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Abstract
Background: High gene numbers in plant genomes reflect polyploidy and major gene duplication
events. Oryza sativa, cultivated rice, is a diploid monocotyledonous species with a ~390 Mb genome
that has undergone segmental duplication of a substantial portion of its genome. This, coupled with
other genetic events such as tandem duplications, has resulted in a substantial number of its genes,
and resulting proteins, occurring in paralogous families.

Results: Using a computational pipeline that utilizes Pfam and novel protein domains, we
characterized paralogous families in rice and compared these with paralogous families in the model
dicotyledonous diploid species, Arabidopsis thaliana. Arabidopsis, which has undergone genome
duplication as well, has a substantially smaller genome (~120 Mb) and gene complement compared
to rice. Overall, 53% and 68% of the non-transposable element-related rice and Arabidopsis
proteins could be classified into paralogous protein families, respectively. Singleton and paralogous
family genes differed substantially in their likelihood of encoding a protein of known or putative
function; 26% and 66% of singleton genes compared to 73% and 96% of the paralogous family genes
encode a known or putative protein in rice and Arabidopsis, respectively. Furthermore, a major
skew in the distribution of specific gene function was observed; a total of 17 Gene Ontology
categories in both rice and Arabidopsis were statistically significant in their differential distribution
between paralogous family and singleton proteins. In contrast to mammalian organisms, we found
that duplicated genes in rice and Arabidopsis tend to have more alternative splice forms. Using data
from Massively Parallel Signature Sequencing, we show that a significant portion of the duplicated
genes in rice show divergent expression although a correlation between sequence divergence and
correlation of expression could be seen in very young genes.

Conclusion: Collectively, these data suggest that while co-regulation and conserved function are
present in some paralogous protein family members, evolutionary pressures have resulted in
functional divergence with differential expression patterns.
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Background
Gene duplication is a major contributor to genetic novelty
and proteomic complexity. Evolutionary pressures on
duplicated genes differ from single copy (singleton) genes
and several models have been proposed for the evolution-
ary fate of duplicated genes. In the non/neofunctionaliza-
tion model, one of the duplicated genes becomes a
pseudogene through the accumulation of deleterious
mutations although on a rare occasion, it may acquire a
new function [1]. In the subfunctionalization model [2-
4], duplicated genes adopt a subset of functions of the
ancestral gene. Functional redundancy of duplicated
genes has been shown to increase the robustness of bio-
logical systems [5].

Gene duplication occurs frequently in plants, either in the
form of segmental duplication, tandem duplication, and
at the level of whole genome duplication [6-14]. Genome
duplication has been reported in rice (Oryza sativa), an
important agricultural species and model species for the
grass family (Poaceae) [15-19]. Depending on the meth-
ods, parameters, and genome assemblies used, 15% to
62% [15-19] of the rice genome underwent one round of
large-scale segmental duplication that occurred approxi-
mately 70 Million Years Ago (MYA) [15,16,18]. A more
recent duplication, on the short arms of chromosomes 11
and 12, occurred approximately 5 ~8 MYA [15,20]. With
respect to tandem duplications, depending on the param-
eters utilized, 14–29% of rice genes occur in tandem [21].
Paralogous families, composed of tandemly and segmen-
tally duplicated genes, have been studied to a limited
extent in rice, typically in a comparative context with the
finished genome of the dicotyledonous plant species, Ara-
bidopsis thaliana [22-27]. To date, only limited genome-
wide analyses of paralogous protein families have been
reported in rice [28,29]. In Horan et al. [28], Arabidopsis
and rice proteins were co-clustered using Pfam domain-
based or BLASTP-based similarity clustering which
allowed for the clustering of proteins into families com-
mon between these two model species and for the identi-
fication of proteins that were species-specific.

In this study, we classified proteins from the predicted rice
proteome into paralogous protein families using a com-
putational pipeline that utilizes both Pfam and BLASTP-
based novel domains [30]. While the focus in our study
was analysis of the rice paralogous families, for compara-
tive purposes, we performed a similar classification with
the predicted Arabidopsis proteome to compare and con-
trast paralogous family composition and features in two
model species which represent two major divisions of the
angiosperms, monocots and dicots. In rice, we character-
ized alternative splicing, functional classification of paral-
ogous family proteins, expression patterns, and
duplication age and compared these data to those

observed in single copy proteins. A parallel analysis of
alternative splicing and functional domain composition
of paralogous family proteins was performed with Arabi-
dopsis to compare and contrast with the findings in rice.
To highlight our observations, we examined in depth two
rice protein families, prolamin and Bowman-Birk inhibi-
tor. This study provides a comprehensive analysis of rice
paralogous families in parallel with a comparative analy-
sis in Arabidopsis thereby providing novel insight into
paralogous gene family evolution in these two model
plant species.

