Later Refraction Arrivals
in Layered Liquids

by

Robert Alden Phinney

Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science and Master of Science in Geology and Geophysics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1959

Signature of Author

Robert Alden Phinney

Certified by

Thesis Supervisor

Head of Department

R. R. Shrock
Abstract

Tolstoy's theory on the dispersive properties of layered acoustic waveguides is applied to problems connected with the detection of so-called later refraction arrivals in refraction prospecting. His theory of antiresonant lattices is applied in a number of cases to develop a simple technique for estimating the dispersion curves and important later-arrival frequencies. Two cases pertinent to shallow water problems have been worked out in this way, and the results compared with curves calculated on an IBM 704 digital computer. It is seen that the simple method gives predictions which are of fairly broad applicability, as well as providing additional information about the modes of propagation not apparent in the exact solution.

In addition to the lattice method, other well-known spectral considerations are brought to bear on the question of the actual time variation of refraction arrivals. Certain features are predicted whose nature must be understood in order for a refraction record to be properly interpreted. The effects of time scaling, thickness of layers, and velocity contrast on refraction arrivals are considered. Also discussed are problems encountered in field practice when variables such as hydrophone depth, filtering, and recording speed must be optimized to obtain later refraction arrivals. Suggestions have been made for investigation of perturbations in the layer thicknesses and predictions made of their effect on refraction arrivals.
Table of Contents

Introduction 5

Chapter I
Review of the pertinent theory 8

Chapter II
Application to the determination of refracted arrivals 24

Chapter III
Discussion and results 32

Chapter IV
Considerations affecting the detection and interpretation of refracted signals 42

Appendix I
Table of symbols 61

Appendix II
Outline of the Buzzards Bay refraction study 62

Appendix III
Tabulated results from the 704: Phase and group velocity for Model Ia 66
Graphs of group velocity 70

Appendix IV
704 program in SAP language 74

Bibliography 82

Illustrations
Figures 1 - 10 20
Figures 11 - 18 29
Plates 1 - 4 38
Plates 5 - 8 70
Acknowledgements

The author wishes to acknowledge the generous help of Mr. Norman Ness in programming for the IBM 704 computer. He is deeply indebted to his wife, Beth, for doing most of the clerical work connected with preparing this thesis.

This work was done in part at the M. I. T. Computation Center, Cambridge, Massachusetts.
Introduction

In the application of seismic refraction methods to shallow water situations, the geometry present often makes it impossible to observe first arrivals from layers overlying the basement. When first arrivals are observed, it is common for the slope and intercept of the appropriate line in the travel-time plane to be intolerably sensitive to uncertainties in the data. Consequently an effort is always made to pick intermediate layer refraction arrivals which occur after the first arrivals from the basement. Because of difficulties attendant on distinguishing these signals on the disturbed trace from random fluctuations in background level, predictions based on later arrivals are treated with some skepticism.

As we shall see in this paper, later arrivals may display features which, if not properly understood, may lead to wrong conclusions. At the same time, however, the occurrence of these features may make possible positive identification of later arrivals.

The shallow water environments to which this discussion is applicable will generate different problems in later arrivals picking. Typical inshore areas, such as Buzzards Bay, Massachusetts, are best described as plane acoustic waveguides. Consequently each refraction arrival contributes an essentially undamped wave train, and the "noise"
background for later arrival picking is a superposition of several such wave trains. In such a case we may use our first order knowledge of the geology to help distinguish arrivals from this noise, using the criteria to be discussed in this paper. Typical continental shelf refraction records tend to be less obscured by "noise" from the normal modes than they are by hydrophone and instrument noise, due to the higher sensitivity and amplification needed to detect the information.

A description of later arrivals is here based on the liquid layer theory of Pekeris, and the calculations are performed according to the scheme of Tolstoy. It is assumed that the reader is familiar with the theory of normal mode propagation as discussed in GSA Memoir 27 (1958)¹⁵ and Ewing, Jardetzky, and Press (1957)⁷*. The main features of Tolstoy's work will be outlined and discussed without proof in this paper, since later refraction arrivals can be best described by this rather different approach. It is also assumed that the reader has some acquaintance with the details of the seismic refraction technique at sea. Instrumentation, records, and calculations are covered in the series of papers "Geophysical Investigations in the Emerged and Submerged Atlantic Coastal Plain"⁶,⁹,¹⁰ and in GSA Memoir 27.

Chapters I and II deal with Tolstoy's work concerning dispersion in layered acoustic waveguides. It is shown how

* Superscripts refer to numbered references in the bibliography.
the lattice approximations can be applied to two different models to deduce the character of the dispersion without prolonged calculation. For these cases predictions about the later refraction arrivals are tabulated for comparison with results obtained by a digital computer. In Chapter III dispersion and group velocity curves for twelve different cases as calculated on the IBM 704 digital computer are presented. Later arrivals deduced from these curves are compared with prediction made by application of the lattice approximations. The curves used to generate the lattices are discussed in terms of the geometrical factors which affect refraction arrivals from finite thickness layers. The structure of the 704 program is detailed in an appendix.

The actual appearance of later arrivals is mentioned qualitatively in Chapter IV. Criteria are developed for intelligent picking of records. The dispersion and group velocity curves illustrate several points. Also considered is the question of attenuation of the refracted wave packets. Various deviations of the geometry from that of a plan waveguide introduce losses by radiation into the basement and by smearing of the energy into poorly defined wave packets by transitions between modes. Ordinary volume scattering and attenuation also selectively reduce the energy of refraction arrivals. Since higher modes are generally more susceptible to these mechanisms, the importance of low mode group velocity maxima in determining refracted signals is emphasized.
Chapter I

Review of the Theory

The theory of sound propagation in stratified liquid waveguides has been enunciated by Pekeris15, Jardetzky11, Tolstoy20-24, Ewing & Press8, and others; it is not the purpose of this paper to present or review all of this theory, except as it touches on the problem at hand.

Pekeris15 has shown that the contribution to a steady state acoustic potential is composed of two parts. A branch-line integral represents the continuous spectrum, giving rise to the transient pulse observed in seismic refraction as the "refracted arrival." Jardetzky11 proved that only one branch line integral exists for an n-layered problem, and that it was identified with the branch point

\[k = \alpha_n \]

(1)

The remainder of the signal is generated by a nonorthogonal discrete set of modes, which arise mathematically from pole contributions to a contour integral in the complex k-plane. These "normal modes" constitute the principal signal observed at long ranges, since they are caused physically by constructive interference of totally reflected plane waves in the finite part of the waveguide. The normal modes are dispersive. The horizontal phase velocity, \(c \), is frequency dependent; hence it is appropriate to form the group velocity:

\[v = \frac{d\omega}{dk} = c + k \frac{dc}{dk} = \frac{c^2}{c + \omega \frac{dc}{d\omega}} \]

(2)

which defines the velocity of a wave packet with central...
frequency \(\omega \) in the waveguide. Biot has shown that the group velocity is also defined for a single frequency source (under liberal restrictions) as the rate of energy transport in the waveguide.

The characteristic equation which defines the dispersion of the normal modes can be obtained in straightforward manner by application of the boundary conditions to eigenfunctions of the proper form and setting the secular determinant equal to zero. For each value of \(c \) within a certain range, there will, in general, be infinitely many solutions, \(\omega_m \), corresponding to the modes \(m = 1,2,3, \ldots \). Inversely, for each value of \(\omega \), there will be only a finite number of \(c_m \) which solve the period equation. This is illustrated in figures 1 and 2, where typical dispersion curves are displayed in the \(\omega-c \) plane and the \(k-\omega \) plane.

When the sound source is a transient, it is necessary to perform an appropriate Fourier synthesis of the steady state solutions. If the source dependence is

\[
f(t) = \begin{cases}
 e^{-\lambda t} & (t > 0) \\
 0 & (t < 0)
\end{cases}
\]

(3)

its Fourier transform will be

\[
g(\omega) = \frac{i}{\lambda + i\omega}
\]

(4)

A representation of the steady state contribution from the normal modes is

\[
\mathcal{U}(\omega, r, z) = \sum_{m \in \mathbb{Z}} \mathcal{U}_m(\omega, r, z)
\]

(5)

Since we are not interested in the first arrivals from the lower half space, the branch line integral is ignored hereafter.
By Fourier synthesis then, the acoustic potential as a function of time will be given by

$$\Phi(r, z, t) = \frac{1}{2\pi} \sum_{m} \int_{-\infty}^{\infty} \frac{e^{i\omega t}}{\lambda + i\omega} \psi_m(\omega, r, z) d\omega$$ \hspace{1cm} (6)

At sufficiently long ranges the significant contribution to ψ_m can be written

$$\psi_m \approx \sqrt{\frac{2}{\pi k_m r}} \psi_m(\omega) Z(z) e^{-ik_m r}$$ \hspace{1cm} (7)

where $k_m(\omega)$ is an mth eigenvalue of the period equation. Hence

$$\Phi(r, z, t) = \frac{1}{2\pi} \sum_{m} \int_{-\infty}^{\infty} \frac{\psi_m(\omega) Z(z) \sqrt{2}}{\lambda + i\omega} \sqrt{\pi k_m r} e^{i(\omega t - k_m r)}$$ \hspace{1cm} (8)

This is evaluated by Kelvin's method of stationary phase; the contributions to the integral arise when

$$d(\omega t - k_m r) = 0$$ \hspace{1cm} (9)

or \(\frac{\omega}{\lambda} = \frac{d\omega}{dk} \equiv U \) : the group velocity.

