E-06

Degrees 0-4 -1.825E-05 -7.480E-06 3.639E-06 6.044E-06 -1.108E-06

Degrees 0-5 3.946E-05 3.357E-05 -4.237E-04 -1.436E-04 -3.682E-06

EMII
Degrees 0-2 -0.065243 -0.063197 0.269622 0.108911 -0.008334

Degrees 0-3 -0.076403 -0.203182 0.466347 0.148947 0.053770

Degrees 0-4 -0.170987 -0.221924 0.785142 0.167714 0.087842

Degrees 0-5 2.543222 10.864696 -30.064709 -20.805890 -10.644588



Table 3.5. Optimal values or ranges of values for p [the number of singular values retained] for the best approximations
of the observed data that keep solution variance to a minimum, as determined by three different methods: trade-off
curves, model rms error and variance curves, and the F-test.

Data Sets Trade-Off Curves Model RMS Error & Variance F-Test

Geophysics I
Geoid 15  p 30 21 ! p 25 p=25
Gravity 9 p 29 20 p 25 p = 20
Gravity Gradient 8 p 26 20 ! p 25 p = 20

Filtered Geoid 15  p 30  21 p 25 p = 24
Filtered Gravity 9 p 29 20! p 25 p =29
Filtered Gravity Gradient 8 p 26 20 p 25 p = 24

Geochemistry
Filtered EMI 15 p 30 16 p 21 p = 20

EMII 15 p 30 16 p 20 p = 16
Filtered HIMU 15 p 30  18 p 23 p = 2 3

DMM 15 p 30 19 p 22 p = 22

IThe optimal values of p for the best approximations to the actual GEM-L2 coefficients are 30 [geoidl, 26 [gravity] and
14 [gravity gradient].
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Table 3.6. Summary of correlation coefficients between the GEM-L2
coefficients and three sets of estimated geophysical coefficients that minimize the
coefficient rms error and that minimize the model error for filtered and
unfiltered data sets.

Data Set p Value Degree 2 Degree 3 Degree 4 Degree 5

Minimizing coefficient rms error

geoid 30 0.988 0.909 0.744 0.705
gravity 26 0.981 0.605 0.734 0.310
gravity gradient 14 0.926 0.399 0.457 -0.014

Minimizing model error (F-test) - unfiltered

geoid 25 0.988 0.863 0.726 -0.031
gravity 20 0.891 0.264 0.394 -0.145
gravity gradient 20 0.779 -0.084 0.543 0.085

Minimizing model error (F-test) - filtered

geoid 24 0.629 0.537 -0.256 0.016
gravity 29 0.356 0.723 -0.331 -0.333
gravity gradient 24 0.709 0.334 -0.720 -0.491
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Fig. 3.1. Variation-distance plot for the EMI mantle component showing the
range of variation in the component percentage with angular distance between
the feature locations. To account for the variation requires a minimum sampling
distance of ~ 14.50 [degree 12 expansion].
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Fig. 3.2. Variation-distance plot for the EMII mantle component showing the
range of variation in the component percentage with angular distance between
the feature locations. To account for the variation requires a minimum sampling
distance of ~ 390 [degree 4 expansion].
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Fig. 3.3. Variation-distance plot for the HIMU mantle component showing the
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the feature locations. To account for the variation requires a minimum sampling
distance of - 14.50 [degree 12 expansion].
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Y

Fig. 3.6. Three-dimensional plot
data, with symbols distinguishing
= ZI, Y = Z2, Z = Z3. Symbols:
diamond = 20-30% DMM, square
>50% DMM. Most striking is the
category between: [1] Louisville =
38.53%.

*
*

of the geographic feature principal component
percentages of the DMM component. Axes: X
+ = <10% DMM, x = 10-20% DMM,
= 30-40% DMM, o = 40-50% DMM, A =
large spatial separation in the 30-40%
31.84%, [2] Balleny = 32.17%, [3] Cocos =
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EMI - DUPAL Features
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Fig. 3.7. Variation-distance plot for the EMI mantle component for the DUPAL
features only [<32% DMM], showing the range of variation in the component
percentage with angular distance between the feature locations. Using the
DUPAL features only shows no reduction in the small-scale variation for the
EMI component.
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Fig. 3.8. Variation-distance plot for the EMII mantle component for the
DUPAL features only [<32% DMM], showing the range of variation in the
component percentage with angular distance between the feature locations.
Using the DUPAL features only shows no reduction in the small-scale variation
for the EMI component.
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Fig. 3.9. Variation-distance plot for the HIMU mantle component for the
DUPAL features only [<32% DMM], showing the range of variation in the
component percentage with angular distance between the feature locations.
Using the DUPAL features only shows no reduction in the small-scale variation
for the HIMU component.
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Fig. 3.10. Variation-distance plot for the DMM mantle component for the
DUPAL features only [<32% DMM], showing the range of variation in the
component percentage with angular distance between the feature locations.
Using the DUPAL features only does show a reduction in the small-scale
variation for the DMM component, with an increase in minimum sampling
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Fig. 3.11. Variation-distance plot for the filtered EMI data set, showing the

range of variation in the component percentage with angular distance after the
circular filter is applied. The result is a reduction in the small-scale variation,
with an increase in minimum sampling distance from ~ 14.5* to 370 [expansions

to degrees 12 and 5, respectively].
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Fig. 3.12. Variation-distance plot for the filtered EMII data set, showing the
range of variation in the component percentage with angular distance after the
circular filter is applied. The result is an increase in the small-scale variation,
with a decrease in minimum sampling distance from - 390 to 27* [expansions to
degrees 4 and 7, respectively].
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Fig. 3.13. Variation-distance plot for the filtered HIMU data set, showing the
range of variation in the component percentage with angular distance after the
circular filter is applied. The result is a dramatic decrease in the small-scale
variation, with an increase in minimum sampling distance from - 14.5' to 830
[expansions to degrees 12 and 2, respectively].
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Fig. 3.14. Variation-distance plot for the filtered DMM data set, showing the
range of variation in the component percentage with angular distance after the
circular filter is applied. The result is a decrease in the small-scale variation,
with an increase in minimum sampling distance from ~ 570 to 102 [expansions
to degrees 3 and 2, respectively].
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Fig. 3.15. Spherical harmonic plots of the geoid, gravity, gravity gradient and the gradient of the gradient. The degrees
2-30 plots show the appearance of the total fields. Other plots, separating this total field into contributions by high and
low degrees, show the transition from long wavelength [low degree] dominance in the geoid to the short wavelength [high
degree] dominance in the gravity gradient. Courtesy of Carl Bowin (1991b). (0
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Fig. 3.16. Variation-distance plot for the constructed geoid data set showing the
range of variation in the geoid with angular distance between the feature
locations. To account for the variation requires a minimum sampling distance of
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Fig. 3.17. Variation-distance plot for the constructed gravity data set showing
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Gravity Gradient
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Fig. 3.18. Variation-distance plot for the constructed gravity gradient data set
showing the range of variation in the gravity gradient with angular distance
between the feature locations. To account for the variation requires a minimum
sampling distance of ~ 670 [degree 3 expansion].
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Fig. 3.19. Variation-distance plot for the filtered geoid data set, showing the
range of variation in the geoid with angular distance after the circular filter is
applied. The filtered geoid data set retains essentially the same angular sampling
distance [~ 930].
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Fig. 3.20. Variation-distance plot for the filtered gravity data set, showing the
range of variation in gravity with angular distance after the circular filter is
applied. The filtered gravity data set retains essentially the same angular
sampling distance [~ 930].
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Fig. 3.21. Variation-distance plot for the filtered gravity gradient data set,
showing the range of variation in the gravity gradient with angular distance after
the circular filter is applied. Filtering reduces the small-scale varition in the
gravity gradient data set, with an increase of angular sampling distance from -
670 to 770 [expansions to degrees 3 and 2, respectively].
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Geoid Data Kernel Spectrumx10 7
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Fig. 3.22. Data kernel spectrums for the constructed geoid data kernel G.
Symbols for the different expansions: - = degrees 0-1, + = degrees 0-2, * -
degrees 0-3, o = degrees 0-4, x = degrees 0-5. For the degrees 0-5 expansion,
the singular values approach zero, but there is no obvious cutoff value.
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Fig. 3.23. Data kernel spectrums for the constructed gravity data kernel G.
Symbols for the different expansions: - = degrees 0-1, + = degrees 0-2, * =
degrees 0-3, o = degrees 0-4, x = degrees 0-5. For the degrees 0-5 expansion,
the singular values approach zero, but there is no obvious cutoff value.
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Gravity Gradient Data Kernel Spectrum
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Fig. 3.24. Data kernel spectrums for the constructed gravity gradient data
kernel G. Symbols for the different expansions: - = degrees 0-1, + = degrees 0-
2, * = degrees 0-3, o = degrees 0-4, x = degrees 0-5. For the degrees 0-5
expansion, the singular values approach zero, but there is no obvious cutoff
value.

x1O-4

1.2

0.8-

0.6-

0.4-

0.2

X

X

x
X

X

* 0 0 X 
-

x

.0X X

0x

00 
X

0

***0

0

+ 0

0 X
+*. 00 XX

*..* O x
+ + + + 0 0 0 X x

f Ob~



1 29

Mantle Components Data Kernel Spectrum
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Fig. 3.25. Data kernel spectrums for the mantle component data kernel G.
Symbols for the different expansions: - = degrees 0-1, + = degrees 0-2, * =
degrees 0-3, o = degrees 0-4, x = degrees 0-5. For the degrees 0-5 expansion,
the singular values approach zero, but there is no obvious cutoff value.
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Fig. 3.26. Plot of the root mean square error [rms error], as a function of the
number of singular values retained, between the actual GEM-L2 coefficients and
those coefficients estimated by the constructed geoid, gravity and gravity
gradient data sets. Line symbols: - . - . = geoid, - - - - = gravity, - -- =

gravity gradient, = root mean square of the GEM-L2 coefficients. P values
minimizing coefficient rms error: geoid = 30, gravity = 26, gravity gradient =
14.
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Fig. 3.27. Trade-off curve between model variance and model resolution, as a
function of the number of singular values retained, for the constructed geoid data
set. Range for p that balances the two measures is: 15 p 30. Note that trade-
off curves are determined by the data kernel matrices and so are the same for
filtered and unfiltered data sets.
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Fig. 3.28. Trade-off curve between model variance and model resolution, as a
function of the number of singular values retained, for the constructed gravity
data set. Range for p that balances the two measures is: 9 5p 2 9 . Note that
trade-off curves are determined by the data kernel matrices and so are the same
for filtered and unfiltered data sets.

1 32

Gravity

I--

10 -5 L
0



1 33

Gravity Gradient
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Fig. 3.29. Trade-off curve between model variance and model resolution, as a
function of the number of singular values retained, for the constructed gravity
gradient data set. Range for p that balances the two measures is: 8 5p 2 6 . Note
that trade-off curves are determined by the data kernel matrices and so are the
same for filtered and unfiltered data sets.
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Fig. 3.30. Trade-off curve between model variance and model resolution, as a
function of the number of singular values retained, for the mantle component
data set. Range for p that balances the two measures is: 155p30. Note that
trade-off curves are determined by the data kernel matrices and so are the same
for filtered and unfiltered data sets.
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Geoid and Filtered Geoid
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Fig. 3.31. Plot of model root mean square error [rms error], as a function of
the number of singular values retained, between the observed geoid data and the
geoid data predicted from the calculated coefficients. Balancing the model rms
error and the model variance gives this range of p: 215p 25 (filtered and
unfiltered). Line symbols: = unfiltered model rms error, - - - - = filtered
model rms error, o-o- = model variance.
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Fig. 3.32. Plot of model root mean square error [rms error], as a function of
the number of singular values retained, between the observed gravity data and
the gravity data predicted from the calculated coefficients. Balancing the model
rms error and the model variance gives this range of p: 20!5p 2 5 (filtered and
unfiltered). Line symbols: = unfiltered model rms error, - - - - = filtered
model rms error, o-o- = model variance.
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Gravity Gradient and Filtered Gravity Gradient

5 10 15 20 25 30 35 40

P

Fig. 3.33. Plot of model root mean square error [rms error], as a function of
the number of singular values retained, between the observed gravity gradient
data and the gravity gradient data predicted from the calculated coefficients.
Balancing the model rms error and the model variance gives this range for p:
20 p 25 (filtered and unfiltered). Line symbols: = unfiltered model rms
error, - - - - = filtered model rms error, o--o-- = model variance.
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Mantle Components
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Fig. 3.34. Plot of model root mean square error [rms error], as a function of
the number of singular values retained, between the observed mantle component
data and the mantle component data predicted from the calculated coefficients.
Balancing the model rms error and the model variance gives this range for p:
16 p 21 (filtered EMI), 165p 20 (EMII), 18 p 23 (filtered HIMU), 195p!22
(DMM). Line symbols: = filtered EMI, - - - - = EMII, .... = filtered
HIMU,- - - - = DMM, o-o- = model variance.
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Geoid and Filtered Geoid
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Fig. 3.35. Plot of F-test significance level as a function of the number of
singular values retained for the geoid and filtered geoid data sets. Basically, the
test determines whether additional parameters [singular values] make a
significant contribution to the model fit of the observed data values. Optimal p
values [for 95% significance] are: p = 25 [geoid] and p = 24 [filtered geoid].
Line symbols: = geoid, - -- = filtered geoid, - - - - = 95% significance
level.
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Gravity and Filtered Gravity
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Fig. 3.36. Plot of F-test significance level as a function of the number of
singular values retained for the gravity and filtered gravity data sets. Basically,
the test determines whether additional parameters [singular values] make a
significant contribution to the model fit of the observed data values. Optimal p
values [for 95% significance] are: p = 20 [gravity] and p = 29 [filtered gravity].
Line symbols: = gravity, - -. = filtered gravity, - - - - = 95%
significance level.
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Gravity Gradient and Filtered Gravity Gradient
1

