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ABSTRACT   

This work describes the development and fabrication of a novel nanofluidic flow-through sensing chip that utilizes a 
plasmonic resonator to excite fluorescent tags with sub-wavelength resolution.  We cover the design of the microfluidic 
chip and simulation of the plasmonic resonator using Finite Difference Time Domain (FDTD) software.  The fabrication 
methods are presented, with testing procedures and preliminary results.   
This research is aimed at improving the resolution limits of the Direct Linear Analysis (DLA) technique developed by 
US Genomics [1].  In DLA, intercalating dyes which tag a specific 8 base-pair sequence are inserted in a DNA sample.  
This sample is pumped though a nano-fluidic channel, where it is stretched into a linear geometry and interrogated with 
light which excites the fluorescent tags.  The resulting sequence of optical pulses produces a characteristic “fingerprint” 
of the sample which uniquely identifies any sample of DNA.  Plasmonic confinement of light to a 100 nm wide metallic 
nano-stripe enables resolution of a higher tag density compared to free space optics.    Prototype devices have been 
fabricated and are being tested with fluorophore solutions and tagged DNA. Preliminary results show evanescent 
coupling to the plasmonic resonator is occurring with 0.1 micron resolution, however light scattering limits the S/N of 
the detector.  Two methods to reduce scattered light are presented: index matching and curved waveguides. 
  

Keywords: Plasmon resonance, optical waveguide, microfluidics, sub-wavelength resolution 
 

1. INTRODUCTION  
Surface plasmonic resonance is a collective oscillation of electrons that occurs on a metal surface.  This resonance may 
occur at optical frequencies, and has a characteristic wavelength which is small compared to the free-space optical 
wavelength.  The ability to confine an intense electromagnetic field to a sub-wavelength region on a metal surface has 
been used to excite fluorescent molecules [2].   Not only is the wavelength of the surface plasmon smaller than the free-
space wavelength at that frequency, but the field is enhanced, strongly confined to the surface, and exponentially 
decaying away from the surface [3].  These characteristics make the surface plasmon a useful tool for high resolution 
sensing very close to the metal surface. 

In this work, we introduce light through an optical waveguide in BK7 glass which has an index of refraction of 1.51.   
Strong energy transfer from optical waveguide to plasmon waveguide only occurs when the k-vectors are matched at a 
given frequency.  The plasmon mode with its large k vector cannot directly absorb or radiate free space light, but it can 
excite nearby fluorophores.  Light is coupled from the optical waveguide to a non-radiating mode on a sub-micron stripe 
of metal, thereby confining light to a region much shorter than its wavelength.  This width is limited only by 
nanofabrication technology, and should be scalable at least down to 20 nm.  This sub-wavelength region can be used to 
excite fluorophores on tagged biomolecules as they flow through the system (Figure 1) with higher resolution than 
would be possible using free-space optics. 
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To ensure accurate simulations, the spacing of the grid points and the time step must be small enough to resolve the 
details of the waves of interest.  For a system with nano-sized features at optical frequencies, this can lead to memory 
and computation intensive calculations. 

Using the FDTD method, plasmon dispersion diagrams for a 100x100 nm X 10 um long metal stripe on a glass diffused 
waveguide were calculated, as shown in Figure 2 for 3 candidate metals (Au, Ag and Al).  To reduce the simulation 
volume, the refractive index of the cladding is artificially reduced to 1.41 to give stronger confinement of the EM field 
around the waveguide.  In the actual diffused waveguide, the index change is only about 0.03 for a silver diffused 
waveguide. 

Figure 3 shows the calculated frequency vs. k (2π/λ) diagram for the surface plasmon modes on a thin strip of various 
metals, as well as the light-line for the BK7 glass waveguide.  Energy must transfer from the waveguide to the water-
metal interface for the device to work properly.  Strong energy transfer occurs when the lines of those respective modes 
cross on the omega-k diagram, indicating that at that frequency the wavelengths match. 

US Genomics has used laser wavelengths of 633 (He-Ne) nm, 532 nm (Nd-YAG) and 442 nm (He-Cd) to detect specific 
fluorophore tags intercalated in DNA.  For example, 442 nm excites the POPO-1 molecule, whereas 532 nm excites 
either the ATTO or the TAMRA molecules [4].  We would like to be able to design a plasmon resonator to match the 
BK7 waveguide mode at each of these free-space wavelengths (frequencies).   However, the predicted plasmon 
wavelengths are not a good match for these 3 laser wavelengths.   