Results and Discussion
Classification of paralogous protein families in rice and 
Arabidopsis
A total of 3,865 paralogous protein families containing
21,998 proteins were identified [see Additional file 1]
from the 42,653 total non-transposable element (TE)-
related proteins predicted in the rice genome, leaving
20,655 putative singleton proteins encoded by single copy
genes. On average, a rice family contained six family
members, ranging in size from two to 214 family mem-
bers (Fig. 1). A total of 11 paralogous protein families
with more than one hundred member proteins were iden-
tified in rice which encoded proteins such as zinc finger
proteins, protein kinases, Myb-like proteins, and trans-
ducins [see Additional file 2], similar to the largest protein
families reported in Arabidopsis [30]. Paralogous protein
family genes of rice were distributed throughout the
genome and within chromosomes in a pattern similar to
the singleton genes [see Additional file 3A]. Although par-
alogous protein family genes were more frequently
located in the euchromatic regions, this was consistent
with previous reports that non-TE-related genes are found
more prevalently in euchromatic regions. A comparison
of segmentally duplicated genes with the paralogous pro-
tein family genes suggested that our classification pipeline
was robust. Of the 2,403 segmentally duplicated gene
pairs within 163 segmentally duplicated blocks, 1,570
duplicated gene pairs (65%) were classified in the same
paralogous protein family. For the remainder of the seg-
mentally duplicated genes, 175 pairs (7%) were classified
in different paralogous protein families and 268 (11%)
had one gene classified in a paralogous protein family and
the other gene classified as a singleton. We observed that
390 segmentally duplicated gene pairs (16%) were not
included in any paralogous protein family. Note that in
our computational pipeline, four or more members were
required to define a BLASTP-based domain. Conse-
quently, a single pair of segmentally duplicated genes
alone is insufficient to define a BLASTP-based domain.
The lack of 100% correspondence between segmental
duplication and paralogous family classification may be
due to the acquisition of new domain(s) or loss of existing
domain(s) within one of the duplicated genes as in our
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computational pipeline, only proteins with the identical
domain composition were classified into the same paral-
ogous protein family. Alternatively, the difference could
be due to the different classification methods employed in
each method. For example, LOC_Os08g37350 and
LOC_Os09g28940 are segmentally duplicated genes from
chromosomes 8 and 9, respectively. These two protein
sequences had a 56% identity over 70% of the length of
the longer sequence and were within a segmentally dupli-
cated block of 43 collinear gene pairs. LOC_Os08g37350
has two Pfam domains (PF00443: Ubiquitin carboxyl-ter-
minal hydrolase; PF01753: MYND finger) while
LOC_Os09g28940 has only one Pfam domain (PF00443:
Ubiquitin carboxyl-terminal hydrolase). As a conse-
quence, these loci were classified in two different paralo-
gous families (LOC_Os08g37350 is classified in Family
1545; LOC_Os09g28940 is in Family 3650). In a second
example, LOC_Os11g03210 and LOC_Os12g02960 are
from a segmental duplication event involving chromo-
somes 11 and 12 which includes 160 collinear gene pairs.
LOC_Os11g03210 has a single Pfam domain (PF02798:
Glutathione S-transferase, N-terminal domain) and thus
is classified in Family 3362 while LOC_Os12g02960 is
classified as a singleton as although it has two Pfam
domains (PF02798: Glutathione S-transferase, N-termi-
nal domain; PF00043: Glutathione S-transferase, C-termi-
nal domain) no other protein has exactly the same
domain profile. Note that in our computational pipeline,
a paralogous family must have at least two members with
identical domain profiles. In a third example, segmentally
duplicated genes LOC_Os01g41900 and
LOC_Os05g51160 are from chromosomes 1 and 5. These
two genes were derived from full length cDNAs (FLcD-
NAs) and had a 59% identity over approximately three-
quarters of the longer protein sequence.
LOC_Os01g41900 has two Pfam domains (PF00249:
Myb-like DNA-binding domain and PF00098: Zinc
knuckle) while LOC_Os05g51160 has only one single
Pfam domain (PF00249: Myb-like DNA-binding
domain). As a consequence, they were classified in differ-
ent families, Family 1452 and Family 3863, respectively.
Manual inspection of these three sets of loci revealed that
they were correctly annotated and that the lack of cluster-
ing into a single paralogous family could not be attributed
to incorrect structural annotation which is another poten-
tial cause for lack of 100% correspondence between seg-
mentally duplicated genes and paralogous families.

A parallel construction of paralogous protein families in
Arabidopsis identified 3,092 paralogous protein families
(18,183 proteins) and 8,636 single copy genes from a
total of 26,819 protein coding genes from TAIR7 release
[31]. A similar size distribution of Arabidopsis protein
families was observed, ranging from two to 182 (Fig. 1).
In Arabidopsis, the largest families encode Myb-like pro-

teins, zinc finger proteins, and protein kinases, consistent
with what has been reported previously [30]. Arabidopsis
paralogous protein family genes distributed similarly to
singleton genes and were more frequently located in the
euchromatic regions [see Additional file 3B].

Function of paralogous protein families in rice and 
Arabidopsis
We examined the functional annotation of paralogous
family and singleton proteins. A total of 21,403 and
23,081 genes were annotated as encoding known or puta-
tive proteins in rice and Arabidopsis, respectively, due to
strong similarity with proteins with a known function or
the presence of Pfam domains above the trusted cutoff.
Genes with no known or putative function can be sup-
ported by experimental transcript evidence (i.e., encode
an "expressed protein") or are predicted solely by an ab
initio gene finder and lack expression support as well as
sequence similarity to known proteins with the exception
of other hypothetical proteins (i.e., encode a "hypotheti-
cal protein"). In rice, a total of 6,913 genes encode
expressed proteins as shown by experimental transcript
evidence from Expressed Sequence Tags (ESTs), FLcDNAs,
Massively Parallel Signature Sequencing [32], Serial Anal-
ysis of Gene Expression, and/or proteomic data [33]. In
Arabidopsis, 2,270 genes encode expressed proteins as
shown by experimental transcript in the form of ESTs and/
or cDNA evidence (see Methods). The remaining 14,337
rice genes [33] and 1,468 Arabidopsis genes (see Meth-
ods) encode hypothetical proteins. A majority of rice par-
alogous family genes (73%) encode either a known or
putative protein (Fig. 2). The remaining rice paralogous
family genes encode expressed proteins (9%) and hypo-
thetical proteins (18%). In contrast, rice singletons had a
larger portion of hypothetical genes (50%) and a smaller