The resultant expression

$$\Phi = \frac{2}{rH} \sum_{m} \frac{U_m}{k_m} \left(\frac{d\omega}{dk} \right) \frac{i(\omega t - k_m r)}{\lambda + i\omega} Z(z) \hat{f}(k_m)$$ \hspace{1cm} (10)

is valid only if \(\frac{d\omega}{dk} = \frac{d\omega}{dk} \) is not near zero.

When the group velocity is stationary, a higher order approximation using the Airy integral must be employed. This second order theory predicts the existence of asymmetric wave packets in the transient response. The modulation of these wave packets is given by an envelope function computed...
by Pekeris, shown in Figure 3. Corresponding to a group velocity maximum the envelope is reversed in time, giving a relatively sharp onset. The carrier frequency of an Airy wave packet is constant, and equals the frequency at the stationary value of group velocity. Higher approximations would be necessary if higher derivatives of U were equal to zero. Although these cases have not been worked out in detail, we should expect as a check that the higher the order of stationarity, the sharper would be the onset of a wave packet at a group velocity maximum.

Applying these remarks to the dispersion curve for a liquid layer overlying a liquid halfspace of greater sound velocity, we can deduce, after Pekeris, the form of the transient signal (Figure 4). If the mode shown constitutes the main part of the signal, we read this curve as follows. At $t = \frac{r}{\alpha}$ a small amplitude signal will appear at the cutoff frequency ω_c. Following will be a slightly dispersed train of waves corresponding to the high velocity branch of the group velocity curve. At $t = \frac{r}{\alpha'}$ a high frequency signal (the direct arrival) will appear superimposed on the ground wave, corresponding to the high frequency limb of U. The two frequencies gradually merge into one high amplitude wave packet at the Airy phase.

Similarly, we can construct a signal from a more complicated dispersion curve, as found in a three-layered geometry (Figure 5).
In situations with more than 2 layers, the group velocity curve has complicated features of the shape sketched in Figure 5. One or more maxima may occur near velocities identified with the intermediate layers; the wave packets generated are interpreted as refraction arrivals from the top of the corresponding layers. In general, a single "later arrival" will be composites of several such maxima from many modes, all arriving more or less simultaneously. The existence of one or more maxima for some mode will depend on whether the appropriate layer is thick enough to support undamped oscillations by itself, in the right frequency range. Thus thin layers will not produce group velocity maxima in the lower modes.

Tolstoy, in a series of papers, has outlined a theory for determination of the dispersion and group velocity in multilayered liquids. It is the purpose of this paper to show how this theory can be quickly and easily brought to bear on problems encountered in seismic refraction studies. In particular, the person working with seismic refraction should know, in terms of this theory, how to optimize his technique and interpretation to get second arrivals. He should know what frequencies to expect and what modes are important. The high frequency cutoff of the receiving system may be critical in this respect, since the higher modes transmit more detailed information.

Commonly one or more layers may be masked, i.e. not
produce first-arrival information. Accordingly, proper interpretation of second-arrival information is essential to the detection of masked layers. In extreme shallow water situations with shallow bedrock, the nature and possible thickness of the intermediate sediments can then be inferred. A recent program carried out in Buzzards Bay, Massachusetts, by Elizabeth Bunce and the present author presented such problems, and was the motivation for this investigation. Appendix II contains a description of this work, with emphasis put on aspects pertinent to the present paper.

* *

The period equation has been derived in a general way by Tolstoy, using the idea of generalized reflection coefficients.

If we consider two liquid halfspaces with a plane interface (Figure 6), the acoustic amplitude reflection coefficient for plane waves is given by

\[R_{o1} = \frac{r_o \rho_o - r_i \rho_i}{r_o \rho_o + r_i \rho_i} \]

(11)

If medium (1) is replaced by an n-layer ensemble, bounded by a half space, the quantity defined as the complex amplitude ratio of the wave reflected by the ensemble back into the (0) region and the incident wave is the generalized reflection coefficient \(R_{o1}^{(n)} \). \(R \) can be obtained by summing
up the infinite series of ray paths (Figure 7), or by using a set of recursion formulas:

\[
\mathcal{R}_{j,j+1}^{(n-j)} = \frac{R_{j,j+1}^{(n-j)} + \mathcal{R}_{j+1,j+2}^{(n-j-1)} \cdot 2i \cdot \alpha_{n} h_{n}}{1 + R_{j+1,j+2}^{(n-j-1)} \cdot 2i \cdot \alpha_{n} h_{n+1}} \tag{12}
\]

with the boundary condition:

\[
\mathcal{R}_{n,n+1} = R_{n,n+1} \tag{13}
\]

A similar set of coefficients, the \(\mathcal{R}_{j,j-1}^{(n-j)} \), refer to incident waves traveling upward in the structure.

The half-angle of phase change induced by the boundary on the reflected wave is defined by:

\[
\mathcal{R}_{0,j+1}^{(n-j)} = 2i \cdot \chi_{j,j+1}^{(n-j)} \tag{14}
\]

\(\chi \) will be real if the conditions for total reflection hold at any interface, and will be imaginary if any ray paths penetrate the lower halfspace.

The conditions for guided waves to exist, from which we shall write down the period equation, are:20

1. Total reflection shall prevent energy from being propagated into the halfspaces bounding the layered structure.

2. If we consider families of guided plane waves, with the energy confined to two dimensional propagation (in the compound plate consisting of the layers), we must require that the signal measured at two points of the same depth be indistinguishable with respect to amplitude and phase.
In the situation pictured in Figure 8, then, the period equation is:

\[R \uparrow R \downarrow \mathrm{e}^{2 \pi \text{i} R} = 1 \] \hspace{1cm} (15)

or:

\[\chi \uparrow + \chi \downarrow + r_\uparrow R = m \pi \] \hspace{1cm} (16)

where \(R \uparrow \) is the generalized reflection coefficient for upgoing plane waves incident on the overlying region, and the other quantities are similarly defined. The integer \(m \) defines the mode number.

Appropriate specialization of Eq. 16 provides a system of equations which define the eigenvalues of the problem. In terms of an \(n \)-layered structure, equation 16 reads:

\[\chi_{i, i+1}^{(n-i)} + \chi_{i, i-1}^{(i-1)} + r_i \psi_i = m \pi \] \hspace{1cm} (17)

The recursion formula, equation 12, written in terms of the phase angles \(\chi \), is:

\[\chi_{i, i+1}^{(n-i)} = \tan^{-1} \left[\frac{\psi_i}{r_i} \right] \tan \left(r_i \psi_i + \chi_{i, i+1}^{(n-i)} \right) \] \hspace{1cm} (18)

The boundary condition, equation 13, becomes:

\[\chi_{n, n+1} = \tan^{-1} \left[\frac{\psi_n}{r_n} \right] \] \hspace{1cm} (19)

where \(r_n \) is the imaginary vertical wave number in the halfspace \(n + 1 \), so written because total reflection is assumed at the \(n - (n + 1) \) interface. In terms of guide phase velocity \(c \), this means:
In general we shall assume that the sound velocity in the layers increases with depth: \(\alpha_j < \alpha_{j+1} \)

If \(c \) lies in some other range of values, obvious changes in certain of the recursion formulas are called for.

Combining equation 17 and equation 18, the period equation, written in terms of the top layer, becomes:

\[
\psi = r_i h_i + \tan^{-1}\left[\frac{r_i}{r_n} \frac{\rho_i}{\rho_n} \tan \psi\right] = m\pi
\]

(21)

where:

\[
\psi = r_i h_i + \tan^{-1}\left[\frac{r_i}{r_n} \frac{\rho_i}{\rho_n} \tan \psi\right]
\]

(22)

When total reflection occurs at an interface, \(j - (j+1) \), where \(j < n \), obvious modifications of equation 22 must be made:

\[
\psi'_j = r_j h_j + \tanh^{-1}\left[\frac{r_j}{r_{j+1}} \frac{\rho_j}{\rho_{j+1}} \tanh \psi'_j\right]
\]

\[
\psi_j = r_j h_j + \tan^{-1}\left[\frac{r_j}{r_{j+1}} \frac{\rho_j}{\rho_{j+1}} \tan \psi'_j\right]
\]

\[
\psi_{j+1} = r_{j+1} h_{j+1} + \tan^{-1}\left[\frac{r_{j+1}}{r_j} \frac{\rho_{j+1}}{\rho_j} \tan \psi_j\right]
\]

(23)

In solving the period equation, if \(c \) is used as a trial parameter, and \(k_m \) is obtained by iteration, a different modification of the set (22) is necessary for each range of \(c \) used:

\[
\alpha_n < c < \alpha_{n+1}
\]

\[
\alpha_j < c < \alpha_{j+1}
\]

(24)
In the more general case when $q_j < q_{j'}$, appropriate modification of (22) is also possible.

