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Introduction

This thesis details two years of research conducted with the guidance and support

of three advisors: Dr. J. K. Whelan, Dr. J. S. Seewald and Dr. T. I. Eglinton. Each of the

three chapters represents a different, self-contained research project. All of the projects

are related to the organic geochemistry of marine sediments, however, this is a fairly

encompassing area of study. Chapters 1 and 2 stem from the same experimental study --

the use of hydrous-pyrolysis to investigate mechanisms leading to the production of

petroleum-related products during kerogen maturation. Chapter 3, on the other hand,

utilizes a recently developed technique of isolating and AMS-14C dating individual

compounds from complex sedimentary organic mixtures.

The samples used in each investigation came from all over the world. The first

two chapters utilize ancient marine sediment samples obtained from an outcrop in

California (Chpts. 1 and 2) and from a well in Alabama (Chpt. 2). In contrast, recent

marine sediment samples were obtained from the Arabian and Black Seas for the third

chapter. Several preparative and analytical methods are common to all three studies.

Nevertheless, each employ techniques totally unique from one another and from previous

investigations. In Chapter 1, for example, X-ray absorption spectroscopy (XANES) is

used to determine the speciation of organic sulfur present in kerogen, bitumen, and bulk

sediment samples. While Chapter 3 represents the first study in which the "4C ages of

individual, known hydrocarbon biomarkers are determined after isolation by Preparative

Capillary Gas Chromatography (PCGC). The insights gained by these investigations are

discussed in detail in the following chapters. The common thread between the three

chapters is that the source of organic matter, the rate at which it is delivered to marine

sediments and the depositional environment, all set the stage for kerogen formation and

eventual petroleum generation.

This work would have been nearly impossible, and definitely not as enjoyable

without the help of my advisors, numerous research associates, fellow students and most

of all, my wife Claudia.
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Transformations in Organic Sulfur Speciation During Maturation of
Monterey shale: Constraints from Laboratory Experiments
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Introduction

A series of hydrous pyrolysis experiments were conducted at temperatures ranging

from 125 to 3600 C at 350 bars pressure to examine variations in sulfur speciation during

thermal maturation of Monterey shale. The total sediment, kerogen and bitumen from

each experiment in addition to unheated representatives were analyzed via X-ray

absorption spectroscopy, pyrolysis-gas chromatography, 13C NMR spectrometry,

elemental analysis, thin-layer chromatography and reflected light microscopy.

Based on these measurements, it was possible to recognize three distinct

temperature regimes, within which the type and amount of sulfur in the analyzed fractions

underwent transformations: (i) between 150 and 2250 C, a significant proportion of

kerogen-bound sulfur is lost probably due to the collapse of polysulfide bridges; (ii)

between 225 and 275°C, cleavage of -S-S- and -S-C- linkages within the kerogen is

believed to occur, resulting in substantial production of polar sulfur-rich bitumen; (iii)

above 275oC total bitumen yields as well as the proportion of bitumen sulfur decrease,

while C-C bond scission leads to increased yields of saturated and aromatic

hydrocarbons.

The results from this study clearly and quantitatively establish a link between

organically-bound sulfur, and more specifically, organic polysulfides, and the low-

temperature evolution of soluble petroleum-like products (bitumen) from sulfur-rich

source rocks. There have been numerous investigations of the effects of heteroatoms

(atoms other than carbon and hydrogen) in kerogen on the timing and thermal stress

required for petroleum generation (Tissot, 1984; Tannenbaum and Aizenshtat, 1984;

Lewan, 1985). In particular, the role of sulfur during low temperature petroleum

generation has received a great deal of attention (Gransch and Posthuma, 1974; Orr,

1986; Lewan, 1985; Hunt et al., 1991; Baskin and Peters, 1992; Patience et al., 1992).

These studies typically attributed early petroleum generation from sulfur-rich kerogens to

the inherent weakness of sulfur-sulfur and sulfur-carbon bonds relative to carbon-carbon

bonds (Lovering and Laidler, 1960). Studies of the role of sulfur in the sedimentary

formation of kerogen (Sinninghe Damst6 et al., 1989a,b; Orr and Sinninghe Damst6,

1990) suggest that sulfur linkages must be ubiquitous in sulfur-rich Type II-S kerogens



((Sorg/C) > 0.04; (Orr, 1986)). These inferences implicating sulfur in maturation,

however, are based largely on indirect and circumstantial evidence and the connection

between the chemistry of sulfur-rich kerogens and the physical processes leading to

petroleum generation remain unclear (Claxton et al., 1993).

The goal of this study was to gain further insight into the chemical changes

involving sulfur during source rock maturation. In contrast to previous studies, emphasis

was placed on direct assessment of the changes in sulfur species in the organic matter

itself. A series of hydrous-pyrolysis experiments were conducted with sulfur-rich

Monterey shale at temperatures ranging from 125 to 3600C to provide constraints on the

speciation of sulfur in kerogen and generated products as a function of temperature.

Although, temperatures higher than those found in natural settings are employed during

hydrous-pyrolysis (in order to enhance reaction rates and allow organic transformations to

be observed on a laboratory time scale), these experiments have proven an effective

means to simulate the generation of hydrocarbons in the laboratory. Previous studies

have shown that the pyrolysis-products are similar to products of geological maturation

(Lewan, 1985; 1993). In addition, the processes leading to the generation and expulsion

of oil during hydrous-pyrolysis experiments appear to be the same as those occurring in

natural petroleum formation (Lewan, 1993).

An analytical scheme was designed to facilitate a mass-balance approach

involving gases, bitumen, altered sediments and kerogens that allowed a detailed

characterization of the fate of organic sulfur during thermal maturation. Analyses were

conducted using X-ray absorption (XANES) spectroscopy, pyrolysis-gas chromatography

(Py-GC), solid-state 13C nuclear magnetic resonance (NMR) spectrometry, thin-layer

chromatography with flame ionization detection (TLC-FID), elemental analyses and

reflected light microscopy. This blend of analyses enabled the determination of gross and

molecular-level transformations in sulfur speciation, as well as the manner by which they

lead to the early conversion of kerogen to oil.



Methods

Sample Description and Preparation

A thermally immature (Bituminite reflectance = 0.25%) consolidated sediment

sample from the Miocene Monterey Fm. (ML91-17) was obtained from an outcrop at

Naples Beach, CA. The sample was removed from a 10 cm interval at the base of Unit

315, approximately 9 m below the lowest phosphorite horizon (M.D. Lewan, personal

communication). The sample comprised a lenticularly laminated claystone and visually

appeared fresh (i.e. unweathered) and blocky. The surface of the sample was scraped

prior to disc-mill pulverization to expose pristine material and remove possible

contaminants.

Figure 1 illustrates the experimental scheme used in this study. Our primary goal

was to examine the fate of kerogen-bound sulfur during artificial maturation.

Consequently, after pulverization, the sediment sample was sequentially extracted by

sonic disruption using CH 3OH/CHC13 to remove indigenous bitumen. Sedimentary

carbonate was removed from the sample by treating with 10% HCl at 400 C for 2 hrs. For

each experiment 1.0 g of solvent-extracted, carbonate-free sediment was used as the

starting material except for the experiments at 225 and 275°C, in which carbonate was

not removed from the starting material. The sediment sample was loaded into a 20 mL

(30.5 x 0.9 cm i.d.) pipe-bomb, sealed and placed into a 62 x 12.0 cm i.d. furnace. The

air in the pipe-bomb was evacuated and the pipe-bomb was partially filled with argon-

purged distilled water to ensure that the sediment was in contact with water during

heating. Once at the experimental temperature, the pipe-bomb was filled completely with

distilled water and pressurized to 350 bars so that only a single liquid phase was present

(i.e., no head-space). Temperature was monitored (± 2°C) with a thermocouple at each

end of the pipe-bomb to ensure there were no thermal gradients. All experiments were

168 hrs in duration.

During an experiment, fluid samples were withdrawn from the pipe-bomb through

a 10 gm filter into glass gas-tight syringes after approximately 24, 72 and 168 hrs and

analyzed for the gas concentrations of dissolved gases. Pressure was maintained during

the sampling process by pumping argon-purged distilled water into one end of the pipe-



bomb while the fluid sample was removed from the other. The sampling process was

performed rapidly (1 to 2 min) to avoid dilution of the fluid samples with the freshly

injected water. At the end of the experiment the pipe-bomb was cooled and all liquid

contents were removed by sequentially pumping 30 mL of CH 30H and CH 2C12 through

the pipe-bomb. Subsequently, the pipe-bomb was opened and the solid residue was

removed by rinsing with additional solvent. The combined CH30H/CH2C12 extract was

centrifuged and the liquid products decanted. After drying at 400 C in air, the solid

residue was sequentially extracted by sonic disruption in CH30H/CH2CI2 to ensure

complete recovery of the generated bitumen. This extract was combined with the pipe-

bomb rinses, back-extracted with distilled H20, dried over anhydrous Na2SO 4 and filtered

(0.45 gm) to remove residual suspended material yielding the generated bitumen. A split

of the altered sediment (-350 mg) was demineralized through HCI and HF acid digestions

at room temperature (Eglinton and Douglas, 1988) to obtain a kerogen isolate. An aliquot

(-50 mg) of the kerogen isolate was treated with CrC12 and concentrated HCI to remove

inorganic sulfur (Canfield et al., 1986; Acholla and Orr, 1993).

Gas Analysis

Dissolved CO2 and light (C1-C4) hydrocarbons in the fluid samples from all

experiments were analyzed using a purge and trap apparatus interfaced to a gas

chromatograph. Dissolved H2S concentrations were monitored to obtain an estimate of

the amount of sulfur, both inorganic and organic, removed from the system as H2S during

sediment maturation. The absolute concentration of dissolved H2S was determined

gravimetrically by precipitation as Ag2S in a 3 wt% AgNO3 solution.

Elemental Analysis

Elemental analyses were performed at the termination of each experiment in order

to monitor fluctuations in the distribution of sulfur and carbon among the various

fractions resulting from maturation of the Monterey shale. Weight percent C, H, N and S

were determined for all fractions including those obtained from unheated, solvent-



extracted Monterey shale. Elemental analyses were conducted using a Leco 932

elemental analyzer.

X-Ray Absorption Spectroscopy (XANES)

X-ray Absorption Near Edge Structure (XANES) Spectroscopy was performed at

the National Synchrotron Light Source at Brookhaven National Laboratory on Beamline

X-19A (Eglinton et al., 1994; Vairavamurthy et al., 1994). XANES was conducted on

the unheated and altered sediments, bitumen, and CrC12-treated kerogens to observe

thermally-induced changes in sulfur speciation within and between the various fractions.

Solid samples were prepared as boric acid pellets, whereas liquid samples were taken to

near dryness and adsorbed onto pre-combusted GF/F filters under a N2 atmosphere, heat-

sealed in air-tight pouches and kept frozen prior to analysis. Solid and liquid samples

were analyzed while mounted in a He-purged sample chamber. XANES spectra of all

fractions were acquired from 2465 to 2900 eV using a Lytle fluorescence detector. A

monochromator step function was chosen to provide a resolution of 0.5 eV at the near-

edge region.

Quantitative deconvolution of the XANES spectra was accomplished using a

computer algorithm developed by Waldo et al. (1991). After corrections to account for

background and self-absorption, the proportions of different sulfur species were

calculated by fitting the normalized spectra (least-squares procedure) with up to six

reference-compound spectra. For this study, FeS 2, elemental sulfur, cysteic acid, sodium

sulfate, benzyl sulfide, dibenzyl trisulfide, dibenzothiophene and dibenzylsulfoxide were

used as reference compounds. The accuracy of these results are estimated to be ±10%.

Optimal curve-fitting of the XANES spectra from analyses of altered sediments and

kerogens prior to CrCl2 treatment was difficult due to the presence of inorganic sulfur

compounds (pyrite). Consequently, sulfur speciation determinations are reported only for

the bitumen and CrC12-treated kerogen.



Analytical Pyrolysis (Py-GC)

Analytical pyrolysis was conducted to determine the relative distribution of

volatile thiophenic and hydrocarbon pyrolysis-products from the kerogen and pyrite-free

kerogen samples from the unheated and matured Monterey Shale. Pyrolysis-Gas

Chromatography was performed using a FOM-3LX Curie-point pyrolysis unit (controlled

by a Horizon RF generator) interfaced to a Hewlett-Packard 5890 Series II GC (Eglinton

et al., 1994). Kerogen samples were loaded onto Fe/Ni wires with a Curie temperature of

610'C. Samples were pyrolyzed for 5 s and the pyrolysis interface temperature was set at

200'C. Helium was used as the carrier gas. Separation of the pyrolysis products was

achieved on a Restek RTx-1 column (50 m x 0.32 mm i.d.; film thickness 0.5 gm) using a

temperature program from 30'C (5 min initial time) to 3200 C (15 min final time) at a rate

of 3oC min- '. The GC effluent was split and simultaneously monitored by a flame

ionization detector (FID) and a sulfur-selective flame photometric detector (FPD). Flash

pyrolysis of the kerogen and pyrite-free kerogen fractions yielded near-identical results,

indicating that the CrCl 2-treatment did not affect the relative distribution of GC-amenable

(i.e. volatile) products analyzed.

Nuclear Magnetic Resonance (NMR) Spectrometry

Solid-state 13C NMR spectrometry was used to determine changes in the carbon

structure of the altered sediments, kerogens and CrCl2-treated kerogens that occurred as a

result of thermal maturation. Solid-state 13C NMR measurements were made using the

technique of cross polarization (CP) with magic-angle spinning (MAS) at a carbon

frequency of 25 MHz using a ceramic probe and a 7.5 mm o.d. zirconia pencil rotor. As a

consequence of the small amounts of sample material available for the NMR

measurements (-20 mg for the kerogens and -100 mg for the altered sediments), data

were collected over periods of 15 to 18 hrs (54,000 and 64,800 transients). A pulse delay

of 1 s, a contact time of 1 ms, a 5.0 gts pulse width and a sweep width of 16 kHz were

used to acquire data. Sample spinning speeds were -4.5 kHz. A 50 Hz exponential

multiplier was applied to the free induction decay of each 13C spectrum before

integration.



The NMR spectra were integrated between 90 and 260 ppm for the "aromatic"

region and -40 to 90 ppm for the "aliphatic" region. The spinning rates were sufficiently

high so that contributions to the aliphatic integrals from high field aromatic carbon

spinning sidebands were negligible and were not included in the aliphatic carbon

integrals. The carbon aromaticity values can contain contributions from carbonyl (-210

ppm) and carboxyl carbons (- 180 ppm), if present.

Bituminite Reflectance

Microscopic examination of the initial (unheated) sediment sample revealed that

the majority of organic matter was comprised of an amorphous groundmass termed

"bituminite" (Teichmuller, 1986), with only trace amounts of recognizable vitrinite.

Bituminite, which is believed to derive from degraded algal and bacterial matter, is thus

considered to be a major kerogen constituent. For this reason, and because vitrinite is so

scarce, direct measurements of reflectance were made on this bituminite in order to assess

the extent of thermal alteration.

Thin-layer Chromatography

Quantification of the saturated, aromatic and polar compound classes in the

bitumen was performed by thin-layer chromatography with flame ionization detection

(TLC-FID) according to the methods of Karlsen and Larter (1991) using an latroscan TH-

10 Mark III instrument. 1.5-2.0 gL of each sample (dissolved in CH2C12) was applied to

silica rods which were sequentially developed in C6 H14 (10 cm), C7H 8 (5 cm) and a 95:5

solution of CH2Cl 2:CH 30H (2 cm). A standard mixture comprised of n-eicosane,

dibenzothiophene and 2,6-dimethoxyphenol was used for calibration of response factors

for aliphatic, aromatic and polar compounds, respectively.



Results

Gaseous Phases

Dissolved H2S concentrations were measured during five of the hydrous-pyrolysis

experiments (Table 1). During these experiments the concentration of dissolved H2S was

likely controlled by the solubility of iron sulfides such as pyrite and/or pyrrhotite owing to

the rapid precipitation/dissolution kinetics for these phases under hydrothermal

conditions (Seewald and Seyfried, 1990). Pyrite was abundant in the unheated sediment

and persisted along with newly formed pyrrhotite in the thermally altered sediments. At

temperatures below 225 0C dissolved H2S concentrations were too low to be determined

gravimetrically, but H2S was detectable by odor in all experiments. Sources of dissolved

H2S during the experiments include diagenetic pyrite and organic sulfur. It is not possible

to directly determine the relative contributions from these two sources based on dissolved

concentrations alone. However, at 350 and 3600C 12.7 and 18.8 mg H2S/g rock was

released to solution respectively. These amounts exceed the amount of sulfur present as

diagenetic pyrite in the initial sediment (10.5 mg/g sediment), and thereby provide direct

evidence for the release of organically bound sulfur to solution. Because dissolved

sulfide is cycled through the fluid into sulfide minerals, the calculated contributions of

organic sulfur to solution represent an absolute minimum.