 

 
Figure 3.  Dispersion relation of the water-metal surface modes of a 100nm x 100nm cross-section plasmonic resonator.  
Curves for Au, Ag and Al are shown.  Also shown is light line for BK7 glass, n = 1.52, and 3 laser wavelengths.  Good 
energy coupling from optical waveguide to plasmon modes is predicted at the intersections of the BK7 light-line with the 
various plasmon curves, shown with open circles. 
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Table 1 lists the free-space wavelengths at which each of the 3 metals are calculated to couple optimally from the 
plasmon mode to the glass waveguide.  Aluminum couples well at 380 nm, in the near UV.  Ag is a good match at 610 
nm, near the He-Ne wavelength.  Au is a good match at 676 nm. 

 

Table 1.  Plasmon mode intersections and common laser wavelengths 

Metal 
Intersection 

λ (um) 
Laser 

Wavelengths Laser 

Au 0.676 0.633 red (HeNe) 

Ag 0.610 0.532 green (Nd-YAG) 

Al 0.380 0.442 blue (He-Cd) 
 

Many other laser sources are available at different frequencies and many other fluorophores are available to match these 
wavelengths.  The optimal system will need to match the plasmon resonance to the laser source and fluorophore. 

 

2.1 Channel Design 

The design for the nanofluidic channels (Figure 4) was provided by US Genomics.  These channels contain three funnel 
shaped hydrodynamic stretching regions that stretch the segments of DNA, ensuring that it is in a linear configuration 
when it passes through the interrogation area.  The hydrodynamic stretching regions were designed by the Doyle group 
at MIT [5].  Side ports are used to introduce additional sheath fluid and increase the stretching of the DNA. 

 
Figure 4.  Fluidic layout of the sensor chip. 

 

3. FABRICATION  
The microfluidic chips are fabricated on 100 mm wafers of Schott BK-7 glass using mostly processes available in a 
standard MEMS fabrication facility.  BK-7 glass was chosen as the substrate due to its high optical purity and strength, 
and availability of processes to diffuse high quality optical waveguides.  The fabrication process is shown in Figure 5.     

The starting BK-7 wafer (0.5 mm thick x 100 mm diameter) is cleaned with a sulfuric acid/hydrogen peroxide “Piranha” 
solution.  A standard liftoff procedure is used to pattern 200 Å of Ta on the wafer for alignment marks.   These marks are 
used for aligning subsequent photomask steps.  
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Figure 5. Fabrication process overview. 

 
Waveguides are next added to the wafer.  This process is detailed in the following section on waveguides.  After the 
waveguides are added, the plasmonic resonators are defined.  This is accomplished by spinning on 200 nm of PMMA e-
beam resist, then coating with ESPACER 300 (Showa Denko), a conductive polymer, to prevent charging.  The PMMA 
is exposed with an electron beam lithography tool (RAITH 150) at the Massachusetts Institute of Technology SEBL 
facility.  The PMMA is developed in 2:1 MIBK:IPA and rinsed in IPA, after which 10nm of Cr and 100 nm of Au are 
deposited in an E-beam evaporation tool.   After lifting off the Cr/Au, the plasmonic resonators are complete (Figure 6). 
 

 
Figure 6.  SEM of plasmonic resonator.  Au stripe is 160 nm wide X 100 nm thick X 10 µm long. 

 

The wafers are then sent out to US Photonics (http://usphotonics.net/ ) to have microfluidic input and output holes drilled 
using a femto-second laser.  After the holes are drilled the wafers are re-cleaned and bonded to a thin coverslip (200um 
thick x 100mm diameter, also made of BK-7), using a fluorocarbon polymer called CYTOP [6-8].  Microfluidic 
channels are etched into the CYTOP layer using a photoresist mask and oxygen plasma etch.  After the wafer is bonded 
to the coverslip, the bonded pair is diced into chips.  The sides of the chip that intersect the optical waveguide are 
optically polished and a fiber optic pigtail is attached with Norland UV curing adhesive.  The chips are now ready to test. 

A few of the fabrication steps are described in more detail in the following sections. 
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3.1 Optical Waveguides 

There are many technologies and material systems used to fabricate optical waveguides, including glass waveguides 
made by chemical vapor deposition (CVD), flame hydrolysis deposition (FHD), spin-on glasses, sol gels, ion 
implantation and ion exchange. In this work, we have chosen ion-exchange waveguides to integrate with our glass 
microfluidics. 