The foregoing mathematical scheme was programmed on an IBM 704 digital computer and used to solve several cases which are discussed in Chapter III. Further details may be obtained by consulting the appendices or reference 22.

Following Tolstoy23, we consider an n-layer system to be separated along the $(j+1)$th interface (Figure 9). We can write the period equation for each separate waveguide:

$$\phi_j = \rho \pi, \quad \rho = l, l', ... \quad (25a)$$

$$\phi_{j'} = s \pi, \quad s = l, l', ... \quad (25b)$$

Each equation will then define a family of curves in the $\omega - \sigma$ plane which governs the mode propagation for its particular waveguide. These two families of curves will intersect to form a lattice of points (Figure 10). Each lattice point represents a solution to both separated problems, such that the pressure is a node at the free surfaces. Hence each lattice point is also a solution to the original problem, such that the pressure is a node at the $j - (j+1)$ interface. These lattice points then represent the subset of solutions to the n layer problem which have nodes at the $j - (j+1)$ interface. We can say that the lattice points couple the frequencies of the complete waveguide to those of its components.
Since the mode number m is equal to the number of nodal planes in the mth mode of the n layer problem, it is seen that

$$m = p + s$$

Thus the dispersion curve for the 5th mode will pass through the lattice points $(p, s) = (1, 4); (2, 3); (3, 2); (4, 1)$. This knowledge makes it possible to estimate the location of nodal planes for any selected values of frequency and mode number.

It can also be shown that at points of this lattice the energy tends to become largely concentrated in the $(j+1)\text{th}$ layer. Hence the dispersion is governed by that layer at a lattice point, and the curve $\psi = n\pi$ will tend to osculate to the curve $\psi = s\pi$. Consequently the curve $\psi = m\pi$ has the form indicated in Figure 10. The effect is such, that as $c \to a^{j+1}_{n} + \varepsilon$, the pressure in the $(j+1)\text{th}$ layer becomes very large and $\psi = s\pi$ describes the dispersion for the entire waveguide.

The group velocity, U, tends to $a'_{j,n} - \varepsilon$ at these particular lattice points, with the result that group velocity maxima are defined. The maxima of U correspond to the horizontal inflection points of $\psi = m\pi$ and the minima to the vertical inflection points. Tolstoy has carried out this reasoning in considerable detail and checked it numerically with a three layer calculation for the modes $m = 1, 5, \text{and } 50$.
The \(j, j+1 \) lattice then has the following relationships to the dispersion of the \(n \)-layer problem:

1. Lattice points whose indices \((p,s)\) sum to some particular value \(m \), lie on the \(m \)th mode dispersion curve of the \(n \) layer problem.

2. This curve \((m)\) osculates (to a good approximation) to the curve \(\psi_{j+1} = s\pi \) at the lattice point \((p,s)\).

3. Group velocity maxima occur for values of \(\omega \) defined by the lattice. The group velocity at a maximum can be estimated by differentiation of the osculating curve \(\psi_{j+1} = s\pi \) at the lattice point.

4. Since \(p \) and \(s \) define the number of nodal surfaces for the pressure in the \(j \) layer and \((n-j)\) layer problems, respectively, the lattice enables one to determine by inspection the distribution of nodal surfaces in the \(n \) layer problem for arbitrary values of the frequency or phase velocity.

5. Items 2 and 3 depend on the fact that \(\omega = \alpha_{j+1} + \varepsilon \). These statements hold remarkably well for \(\varepsilon \) as large as \(\frac{1}{2} \alpha_{j+1} \), and can be used to locate group velocity maxima, governed by the \(j+1 \) layer, which propagate at velocities distinctly less than \(U = \alpha_{j+1} \). Experience will enable one to regard lattice points in the low modes and at phase velocities much greater than with the proper caution.
Fig. 1
Typical phase velocity curves

Fig. 2
Typical phase velocity curves

Fig. 3
Envelope of the Airy Phase

reverse time scale for group velocity maximum

ω

$C = \alpha_n$

$m = 4$

$m = 3$

$m = 2$

$m = 1$

$c = \text{const.}$

K

C

$-\alpha_n$

$-\alpha_1$

ω

$\text{amplitude (arbitrary units)}$

$t = \frac{y}{U_{min}}$
First mode dispersion, group velocity, and amplitude:

Two layers

\[t = \frac{r}{\alpha_3} \]

Airy phase

First mode dispersion, group velocity, and amplitude:

Three layers

\[t = \frac{r}{\alpha_3}, \frac{r}{\alpha_2}, \frac{r}{\alpha_1} \]

Airy phases
Chapter II

We want to be able to estimate quickly, and with some accuracy, the group velocity maxima determined by intermediate layers in a structure, so that the theory will be of some use in the field and in routine reading and interpretation of records. The dispersion curve for a liquid plate bounded by free surfaces can be written explicitly: (For example, see Figure 12)

\[\omega = \frac{q_i \pi}{h_i \left(\frac{1}{\alpha^2} - \frac{1}{c^2} \right) \, \text{Tr}.} \]

which can be sketched quickly, the modes forming a harmonic series in \(\omega \) for all values of the argument \(c \). As \(c \to \infty \) the asymptotic difference between curves of this family is:

\[\delta = \frac{q_i \alpha_i}{2 h_i} \quad (c \text{p.s.}) \]

We see that the spacing of eigenvalues in the spectrum is inversely proportional to the thickness of the plate, a result that is to be expected from more general considerations.

The lattice technique for estimating the dispersion curves of the complete waveguide reduces the problem to that of finding the curves for both subsets of layers \((l, \lambda, \ldots, j)\), \((j+\ell, \ldots, n+\ell)\). Each of these can be solved by further reduction into subsets and using lattices to estimate the solutions. This process can be carried out as many times as desired, so that the n-layer solution can be built up of many simple curves.
It is possible to consider the n layer problem decomposed into \(n - 1 \) free plates and a plate coupled to a halfspace. The n separate problems can be used to build up solutions to the original one by lattices. They should be combined, step by step, in such a way that the final step involves the combination of waveguides along the interface \(j, j + 1 \), in whose lattice points we are interested.

In figure 11 a three layer situation is illustrated. Figure 12 shows the dispersion curves for the upper plate, calculated by equation (27). Curves for plate (2) are plotted in Figure 13, and the appropriate modification is shown by dotted lines to include the effect of coupling to the halfspace, (3). Figure 14 shows the result of superimposing the two families of curves. The lattice points are indicated and dispersion curves for the 3 layer problem are sketched in. The lattice points are referred to by their indices \((q_1, q_2)\). If the lattice were defined by more complicated ensembles, we would denote their indices by \((q_1j..m, qrs..v)\).

This illustration brings out several points predicted by the theory: 1. The existence of a halfspace coupled to the waveguide causes a cutoff frequency for each mode of any subproblem coupled to the halfspace. Thus the curves for plate (2) had to be modified to account for this cutoff. For given \(c \), the modification in \(f \) approaches \(\frac{\alpha}{4\pi} \) as \(\alpha \rightarrow \infty \), and approaches zero as \(c \rightarrow \alpha_1 \).
2. Where the lattice points are not sufficiently dense to closely define the dispersion curve, good qualitative fit can be obtained by noting that the curve is constrained not to cross curves of either family defining the lattice except at lattice points.

3. The asymptotic behavior of the dispersion is a help in drawing curves. In this illustration, as $C \rightarrow \alpha_i$ and $C < \alpha_i$, total reflection occurs at the 1-2 interface and the dispersion is controlled mostly by the upper layer. Hence the curves $m = 1$ and $q_1 = 1$ agree asymptotically, as do $m = 2$ and $q_1 = 2$, etc.

4. The lattice point $(2, 3)$ will not define, even approximately, a group velocity maximum, since C/α_i is almost 3.6. The remaining points drawn will define proper maxima: $(3, 1)$ and are so close to $C = \alpha_i$ that we can guarantee that the corresponding maxima of U will be very close to α_i also.

5. The first mode is always ill-defined by this method. We can estimate its cutoff frequency by halving that of the second mode; we can plot its asymptotic agreement with the curve $q_1 = 1$.

6. Higher modes tend to have more maxima, which are closer to $C = \alpha_i$. Figure 5 shows the possible appearance of a high mode group velocity.
curve. The actual disposition of lattice points responsible for this particular mode controls the general shape of the phase velocity curve and the gross behavior of the group velocity curve as it tends from the lowest Airy minimum to slightly less than \(c = c_d \).

The inflections of the phase velocity curve as it passes through each lattice point are responsible for the detailed behavior of the group velocity, as it passes through many maxima and minima. Figure 6 shows a typical group velocity curve for some lower mode. Naturally, the number of maxima cannot exceed the mode index.