Generated Bitumen

The total bitumen extract, saturated, aromatic and polar compound yields from

each experiment and the indigeneous material removed from the sample prior to heating,

are listed in Table 1 and illustrated in Figure 2. The initial bitumen content of the

unheated sediment was approximately 11 mg/g rock. We estimate an extraction

efficiency of >70% in removing this bitumen from the starting material, and hence any

contribution from indigenous bitumen to extractable yields after the experiments is likely

to be minor. In all cases, polar compounds comprised the majority of each bitumen

fraction and, as a result, the total extract largely mirrored polar compound yields. The

yield of polars increased with temperature to a maximum in the 275oC experiment (62.0

mg/g rock), above which concentrations decreased. The yield of saturate and aromatic



compounds were similar to each other with maxima in the experiments at temperatures

above 275°C.

The results of the elemental analyses (C, H, N and S) of the bitumen are listed in

Table 2. Above 250'C the atomic ratio of hydrogen to carbon (H/C) decreased while the

atomic ratio of nitrogen to carbon (N/C) remained relatively constant. Above 150'C the

bitumen initially exhibited an increase in the sulfur to carbon (S/C) ratio with temperature

which reached a maximum at 250'C followed by a decrease (Fig. 3).

Normalized (K-edge) XANES spectra of the bitumen are illustrated in Figure 4.

Reduced sulfur species (sulfides) are represented by peaks that occur towards the left side

of each spectra, whereas peaks for more oxidized species (sulfoxides) are found at higher

energies. Fitting of the XANES spectra reveal that organic sulfides and polysulfides were

the primary sulfur forms contained in the bitumen and typically accounted for over 50%

of the sulfur present (Fig. 5). The remaining sulfur was in the form of thiophenes and

sulfoxides. Thiophenes and sulfoxides exhibited relatively little change with temperature,

while organic sulfides and polysulfides increased significantly from 3% to a maximum of

8% of the bitumen at 275°C. Above this temperature the weight percent of sulfides and

polysulfides in the bitumen decreased.

Solid Phases

In the altered sediments, weight percent organic carbon, nitrogen and sulfur as

well as the S/C atomic ratio, decreased with increasing temperature (Table 2). In the

kerogens the HIC atomic ratio decreased at higher temperatures (>250'C) while the N/C

atomic ratio remained fairly constant. In contrast to the bitumen, the S/C ratio of the

kerogen initially decreased with increasing temperature (Fig. 3). This decrease was first

apparent in kerogens from experiments above 175 0 C, with the S/C ratio changing from

-0.05 to <0.02 in kerogen from experiments above 3000 C. Between 325 and 360'C, the

S/C ratio remained constant.

Bituminite reflectance measurements of the altered sediments are listed in Table 3

and illustrated in Figure 6. The reflectance value of the bituminite present in the altered

sediment were low (0.25%), relative to vitrinite of the same sample (0.39%), due to the



hydrogen-rich nature of the former (Robert, 1988; Lo, 1993). Maturation of the altered

sediments, however, was clearly indicated by increased reflectance with temperature,

especially above 275oC (Fig. 6), and Ro reached a maximum of 0.95% in the 360'C

altered sediment samples.

Results from CP/MAS '3C NMR measurements of the altered sediments and

kerogens are listed in Table 3 and illustrated in Figure 6. 13C NMR spectra of the

unheated and artificially matured kerogens are shown in Figure 7. The major band of the

right portion of each spectrum (0-60 ppm) represents carbon in aliphatic structures

including structures with sulfide bonds. The major band to the left of each spectrum

represents carbon in aromatic (90-160 ppm) structures (including thiophenes), and in any

carboxylate (- 180 ppm) and carbonyl (-210 ppm) structures that may be present. Very

little variation was observed in the 13C NMR results from the altered sediment, kerogen

and CrCl 2-treated kerogen from the same experiments (Table 3, Fig. 6). Comparison of

the 13C NMR spectra from each experiment, however, clearly show a preferential loss of

aliphatic carbons relative to aromatic carbons with increasing temperature (Fig. 7).

Examination of Figure 6 reveals an exponential relationship between temperature and

aromaticity with a major steepening in the curve above 275°C.

Partial FID and FPD chromatograms from flash pyrolysis (610 C) of the

unheated, 250, 300 and 360'C kerogens are shown in Figure 8. FPD peak assignments

were made by comparison of relative retention times to earlier studies (Eglinton et al.,

1992; 1994), and are listed in Table 4 with the inferred carbon skeletons of the bound

precursors (Sinninghe Damst6 et al., 1989a). The major peaks in the FID chromatograms

are due to n-alkanes and n-alkenes, alkylbenzenes and thiophenes (Fig. 8). The Py-GC

results indicate a preferential loss of aromatic and especially thiophenic compounds

relative to n-hydrocarbons with increasing temperature. The generation potential for n-

alkanes and n-alkenes remains high until approximately 300'C suggesting that C-C

cracking has not occurred to a significant extent below this temperature. Above 325°C

essentially only gaseous products (CH 4, C2H6, C2H4 , H2S) were detected in the flash

pyrolyzates.



Estimates of the relative abundance of volatile thiophenic versus hydrocarbon

pyrolysis products were made from the ratio of FID peak areas for 2-methylthiophene

(2MT) to the sum of toluene (Tol) and n-C7 alkene (C7H1 4) (Fig. 9). The

2MT/(Tol+C 7H 14) ratio decreased slightly with increased temperature up to 2500 C (Fig.

9). At temperatures greater than 2500 C, the ratio decreased sharply and approached zero

above 3250 C. Although kerogens from the experiments below 250'C exhibited very little

change in the 2MT/(Tol+C 7HI4) ratio, the S/C ratio decreased significantly (from 0.051 to

0.032) relative to the unheated sample (Fig. 9). Conversely, a sharper decrease in the

2MT/(Tol+C 7HI4) ratio above 250'C coincided with only a moderate change in the S/C

ratio (Fig. 9).

The predominant sulfur-containing pyrolysis products in all FPD chromatograms

were H2S and low molecular weight thiophenes (Fig. 8). H2S was likely derived from the

thermal decomposition of pyrite, present in the kerogen, as well as from the cleavage of

organically-bound thiols, aliphatic sulfides (thiolanes, thianes) or sulfide bridges

(Eglinton et al., 1994). Volatile thiophenic pyrolysis products were observed in the

kerogens from all the experimental temperatures except for the 350 and 3600 C

experiments (Fig. 8). At temperatures <3000 C no marked changes in the internal

distribution of thiophenic products were observed. At 300 0C and above, however, the

relative contribution of 2-methylthiophene, 2,5-dimethylthiophene, 2-ethyl-5-

methylthiophene and 2-methyl-5-propylthiophene decreased more dramatically than other

thiophenic products (Fig. 8).

Normalized (K-edge) XANES spectra of the CrCl2-treated kerogens are illustrated

in Figure 4. With increased temperature a sharpening in the shape of the major peak

occurred, as well as a slight (- 1 eV) shift towards higher energy. This shift is detectable

at 175°C and clearly evident by 225'C (Fig. 4). The percentages of the major forms of

sulfur (normalized to%S) in the kerogen determined by fitting of the XANES spectra are

illustrated in Figure 5. The primary sulfur forms present in the unheated kerogen were

organic sulfides and polysulfides. Together these two species account for -50% of the

sulfur while, thiophenes and sulfoxides comprised the majority of the remaining sulfur.

Systematic changes in sulfur speciation as a function of temperature are clearly evident



(Fig. 5). Similar to the bitumen, thiophenes and sulfoxides present in the kerogens

remained relatively constant with increased temperature. In contrast, organic sulfides and

polysulfides decreased with temperature from 4.7 to 0.4% in the unheated and 3600C

pyrite-free kerogens, respectively (Fig. 5) with two marked decreases occurring above

175oC and 250'C. Above 250'C the relative proportion of thiophenic sulfur exceeded

that present as organic sulfides.

Discussion

Compositional Characteristics of Unheated Monterey Shale Kerogen

The values obtained from bituminite reflectance (%Ro = 0.25), solid-state

CP/MAS 13C NMR spectroscopy (aromaticity = 0.34) and Rock-Eval (Tmax = 386 0C)

measurements all indicate that the unheated Monterey kerogen was relatively immature.

In addition, with an atomic Sorg./C ratio of 0.051 the sulfur-rich Monterey kerogen

(Wt.%S = 9.45) can be classified as "Type II-S" (Orr, 1986).

The homologous series of n-alkanes and n-alkenes present in the partial Py-GC-

FID chromatogram of the unheated Monterey kerogen sample is typical of a wide range

of oil-prone, immature kerogens (Eglinton et al., 1990a). The distinguishing feature of

Monterey shale and other sulfur-rich kerogens, however, is the high relative abundance of

thiophenes released during pyrolysis (Eglinton et al., 1990a; 1992). The thiophenic

pyrolysis products detected by FPD can provide direct information regarding the chemical

nature of macromolecularly bound sulfur (Sinninghe Damst6, 1989a; Eglinton et al.,

1992). When pyrolysis is conducted using wires with a Curie temperature of 610C, S-S,

C-S and C-C bonds are cleaved and sulfur-bound or sulfur-containing moieties present in

the kerogen will generate a variety of products through [-cleavage, y-hydrogen

rearrangement and by y-cleavage (Sinninghe Damst6, 1989a). Based on the substitution

patterns of the thiophenes and benzothiophenes yielded upon pyrolysis, carbon skeletons

of different sulfur-containing moieties originally present in the kerogen can be

distinguished (Sinninghe Damst6, 1989a). Similar to previous studies of Monterey shale

and other immature Type II-S kerogens (Eglinton et al., 1992; 1994), a significant



proportion of the sulfur-containing pyrolysis products from the unheated Monterey

kerogen are derived from isoprenoid and/or steroidal carbon skeletons (Fig. 8, Table 4).

Complementary information regarding the sulfur-containing structures present in

the kerogen can be obtained through X-ray absorption (XANES) spectroscopy. In

addition, XANES spectroscopy allows all forms of sulfur present in the sample to be

"seen", whereas pyrolysis only liberates volatile species. In contrast to the flash-pyrolysis

approach, XANES spectroscopy reveals the electronic environment of the sulfur atom and

does not provide information on the configuration of carbon atoms, other than those in

close proximity to sulfur. The XANES data reveal that organic sulfides and polysulfides,

thiophenes and sulfoxides comprise 4.7, 2.3 and 0.9 weight percent of the unheated,

CrC12-treated kerogen, respectively (Fig. 5). Thus, sulfides and polysulfides account for

>50% of the total sulfur in the unheated kerogen. The low percentage of sulfoxides

indicates that oxidation of sulfur during sample manipulation was minor. K-edge

XANES spectra do not allow for the discrimination between cyclic (thiolanes, thianes)

and acyclic sulfides. By assuming, however, that the relative proportion of cyclic and

acyclic sulfides is approximately equivalent, the ratio of thiophenes (a cyclic form of

sulfur) to total sulfides can be used as an estimate of the extent of intra- versus inter-

molecular S-bonding (Eglinton et al., 1994). Based on this premise, XANES

spectroscopic analysis of the unheated Monterey kerogen would indicate that sulfur cross-

linking is extensive and that there are abundant, potentially weak S-linkages where

thermally-induced cleavage might occur.

Transformations During Laboratory Maturation

In order to constrain sources and sinks of sulfur as a function of temperature, we

have calculated the fraction of the total sedimentary sulfur present in three major phases:

kerogen, bitumen and total inorganic sulfur (Fig. 10). The latter pool is calculated by

difference assuming a closed system and an initial total sedimentary S content (3.86%;

Table 2) and is predominantly composed of H2S, pyrite and pyrrhotite. For comparison,

the distribution of carbon associated with gaseous species (C1-C3 hydrocarbons, C0 2),

bitumen and kerogen are also shown in Figure 10. Plotting the data in this way shows



several interesting trends which reveal systematic transformations in the concentrations

and speciation of sulfur in each of the phases analyzed. These transformations also reveal

the interplay between each phase during the maturation process.

In the unheated sediment the dominant portion (ca. 75%) of the sedimentary S is

associated with kerogen, pyritic sulfur representing the remainder. Essentially no sulfur

is associated with indigenous bitumen since extractable material was removed from the

immature starting material (it is also assumed there is initially a negligible amount of

adsorbed H2S). This condition prevails at temperatures up to 1500 C, above which the

proportion of kerogen-bound sulfur decreases markedly from 3.0 to 1.8% at 225oC. Only

a minor increase in solvent extractable sulfur was observed over this temperature interval,

and accordingly the loss of kerogen sulfur is balanced by the production of inorganic

sulfur. Above 250'C a further decrease in kerogen sulfur is apparent, and this is

accompanied by an increase in bitumen sulfur, which peaked at 275C. This maximum

also corresponds with the temperature of maximum bitumen generation (Fig. 2) and, in

particular, polar compound evolution. Above 275°C, S in both bitumen and kerogen

decreases resulting in an increase in inorganic sulfur. The total decrease of kerogen

sulfur from the unheated sample to the 360'C residue was approximately a factor of 4

(i.e. 2.8 to 0.7%).

Based on this mass balance information, and the compositional transformations

observed, we can construct an overview of the likely fate of organically-bound sulfur

during laboratory maturation of the Monterey shale. The earliest transformations occur at

very low (<1750 C) temperatures (in terms of artificial maturation experiments). This

change has not been studied in detail previously, since it occurs well below the

temperature at which the primary generation of hydrocarbon-like products takes place

during laboratory heating experiments (Lewan, 1985; Baskin and Peters, 1992). The

decrease in kerogen sulfur implies that a substantial degree of internal rearrangement

takes place within the kerogen macromolecular network, even under mild thermal stress.

These rearrangements do not result in significant amounts of soluble (petroleum-like)

products, but H2S is generated. We postulate that the H2S is primarily an elimination

product from polysulfide bridges within the kerogen. Cleavage of bridges containing 2 or



more S-atoms would yield H2S and the bridge may subsequently reform, the result being

negligible release of soluble organic products.

Alternatively, sulfide bridges could be broken, yielding H2S, but insufficient

bridges are broken to release soluble, carbon-containing moieties from the kerogen.

Whatever the case, the net result is a loss of sulfur from the kerogen with no concomitant

carbon loss. Based on the XANES analyses it is clear that the sulfur is removed from the

kerogen during these "low temperature" experiments primarily as sulfides or polysulfides

(Fig. 5). This is also evident from the pyrolysis-based thiophene ratios, which show no

decrease over this temperature interval (Fig. 9). Both these observations are consistent

with (poly)sulfide bridges as the reactive sulfur species. Unfortunately K-edge XANES

does not allow unequivocal distinction of mono-sulfide from polysulfide species so this

inference cannot be verified quantitatively. Nevertheless, qualitative support for the low-

temperature reactivity of polysulfides is apparent in the normalized (K-edge) XANES

spectra of the kerogens (Fig. 4). Above 175oC there is a -1 eV shift in the maximum for

the lowest energy peak towards higher energy. Because organic polysulfides exhibit

slightly lower K-edge energies than corresponding mono-sulfides this shift suggests

preferential removal of polysulfides over mono-sulfides at lower temperatures.

Between 225°C and 300'C a significant proportion of the kerogen is converted to

polar-rich bitumen (Fig. 2). Polar compounds (resins and asphaltenes) are considered to

be large, soluble macromolecules with a strong genetic link to kerogen (i.e. soluble

kerogen moieties) (Sinninghe Damst6 and de Leeuw, 1990). The bitumen generated at

275 0 C is enriched in sulfur compared to both lower and higher temperature soluble

products and, based on the XANES data, is dominated by (poly)sulfide sulfur. We

interpret these data to imply that the bitumen derived from these experiments is

predominantly the result of cleavage of sulfide links in the kerogen, liberating lower

molecular weight (and therefore soluble) kerogen sub-fragments which retain abundant

sulfide linkages within their infrastructure. Since sulfur in the newly generated bitumen

cannot account for all of the sulfur lost from the kerogen, continued H2S formation at

these temperatures is also implied.



At higher temperatures(>300oC) bitumen formation via cleavage of sulfur links

gives way to hydrocarbon generation through C-C bond scission. Presumably

hydrocarbons are generated from both the kerogen and bitumen. These conditions result

in soluble products which contain increasing proportions of aliphatic and aromatic

hydrocarbons (including aromatized sulfur compounds) with maximum yields observed at

325oC for the former and 3600 C for the latter (Fig. 2). The temperature regime between

275 and 360'C is also where the most marked changes in the carbon structure of the

kerogen occurred, as indicated by bituminite reflectance and NMR spectrometry, which

suggest increasing aromaticity. Also of note is the dramatic reduction in abundance of

(poly)sulfide sulfur in the kerogen (Fig. 5). In terms of relative proportions, thiophenic

sulfur exceeds that of sulfidic sulfur above 250'C in the kerogen.