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3 -

0.2-

0.1-

0-
0

Fig. 3.37. Plot of F-test significance level as a function of the number of
singular values retained for the gravity gradient and filtered gravity gradient
data sets. Basically, the test determines whether additional parameters [singular
values] make a significant contribution to the model fit of the observed data
values. Optimal p values [for 95% significance] are: p = 20 [gravity gradient]
and p = 24 [filtered gravity gradient]. Line symbols: = gravity gradient,
- - - = filtered gravity gradient, - - - - = 95% significance level.
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Filtered EMI
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Fig. 3.38. Plot of F-test significance level as a function of the number of
singular values retained for the filtered EMI data set. Basically, the test
determines whether additional parameters [singular values] make a significant
contribution to the model fit of the observed data values. For filtered EMI, the
optimal p value [for 95% significance] is: p = 20. Line symbols: o-o = filtered
EMI, - - - - = 95% significance level.
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Fig. 3.39. Plot of F-test significance level as a function of the number of
singular values retained for the EMII data set. Basically, the test determines
whether additional parameters [singular values] make a significant contribution
to the model fit of the observed data values. For EMIL, the optimal p value [for
95% significance] is: p = 16. Line symbols: o-o = EMII, - - - - = 95%
significance level.
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Filtered HIMU
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Fig. 3.40. Plot of F-test significance level as a function of the number of
singular values retained for the filtered HIMU data set. Basically, the test
determines whether additional parameters [singular values] make a significant
contribution to the model fit of the observed data values. For filtered HIMU, the
optimal p value [for 95% significance] is: p = 23. Line symbols: o-o = filtered
HIMU, ---- = 95% significance level.
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Fig. 3.41. Plot of F-test significance level as a function of the number of
singular values retained for the DMM data set. Basically, the test determines
whether additional parameters [singular values] make a significant contribution
to the model fit of the observed data values. For DMM, the optimal p value [for
95% significance] is: p = 22. Line symbols: o-o = DMM, - - - - = 95%
significance level.
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Solutions Minimizing Coefficient RMS Error
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Fig. 3.42. Correlation of geophysics coefficient solutions, that minimize the
coefficient rms error, with the actual GEM-L2 coefficients. Line symbols: - - - -

= geoid ..... = gravity, - . - . = gravity gradient. Confidence levels are
determined by a t-test with 21 degrees of freedom.
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Solutions Minimizing Model RMS Error - Unfiltered
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Fig. 3.43. Correlation of geophysics coefficient solutions, that minimize the
model rms error for the unfiltered data, with the actual GEM-L2 coefficients.
Line symbols: - - - - = geoid, . . . . = gravity, - . - . = gravity gradient.

Confidence levels are determined by a t-test with 21 degrees of freedom.
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Solutions Minimizing Model RMS Error - Filtered
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Fig. 3.44. Correlation of geophysics coefficient solutions, that minimize the
model rms error for the filtered data, with the actual GEM-L2 coefficients.
Line symbols: - - - - = geoid, . . . . = gravity, - . - . = gravity gradient.
Confidence levels are determined by a t-test with 21 degrees of freedom.
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CONTINUOUS LAYER MODEL DEGREE 2 GEOID
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Fig. 3.45. Reconstruction [on a 5* grid] of the continuous layer model spherical harmonic degree 2 function for the
constructed geoid data set. Values [in meters] are deviations from the average constructed geoid [13.7 ml. Feature
locations are designated by triangles.
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Fig. 3.46. Reconstruction [on a 5' grid] of the continuous layer model spherical harmonic degree 2 function for the
filtered EMI data set. Values are deviations from the average filtered EMI percentage [0.271. Feature locations are
designated by triangles.
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Fig. 3.47. Reconstruction [on a 5' grid] of the continuous layer model spherical harmonic degree 2 function for the EMII
data set. Values are deviations from the average EMII percentage [0.17]. Feature locations are designated by triangles.
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Fig. 3.48. Reconstruction [on a 5' grid] of the continuous layer model spherical harmonic degree 2 function for the
filtered HIMU data set. Values are deviations from the average filtered HIMU percentage [0.31]. Feature locations are
designated by triangles.
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Fig. 3.49. Reconstruction [on a 5* grid] of the continuous layer model spherical harmonic degree 2 function for the
DMM data set. Values are deviations from the average DMM percentage [0.25]. Feature locations are designated by
triangles.
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Fig. 3.50. Reconstruction [on a 5' grid] of the spherical harmonic degree 2 geoid from the GEM-L2 coefficients [degrees

0-201. Values [in meters] are deviations from the average geoid [0.0 m]. Feature locations are designated by triangles.
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Fig. 3.51. Reconstruction [on a 50 grid] of the continuous layer model spherical harmonic degrees 2-3 function for the
filtered HIMU data set. Values are deviations from the average filtered HIMU percentage [0.311. Feature locations are
designated by triangles.
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Fig. 3.52. Reconstruction [on a 5' grid] of the spherical harmonic degrees 2-3 geoid from the GEM-L2 coefficients

[degrees 0-20]. Values [in meters] are deviations from the average geoid [0.0 ml. Feature locations are designated by
triangles.
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CHAPTER 4

SPHERICAL HARMONIC REPRESENTATION OF ISOTOPIC
SIGNATURES: THE DELTA-FUNCTION MODEL

INTRODUCION

As mentioned in Chapter 3, the delta-function model represents the OIB

reservoir as a series of point sources, each feeding a separate plume. This may

seem unphysical, but could be a good approximation of actual conditions if the

source boundary layer is not continous, but patchy, as indicated in some seismic

studies of D" (Lay et al., 1990).

Representing the geographic features as delta-functions [scaled by the

corresponding geoid anomaly or mantle component percentage] has two

advantages, mathematically, over the approximation methods used in Chapter 3.

First, the spherical harmonic coefficients can be found easily with the

simplification from integration over the globe to summation over the feature

locations allowed by the delta-functions. Second, representing the GIB reservoir

as a known function removes the problem of aliasing; the values of the spherical

harmonic coefficients are not dependent upon the truncation point of the

expansion [they are dependent upon the number and location of the geographic

features]. For delta-functions, which have energy at all degrees, the expansions

can be carried out to infinity, but for this study, will only be carried out to

degree 5, for comparison with the continuous layer model.

THEORY

As before, any function f(O,ip) can be expanded in spherical harmonics:

t(Ow) = I I (21+1)(1-m)! Pn(coso) [A'cosmp + B'sinmep]
1=0 .O 47t(l+m)!
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Due to the orthogonality of the spherical harmonics, the equations for the

coefficients are:

Am = d p f(,(p) (2+1)(l-m)! P7(cos6) cosmp d(cos6)
V34i(l+m)!

Bm = d p f(O,<p) (21+1)(1-m)! Pn(cose) sinmp d(cosO)
S f3V 4-t(l+m)!

For the delta-function model, the function being expanded is a series of delta-

functions:

f(0,p) = kiS(6-0i,<p-<p)

where kg is one of the four mantle component percentages [or the value of the

geoid anomaly] and (6-0i,<p-<pi) indicates a delta-function at the particular

location (6g,<p ). Mathematically, the delta-function is a "spike" of infinite height,

infinitesimal width and unit area:

I pJ 6(6-i,<p-<pi) d = 1

The key property of the delta-function is that the integral of a function g(O,<p)

times a delta-function is just the value of g at the delta-function location:

dpj g(Osp) 6(O-Oi,<-p;) dO = g(Oi,<pi)

This simplifies the coefficient equations from integration over the globe to

summation over the geographic feature locations:

A= k (2/+1)(1-m)! I,(cosi) cosmp
i=1 v4it(1+m)!
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N
B = i (2+1)(l-m)! P (cos;) sinm(p;

i=1 4it(l+m)!

The coefficient equations for the constructed data sets of geoid, gravity

and gravity gradient anomalies at the feature locations have additional factors.

As an example, for gravity the equations are:

= R2  ki (21+1)(l-m)! Pm(cosOi)cosmp;
GM(l+1) 4n(l+m)!

Bm = Rk (2+1)(l-m)! P7(cos0;) sinm(p;
GM(l+1) j1 47c(l+m)!

R 2
with the additional factor of GM(I+1). Geoid and gravity gradient additional

1R3
factors are R and GM(l+1Xl+2), respectively.

APPLICATION

As before, the constructed geophysics data sets are used as a control to

gauge the level of accuracy expected from the mantle component data sets.

Correlating the coefficients from these data sets with the GEM-L2 coefficients

(Fig. 4.1) yields good agreement for all three at degree 2. Whereas the

continuous layer model showed a fairly consistent pattern of decreasing

correlation from the geoid coefficient estimates to the gravity and gravity

gradient estimates (Fig. 3.43), the delta-function model shows equal correlation

at degree 2 and a switch to increasing correlation from the geoid estimates to the

gravity and gravity gradient estimates at degree 4. Overall, it appears that the
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delta-function model is less accurate at reproducing the coefficients for long

wavelength data sets [geoid] and more accurate at reproducing the coefficients

for the short wavelength data sets [gravity gradient] than the continuous layer

model. Both models are consistent, though, in showing strong correlation for all

three data sets at degree 2, implying that the mantle component degree 2

coefficients are also viable. In addition, the mantle component data sets have

even more high degree [short wavelength] energy than the gravity gradient data

set, so their coefficients are probably reasonably accurate out to degree 4.

Since each of the different geophysics data sets approximate the GEM-L2

coefficients equally well at degree 2, it appears that there is some additional

controlling factor affecting the estimates of the degree 2 coefficients, aside from

the data values themselves. The location of the features, and thus the delta-

functions, is the most likely candidate. A plot of the constructed degree 2

"function" for the delta-function model geoid (Fig. 4.2) shows the obvious

relationship between the two main clusters of oceanic islands and the two highs in

the geoid. Since the continuous layer model geophysics coefficients all agreed

well with the degree 2 GEM-L2 coefficients, it appears that the location effect

merely enhances an already existing correlation and is not solely responsible for

the correlation. Presumably the same is true of any degree 2 correlation of

delta-function model geochemistry coefficients with the GEM-L2 coefficients.

Degree 2 "functions" for the mantle component percentages are

reconstructed, as before, for comparison with those of the continuous layer

model (Figs. 4.3-4.6). The contoured values of the delta-fuction geoid (Fig. 4.2)

and the mantle component functions are large enough to be the actual geoid and

component percentages, instead of deviations from the average values, as for the

continuous layer model. This is due to the arbitrary scaling that comes into play
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when using delta-functions. A delta-function has unit area, so the average value

of a delta-function over the sphere is:

()1 (Ap sinO) AO 4ir

where (Ap sine) AO is a sectional area on the sphere (Fig. 4.7), which for the

whole sphere is 41t. If there is only one delta-function involved in the

reconstruction, the contoured values will be off by a factor of 1/(41r). Since

there are 36 features, there are 36 delta-functions involved in the reconstruction,

so the contoured values are off by a factor of 36/(4it) = 2.86 or -3.

Qualitatively, the four reconstructed mantle component degree 2 functions

show good agreement with each other. All four have two highs: one over central

Africa and the other over the central Pacific. Slight differences include the

width of the highs [from narrowest to widest width: HIMU, EMI, EMIT and

DMM] and the amount of displacement [from 0' to 150] of the highs above and

below the equator [from least to most displacement: HIMU, EMIl, EMI and

DMM]. With respect to the GEM-L2 degree 2 geoid (Fig. 3.50), all of the

mantle component highs are shifted longitudinally to the east by varying amounts

[HIMU ~30*, EMI 300 , EMII ~35' and DMM ~400].

Degrees 2-3 functions for the four components (Figs. 4.8-4.11) are

constructed for comparison with the geoid (Fig. 5.32) and the HIMU continuous

layer model reconstruction (Fig. 5.31).

SUMMARY

Viewing the distribution of the OIB reservoir as a series of point sources

that can be represented as delta-functions yields the following results:

111, , i i L 111119111 NOW
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- With respect to the behavior of geophysics control data sets, at least the

degree 2 spherical harmonic coefficients for the mantle components

can be estimated with confidence, if not the degrees 3 and 4 as well.

- The location of the features, and thus the delta-functions, biases the

calculated degree 2 coefficients due to the correlation between the

oceanic island locations and the degree 2 geoid.

- Scaling of delta-function models reconstructed over the globe is

dependent upon the number of delta-functions used in the

approximation [N] and varies as N/(47t).

- Degree 2 HIMU, EMI, EMII and DMM all show a degree 2 geoid

pattern phase-shifted 30'-40' to the east, with varying widths of the

highs and displacements from the equator.
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Delta-Function Model Geophysics Correlation with GEM-L2
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Fig. 4.1. Correlation of the delta-function model geophysics coefficient solutions
with the actual GEM-L2 coefficients. Line symbols: - - - - = geoid, . . . . =
gravity, - . - . = gravity gradient. Confidence levels are determined by a t-test
with 21 degrees of freedom.
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Fig. 4.2. Reconstruction [on a 5' grid] of the delta-function model spherical harmonic degree 2 function for the
constructed geoid data set. Values are NOT direct deviations from the average constructed geoid [0.0 ml, but are off by a
factor of -3. Feature locations are designated by triangles.
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Fig. 4.3. Reconstruction [on a 50 grid] of the delta-function model spherical harmonic degree 2 function for the EMI data
set. Values are NOT direct deviations from the average EMI percentage [0.27], but are off by a factor of -3. Feature
locations are designated by triangles.
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Fig. 4.4. Reconstruction [on a 5* grid] of the delta-function model spherical harmonic degree 2 function for the EMII
data set. Values are NOT direct deviations from the average EMII percentage [0.17], but are off by a factor of -3.
Feature locations are designated by triangles.
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Fig. 4.5. Reconstruction [on a 50 grid] of the delta-function model spherical harmonic degree 2 function for the HIMU
data set. Values are NOT direct deviations from the average HIMU percentage [0.31], but are off by a factor of -3.
Feature locations are designated by triangles.
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Fig. 4.6. Reconstruction [on a 50 grid] of the delta-function model spherical harmonic degree 2 function for the DMM
data set. Values are NOT direct deviations from the average DMM percentage [0.25], but are off by a factor of -3.
Feature locations are designated by triangles.