* *

A transient signal will be generated by an infinity of modes, whose higher order members have very many flat group velocity maxima, as shown in Figure 5. This makes possible the achievement of an arbitrarily sharp refracted pulse, as other considerations demand. This sharp pulse is known to be due to the discontinuity at the boundary between layers. Note that if the discontinuities were smoothed out and continuous variation of the properties substituted, the effect would be that the group velocity maxima would not have any limiting property as shown in Figure 15, but would still exist in similar quantity. This sort of problem is easily calculated by Tolstoy's equations and would be a good subject for future investigation.
To extend the plate-lattice methods to four layers, as will be necessary in the next chapter, it is most convenient to plot curves for the upper two plates and the plate-halfspace on one graph. The dispersion curve may be composited in either order:

\[(1+2) + 3\] or \[1 + (2+3)\]

In the former case, the lattice points will give information about "refracted" signals along the 2-3 interface; in the latter case they will define refractions along 1-2. Both sets of lattice points will, however, lie on the dispersion curve itself.
Fig. 14
Large Circles enclose more than one lattice point.

Fig. 15

Fig. 16
Fig. 17

Fig. 18

Model Ia

+ Lattice points

- Estimated group velocity maxima

1.0 100 200 300 400 cps.
Chapter III

The four layer model can be considered to represent the type of situation commonly encountered in offshore seismic work. The upper layer represents water; the second and third layers are sediments of increasing consolidation, and the halfspace represents a granitic basement. Two models based on the Buzzards Bay study have been chosen for calculation. Plate-lattice sketches have been prepared, and the phase and group velocity have been obtained by machine calculations for the first model. This chapter consists mainly of discussion of these various curves.

Before time became scarce, it was planned to present twelve different cases, as calculated on the 704, for reference use. These twelve are chosen to be representative of a very broad class of cases, so that they might be of more than academic interest. It is hoped that these curves will be available by late summer of 1959.

The models presented here represent the two extreme situations encountered in Buzzards Bay.

\[\begin{align*}
\alpha_1 &= 1.0 & \rho &= 1.0 \\
\alpha_2 &= 1.04 & \rho &= 1.5 \\
\alpha_3 &= 1.34 & \rho &= 2.0 \\
\alpha_4 &= 3.60 & \rho &= 2.65
\end{align*}\]

Case Ia: \(h_1 = 50\) feet
\(h_2 = 20\) feet
\(h_3 = 90\) feet

Case Id: \(h_1 = 50\) feet
\(h_2 = 90\) feet
\(h_3 = 20\) feet

We shall see the effects that thickening and thinning of the sediment layers has on refracted arrivals.

Plate 1 shows the plate-lattice construction for Model Ia, with composition in the order \((1 + 2) + (3 + 4)\) so that
information about arrivals from the 2 - 3 interface is obtained. On Plate 2, to an appropriate scale, the composition 1 + (2 + (3 + 4)) is displayed, yielding predictions on arrivals from the 1-2 interface. Model Ia is similarly considered in Plates 3 and 4.

Results obtained from the 704 are tabulated in Appendix III. Modes 1-12 are considered, for both cases; phase velocity is the independent variable, while frequency and group velocity are given as dependent variables. Frequency is also tabulated in dimensionless form as \[\gamma = \frac{f H}{q_i} \]

where \(H \) is the total thickness of the finite layers.

Plates 5-8 display the group velocity curves for Model Ia as obtained from the tables in Appendix III. Phase velocity curves are omitted for clarity, but these can be easily obtained from the tables. Lattice points from Plates 1-2 are plotted on Plates 5-8 to afford a comparison of the approximate and exact methods.

Plates 1-4 illustrate the geometrical factors which limit the existence of proper lattice points. Most generally, the thicknesses of both ensembles generating the plotted set of lattice points control the spacing of group velocity maxima. In Plate 3, the thinness of the 3rd layer causes an extreme spread in its spectral spacing, the first mode curve not approaching 1.34 at all in the range considered. Here it is imperative that high frequencies be received in order for the lower layer to be detected. This condition is
rectified in Plate 1, as the 3rd layer is quite thick. The spectrum of this layer is quite dense, and many lattice points occur at values of c which will generate useful group velocity maxima. The cross-cutting curves, for layers \((1+2)\), now control the spacing of lattice points; were both layers to be very thin, the wide spacing of curves for \((1+2)\) would create limitations on the existence of useful lattice points. The same general considerations apply in Plates 2 and 4. In the former, due to the thinness of the upper layer, we do not expect refraction arrivals at less than about 800 cps. When this layer is thick, however, the curves \(q_{23}\) become quite dense in the useful frequency band, and useful lattice points are generated. In Plate 4 the point \((q_1,q_{23})=(2,1)\) at 350 cps. would give the lowest frequency wave packet with velocity near 1.04. Note that the control of the water layer is here manifest; if it were thicker, lattice points would occur at substantially lower frequencies, possibly as low as 225 cps.

Another point depicted in Plate 1 is the manner in which the "plateau" in phase velocity at \(c=1.34\) is more extended for the higher modes. This plateau represents the attempt of the phase velocity curve to seek out conditions for mutual reinforcement of waves traveling in the 1.34 layer. With increasing mode number and frequency, naturally, the range of frequencies in which this condition can be nearly met is considerably broadened.

A parameter which is not varied in the figures is the sound velocity in the sediments. One can, however, visualize
the effects very easily. For example, by bringing the velocity of the upper sediment from 1.04 → 1.34, the curves for \(q_{12} \) are made to cross the 1.34 line more obliquely and the lattice points are spread out more toward higher frequencies. What is more important is that, is the case (not depicted) where the two sediment thicknesses are about the same, the group velocity maxima for the two different refracted events become seriously mixed. Considering the maxima one must interpret when only one layer is significant (for a given useful frequency band) (Plates 5-8), it would be more difficult to make sense out of signals containing group velocity maxima controlled by both layers simultaneously. In terms of wave dispersion the problem is complicated as follows: A group velocity maximum pertaining to the upper of two layers with similar velocities is given by the existence of a node at its upper surface, hence decoupling from the upper layers occurs. Partial decoupling from the underlying layer occurs when an appreciable velocity contrast at the lower surface causes only slight penetration by the signal \((r_j' - l) \) is large). If the velocity contrast at this lower surface is only a few percent, penetration of the underlying layer will be great and it will be a factor in determining the group velocity maxima associated with the layer above it. Problems of this sort are best considered by treating cases of continuous variation of velocity and density, and noting the effects that the various space derivatives of velocity have on the dispersion.

Turning to the group velocity curves, one notices that
m = 2 (Plate 6) has a maximum not predicted by the lattices. Furthermore, if the 1.34 layer were very thick, we would have to expect a maximum controlled by this layer even in the first mode. What this means is that in these low modes, particularly the first, conditions may not occur for a pressure node at the upper surface of the layer. If the overlying layer, having a pressure node at its upper surface, is very thin, compared to our thick layer, conditions for a pressure node at the top of the thick layer may be nearly met. As discussed in Chapter 1, this will tend to cause a group velocity maximum, more pronounced as the approximation to a true node becomes better.

In terms of the curves making up the plate-lattice construction, we may think of the curves for layer 3 as being very dense due to its thickness, and the curves for layers (1 + 2) as being quite sparse. Then the curves for layer 3 in the low modes will come very close to (but not contact) the "0" mode curve for layers (1 + 2) which is just the vertical coordinate axis. Thus we do not always have a lattice point associated with a low mode maximum, but the virtual contact of the "0" and 1 mode curves can be thought of as a quasi-lattice point associated with a first mode maximum. It is also reasonable to expect maxima to arise under various conditions when near contact between plate curves occurs, even though a lattice point is not produced.

Until the intricacies of this machine calculation are more fully in hand, one must be skeptical of the jagged maxima of small amplitude seen on modes 1, 2, and 3. It is my
feeling that the differentiation built into the program may be inadequate to handle properly some segments of the phase velocity curve, hence the "bump" in the calculated group velocity. These "bumps" will need investigation before they can be accepted as real.

The curves also point up a matter discussed in the next chapter; that many group velocity maxima occur at values of \(v \) less than 1.34 (or whatever the layer velocity may be). We also see, however, that the high frequency Airy phase for most modes is very flat and at about \(U \approx .90^4 \). (Plates 5-8) This could produce a very strong signal immediately after the direct arrival, which, due to its broad spectral composition, would not be in the classical Airy phase form.

While it might be pertinent to make elaborate comparisons of the curves with all of the Buzzards Bay records, it is my feeling that the work would not justify the results. The records do agree with theory to the order of precision obtainable by quick calculation with plate-lattice techniques. At this stage it would be appropriate to carry out more controlled experiments with models to obtain experimental verification of the theory, rather than just non-contradiction.
Phase Velocity for layers: \((1+2)\) \((1+2) + (3+4)\)

Model Ia
PLATE 1

Phase Velocity for
layers: \(\frac{1}{2} \)
\(3+4 \)

Model Ia

\(g = 1 \)
\(g = 2 \)
\(g = 3 \)
\(g = 4 \)
PLATE 2

Phase Velocity for layers: \(\frac{2+(3+4)}{1+(2+(3+4))} \) Model Ia
PLATE 4
Phase Velocity for layers: $2 + (3 + 4) \over 1 + [2 + (3 + 4)]$ Model 1d
PLATE 4
Phase Velocity for layers
1, 2, (3+4) Model 1d

100 | 200 | 300 | 400 f(cps)
Chapter IV

Attention must now be brought to bear on the appearance of signals governed by the group velocity considerations of the preceding chapters. We have seen the effect of the thickness of layers or ensembles of layers on existence of the right kind of group velocity maximum for any given mode. We shall now consider the appearance we should expect of second arrivals under typical shooting and receiving conditions.