Size distribution of paralogous protein families in rice and ArabidopsisFigure 1
Size distribution of paralogous protein families in rice and 
Arabidopsis. The exact number of families is listed above the 
bars.

713

583

295

187

147

87

472

1013

567

463

290

171

109
78

401

1381

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5 6 7 8 >8

Number of Proteins in Each Family

N
u

m
b

e
r 

o
f 

P
a
ra

lo
g

o
u

s
 F

a
m

il
ie

s

Rice

Arabidopsis
Page 3 of 14
(page number not for citation purposes)



BMC Plant Biology 2008, 8:18 http://www.biomedcentral.com/1471-2229/8/18
portion of genes with a known or putative function
(26%). Even though Arabidopsis overall has a smaller
number of genes with unknown function than rice, a sim-
ilar bias of genes with a known or putative function in par-
alogous family genes was observed in a parallel analysis in
Arabidopsis (Fig. 2).

Using Plant GOSlim annotations [34], we compared the
function of the proteins within rice paralogous families to
that in the singletons. Within the 26 molecular function
GOSlim categories identified in our analyses, rice paralo-
gous protein families showed different patterns from sin-
gletons in a number of GOSlim categories (Fig. 3A).
Although, the relative abundance of each GOSlim cate-
gory varied with the size of the rice paralogous family, no
obvious correlation was observed (Fig. 3A). For each cate-
gory, a two-tailed two-sample binomial test was per-
formed by comparing the abundance of that category in
rice paralogous families with that in the singletons. Multi-
ple testing was corrected using the Benjamini and Hoch-
berg false discovery rate control at a level of 0.05 [35]. The
statistical test revealed a substantial enrichment of 12 cat-
egories in rice paralogous family proteins including tran-
scription factor activity, hydrolase activity, DNA binding,
and transporter activity while a substantial reduction was
seen in five categories including receptor activity, nucle-
otide binding and carbohydrate binding (Table 1). A sim-
ilar skew in GOSlim categories was observed in a parallel
analysis in Arabidopsis (Table 2 & Fig. 3B), consistent
with a previous report in Arabidopsis [36] that non-ran-
dom loss and retention of paralogous genes with different
functions occurred after gene duplication.

Paralogous protein family genes tend to have more 
alternative isoforms than singletons
Alternative splicing has been regarded as a mechanism to
increase genetic novelty. In the rice genome, 6,253 non-
TE-related genes have evidence of alternative splicing (see
Methods) and we used this set of genes to examine alter-
native splicing in singleton versus paralogous protein
family genes. The percentage of alternative splicing in sin-
gle copy genes is 2,094/20,655 = 10.1%, while that in par-
alogous family genes is 4,159/21,998 = 18.9%; a
statistically significant difference (χ2 test, P < 1e-5). To
remove any bias due to genes that lack transcript evidence,
we restricted our analysis to genes with EST and/or
FLcDNA evidence. The percentage of alternative splicing
in singletons is 2,094/8,619 = 24.3%, while that in paral-
ogous protein family genes is 4,159/14,072 = 29.6%; a
statistically significant difference (χ2 test, P < 1e-5). We
further restricted our analysis to high confidence genes
whose structures were completely supported by ESTs and/
or FLcDNAs. The percentage of alternative splicing in sin-
gletons increases to 1,826/5,964 = 30.6%, while that in
paralogous protein family genes increases to 3,765/
11,235 = 33.5%; a statistically significant difference (χ2

test, P < 1e-3).

To confirm that our observation was not restricted to rice,
we performed a parallel analysis with Arabidopsis. Using
data on alternative splicing as provided with the TAIR7
release (see Methods), the percentage of alternative splic-
ing in Arabidopsis single copy genes is 943/8,636 = 9.8%,
while that in paralogous protein family genes is 2,856/
18,183 = 15.7%. This difference is also statistically signif-
icant (χ2 test, P < 1e-5), similar to that observed in rice.
Restricting the analysis to only those Arabidopsis genes
with EST and/or cDNA support as provided in the TAIR7
release revealed that the percentage of alternative splicing
in singletons is 942/6,663 = 14.1%, while that in paralo-
gous family genes is 2,852/15,369 = 18.6%; a statistically
significant difference (χ2 test, P < 1e-5). Our findings are
contradictory to previous reports in model animal species
in which duplicated genes tend to have fewer alternative
spliced isoforms thereby supporting the 'function-sharing
model' that alternative splicing and gene duplication are
two mechanisms that are complementary with respect to
proteomic function diversity [37,38]. Our results sug-
gested that plants may employ multiple mechanisms for
proteomic complexity, gene duplication and alternative
splicing.