For optical waveguiding, a higher index core is surrounded by a lower index cladding material. In the ion-exchange 
process, a glass is immersed in a molten alkali salt bath, allowing ions from the bath to exchange with mobile ions in the 
glass.  Often the glass ion is Na+ as it not only has a high mobility, but also is found in many common soda lime and 
borosilicate glasses. When the ions exchange, a change in the glass refractive index can occur by two effects. When a 
smaller ion replaces a larger ion, the glass matrix can collapse around the smaller ion, with the increased index coming 
from an increase in density. Secondly, if the ion from the bath has a higher electronic polarizability, such as K+ or Ag + 
compared to Na+, there is an increase in the refractive index [9].     

There are several variations on the ion exchange process, including thermal exchange from a molten salt, field assisted 
exchange from a molten salt, field assisted burial and thermally annealing [10].  For this work, we have chosen the Ag+ - 
Na+ ion exchange system. This system produces a higher index change ∆n at a lower diffusion temperature, compared to 
the K+ - Na+ system.  The larger ∆n allows tighter bends in the waveguides.   

Ion exchanged waveguides were chosen for several reasons.  The waveguides are diffused into the surface of a glass 
wafer, leaving a flat substrate suitable for wafer bonding.  The index changes achievable with ion exchanged waveguides 
make them relatively easy to integrate with fibers.  

Ag+- Na+ ion exchange was masked using a photolithographically patterned 200 nm Al film, leaving open the areas to 
be ion-exchanged.  Wafer backs were also Al coated to prevent wafer bow.  The glass wafer with the aluminum masking 
layer is submerged in a molten AgNO3 salt bath at 365 °C for 35 minutes. The glass is then cleaned and stripped of the 
aluminum film.  Some wafers were K+ ion diffused in molten KNO3 at 385°C for 14 hours. 

 
Figure 7. Laser light from a fiber optic cable attached to a device and guided by diffused waveguide out the other side. 

 

3.2 Microfluidic Channel Fabrication 

The microfluidic channels are fabricated using a process similar to that described in [6].  A polymer layer is spun onto a 
glass substrate, that layer is patterned, and then another piece of glass is bonded on top of this layer, sealing the 
microfluidic channels.  In our process, the polymer and channels are made on a thin glass coverslip.  A coverslip is used 
to improve the detection capabilities of our device.  With this thin glass, it is possible to use a high magnification, high 
numerical aperture lens in our tests.  The channels are made on the coverslip to ensure that the polymer layer is not 
damaged by the aggressive processing done to the bottom substrate (laser hole drilling). 

 

3.3 Edge Polishing 

Once the chips have been diced, the waveguide ends must be polished. This is accomplished using diamond paper of 
sequentially smaller size grit, on an Allied Multi-Prep polishing tool.  The final grit is 0.5 µm diamond.  Care is taken to 
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protect the entrance holes to the µfluidic circuit with adhesive tape.  A device with a diffused waveguide attached to a 
fiber optic cable is shown in Figure 7.  Light enters from the fiber optic on the right and is guided through the chip to 
exit on the left. 

 

3.4 Wafer Bond Processes 

Several bonding processes have been used to fabricate these microfluidic devices, including polymer bonding with 
PMMA, glass-glass anodic bonding, and polymer bonding with CYTOP.  The desired bond process would have:  strong 
adhesion, temperature < 350°C, and cleanable surfaces prior to bonding.  The bond process also relates to the fluidic 
channel formation, since the channels may be formed by patterning the bond layer or by etching channels into one of the 
glass wafers.  The resulting channel should not scatter light from the waveguides, as this reduces the optical S/N of the 
fluorescent signal.  A low temperature bond process is preferred, to minimize changes to the profile of the diffused 
waveguides and avoid diffusion driven shape changes to the metal plasmonic stripes.   

PMMA bonding was found to have marginal adhesion strength.  In addition the PMMA surface cannot be rigorously 
cleaned in solvents or hot acids, leading to particles at the bond interface.   

After a literature search, a glass-glass anodic bond process using a “disappearing layer” of Al was found [11].  
Performing experiments with Al as well as Ti and amorphous Si, we chose amorphous Si (a-Si) as the bond layer, as it 
has been used previously to make nanofluidic devices in glass [12,13].  However, this process requires both high 
temperature (335°C) and an applied voltage, which very likely perturbs the ion diffused waveguide.  Channels were 
etched into the substrate wafer (or in later runs the cap wafer), resulting in a discontinuity in the index of refraction 
where the waveguide crosses the fluidic channel.  This dielectric discontinuity causes considerable light scattering, 
limiting the fluorescent signal/noise. 