1 84

z

AO

sine

sinO-
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Fig. 4.8. Reconstruction [on a 50 grid] of the delta-function model spherical harmonic degrees 2-3 function for the EMI
data set. Values are NOT direct deviations from the average EMI percentage [0.271, but are off by a factor of -3.
Feature locations are designated by triangles.
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Fig. 4.9. Reconstruction [on a 5' grid] of the delta-function model spherical harmonic degrees 2-3 function for the EMII

data set. Values are NOT direct deviations from the average EMII percentage [0.17], but are off by a factor of -3.
Feature locations are designated by triangles.
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Fig. 4.10. Reconstruction [on a 5* grid] of the delta-function model spherical harmonic degrees 2-3 function for the

HIMU data set. Values are NOT direct deviations from the average HIMU percentage [0.311, but are off by a factor of
-3. Feature locations are designated by triangles.
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Fig. 4.11. Reconstruction [on a 5' grid] of the delta-function model spherical harmonic degrees 2-3 function for the

DMM data set. Values are NOT direct deviations from the average DMM percentage [0.25], but are off by a factor of

-3. Feature locations are designated by triangles.
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CHAPTER 5

RESULTS AND DISCUSSION

INTRODUCTION

Geophysical control data sets are used to judge the dependability of

spherical harmonic coefficient solutions for the mantle end-member components

from the continuous layer and the delta-function models. A careful comparison

of the two models can further enhance or reduce the significance assigned to the

various solutions. In this chapter, the two models are compared in terms of their

amplitude spectra, how well they correlate with the geoid, how they are affected

by nonuniform feature distribution and how well they correlate with the

Clayton-Comer seismic tomography model. The significance of the correlations

with the geoid and the seismic tomography model is discussed, along with

suggestions for further research.

AMPLITUDE SPECTRA

Spectral amplitude plots show the relative power at each degree for the

different mantle component expansions. Following Richards and Hager (1988),

the root mean square harmonic coefficient amplitude at each degree is given by:

L
2 [(AmF + (Bmf

ms (V+1 _ m=[0 +7~
7 (21+1) (21+1)

where V1 is the variance at each degree for a given set of harmonic coefficients.

Richards and Hager (1988) include the factor of 1/(21 + 1) because random noise

on a sphere will have a flat spectrum with this normalization. On plots of

SrflSversus 1, low-degree or long-wavelength effects will show up as a negative

slope.
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Amplitude spectra of the calculated geoid coefficients from the two

models agree well with the negative [long-wavelength] slope of the actual geoid

coefficients (Figs. 5.1 and 5.2). For the mantle component expansions,

amplitude spectra reveal no such clear cut negative slope pattern to indicate

dominant long-wavelength effects (Figs. 5.3 and 5.4). Instead, the spectra appear

"white", with energy at all degrees, and no decrease in the energy with

increasing degree. In addition, HIMU is the only mantle component that shows

any consistency in behavior between the two models. Thus, in general, the

expansion of the mantle components is model dependent.

CORRELATION WITH THE GEOID

Plotting the mantle component percentages point by point against the full

geoid value at the geographic feature locations is not a valid way to compare the

mantle component signatures with the geoid. When correlating them by degree

using spherical harmonic coefficients, it is apparent that the mantle components

may correlate with the geoid at some degrees [wavelengths] and not others. In a

pointwise comparison, the different patterns at the different degrees are

obscured as they are added together to produce the whole, making an accurate

comparison impossible. Pointwise plots done with the current data show no

correlation between the mantle components and the geoid (Figs. 5.5-5.8).

In contrast, correlating the geoid coefficients and the mantle component

coefficients by degree reveals a good corrrelation [90% significance level and

higher] at degree 2 for the DUPAL components [EMI, EMII and HIMU] for both

models (Figs. 5.9 and 5.10). Note that positive correlations indicate high

concentrations of mantle components correlating with geoid highs and vice versa.

HIMU has the best correlation for both models, showing better than 95%

significance at degree 2 and 90% significance at degree 3. The remaining mantle
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components show a consistent decreasing correlation from EMII to EMI to

DMM for both models.

IMPLICATIONS OF NONUNIFORM FEATURE DISTRIBUTION

Oceanic island distribution is not uniform about the globe. As indicated in

Chapter 4, the two main clusters of oceanic islands correspond to the two highs

of the degree 2 geoid. It can be argued, then, that any correlation between the

degree 2 mantle component expansions and the degree 2 geoid is due solely to the

nonuniform distribution of the oceanic islands and not to any pattern in the

geochemistry values. To test this, the percentages of the HIMU mantle

component at the 36 geographic features, filtered [continuous layer model] and

unfiltered [delta-function model], are randomly assigned to different feature

locations five times. HIMU percentages are used since the degree 2 HIMU, for

both models, correlates best with the degree 2 geoid. The five randomly

generated data sets for each model are then used to compute new coefficients that

can be compared to the degree 2 geoid. For the continuous layer model, the

number of singular values retained for the new data sets is determined by the F-

test at the 95% significance level. The random number generator used for this

test is nonlinear, but repeatable, since it starts with a given seed that is updated

for successive calls in a predictable manner. This means that for a given

randomization, the filtered and unfiltered HIIMU percentages are being

randomized in the same way, so the results of the two models can be compared.

Five iterations is not enough to quantify the effect of the feature distribution on

the degree 2 correlation for the two models, but it is enough to indicate if it has

any control at all.

Concentrating on the degree 2 coefficients, three of the randomizations

that result in strong correlations with the geoid for delta-function model [well
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above the 90% confidence level] result in negligible correlations with the geoid

for the continuous layer model (Table 5.1). Reconstructed degree 2 functions of

the randomized data sets show graphically how little the delta-function model

changes, with respect to the continuous layer model, when the geochemical

signatures of the features are mixed up (Figs. 5.11-5.20). For the delta-function

model, this indicates that the values of coefficients are not so much dependent

upon the scaling factors multiplying the delta-functions as the location of the

delta-functions themselves. This location effect makes it difficult to trust strong

correlations of the delta-function model with the geoid unless there is additional

confirmation by the continuous layer model.

CORRELATION WITH SEISMIC TOMOGRAPHY

Correlating the mantle component expansions with the geoid gives an

estimate of the general OIB source region [ie. lower mantle versus upper

mantle], but is incapable of resolving a more precise depth range for the source

since the geoid is affected by mass anomalies at all depths in the Earth. A way to

select a probable depth range for the OIB source[s] is to compare the mantle

component expansions to seismic tomography models. Seismic tomography

models map the global distribution of lateral velocity variations in the mantle at

different depths based upon the inversion of travel time anomaly data from

seismic waves that travel through the Earth's interior (Hager and Clayton, 1989).

In this study, the mantle component expansions are correlated with the

Clayton-Comer seismic tomography model, discussed in Hager and Clayton

(1989). The Clayton-Comer model inverts for slowness [inverse of velocity]

anomalies, in a given shell, that are converted to velocity anomalies by

multiplying by the average shell velocity. There are 29 shells in the model, each

100 km thick, spanning the entire mantle from the core-mantle boundary [CMB 1,
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at a depth of 2900 km, to the surface. Shells 23-29 [covering the uppper mantle]

are not used in this analysis since coverage in the top 700 km of the mantle is

poor because of the near vertical seismic ray paths in this region. The spherical

harmonic coefficients of the remaining 22 shells [covering the lower mantle] are

averaged together, to dampen model noise, to produce 5 layers: 2900-2500 km

[layer 1], 2500-2100 km [layer 2], 2100-1700 km [layer 3], 1700-1200 km [layer

4] and 1200-700 km [layer 5].

The geoid is correlated with the Clayton-Comer tomography model first

(Fig. 5.21) to serve as a guide for interpreting the correlation of the tomography

model with the mantle component expansions. Note that a negative correlation

indicates geoid highs correlating with low velocity regions [and vice versal and a

positive correlation indicates geoid highs correlating with high velocity regions

[and vice versa]. In layers 1-3, the strong negative correlations at degrees 2 and

3 confirm that long wavelength geoid highs are due to low density [warmer and

thus slower velocity] mantle upwellings. This long wavelength upwelling

signature is also present in the upper lower mantle, as shown by the strong

negative correlations at degrees 2, 3 and 4 for layer 4 and at degree 2 for layer

5. Of interest is the strong positive correlations for layers 4 and 5, at degree 5

and degrees 4 and 5, respectively. Bowin (1991a) indicates the correspondence

of the degrees 4-10 geoid highs with plate convergence zones. He believes that

the mass anomalies responsible for the highs lie in the lower mantle, beneath

plate convergence zones, below the teleseismically downgoing subducted slabs.

The positive correlations in layers 4 and 5 support this theory and imply that

subducted slabs extend below the 670 km discontinuity.

Correlation of the mantle component expansions with the Clayton-Comer

tomography layers for the two models yields interesting results (Figs. 5.22-

5.29). Due to the limitations of both models [ie. the uncertainties in the
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coefficient estimates for the continuous layer model and the location dependence

in the delta-function model], it is more likely that a significant correlation is

accurate if it is present in both models. With this in mind, the interpretation of

the correlation results will be based upon common correlations of 90%

significance [or very close to it] or higher (Table 5.2).

The common degree 2 correlations with layers 3-5 for all the mantle

components are indicative of large scale upwelling, as for the geoid. Good

degree 3 correlations with layer 1 points to a deep source for all four

components, like the geoid which shows a much stronger correlation at degree 3

with layer 1 than it does at degree 2. This correlation is not unexpected for the

DUPAL components, whose correlation with the degree 2 geoid also suggest a

deep origin, but it is surprising for the DMM component. There are two

possible solutions for the dilemma posed by the supposedly upper mantle DMM

component correlating with deep mantle tomography. First, it is possible that

the DMM component expansion does correlate better with upper mantle

tomography, which is, unfortunately, not available for the Clayton-Comer

model. Second, it is possible that the DMM component is representative of both

the upper and lower mantle composition. Hart (1991) shows that all the hotspots

that have elongated isotopic arrays indicate mixing between one of the DUPAL

components and something that is not a MORB composition. Since 3/4 of a

plume's ascent is spent in the lower mantle, the composition of the DMM

component may be largely controlled by lower mantle entrainment (Hart, 1991).

Another interesting correlation common to both models is the positive

correlation at degree 5 for EMII in layer 5. With respect to Bowen's model

(1991a) this indicates a correlation between the EMII component and subducted

slabs. This finding agrees with the geochemical evidence suggesting the EMIl

component is derived from recycling of subducted sediments (Hart, 1988).
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DISCUSSION

As indicated in Chapter 3, the average value of the geoid anomaly at the

36 feature locations is 13.7 m, not zero as it should be if the features were

located randomly with respect to the geoid. This is a simple indication that the

feature locations [hotspots] correlate with geoid highs. Naturally, then, the bulk

chemical signatures unique to oceanic island basalts should also correlate with

geoid highs. What is significant is that the expansions of all three DUPAL

mantle end-member components [EMI, EMII and HIMU], that comprise 3/4 of

the bulk chemical signature, individually correlate with geoid highs. More

importantly, the DUPAL components correlate with the degree 2 geoid highs,

indicating a deep origin for the components since the degrees 2-3 geoid field is

inferred to result from topography at the core-mantle boundary (Bowen, 1991a).

It can be argued that the correlation of the DUPAL components with the

degree 2 geoid is not an indication of geochemical patterns within the earth, but a

direct result of the nonuniform distribution of the oceanic islands, whose two

largest population densities correspond to the degree 2 geoid highs.

Randomization tests indicate, however, that while this nonuniform distribution

does play a role in solutions for the delta-function model, it is not the controlling

factor for continuous layer model solutions. Though the continuous layer model

solutions are hindered by the limited number and coverage of the oceanic islands

and the delta-function model solutions are biased by the oceanic island locations,

continual comparisons of the two models can be used to judge the accuracy of the

solutions [in addition to judging accuracy using geophysical control sets].

Essentially, where both models agree, the solutions are more likely to be

accurate.
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The total geoid field is due to the contribution of different mass anomalies

at different depths throughout the Earth, so it can be difficult to directly

ascertain a source depth by comparing geochemical quantities with the geoid.

Seismic tomography models allow the correlation of geochemical quantities with

seismic velocity anomalies at different depths and serve as an independent check

on the general source locations indicated by correlation with geoid anomalies.

Correlating the mantle end-member components from both models with the

Clayton-Comer seismic tomography model suggests a source depth range of

2500-2900 km [just above the core-mantle boundary] for the DUPAL

components, due to the strong negative degree 3 correlations at this depth. In

addition, a strong positive degree 5 correlation in the depth range of 700-1200

km is an indication that the EMII component is related to subduction, as

previously suggested using geochemical evidence (Hart, 1988). Similarly, the

geoid shows a strong positive correlation with the Clayton-Comer model at

degrees 4 and 5 in the depth range 700-1200 km and at degree 5 in the depth

ranges of 1200-1700 km. These subduction related patterns in the upper lower

mantle indicate that subducted slabs extend beyond the 670 km seismic

discontinuity and thus are supporting evidence for whole mantle convection

Further comparisons need to be made between the mantle component

expansions and other seismic tomography models. It is especially important to

compare the mantle components to a high resolution upper mantle tomography

model, since the amplitude spectra for the components indicate power at high

degrees which will become dominant at shallow depths in the mantle. Such a

comparision could clarify the nature of the DMM component, which correlates

well with the degree 3 deep mantle layer of the Clayton-Comer model, and could

further explore the relationship between the EMIL component and subduction.
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SUMMARY

A comparison of the two models used to expand the mantle components in

spherical harmonics yields the following results:

- Mantle end-member component amplitude spectra, for the continuous

layer model and the delta-function model, show power at all degrees,

with no one degree dominating.

. The DUPAL components [EMI, EMIT and HIMU] for both models

correlate well with the geoid at degree 2, indicating a deep origin.

. Delta-function model solutions are, to some extent, controlled by the

nonuniform feature distribution, while the continuous layer model

solutions are not.

. The DUPAL and DMM components, for both models, correlate well

[negatively] at degree 3 with the velocity anomalies of the Clayton-

Comer seismic tomography model in the 2500-2900 km depth range

[immediately above the core-mantle boundary].

- The EMIT component, for both models, correlates well [positively] at

degree 5 with the velocity anomalies of the Clayton-Comer seismic

tomography model in the 700-1200 km depth range, indicating a

subduction related origin.

- Subduction related positive correlations for the geoid and the EMIL

component with the Clayton-Comer model in the upper lower mantle

1161 Iiii 111111111 INEIN INIOM 1111 IN HIM d I I
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[700-1700 km] indicate that subducted slabs extend below the 670 km

seismic discontinuity, supporting a whole-mantle convection model.
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Table 5.1. Summary of correlation coefficients between the GEM-L2
coefficients and coefficients calculated from five randomly generated data sets
for the continuous layer model [filtered HIMU] and the delta-function model
[HIMU], along with the actual correlations of the filtered HIMU and HIMU data
sets.