The distribution of carbon in the various pools resulting from the artificial

maturation of Monterey shale (Fig. 10) is consistent with the above interpretation of the

fate of organic sulfur during maturation. It is expected that the relative concentration of

organic carbon associated with the kerogen C would decrease as bitumen and gaseous

products are generated. Although this held true for experiments at 250C and above, an

increase in kerogen C over that of the unheated sample was observed at 125-175C. This

was likely due to the low-temperature dissolution of non-carbon containing minerals

originally present in the Monterey shale (e.g. refractory phosphates). Overall, kerogen C

decreased from approximately 21 to 15% in the unheated and 360'C samples,

respectively (Fig. 10), while gaseous organic carbon, in particular CH4 and CO2,

increased with increasing temperature. Very little (<1%) organic carbon was associated

with the bitumen C until 250C, with a maximum in bitumen C at 2750 C (Fig. 10). This

is consistent with the thermally induced cleavage of sulfide links in the kerogen freeing

soluble, carbon-containing structures to the bitumen. At higher temperatures C-C bonds

in these soluble structures are likely broken leading to hydrocarbon and ultimately gas

generation.

The generation of petroleum-like products as a function of temperature during the

experiments presented here is consistent with previous experimental studies on sulfur-

rich kerogens. The formation of expelled oil has been modeled as a two step process



involving the decomposition of generated bitumen to form a compositionally distinct oil

phase (Lewan, 1985; Baskin and Peters, 1992). Although we cannot distinguish between

generated bitumen and expelled oil in our experiments, compositional variations in the

total extractable bitumen support such a model. Bitumen, as defined by Lewan (1993), is

rich in polar compounds relative to expelled oil, which contains substantially greater

proportions of saturate and aromatic hydrocarbons. During our experiments we observed

a clear offset between peak generation of polar compounds at (275°C) and aliphatic and

aromatic compounds (325-360"C), consistent with early bitumen generation which in turn

decomposes to produce a more oil-like substance. These temperatures for peak bitumen

and inferred oil formation are significantly lower than those from hydrous-pyrolysis (72

hrs) of the relatively sulfur-poor Woodford shale (330 and 350C, respectively) and the

Phosphoria shale (300 and 350C), characterized by an intermediate organic sulfur

content (Lewan, 1985). Baskin and Peters (1992) conducted hydrous-pyrolysis

experiments for 72 hrs utilizing the Monterey shale and observed peak bitumen and oil

formation at 280 and 330"C, respectively. These temperatures are almost identical to

those observed during this study, the difference in heating time notwithstanding. Taken

collectively, the experimental results provide strong evidence for the early generation of

bitumen and oil from sulfur-rich kerogens, relative to sulfur-poor kerogen, owing to the

preferential cleavage of weak sulfur linkages.

Interpreting the above results within the context of geological maturation of

sulfur-rich source rocks such as the Monterey Fm., we can make several inferences. The

first concerns the general phenomenon of low temperature petroleum generation. We

have observed relatively low temperatures (experimentally-speaking) for maximum

bitumen generation (275C) during our experiments. This maximum reflects the

liberation (or formation) of sulfur-rich high molecular weight heterocompounds (polar

compounds) which clearly indicates the transfer of a significant proportion of sulfur from

insoluble kerogen to soluble bitumen. Even before this event, however, partial

elimination of sulfur from the kerogen takes place under mild thermal stress (175C), and

there is every reason to believe that this also occurs in the natural system within a late

diagenetic/early maturation time-frame. For both of these phases of sulfur removal from



the kerogen, geochemical evidence suggests that the sulfur species responsible are sulfide

linkages. Initially, polysulfide bridges may collapse, liberating H2S, but little or no

bitumen (Fig. 10). These bridges are likely to be the most thermally labile.

Subsequently, C-S bonds in mono-sulfide bridges may undergo scission in concert with

S-S bond cleavage, releasing polar-rich bitumen. Thus (poly)sulfide linkages are the

species which display the greatest reactivity at lower temperatures and likely play a key

role in dictating the evolution of petroleum-like products. At higher temperatures,

reactions dominated by sulfur bond-breakage give way to those involving carbon-carbon

bond scission (Fig. 10). Here we envisage that sulfur plays a subordinate role owing to

the fact that most of the labile sulfur is already eliminated from the kerogen at lower

temperatures and condensed cyclic forms of sulfur, which are thermodynamically more

stable and do not participate significantly in hydrocarbon generation, are more prevalent.

An interesting observation stemming from the present study is the non-linear

relationship between the Py-GC based thiophene ratio and Sorg./C ratio as a function of

maturation temperature. A near linear relationship has previously been observed between

these parameters for immature kerogens (Sinninghe Damst6 and de Leeuw, 1990).

Eglinton et al. (Eglinton et al., 1994) also observed this relationship for unconsolidated

organic sulfur-rich sediments from the Peru margin, noting that the relation held despite

the fact that XANES analysis indicated only a small proportion of the sulfur was

thiophenic. These authors postulated that the ratio must reflect total sulfur because of a

constancy in the relative abundance of these species over the diagenetic interval studied.

Indeed, for Peru margin kerogens, XANES-based speciation was remarkably constant,

with sulfides dominating throughout. Like the Peru kerogens, the kerogens from the

unheated Monterey shale showed a similar dominance of sulfides, but unlike the former

there was a significant shift in the relative proportions of sulfur species as a function of

temperature. Consequently, at lower temperatures (<2500 C), the thiophene ratio

remained constant while the S/C ratio decreased (Fig. 9). This reflects removal of S from

polysulfide bridges (as H2S), while sulfur more intimately associated with carbon

structures remains intact. At higher temperatures, the thiophene ratio shows a more

precipitous reduction compared to the S/C ratio, where removal of thiophenic species



becomes prevalent. The result of these thermally disparate events is a "dog-leg"

relationship between the thiophene ratio and the S/C ratio. Although systematic

decreases in the thiophene ratio as a function of maturity have been previously observed

(Eglinton et al., 1990b), this more complex relationship with respect to the S/C ratio has

not been reported It is clear, therefore, that caution should be exercized when using the

Py-GC approach for estimating organic sulfur contents of kerogens spanning a wide

maturity range.

Conclusions

Hydrous-pyrolysis experiments, when combined with an analytical scheme

involving XANES spectroscopy, Py-GC, CP/MAS 13C NMR spectrometry, elemenfal

analysis, TLC-FID and relected light microscopy, represents an effective means to

determine the speciation of sulfur during maturation of the Monterey shale. The

following conclusions regarding gross and molecular-level transformations in sulfur

speciation and the manner by which they lead to the early conversion of kerogen to

bitumen and oil are made:

1. The high sulfur content of Monterey kerogen leads to relatively low

temperature (polar) bitumen (275C) and (saturate and aromatic hydrocarbons) oil (325-

360°C) generation as compared to sulfur-poor kerogens during experiments.

2. XANES spectroscopic analyses indicate that sulfides and polysulfides are the

major forms of organic sulfur initially present in the Monterey Shale kerogen. Removal

of these sulfur species from the kerogen begins at very low temperatures (150'C), with

qualitative evidence indicating preferential elimination of polysulfides. The relative

amount of organic sulfides and polysulfides increases in the bitumen fraction to a

maximum at 2750C, whereas the relative proportion of total thiophenes in both the

kerogen and bitumen fractions show comparatively little change with temperature. The

early generation of bitumen is attributed to the inherent weakness of sulfur linkages

within kerogen-bound sulfides and, in particular, polysulfides.



3. The fate of organic sulfur during laboratory thermal maturation of Monterey

kerogen can be described in terms of three temperature regimes: (a) 150-225oC:

(Poly)sulfide bridges collapse, leading to the formation of H2S. (b) 225-275oC: Scission

of sufficient sulfide linkages resulting in the release of soluble sulfur-rich fragments

(bitumen) from the kerogen and continued H2S production. (c) >275oC: Cleavage of S-S

and C-S bonds gives way to C-C bond scission and the generation of saturated and

aromatic hydrocarbons. At higher temperatures (360'C) sulfur may no longer be

mechanistically important as most of the labile forms have been removed.
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Table 1. Total extract, saturated, aromatic and polar compound yields. Concentrations of dissolved CO2 + CI -C
(light hydrocarbon) and H2S.

Total Saturates Aromatics Polars CO 2 + CI-C,* H2S*

Temperature ('C) (mg/g rock) (mg/g rock) (mg/g rock) (mg/g rock) (mg/g rock) (mg/g rock)

Unheated

125

150

175

200

225

250

275

300

325

350

360

10.7

1.23

1.72

7.26

22.4

10.5

36.9

68.4

29.7

29.2

22.7

33.1

0.0

0.0

0.0

0.58

0.11

0.64

0.54

2.69

1.60

3.25

1.87

1.21

0.0

0.0

0.0

0.0

0.27

0.87

2.08

3.70

1.45

4.39

3.26

4.81

10.7

1.23

1.72

6.68

22.0

9.01

34.2

62.0

26.6

21.5

17.5

27.1

n.d.

6.01

8.68

13.3

20.7

n.d.

29.8

n.d.

47.9

50.3

69.3

77.4

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

6.9

n.d.

8.4

9.3

12.7

18.8

n.d. not determined.
* calculated from the concentrations of these species dissolved in the aqueous phase.



Table 2. Elemental Analysis of bulk sediments, CrCl2-treated kerogens and solvent (bitumen) extracts

Bulk Sediment CrCl2-treated Kerogen Bitumen

Temp. (oC) %OC %N %S S/C %OC %H %N %S S/C %OC %H %N %S S/C

1.24 3.86 0.070

1.36 3.67 0.061

1.42 3.67 0.058

1.34 3.50 0.059

1.23 3.02 0.050

1.08 2.64 0.053

1.21 3.06 0.056

0.94 2.36 0.057

1.12 2.24 0.046

0.97 2.21 0.050

0.90 1.81 0.045

0.98 2.44 0.063

60.44 6.52 3.22 8.25 0.051

59.83 6.41 3.06 7.83 0.049

59.57 6.86 2.91 7.50 0.047

60.79 6.22 3.11 7.39 0.046

64.56 6.45 3.14 6.92 0.040

62.88 6.28 3.24 6.04 0.036

60.81 5.99 2.93 5.21 0.032

69.13 5.74 3.60 4.49 0.024

72.55 5.66 3.70 3.91 0.020

75.26 5.03 3.95 3.40 0.017

65.22 4.39 3.54 2.94 0.017

74.79 4.23 4.01 3.48 0.017

68.86 8.34 2.05 7.25 0.039

56.40 5.67 2.44 5.12 0.034

67.68 7.02 2.23 6.92 0.038

69.62 8.39 1.56 8.30 0.045

n.d. n.d. n.d. n.d. n.d.

55.35 4.69 1.76 6.79 0.046

68.66 7.59 1.68 10.8 0.059

71.98 8.25 2.27 10.4 0.054

55.95 6.72 1.35 6.61 0.044

72.55 7.92 1.62 9.64 0.050

n.d. n.d. n.d. n.d. n.d.

76.48 6.86 2.06 7.61 0.037

* Sediment samples were not decarbonated prior to hydrous-pyrolysis.

n.d. not determined.

Unheated

125

150

175

200

225*

250

275*

300

325

350

360

20.58

22.60

23.54

22.39

22.62

18.64

20.32

15.58

18.31

16.71

15.08

14.58



Table 3. NMR results of bulk sediments, isolated kerogens and CrCI2-treated kerogens
and "bituminite" reflectance of bulk sediments

Aromaticity* %Ro

Bulk Kerogen CrCl2-treated Bulk

Temperature (oC) Sediment Kerogen Sediment

Unheated 0.35 0.34 n.d. 0.25

125 0.32 0.35 0.32 0.24

150 0.36 0.32 0.33 0.28

175 0.41 0.37 0.36 0.31

200 n.d. n.d. n.d. 0.30

225 0.44 n.d. n.d. 0.29

250 0.45 0.49 0.49 0.36

275 0.57 n.d. n.d. 0.33

300 0.64 0.59 0.63 0.42

325 0.67 n.d. n.d. 0.59

350 n.d. n.d. n.d. 0.85

360 0.88 0.83 0.83 0.95

* may include any contributions from carboxylate and carbonyl
n.d. not determined.

carbons if present.



Table 4. Peak identifications for FPD chromatograms

Peak Compound Origin* Peak Compound Origin*

Hydrogen sulfide

Thiophene

2-Methylthiophene

3-Methylthiophene

Thiolane

Methyldihydrothiophene

2-methylthiolane

2-ethylthiolane

2,5-dimethylthiophene

2,4-dimethylthiophene

2-ethenylthiophene

2,3-dimethylthiophene

2-ethylthiolane

2-propylthiophene

2-ethyl-5-methylthiophene

9

L

L

L

L

L

B,S

I,B

L

L

L

2-ethyl-4-methylthiophene

2,3,5-trimethylthiophene

2-methyl-5-ethenylthiophene

2,3,4-trimethylthiophene

3-isopropyl-2-methylthiophene

2-methyl-5-propylthiophene

+ 2,5-diethylthiophene

5-ethyl-2,3-dimethylthiophene

Unknown

2-butyl-5-methylthiophene

2-ethyl-5-butylthiophene

2-methyl-5-pentylthiophene

2-methylbenzo[P]thophene

4-methylbenzo[P3]thiophene

+ 3-methylbenzo[]thiophene

* Inferred carbon skeleton of bound precursor: L=linear, B=branched, I=isoprenoid, S=steroid side chain.

B

I,B

L

B,S

S

L

L

B

S?

L

L

L

L

L

B
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Figure 1. Outline of analytical scheme for separation and characterization of hydrous-
pyrolysis products.
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Figure 3. Variation in the atomic S/C ratio of the bitumen (open diamonds) and CrC12-
treated kerogens (closed stars) with temperature.
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Figure 4. Normalized XANES spectra of (a) bitumen from the unheated, 125 0 C, 150 0 C,
175 0C, 2250C, 2500C, 2750C, 3000C, 3250C, 3500 C and 3600 C hydrous-
pyrolysis experiments, and (b) CrCl2-treated kerogens from the unheated, 125 0C,
150 0C,1750 C, 2250C, 2500C, 2750C, 3000C, 325 0C and 360 0C experiments.
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Figure 6. Variation in aromaticity (may include any contributions from carboxylate
carbons at - 175 ppm) of kerogen, CrCl 2-treated kerogen and altered sediment
fractions as well as variation in reflectance of altered sediments with temperature.
Symbols represent: (Aromaticity) open diamonds kerogens, open squares pyrite-
free kerogen, closed circles altered sediments; (%Ro) closed stars altered
sediments.
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Figure 7. Solid-state '3C CP-MAS NMR spectra of the kerogen isolates from the
unheated, 125 0 C, 150 0 C, 175 0 C, 250'C, 3250 C and 360 0C experiments.
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Figure 8. (a) Partial FID chromatograms from Py-GC of the kerogen isolates from the

unheated, 250 0 C, 300'C and 3600 C hydrous-pyrolysis experiments. Numbers
represent n-hydrocarbon homologs, symbols denote: closed circles alkylbenzenes,
open circles thiophenes.
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Figure 8. (b) Partial FPD chromatograms from Py-GC of the kerogen isolates from the

unheated, 2500 C, 3000 C and 360'C hydrous-pyrolysis experiments. Peak
assignments are listed in Table 4.
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CrC12-treated kerogens from each hydrous-pyrolysis experiment (expressed as the
ratio of [2-methylthiophene/(toluene+C 7HI4)]) with (a) temperature and (b) atomic
S/C ratio.
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CHAPTER 2

Chemical Mechanisms of Hydrocarbon and Non-hydrocarbon Gas
Generation During Laboratory Hydrous-pyrolysis of Monterey and

Smackover shales

Introduction

The desire of the oil industry to maximize the yield of petroleum products

obtained from drilling operations has provided sufficient economic incentive to study

petroleum generation and expulsion. Unfortunately, sedimentary basins present a

complex environment for researchers interested in modeling the extent and timing of oil

and gas generation. Time and temperature are important factors controlling petroleum

generation yet it is difficult to accurately determine the extent of thermal stress and

resulting organic transformations that a source rock has undergone. Consequently, the

mechanisms which lead to oil generation and expulsion are obscured in natural settings.

Artificial maturation experiments conducted under both dry conditions (Harwood,

1977; Tissot et al., 1987) and in the presence of water (Lewan, 1985, 1992; Tannenbaum

and Kaplan, 1985; Seewald, 1994) have helped to reveal the physical and chemical

processes responsible for hydrocarbon generation. Although elevated temperatures are

necessary during laboratory studies to compensate for vastly disparate time scales (hours

vs. millions of years), hydrous-pyrolysis experiments have yielded petroleum products

which are very similar to those observed in sedimentary basins (Lewan, 1985; 1992).