It commonly happens that the highest modes and frequencies are not evident on a seismic record for several reasons:

1. The receiving transducer is often suspended at a depth which selects certain modes in preference to others, a result of the amplitude-depth relation peculiar to each mode. For example, in the Buzzards Bay study, receivers hung about 5 feet below the water surface in 50 feet of water. Basement was about 150 feet deep. The first and second modes were almost entirely absent from the records. Modes in the range 3 to about 8 were strongly emphasized for most frequencies, while higher mode response would be dependent in a periodic manner on the frequency. In this instance ordinary volume attenuation of the high frequencies made observation of high modes very difficult. Anomalous instances occurred in which slacking of the receiver string permitted the transducers to sink to depths
where the first mode overpowered other information.

2. Limited high frequency response of the receiving system will cut out useful high frequency information.

3. Limited resolution (recorder speed) of the galvanometer camera makes high frequency signals hard to pick.

* * * * * * * * *

The more interesting and non-trivial results in this chapter will apply in situations where volume attenuation does not remove all the higher modes. The effects described will be most prominent at ranges such that interaction occurs between different refracted signals. We furthermore consider the case where only a few low or medium order modes are effectively present.

The high frequency components which give the impulsive onset of a true Fermat least time signal are absent. Search must be made for wave packets of less distinctive character. Under certain conditions the time scale will be such that the interaction between different wave packets will be slight; in this case picking arrivals is no problem. At the other extreme, in the Buzzards Bay investigation, complicated group velocity functions determined a record shorter than 0.5 seconds. These records were picked by a brute force technique, to be described, which extracted the maximum of information and a hopefully low proportion of
random fluctuations. Figure 16 shows the type of time-distance plot which resulted from this massive picking. Apparent velocities are signified by \(v \).

In Figure 17 the field bounded by the 1.34 and 3.60 lines contains picks associated with the basement refraction arrival and its ray path multiples. The field bounded by the 1.04 and 1.34 lines contains a larger number of picks, with the following features: Those on the 1.04 line are high frequency (around 400 cps.) signals associated with the uppermost sediment layer. The other signals in this field are not easily distinguished by their frequency from the ambient signal of the ground wave. However, the 1.34 line forms a distinct envelope to these points. These are apt to be two linear trends in the points in this field:

1. Lines of apparent velocity \(1.04 < v < 1.34 \) intercepting near the origin.

2. Cross trends with an echelon appearance, having higher apparent velocities and physically unreasonable high intercepts. We believe that the echelon structure (2) is a result of phase interaction between the signals associated with the 1.34 layer and the frequencies present in the first-arrival ground wave. Evidence from a profile shot in Vineyard Sound where the high velocity sediment appears as a first arrival at several receivers, strongly supports this hypothesis.

The envelope nature of the 1.34 line and the linear
trends (1) of lower velocity are in accord with the group velocity curves displayed in Chapter III for the extreme shallow water case. Certain group velocity maxima will occur at values slightly less than 1.34; others, particularly at lower frequencies, may occur at distinctly lower values. The recording system may very well select more of these spurious lower frequency signals, in favor of the more significant maxima with apparent velocity near 1.34. Thus we have the low velocity signals which correlate from trace to trace, and the fact that none of the arrivals associated with the 1.34 layer appear prior to the appropriate travel time.

We might never be sure whether the signals are spurious, due to low velocity maxima associated with the 1.34 layer, or genuine, resulting from another layer of lower velocity overlying the 1.34 material. If the records are closely spaced, permitting a high density of picks, we are less in danger of missing some layer by masking than we are of predicting a layer that does not exist. The paradox is purely practical; given an optimal receiving system and a lossless medium we could cause genuine arrivals to have an arbitrarily sharp pulse front.

Figure 18 illustrates the preceding discussion; lattice points from case Ia have been transferred from plate I, where they were obtained, and plotted separately. Corresponding values of the group velocity maximum have then been
estimated by graphical differentiation of the appropriate osculating curve in plate I. The lattice points which give rise to the genuine refracted arrival are quite apparent. A considerable number of group velocity maxima, seem to occur in the velocity range 1.12 - 1.18, and it would not be surprising, especially in view of the compressed character of the records, to find strong indications of a refraction arrival with a velocity around 1.15.

Brute force picking, which is necessary to get the most information from a visual inspection of a record, needs some consideration. It is not appropriate, in the case of a highly complicated set of records, to presume that information about sediment layers is irretrievably lost in "noise." Much recent work in seismology has indicated that virtually all features of a seismic record above the instrumental noise level can be explained by careful application of theory to perturbations of the original assumed model. In certain complicated cases, this agreement has been arrived at by hindsight; reflection records in oil prospecting have been found in close agreement with theoretical predictions based on a continuous velocity log.5 Tatel and Tuve19 conducted model experiments where complicated Rayleigh wave trains known as "ground roll" were generated by simple surface discontinuities on a solid halfspace. One is led to hope that similar agreement can be found in the present problem by modeling; that is, we want to verify that all the features observed in the field are consequences
of the dispersion of wave trains by relatively simple structures. If this is not the case, it would be appropriate to discover how much perturbation of the simple model was necessary to achieve agreement with actual field seismograms. The present picking technique will depend only on features predicted by the available theory. When a better understanding of all the features found in the field is available, through systematic crosschecks between model and field data, there is reason to hope that picking and calculation of field records can be done with more assurance of reliability.

Given a sequence of seismograms, taken from a receiver spread, with decent resolution of the significant frequencies, one sets out to pick all points that seem to represent changes in the wave train and make a plot in the time-distance plane. The geometrical relationships which these points display are the partial basis for deciding on the "reality" of tentative refraction lines; such geometrical factors will include not only the existence of linear arrays, but some of the other features discussed earlier in this chapter. Since a two-dimensional plot containing a large number of points will always display "line-ups" of points; this matter deserves investigation, namely: given a certain density of points plotted in a region of the plane, how many straight line fits of n or more points should be expected on a statistical basis alone. This additional noise, which is introduced by the act of plotting points, is another
reason why the geometrical relationships mentioned earlier should be kept in mind for supporting evidence.

One brute force technique is to plot all peaks and troughs, filling the plane with + 's and -'s. If not enough traces are available, considerations based on the theory can be brought to bear, and individual points picked with some hope of obtaining useful information. Criteria can be used which tend to select either phase velocities or group velocities, in trace to trace picking of a spread. Picking of identical phase points will define a phase velocity; group velocity is obtained from points of identical frequency. This latter, the more desirable, is also the more difficult to apply, unless it is augmented by some arrival of energy corresponding to a stationary point of group velocity.

To pick an energy arrival, we would require that the trace have a manifestly higher mean square amplitude for one or two cycles after the arrival time. One-half cycle is, of course, insufficient to distinguish the energy arrival from random fluctuations; one cycle is more meaningful, although interpretation of one-cycle wavelets might prove difficult, despite their possibly causal nature. Most of the trace disturbances picked in the Buzzards Bay study were two cycles or more, except where obvious overlap of signals occurred. This energy arrival criterion is useful for identifying a signal; to pick accurately the onset is another matter. If a distinctly different frequency appears, there is no problem.
Otherwise one must rely on picking the change of phase which occurs when a new signal is suddenly superimposed on the ambient variation. This may be completely successful, or of no use at all. Failure can occur when the two signals are entirely in phase, resulting in an indeterminacy of at least half a cycle in the pick. Signals nearly 180° out of phase can produce a null at the true arrival time and a sharp break part of a cycle later. This is the "echelon" effect described earlier in this chapter, the delay imposed on the break being different from trace to trace.

It should not be thought that we would be in danger of picking a phase velocity and wrongly interpreting it, since true second arrivals have their phase and group velocities virtually equal. False arrivals would have associated phase velocities with unreasonable intercepts. It is conceivable that a situation might exist where phase and group velocities might be read with enough precision to reject spurious arrivals, although one should not anticipate finding such a fortuitous occurrence very often.

* *

In a field situation one should apply whatever knowledge or good guesses are available to estimate by the plate-lattice technique the frequencies and modes to be expected in the later arrivals. Hydrophones should be suspended near an antinode of the important modes and (if necessary) sufficiently close to the surface to filter out
the effect of undesired low modes. The information obtainable from a sequence of receivers is much more reliable than that from one receiver; some appropriate scheme is highly desirable. For example, a floating string of receivers, kept under tow by the receiving ship, has been used. This string was, in fact, identical to the array used in shallow water, deep basement reflection prospecting for oil. When more conventional equipment is available, an array can be improvised; depending on the length of the vessel, buoy-slacked hydrophones may be established at intervals from bow to stern, no less than about 40 feet apart, and at the desired depth.