Data Set Degree 2 Degree 3 Degree 4 Degree 5

Continuous Layer Model

filtered HIMU 0.752 0.502 -0.112 -0.358

random 1 0.753 0.446 -0.639 -0.157
random 2 0.560 0.196 0.467 -0.210
random 3 -0.129 0.432 -0.303 -0.069
random 4 0.225 0.448 0.386 -0.130
random 5 -0.166 0.718 -0.285 -0.230

Delta-Function Model

HIMU 0.850 0.491 0.063 -0.505

random 1 0.726 0.332 0.036 -0.416
random 2 0.622 0.404 0.107 -0.361
random 3 0.873 0.477 0.029 -0.320
random 4 0.893 0.407 0.415 -0.385
random 5 0.761 0.383 0.107 -0.286
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Table 5.2. Summary of correlations of 90% significance [or very close to it] or
higher for the continuous layer model and the delta-function model when
correlated with five averaged layers in the Clayton-Comer tomography model.
[A "+" or "-" next to the component name indicates a positive or negative
correlation, respectively.]

Degree 2 Degree 3 Degree 4 Degree 5

-EMI
-EMII

-HIMI
Layer 5

Layer 4

+EMII

-EMI
-EMIII
-DMMI

-EMI
Layer 3 -EMIII

-DMM 2 -EMIlI

-EMII I

-DMM

-EMIlI

Layer 2

Layer 1
-EMI1 -EMI

-HIMU
-DMM

1The continuous layer model correlation is slightly less than 90% significant.
2The delta-function model correlation is slightly less than 90% significant.
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x10-6 Continuous Layer Model Geoid

1 2 3 4

Degree

Fig. 5.1. Amplitude spectra for the continuous layer model coefficients of the
constructed geoid data set, as compared to the actual geoid. Line symbols: - - - -
= constructed geoid, = GEM-L2 geoid.
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2.5

2-

1.5-

1 - '

0.5-

0
1

Degree

Fig. 5.2. Amplitude spectra for the delta-function model coefficients of the
constructed geoid data set, as compared to the actual geoid. Line symbols: - - - -
= constructed geoid, = GEM-L2 geoid.
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Continuous Layer Model Mantle Components
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Fig. 5.3. Amplitude spectra for the continuous layer model coefficients of the
mantle component data sets. Line symbols: = filtered EMI, ---- -

EMII, - - - = filtered HIMU, - - - = DMM.



210

Delta-Function Model Mantle Components
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Fig. 5.4. Amplitude spectra for the delta-function model coefficients of the
mantle component data sets. Line symbols: = EMI, - - - - = EMII, =

HIMU, - - - - = DMM.
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Fig. 5.5. Pointwise comparison, at each geographic feature, of the full geoid
anomaly [in meters] with the EMI component percentage. This plot gives the
impression that there is no correlation.
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Fig. 5.6. Pointwise comparison, at each geographic feature, of the full geoid
anomaly [in meters] with the EMII component percentage. This plot gives the
impression that there is no correlation.
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Fig. 5.7. Pointwise comparison, at each geographic feature, of the full geoid
anomaly [in meters] with the HIMU component percentage. This plot gives the
impression that there is no correlation.

11111Mfid , .IbIIMINM NMWINWIII "



214

50

0

2o

-50

-100

- -

-f4ow--- *

---------- -* --- --- i ..

11

- - - .-------------

--- --- - -- - -- --- --

0.0 0.1 0.2 0.3 0.4 0.5

%DMM

Fig. 5.8. Pointwise comparison, at each geographic feature, of the full geoid
anomaly [in meters] with the DMM component percentage. This plot gives the
impression that there is no correlation.
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0.8
Continuous Layer Model Mantle Components Correlation with GEM-L2

2 3 4 5

Degree

Fig. 5.9. Correlation of the continuous layer model mantle component
coefficient solutions with the GEM-L2 geoid coefficients. Line symbols: =
filtered EMI, - - - - = EMIL, . . .. = filtered HIMU, - - - . = DMM. Confidence

levels are determined by a t-test with 21 degrees of freedom.
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Delta-Function Model Mantle Components Correlation with GEM-L2

-0.6'
2 3 4 5

Degree

Fig. 5.10. Correlation of the delta-function model mantle component coefficient
solutions with the GEM-L2 geoid coefficients. Line symbols: = EMI, - - -

- = EMII - - - - = HIMU, - - - - = DMiM. Confidence levels are determined by a
t-test with 21 degrees of freedom.
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Fig. 5.11. Reconstruction [on a 50 grid] of the continuous layer model spherical harmonic degree 2 function for the first
randomization of the filtered HIMU data set. Values are deviations from the average filtered HIMU percentage [0.31].
Feature locations are designated by triangles. N)
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Fig. 5.12. Reconstruction [on a 5' grid] of the continuous layer model spherical harmonic degree 2 function for the
second randomization of the filtered HIMU data set. Values are deviations from the average filtered HIMU percentage
[0.31]. Feature locations are designated by triangles.
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Fig. 5.13. Reconstruction [on a 5' grid] of the continuous layer model spherical harmonic degree 2 function for the third
randomization of the filtered HIMU data set. Values are deviations from the average filtered HIMU percentage [0.311.
Feature locations are designated by triangles. ru

N)3



CONTINUOUS LAYER MODEL RANDOM4 DEGREE 2 HIMU

60.

40.

20. 'A.0

0.

0.00
-40. --0.01

-0.03

-60.L -b

-160.-140.-120.-100.-80. -60. -40. -20. 0. 20. 40. 60. 80. 100. 120. 140. 160.



Fig. 5.14. Reconstruction [on a 5' grid] of the continuous layer model spherical harmonic degree 2 function for the
fourth randomization of the filtered HIMU data set. Values are deviations from the average filtered HIMU percentage
[0.31]. Feature locations are designated by triangles.
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Fig. 5.15. Reconstruction [on a 5* grid] of the continuous layer model spherical harmonic degree 2 function for the fifth
randomization of the filtered HIMU data set. Values are deviations from the average filtered HIMU percentage [0.311.
Feature locations are designated by triangles. r
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Fig. 5.16. Reconstruction [on a 5' grid] of the delta-function model spherical harmonic degree 2 function for the first
randomization of the HIMU data set. Values are deviations from the average HIMU percentage [0.31]. Feature locations
are designated by triangles. ru
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Fig. 5.17. Reconstruction [on a 5' grid] of the delta-function model spherical harmonic degree 2 function for the second
randomization of the HIMU data set. Values are deviations from the average HIMU percentage [0.31]. Feature locations
are designated by triangles.



DELTA-FUNCTION MODEL RANDOM3 DEGREE 2 HIMU

C .39

60.

40..
40. 6 -

90

-20.

-40. 0.
0. N)

-20. -439A
0.29

-0.19
-40. 0.10

-60. 1

-160.-140.-120.-100.-80. -60. -40. -20. 0. 20. 40. 60. 80. 100. 120. 140. 160.



Fig. 5.18. Reconstruction [on a 5' grid] of the delta-function model spherical harmonic degree 2 function for the third
randomization of the HIMU data set. Values are deviations from the average HIMU percentage [0.311. Feature locations
are designated by triangles. N)



DELTA-FUNCTION MODEL RANDOM4 DEGREE 2 HIMU

0.

60.

40.

0.o20. -05

0.

-20. I
0.2

0.1
-40.o

-60. -------

-160.-140.-120.-100.-80. -60. -40. -20. 0. 20. 40. 60. 80. 100. 120. 140. 160.



Fig. 5.19. Reconstruction [on a 5' grid] of the delta-function model spherical harmonic degree 2 function for the fourth
randomization of the HIMU data set. Values are deviations from the average HIMU percentage [0.31]. Feature locations
are designated by triangles. IQ
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Fig. 5.20. Reconstruction [on a 50 grid] of the delta-function model spherical harmonic degree 2 function for the fifth
randomization of the HIMU data set. Values are deviations from the average HIMU percentage [0.31]. Feature locations
are designated by triangles.
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Fig. 5.21. Correlation of the GEM-L2 geoid coefficients with the five layers of
the Clayton-Comer seismic tomography model. Line symbols: = layer 1
[2500-2900 km], - - - - = layer 2 [2100-2500 km], - -- = layer 3 [1700-2100
km], - -- = layer 4 [1200-1700 km], o-o = layer 5 [700-1200 km].
Confidence levels are determined by a t-test with 2/ degrees of freedom.
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Fig. 5.22. Correlation of the continuous layer model filtered EMI coefficients
with the five layers of the Clayton-Comer seismic tomography model. Line
symbols: = layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km], -.

= layer 3 [1700-2100 km], - - - - = layer 4 [1200-1700 km], o-o = layer 5
[700-1200 km]. Confidence levels are determined by a t-test with 21 degrees of
freedom.
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Fig. 5.23. Correlation of the continuous layer model EMII coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:

- = layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km], - - - - = layer

3 [1700-2100 km], - . -. = layer 4 [1200-1700 km], o-o = layer 5 [700-1200
km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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Fig. 5.24. Correlation of the continuous layer model filtered HIMU coefficients
with the five layers of the Clayton-Comer seismic tomography model. Line
symbols: = layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km],
- = layer 3 [1700-2100 km], - - - - = layer 4 [1200-1700 km], o-o = layer 5
[700-1200 km]. Confidence levels are determined by a t-test with 21 degrees of
freedom.
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Fig. 5.25. Correlation of the continuous layer model DMM coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:

= layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km], - = layer
3 [1700-2100 km], - . - . = layer 4 [1200-1700 km]1, o-o = layer 5 [700-1200
km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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Fig. 5.26. Correlation of the delta-function model EMI coefficients with the five
layers of the Clayton-Comer seismic tomography model. Line symbols: =
layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km], - - - - = layer 3 [1700-
2100 km], - - . = layer 4 [1200-1700 km], o-o = layer 5 [700-1200 km].
Confidence levels are determined by a t-test with 21 degrees of freedom.



244

Delta-Function Model EMII Correlated with Clayton-Comer Model
0.8

0.6

0.4

0.2

0

-0.2

-0.4

-1
2 3 4 5

Degree

Fig. 5.27. Correlation of the delta-function model EMIl coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:

= layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km], - - - - = layer
3 [1700-2100 km], - . -. = layer 4 [1200-1700 km], o-o = layer 5 [700-1200
km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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Fig. 5.28. Correlation of the delta-function model HMU coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:
____ = layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km], - -- = layer

3 [1700-2100 km], - - - - = layer 4 [1200-1700 km], o-o = layer 5 [700-1200
km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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Fig. 5.29. Correlation of the delta-function model DMM coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:

= layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km], .... = layer
3 [1700-2100 km], - - - . = layer 4 [1200-1700 km], o-o = layer 5 [700-1200
km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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APPENDIX

OCEANIC BASALT DATA SET



A ISB C D E F G H I J
1 Sample Number 87/86Sr 143/144Nd 206/204Pb 207/204Pb 208/204Pb REFERENCES Latitude Longitude

3 ASCENSION #N/A #N/A #N/A #N/A #N/A #N/A #N/A
4 A15085 0.702820 0.512970 19.520 15.610 39.060 Cohen,O'Nions, 1982a -7.95 -14.37
5 A15176 0.702760 0.513030 19.560 15.620 39.070 -7.95 -14.37
6 A17308 0.702690 0.513050 19.430 15.570 38.850 -7.95 -14.37
7 AsclO 0.702980 0.513050 19.190 15.630 38.634 Pb-Wels, 1983 -7.95 -14.37
8 Ascl5l5O 0.702900 0.513080 19.403 15.630 38.964 Sr,Nd-Weis et al., 1987 -7.95 -14.37
9 AITUTAKI #N/A #N/A #N/A #N/A #N/A #N/A #N/A

10 AKIl 0.704629 0.512715 18.647 15.544 38.685 Allegre et al., 1987 -18.57 -159.77
11 AIT-22B 0.704370 0.512778 18.700 15.573 38.753 Nakamura,Tatsumoto, 1988 -18.57 -159.77
12 AIT-24B 0.704810 0.512786 18.858 15.552 38.958 -18.57 -159.77
13 AIT-64A 0.704850 0.512769 18.922 15.576 39.019 -18.57 -159.77
14 AMSTERDAM #N/A #N/A #N/A #N/A #N/A #N/A #N/A
15 0.703773 0.512860 19.098 15.609 39.471 White, unpublished -37.92 77.67
16 0.703734 0.512886 19.113 15.603 39.470 -37.92 77.67
17 0.703864 0.512857 19.115 15.604 39.470 -37.92 77.67
18 0.703877 0.512849 19.058 15.608 39.425 -37.92 77.67
19 0.703865 0.512858 19.049 15.607 39.411 -37.92 77.67
20 ATUI #N/A #N/A #N/A #N/A #N/A #N/A #N/A
21 ATU4 0.704515 0.512805 19.573 15.635 39.473 Allegre et al., 1987 -20.00 -158.12
22 ATU2 0.705005 0.512770 20.044 15.723 40.215 -20.00 -158.12
23 AT-50C 0.704310 0.512784 19.673 15.631 39.593 Nakamura,Tatsumoto, 1988 -20.00 -158.12
24 AT-54D 0.704070 0.512772 19.343 15.591 39.083 -20.00 -158.12
25 AT-83A 0.704600 0.512766 19.573 15.635 39.534 -20.00 -158.12
26 AT-87A 0.704890 0.512784 19.512 15.617 39.518 -20.00 -158.12
27 AZORES #N/A #N/A #N/A #N/A #N/A #N/A #N/A
28 F-33 Falal 0.703930 0.512843 19.312 15.634 39.151 Newsom et al., 1986 38.50 -28.00
29 SM1D Sao Miguel 0.705130 0.512699 20.000 15.780 40.330 Allegre et al., 1987 38.50 -28.00
30 SM2D 0.705350 0.512712 19.960 15.750 40.190 38.50 -28.00
31 AZ1704 0.703480 0.512920 19.333 15.601 39.130 Davies et al., 1989 38.50 -28.00
32 SM30 0.704320 0.512850 19.750 15.699 39.890 38.50 -28.00
33 SM49 0.705220 0.512810 19.884 15.754 40.170 38.50 -28.00
34 BALLENY #N/A #N/A #N/A #N/A #N/A #N/A #N/A
35 0.702967 0.512956 19.856 15.605 39.482 Hart, 1988 -66.88 -163.33
36 0.702997 0.512956 19.762 15.594 39.399 -66.83 -163.37
37 0.702849 0.512989 19.638 15.601 39.197 -67.53 -179.95
38 CAMEROON LINE #N/A #N/A #N/A #N/A #N/A #N/A #N/A
39 FP32 Bloko 0.703410 0.512776 20.368 15.667 40.210 Halliday et al., 1990 3.64 8.75
40 FP1 _I 0.703230 0.512846 20.032 15.652 39.860 3.64 8.75
41 FP23 1 0.703210 0.512850 20.298 15.691 40.050 3.64 8.75