Furthermore, the chemical mechanisms leading to the generation of oil during hydrous-

pyrolysis experiments appear to be the same as those occurring in natural petroleum

formations (Lewan, 1992). Thus, experimental simulations have enabled researchers to

develop chemical kinetic models of petroleum generation and expulsion in sedimentary

basins (Lewan, 1985; Horsfield et al., 1992; Sweeney et al., 1995).

The amounts and distribution of light hydrocarbons (C1-C4 ), and other gases such

as C0 2, H2 S and H2 , can provide further insight into the organic transformations

occurring during source rock maturation. It has been proposed that these gas products

may play an important role in the migration of oil over time scales on the order of years



(Price et al., 1983; Whelan et al., 1994). Only recently, however, have researchers been

able to duplicate the composition of natural gas during laboratory pyrolysis (Mango et al.,

1994). Attempts to accurately monitor the generation of gaseous products have been

hampered by the lack of an ideal experimental apparatus. For example, in studies

utilizing a Parr-type hydrous-pyrolysis system (Lewan, 1985), both liquid and vapor

phases are present making it difficult to accurately analyze gas samples while at

experimental conditions. It is only possible to measure gas concentrations once the

experiment has been cooled. The quenching process, however, may initiate chemical

reactions which alter the concentration and distribution of generated hydrocarbons. Open

pyrolysis systems, on the other hand, allow for continuous measurement of released

hydrocarbons. Secondary reactions involving the cracking of oil to gas do not take place,

however, because the reaction chamber is continuously swept with carrier gas, removing

volatile products (Ungerer, 1990). Furthermore, the lack of water, low pressures and

extremely high temperatures (>450'C) involved are not characteristic of natural

environments (Ungerer, 1990). To circumvent these problems a hydrous-pyrolysis

system with no head space and only a single liquid phase present was constructed. This

experimental set-up allows dissolved gas concentrations and organic acid anions to be

sampled while at experimental temperature and pressure. Thus, fluid chemistry can be

monitored as a function of time during an individual experiment.

The primary goal of this study was to determine the chemical processes which

regulate the rate and extent of chemical reactions responsible for the generation of

gaseous products. In order to compare the effects of initial kerogen composition on gas

generation, samples of Monterey and Smackover shales were used. A series of hydrous-

pyrolysis experiments were conducted for 170 hrs at temperatures ranging from 125 to

3600 C. The dissolved concentrations of C1-C4 hydrocarbons, CO 2, H2 S and H2 were

monitored during each heating experiment. In addition, elemental analyses of the bulk

sediment and kerogen isolates were carried out at the end of each experiment. The results

from these measurements have enabled us to further constrain the mechanisms leading to

gas generation during source rock maturation.



Methods

Sample Description and Preparation

The Monterey shale sample is a thermally immature (Bituminite reflectance =

0.25%), organic rich (TOC = 20.6 wt.%) consolidated sediment from the Miocene,

Monterey Fm. (Sample # ML91-17, provided by M.D. Lewan). The sample was obtained

from an outcrop at Naples Beach, CA where it was removed from a 10 cm interval at the

base of Unit 315, approximately 9 m below the lowest phosphorite horizon. The sample

comprised a lenticularly laminated claystone and visually appeared fresh (i.e.

unweathered) and blocky. The Monterey shale kerogen is comprised primarily of sulfur-

rich marine organic matter (Orr, 1986). Due to its high sulfur content (wt.% S = 8.25)

and petrographic features the Monterey shale kerogen is classified as a type II-S kerogen

(Orr, 1986).

The Smackover shale is a consolidated sediment sample from the Jurassic, Upper

Smackover Fm. It was obtained from core cuttings retrieved at 3260 m depth from the

Amerada Scotch Well #1 in Clark County, Al. The sample is relatively organic lean

(TOC = 0.917 wt.%) contains very little sulfur and has a vitrinite reflectance value of

0.52% Ro. The Smackover shale kerogen is primarily terrestrial in origin and

petrographic evidence indicates that the sample is a type III kerogen.

In this study we were interested in the chemical processes leading to gas

generation. Complications due to the physical processes associated with the expulsion of

gas were minimized by pulverizing the samples in a disc mill to <125 Rpm after scraping

to expose pristine material. After pulverization, the ground sediment was solvent

extracted to remove indigenous hydrocarbons. The Monterey shale sample was

sequentially extracted by sonic disruption for 9 min in CH 2C12, a 1:1 mixture of

CH2Cl 2/CH 3OH and CH30OH. The Smackover sample was soxhlet-extracted for 48 hrs

using a 93:7 CH2Cl2/CH30H mixture. With the exception of the 225 and 275°C heating

experiments, both the Monterey and Smackover shales were treated with 10% HCl at

40'C for 2 hrs to remove sedimentary carbonate.



Hydrous-pyrolysis Experiments

1.0 g of solvent-extracted, carbonate-free sediment was used as starting material

for each experiment except MS9 in which 0.5 g was used. The sediment sample was

loaded into a 20 mL, 316 stainless-steel pipe-bomb, sealed and placed into a horizontal 62

x 12.0 cm i.d. furnace (Fig. 1). The air in the pipe-bomb was evacuated and the pipe-

bomb was partially filled with argon-purged distilled water to ensure that the sediment

was in contact with water during heating. After the desired experimental temperature was

reached (-30 min), the pipe-bomb was filled completely with distilled water and

pressurized to 350 bars so that only a single liquid phase was present (i.e., no head-

space). Temperature was monitored (±+2C) with a thermocouple at each end of the pipe-

bomb to ensure there were no thermal gradients. A wide range in hydrous-pyrolysis

temperatures (125-360'C) was chosen in order to clearly define the amount of thermal

stress necessary for significant gas generation. All experiments were approximately 170

hrs in duration.

During an experiment, fluid samples were withdrawn from the pipe-bomb through

a 10 gm stainless-steel mesh filter into glass gas-tight syringes after approximately 24, 72

and 170 hrs. Pressure was maintained during the sampling process by pumping argon-

purged distilled water into one end of the pipe-bomb while the fluid sample was removed

from the other. During sampling, an initial 0.5 mL of fluid was removed to clean the

stainless-steel lines and valve. Duplicate fluid samples were then removed to measure

dissolved hydrocarbon and CO2 concentrations, followed by individual fluid samples for

H2S, H2 and organic acid anion measurements. The sampling process was performed

rapidly (1 to 2 min) to avoid dilution of fluid samples with the freshly injected water.

At the end of the experiment the pipe-bomb was cooled and all liquid contents

were removed by sequentially pumping 30 mL of CH3OH and CH2C12 through the pipe-

bomb. The pipe-bomb was opened and the solid residue was removed by rinsing with

additional solvent. The combined CH3OH/CH 2CI2 extract was centrifuged and the liquid

products decanted. After drying at 400 C in air, the solid residue was sequentially

extracted by sonic disruption in CH3OH/CH2C12 to ensure complete removal of generated

bitumen. After extraction, a split of the altered sediment (-350 mg) was demineralized



through HCI and HF acid digestions at room temperature (Eglinton and Douglas, 1988) to

obtain a kerogen isolate. An aliquot (-50 mg) of the kerogen isolate was treated with

CrCl 2 and concentrated HCl to remove inorganic sulfur (Acholla and Orr, 1993).

Analytical Procedures

Dissolved CO2 and C1-C4 hydrocarbons were analyzed using a purge and trap

apparatus interfaced to a Hewlett Packard 5890 Series II gas chromatograph (GC), fitted

with a flame ionization and a thermal conductivity detector in series. Fluid samples were

injected into the purge cell which was filled with I mL of 25% H3PO 4 and purged for 20

min. This ensured complete evolution of dissolved CO2. Evolved gases were trapped

cryogenically in a chill loop packed with n-octane/porasil C and then injected the GC.

Chromatographic separation was accomplished using either a porapak-Q packed column

or a poraplot-Q megabore capillary column. Authentic gas standards (Scotty® II

Analyzed Gases) were used to create a three level calibration curve for each hydrocarbon

and CO 2. Analytical uncertainties for these species are estimated to be <5%.

Dissolved H2 was quantitatively removed from the fluid samples by partitioning

into a N2 headspace. The concentration of extracted H2 was then determined using a

Shimadzu GC-8A gas chromatograph equipped with a 5A molecular sieve packed

column and a thermal conductivity detector. A 1.01% H2 gas standard (Scotty® II

Analyzed Gases) was used to prepare a two level calibration. Dissolved H2S

concentrations were determined gravimetricly. Dissolved H2S was purged from the fluid

samples after acidification with 1 mL of 25% H3PO4 and precipitated as Ag2S in a 3 wt.%

AgNO3 solution. Estimated uncertainties for both H2 and H2S measurements are less than

5%.

Dissolved organic acid anion concentrations were determined using a Dionex DX-

300 ion chromatograph fitted with an AS 11 column and a conductivity detector. Fluid

samples removed from the pipe-bomb were preserved in a 200 ppm HgCl2 solution, prior

to analysis. Authentic standards (PolyScience Analytical Standards) were used to prepare

a three level calibration curve for all organic acid anions reported.



The absolute amounts of generated products were calculated using the following

equation:

gimol / g TOC = [(Vpb / VH2 0) X (C) / (M)] x [100 / (wt.% TOC)],

where Vpb is the pipe-bomb volume in mL, VH20 is the specific volume of the water at the

experimental temperature and pressure in mL/g, C is the dissolved gas concentration in

mmol/kg fluid, and M is the mass of the starting sediment in g. The equation of state of

Haar et al. (1980) was used to calculate the specific volume of pure water.

Elemental analyses (C, H, N, S) were performed at the termination of each

maturation experiment on the bulk sediment and kerogen fractions. Weight percent O

was also determined for the kerogen isolates. Elemental analyses were conducted using

either a Leco 932 or Fisons EA1108 elemental analyzer. Total inorganic carbonate (TIC)

was determined using a UIC Inc. Coulometrics CO2 Coulometer while total organic

carbon (TOC) was determined by difference.

Results

Gaseous Phases

The absolute amounts and aqueous concentrations of all gases analyzed are listed

in Tables 1 and 2. As shown in Figure 2 and 3, the extent of CO2 and light hydrocarbon

generation was highly dependent on temperature and time. In all experiments, CO2 was

the predominant gas generated and at 3600 C accounted for approximately 8.5 and 9.2% of

the organic carbon initially present in the Monterey and Smackover shales, respectively.

In addition, maturation of both shale samples led to the production of substantial amounts

of CO 2 at temperatures as low as 125oC (Tables 1, 2). In the Monterey heating

experiments, measured CO 2 exhibited a steady increase with increasing temperature up to

325oC. Duplicate experiments, MS5 and MS 13, conducted at 3250 C, however, yielded

CO2 values which were almost identical to the experiment at 3000 C (Fig. 2). These

depressed CO2 values were likely due to the precipitation of a carbonate containing

mineral such as CaCO 3 during the experiment. In experiments where calcite was not



removed prior to heating (225 and 275oC) decreased production of CO 2 was also

observed (Table 1). This may be due to sedimentary calcite buffering fluid composition

at low dissolved CO2 concentrations. Regardless, due to the possibility of calcite

precipitation, the CO2 values measured during all experiments must be viewed as

minimums. Duplicate heating experiments utilizing the Monterey shale (MS6 and MS9)

were conducted at 3600 C (Table 1, Fig. 2). Even though only half the amount of starting

material was used in experiment MS9, the results from both experiments are in excellent

agreement (Table 1, Fig. 2).

In contrast to the Monterey experiments, heating of the Smackover shale at

temperatures between 150 and 325oC resulted in only a minor increase in CO2 production

(Fig. 3). However, at 3600 C the Smackover sample generated approximately the same

amount of CO 2 as the Monterey shale when normalized to organic carbon content (Tables

2 and 3). The large difference between the CO2 values measured at 325 and 360'C (62.5

vs. 337 mg/g TOC) may reflect calcite precipitation at 3250C. Consistent with this

interpretation are higher CO2 values measured during the experiment conducted at 2500 C

as compared to 3250 C.

Measurable amounts of methane were generated from the heating of Monterey and

Smackover shales at all temperatures (Tables 1 and 2). The amount of CH4 produced

from maturation of the Monterey shale was an order of magnitude greater than any other

hydrocarbon analyzed (Table 2). CH, generation from the Monterey shale increased with

temperature, particularly between 325 and 350'C, where 11.1 and 25.9 mg CH/g TOC

were generated respectively (Fig. 2).

Comparable trends were observed in the CH4 results from the Smackover

experiments (Fig. 3). However, at 3600 C the Smackover shale produced only one third

the amount of CH4 generated from the Monterey sample (12.4 vs. 31.4 mg/g TOC). CH4

was the dominant hydrocarbon produced at all temperatures, with the exception of the

second sample obtained during the 125oC heating experiment in which propane was

greater (Table 2). In addition, the Smackover shale produced over six times as much CH4

at 360'C compared to 3250 C (12.4 vs. 1.89 mg/g TOC).



The combined amounts of ethylene, ethane, propylene, propane, and n- and iso-

butane produced during heating of Monterey and Smackover shales are illustrated in

Figures 2 and 3. The Monterey shale generated greater amounts of C2-C4 hydrocarbons at

all experimental temperatures than did the Smackover sample (Figs. 2 and 3). During the

Monterey experiments, the production of C2-C4 hydrocarbons increased dramatically

between 325 and 350'C, similar to CH4. Likewise, the amount of C2-C4 hydrocarbons

generated from the Smackover shale at 3600 C was roughly 5 times that produced at

3250C (Fig. 3). At temperatures of 2000C and above, alkanes were generated from both

samples in greater amounts than alkenes (Tables 1 and 2). Furthermore, the difference

between the amount of alkanes and alkenes produced became more pronounced with

elevated temperature (Tables 1 and 2). During both the Monterey and Smackover

experiments, the concentration of alkenes generally decreased with time at a given

temperature (Tables 1 and 2), suggesting that they are unstable once formed. The

concentrations of n- and iso-butane produced from the Smackover shale were typically

below detection (Table 2). In experiments with Monterey shale at 3000C and above, n-

butane was generated in preference to iso-butane (Table 1).

H 2S was detected by odor from the fluid samples obtained during all Monterey

shale heating experiments. Gravimetric determinations, however, were only possible in

experiments conducted at >250C (Table 1). H2 S was also detected in the Smackover

shale fluid samples at 325 and 360 0C, yet concentrations were too low to be quantified.

The amount of dissolved H2S measured during the Monterey experiments increased with

increasing temperature reaching 12.7 and 18.8 mg/g rock at 350 and 360'C, respectively.

These values exceed the amount of sulfur present as diagenetic pyrite in the initial

sediment (10.5 mg/g sediment) indicating that organic sulfur initially present in the

Monterey shale, the only other source of dissolved H2S, was released to solution (Nelson

et al., 1995). Once in solution, dissolution and precipitation of metal sulfides, such as

pyrite (FeS2) and pyrrhotite (FeS), likely controlled the concentration of dissolved H2S

according to the following reactions:

Fe2+ + H2S = FeS + 2H+,



Fe2+ + 2H2S + '/202 = FeS2 + 2H+ + H2 0.

Furthermore, the kinetics of these reactions are quite rapid under hydrothermal conditions

(Seewald and Seyfried, 1990). Therefore, it is important to note that the H2S values given

in Table 1 represent absolute minimums.

Dissolved H2 concentratibons were measured in the final fluid samples from the

200, 300, 325 (MS5 & MS 13) and 350'C Monterey shale experiments (Table 1).

Dissolved H2 concentrations were not measured during hydrous-pyrolysis of the

Smackover shale. With the exception of the MS5-325°C Monterey fluid sample, the

concentration of dissolved H2 increased with increasing temperature. Experiment MS5-

325oC was the first carried out in a new pipe-bomb that was not oxidized by heating in

the presence of water before use. Thus, the elevated H2 concentration observed is most

likely due to oxidation of the stainless-steel walls during the experiment. In contrast, the

MS 13-325 0C experiment was the ninth heating experiment utilizing the same pipe-bomb.

Accordingly, a much lower dissolved H2 concentration was observed, 0.57 vs. 1.82

mmolal for MS 13-325°C and MS5-325°C, respectively.

Organic Acids

The absolute amounts of all organic acid anions analyzed are listed in Tables 3

and 4. It is likely, however, that the measured concentrations were less than what was

generated during the experiments, since they represent both acid production and

destruction. Continued reaction at constant temperature in the relatively high temperature

experiments (>225oC) may have resulted in decreasing acid concentrations, possibly due

to decarboxylation reactions (Kharaka et al., 1983; Palmer and Drummond, 1986).

During the Monterey hydrous-pyrolysis experiments, acetate and propionate were

generated in the greatest amounts (Table 3). The observed concentrations of both acids

increased with temperature and with time. Significantly lower concentrations of formate

and oxalate were observed and were characterized by decreasing abundance with

increasing temperature. The amount of succinate measured increased with temperature

up to 3000 C, after which concentrations decreased. The abundance of valerate also

increased with temperature, with concentrations typically below detection at temperatures



less than 225oC (Table 3). Analysis of fluid samples obtained from experiment MS8 at

250'C yielded values much lower than the other experiments (Table 3). It is possible that

these samples were not spiked with sufficient HgC12, which could have resulted in

bacterial degradation of generated acids.