Age of paralogous protein families in rice
While there are previous reports on gene duplication in
rice [15-19], they utilized alternative assemblies and
annotation datasets of the rice genome. To provide infor-
mation on the age of paralogous families identified in this
study, we estimated the age of a paralogous family from

Functional classification of paralogous family and singleton proteins in rice and ArabidopsisFigure 2
Functional classification of paralogous family and singleton 
proteins in rice and Arabidopsis.
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the maximum value of the distribution of pairwise dS cal-
culated among all members of that protein family (see
Methods). We found that the origin of most paralogous
families dates back to over 115 Million Years (MY), the
point at which synonymous sites are saturated and dating
becomes unreliable (dS ~1.5) [see Additional file 4A].
Among protein families for which the maximum pairwise
dS value is less than 1.5, the distribution of maximum dS is
fairly flat, with the exception of a recent peak at dS between
0 and 0.1 [see Additional file 4B]. This suggests that paral-
ogous families have been arising at a relatively constant
pace within the past 115 MY, but that a burst of duplica-
tion took place within the last 7.5 MY. Alternatively, par-
alogous families arise at a rate similar to that observed for
the first few million years, but about 2/3 of them revert to
single-gene status soon thereafter, accounting for the
quick decline after the first 7.5 MY. The fairly constant
number of older paralogous families can be due to selec-
tive constraints maintaining the elevated copy number or
if the loss of paralogs is dependent on sequence similarity,
such that after ~10% sequence divergence, paralog loss is
negligible. Finally, for each family we identified the larg-
est peak below 1.5 (if there was one) in the distribution of
all pairwise dS values. The distribution of this peak value

across all families is bimodal [see Additional file 5], and it
confirms the presence of a large number of recently dupli-
cated genes (0 ≤ dS < 0.1). In addition, the peak at 0.7 ≤ dS
≤ 1 most likely results from the large-scale segmental
duplication event that occurred ~70 MYA.

Expression of paralogous protein families in rice
We further examined the expression patterns of the paral-
ogous families using MPSS data from 18 libraries [32].
MPSS tags were searched against our release 4 pseudomol-
ecules and cDNA sequences of all annotated gene models
to ensure that all MPSS tags would be identified even if
they spanned the intron(s). We found 11,619 genes
within the paralogous protein families that were associ-
ated with unique, reliable, and significant MPSS tags,
which were referred as MPSS-qualifying genes.

Suitable summary statistics of correlation for expression
divergence of a gene family can be found in Gu [39] and
Gu et al. [40], though microarray data were the primary
focus in these studies. To be concise, we restricted our
analysis of expression correlation in the libraries and tis-
sues to paralogous families with exactly two MPSS-quali-
fying genes (674 protein families). To measure the

Table 1: Two-sample binomial tests for GOSlim assignments of paralogous family and singleton proteins in rice

GOSlim assignmenta Singletons (%) Paralogous genes (%) P-valued

Binding, otherb 3.3 6.5 <1e-5
Carbohydrate bindingc 2.7 0.6 <1e-5
DNA bindingb 4.8 8.0 <1e-5
Hydrolase activityb 7.8 12.7 <1e-5
Kinase activityc 16.0 6.2 <1e-5
Nucleotide bindingc 13.4 4.2 <1e-5
Protein binding, otherc 14.2 9.5 <1e-5
Receptor activityc 2.3 0.4 <1e-5
Transcription factor activityb 4.3 9.3 <1e-5
Catalytic activity, otherb 8.7 12.2 <1e-5
Structural molecule activityb 0.8 2.2 <1e-5
Oxygen bindingb 0.7 1.9 <1e-5
Transcription regulator activityb 1.1 2.3 <1e-5
Transporter activityb 5.0 7.0 <1e-5
Lipid bindingb 0.4 1.1 <1e-5
Molecular function, otherb 0.1 0.4 0.001
Enzyme regulator activityb 0.5 0.9 0.008
Motor activity 0.5 0.3 0.051
Transferase activity 7.0 7.7 0.095
Receptor binding 0.0 0.1 0.137
RNA binding 1.8 2.1 0.369
Translation factor activity, nucleic acid binding 0.5 0.7 0.353
Signal transducer activity 1.0 0.9 0.43
Chromatin binding 0.3 0.2 0.465
Nucleic acid binding, other 1.8 1.9 0.882
Nuclease activity 0.8 0.8 0.888

a GoSlim assignment classifications were performed as described in the Materials and Methods.
b Enrichment of GOSlim annotations in paralogous protein families compared to singletons.
c Reduction of GOSlim annotations in paralogous protein families compared to singletons.
d Benjamini and Hochberg correction for multiple testing.
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expression correlation, the Pearson's Correlation Coeffi-
cient (r) of their expression was computed for each pair of
MPSS-qualifying genes from each of the 674 protein fam-
ilies across all 18 MPSS libraries. It is important to note
that we excluded MPSS tags which mapped to multiple
locations, as most of these are likely to match to closely-
related paralogs and could have confounded our analyses.
We employed the method used by Blanc and Wolfe [36]
to determine a minimum cutoff value for Pearson's Corre-
lation Coefficient (r) to classify two duplicated genes as
having divergent expression. Basically, a total of 10,000
gene pairs were generated by random shuffling of the sin-
gleton genes and the Pearson's Correlation Coefficient (r)
was calculated similarly for each pair. Ninety five percent
of the random shuffled gene pairs had a correlation value
r < 0.59. As random shuffled gene pairs should have diver-
gent function and expression patterns, we utilized r < 0.59
as an indicator of divergent expression. Our results show
that the expression correlation value (r) of the paralogous
protein family genes ranged from -0.6 to 1.0 although the
majority of the gene pairs had little correlation with r
peaking at -0.2 ~0, similar to that observed with the sin-
gletons (Fig. 4). Using the correlation cutoff (r = 0.59), a
total of 598 (89%) paralogous protein families with two-

qualifying MPSS genes exhibited divergent expression pat-
terns, consistent with what has been reported in Arabi-
dopsis [36] and in yeast in which more than 80% of the
older duplicated gene pairs (ds > 1.5) showed divergence
in expression [41].