A B C D E F G H
42 FP38 _ _ 0.703170 0.512867 20.044 15.646 39.800 3.64 8.75
43 FP44 0.703220 0.512840 2.353 15.675 40.170 Halliday et al., 1988 3.64 8.75
44 P17 Principe 0.702870 0.512911 19.953 15.671 39.630 1.59 2.75
45 P18 0.703240 0.512891 20.060 15.699 39.920 1.59 2.75
46 P19 0.702980 0.512921 20.112 15.691 39.770 1.59 2.75
47 ST93 SAo Tome 0.703180 0.512896 20.064 15.666 39.790 Halliday et al., 1990 0.23 7.00
48 ST72 0.703160 0.512926 19.997 15.683 39.720 0.23 7.00
49 ST106 0.703130 0.512906 19.944 15.653 39.560 0.23 7.00
50 ST100 0.703100 0.512932 20.014 15.659 39.680 0.23 7.00
51 ST73 0.703050 0.512960 20.074 15.720 39.800 0.23 7.00
52 ST109 0.702970 0.513005 19.954 15.676 39.570 0.23 7.00
53 ST19 0.702920 0.512974 20.011 15.656 39.620 Halliday et al., 1988 0.23 7.00
54 ST96 0.703440 0.512848 20.009 15.707 39.930 0.23 7.00
55 ST107 0.703020 0.512956 20.045 15.674 39.700 0.23 7.00
56 AN15 Pagau 0.703280 0.512906 19.032 15.607 38.860 -1.36 5.88
57 CAPE VERDE #N/A #N/A #N/A #N/A #N/A #N/A #N/A
58 nf8 Fogc 0.703693 0.512786 18.932 15.554 38.801 Gerlach et al., 1988 15.00 -24.30
59 nf34 0.703419 0.512752 18.929 15.551 38.822 15.00 -24.30
60 nf16 0.703646 0.512779 18.943 15.544 38.794 15.00 -24.30
61 zf30 0.703647 0.512786 18.934 15.552 38.778 15.00 -24.30
62 zf29 0.703522 0.512783 18.949 15.554 38.817 15.00 -24.30
6 3 nf6O 0.703223 0.512978 19.881 15.640 39.454 15.00 -24.30
64 zm69 Malo 0.703653 0.512811 19.185 15.583 39.014 15.10 -23.20
65 zm63 0.703754 0.512785 19.199 15.578 39.078 15.10 -23.20
66 zm6O 0.703720 0.512813 19.201 15.564 39.061 15.10 -23.20
67 zm53 0.703386 0.512886 19.267 15.575 39.016 15.10 -23.20
68 zm32 0.703299 0.512897 19.173 15.586 38.972 15.10 -23.20
69 zm159 0.703749 0.512712 19.033 15.560 39.115 15.10 -23.20
70 zm189 0.703795 0.512694 18.954 15.520 38.816 15.10 -23.20
71 zm191 0.703600 0.512735 19.260 15.582 39.281 15.10 -23.20
72 z15C Sao Tiago 0.703748 0.512692 18.970 15.560 38.843 15.00 -23.60
73 z153 0.703512 0.512790 19.207 15.570 38.974 15.00 -23.60
74 z147 0.703934 0.512606 18.744 15.537 38.686 15.00 -23.60
75 z146 0.703844 0.512693 18.930 15.546 38.818 15.00 -23.60
76 nl7 0.703648 0.512752 19.013 15.564 38.858 15.00 -23.60
77 n14 0.703721 0.512761 18.999 15.550 38.849 15.00 -23.60
78 z160 0.703192 0.512908 19.438 15.595 39.100 15.00 -23.60
79 z159 0.703278 0.512862 19.118 15.577 38.966 15.00 -23.60
80 z113 0.703224 0.512854 19.124 15.577 38.987 15.00 -23.60
81 n1185 0.703511 0.512828 19.135 15.573 38.8881 15.00 -23.60
82 n1781 0.7035151 0.512711 19.195 15.5741 38.961 25 15.00 -3.60



A B C D E F G H I J
83 ni176 0.703875 0.512674 18.883 15.550 38.797 15.00 -23.60

84 n17 0.703650 0.512770 19.013 15.560 38.860 Davies et al., 1989 17.00 -25.10
85 nv6 ao Vicente 0.703205 0.512984 19.143 15.571 38.750 16.90 -25.00
86 hv85 0.703085 0.512935 19.554 15.608 39.241 16.90 -25.00
87 nv9 0.702922 0.513000 19.434 15.593 39.094 16.90 -25.00
88 na2 Sao Antao 0.703096 0.512873 19.715 15.626 39.334 17.00 -25.10
89 na15 0.702919 0.513045 19.607 15.622 39.191 17.00 -25.10
90 na48 0.703192 0.512914 19.669 15.619 39.320 17.00 -25.10

91 na51 0.703167 0.512868 19.651 15.623 39.282 17.00 -25.10

92 na60 0.703019 0.512967 19.685 15.621 39.285 17.00 -25.10

93 na63 0.703086 0.512901 19.732 15.624 39.335 17.00 -25.10

94 na69 0.703050 0.513009 19.670 15.611 39.256 17.00 -25.10

95 na73 0.703157 0.512916 19.767 15.622 39.445 17.00 -25.10

96 na79 0.703105 0.512974 19.609 15.615 39.185 17.00 -25.10

97 na8O 0.702943 0.513012 19.275 15.587 38.902 17.00 -25.10

98 zm55 0.703250 0.512920 19.287 15.581 39.060 15.10 -23.20

99 CHRISTMAS #N/A #N/A #N/A #N/A #N/A #N/A #N/A
100 XI-1 0.703987 0.512796 18.869 15.597 38.835 Hart, 1988 -10.50 105.67
101 XI-2 0.703938 0.512761 19.123 15.627 39.180 -10.50 105.67

102 XI-3 0.703995 0.512779 18.900 15.623 39.017 -10.50 105.67
103 XI-4 0.703966 0.512789 18.914 15.623 38.979 -10.50 105.67

104 XI-5 0.703987 0.512776 18.869 15.591 38.871 -10.50 105.67

105 70452 0.704090 0.512702 18.955 15.644 39.125 -10.50 105.67

106 70453 0.705420 0.512498 17.846 15.566 38.071 -10.50 105.67

107 70457 0.705360 0.512544 18.043 15.566 38.128 -10.50 105.67

108 70461 0.705390 0.512511 17.905 15.573 38.134 -10.50 105.67

109 70462 0.705430 0.512460 17.904 15.568 38.118 -10.50 105.67

110 70471 0.703770 0.512827 18.918 15.577 38.784 -10.50 105.67

111 70472 0.703980 0.512806 19.151 15.675 39.334 -10.50 105.67

112 70480 0.703930 0.512724 18.915 15.637 39.071 -10.50 105.67
1130000S #N/A #N/A #N/A #N/A #N/A #N/A #N/A
114 PC77 0.703020 0.512984 19.236 15.596 38.922 Castillo et al., 1988 5.54 -87.08
115 RB43 0.703080 0.512979 19.251 15.593 39.036 5.54 -87.08
116 E10 0.702990 0.513009 19.214 15.579 38.961 5.54 -87.08

117 CONDRES #N/A #N/A #N/A #N/A #N/A #N/A #N/A

118 a|7-6 0.703244 0.512888 20.216 15.654 39.917 White, unpublished -12.22 44.17
119 a|21-9 0.703191 0.512878 20.418 15.681 40.072 -12.22 44.17
120 mo105 0.703343 0.512837 19.453 15.607 39.338 -12.30 43.72

121 mollO 0.703208 0.512832 19.339 15.602 39.197 -12.30 43.72

122 mol07 0.703316 0.512826 19.219 15.573 39.081 -12.30 43.72

123 72gc-5 0.703879 0.512715 19.500 15.602 39.575 -11.75 43.38



A B C D E F G H I J
124 72gc-1 0.703950 0.512718 19.554 15.591 39.624 -11.75 43.38
125 ka-77 0.703888 0.512645 19.392 15.566 39.484 -11.75 43.38
126 72gc-14 0.703838 0.512701 19.425 15.578 39.474 -11.75 43.38
127 AJ10-1 0.703152 0.512874 20.046 15.643 39.706 -12.22 44.17
128 AJ4-2 0.703165 0.512894 20.043 15.647 39.765 -12.22 44.17
129 AJ29-4 0.703203 0.512886 19.625 15.620 39.379 -12.22 44.17
130 GC-37 0.703237 0.512870 19.192 15.573 39.033 -11.75 43.38
131 GC-33 0.703194 0.512868 19.192 15.591 39.055 -11.75 43.38
132 CROZET #N/A #N/A #N/A #N/A #N/A #N/A #N/A
133 0.704030 0.512840 18.846 15.572 38.984 White, unpublished -46.45 52.00
134 0.704008 0.512851 18.902 15.571 39.007 -46.45 52.00
135 0.703930 0.512870 19.184 15.623 39.160 -46.45 52.00
136 0.704051 0.512836 18.857 15.573 38.973 -46.45 52.00
137 0.704003 0.512831 18.793 15.568 38.956 -46.45 52.00
138 0.703963 0.512859 19.019 15.607 39.089 -46.45 52.00
139 0.703971 0.512856 18.930 15.588 38.913 -46.45 52.00
140 0.704010 0.512865 18.892 15.583 39.034 _ _ _ _ _ _ -46.45 52.00
141 0.704007 0.512830 18.936 15.600 39.216 -46.45 52.00
142 FERNANDO #N/A #N/A #N/A #N/A #N/A #N/A #N/A
143 36 0.703900 0.512865 19.423 15.626 39.290 Gerlach et al., 1987 -3.83 -32.42
144 25 0.704647 0.512785 19.132 15.569 38.940 -3.83 -32.42
145 104 0.703945 0.512828 19.565 15.652 39.466 -3.83 -32.42
146 98 0.703861 0.512817 19.473 15.626 39.414 -3.83 -32.42
147 10 0.704578 0.512811 19.199 15.620 39.139 -3.83 -32.42
148 76 0.703989 0.512773 19.507 15.683 39.602 -3.83 -32.42
149 72 0.703969 0.512849 19.559 15.657 39.450 -3.83 -32.42
150 84 0.704854 0.512712 19.145 15.571 39.054 -3.83 -32.42
151 31 0.703821 0.512851 19.354 15.623 39.230 -3.83 -32.42
152 33 0.703766 0.512897 19.317 15.599 39.077 -3.83 -32.42
153 74 0.703946 0.512797 19.470 15.648 39.493 -3.83 -32.42
154 106 0.703855 0.512851 19.445 15.647 39.488 -3.83 -32.42
155 79 0.704181 0.512798 19.553 15.663 39.481 -3.83 -32.42
156 20 0.703957 0.512821 19.644 15.679 39.472 -3.83 -32.42
157 FN10 0.704710 0.512711 19.233 15.645 39.253 Allegre et al., 1987 -3.83 -32.42
158 FN15 0.703791 0.512777 19.522 15.637 39.447 -3.83 -32.42
159 GALAPAGOS #N/A #N/A #N/A #N/A #N/A #N/A #N/A
160 FL3 0.703950 0.512909 19.879 15.632 39.559 White,Hoffman, 1982 -1.30 -90.45
161 F126 0.703430 0.512933 19.535 15.583 39.114 _-1.30 -90.45
162 S163 0.702670 0.513068 18.555 15.508 38.016 -0.62 -90.33
1631 E134 0.703270 0.513001 18.263 15.524 37.956 -0.88 -91.17
164 E63 0.702780 0.513005 18.744 15.545 38.308 -0.88 -91.17



A B C D E F G H I J
165 E76 0.702860 0.513064 18.881 15.533 38.390 -0.22 -90.77
166 E103 0.702820 0.513096 18.838 15.536 38.386 -0.88 -89.50
167 E15 0.702760 0.513051 18.840 15.526 38.399 0.33 -90.47

168 E8 0.703350 0.512812 19.124 15.566 38.927 0.58 -90.75

169 E42 0.703120 0.512941 19.068 15.526 38.607 -0.37 -91.55

170 E35 0.703290 0.512985 20.114 15.730 39.947 -0.18 -91.28

171 GOlGH #N/A #N/A #N/A #N/A #N/A #N/A #N/A

172 10 0.705030 0.512515 18.579 15.643 39.090 Allegre et al., 1987 -40.33 -10.00
173 51 0.705160 0.512560 18.311 15.604 38.890 -40.33 -10.00

174 HAWAIIAN ISLANDS #N/A #N/A #N/A #N/A #N/A #N/A #N/A
175 OA1 Honolulu 0.703290 0.513052 18.038 15.443 37.689 Stille et al., 1983 21.40 -157.75
176 OA3 0.703260 0.513033 18.170 15.468 37.822 21.40 -157.75

177 OA4 0.703330 0.513062 18.202 15.451 37.815 21.40 -157.75

178 OA5 0.703250 0.513052 18.154 15.461 37.773 21.40 -157.75

179 OA6 0.703360 0.513042 18.099 15.463 37.754 21.40 -157.75

180 OA11 0.703330 0.513051 18.103 15.438 37.686 21.40 -157.75
181 1801 Hualalal 0.703640 0.512914 17.903 15.429 37.747 Stille etal.,86,Tatsumoto,78 19.71 -155.90
182 ID-872-2 Kaual 0.703620 0.512962 18.447 15.512 37.962 Stille et al., 1986 22.01 -159.58
183 KAU-1 0.703820 0.512967 18.070 15.442 37.803 22.01 -159.58
184 1921 Kilauea 0.703440 0.513057 18.647 15.491 38.192 Sr/Nd-Stlle et al., 1986 19.40 -155.21
185 1955 0.703650 0.513040 18.485 15.475 38.108 Pb-Tatsumoto, 1978 19.40 -155.21
186 1960 0.703560 0.513024 18.533 15.486 38.155 19.40 -155.21
187 1963 0.703560 0.513009 18.541 15.481 38.155 19.40 -155.21
188 C-53 Kohala 0.703620 0.513044 18.136 15.457 37.760 20.16 -157.78
189 C-62 0.703555 0.512986 18.156 15.463 37.831 20.16 -157.78
190 C-66 0.703670 0.513017 18.267 15.471 37.916 20.16 -157.78