Formate and acetate were the only organic acids observed in solution during all

hydrous-pyrolysis experiments with the Smackover shale (Table 4). Similar to the

Monterey experiments, formate was present in lesser amounts than acetate and formate

abundance decreased with temperature. The greatest amount of acetate was measured in

the initial fluid sample obtained at 3600 C (23.8 mg/g TOC). However, no trend in acetate

production was observed with increasing temperature (Table 4).

Solid Phases

Table 5 lists the results of the elemental analyses of the Monterey and Smackover

shales and the Monterey kerogen isolates, before and after heating. The initial Monterey

bulk sediment yielded a lower wt.% TOC value (20.6 wt.%) than was determined for the

bulk sediment samples after hydrous-pyrolysis at 125 to 2000 C (Table 5). This is likely

due to the low-temperature dissolution of non-carbon containing minerals originally

present in the Monterey shale, such as phosphates. Above 200'C, wt.% TOC exhibited a

steady decrease with increasing temperature as expected during hydrocarbon generation.

The TOC values of the bulk sediments from experiments MS 1 and MS2 (225 and 275°C)

were relatively low since they were not acid-treated prior to heating. The percentages of

N and S in the Monterey bulk sediment samples also decreased with increasing

temperature.

Elemental analysis of the Monterey kerogen isolates reveals the transformations

which occurred in the organic matter itself during maturation (Table 5). Wt.% TOC

increased with temperature up to 3250 C while both wt.% H and O decreased. Above

325°C, the TOC values of the kerogen decreased while wt.% O increased. Wt.% S

steadily decreased with increasing temperature from a value of 8.25 wt.% in the unheated

kerogen to 2.73 wt.% at 3600 C.



No systematic changes with increasing temperature were observed in either wt.%

TOC or N of the Smackover bulk sediments (Table 5). During hydrous-pyrolysis of the

Smackover shale, the sediment is the only source of carbon available for hydrocarbon

generation. The amounts of C-containing compounds generated, however, correspond to

approximately 0.1 wt.% C which is not detectable within the error of the elemental

analysis.

Discussion

Petroleum generation in natural settings is traditionally described in terms of the

evolution of kerogen as it is exposed to higher temperatures during burial (e.g. Tissot and

Welte, 1984). In Figure 4, Tissot and Welte (1984) present a general scheme for the

evolution of various kerogen types based on changes in their atomic ratios, H/C and O/C.

As burial progresses, heterotomic bonds present in the kerogen are destroyed and

functional groups eliminated, producing CO2 and H20. Principal oil formation occurs

after temperatures have elevated to the point that ether and C-C bonds are cleaved in both

the kerogen and bitumen. At higher temperatures, progressively more C-C bonds are

broken primarily producing methane. In natural settings, the temperature range in which

oil generation has been observed is 50-150 0C (Tissot and Welte, 1984) while the window

for natural gas formation is 150-220'C (Quigley and Mackenzie, 1988).

The results from this study agree in many ways with the observations made by

Tissot and Welte (1984). To illustrate these similarities, the variations in H/C and O/C of

the Monterey kerogen during hydrous-pyrolysis are shown in Figure 5. In the early stages

of maturation (unheated-2500 C) kerogen H/C decreased by less than 9% while O/C

dropped by over 20%. This is consistent with the elimination of carboxyl, carbonyl and

methoxyl functional groups from the kerogen to produce CO2, H20 and organic acids. As

seen in Figure 2, substantial amounts of CO2 were generated at 125-250 0C. At

temperatures between 275 and 325°C, the depletion of hydrogen and oxygen from the

kerogen was more extensive (Fig. 5) corresponding to an increase in the production of

CO 2 and in particular, light hydrocarbons (Fig. 2). In addition, Nelson et al. (1995)



determined that peak bitumen formation from the kerogen occurred at 275oC. At 360'C,

the removal of hydrogen from the kerogen continued, although its oxygen content

increased (Fig. 5). Light hydrocarbon production increased dramatically at this

temperature (Fig. 2) consistent with the decrease in H/C. In addition, light hydrocarbons

were likely produced by the cracking of oil to gas as indicated by the declining saturate

content of the bitumen (Nelson et al., 1995). Tissot and Welte (1984) concluded that CO 2

generation occurs only at lower temperatures. Results from this study, however, clearly

indicate that extensive CO 2 production occurs over a wide range of hydrous-pyrolysis

temperatures (Fig. 2) and is clearly not just an early maturation event.

Most hydrous-pyrolysis experiments do not produce the same distribution of C1-C4

hydrocarbons observed in natural gas which is typically 80 weight % CH 4 (Mango et al.,

1994). Two theories have recently been postulated to explain this discrepancy. Mango et

al. (1994) argue that the formation of natural gas is not simply a function of the thermal

decomposition of organic matter but is aided by catalytic processes. From heating

experiments combining hydrogen, n-alkenes and Monterey shale they obtained evidence

of a catalytic pathway to natural gas. Mango et al. (1994) suggest that transition metals

present in carbonaceous sedimentary rocks mediate the reaction between hydrogen and n-

alkenes to produce light hydrocarbons.

In contrast, Price and Schoell (1995) maintain that hydrocarbon compositions

measured in sedimentary basins are a function of fractionation within the reservoir and

during migration from the source rock. Price and Schoell (1995) analyzed gas samples

coproduced with oils directly from the Bakken shales where the local geology has

prevented significant hydrocarbon migration. They discovered that weight % CH4 in the

gas samples obtained, varied from approximately 29-49%. Although these results agreed

with previous pyrolysis studies using the Bakken shale, the methane content is much

lower than the range cited by Mango et al. (1994). Consequently, Price and Schoell

(1995) argued that typical (i.e. 80 wt.% CH4) hydrocarbon distributions result from

physical processes occurring after hydrocarbon generation such as the preferential

condensation of the C2-C4 gases in oil and buoyancy differences within the reservoir.



The molecular composition of natural gas was duplicated during several of the

hydrous-pyrolysis experiments conducted with the Monterey shale presented here. As

seen in Figure 6a, CH 4 represents 80 to 90 wt.% of the C,-C 4 hydrocarbons generated at

temperatures from 125 to 250'C. These temperatures bracket those employed by Mango

et al. (1994), 190-220'C, and include the window for natural gas generation, 150-220'C

(Quigley and Mackenzie, 1988). These results appear consistent with those of Mango et

al. (1994), however, it is questionable whether transition metals are responsible since the

Monterey shale contains an abundance of sulfur which can readily quench metal activity

through formation of metal sulfides. It is possible that reactions between sulfur and

transition metals could prevent the catalysis of hydrogen and n-alkenes. Fractionation

effects described by Price and Schoell (1995) could not have influenced the results of this

study since a single liquid phase was maintained during our hydrous-pyrolysis

experiments and there was no migration. In the case of the Monterey shale mechanisms

associated with the production of gaseous products must be responsible for generating C1-

C4 hydrocarbons in the same distribution as observed in sedimentary basins.

Temperature and time obviously play a role in determining the final composition

of generated light hydrocarbons. Hydrous-pyrolysis of Monterey shale conducted at

temperatures greater than 250'C resulted in a dramatic decrease in the relative amount of

CH 4 generated (Fig. 6a). In addition to temperature, weight % CH4 decreased with time

during each experiment (Fig. 6b). Nelson et al. (1995) established a link between

organically-bound sulfur and the low temperature evolution of bitumen from Monterey

shale. They argue that inherently weak polysulfide and S-C bonds present in the

Monterey kerogen and generated bitumen lowers the thermal stress required for

petroleum formation. The presence of sulfur had its greatest effect at temperatures below

3000 C, while at higher temperatures the cleavage of C-C bonds became the primary

mechanism of kerogen and bitumen decomposition (Nelson et al., 1995). At the point

where sulfur no longer appears to be mechanistically important (T > 3000 C) weight %

CH4 deviates from what is observed in natural settings (Fig. 6a). Thus, it is possible that

the sulfur-rich nature of the Monterey shale may be responsible for generating C1-C4



hydrocarbons at 125-2500 C in the same distribution as seen in nature. However, it is not

clear what precursors in the kerogen would generate short-chain hydrocarbons.

Hydrous-pyrolysis of the sulfur poor, Smackover shale did not produce C1-C4

hydrocarbons with a 'natural' distribution. Weight % CH4 never accounted for more than

70% of the total C1-C4 hydrocarbons generated from the Smackover shale (Figs. 7a and

7b). In contrast to the Monterey shale, wt.% CH4 increased with increasing temperature

(Fig. 7a) and time (Fig. 7b) in hydrous-pyrolysis of Smackover shale.

Recently, Tomic et al. (1995) conducted artificial maturation experiments with

Monterey shale kerogen using an anhydrous closed system at temperatures ranging from

300 to 5000 C. Due to the lack of water and other experimental differences, comparisons

between their results and those from this study must be made with caution. Nevertheless,

a number of similarities exist between the two studies. In addition, the higher

temperature range employed by Tomic et al. (1995) allows the description of hydrocarbon

generation from the Monterey shale to be extrapolated to higher maturaties. In many

cases the difference in experimental designs resulted in the production of disparate

amounts of gases. For example, at 3250C and 48 hrs., Tomic et al. (1995), measured the

following concentrations: H2S = -72 mg/g C; CO2 = -57 mg/g C; C2-C4 = -32 mg/g C;

and CH 4 = -12 mg/g C. The hydrocarbon measurements are comparable to those

observed during the 325'C experiments from this study (Table 1). However, Tomic et al.

(1995) observed approximately 10 times more H2S and over 70% less CO2 than we

measured. Both of these discrepancies are likely due to the presence of water in our

study. First, as mentioned earlier, the dissolved H2S concentrations analyzed represent

minimums due to precipitation of metal sulfides. Second, water may act as an additional

oxygen source for CO 2 generation as hydrogen demand grows due to the increased

production of saturated hydrocarbons with elevated temperature (Lewan, 1992).

Although the absolute amounts may differ, trends in the production of

hydrocarbons and CO2 observed during this study agree with those obtained by Tomic et

al. (1995). Tomic et al. (1995) observed that long-chain hydrocarbons (C 4+), the major

products during early kerogen cracking, decreased rapidly from 550 mg/g C at 3000C to

close to zero at 500'C. As a result, they concluded that primary cracking of the Monterey



kerogen to produce bitumen must take place at temperatures below 300 0C. The results of

the experiments presented here indicate maximum bitumen generation at 275C (Nelson

et al., 1995) consistent with the results of Tomic et al. (1995). In this study, the

generation of CO2, H2S and hydrocarbons increased with temperature with the greatest

values observed at our highest temperature, 360'C. Tomic et al. (1995) found that the

production of C2-C4 hydrocarbons continues to increase above 360'C and peaks at

approximately 440'C followed by a rapid decline. In contrast, no decrease in CI-

generation was observed, and the generation of both CO2 and H2S leveled off at

temperatures higher than 4400C (Tomic et al., 1995). The continued increase in CH4

production is expected as secondary cracking of generated hydrocarbons predominates at

higher temperatures (Tissot and Welte, 1984). It is possible, however, that CO 2

generation may also have continued at temperatures above 440'C if water had been

present.

The production of organic acids in sedimentary basins has been suggested to

enhance porosity due to the dissolution of carbonates and aluminosilicates (Carothers and

Kharaka, 1978; Schmidt and McDonald, 1979). The organic acids are likely generated

from the oxidation of kerogen in the late stages of thermal maturation (Eglinton et al.,

1987). Several studies utilizing hydrous-pyrolysis have shown that significant quantities

of organic acids are produced during kerogen maturation (Kawamura et al., 1986;

Eglinton et al., 1987; Lewan, 1993). Eglinton et al. (1993) observed that the amounts and

types of acid generated varied as a function of kerogen type, maturity and mineralogy.

Measurements of organic acid concentrations during the present study agree with this

observation. Both the amounts and types of organic acids measured during hydrous-

pyrolysis of the Smackover shale were generally less than those analyzed during the

Monterey shale experiments (Tables 3 and 4). In addition to the differences in kerogen

type (type II versus type HI-S), the greater maturity of the Smackover kerogen as

compared to the Monterey kerogen likely accounts for the differences in organic acid

generation observed. Unfortunately, it is difficult to assess the affect the production of

organic acids had on the stability of minerals present in both shale samples.



Kinetic Modeling

The production of light hydrocarbons and CO 2 was monitored as both a function

of temperature and time, allowing kinetic modeling of gas generation from the Monterey

and Smackover shales. Several studies have utilized a variety of chemical kinetic models

to describe the thermal maturation of kerogen to produce oil and gas (Lewan, 1985;

Ungerer, 1990; Braun and Burnham, 1990; Hunt et al., 1991; Horsfield et al., 1992;

Sweeney et al., 1995). These models are typically based on first order reaction kinetics

and the Arrhenius equation. However, the number of chemical reactions employed to

describe hydrocarbon generation varies considerably. For this study, the computer code

KINETICS (Braun and Burnham, 1990) was utilized to analyze the gas data. KINETICS

uses a discrete distribution model to fit an average frequency factor (Ao) and the relative

fractions associated with a given activation energy (Ea) for 25 parallel, first order

reactions (Braun and Burnham, 1990). To obtain relative fractions of gases generated, the

absolute amount of each gas measured at a specific temperature was normalized to the

amount produced at 3600C. A 2 kcal/mole spacing was used between consecutive values

of Ea for all calculations.

The modeling results for CO 2 generation from the Monterey shale are shown in

Figure 8. Unfortunately, because CO2 generation from the Smackover shale did not

increase continuously with temperature it was not possible to accurately model using

KINETICS. The Monterey shale CO2 data yielded a wide range of activation energies

from 40-66 kcal/mole and a pre-exponential factor of 2.95 x 107 s-' (Fig. 8). No more

than 30% of potential CO2 production from the Monterey shale is associated with any

single activation energy which suggests that a diverse set of chemical reactions are

responsible for the generation of CO 2.

In contrast to the CO2 modeling results, CH4 generation took place over a

relatively narrow range of activation energies for both the Monterey and Smackover shale

samples (Fig. 9). Primarily all of the potential CH4 generation from the Smackover shale

is associated with an activation energy equal to 72 kcal/mole. However, lower energy

chemical reactions (Ea < 70 kcal/mole) were responsible for CH4 production from the

Monterey shale. Kinetic modeling of the generation of total C1-C4 hydrocarbons from the



1Monterey shale was also conducted, however, it was not possible for the Smackover shale

since the total hydrocarbons did not increase continuously with increasing temperature

(Table 2). Production of total CI-C 4 hydrocarbons from the Monterey shale occurred

between 40 and 62 kcal/mole with approximately 47% at Ea equal to 62 kcal/mole (Fig.

10). This may represent the cracking of generated bitumen to produce light

hydrocarbons.

The results from kinetic modeling of CH4 production from both the Monterey and

Smackover shale samples were used to predict hydrocarbon generation in a hypothetical

sedimentary basin shown in Figure 11. A geothermal gradient of 25oC/km and a

subsidence rate of 2 km/My were used for this model. After 3 My, at a temperature of

170 0C, close to 20% of the CH4 generation from the Monterey shale has taken place. In

contrast, the Smackover shale has produced very little at this point (Fig. 11). Around 3.5

My (-2000 C), the generation of CH4 from both shales increases dramatically, with the

two generation curves converging at 4 My and approximately 220'C. The differences in

the gas generation curves between the Monterey and Smackover shales illustrate the

effect kerogen composition and maturity have on the extent and timing of hydrocarbon

generation. The generation of a significant fraction of CH4 from the Monterey shale at

such an early point in its thermal history (Fig. 11) is likely due to the abundance of

polysulfide bonds in the Monterey kerogen (Nelson et al., 1995). The lower thermal

stress necessary to break polysulfide bonds translates to the early production of CH4 in the

hypothetical basin (Fig. 11). Early CH4 may already have been produced by the

Smackover shale due to its higher maturity compared to the Monterey shale. The

convergence of the generation curves for each shale sample at greater depths in the basin

suggests that the higher temperatures are sufficient to induce the cleavage of C-C bonds

in both the Monterey and Smackover kerogens and generated bitumen.

The kinetic modeling results of CO2 production during hydrous-pyrolysis of

Monterey shale were used to predict CO 2 generation in a hypothetical basin, similar to

above (Fig. 12). As Tissot and Welte (1984) predict, a significant portion of CO 2

generation occurred early on in the burial history of the Monterey shale. At greater

depths within the basin, however, extensive CO 2 production takes place (Fig. 12).



Similar to model predictions of CH4 generation, the CO2 generation curve levels out at

220'C. Thus, these model results provide further evidence that the generation of CO 2 is

not limited to lower temperatures, as suggested by Tissot and Welte (1984).