For receiving equipment, a broad-band amplifier, such as the Woods Hole "suitcase" is recommended, feeding into two or three filtered channels for each input. A multichannel galvanometer camera with appropriate paper speed and galvanometer resonance is the best recording device for eventual visual interpretation. The hope is that one or two trial shots would be sufficient to optimize the filter settings. Normally on a multichannel recording, one low frequency trace is used to obtain deepest penetration; one high frequency trace is needed to get an accurate time for the direct arrival. We would be interested in peaking the other channels at the frequencies of the later arrivals.

The existence of a receiving array should make it possible to extract signals from hydrophone noise by correlation techniques. The possibility of establishing such a
method with present FM tape recorders should not be overlooked. Experimental use of a frequency analyzer, such as the "Vibralyzer", when tape recording is available, is strongly suggested. Vibrograms taken in a sound transmission study of Buzzards Bay showed unquestionable evidence of bottom sediment refracted arrivals. These agreed closely with the frequencies observed in the galvanometer camera recordings which constituted the main body of the Buzzards Bay data.

While transmission of energy in the waveguide occurs in the various modes, losses can occur in these "undamped" modes by frequency dependent volume scattering, particularly in the sediment layers. If this mechanism is significant, the signal received at the hydrophone will already be filtered. Since these losses are primarily in the higher frequencies, the signal to noise ratio is adversely affected in these useful frequencies. In a highly lossless situation, there is much to be gained by running at least one high frequency broadband channel, to obtain the effect of as many significant group velocity maxima as possible. If the shot distance is great enough or the sediment thickness sufficient, the high frequency signals will be attenuated and an unfavorable signal to noise ratio ensue. It would then be advisable to record narrow band channels sufficiently below the center of the noise spectrum in an attempt to get wave packets from individual group velocity maxima. The problem in low mode
broad band recording is that severe amplitude contrasts may exist between neighboring modes; our attempt to put all the eggs in one basket by broad band recording is apt to show only the strongly excited modes and render unreadable the wave packets of interest.

Tolstoy14, in a test of his theory, employed measurements with a constant frequency source and a calibrated hydrophone, taking the mode interaction wavelength as an easily measured quantity. This is a promising new technique; we are here interested, however, in conditions for observation of transients, and mention this only for the sake of completeness.

* *

It is appropriate to ask what effect slight variations in the layer thicknesses might have on the refracted signals. From geological considerations it is often possible to estimate how well or how poorly the earth materials under consideration approximate to a plane waveguide. One would want to know what fundamental limitations the expected perturbations in the geometry would impose on the detection of arrivals. It should be noted that the other types of departure from the ideal model will not be considered. Seldom do inhomogeneities in the layers reach the order of a wavelength in size. The existence of smooth, rather than discontinuous, variation of the physical parameters at a boundary is a problem deserving separate consideration. The geometrical
factors involved in perturbation of a boundary can be interpreted with the use of the plate-lattice analysis, hence we shall devote a few paragraphs to it. A thorough mathematical analysis will not be attempted, since a really useful and concise formulation of the unperturbed solution is not available yet.

We assume that the sediment layers have variable thickness over the range of a given shot. This amounts to a sequence of perturbations which are imposed in a certain order on the normal modes. For this discussion the perturbations will be considered to be one-dimensional: i.e. linear structures at right angles to the direction of propagation. Any effect these perturbations have on wave character will be a limiting maximum to the effects we would expect from the physically more reasonable case of two-dimensional perturbations. Following usual practice we consider the two limiting types of perturbation: adiabatic and sudden.

In the adiabatic case, with the four layer models in mind, the interface between the second and third layers will be considered to vary gradually over a long range. Such a situation occurs on the continental shelf where relatively homogeneous layers thicken toward the edge of the shelf. Parallel to the structure, less systematic variation of the sediment thicknesses takes place, but in the same gradual manner. Mathematically, this is a limiting
case of the well-known "wedge" problem, which is insoluble by standard eigenfunction techniques. We consider an unper-
turbed region propagating mth mode plane waves (distant from the source). If the modes of this problem are nearly orthogonal, or if an orthogonal set can be found by change of variable, the perturbed problem would be solved by the mth mode of the perturbed geometry: i.e. in the adiabatic approximation no transitions occur between modes (states). This type of situation would tend to preserve the character of a refracted arrival; naturally the high modes would be the first to suffer, but it is so seldom that we receive the sharp, high frequency edge of the pulse, due to other factors, that this is not a fundamental limitation. As long as the local slope of an interface on the continental shelf is as low as 1:50, the usual situation, modes 1 through 10, which will probably contribute the refracted signals, will propagate with the same weights in the perturbed waveguide. This analysis predicts a set of group velocity maxima in the perturbed geometry with the same number and character as in the unperturbed situation. Hence, the prediction results that the refracted arrivals will propagate with the same apparent velocity as before. The anticipated prediction, that some change in the apparent velocity will occur, due to the slope, is not possible using the present mathematical description. It does not "see" time differences due to variations in the geometry, because the group velocity -- waveguide description is equipped to synthesize pulses only
in the horizontal direction.

Naturally, if the layer thickness is perturbed suddenly, transitions will take place between modes; the transition amplitudes will be proportional to the vector inner product of the mth mode of the unperturbed problem and the nth mode of the perturbed problem. Such a situation was encountered in the Buzzards Bay study; with the aid of a "sparker", graphical reflection records of the sediment were obtained, showing homogeneous bottom sediment overlying glacial drift with a very irregular upper surface. Here we would expect the mth mode signal at the receiver to be due to a series of transitions, appropriately summed. A discontinuously "sudden" perturbation would also induce a reflected wave in the -r direction. This could attenuate refracted signals more than any mode transitions. Under less stringent conditions, more sensible physically, the perturbation might be sudden enough to induce mode transitions yet not have the discontinuity necessary to generate an appreciable reflection.

In cases where the perturbation of an interface has very restricted range, but the least bound on the derivatives is very large, the modes will be slightly less well defined, but the unperturbed modes will still give a good representation of the dispersion. The rough surfaces will permit energy to be radiated into the bottom, effectively increasing
the range attenuation factor. Scattering from rough surfaces is a well-known problem in acoustics, and a straightforward application to this problem should present no difficulties.

Qualitatively we can sum up the effects these mechanisms will have on the significant wave packets composing a refraction arrival. The smearing of the spectral curves by rough boundaries will tend to destroy the critical phase relationships among the different wave packets arriving close to time $t = \frac{c}{a}$, and thus tend to blunt the rise of the pulse. This is mentioned only in passing, because the customary attenuation of high frequencies in a real structure more effectively filters the whole transient. If all modes are received, perturbations in any of the boundaries will change only the frequencies of the component wave packets; their transient sum, which is the observed signal, will retain its sharp pulse front. In practice, however, the usual factors will cause the observed signal to be composed from a band of frequencies (usually less than one decade). Any perturbation which will seriously change the number of useful lattice points in this band will threaten the integrity of the pertinent refraction arrival. This is a problem when thin layers are present; the lattice points contributing to the refracted arrival may be only one or two in number. Furthermore the inverse h dependence of the spectrum for single layers makes these lattice points exceedingly sensi-
tive to perturbation of h. Thus a small perturbation may modify the refraction arrival from a thin layer quite profoundly. It is conceivable that in such situations the one or two wave packets would be thoroughly disguised; information would still be present, but would have to be extracted by more sophisticated frequency analysis.

Example Ia has several lattice points in the effective band of, say, 100 to 500 cycles. Here we should expect no trouble in receiving second arrivals if some perturbations were to occur, since sufficiently many lattice points of the perturbed problem would fall in the right band. The effect of many mode transitions, due to a series of perturbations in the shot-receiver interval would be slight in this instance. This is because the part of the observed signal due to modes is due only to the modes of that part of the waveguide local to the receiver, and we have indicated the acceptability of lattice points in these modes. If a series of transitions has occurred, two other effects are apt to reduce the amplitude of the wave packets:

1. The probability of back reflection, previously mentioned, if the perturbations are sharp enough.

2. Broadening of the range of modes originally the explosive source favored a certain wide range of modes; i.e. the source spectrum always determines the relative excitation of different frequencies. A series of mode transitions may excite modes outside of the
originally significant range, hence the relative excitation of the few observed modes must decrease. This cannot mean that new frequencies are introduced; it is the wave numbers and phase velocities that change, subject to the period equation.

It is now apparent, in general, that we must expect more difficulties in observing refraction arrivals when geometries with perturbed layers are considered. In a great many cases, however, much or most of the useful information is retained in the signal. The need for mathematical investigation is apparent, and many possibilities for this have been suggested.
Conclusions

The plate-lattice analysis enables one to obtain useful information about the transient signal and, particularly, the refraction arrivals from layers above the basement. Information of a spectral nature, such as the central frequencies of the wave-packets, is easily come by. The phenomena of interaction between a second and first arrival and the existence of group velocity maxima with spurious velocities are of the same type. As remarked before analysis into modes makes possible synthesis of a transient signal traveling in the r direction only. However, in order to rigorously account for second-arrival transients, the theory must incorporate travel times in the overlying layers. The approximations inherent in the present work imply a zero intercept for the refraction lines. Thus, we have learned a good deal about the refracted arrivals insofar as frequency is concerned, particularly since the recording system and transmitting medium act as a bandpass filter; we have not yet accounted for intercepts and changes in apparent velocity due to slight perturbations in layer thickness. A complete theory would be desirable which handled refraction arrivals from upper layers at short ranges, indeed, in cases where they occur as first arrivals.