191 C-70 0.703595 0.513032 18.211 15.458 37.828 20.16 -157.78

192 oa2 Koolau 0.704080 0.512732 17.826 15.440 37.763 Stille et al., 1983 21.40 -157.75
193 oa7 0.704110 0.512704 17.898 15.448 37.779 21.40 -157.75

194 oa8 0.704190 0.512702 18.000 15.462 37.842 21.40 -157.75

195 oa9 0.704210 0.512703 17.929 15.484 37.803 21.40 -157.75

196 oall 0.704110 0.512701 17.912 15.445 37.749 21.40 -157.75

197 69Tan2 0.704550 0.512673 17.686 15.406 37.735 Hart, 1988 21.40 -157.75
198 WW9991 0.703800 0.512880 17.909 15.471 37.758 21.40 -157.75
199 KW24 Cahoolawe 0.704131 0.512868 18.025 15.429 37.759 West et al., 1987 20.50 -156.67
200 25 0.704162 0.512848 18.047 15.428 37.786 20.50 -156.67

201 1 0.704136 0.512809 17.954 15.445 37.805 20.50 -156.67

202 2 0.704211 0.512784 17.921 15.439 37.733 20.50 -156.67

203 7 0.703833 0.512975 18.337 15.450 37.990 20.50 -156.67

204 6 1 0.704039 0.512887 18.120 15.431 37.842 20.50 -156.67

205 5 1 0.703785 0.512929 18.367 15.455 38.023 20.50 -156.67



A B C D E F G H I J
206 23 0.704090 0.512901 18.036 15.430 37.800 20.50 -156.67
207 19 0.704399 0.512731 17.946 15.454 37.836 20.50 -156.67
208 16 0.704149 0.512897 18.149 15.445 37.845 20.50 -156.67
209 18 0.704159 0.512900 18.092 15.439 37.866 20.50 -156.67
210 H1440 0.704257 0.512864 18.005 15.447 37.817 20.50 -156.67
211 KW14 0.704032 0.512921 18.027 15.466 37.770 20.50 -156.67
212 0x067 Lanal 0.704249 0.512729 17.853 15.420 37.702 20.83 -156.92
213 ox068 0.704111 0.512784 17.871 15.436 37.701 20.83 -156.92
214 ox069 _ _ 0.704352 0.512721 17.886 15.431 37.742 20.83 -156.92
215 ox078 0.704239 0.512768 17.712 15.428 37.738 20.83 -156.92
216 16-1 Loihi 0.703530 0.512941 18.222 15.478 38.088 Staudigel et aI.,1984 19.01 -155.27
217 20-14 0.703520 0.512949 18.347 15.469 38.143_ 18.86 -155.26
218 23-3 0.703580 0.512982 18.433 15.492 38.164 18.90 -155.27
219 29-10 0.703580 0.512962 18.266 15.474 38.015 18.90 -155.25
220 18-4 0.703700 0.512954 18.443 15.475 38.173 18.94 -155.28
221 18-8 i 0.703680 0.512940 18.448 15.477 38.189 18.94 -155.28
222 25-4 0.703650 0.512946 18.418 15.477 38.118. 18.83 -155.25
223 21-2 0.703520 0.513059 18.504 15.499 38.160 18.91 -155.26
224 24-7 0.703530 0.513048 18.384 15.490 38.107 18.89 -155.26
225 27-4 0.703410 0.512981 18.373 15.502 38.159 18.84 -155.26
226 31-12 0.703350 0.513047 18.255 15.477 38.054 18.93 -155.31
227 17-2 0.703510 0.513045 18.447 15.488 38.177 18.97 -155.27
228 20-4 0.703580 0.512902 18.372 15.463 38.139 18.86 -155.26
229 15-4 0.703590 0.512949 18.392 15.463 38.123 18.97 -155.27
230 17-17 0.703520 0.513009 18.462 15.482 38.221 18.97 -155.27
231 C107 West Maul 0.703460 0.513072 18.438 15.499 37.948 Stub et at., 1986 20.88 -156.57
232 C114 0.703440 0.513097 18.416 15.468 37.907 20.88 -156.57
233 HMT79-2B 0.703500 0.513007 18.474 15.535 37.974 _20.88 -156.57
234 C-74 Mauna Kea 0.703580 0.513018 18.401 15.476 37.923 Sr/Nd-Stile et al., 1986 19.86 -155.50
235 79MK1 0.703450 0.513030 18.398 15.490 38.017 Pb-Tatsumoto, 1978 19.86 -155.50
236 1907 Mauna Loa 0.703780 0.512925 18.173 15.469 37.898 19.50 -155.78
237 1926 0.703805 0.512915 18.113 15.458 37.817 19.50 -155.78
238 1950 0.703795 0.512905 18.089 15.449 37.824 19.50 -155.78
239 C46 Walanae 0.703590 0.513007 18.158 15.449 37.762 Stub et at., 1983 21.46 -158.17
240 C48 0.703650 0.512976 18.114 15.454 37.735 21.46 -158.17
241 C30 0.703740 0.512961 18.143 15.457 37.754 21.46 -158.17
242 C52 0.703650 0.512973 18.082 15.439 37.692 21.46 -158.17
243 WAIK 8F E. Molokal 0.703640 0.512982 18.516 15.491 37.990 Stub et at., 1986 21.17 -156.85
244 c162 . Molokal 0.703758 0.512910 18.071 15.444 37.731 21.17 -157.25
245 WMOL-1 0.704090 0.512945 18.133 15.455 37.751 21.17 -157.25
246 WMOL-3 0.703740 0.512942 18.167 15.460 37.754 __1 21.17 -157.25
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247 C44 0.703660 0.513018 18.391 15.489 37.952 21.17 -157.25

248 ICELAND #N/A #N/A #N/A #N/A #N/A #N/A #N/A

249 1-13 0.703300 0.512930 18.130 15.430 37.900 Hart, unpublished 65.10 -13.70
250 1-16 0.703300 0.512980 18.460 15.450 38.100 65.10 -14.70

251 R-14 0.703040 0.513040 18.350 15.450 37.840 64.80 -19.70
252 RE-1 5 0.703150 0.512990 18.762 15.506 38.371 64.00 -22.50

253 RE-21 0.703200 0.512995 18.707 15.516 38.359 64.00 -22.50

254 RE-36 0.702776 0.513158 18.574 15.516 38.187 64.00 -22.50

255 RE-46 0.702976 0.513168 18.190 15.523 37.988 64.00 -22.50

256 JUANFERNANDEZ #N/A #N/A #N/A #N/A #N/A #N/A #N/A
257 0.703512 0.512882 19.094 15.595 38.899 Gerlach et al., 1986 -33.62 -78.83
258 0.703779 0.512818 19.214 15.627 39.099 -33.62 -78.83
259 0.703581 0.512835 19.045 15.597 38.886 -33.62 -78.83
260 0.703762 0.512831 19.130 15.595 38.958 -33.62 -78.83
2 61 KERGUELENPLATEAU #N/A #N/A #N/A #N/A #N/A #N/A #N/A
262 (Kerg Isl.) Courbet 0.705260 0.512671 18.452 15.549 39.058 White, unpublished -49.25 70.00
263 Foch Isl 0.703980 0.512907 18.399 15.542 38.473 -49.00 69.28

264 Courbet 0.705310 0.512645 18.460 15.560 39.075 -49.25 70.00

265 0.705320 0.512631 18.396 15.561 39.037 -49.25 70.00

266 Foch Isl 0.704070 0.512870 18.483 15.521 38.693 -49.00 69.28

267 0.703880 0.512878 18.459 15.520 38.479 -49.00 69.28

268 0.705310 0.512640 18.385 15.544 38.981 -49.00 69.28

269 Courbet 0.706616 0.512615 18.543 15.568 39.167 -49.25 70.00

270 0.704926 0.512669 18.486 15.556 39.051 -49.25 70.00

271 BM64878 (Kerg Isl.) 0.704610 0.512794 18.112 15.481 38.290 Storey et al., 1988 -48.75 69.00
272 BM75059 0.704400 0.512831 18.313 15.592 38.477 -48.75 69.00

273 BM1967 P8(5) 0.705410 0.512545 18.086 15.532 38.710 -49.50 70.00
274 BM 75190 0.705660 0.512502 18.060 15.537 38.884 -48.75 69.00

275 BM64986 (Heard Isi. 0.705530 0.512586 18.009 15.547 38.461 -56.10 73.50
276 DR02/12 (Kerg. Pla 0.705900 0.512530 17.539 15.467 37.875 Weis et al., 1989 -56.67 78.00
277 DROS 0.704740 0.512790 18.068 15.596 38.336 -57.29 77.00

278 DR06 0.704270 0.512710 18.182 15.579 38.277 -57.50 77.00

279 DR08 0.706120 0.512540 17.938 15.549 38.521 -50.20 75.00

280 DR08/05 0.704170 0.512700 18.419 15.542 38.767 -50.20 75.00

281 65171 (Heard Isi. 0.705328 0.512598 18.211 15.567 38.508 Barling,Goldstein, 1990 -56.10 73.50
282 65085 Big Ben 0.705458 0.512598 18.110 15.564 38.590 -56.10 73.50
283 65151 0.705980 0.512516 17.953 15.550 38.420 -56.10 73.50
284 H10 0.705224 0.512622 18.189 15.566 38.646 -56.10 73.50

285 65002 Laurens 0.704772 0.512734 18.527 15.558 38.608 -56.10 73.50
286 65054 0.704793 0.512722 18.656 15.577 38.980 -56.10 73.50

287 56015 1 0.704806 0.512733 18.796 15.578 39.120 1 -56.10 73.50



A JZ B C D E F G H I J
288 69244 0.704852 0.512707 18.776 15.588 39.170 _ -56.10 73.50
289 747c-12r-4-45-46 0.705508 0.512435 17.466 15.461 37.977 Salters, 1989 -54.81 74.79
290 747c-16r-2-85-87 0.705895 0.512452 18.275. 15.643 38.459 -54.81 74.79
291 747c-16r-2-81-84 0.705866 0.512410 17.608 15.508 38.072 -54.81 74.79
292 748c-79r-7-65-67 0.705157 0.512491 18.305 15.613 38.495 -58.44 78.98
293 749-15r-2-35-37 0.704237 0.512763 18.200 15.625 38.435 -58.72 76.41
294 749c-15r-5-127-130 0.704306 0.512764 17.978 15.587 38.213 -58.72 76.41
295 750-16r-3-134-136 0.705012 0.512902 18.112 15.585 38.405 -57.59 81.24
296 81-18 Loranchet 0.704710 0.512660 18.504 15.550 38.957 Gautier et al., 1990 -48.93 69.00
297 81-19 0.704300 0.512740 18.302 15.558 38.391 -48.93 69.00
298 85-12 ateauCent 0.704880 0.512730 18.377 15.539 38.813 -49.39 69.33
299 85-55 0.704830 0.512750 18.467 15.528 38.817 -49.39 69.33
300 77-211 1tsChateau 0.705080 0.512620 18.444 15.565 39.007 -49.25 70.00
301 80-135 Ouest 0.705380 0.512540 18.334 15.552 38.807 -49.25 68.75
302 80-71 0.705640 0.512500 18.234 15.545 38.978 -49.25 68.75
303 LOUISVILL (<40my) #N/A #N/A #N/A #N/A #N/A #N/A #N/A
304 ' mthn7dl 0.703744 0.512946 19.203 15.615 38.921 Cheng et al., 1988 -50.44 -139.17
305 mthn6dl 0.703735 0.512888 19.422 15.625 39.239 -48.20 -148.80
306 msn11O-1 0.703648 0.512932 19.332 15.626 39.127 -41.45 -164.27
307 lv-2 0.703178 0.512897 19.128 15.574 38.676 -40.78 -165.35
308 MANGAIA #N/A #N/A #N/A #N/A #N/A #N/A #N/A
309 MGA1 0.702853 0.512864 21.141 15.771 40.068 Allegre et al., 1987 -21.93 -157.93
310 MAN-82C 0.702820 0.512886 21.624 15.793 40.459 Nakamura,Tatsumoto, 1988 -21.93 -157.93
311 MAN-88A 0.702870 0.512871 21.631 15.796 40.329 -21.93 -157.93
312 MAN-96A 0.702730 0.512878 21.755 15.802 40.619 -21.93 -157.93
313 MAN-1011 0.702830 0.512845 21.647 15.825 40.602 -21.93 -157.93
314 MARION/P.E. #N/A #N/A #N/A #N/A #N/A #N/A #N/A
315 WJE21 0.703050 0.513020 18.574 15.541 38.302 Hart, 1988 -46.92 37.75
316 WJE39 0.703360 0.512919 18.506 15.541 38.329 -46.92 37.75
317 WJM43 0.703390 0.512883 18.560 15.546 38.395 -46.92 37.75
318 AJE1M 0.703391 0.512899 18.608 15.532 38.440 -46.92 37.75
319 MAROTIRI #N/A #N/A #N/A #N/A #N/A #N/A #N/A
320 113F 0.703693 0.512826 19.290 15.580 39.100 Chauvel et al., 1991 -23.10 -144.00
321 MARQUESAS #N/A #N/A #N/A #N/A #N/A #N/A #N/A
322 UP73f (AOB) 0.705120 0.512710 19.230 15.620 39.230 Vidal et al., 1984 -9.42 -140.00
323 UH68f2 (AOB) 0.705614 0.512741 19.150 15.650 39.290 -8.92 -139.53
324 NH78a (thol) 0.703780 0.512889 19.110 15.570 38.880 -8.93 -140.00
325 NH10e (thol?) 0.703040 0.512971 19.130 15.580 39.130 -8.93 -140.00
326 uapll (tho) 0.702880 0.512919 19.858 15.536 39.383 Dupuy et al., 1987 -9.42 -140.00
327 uap17 (thol) 0.702930 0.512921 19.978 15.559 39.619 -9.42 -140.00
328 uap24 (thol) 0.703180 0.512904 19.617 15.553 39.188 _ -9.42 -140.00