Horsfield et al. (1992) modeled the cracking of an immature crude oil to gas using

closed system anhydrous-pyrolysis of a medium gravity oil from the Norwegian North

Sea Central Graben. They determined that the production of C,-C 4 hydrocarbons from the

oil occurred over a relatively narrow range of activation energies, 66-70 kcal/mol with a

pre-exponential factor of 1.1 x 1016 s' (Horsfield et al., 1992). These results are in close

agreement with the modeling of total hydrocarbon production from the Monterey shale

(Fig. 10). During our experiments, the majority of gas production occurred at

temperatures higher than maximum bitumen generation (275oC). This suggests that in

our study gas production was a two stage process: the decomposition of kerogen to

produce bitumen and the cracking of bitumen to gas. Thus, the similarity between the

kinetic modeling results of this study and those of Horsfield et al. (1992) would imply

that the production of bitumen is a relatively rapid, low-temperature process.

Consequently, the generation of gas from the cracking of bitumen likely governs the

overall rate of gas production.

Summary

Hydrous-pyrolysis experiments utilizing the Monterey and Smackover shales were

conducted at temperatures ranging from 125-360'C for 170 hrs in duration. The

generation of CO2, H2S, H2, light hydrocarbons (C1-C4) and organic acid anions was

monitored as a function of time during all experiments. In addition, changes in the

elemental composition of the Monterey kerogen were determined at the end of each

experiment. The production of non-hydrocarbon and hydrocarbon gases from both shale

samples increased with elevated temperature. The carbon normalized amount of CO 2

measured at 360 0C was similar for both the Monterey and Smackover shales. However,

over four times as much total C-C 4 hydrocarbons were produced from the Monterey

versus Smackover shale. Weight % CH4 , normalized to total C-C 4 hydrocarbons,



decreased with increasing temperature and time during hydrous-pyrolysis of Monterey

shale. Kinetic models of CH4 generation yielded lower activation energies for the

Monterey shale compared to the Smackover shale. The differences in the timing and

extent of gas generation between the shales analyzed was attributed to the variation in

kerogen type and initial maturity. The carbon- and sulfur-rich Monterey kerogen

generated volatile products and organic acids in greater concentrations at lower

temperatures than did the relatively organic-lean and more mature Smackover shale. The

presence of abundant polysulfide linkages in the Monterey kerogen and their inherent

weakness compared to C-C bonds is likely responsible for the early, low-temperature

generation of volatile products and organic acids.
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Table 1. Absolute amounts and aqueous concentrations of selected volatile species produced during
hydrous pyrolysis of carbonate-free Monterey Shale (20.6 wt. % TOC).

Expt. Time Temp. CO2  CH4  C 2H4  C2H6  C3H6  C 3H8  n-C 4Hlo i-C 4Hlo
11 "C mg/g TOC mg/g TOC gg/g TOC gg/g TOC pg/g TOC gg/g TOC pg/g TOC g/g TOC

MS4 50.9 125
173.2 125

H2S H2
gg/g rock mmolal

16.1 0.0022 0.243 0.146 0.485 0.097
29.2 0.0058 0.194 0.437 0.631 0.194

MS10O 26.3
71.0

167.3

MS3 24.4
72.4

167.6

151
150
150

174

174

174

MS 14 51.4 196
169.3 196

31.1 0.0098
38.3 0.0170
42.1 0.0248

40.6 0.0297
53.9 0.0583
64.6 0.0937

95.6 0.225
100 0.366

0.68(
0.583
0.583

0.874

1.60
2.38

2.18 0.388
1.80 0.680
1.46 1.12

1.41 2.09 2.82 1.12 0.194
1.80 4.27 3.35 2.43 0.388
2.18 6.41 4.17 3.79 0.728

5.39 16.3 8.69 10.1 bd
5.73 28.5 10.8 18.9 bd

bd
bd
bd

0.194
0.291
2.14

bd
bd 0.0056

88.8 0.374
98.1 0.529
105 0.718

23.8 35.8 37.1 21.5 4.51 3.93
20.6 55.8 36.6 33.3 7.38 8.30
20.3 82.0 33.6 50.0 12.0 13.0

MS8 23.3
69.9

165.3

MS2t 22.5
70.3

164.8

MS11 24.3
71.9

168.3

MS5 24.1

70.8
168.0

MS13 26.7
70.8

168.8

MS12 24.7
74.9
145.0

MS6 24.4
71.8

172.3

MS9 23.2

72.2

169.0

247 111
248 128
248 143

275 91.7
274 117
274 125

300 182

300 203

299 219

323 167
324 171

324 217

323 191
324 196
322 219

350 228
350 260
350 280

359
360
360 300

359 253
359 285
358 312

0.893
1.26
1.50

40.3 104 43.0 63.1
40.0 185 51.9 112
36.8 263 52.4 156

3.80

6.86

1.35 66.5 332 87.9 412 62.1 57.8
2.25 48.0 704 85.4 874 172 170

2.90 42.0 1063 144 777 340 301 -

3.42 110 1539 216 869 675 485 8.06

5.19 82.5 2811 220 1684 1218 840 7.94

6.50 78.2 4087 213 2558 1733 1092 8.38

5.29 154 3141 314

6.94 53.9 5340 -

10.0 68.4 8447 733

1228 850
2131 1194
3689 1728

7.28 123 4811 299 3087 1981 1117 7.62
8.59 93.7 6311 295 4102 2573 1413 7.86
11.1 78.2 8204 277 5388 3320 1777 9.26

15.1 154 10631
21.4 101 15291
25.9 87.4 18155

16.2 25.2 10728
25.7 63.6 17087
30.4 52.9 20534

17.4 293
24.7 206
31.4 181

11699
16699
20631

568 6408
650 9515
390 11505

447 6553
412 11068
360 13932

942

791
718

3888 2432 13.5
5631 3301 14.4
6748 3811 12.7

4218 2660 -

7136 4209

8350 4845

6942 4903 2927
- 7282 4058

10971 8981 4762

0.43

1.82

0.57

0.77

13.9
14.2
18.8

t Sedimentary carbonate was not removed from the intial sediment
-: not analyzed
bd: below detection

MS1t 21.3 225
71.7 224

167.3 224

3



Table 2. Absolute amounts and aqueous concentrations of selected volatile species produced during
hydrous-pyrolysis of carbonate-free Smackover Shale

Expt. Time
h

SM2 51.0
171.3

SM6 26.5
71.2

167.2

SMI 24.3
72.3

167.4

SM4 23.6
70.1

165.4

SM3 25.4
69.7

170.8

SM5 23.4
72.3

168.8

Temp. CO 2  CH4  C 2H 4  C 2H 6

"C mg/g TOC mg/g TOC gg/g TOC jgg/g TOC

125 5.02
125 9.92

151
150
150

174
174
174

247
248
248

323
324
324

359
359
358

27.5
30.9
35.7

23.6
30.9
34.7

46.3
54.1
63.5

43.3
48.5
62.5

219
278
337

0.0046
0.0055

0.0095
0.0100
0.0115

0.0093
0.0115
0.0123

0.0662
0.157
0.252

0.815
1.46
1.89

6.66
9.69
12.4

0.763
0.545

bd
bd
bd

1.85
2.29
2.07

9.41
12.8
16.6

132
169
111

254
141
113

0.872
1.31

8.07
7.74
8.51

1.64
2.18
2.07

25.8
41.7
81.4

353
725
607

2388
3555
4231

-: not analyzed
bd: below detection

(0.92 wt.
C3H6

u'g/ TOC

0.436
0.545

bd
bd
bd

1.85
2.29
2.40

7.31
7.20
8.18

140
184
150

678
471
338

% TOC).
C3H 8

glg/g TOC

3.71
6.65

8.62
8.29
9.60

4.14
4.47
4.58

27.9
32.1
47.7

282
497
409

1625

658

n -C4HIo

Lg/g TOC

bd
bd

bd
bd
bd

3.60
4.47
4.80

bd
bd
bd

bd
bd
bd

bd
bd

1265

i- C4HIo

Jgg/g TOC

bd
bd

bd
bd
bd

0.763
bd
bd

bd
bd
bd

bd
bd
bd

bd
bd

379

gg/g 

TO



Table 3. Absolute amounts of organic acid anions during hydrous pyrolysis of
Monterey Shale.

Expt. Time Temp. Formate Acetate Propionate Valerate Oxalate Succinate
(h) (oC) (mg / g TOC)

MS4 50.9
173.2

MS10 26.3
71.0

167.3

MS3 24.4
72.4

167.6

MS14 51.4
169.3

MS1t 21.3
71.7
167.3

MS8 23.3
69.9

165.3

MS2t 22.5
70.3

164.8

MS11 24.3
71.9

168.3

MS5 24.1
70.8

168.0

MS13 26.7
70.8

168.8

MS12 24.7
74.9

145.0

MS9 23.2
72.2

169.0

125 2.49 2.63
125 2.53 2.87

151
150
150

174
174
174

196
196

225
224
224

247
248
248

275
274
274

300
300
299

323
324
324

323
324
322

350
350
350

359
359
358

2.00
1.81
1.52

1.52
1.98
1.96

bd
bd

4.06
1.62

0.876

bd
0.007

bd

0.227
0.732
0.639

0.417
0.467
0.200

0.926
0.896
0.965

bd
bd
bd

bd
bd
bd

0.825
1.03

0.278

2.91
3.70
8.23

4.11
4.15
5.54

0.143
0.185

0.209
0.263
1.69

0.271
0.360
0.479

6.23 0.719
7.37 0.879

8.40
10.4
11.3

0.162
0.296
0.164

20.6
23.5
26.1

12.5
20.0
13.3

26.4
25.2
30.2

16.8
19.2
21.1

25.7
28.0
28.6

22.0
28.1
12.6

0.903
1.26
1.41

0.029
0.123
0.074

3.26
3.93
4.86

3.72
4.74
2.70

6.56
6.62
8.32

4.72
5.54
6.08

6.90
7.64
7.73

6.54
8.06
bd

bd
0.679

bd
bd

0.136

0.924
bd
bd

bd
bd

bd
bd
bd

bd
bd
bd

0.271
bd

0.106

0.269
0.414

bd

0.483
0.539
0.546

0.524
0.602
0.529

0.716
0.781
0.611

0.614
0.789

bd

2.94 0.262
2.79 0.271

4.65
4.83
3.10

2.26
1.73
1.03

0.699
0.809

0.265
bd
bd

bd
0.036

bd

bd
bd
bd

0.105
bd
bd

0.111
bd
bd

0.524
0.294

bd

0.368
bd
bd

0.055
bd
bd

0.438
0.496
1.04

0.452
0.476
0.549

bd
bd

0.831
bd

0.934

0.066
0.087
0.077

4.57
1.74
1.58

1.41
1.35

0.330

1.110
0.655

bd

bd
bd
bd

bd
bd
bd

0.174
bd
bd

t Sedimentary carbonate was not removed
bd: below detection

from the intial sediment



Table 4. Absolute amounts of organic acid anions during hydrous pyrolysis of
Smackover Shale.

Expt. Time
(h)

SM2 51.0
171.3

SM6 26.5
71.2

167.2

SMI 24.3
72.3

167.4

SM4 23.6
70.1

165.4

SM3 25.4
69.7

170.8

SM5 23.4
72.3

168.8

Temp. Formate Acetate Propionate Valerate Oxalate Succinate

(oC) (mg / g TOC)

125
125

151
150
150

174
174
174

247
248
248

323
324
324

359
359
358

2.09
11.3

2.76
2.91
2.63

2.97
8.97
3.66

0.99
1.14
0.65

0.43
0.68
bd

0.57
0.28
0.34

9.24
6.23

7.44
6.66
6.18

12.1
63.4
8.32

6.98
9.83
8.98

4.44
5.29
bd

23.8
8.43
9.02

bd
bd

bd
bd
bd

bd
bd
bd

bd
bd
bd

bd
bd
bd

bd
bd
bd

bd
bd

3.78
4.84
4.84

1.94
bd
bd

bd
bd
bd

bd
bd
bd

bd
bd
bd

bd: below detection



Table 5. Elemental compostion of bulk sediments and kerogens from
hydrous pyrolysis experiments.

Experiment Sample Temp. TOC H N S O
Type (oC) (weight %)

Init. Monterey
MS4
MS10
MS3
MS 14
MS1
MS8
MS2
MS11
MS5
MS 13
MS12
MS6
MS9

Init. Monterey
MS4
MS10
MS3
MS14
MS1
MS8
MS2
MS11
MS5
MS13
MS12
MS6
MS9

Bulk Sed. 25
f" 125

150
175
200
225
250
275
300
325
325
350
360
360

Kerogen 25
f" 125
" 150
f" 175
f" 200
f" 225
f" 250

275
300
325
325
350
360
360

Init. Smackover Bulk Sed.
SM2
SM6
SM1 "
SM4
SM3
SM5 "

25
125
150
175
250
325
360

20.6
22.6
23.5
22.4
22.6
18.6
20.3
15.6
18.3

16.7
15.1
14.1
15.3

60.4
59.8
59.6
60.8
64.6
62.9
60.8
69.1
72.6

75.3
65.2
64.8

0.92
0.90
1.67
0.94
1.16
0.79
0.95

- 1.24
- 1.36
- 1.42
- 1.34
- 1.23
- 1.08
- 1.21
- 0.94
- 1.12

- 0.97
- 0.90
- 0.94
- 1.04

6.52
6.41
6.86
6.22
6.45
6.28
5.99
5.74
5.66

5.03
4.39
3.98

3.22
3.06
2.91
3.11
3.14
3.24
2.93
3.60
3.70

3.95
3.54
3.67

3.86
3.67
3.67
3.50
3.02
2.64
3.06
2.36
2.24

2.21
1.81
1.87
1.33

8.25
7.83
7.50
7.39
6.92
6.04
5.21
4.49
3.91

3.40
2.94
2.73

17.5
17.5
16.3
17.1
14.6
15.5
14.0
11.7

8.9

8.5

10.3
11.1

- 0.037
- 0.067
- 0.086
- 0.062
- 0.066
- 0.059
- 0.069

-: not analyzed
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Figure 1. Hydrous-pyrolysis reaction vessel, furnace, sampling valves, HPLC pump and
pressure monitor.
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Figure 2. Gas generation curves for (a) CO2, (b) CH4 and (c) C2-C4 hydrocarbons from
hydrous-pyrolysis of Monterey shale.
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Figure 3. Gas generation curves for (a) CO2, (b) CH 4 and (c) C2-C4 hydrocarbons from

hydrous-pyrolysis of Smackover shale.
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Figure 8. Distribution of activation energies and the pre-exponential factor for CO2

generated during hydrous-pyrolysis of Monterey shale. The computer code
KINETICS (Braun and Burnham, 1990) was used to calculate these values.
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Figure 9. Distribution of activation energies and the pre-exponential factors for CH4

generated during hydrous-pyrolysis of Monterey and Smackover shales. The
computer code KINETICS (Braun and Burnham, 1990) was used to calculate
these values.
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these values.
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sedimentary basin. The basin was generated using the computer code KINETICS
(Braun and Burnham, 1990).
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CHAPTER 3

AMS-14C Dating of Individual Compounds Isolated from Recent
Marine Sediments

Introduction

The burial of organic carbon in marine sediments and subsequent formation of

kerogen are important pathways in the global carbon cycle and are critical in maintaining

present-day atmospheric oxygen concentrations (Berner, 1989; Hedges, 1992). The burial

of newly formed organic carbon acts as a source of molecular oxygen which must have a

compensatory sink, otherwise atmospheric oxygen concentrations would increase over

time to levels 150% greater than at present (Berner 1989, Hedges, 1992). Fortunately,

oxygen is consumed by the weathering of kerogen exposed in uplifted continental

sedimentary rocks (Berner, 1989). This source and sink of oxygen are believed to be in

balance and may act as a negative feedback control for oxygen production (Berner, 1989).

Marine sediments are the primary repository for organic carbon through the

formation of sedimentary rocks over geologic time. Sedimentary rocks contain over 99%

of the total organic carbon on Earth (Hedges, 1992). Greater than 90% of the organic

carbon contained in this reservoir is in the form of kerogen (Hedges, 1992). Kerogens are

highly cross-linked, oxygen-poor, organic polymers insoluble in common organic

solvents and non-oxidizing acids such as HC1 and HF (Durand, 1980). The mechanisms

leading to the formation of kerogen are poorly understood, however, two general

processes are typically cited. In the first, kerogen is formed through the enzymatic

depolymerization of sedimentary macromolecules, such as polysaccharides and proteins,

followed by condensation of the resulting oligomers and monomers with other organic

compounds, such as low molecular-weight lipids (Durand, 1980; Tissot and Welte, 1984;

de Leeuw and Largeau, 1993). Conversely, Tegelaar et al. (1989) proposed that kerogens

are actually physical mixtures of selectively preserved refractory biomolecules which

have undergone little or no alteration by biodegradation. Thus, the formation of kerogen

is highly dependent on the type of organic matter which is deposited at the sediment-

water interface and the extent to which it is preserved during burial.