To gain a better understanding of the expression patterns
of paralogous protein family members in different
organs/tissues, we classified the 18 MPSS libraries [32]
into four groups by organs/tissues: roots, leaves, repro-
ductive organs/tissues, and "other tissues". Within the
674 paralogous families with exactly two MPSS-qualifying
genes, 239, 168, 223, and 200 paralogous families had
only a single member of the pair expressed in roots,
leaves, reproductive organs/tissues, and "other tissues",
respectively, which demonstrated their diverged expres-
sion patterns, and possible tissue-specific expression. To
further examine the tissue-specific or stress-induced
expression patterns of paralogous protein family mem-
bers, we calculated the Preferential Expression Measure
(PEM) for each of the 1,348 genes from the 674 paralo-
gous families (see Methods) in the 18 MPSS libraries. The
PEM shows the base-10 log of ratio of the observed
expression level in a given tissue/treatment to the

Table 2: Two-sample binomial tests for GOSlim assignments of paralogous family and singleton proteins in Arabidopsis

GOSlim assignmenta Singletons (%) Paralogous genes (%) P-valued

Hydrolase activityb 7.5 12.6 <1e-5
Kinase activityc 10.4 5.5 <1e-5
Nucleotide bindingc 10.2 4.6 <1e-5
Protein binding, otherc 12.9 8.2 <1e-5
Transcription factor activityb 4.2 9.0 <1e-5
Receptor activityc 1.9 0.7 <1e-5
DNA bindingb 4.1 7.2 <1e-5
Oxygen bindingb 0.1 1.4 <1e-5
Receptor bindingc 0.5 0.1 <1e-5
Carbohydrate bindingc 0.7 0.3 <1e-3
Lipid bindingb 0.3 0.8 0.001
Structural molecule activityb 1.6 2.5 0.002
Enzyme regulator activityb 0.7 1.4 0.005
Molecular function, otherb 1.8 2.5 0.011
Transporter activityb 5.0 6.0 0.019
Nucleic acid binding, otherc 2.6 2.0 0.027
Motor activityb 0.2 0.5 0.03
Transferase activity 5.3 6.1 0.053
RNA binding 1.5 1.9 0.099
Binding, other 12.3 11.3 0.102
Signal transducer activity 1.0 0.8 0.132
Catalytic activity, other 12.4 11.7 0.244
Transcription regulator activity 1.3 1.5 0.743
Chromatin binding 0.2 0.1 0.803
Translation factor activity, nucleic acid binding 0.6 0.6 1
Nuclease activity 0.7 0.8 1

a GoSlim assignment classifications were performed as described in the Materials and Methods.
b Enrichment of GOSlim annotations in paralogous protein families compared to singletons.
c Reduction of GOSlim annotations in paralogous protein families compared to singletons.
d Benjamini and Hochberg correction for multiple testing.
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GOSlim assignment of A) rice paralogous families and singletons, B) Arabidopsis paralogous families and singletonsFigure 3
GOSlim assignment of A) rice paralogous families and singletons, B) Arabidopsis paralogous families and singletons. The paralo-
gous protein families are further classified by family size.
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expected expression level assuming uniform expression
across all tissues/treatments. A PEM value of 1 means the
observed expression level in a given tissue/treatment is 10
times that of expected and indicates strong tissue specific
expression. For each gene, tissue(s) with a stringent cutoff
of PEM ≥ 1 were compared with the other member of the
duplicated gene pair. A total of 375 (375/674 = 55.6%) of
the paralogous families showed little tissue-specific
expression as none of the associated PEMs had a value
equal to or greater than 1. Two hundred ninety-nine fam-
ilies showed strong tissue specific expression patterns; 19
families were preferentially expressed in the same tissue or
treatment, 49 families were preferentially expressed in dif-
ferent tissues or treatments, and 231 families had only
one of the duplicated genes with preferential tissue-spe-
cific expression.

We further examined the correlation between expression
divergence and sequence divergence. For each family, we
calculated the Pearson's Correlation Coefficient (r) for all
possible pairs of the MPSS-qualifying genes to measure
expression divergence. We then used ds as a proxy of diver-
gence time for each gene pair. We restricted our analysis to
dS ≤ 1.5 so that the synonymous sites are not saturated.
The Pearson's Correlation Coefficient (r) values were plot-
ted against the ds values for each interval of 0.1 to gain
better resolution. That is, we plotted for gene pairs with 0
<dS ≤ 0.1, 0.1 <dS ≤ 0.2, 0.2 <dS ≤ 0.3, and so on. We found
no correlation between dS and correlation of expression
except for gene pairs with 0 <dS ≤ 0.1 (R = 0.33, P < 1e-4)
where duplicated genes were relatively young [see Addi-
tional file 6]. The number of non-synonymous substitu-
tions per site (dN) was also calculated for each gene pair
and plotted against correlation of expression. No correla-

tion was observed between dN and correlation of expres-
sion (data not shown). This is consistent with reports in
Arabidopsis in which expression divergence is not strictly
coupled with sequence divergence as shown by no appre-
ciable change for the majority of gene duplicates with
highly diverged amino acid sequences in expression pat-
tern in developing roots [42].