Ultimately a new polymer bond process was adopted, using a unique polymer called CYTOP manufactured by Asahi [6-
8].  This polymer has outstanding adhesion strength, and an index of refraction very close to water (1.34, vs. 1.33 for 
water).  Hence the evanescent light field from the waveguide sees only Δn=0.01 as it crosses into a water filled channel, 
resulting in minimal scattering.  Additionally, CYTOP is extremely chemically inert, and can be cleaned rigorously in 
most solvents and hot acids, leading to low particulate densities at the bond interface. 

Bond strength was tested using the razor blade test, shown in Fig. 8.  A razor blade is pushed between the two wafers, 
and the distance that the resulting delaminated area extends beyond the tip of the razor blade is measured, from which 
the surface energy of the bond can be calculated using the following formula [14]:  

 

 2. 

 

where L is the crack extent beyond the razor blade, E is Young’s modulus for the wafers, tb and tw are the razor and 
wafer thicknesses, and γ is the bond energy in J/m2.   For very strong bonds, the wafers crack before a measurement can 
be made.  CYTOP bonds were sometimes too strong to measure, i.e. the wafers cracked.   

 
Figure 8: Diagram of razor blade test [14] 
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Next, to verify coupling from the waveguide to the plasmonic resonator, the illuminating light is turned off and the input 
laser is turned on.  The laser used was a 635nm wavelength diode pumped solid state laser.  If the microscope is properly 
set up, the input laser light will be rejected by the filters and only light from fluorescing particles will be observed.  
Therefore, if the plasmonic stripe were working properly a thin stripe should be observed at this point – indicating that 
the fluorophores above the stripe are being excited by the plasmonic resonator and are emitting enough light to be 
detected. 

Light emission from the plasmonic stripe was observed, however other sources of light were also observed (Figure 14 
and 15).  Light is seen at the edges of the channel, indicating that scattered light at the edges of the channel is exciting 
emission from fluorophores in the channel.  Although the metal stripe is exciting fluorophores as well, we are unsure if 
this is merely due to scattered light or if we are getting effective coupling from the waveguide to the plasmon resonator.  
Scattering must be reduced to clarify the source of the fluorescent signal. 

Further evidence in favor of scattering as the source of the fluorescence is observed using fluorescence illumination 
again.  In this mode, by adjusting the contrast of the image, it was possible to see the plasmonic stripe more brightly than 
the rest of the channel (Fig. 16).  This is an unexpected result, as we did not expect white light incident from below to 
drive the plasmonic resonator to a strong resonance.  It is possible that instead of exciting fluorophores by coupling to 
light in the waveguide, the plasmonic resonator may be merely scattering this light.  Our initial data is very promising, 
and more experimentation will be performed to confirm that we are observing plasmonic coupling. 

  
Figure 14: Channel filled with 
fluorescent dye.  Fluorescent arc lamp 
illumination. 

Figure 15: Same channel, seconds later.  
Only laser illumination through 
waveguide (shown by red dotted lines). 

Figure 16: Same channel, a minute later 
using fluorescence arc lamp illumination 
with contrast adjusted. Plasmonic stripe 
is clearly visible. 

 

5. DISCUSSION 
There are two main results. First is the successful integration of micro-/nanofluidics, waveguides, and metallic 
nanostructures into a single fabrication process.  The second result is the effectiveness for the initial application of this 
process – a nanofluidic DNA sensing chip with plasmonic readout.  Figure 17 shows tagged DNA flowing through a 
stretch funnel in one of our chips. 

A process has been presented for fabrication of devices with nanofluidic channels, integrated optical waveguides and 
metallic nano-plasmonic resonators.  A variety of polymer and anodic wafer bonding techniques were used to make 
chips, with the CYTOP polymer bond process ultimately chosen for strong adhesion and minimal light scattering.  This 
technology can be used to create sensor chips for detecting single fluorophore molecules with a very narrow detection 
zone, limited only by plasmonic resonator width. 

The Direct Linear Analysis application is the subject of continuing research.  Reduced scattering and enhanced 
resolution will increase the performance of these chips.  Further testing will be necessary to determine the ultimate 
effectiveness of our device in the field of single molecule DNA sensing. 
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Figure 17.   Fluorescent tagged DNA flowing through a hydrodynamic stretch funnel at 4.7 atm. pressure. 
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