The remineralization of kerogen through continental weathering has long been

believed to be essentially complete--a critical assumption made in models of the

biogeochemical carbon cycle (Berner, 1989). Several researchers, however, have

discovered '4C-poor organic matter in modern marine sediments (Sackett et al., 1974;

Benoit et al., 1979; Barrick and Hedges, 1981; Rowland and Maxwell, 1984). This

would indicate that some portion of organic matter which is buried, uplifted and

weathered is not completely remineralized and may even have been recycled more than

once, if not several times. The result of incomplete remineralization would be the

deposition of partially degraded kerogen in all carbon reservoirs (Hedges, 1992). Thus, a

significant portion of organic matter in sediments which is difficult to identify may be

humic substances and reactive molecules formed from the oxidative degradation of

kerogen (Hatcher and Spiker, 1988; Hedges, 1992). It is therefore possible that

sedimentation rates based on '4C dating of bulk sediment total organic carbon (TOC) may

be skewed by the presence of recycled kerogen.

The presence of recycled kerogen and its degradative products in modem marine

sediments would greatly alter present views of the global carbon cycle. Knowledge of

organic carbon preservation in marine sediments is crucial to understanding the global

carbon cycle as it stands today and how it will change with continued anthropogenic

perturbations. In addition, controls on organic carbon burial and preservation must be

understood in order to interpret the sedimentary record in terms of paleoproductivity and

paleocirculation. Numerous studies have been conducted with this in mind (Calvert et

al., 1987; Calvert et al., 1991; Cowie and Hedges, 1992; Lee, 1992; Sun et al., 1993).

Due to the recalcitrant nature of kerogen, however, these studies were unable to directly

access the relative importance of these refractory compounds. Nevertheless, several

researchers eluded to the potential significance of kerogen as a control of carbon

preservation in oxic/anoxic marine sediments (Cowie and Hedges, 1992a; Lee, 1992).

This study employed Preparative Capillary Gas Chromatography (PCGC) to

determine the relative contributions of marine biomass (primary production), modem

terrestrial and recycled sedimentary organic matter co-deposited in marine sediments.

Recently developed by Eglinton et al. (1996), PCGC has enabled us to isolate pure,



individual biomarkers from complex mixtures of sedimentary organic matter.

Compounds were isolated in sufficient quantity to obtain 14C ages through accelerator

mass spectrometry (AMS). For this study, recent marine sediments were obtained from

the Black Sea and Arabian Sea. Biomarkers obtained from these sediments prove

conclusively that organic matter co-deposited in marine settings represent a vast range in

radiocarbon ages. Thus, attributing a single '4C age to the bulk sediment masks the

internal isotopic heterogeneity which is crucial to fully understanding the global

biogeochemical carbon cycle.

Methods

Sample Description and Preparation

Sediment samples were obtained from the Arabian Sea and the Black Sea (Figs.

la and lb). The Arabian Sea sediment core 6BC was collected 10/1/94 from 17o48.721'

N, 57o30.293' E using a box core during leg TN041 of the R.V. Thomas G. Thompson.

The core was collected from 747 m water depth within the oxygen minimum zone. Once

aboard, the core was sectioned at 2 cm intervals, placed in Scotchpak-brand" bags, heat-

sealed and frozen within 6 hrs of collection. The core appeared homogenous and

consisted of a soft, wet foraminiferal sand. Tube worm burrows were located throughout

the core and several mollusks were alive on the surface of the core. H2S was detected by

odor at 20 cm and below. The Black Sea sediment core BC4 was obtained 5/14-28/1988

from station 2 located in the West-Central basin (42o51' N, 31o57'E) during leg 134-9 of

the R.V. Knorr Black Sea Expedition. The core was obtained from 2129 m water depth

and sampled at 0.5 cm horizons.

Solvent Extraction

After thawing the cores, approximately 5 g of sediment from each interval was

removed, dried at <400 C and reweighed to determine the dry weight/wet weight ratio. A

fraction of the dried sediment was removed for elemental analysis while approximately

100 mg was repeatedly treated with 2 N HC1, sonicated and oven dried (50'C) until no

carbonate remained. The acid-hydrolyzed sediments were used for coulometric analysis,



elemental analysis and 13C and A'4C determinations. The remaining wet sediment from

the 2-4 cm interval of the Arabian Sea core 6BC was centrifuged to remove pore water.

The moist sediment (approximately 1031 g dry) was transferred to pre-extracted cellulose

thimbles and soxhlet-extracted with 100% CH 3OH for 48 hrs then 100% CH 2C12 for 48

hrs. The CH3OH (dark gold/brown) and CH 2Cl 2 (dark green) extracts were roto-

evaporated to approximately 300 mL and back-extracted with 125 mL of KMnO 4-distilled

H20 and CH 2Cl2 . The lower organic phases were combined, roto-evaporated to

approximately 300 mL and allowed to sit for 24 hrs with anhydrous Na 2SO 4. The extract

was then filtered (0.45 im teflon filters) and transferred to 500 mL volumetric flask.

The wet sediment from each 0.5 cm interval from 4-7 cm of Black Sea core BC4

was sonic-extracted sequentially with CH30OH and increasing concentrations of CH 2C12.

The solvent extracts from each 0.5 cm interval were combined (to provide sufficient

material for compound isolation and AMS-14C analysis), back-extracted, treated with

anhydrous Na2SO 4 and filtered similar to above.

Aliquots (-0.1%) of the total lipid extracts (TLE) from core 6BC (2-4 cm) and

core BC4 (4-7 cm) were dryed under N2 and transesterified. Transesterification was

accomplished by heating the samples at 70C for 10 hrs in the presence of a 95:5 mixture

of CH 3OH and sub-boiled HCI under a N2 atmosphere. Once cooled the mixture was

back-extracted with KMnO 4-distilled H20 and C6sH 4. The upper phase was pipetted off

and passed over Na2SO 4 to remove water. Derivatization of alcohols was achieved by

drying the transesterified fraction, adding equal amounts of pyridine and BSTFA

(Regisil®) and heating at 600 C for 15 min. Fractions of both crude TLE removed prior to

transesterification and derivitization for A14C determinations.

Column Chromatography

The majority of the total lipid extracts were roto-evaporated until they were

viscous then dried onto several grams of 70 mesh quartz sand under a N2 stream. Flash

chromatography was carried out using a 45.7 x 5.0 cm i.d. column packed with 250 mL of

a flash-chromatography SiO 2 gel slurry in C6HI4. Once the dried extract / sand mixture

was transferred to the top of the column, separation was accomplished according to the

following elution scheme for the Black Sea TLE:



Fraction # Solvent(s) Compounds
1 100% C6H1 4  Aliphatic hydrocarbons
2 50% C6H5CH3 / C 6H 14  Aromatic hydrocarbons
3 10% C 2HsCO 2CH3 / C 6H 14  Ketones
4 20% C2HCO2CH3 / C6H14  Alcohols
5 100% C2HsCO 2CH3  Polars
6 100% CH30OH Polars

For the Arabian Sea TLE, fractions 2, 3 and 4 were eluted concurrently using 100%

CH 2C12 while fractions 5 and 6 were eluted with 100% CH 3OH.

Elemental sulfur was removed from the Arabian Sea fraction #1 by passing the

sample through a column packed with activated Cu granules. As the sample was passed

through the column the Cu turned from shiny to black indicating the presence of S.

Elemental sulfur was not present in the Black Sea fraction #1. Saturated hydrocarbons in

fraction #1 from both samples were separated from unsaturated compounds using a

AgNO3-SiO2 column. The column (45.7 x 1.9 cm) was packed dry with 50 mL flash-

chromatography SiO 2 gel after which 100 mL of a saturated AgNO3 solution (3:1 C2H3OH

/ KMnO4-distilled H20) was slowly (1 mL / min) passed over the SiO2 gel. The column

was rinsed with CH 3COCH 3 and dryed with N2. After adding C6H14 the aliphatic

hydrocarbon fractions were added. The saturated hydrocarbons were eluted with 350 mL

of C6H14 followed by elution of the unsaturated fraction with 350 mL of C2H50OC 2Hs. The

column was wrapped in Al-foil during the entire process to prevent photo-oxidation of

the AgNO3. The saturated hydrocarbons were roto-evaporated to less than 10 mL while

the unsaturated compounds were taken to dryness. Both were then dissolved in C6H 14.

For this study, compounds were isolated from the saturated and unsaturated

hydrocarbon fractions from both the Arabian Sea and Black Sea. Individual compounds

were also isolated from the Black Sea fraction #4 (alcohols), however, A'4C

determinations have not been made yet. All hydrocarbon fractions were dissolved in

C6H1 4 while the alcohol fraction was dissolved in CH 2C12 during preparative capillary gas

chromatography.



Preparative Capillary Gas Chromatography (PCGC)

The following is a brief description of the preparative capillary gas chromatograph

(PCGC). For a more thorough overview of the PCGC system see Eglinton et al. (1996).

The PCGC device (Fig. 2) consists of a Hewlett Packard" 5890 Series II gas

chromatograph equipped with a flame ionization detector (FID), an HP 7673 autoinjector,

electronic pressure control and a Gerstel® Cooled Injection System (CIS). The GC is

fitted with a 60 m megabore (0.53 mm i.d.) fused silica capillary column coated with a

cross-bonded methylsilicone phase (RTx-l, Restec'; film thickness 0.5 pm). The GC

column leads through a heated (-315'C) transfer line to a Gerstel Preparative Switching

Device (PSD). The PSD consists of an 8-port zero-dead-volume valve, in a heated oven

(-310C), which connects to seven J&W' deactivated fused silica capillary columns (18

cm x 0.32 mm i.d.) which are, in turn, connected to 200 gL glass U-tube traps (6 sample

traps and one waste trap). The traps are cooled (-10C) by a Neslab6 RTE-140 circulating

cooler.

For this study it is necessary to isolate individual compounds of sufficient purity

and quantity for AMS-14C measurements. In order to accomplish this in a reasonable time

span (1 trapping sequence takes -7 days) relatively large (10 gL) injections are made

using the HP 7673 autoinjector. In order to eliminate as much solvent prior to

transferring the sample to the chromatographic column, the CIS utilizes a temperature

program independent from that of the GC. The CIS temperature program used for the

present study was from 400C (initial hold time, 0.15 min) to 3300 C (final hold time, 8

min) at a rate of 12'C s-'. Once the sample is separated chromatographically, the eluting

compounds pass through a zero-dead-volume splitter arranged to send <1% of the flow to

the FID and >99% to the preparative switching device (PSD).

The chromatographic traces generated from the FID are used to determine

retention times for the individual compounds of interest. These retention times are then

used to program the PSD. The 8-port zero-dead-volume valve of the PSD is back-

pressure controlled by solenoid valves located after the traps which minimizes the

potential for contamination. Up to 50 time windows can be entered for each trap and

opening/closing times are precise to within 0.6 sec. Due to the reproducibility of retention



times afforded by microprocessor control of the autoinjector, CIS and GC, trapping

windows can be defined within narrow tolerances. During this study the opening and

closing times programmed for an individual trap were typically 0.4-0.6 min apart.

Graphite Target Preparation and AMS-"4C Analysis

Once the compounds had been isolated each U-tube was detached and rinsed with

1 mL of CH 2C12 to transfer the samples to quartz combustion tubes (20 cm x 9 mm o.d.).

Once transferred, an aliquot (50 gL) was removed for HRGC and GC-MS and spiked

with 50 gtL of a n-C32 internal standard for quantification. The solvent present in the

combustion tube was then removed under a stream of high purity Nz. CuO (-2 mg / gg

C) was added to the combustion tube and any residual solvent was removed by

evacuating the tube to 10-6 Torr in a dry-ice/isopropanol bath. The bath was replaced by

liquid N2 and the tube was flamed sealed while under vacuum. The isolated compounds

were converted to CO2 by heating at 850 0C for 5 hrs. Once cool, the CO, sample was

introduced to a vacuum line, purified and quantified. The CO2 sample was converted to

graphite according to the procedures outlined by McNichol et al. (1992). Briefly, the CO2

sample was heated at 6000 C for 5 hrs in the presence of a Co catalyst (1.0-1.5 mg) and H2

(2.5 x sample pressure). H20 produced during the reaction was trapped in a liquid N2

bath. Once cool the graphite samples were stored in a desiccator until they were pressed

into Al cartridges to form targets for AMS.

AMS- 14C analyses of the isolated compounds were conducted at the National

Ocean Sciences AMS (NOSAMS) facility here at WHOI and at the Lawrence Livermore

National Laboratory's (LLNL) Center for AMS in Livermore, CA. CO2 samples

generated at NOSAMS were also analyzed for stable C isotopic compositions ("13C) on a

VG Prism mass spectrometer.

High Resolution Capillary GC (HRGC) and GC-MS

High resolution capillary GC was used after PCGC to determine the purity and

yields of isolated compounds. The HRGC consists of a Hewlett Packard* 5890 Series II

GC fitted with an HP 7673 autoinjector, electronic pressure control and a FID.



Separation was achieved on a J&W* DB-1 column (60 m x 0.32 mm, film thickness 0.25

gm). Data were acquired and integrated using Chromperfect' software. GC-MS analysis

were performed using a similarly equipped HP 5890, interfaced to a VG' Autospec-Q

mass spectrometer. Spectra were scanned over the range 50-600 amu with a cycle time of

1 sec. Electron impact ionization (EI) at 50 eV was used for all analyses.

Bulk Sediment Isotopic and Elemental Analyses

Stable carbon isotopic measurements ('13C) of the acid-hydrolyzed bulk sediment

samples were made at the Marine Biological Laboratory (MBL) using a Finnigan" Delta-S

mass spectrometer and at the NOSAMS facility using a VG" Prism mass spectrometer.

Solid samples were combusted on-line followed by conventional isotope ratio-mass

spectrometry (Fry et al., 1992a). The sediment samples were rinsed with distilled H20

and centrifuged prior to being analyzed at the NOSAMS facility. As shown in Table 1,

the 613C results of the water-rinsed samples were on average 1.2 %o lighter than those that

were not rinsed prior to analysis. It is possible that this discrepancy is due to the removal

of the most labile organic fractions, such as acid-hydrolyzable proteins, during water-

rinsing and centrifugation. The 813C values measured at the NOSAMS facility were used

to calculate the A' 4C values of the bulk sediment samples. However, the discrepancy

between 613C values could alter the A'4C determinations by no more than 0.5 %0, which is

well within the Al4 CTOC error given in Table 1. For clarity, only the 613C values measured

at the NOSAMS facility will be discussed further. 14C determinations of the bulk

sediment samples were made at WHOI NOSAMS facility in the same manner as

described above for isolated compounds. Elemental analyses (TC, H, N) of the bulk

sediments were conducted on a Perkin Elmer" 2400 CHN Elemental Analyzer.

Measurements of total inorganic carbonate (TIC) were made using a UIC' Inc.

Coulometrics CO 2 Coulometer and total organic carbon (TOC) was determined by

difference.



Results and Discussion

Bulk Sediment Composition

The elemental and isotopic composition of the bulk sediment samples are listed in

Table 1. The organic carbon content of the Arabian Sea core 6BC ranged from 4.20 to

6.66 wt.% in the 8-10 and 2-4 cm intervals, respectively. The 4-7 cm section from the

Black Sea core BC4 exhibited a slightly wider variance in organic carbon content,

ranging from 3.94 to 7.66 wt.%. The organic rich nature of both cores is representative of

the depositional environments present at both locations. In the Arabian Sea, primary

production increases dramatically during the summer months due to the monsoon-driven

upwelling of nutrients (Paropkari et al., 1992). The Black Sea also experiences seasonal

blooms in marine primary productivity (Karl and Knauer, 1991) in addition to high

concentrations of terrigenous material from the Danube and Dnepr rivers (Simoneit,

1977). Several studies have shown that the amount of organic carbon delivered to the

sediments is the principal control on the accumulation of organic matter in sediments

(Calvert, 1987; Pedersen and Calvert, 1990; Calvert and Pedersen 1992). As a result,

recent sediments from both the Oman margin and the Black Sea exhibit relatively high

organic carbon contents (Calvert et al., 1991; Paropkari et al., 1992; Pedersen et al.,

1992).