Positive correlation of expression patterns among paralo-
gous protein family members would suggest that similar
transcriptional regulation was retained in both members
and possibly, similar functions. However, we observed a
large number of gene pairs with little expression correla-
tion which could be an indication of subfunctionalization
or neofunctionalization after gene duplication. The dupli-
cation-degeneration-complementarity (DDC) model pro-
posed by Force et al. [3] and Lynch and Force [4] suggests
that subfunctionalization is a major mechanism for reten-
tion of duplicated genes as a result of differential expres-
sion caused by accumulation of mutations in regulatory
regions rather than protein coding regions. The 49 fami-
lies with preferential expression in two different tissues or
treatments, along with the 231 families having only one
member of the paralogous pair preferentially expressed, is
a strong indicator of subfunctionalization. As our paralo-
gous protein family classification required that each fam-
ily member have the same domain profile, the differential
expression may be attributable to mutations in regulatory
regions rather than gene coding regions, consistent with
the DDC model.

Case studies of rice paralogous protein families
Prolamin protein family
Prolamin is one of the major endosperm storage proteins
in cereal grains such as wheat, barley, rye, maize, and sor-
ghum [43-46]. It was named prolamin due to its high con-
tent of proline and glutamine. In rice, prolamin
contributes 35% of the total seed protein [47]. Three
classes of prolamins have been identified in Oryza by their
molecular weights: 10, 13, and 16 kDa [48]. The major
prolamin families in rice are Family 3722 (20 members)
and Family 3193 (seven members). Members of both
families have a BLASTP-based domain. Members of Fam-
ily 3193 have a Pfam domain (PF00234; Protease inhibi-
tor/seed storage/LTP family) in addition to the common
BLASTP-based domain and thus were not clustered within
Family 3722 as the exact same domain profile is required
for each family member in our computational pipeline
[see Additional file 7]. All of the prolamin genes were sin-
gle-exon genes as reported previously [49] with the excep-
tion of four genes that contained a single intron which
were further examined and found that based on the EST
alignments they were single-exon genes that had not been
properly annotated (data not shown). The length of the
deduced amino acids of the prolamin proteins (excluding

Histogram of Pearson's Correlation Coefficients of expres-sion (r) of rice paralogous protein families with exactly two MPSS-qualifying genesFigure 4
Histogram of Pearson's Correlation Coefficients of expres-
sion (r) of rice paralogous protein families with exactly two 
MPSS-qualifying genes.
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the four inaccurate genes) varied from 101 to 156 bp with
two peaks at 101~110 and 145~160 bp, consistent with
what had been reported in rice prolamin proteins [49,50].

Only five prolamin family members
(LOC_Os05g26720.1, LOC_Os05g26770.1, LOC_Os06
g31070.1, LOC_Os12g16880.1, LOC_Os12g16890.1)
were associated with unique, reliable, and significant
MPSS tags, which, as expected, were exclusively expressed
in 3-day germinating seeds with relatively high abun-
dances (198, 562, 1042, 148, and 670 Transcripts Per Mil-
lion (TPM), respectively) [see Additional file 8]. We also
examined the expression of the two prolamin families
with that of Family 3856 (123 members) which contained
the same Pfam domain (PF00234) that was in prolamin
family 3193 [see Additional file 7]. A total of 54 genes
from Family 3856 were associated with unique, reliable,
and significant MPSS tags. However, the expression pat-
tern observed in Family 3856 substantially differed from
that of the prolamin families (Family 3722 and Family
3193) in that most of the genes were expressed in multiple
organs/tissues [see Additional file 9].

Interestingly, we observed that genes encoding the
prolamin protein family seemed to localize closely on the
chromosomes. A total of 16 prolamin protein family
genes were located together on chromosome 5 with a
large number of TE-related genes inserted between the
family members [see Additional file 10]. Other prolamin
protein family genes were located on chromosome 6 (two
genes in tandem), chromosome 7 (in two gene clusters),
and chromosome 12 (three genes with TE-related genes
inserted between them), suggestive of tandem duplica-
tion(s) of the prolamin protein family genes followed by
insertion of transposable elements throughout the course
of evolution. This is consistent with previous report on the
compact expansion of α-zein gene family of maize [13].