Press16 has suggested that an expansion of the integrand of the formal integral solution could be performed which would give a fairly concise expression for the phenomenon
of interest. I have not given the matter much consideration beyond this, but I feel it very unlikely that any attempt to mathematically sum all the contributions from group velocity maxima would meet with success, especially in view of the limitations expressed above. Beside involving complicated double sums of functions like the reverse Airy phase, this would always leave considerable doubt about the physical meaning of the answer. For the time being we must be content with knowing that the main body of a refracted pulse comes from the group velocity maxima and that useful knowledge about the frequencies present is readily available from the same theory.
Appendix I

Table of Symbols

\(\alpha_i \)
compressional wave velocity in the \(i \)th layer

\(h_i \)
thickness of the \(i \)th layer

\(\rho_i \)
density of the \(i \)th layer

\(z \)
vertical coordinate

\(r \)
horizontal coordinate

\(c \)
horizontal phase velocity

\(\omega \)
angular frequency

\(f \)
frequency = \(\frac{\omega}{2\pi} \)

\(k \)
horizontal wave number = \(\frac{\omega}{c} \)

\(r_v \)
vertical wave number in \(i \)th layer = \(\sqrt{\frac{\omega^2}{c^2} - \frac{\omega^2}{c_i^2}} \)

\(r_v' \)
imaginary vertical wave number = \(\sqrt{\frac{\omega^2}{c_i^2} - \frac{\omega^2}{c_v}} \)

\(U \)
group velocity = \(\frac{d\omega}{dk} \)

\(v \)
any apparent velocity

\(t \)
time

\(m \)
mode index for entire waveguide

\(\beta_{i,j,...,l} \)
mode index for waveguide consisting of layers: \(i, j, ... l \)

\(R_{i,j+1}^{(n-1)} \)
generalized Rayleigh reflection coefficient for layers \((j+1, j+2, ..., n) \), \(j \) being the medium of incidence.

\(R_{j,j+1} \)
Rayleigh reflection coefficient at the \(j, j+1 \) interface, \(j \) being the medium of incidence.

\[R_{j,j+1} = \frac{r_j \rho_{j+1} - r_{j+1} \rho_j}{r_j \rho_{j+1} + r_{j+1} \rho_j} \]

\(\chi_{i,j+1}^{(n-1)} \)
half angle of phase change induced by reflection at the \(j, j+1 \) interface in the waveguide.

\[\chi_{i,j+1}^{(n-1)} = 2 e^{\chi_{i,j+1}} \]
Appendix II

An Outline of the Buzzards Bay Seismic Refraction Study

Abstract

Detailed seismic refraction measurements have been made in this shallow-water area. A towed buoyant cable carrying 12 detectors at 100 ft. intervals was used. First arrivals from the basement are found on all records. Observed velocities range from 5.1 to 5.7 km./sec., and calculated depths range from 18 to 75 m. below sea level. In a well-defined area of at least seven square miles, substantially lower basement velocities of 4.2 to 4.5 km./sec. are found. Both observed basement velocities are suggestive of the granite gneiss complex observed in outcrops on the western side of Buzzards Bay. Indicated sedimentary velocities, which range from 1.52 to 2.4 km./sec., are associated with second or later arrivals. Complicated patterns of dispersive waves restrict the accuracy with which these later arrivals can be interpreted. This uncertainty, plus the known glacial character of the sediments, is more than sufficient to account for the poor correlation of sedimentary velocities.
Comments

This study, which was started in the summer of my Junior year, has been for me a complete course in record reading, instrumentation, and theory. It appears that the records obtained were unique in refraction work, for the short time and distance scales involved. The departure of the sediment-sediment interface from a plane also must have set some kind of a record for our presumptuousness in trying to "shoot" it by refraction.

The presently available results from the Buzzards Bay study involve delineation of the basement topography, and it was with some confidence that we were able to present profiles of the basement surface. Although our knowledge of the sediments was less than unique, we felt that we had achieved some intimacy with them after reading over 200 high quality records for sediment arrivals. Several features appeared in the plots which repeated from profile to profile and seemed to warrant looking into. This behavior of the plotted points is explained in Chapter IV of this thesis. One can imagine, for example, our initial surprise when the first good record obtained showed good correlation of a wave packet on four adjacent traces, with velocity around 10,000 ft./sec. and a time intercept four times greater than the intercept from the crystalline basement.

A couple of fortuitous bits of data not included in
the original program proved to be of real value in pinning down these sediments. After a couple of tries, a usable sparker record was obtained which showed without question the structure of the sediments: A fine grained homogeneous clay or silt which formed the flat bottom of the Bay overlay, across a very irregular interface, material which scattered the sound so distinctively that its glacial character was considered proven. The basement, only a few fathoms beneath the drift, was not seen at all on the sparker records due to this excessive scattering. Because of the shallow depth to basement and noting the important role glaciation played in the area, we feel that the drift directly overlies the basement. We were also fortunate in receiving from Dr. Charles B. Officer, Jr., records which were shot in Vineyard Sound, only about 3 miles southwest of some of the Buzzards Bay work. When these were plotted, the structure of the sediment was made obvious, due to first-arrival date, and the envelope nature of the second arrival part of the high velocity sediment line was explicit.

Another feature we found, which was to be explained by the Tolstoy theory, was the occurrence of a physically unbelievable number of good sediment refraction lines. It now appears that only the greatest and the least of these were real, corresponding to the two sediments just mentioned, while all the others were due to group velocity maxima governed by the higher velocity layer. One record showed this feature remarkably well; no less than six sediment
layers seemed to lie in a 100 foot vertical interval.