A B C D E F G H I J
329 up-74h (AOB) 0.705220 0.512724 19.228 15.635 39.260 -9.42 -140.00
330 uapOl0 (AOB) 0.705090 0.512674 19.180 15.650 39.310 Duncan et al., 1986 -9.42 -140.00
331 uap026 (AOB) 0.704970 0.512683 19.140 15.640 39.200 -9.42 -140.00
332 uapOl5 (Haw.) 0.704810 0.512714 19.360 15.650 39.350 -9.42 -140.00
333 MAUKE #N/A #N/A #N/A #N/A #N/A #N/A #N/A
334 MKE3 0.704356 0.512753 19.697 15.629 39.510 AllIgre et al., 1987 -20.08 -157.25
335 MK-73 0.704350 0.512829 19.728 15.589 39.522 Nakamura,Tatsumoto, 1988 -20.08 -157.25
336 MK-75F 0.704400 0.512823 19.746 15.612 39.579 -20.08 -157.25

337 MAURITIUS #N/A #N/A #N/A #N/A #N/A #N/A #N/A

338 MAU-1| 0.703740 0.512924 18.704 15.532 38.660 Allgre et al., 1987 -20.33 57.50
339 N.E.SEAMOUNTS #N/A #N/A #N/A #N/A #N/A #N/A #N/A
340 0.703500 0.512798 20.651 15.665 40.035 Taras,Hart, 1987 35.30 -57.55
341 0.703550 0.512933 20.242 15.637 40.340 36.83 -58.82

342 0.703330 0.512950 20.297 15.630 39.544 38.92 -60.98

343 0.703180 0.512793 19.993 15.631 40.028 38.42 -63.25

344 0.703290 0.512789 20.102 15.608 39.986 38.42 -63.25

345 0.703389 0.512837 19.643 15.603 39.507 39.83 -67.45

346 NUNIVAK #N/A #N/A #N/A #N/A #N/A #N/A #N/A
347 B-5 0.702980 0.513149 18.539 15.473 38.031 Roden, 1982 60.00 -166.00
348 B-10 0.702820 0.513071 18.637 15.469 38.144 60.00 -166.00

349 PITCAIRN #N/A #N/A #N/A #N/A #N/A #N/A #N/A

350 P3 Tedside 0.704756 0.512495 17.782 15.477 38.872 Woodhead,McCulloch, 1989 -20.07 -130.10
351 P4 0.704487 0.512603 17.827 15.486 38.898 -20.07 -130.10

352 PS 0.704493 0.512613 17.832 15.477 38.908 -20.07 -130.10

353 P7 0.704746 0.512517 17.761 15.464 38.823 -20.07 -130.10

354 P8 0.704865 0.512462 17.635 15.460 38.725 -20.07 -130.10

355 P9 0.704694 0.512538 17.795 15.475 38.844 -20.07 -130.10

356 PlO 0.705132 0.512432 17.640 15.459 38.913 -20.07 -130.10

357 P11 damstown 0.703519 0.512848 18.449 15.492 38.896 -20.07 -130.10
358 P12 0.703525 0.512859 18.427 15.501 38.876 -20.07 -130.10

359 P18 0.703534 0.512859 18.515 15.523 39.047 -20.07 -130.10

360 P20 0.703637 0.512828 18.424 15.494 38.912 -20.07 -130.10

361 P22 0.703531 0.512846 18.475 15.517 39.035 -20.07 -130.10

362 P26 0.703548 0.512860 18.489 15.498 38.958 -20.07 -130.10

363 P28 0.703518 0.512854 18.484 15.502 39.009 -20.07 -130.10

364 P30 0.703505 0.512851 18.406 15.499 38.900 -20.07 -130.10

365 P31 0.703495 0.512880 18.459 15.494 38.920 -20.07 -130.10
366 P34 Chr. Cave 0.703509 0.512840 18.419 15.499 38.967 -20.07 -130.10
367 642 Pulwana 0.703702 0.512648 17.832 15.508 38.503 -20.07 -130.10
368 647 1 0.703693 0.512725 17.849 15.477 38.698 -20.07 -130.10

369 PONAPE #N/A #N/A #N/A #N/A #N/A I #N/A #N/A



A C D E F G H I J
370 0.703287 0.512973 18.462 15.489 38.289 Hart, 1988 6.93 158.32
371 RAEVAVAE #N/A #N/A #N/A #N/A #N/A #N/A #N/A
372 RVV5 0.703058 0.512980 19.472 15.570 39.144 Allegre et al., 1987 -23.87 -147.67
373 RAPA #N/A #N/A #N/A #N/A #N/A #N/A #N/A
374 198(4) 0.703888 0.512802 19.355 15.706 38.903 Palacz,Saunders, 1986 -27.58 -144.33
375 198(30) 0.703887 0.512789 19.996 15.862 39.170 -27.58 -144.33
376 RA31 0.704288 0.512764 18.970 15.560 38.870 Chauvel et al., 1991 -27.58 -144.33
377 RARATONGA #N/A #N/A #N/A #N/A #N/A #N/A #N/A
378 R-38A 0.704354 0.512701 18.381 15.595 38.971 Palacz,Saunders, 1986 -21.25 -159.75
379 RTG4 0.704566 0.512629 18.256 15.518 38.724 Allegre et al., 1987 -21.25 -159.75
380 R-1 0.704260 0.512747 18.975 15.564 38.798 Nakamura,Tatsumoto, 1988 -21.25 -159.75
381 R-6 0.704210 0.512716 18.499 15.528 38.934 -21.25 -159.75
382 R-8B 0.704150 0.512720 18.756 15.532 38.994 -21.25 -159.75
383 R-8C 0.704170 0.512678 18.745 15.520 38.945 -21.25 -159.75
384 R-11B 0.704160 0.512716 18.570 15.512 38.847 -21.25 -159.75
385 R-12B 0.704090 0.512743 18.685 15.530 38.979 -21.25 -159.75
386 REUNION #N/A #N/A #N/A #N/A #N/A #N/A #N/A
387 0.704279 0.512846 18.792 15.575 38.888 White, unpublished -21.17 55.50
388 0.704245 0.512825 18.994 15.593 39.053 -21.17 55.50
389 0.704157 0.512848 18.966 15.588 39.016 -21.17 55.50
390 0.704146 0.512851 18.794 15.584 38.915 -21.17 55.50
391 0.704187 0.512834 18.812 15.577 38.887 -21.17 55.50
392 0.704196 0.512848 18.981 15.597 39.026 -21.17 55.50
393 0.704197 0.512844 18.799 15.595 38.907 -21.17 55.50
394 RIMATARA #N/A #N/A #N/A #N/A #N/A #N/A #N/A
395 0.703100 0.512840 21.230 15.810 40.400 -22.67 -152.75
396 0.702750 0.513080 19.700 15.610 39.150 -22.67 -152.75
397 RIM-100A 0.702840 0.512868 21.184 15.781 40.334 Nakamura,Tatsumoto, 1988 -22.67 -152.75
398 RIM-100B 0.703240 0.512864 21.205 15.776 40.311 -22.67 -152.75
399 RURUTLJ #N/A #N/A #N/A #N/A #N/A #N/A #N/A
400 199(6) 0.702798 0.512860 20.972 15.784 40.148 Palacz,Saunders, 1986 -22.42 -151.33
401 199(11) 0.702726 0.512872 20.091 15.791 39.183 -22.42 -151.33
402 199(4) 0.703205 0.512928 20.151 15.772 39.672 -22.42 -151.33
403 RUR-90A 0.703190 0.512907 20.255 15.645 39.662 Nakamura,Tatsumoto, 1988 -22.42 -151.33
404 SALAYGOMEZ #N/A #N/A #N/A #N/A #N/A #N/A #N/A
405 y734 0.703220 0.512898 19.865 15.640 39.670 -26.47 -105.47
406 SAMOA #N/A #N/A #N/A #N/A #N/A #N/A #N/A
407 Upolu 0.705950 0.512760 18.940 15.630 39.070 Palacz,Saunders, 1986 -13.90 -171.75
408 0.705598 0.512669 18.590 15.620 38.780 -13.90 -171.75
409 Tutulla 0.704730 0.512811 19.340 15.650 39.150 -14.35 -170.75
410 0.705950 0.512760 18.940 15.630 39.070 -14.35 -170.75



A B C D E F G H I J
411 0.705076 0.512836 19.080 15.590 39.270 -14.35 -170.75

412 Shields Manu'a 0.704610 0.512810 19.201 15.598 39.329 Wright,White, 1987 -14.35 -169.58
413 0.704710 0.512811 19.234 15.599 39.386 -14.35 -169.58

414 0.704650 0.512813 19.297 15.597 39.459 -14.35 -169.58

415 0.704650 0.512854 19.170 15.591 39.305 -14.35 -169.58

416 Tutuila 0.705170 0.512871 18.856 15.572 38.783 -14.35 -170.75

417 0.705000 0.512821 19.149 15.598 39.263 -14.35 -170.75

418 0.706680 0.512667 19.221 15.628 39.586 -14.35 -170.75
419 0.707400 0.512640 19.103 15.622 39.463 -14.35 -170.75

420 0.704720 0.512827 19.161 15.599 39.240 -14.35 -170.75

421 Upolu 0.704830 0.512831 18.987 15.579 39.001 -13.90 -171.75
422 0.705310 0.512776 18.979 15.581 39.067 -13.90 -171.75

423 0.705530 0.512818 18.955 15.589 39.050 -13.90 -171.75
424 0.704910 0.512933 18.881 15.566 38.778 -13.90 -171.75

425 Saval'i 0.705960 0.512715 18.810 15.611 39.027 -13.73 -172.30

426 P. Erosion Tutuila 0.705000 0.512664 18.597 15.610 38.755 -14.35 -170.75
427 Upolu 0.705770 0.512740 18.881 15.602 39.073 -13.90 -171.75

428 0.705850 0.512720 18.882 15.606 39.088 -13.90 -171.75

429 0.705510 0.512622 18.572 15.605 38.759 -13.90 -171.75

430 0.705730 0.512721 18.722 15.617 38.904 -13.90 -171.75

431 0.706670 0.512702 18.757 15.622 38.952 -13.90 -171.75
432 0.705520 0.512626 18.587 15.651 38.886 -13.90 -171.75

433 0.705620 0.512659 18.767 15.609 38.966 -13.90 -171.75
434 Saval'i 0.705580 0.512763 18.801 15.613 39.049 -13.73 -172.30
435 0.705960 0.512699 18.762 15.616 39.005 -13.73 -172.30

436 0.705910 0.512726 18.808 15.611 39.042 -13.73 -172.30

437 0.705590 0.512749 18.724 15.604 38.917 -13.73 -172.30
438 1 0.705940 0.512764 18.886 15.601 39.094 -13.73 -172.30
439 0.706190 0.512744 18.738 15.597 38.939 -13.73 -172.30

440 0.705910 0.512694 18.692 15.627 38.909 -13.73 -172.30

441 SAN FELIX/S.A. #N/A #N/A #N/A #N/A #N/A #N/A #N/A
442 San Felix 0.704120 0.512585 18.960 15.569 38.871 Gerlach et al., 1986 -26.42 -79.98
443 0.704122 0.512552 19.312 15.602 39.329 -26.42 -79.98

444 San Ambrosio 0.703983 0.512732 18.913 15.569 38.844 -26.42 -79.98
445 99655 San Felix 0.704120 0.512562 19.253 15.604 39.240 -26.42 -79.98
4461 99654 0.704100 0.512621 18.956 15.560 38.860 -26.42 -79.98
447 SHIMADA Seamount #N/A #N/A #N/A #N/A #N/A #N/A #N/A
448 0.704843 0.512640 19.046 15.681 39.354 Graham, 1987 16.87 -117.47
449 SOCIETY #N/A #N/A #N/A #N/A #N/A #N/A #N/A

450 PI-1 Mehetia 0.704622 0.512779 19.095 15.567 38.949 Devey et at., 1990 -17.88 -148.08
451 P3-4 0.704243 0.512879 19.057 15.561 38.751 1 -17.88 -148.08
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452 (2-1) Dredge 2 0.704433 0.512856 19.098 15.587 38.876 -17.38 -148.83
453 (3-1) Teahitla 0.704607 0.512745 19.128 15.594 38.890 -17.58 -148.80
454 (3-3) 0.704514 0.512817 19.037 15.589 38.809 -17.58 -148.80
455 (3-5) 0.704803 0.512799 19.108 15.612 39.032 -17.58 -148.80
456 (9-1) 0.705473 0.512739 19.117 15.624 38.983 -17.58 -148.80
457 (29-1) Aoua Pihaa 0.703676 0.512964 19.222 15.540 38.744 -18.33 -148.50
458 St.HELENA #N/A #N/A #N/A #N/A #N/A #N/A #N/A
459 SH4 0.702880 0.512963 20.571 15.743 39.870 Allegre et al., 1987 -15.97 -5.72
460 SH20 0.702840 0.512828 20.622 15.740 39.914 -15.97 -5.72
461 NMNH109984 0.702960 0.512842 20.816 15.778 40.072 Newsom et al., 1986 -15.97 -5.72
462 NMNH99653 0.702850 0.512871 20.820 15.801 40.133 -15.97 -5.72
463 55470 0.702910 0.512870 20.960 15.810 40.180 Cohen,O'Nions, 1982a -15.97 -5.72
464 2882 0.702920 0.512847 20.896 15.791 40.131 ? -15.97 -5.72
465 2928 0.702870 0.512873 20.908 15.810 40.161 -15.97 -5.72
466 37 0.702854 0.512985 20.442 15.759 39.841 Chaffey et al., 1989 -15.97 -5.72
467 38 0.702826 0.512990 20.401 15.708 39.736 -15.97 -5.72
468 69 0.702818 0.512943 20.448 15.711 39.754 -15.97 -5.72
469 125 0.702818 0.512946 20.440 15.724 39.820 -15.97 -5.72
470 56 0.702840 0.512915 20.609 15.753 39.929 -15.97 -5.72
471 80 0.702852 0.512931 20.745 15.755 39.995 -15.97 -5.72
472 111 0.702856 0.512892 20.617 15.759 39.977 -15.97 -5.72
473 134 0.703090 0.512862 20.781 15.770 40.037 -15.97 -5.72
474 8 0.702885 0.512942 20.545 15.760 39.901 -15.97 -5.72
475 64 0.702951 0.512916 20.735 15.769 40.020 -15.97 -5.72
476 168 0.702837 0.512929 20.764 15.783 40.072 -15.97 -5.72
477 215 0.702826 0.512844 20.839 15.795 40.093 -15.97 -5.72
478 190 0.702867 0.512893 20.586 15.796 40.058 -15.97 -5.72
479 237 0.702831 0.512983 20.488 15.744 39.822 -15.97 -5.72
480 238 0.702818 0.512963 20.518 15.749 39.846 -15.97 -5.72
481 216 0.702846 0.512905 20.654 15.717 39.881 -15.97 -5.72
482 114 0.702846 0.512915 20.620 15.757 39.940 -15.97 -5.72
483 119 0.702867 0.512898 20.824 15.780 40.104 -15.97 -5.72
484 13 0.702890 0.512915 20.764 15.768 40.057 -15.97 -5.72
485 14 0.702934 0.512890 20.736 15.775 40.016 -15.97 -5.72
486 139 0.702864 0.512905 20.491 15.739 39.850 -15.97 -5.72
487 74 0.702901 0.512891 20.809 15.786 40.113 -15.97 -5.72
488 75 0.702913 0.512918 20.844 15.789 40.104 -15.97 -5.72
489 85 0.702835 0.512874 20.846 15.767 40.055 -15.97 -5.72
490 St.PAUL #N/A #N/A #N/A #N/A #N/A #N/A #N/A