Bowman-Birk Inhibitor (BBI) type protein family
BBI is a cysteine-rich protein which has trypsin and chy-
motrypsin inhibitory activities [51]. It was first character-
ized in soybean [52,53] and later found widely distributed
in monocot and dicot species [54-58]. It has been exten-
sively studied due to its possible role in plant defense
[51,54,58] and its potential application in cancer chemo-
prevention [59-61]. The major BBI type protein families
in rice are Family 3328 (eight members) and Family 1493
(three members). While both families have the Pfam
domain PF00228 (Bowman-Birk serine protease inhibitor
family), Family 3328 also has a second domain identified
via BLASTP [see Additional file 11]. Amino acid composi-
tion analysis showed that 31% and 47% of the conserved
residues of Family 3288 and Family 1493, respectively,
was cysteine suggesting that this amino acid has an impor-
tant role in the protease inhibitory activity of BBI. These

composition data also revealed subtle differences between
the two BBI type protein families. The phylogenetic tree
generated by MEGA version 3.1 [62] for family 3328 [see
Additional file 12] suggests that after the original duplica-
tion event, only one of the paralogs underwent further
rounds of duplication, consistent with the physical clus-
tering of this set of BBI genes on chromosome 1 [see Addi-
tional file 13].

MPSS analysis showed that the BBI genes were differen-
tially expressed in a wide range of tissues and organs, con-
sistent with previously reported expression patterns [58].
Seven genes of Family 3328 were associated with unique,
reliable, and significant MPSS tags with the pairwise Pear-
son's Correlation Coefficient values ranging from -0.35 to
0.71. Two genes within Family 1493 were associated with
unique, reliable, and significant MPSS tags, which showed
little correlation in expression (r = -0.12). It would be
interesting to determine expression levels of the BBI genes
following wounding, as seven proteins of the Family 3328
were annotated as Bowman-Birk type bran trypsin inhibi-
tor precursors, a type which was reported to play an
important role in plant defense [54,58], and two mem-
bers of the Family 1493 were annotated as wound-
induced BBI type WIP1 precursors [33].

Conclusion
We demonstrated that even relatively small plant
genomes such as rice and Arabidopsis have a significant
portion of their proteomes in paralogous families, result-
ing in a partially redundant proteome. The origin of most
paralogous gene families in the rice genome seems to be
very old, but duplicates have continued to arise at a fairly
steady pace, with a peak in duplication being coincident
with a major segmental duplication that took place at ~70
MYA. While conservation of protein domains was clearly
observed within rice and Arabidopsis paralogous families,
we did observe a major skew in types of proteins and pro-
tein domains within paralogous families versus singleton
proteins, suggesting an impact of selection occurred dur-
ing genome evolution and gene duplication. Another
level of potential functionality in paralogous family pro-
teins could also occur through alternative splicing which
was statistically more frequent in paralogous family pro-
teins compared to singletons in both rice as well as Arabi-
dopsis. In rice, while some paralogous family members
were transcriptionally co-regulated, divergence in expres-
sion patterns was clearly evident, thereby allowing an
expanded range of functionality for the protein. These
data suggested that multiple mechanisms are present in
plant genomes to generate protein diversity and that these
two model plant species share at least a subset of these
mechanisms.
Page 9 of 14
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Methods
Construction of paralogous protein families
In release 4 of the TIGR Rice Genome Annotation [33], a
total of 55,890 genes were annotated, of which 13,237
were related to TE. The TE-related genes were excluded
from all further analyses. As alternative splicing occurs in
the rice genome and some genes have multiple splice
forms, the largest peptide sequence was used whenever
alternative isoforms existed. Short protein sequences (<50
amino acids) were excluded from this analysis. A total of
42,653 rice protein sequences were used to classify paral-
ogous protein families using protein domain composi-
tions as described in Haas et al. [30]. The basic approach
for generating the protein families involved identification
of the domains followed by organization of the families
based on domains. Two different types of domains were
used for the generation of paralogous families: Pfam/
HMM domains and BLASTP-based domains. For the
Pfam/HMM domains, the predicted rice proteome was
searched against the Pfam HMM domain database [63]
using HMMER2 [64] and proteins with scores above the
trusted cutoff value were retained. For the BLASTP-based
domain, peptide regions that were not covered by the
Pfam HMM profiles were then clustered based on homol-
ogy derived from an all versus all BLASTP search [65].
Links were made if two peptides had an >45% identity
over >75 amino acids with an E-value <0.001. To prevent
multi-domain proteins that are not related from artifi-
cially clustering due to single linkages, the Jaccard coeffi-
cient of community [66], also known as link score, was
used in the clustering process. As described in Haas et al.
[30], a link score was calculated for the pairs of linked
peptide sequences a and b as follows:

Peptides with a link score above the cut-off value (0.66)
were selected to generate single linkage clusters. Clustered
peptides were then aligned using CLUSTALW [67,68] and
used to develop BLASTP-based domains, which were used
to build the families if the domain alignments contained
four or more members. Protein families were then organ-
ized based on the domain composition that refers to the
type and number of the domains, which included both
Pfam HMM domains and BLASTP-based domains. Pro-
teins with identical domain composition were then classi-
fied into putative protein families. Paralogous protein
families in Arabidopsis were constructed similarly with a
total of 26,819 protein coding genes from the TAIR7
release of the predicted proteome [31].

Identification of segmentally duplicated genes
Segmentally duplicated genes in the rice genome were
defined in Release 4 as described previously [69]. In brief,

similar gene pairs were identified by all versus all BLASTP
search (WU-BLASTP, parameters "V = 5 B = 5 E = 1e-10 -
filter seg") [65], which were then used to define segmen-
tally duplicated blocks by running DAGchainer [70] with
parameters "-s -I -D 100000".