The stable carbon isotopic compositions of the Arabian and Black Sea cores

illustrate differences in both the sources of sedimentary organic matter and the carbonate

systems at each site (Table 1). 613C measurements of core 6BC vary from -21.4 to -21.7

%o, which are within the range cited for marine organic matter (-19 to -23 %o, Deines,

1980). In contrast, the '13C values of the Black Sea sediment samples range from -25.0 to

-25.2 %o. These lighter 13C values are attributable to both a greater contribution of

terrestrial organic matter (-24 to -32 %o, Sackett and Thompson,1963) and to an

isotopically lighter DIC pool in the Black Sea compared to the Arabian Sea. The anoxic

conditions present in the Black Sea lead to elevated total CO 2 Values due to organic

matter degradation through sulfate reduction (Goyet et al., 1991). As CO 2 concentrations

increase with depth (Goyet et al., 1991) the '3C content declines (Kroopnick, 1985; Fry et

al., 1992b; Freeman and Wakeham, 1992). Thus, the 613C values of photoautotrophic



organisms become isotopically lighter as do the heterotrophic organisms feeding on the

phytoplankton. As a result, marine organic matter delivered to the sediments in the Black

Sea is isotopically lighter than in the Arabian Sea.

The atomic ratio of carbon to nitrogen (C/N)a provides further evidence of

differing organic matter sources in the Arabian and Black Sea (Table 1). Terrestrial

organic matter is depleted in nitrogen relative to marine organic matter (Emerson and

Hedges, 1988). Thus, inputs of terrigenous material to the sediments will result in

elevated (C/N)a ratios. Higher (C/N)a ratios were observed in the Black Sea samples

((C/N)a = 13.2 and 14.8) as compared to those from the Arabian Sea ((C/N)a = 8.6 to

11.7), indicating a relatively stronger terrestrial signal in the Black Sea core.

The A' 4CTOC values of Arabian Sea core 6BC increase with depth from -84.0 ±3.1

%o (0-2 cm) to -136 ±2.5 %o (8-10 cm) correspond to ages of 665 and 1130 ±25 yrs,

respectively (Table 1). Similarly, the A14CTOC values of Black Sea core BC4 ranged from -

91.9 ±2.6 to -115 ±2.9 %o, which equate to ages of 735 to 940 ±25 yrs. However, the short

depth intervals analyzed (0.5 cm) in core BC4 resulted in more variability with increasing

depth (Table 1). Total lipid extracts were obtained from the 2-4 cm interval of Arabian

Sea core 6BC and the entire 4-7 cm section of Black Sea core BC4 (Figs. 3a and 4). The

average '4C ages of these two intervals were 890 and 871 yrs, respectively. In contrast,

the 14C age of the total saturated hydrocarbon fraction from the Black Sea was 1310 ±150

yrs (Table 2).

Isolated Compounds

Trapping efficiency

In total, twenty-four hydrocarbons were isolated from the Arabian and Black Sea

cores utilizing the PCGC device (Table 2). The yields of isolated compounds, as

determined by HRGC, ranged from approximately 6 to 176 gg C (Table 2). PCGC has

been shown to be capable of isolating pure, individual compounds from complex

mixtures in quantities sufficient for AMS-' 4C dating (Eglinton et al., 1996). During this

study all hydrocarbons were trapped cleanly and in sufficient amounts for radiocarbon

analysis, with the exception of compounds P4-P6 which were combined to provide



enough material for '4C determinations (Table 2). An example of trapping efficiency is

illustrated in Figure 5 which shows the HRGC traces of a series of n-alkanes isolated

from the Black Sea (4-7 cm) saturated hydrocarbon fraction. Five, odd-numbered alkanes

(n-C23 to n-C 31) were isolated from the total mixture (top trace). The absence of peaks

other than those of the isolated compound and recovery standard shows just how cleanly

the compounds were irapped (Fig. 5). By removing the desired compounds cleanly and

completely from the total mixture, isotopic fractionation effects are minimized, allowing

for the most accurate age determination for each compound.

There are three potential sources of error when preparing isolated compounds for

AMS-'4C analysis. The first is the presence of residual solvent (CH2C12) in the

combustion tube after evaporation and evacuation. If present, the residual solvent would

contribute to an older '4C age since it is certainly derived from 14C -depleted petroleum

products. The second possible source of error would be the loss of some of the isolated

compound during evacuation. This would likely result in isotopic fractionation since the

lighter C isotopes would be preferentially removed. Fractionation could also occur

during compound isolation if only a portion of the peak is trapped. However, Eglinton et

al. (1996) has shown that such fractionation is easily prevented by closely monitoring

peak retention times during a trapping sequence.

The extent to which the first two errors may have affected the A'4C analysis can be

estimated by comparing compound yields determined from HRGC peak areas versus

yields of CO 2 generated by combustion of isolated compounds (Fig. 6). In Figure 6 the

presence of residual solvent or loss of sample would cause the isolated compound to not

plot along the 1:1 line. With the exception of sample M6, most samples tend to lie

slightly above the 1:1 line with only a few instances of samples lying below. The 14C-age

of sample M6, however, is in close agreement with other, structurally similar, isolated

compounds which lie closer to the 1:1 line. In addition, sample M6 yielded one of the

younger ages determined for compounds isolated from the Arabian Sea (Table 2)

indicating that residual solvent was not present. This suggests that the C yields estimated

from either HRGC or generated CO2 for sample M6 is in error. The discrepancy between

the two estimates can be attributed to two factors. The first is the difficulty associated



with determining HRGC yields relative to an internal standard (n-C32 alkane) due to

differing response factors for different compound types. The second is that the error in

the pressure transducer used to determine CO 2 yields, increases with decreasing sample

size.

Radiocarbon measurements

In addition to the 24 isolated hydrocarbons, the total lipid extracts (TLE) from

both cores and the saturated hydrocarbon fraction from the Black Sea core were AMS-' 4C

dated. Al4C values were calculated using an assumed 813C value of -25 %O(PDB) in cases

where the actual 813C value of the isolated compound was not measured (Table 2).

Within the error of the AMS-14C measurements, the A 4C values of the total lipid extracts

(Table 2) are indistinguishable from the respective A'4 CTOc determinations for each

sediment interval (Table 1). The isolated hydrocarbons, however, exhibited a wide range

in A14C values and corresponding '4C ages (Table 2, Figs. 7 and 8). The individual

compounds isolated from the 2-4 cm interval of Arabian Sea core 6BC ranged in age

from 100 to 10,480 yrs for a C25:3 highly branched isoprenoid and a n-C 23 alkane,

respectively (Fig. 7). In contrast, compounds isolated from the 4-7 cm section of Black

Sea core BC4 varied in age from 550 ±100 yrs for a n-C 31 alkane to 1380 +170 yrs for a n-

C25 alkane (Table 2, Fig. 8).

The span in ages of individual hydrocarbons clearly indicate that several different

sources are contributing organic matter to the sediments in both the Arabian and Black

Sea. The contribution of marine organic matter to the sediments is evident from the

presence of a number of plankton- and bacterially-derived hydrocarbons (Table 2). In the

Arabian Sea core, several highly branched isoprenoids (HBI) were isolated as well as two

sterols. The HBI are diatom-derived (Volkman et al., 1994) whereas the sterols originate

from higher planktonic organisms in general (ten Haven and Rullkotter, 1991). Although

both are marine in origin, the '4C ages of the HBI and sterols are approximately 100-300

yrs and 600-700 yrs, respectively (Table 2, Fig. 7). One possible explanation for this

difference is that the diatoms that produced the HBI may have existed in floating

communities in contact with atmospheric CO 2. Due to the slow equilibration of CO2

between the atmosphere and ocean, dissolved CO 2 has a 14C age approximately 400 yrs



older than atmospheric CO 2 (Broecker and Peng, 1984). Thus, the 'reservoir effect'

results in relatively older 14C ages observed for the plankton-derived sterols which

integrate all photoautotrophic plankton.

Several hopanoids and n-alkanes were also isolated from the Arabian Sea core

(Table 2). The hopanoids may have originated from cyanobacteria within the water

column, benthic or pelagic heterotrophic bacteria, or from terrestrial plants. The long

chain n-alkanes, on the other hand, are derived from higher land plants (Eglinton and

Hamilton, 1967). The hopanoids range in age from 990-1230 yrs whereas the n-alkanes

are 7200-10480 yrs old. The '4C ages of the hopanoids are similar, yet slightly older than

those of the sterols (Table 2). This suggests that the hopanoids are derived from benthic

or pelagic heterotrophic bacteria.

The average 14C age of the n-alkanes is an order of magnitude greater than both

the marine-derived sterols and HBI. Yet, the bulk 1
4CTO age of the 2-4 cm interval is only

890 ±30 yrs. This suggests that terrigenous material represents a minor source of organic

matter to these sediments. A conclusion supported by the (C/N), and 513C values

determined for Arabian Sea core 6BC. A closer examination of the HRGC

chromatogram of the total saturated hydrocarbons, however, reveals an even distribution

of n-alkanes at higher molecular weights (Fig. 3b). The distribution is similar to that seen

in GC traces of petroleum (e.g. Green River Fm. petroleum, Eglinton et al., 1996). It is

possible that petroleum seeps exist in the Arabian Sea sediments which would explain the

extremely old 14C ages observed for the long chain n-alkanes (Table 2, Fig. 7).

Fewer compounds were isolated from the 4-7 cm section of the Black Sea core,

however, they include hydrocarbons from both marine and terrestrial sources (Table 2).

Three marine-derived hydrocarbons, C37-C39 alkenes, were isolated separately by PCGC

and then combined to provide sufficient material for AMS-14C analysis. The C37-C39

alkenes, which were likely produced by the marine coccolithophore Emiliania huxleyi

(Volkman et al., 1980), yielded a '4C age of 960 -±100 yrs (Table 2). In contrast, five, odd

C numbered n-alkanes (n-C23-31), varied in age from 550 ±100 yrs to 1380 ±170 yrs (Table

2). The n-alkanes, however, fall into two distinct age groups; a younger group which

includes the n-C 29 and n-C 31 alkanes (550-670 yrs) and an older group including the n-C2 3-



27 alkanes (1180-1380 yrs) (Fig. 8). The difference in ages suggests that the n-alkanes

originate from two distinct sources. The n-C 29 and n-C31 alkanes are definitely derived

from higher plants (Eglinton and Hamilton, 1967), whereas the n-C2 3 , n-C25 and possibly

the n-C 27 alkanes may be bacterially-derived. Assuming that the radiocarbon age of the

C 37-C3 9 alkenes is approximately 400 yrs too old due to the 'reservoir effect', the marine

hydrocarbons are of roughly the same age as the terrestrially-derived n-C 29 and n-C 31

alkanes. The average '4C age of the bulk sediment for the 4-7 cm section is 871 yrs

indicating that the organic matter delivered to this core is primarily marine in origin.

In both the Arabian and Black Sea cores organic matter originating from different

sources is being deposited contemporaneously. Individual compounds isolated from

these sediments, however, exhibit a broad range in radiocarbon ages. Thus, bulk

sediment '4C ages, which have been frequently used to determine sedimentation rates (e.g.

Ross and Degens, 1974; Calvert, 1987; Jones and Gagnon, 1994), carbon accumulation

rates (Calvert et al., 1987; 1991) and ultimately global C reservoir times (Berner, 1989;

Hedges, 1992), represent gross averages which mask the true depositional history of the

environment under study. For example, an increase in the relative contribution of either

marine or terrestrial organic matter delivered to the sediments could, respectively,

increase or decrease bulk TOC-based sedimentation rates. Furthermore, the extremely

old radiocarbon ages of the n-alkanes isolated from the Arabian Sea indicate that either:

1) there is an ancient C pool present (petroleum seeps), 2) terrestrial organic matter

experiences a number of chemical and physical processes prior to deposition, or 3)

recycled carbon in being supplied from the continents. The effect each of these

possibilities could have on bulk sediment radiocarbon chronologies argues for a new

method of determining sedimentation rates. PCGC provides the means to isolate and

AMS-14C date a marine-derived lipid which is not affected by the above difficulties and

for which the 'reservoir effect' can be determined. Using the 14C age of the individual

lipid to determine C accumulation rates would undoubtedly lead to a re-evaluation of C

residence times.



Summary

Total lipid extracts (TLE) were obtained from the 2-4 cm horizon of Arabian Sea

core 6BC and from the 4-7 cm section from Black Sea core BC4. AMS-' 4C

measurements were made on the bulk sediment TOC and TLE from both cores as well as

the saturated hydrocarbon fraction from the Black Sea core. Twenty-four individual

hydrocarbons were isolated from the TLE using Preparative Capillary Gas

Chromatography (PCGC) and radiocarbon dated. The '4C ages of the bulk sediment TOC

of each core were quite similar to one another and to the respective TLE. The

radiocarbon ages of the individual compounds, however, ranged in age from 100 to

10,480 yrs. By isolating known biomarkers it was possible to determine the '4C ages of

terrestrial and marine organic matter sources. From these results it is apparent that most

of the isotopic heterogeneity present in recent marine sediments is lost when only the bulk

sediment TOC is radiocarbon dated. In future studies the "4C age of individual, marine-

derived lipids should be determined to obtain more accurate sedimentation rates, C

accumulation rates and ultimately C reservoir times.
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Table 2. Isotopic composition of isolated compounds.

Compound/ PCGC AMS GC Yield CO2Yield 813C A' 4C A14C 14C Age 14C Age

Fraction I.D. Facility (gg C)' (R1g C) (%0) (%o) error 2  (yrs)3  error

Arabian Sea core 6BC, 2-4 cm

TLE - LLNL n.d. 770 n.d. -99.9 ±6.3 800 ±60

C25:4 HBI NI LLNL 47 35 n.d. -38.2 ±15.0 270 ±130

C25:3 HBI MI NOSAMS 103 118 -19.97 -17.8 100

C25:2 HBI M2 NOSAMS 125 123 -20.16 -25.5 170

C30 sterene N4 LLNL 176 149 n.d. -74.6 ±7.1 580 ±70

C30 sterene N3 LLNL 83 77 n.d. -84.7 ±8.2 670 ±80

C27:1 sterene M3 NOSAMS 65 124 -24.90 -89.0 710

C30 hopene N5 LLNL 6 60 n.d. -128.5 ±8.7 1060 ±90

C30 hopene N6 LLNL 39 49 n.d. -146.6 ±9.4 1230 ±90

C27:3 hopene M4 NOSAMS 48 94 n.d. -134.2 1120

Unk. alkene M5 NOSAMS 12 86 n.d. -96.4 780

C30:1 hopene M6 NOSAMS 6 156 -23.48 -120.5 990

n-C23 alkane L1 NOSAMS 13 56 n.d. -730.2 10480

n-C27 alkane L2 NOSAMS 80 105 -26.90 -678.0 9070

C27 hopane L3 NOSAMS 114 131 -25.76 -594.0 7200

n-C29 alkane L4 NOSAMS 131 147 -25.87 -596.1 7250

Fernene L6 NOSAMS 97 134 -24.24 -603.9 7400

Black Sea core BC4, 4-7 cm

TLE (i) LLNL n.d. 167 n.d. -110.6 ±7.2 900 ±70

TLE (ii) LLNL n.d. 207 n.d. -115.9 ±5.9 950 ±60

Saturated HC - LLNL n.d. 37 n.d. -154.8 ±15.2 1310 ±150

n-C23 alkane 01 LLNL 48 26 n.d. -158.0 ±12.7 1340 ±130

n -C25 alkane 02 LLNL 18 16 n.d. -162.3 ±17.1 1380 ±170

n -C27 alkane 04 LLNL 36 47 n.d. -141.2 ±9.4 1180 ±90

n -C29 alkane 05 LLNL 29 60 n.d. -84.5 ±9.3 670 ±90

n -C3, alkane 06 LLNL 61 70 n.d. -70.7 ±10.6 550 ±100

C37-39 alkenes P4-P6 LLNL 3 70 n.d. -116.9 ±10.0 960 ±100

n.d.: Not determined.
1: Isolated compound yield determined from HRGC.

2. The error determinations for several A4C and ' 4C Age values were not completed in time to be included. Once

completed they will be available from the author.

3: Radiocarbon age reported using Libby half-life of 5568 years, and according to the convention of Stuiver and

Polach (1977) and Stuiver (1980).
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Figure 1. Location of (a) box core 6BC in the Arabian Sea and (b) box core BC4 in the
Black Sea.
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Figure 3. HRGC traces of (a) the TLE and (b) saturated hydrocarbon fraction from
Arabian Sea core 6BC.
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Figure 4. HRGC trace of the TLE from Black Sea core BC4.
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Figure 5. HRGC traces of saturated hydrocarbons trapped from the Black Sea core BC4,
4-7 cm interval. The traces represent chromatograms for aliquots of the product
in each trap.
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Figure 6. Plot of compound yields (as gLg C) from PCGC estimated by HRGC (peak area)
versus combustion (manometric measurement of COz). Closed diamonds
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shown next to each symbol and listed in Table 2.
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Figure 7. Plot of '4C ages for all compounds isolated from Arabian Sea core 6BC. Open
circles represent samples analyzed at LLNL; closed circles represent samples
analyzed at NOSAMS.
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Figure 8. Plot of 14C ages for all compounds isolated from Black Sea core BC4. Open

circles represent samples analyzed at LLNL; closed circles represent samples
analyzed at NOSAMS.
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