491 1 0.703640 0.512900 18.651 15.556 38.776 White, unpublished -38.73 77.50
492 1 0.703780 0.512853 18.701 15.573 38.875 1 -38.73 77.50
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493 0.703529 0.512932 18.757 15.563 38.868 -38.73 77.50
494 0.703596 0.512899 18.739- 15.566 38.905 -38.73 77.50
495 0.703714 0.512905 18.705 15.579 38.906 -38.73 77.50
496 1 0.703691 0.512874 18.681 15.567 38.866 -38.73 77.50
497 TAHAA #N/A #N/A #N/A #N/A #N/A #N/A #N/A
498 0.706930 0.512580 19.290 15.655 39.200 -16.67 -151.50
499 TRINIDADE #N/A #N/A #N/A #N/A #N/A #N/A #N/A
500 UCTD7 0.703803 0.512708 19.116 15.601 39.110 Allegre et al., 1987 -20.50 -29.42
501 TRISTAN #N/A #N/A #N/A #N/A #N/A #N/A #N/A
502 TR-7 Tristan 0.704540 0.512617 18.671 15.530 39.070 Newsom et al., 1986 -37.10 -12.28
503 Tr-1 0.705050 0.512534 18.534 15.546 39.049 -37.10 -12.28
504 Tr-4 0.705090 0.512526 18.516 15.526 38.988 -37.10 -12.28
505 T617 0.705170 0.512550 18.470 15.500 38.890 Cohen,O'Nions, 1982a -37.10 -12.28
506 T369 0.705170 0.512500 18.190 15.490 38.340 -37.10 -12.28
507 TUBUAII #N/A #N/A #N/A #N/A #N/A #N/A #N/A
508 5433 0.702800 0.512886 21.140 15.760 40.290 Chauvel et al., 1991 -23.38 -149.45
509 5434 0.702755 0.512882 21.070 15.760 40.330 -23.38 -149.45
510 5435 0.702781 0.512887 21.140 15.780 40.440 -23.38 -149.45
511 5436 0.702793 0.512884 21.060 15.780 40.300 -23.38 -149.45
512 5437 0.702759 0.512895 21.110 15.770 40.410 -23.38 -149.45
513 TBA09 0.703153 0.512885 21.160 15.770 40.590 -23.38 -149.45
514 TBA11 0.703178 0.512912 21.040 15.750 40.320 -23.38 -149.45
515 K109 0.702761 0.512875 21.050 15.760 40.230 -23.38 -149.45
516 1108 0.702786 0.512920 21.090 15.750 40.320 -23.38 -149.45
517 WALVIS #N/A #N/A #N/A #N/A #N/A #N/A #N/A
518 0.704980 0.512461 17.648 15.472 38.120 Richardson et al., 1982 -29.07 2.98
519 0.704860 0.512456 17.641 15.477 38.149 -29.07 2.98
5201 0.705120 0.512376 17.650 15.483 38.227 -29.07 2.98
521 0.705110 0.512379 17.535 15.471 38.138 -29.07 2.98
522 0.704980 0.512555 18.029 15.491 38.820 -28.53 2.32
523 0.704230 0.512699 18.180 15.508 38.629 -28.53 2.32
524 0.704440 0.512682 18.070 15.494 38.632 -28.53 2.32
525 0.703910 0.512694 18.315 15.524 38.774 -28.05 1.77
526 0.704550 0.512566 18.160 15.507 38.760 -28.05 1.77
527 Rio Grande Rise 0.704780 0.512549 17.619 15.490 38.054 -30.28 -35.28
528 _AOFE3 #N/A #N/A #N/A #N/A #N/A
529 DSDP335- Atlantic 0.703210 0.513090 19.200 15.590 38.610 Cohen et al., 1980 37.18 -35.20
530 .0. 6243.4 Ind. Ocean 0.702900 0.512950 18.720 15.530 38.460 Cohen, O'Nions, 1982b 12.35 47.66
531 45"N56J Atlantic 0.703140 0.513090 19.280 15.540 38.830 Cohen et al., 1980 45.15 -28.00
532 AD3-31 0.702300 0.513290 17.840 15.470 37.330 1 -5.47 -11.42
533 D1 SW In. Rid. 0.702820 0.512908 17.525 15.416 37.235 Hamelin, Allegre, 1985 -31.69 57.84



A B C D E F G H I J
534 D2 0.702760 0.512981 18.114 15.505 37.839 -33.76 56.27
535 D4 0.703030 0.513068 17.764 15.467 37.632 -40.98 43.70
536 D5 0.704720 0.512448 16.943 15.497 37.316 -43.89 40.65
537 D6 0.702870 0.513071 18.373 15.509 38.096 -44.18 38.80
538 D7 i0.702870 0.513041 18.237 15.499 37.976 -44.81 36.30
539 03/01D1 E In. Ridge 0.703150 0.512941 17.692 15.442 37.654 Hamelin et al., 1986 -26.91 72.24
540 05/03D1 0.703050 0.513053 17.635 15.457 37.493 -29.81 75.18
541 07/04D1 0.703000 0.513022 17.854 15.429 37.728 -32.67 77.62
542 22/07D1 0.703070 0.512986 18.270 15.508 38.279 -34.38 78.02
543 18/06D2 0.704670 0.512813 18.039 15.555 38.636 -38.98 78.14
544 18/06D3 0.705360 0.512575 17.777 15.549 38.477 -38.96 78.16
545 13/05D1 0.702950 0.513122 17.960 15.446 37.912 -40.36 77.89
546 VG768 J. de Fuca 0.702440 0.513027 18.766 15.547 38.226 White et al., 1987 46.39 -130.22
547 VG44 0.702580 0.513062 18.751 15.563 38.568 44.66 -130.33
548 D10-1 0.702560 0.513169 18.486 15.485 37.852 44.66 -130.33
549 D10-2 0.702560 0.513138 18.448 15.466 37.786 44.66 -130.33
550 D10-3 0.702520 0.513158 18.471 15.500 37.903 44.66 -130.33
551 VG348 0.702490 0.513243 18.470 15.457 37.867 44.27 -129.55
552 A1407-B1 Gorda 0.702320 0.513228 18.161 15.419 37.521 42.73 -126.44
553 W7605B-DR-94 0.702390 0.513181 18.335 15.473 37.765 42.55 -126.85
554 W7605B-DR5-301 0.702490 0.513136 18.453 15.477 37.851 42.47 -126.92
555 A1406 0.702470 0.513180 18.530 15.481 37.926 42.28 -127.12
556 A1406-211 0.702490 0.513173 18.528 15.473 37.920 42.28 -127.12
557 KK2-83-D9-1 0.702490 0.513189 18.348 15.470 37.756 42.24 -127.08
558 A1405-B 0.702520 0.513217 18.317 15.453 37.759 41.53 -127.43
559 -6-83-31-1 0.702840 0.513105 18.679 15.545 38.294 41.00 -127.04
560 K28A-D23 EPR 0.702440 0.513186 17.975 15.442 37.478 -3.70 -102.73
561 K10A-D33A 0.702460 0.513154 18.321 15.484 37.798 -20.36 -114.02
562 D12A-D38AA 0.702450 0.513149 18.408 15.490 37.906 -20.39 -113.76
563 VG791 0.702520 0.513090 18.616 15.518 37.957 -31.00 -113.12

G6a4 K42A-D2C Galgos 0.702470 0.513117 18.269 15.479 37.797 2.18 -100.67
565 K46A-D202F 0.702430 0.513150 18.228 15.453 37.697 2.08 -100.34
566 K62-D143G 0.702830 0.513034 18.744 15.562 38.566 2.62 -95.20
567 VG1 235 0.702800 0.513036 18.743 15.540 38.548 2.70 -95.25
568 VG1234 0.702830 0.513068 18.749 15.560 38.550 2.70 -95.24
569 VG1202 0.702800 0.513039 18.736 15.550 38.576 2.70 -95.24
57C V 0.702810 0.513048 18.752 15.564 38.568 2.70 -95.24
571 K71A-D13OH 0.702540 0.513094 18.574 15.515 38.132 0.74 -85.58
572 VG17471 0.702490 0.513135 18.336 15.500 37.911 1.04 -85.12
57 3 K73A-D123H 0.702400 0.513191 18.287 15.481 37.816 1.45 -85.10
5741 VG9621 Atlantic 0.703150 0.513162 18.3431 15.5031 37.792 It-o et al., 1987 1 70.171 -15.261



A B C D E F G H I J
575 VG367 0.703160 0.513139 18.344 15.475 37.870 52.67 -34.94
576 VG965 0.702850 0.513202 18.339 15.499 37.830 49.81 -28.65
577 VG200 0.703340 0.512985 19.690 15.608 39.299 42.96 -29.20
578 521-1B 0.702900 0.513070 18.814 15.541 38.404 36.82 -33.27
579 528-3 0.702850 0.513059 18.846 15.534 38.361 36.81 -33.26
580 534-2-1 0.702880 0.513072 18.899 15.545 38.435 36.80 -33.27
581 VG968 0.702870 0.513055 18.589 15.529 38.108 28.90 -43.32
582 VG744 0.702610 0.513138 18.320 15.501 37.807 25.40 -45.30
583 VG205 0.702810 0.513123 18.275 15.485 37.842 22.92 -13.51
584 VG296 0.702320 0.513207 18.317 15.485 37.710 22.24 -45.02
585 VG937 0.702500 0.513213 18.338 15.481 37.700 22.24 -45.02
586 VG249 0.702450 0.513142 18.408 15.490 37.906 11.22 -43.06
587 VG260 0.702530 0.513120 18.359 15.504 37.845 11.02 -43.67
588 P6906-28B 0.702760 0.513043 19.444 15.588 39.037 6.01 -33.28
589 GS7309-94 0.702610 0.513108 18.845 15.575 38.256 -0.02 -24.58
590 GS7309-75 0.702550 0.513093 18.775 15.568 38.320 -0.55 -16.07
591 VG198 0.702290 0.513175 18.375 15.518 37.842 -21.87 -11.85
592 VG192 0.702320 0.513175 18.299 15.489 37.726 -21.93 -11.81
593 R3-3-D30 EPR 0.702560 0.513123 18.3S6 15.495 37.837 13.83 -104.14
594 R3-3-D10 0.702480 0.513114 18.337 15.501 37.840 12.14 -103.83
595 VG1214 Galapagos 0.702820 0.513055 18.741 15.559 38.552 2.70 -95.24
596 VG1001 0.703130 0.513112 18.554 15.558 38.215 0.71 -85.50
597 VG1770 0.702770 0.513111 18.644 15.548 38.236 1.04 -85.12
598 VG1583 Ind. Ocean 0.702950 0.513136 18.084 15.452 37.804 5.35 68.69
599 VG5262 0.702830 0.513067 17.978 15.451 37.760 3.78 63.87
600 VG5269 0.702740 0.513089 18.009 15.473 37.846 3.70 63.89
601 VG5284 0.702840 0.513107 17.997 15.460 37.816 -1.65 67.77
602 VG5294 0.702760 0.513121 18.100 15.474 37.900 -5.28 68.53
603 VG5291 0.702740 0.513102 18.170 15.500 38.064 -5.36 68.62
604 VG3095 0.703030 0.513065 17.315 15.443 37.251 -24.98 69.99
605 A1193-11-103 0.703040 0.513076 17.325 15.456 37.287 -24.98 70.01
606 A1193-15-23 0.703110 0.513070 17.469 15.449 37.456 1 -25.78 70.23
607 D4-1 E In. Ridge 0.702530 0.513129 18.816 15.505 38.155 Klein et al., 1988 -50.22 137.55
608 D3-4 0.702570 0.513064 18.979 15.590 38.416 -50.42 135.08
609 D2-19 0.702610 0.513048 18.911 15.514 38.319 -50.27 132.55
610 D1-2 0.702640 0.513113 18.805 15.499 38.262 -50.40 131.00
611 D6-1 0.702590 0.513092 18.617 15.480 38.095 -50.30 130.05
612 D5-5 0.702550 0.513103 18.572 15.482 38.097 -48.73 127.08
613 D7-3 0.702900 0.513027 18.057 15.439 37.858 -49.03 124.00
614 D7-7 1 0.703000 0.512997 18.008 15.462 37.794 -49.03 124.00
615 D8-8 1 0.703140 0.512962 18.223 15.465 38.212 _ -49.47 121.03



A B C D E F G H I J
616 D9-2 0.702930 0.513026 18.248 15.489 38.003 -49.82 119.18
617 D11-6 0.702835 0.513031 17.944 15.409 37.743 -49.85 118.00
618 D10-10 0.703450 0.512977 17.764 15.483 37.803 -49.92 115.38