Functional classification of Arabidopsis proteome
A total of 26,819 Arabidopsis protein coding genes were
downloaded from the TAIR7 release of the predicted pro-
teome [31] and searched against an in-house non-redun-
dant amino acid database that contains all publicly
available protein sequences (e.g. GenBank, Swissprot,
etc.) using BLASTP [65] and the Pfam HMM domain data-
base [63] using HMMER2 [64]. BLASTP matches to Arabi-
dopsis sequences were excluded unless they were from
Swissprot. BLASTP matches to conserved hypothetical or
hypothetical proteins were excluded as well. Arabidopsis
proteins with a BLASTP match (< 1e-10 and > 30% iden-
tity over 50% coverage) or Pfam domains with scores
above the trusted cutoff value were classified as known or
putative proteins. The remaining Arabidopsis genes were
classified as expressed genes or hypothetical genes accord-
ing to the gene set downloaded from TAIR7 release [31]
which had at least one supporting cDNA and/or EST.

GOSlim assignment
To assign Gene Ontologies (GO) [71], the predicted rice
proteome was searched against the predicted Arabidopsis
proteome (TAIR6 Genome Release) [31] using BLASTP.
Using an E-value cutoff of 1e-10, plant GOSlim annota-
tions [34] were transitively annotated using the GO terms
from Arabidopsis. Hypothetical/expressed proteins, TE-
related proteins, and proteins assigned with GO terms
with "unknown" definitions were excluded from this
analysis. The GOSlim assignment of Arabidopsis proteins
was obtained form TAIR7 release [31].

Identification of alternatively spliced genes
Approximately 780,000 rice EST sequences were released
subsequent to the generation of the Release 4 gene models
[33]. Thus, we utilized the PASA program [72] to re-anno-
tate the gene models and comprehensively identify alter-
natively spliced genes with the latest set of rice transcript
data. Alternative splicing information on Arabidopsis was
obtained from TAIR7 release [31].

Estimation of the age of the paralogous protein families
A multiple protein sequence alignment was obtained for
each family using CLUSTALW with default parameter set-
tings [67,68]. From each protein family of size n, all (n2-
n)/2 pairwise alignments were extracted from the global
family alignment, maintaining the position and length of
all gaps. A maximum likelihood estimate of the number
of synonymous substitutions per synonymous site (dS)
was obtained for all pairwise alignments. All calculations

J
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were performed using the codon-based substitution
model of Goodman and Yang [73] implemented in
codeml, of the PAML package, version 3.15 [74], running
in pairwise mode (runmode = -2), with codon equilib-
rium frequencies estimated from average nucleotide fre-
quencies at each codon position (codonFreq = 2).

The age of a paralogous protein family is defined by the
duplication that gave rise to its second member, and can
be approximated by the divergence between the most dis-
tantly-related pair of genes in the family. Given the rate of
synonymous substitutions in grasses, estimated to be ~6.5
× 10-9 per site per year [75], the number of synonymous
substitutions per site (dS) between the most divergent
gene pair in a family can be converted into a divergence
time, provided synonymous sites are not saturated (dS <
~1). In addition, peaks in the distribution of intra-family
pairwise dS values suggest periods of family diversifica-
tion. For each family, the distribution of pariwise dS values
was determined, plotted within the range of 0 to 1.5, with
bin size of 0.1. Both the modal bin of each distribution
(usually resulting from the most ancient split in the family
tree) and the largest modal value of dS < 1.5 (reflecting a
burst in diversification within the last 100 MY) were
recorded.

Massively parallel signature sequencing data and mapping
A total of 106,521 significant (>3 TPM) and reliable
(observed in more than one sequencing run) MPSS [32]
tags were obtained from the Rice MPSS Project [32,76].
These MPSS tags are derived from nine treated or
untreated organs/tissues including callus, leaf, seed,
crown vegetative meristematic tissue, ovary, stigma, pol-
len, panicle and stem. To reduce background noise, the
method of Haberer et al. [77] was used to remove tags if
the total minimal abundance across all libraries was ≤ 10
TPM or if the tag was not detected at ≥ 5 TPM in at least a
single library, resulting in a total of 74,748 tags for subse-
quent analyses. The final set of MPSS tags were searched
against TIGR rice pseudomolecules [33] using the Vmatch
program [78]. As tags can span an intron(s), MPSS tags
were also searched against all the cDNA sequences of the
annotated genes. MPSS tags that mapped to the anti-sense
sequence of the annotated genes or that mapped to mul-
tiple locations of the genome were excluded, which is
important to minimize false correlations among closely
related paralogs. If a gene was associated with multiple
MPSS tags, only the most 3' tag was used for the expres-
sion analysis. Paralogous genes that were associated with
unique, reliable, and significant MPSS tags were analyzed.
Pearson's Correlation Coefficient (r) was calculated for
each gene pair to determine the expression correlation
using the following formula [79]:

Where n is the number of DNA libraries. Xi and Yi repre-
sent the expression level of the gene pair in the i-th library.

Tissue specific expression analysis
To determine if a gene was preferentially expressed in a
specific tissue, we employed the PEM devised by
Huminiecki et al [80]. PEM is defined as log10(O/E). Basi-
cally, it compares the observed (O) expression level in a
given tissue with that of expected (E) level, assuming uni-
form expression across all tissues. The PEM value of the i-
th gene in the j-th tissue was calculated as followed:

Where m and n represent the total number of MPSS-qual-
ifying genes and tissues, respectively.xi, j is the expression
level of the i-th gene in the j-th tissue.
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