Needless to say, the method of picking signals, which is discussed in Chapter IV, was not laid out after shrewd consideration of the present theory. It was, however, soundly based on the fundamentals of the way energy travels in a wave, and has to make some kind of sense in terms of any reasonable theory. We were gratified that the time-distance plots did not look like scatter diagrams, but that certain features stood out on a large number of shots. The present thesis was undertaken in an effort to understand these features and learn more about the nature of mode propagation.
<table>
<thead>
<tr>
<th>c</th>
<th>m = 1</th>
<th>m = 2</th>
<th>U</th>
<th>m = 1</th>
<th>m = 2</th>
<th>U</th>
<th>m = 1</th>
<th>m = 2</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6000</td>
<td>12.69</td>
<td>0.4077</td>
<td>0.5</td>
<td>27.08</td>
<td>0.8702</td>
<td>0.4</td>
<td>49.69</td>
<td>1.5965</td>
<td>0.4</td>
</tr>
<tr>
<td>3.5000</td>
<td>13.23</td>
<td>0.4250</td>
<td>1.562</td>
<td>27.57</td>
<td>0.8859</td>
<td>0.985</td>
<td>50.35</td>
<td>1.6177</td>
<td>0.824</td>
</tr>
<tr>
<td>2.5000</td>
<td>15.97</td>
<td>0.5131</td>
<td>0.932</td>
<td>31.04</td>
<td>0.9972</td>
<td>0.771</td>
<td>55.66</td>
<td>1.7883</td>
<td>0.684</td>
</tr>
<tr>
<td>1.8000</td>
<td>20.76</td>
<td>0.6669</td>
<td>0.936</td>
<td>39.51</td>
<td>1.2694</td>
<td>0.995</td>
<td>66.91</td>
<td>2.1497</td>
<td>0.816</td>
</tr>
<tr>
<td>1.5000</td>
<td>23.04</td>
<td>0.7404</td>
<td>0.941</td>
<td>45.13</td>
<td>1.4500</td>
<td>1.079</td>
<td>72.70</td>
<td>2.3358</td>
<td>0.681</td>
</tr>
<tr>
<td>2.6000</td>
<td>26.57</td>
<td>0.8538</td>
<td>0.941</td>
<td>57.63</td>
<td>1.8516</td>
<td>1.162</td>
<td>83.35</td>
<td>2.6779</td>
<td>0.998</td>
</tr>
<tr>
<td>1.4500</td>
<td>28.20</td>
<td>0.9060</td>
<td>0.943</td>
<td>65.39</td>
<td>2.1073</td>
<td>1.167</td>
<td>90.82</td>
<td>2.9179</td>
<td>1.113</td>
</tr>
<tr>
<td>1.4000</td>
<td>30.18</td>
<td>0.9697</td>
<td>0.936</td>
<td>75.86</td>
<td>2.4373</td>
<td>1.113</td>
<td>108.20</td>
<td>3.4762</td>
<td>1.225</td>
</tr>
<tr>
<td>1.3900</td>
<td>30.62</td>
<td>0.9838</td>
<td>0.934</td>
<td>77.94</td>
<td>2.5040</td>
<td>1.091</td>
<td>113.99</td>
<td>3.6625</td>
<td>1.224</td>
</tr>
<tr>
<td>1.3800</td>
<td>31.08</td>
<td>0.9985</td>
<td>0.933</td>
<td>79.95</td>
<td>2.5686</td>
<td>1.067</td>
<td>119.95</td>
<td>3.8537</td>
<td>1.197</td>
</tr>
<tr>
<td>1.3700</td>
<td>31.56</td>
<td>1.0138</td>
<td>0.932</td>
<td>81.88</td>
<td>2.6308</td>
<td>1.043</td>
<td>125.01</td>
<td>4.0163</td>
<td>1.137</td>
</tr>
<tr>
<td>1.3650</td>
<td>31.80</td>
<td>1.0218</td>
<td>0.931</td>
<td>82.82</td>
<td>2.6610</td>
<td>1.032</td>
<td>127.07</td>
<td>4.0826</td>
<td>1.101</td>
</tr>
<tr>
<td>1.3600</td>
<td>32.06</td>
<td>1.0299</td>
<td>0.930</td>
<td>83.75</td>
<td>2.6907</td>
<td>1.017</td>
<td>128.87</td>
<td>4.1405</td>
<td>1.065</td>
</tr>
<tr>
<td>1.3550</td>
<td>32.31</td>
<td>1.0381</td>
<td>0.929</td>
<td>84.68</td>
<td>2.7205</td>
<td>1.006</td>
<td>130.48</td>
<td>4.1921</td>
<td>1.029</td>
</tr>
<tr>
<td>1.3500</td>
<td>32.57</td>
<td>1.0465</td>
<td>0.929</td>
<td>85.57</td>
<td>2.7494</td>
<td>0.998</td>
<td>131.96</td>
<td>4.2398</td>
<td>1.005</td>
</tr>
<tr>
<td>1.3460</td>
<td>32.79</td>
<td>1.0535</td>
<td>0.951</td>
<td>86.28</td>
<td>2.7722</td>
<td>0.982</td>
<td>133.06</td>
<td>4.2751</td>
<td>0.986</td>
</tr>
<tr>
<td>1.3420</td>
<td>33.01</td>
<td>1.0605</td>
<td>0.925</td>
<td>86.99</td>
<td>2.7949</td>
<td>0.981</td>
<td>134.11</td>
<td>4.3089</td>
<td>0.966</td>
</tr>
<tr>
<td>1.3200</td>
<td>38.53</td>
<td>1.2379</td>
<td>1.026</td>
<td>93.52</td>
<td>3.0045</td>
<td>1.047</td>
<td>141.97</td>
<td>4.5612</td>
<td>1.023</td>
</tr>
<tr>
<td>1.2800</td>
<td>43.83</td>
<td>1.3289</td>
<td>1.006</td>
<td>104.92</td>
<td>3.3709</td>
<td>0.999</td>
<td>158.54</td>
<td>5.0936</td>
<td>1.003</td>
</tr>
<tr>
<td>1.2400</td>
<td>48.41</td>
<td>1.5554</td>
<td>0.978</td>
<td>116.55</td>
<td>3.7444</td>
<td>0.939</td>
<td>177.13</td>
<td>5.6908</td>
<td>0.955</td>
</tr>
<tr>
<td>1.2000</td>
<td>54.73</td>
<td>1.7582</td>
<td>0.948</td>
<td>128.85</td>
<td>4.1397</td>
<td>0.905</td>
<td>197.31</td>
<td>6.3391</td>
<td>0.920</td>
</tr>
<tr>
<td>1.1600</td>
<td>62.34</td>
<td>2.0028</td>
<td>0.927</td>
<td>143.81</td>
<td>4.6204</td>
<td>0.901</td>
<td>221.80</td>
<td>7.1261</td>
<td>0.913</td>
</tr>
<tr>
<td>1.1200</td>
<td>72.52</td>
<td>2.3299</td>
<td>0.925</td>
<td>165.05</td>
<td>5.3028</td>
<td>0.916</td>
<td>256.76</td>
<td>8.2494</td>
<td>0.926</td>
</tr>
<tr>
<td>1.1000</td>
<td>79.51</td>
<td>2.5546</td>
<td>0.931</td>
<td>180.33</td>
<td>5.7937</td>
<td>0.928</td>
<td>282.18</td>
<td>9.0660</td>
<td>0.937</td>
</tr>
<tr>
<td>1.0800</td>
<td>88.92</td>
<td>2.8569</td>
<td>0.941</td>
<td>201.47</td>
<td>6.4731</td>
<td>0.941</td>
<td>317.67</td>
<td>10.2062</td>
<td>0.949</td>
</tr>
<tr>
<td>1.0700</td>
<td>95.10</td>
<td>3.0553</td>
<td>0.947</td>
<td>215.63</td>
<td>6.9277</td>
<td>0.949</td>
<td>341.50</td>
<td>10.9719</td>
<td>0.955</td>
</tr>
<tr>
<td>1.0600</td>
<td>102.84</td>
<td>3.3040</td>
<td>0.954</td>
<td>233.54</td>
<td>7.5033</td>
<td>0.956</td>
<td>371.61</td>
<td>11.9393</td>
<td>0.961</td>
</tr>
<tr>
<td>1.0500</td>
<td>112.91</td>
<td>3.6277</td>
<td>0.961</td>
<td>257.17</td>
<td>8.2626</td>
<td>0.964</td>
<td>410.98</td>
<td>13.2040</td>
<td>0.966</td>
</tr>
<tr>
<td>1.0440</td>
<td>120.66</td>
<td>3.8766</td>
<td>0.965</td>
<td>275.46</td>
<td>8.8502</td>
<td>0.968</td>
<td>441.09</td>
<td>14.1715</td>
<td>0.970</td>
</tr>
<tr>
<td>1.0200</td>
<td>185.05</td>
<td>5.9455</td>
<td>0.985</td>
<td>426.44</td>
<td>13.7008</td>
<td>0.985</td>
<td>678.11</td>
<td>21.7866</td>
<td>0.984</td>
</tr>
</tbody>
</table>

MODEL Ia
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(c)</td>
<td>(f)</td>
<td>(m = 4)</td>
<td>(U)</td>
<td>(f)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.6000</td>
<td>67.33</td>
<td>2.1633</td>
<td>0</td>
<td>87.01</td>
<td>2.7954</td>
</tr>
<tr>
<td>3.5800</td>
<td>68.03</td>
<td>2.1858</td>
<td>0.712</td>
<td>87.71</td>
<td>2.8179</td>
</tr>
<tr>
<td>2.5000</td>
<td>74.62</td>
<td>2.4397</td>
<td>0.678</td>
<td>94.56</td>
<td>3.0381</td>
</tr>
<tr>
<td>1.8000</td>
<td>91.29</td>
<td>2.9329</td>
<td>0.896</td>
<td>111.13</td>
<td>3.5705</td>
</tr>
<tr>
<td>1.6500</td>
<td>100.93</td>
<td>3.2428</td>
<td>0.938</td>
<td>121.76</td>
<td>3.9118</td>
</tr>
<tr>
<td>1.5000</td>
<td>116.15</td>
<td>3.7316</td>
<td>0.919</td>
<td>148.82</td>
<td>4.7813</td>
</tr>
<tr>
<td>1.4500</td>
<td>123.05</td>
<td>3.9535</td>
<td>0.941</td>
<td>166.51</td>
<td>5.3498</td>
</tr>
<tr>
<td>1.4000</td>
<td>134.16</td>
<td>4.3103</td>
<td>1.116</td>
<td>180.39</td>
<td>5.7957</td>
</tr>
<tr>
<td>1.3900</td>
<td>138.98</td>
<td>4.4653</td>
<td>1.195</td>
<td>182.81</td>
<td>5.8733</td>
</tr>
<tr>
<td>1.3800</td>
<td>147.35</td>
<td>4.7341</td>
<td>1.258</td>
<td>185.47</td>
<td>5.9588</td>
</tr>
<tr>
<td>1.3700</td>
<td>162.30</td>
<td>5.2146</td>
<td>1.289</td>
<td>189.36</td>
<td>6.0837</td>
</tr>
<tr>
<td>1.3650</td>
<td>172.43</td>
<td>5.5404</td>
<td>1.286</td>
<td>193.60</td>
<td>6.2202</td>
</tr>
<tr>
<td>1.3600</td>
<td>181.02</td>
<td>5.8159</td>
<td>1.235</td>
<td>204.63</td>
<td>6.5746</td>
</tr>
<tr>
<td>1.3550</td>
<td>185.39</td>
<td>5.9564</td>
<td>1.116</td>
<td>226.80</td>
<td>7.2869</td>
</tr>
<tr>
<td>1.3500</td>
<td>187.78</td>
<td>6.0331</td>
<td>0.999</td>
<td>244.70</td>
<td>7.8618</td>
</tr>
<tr>
<td>1.3460</td>
<td>189.22</td>
<td>6.0794</td>
<td>0.976</td>
<td>248.43</td>
<td>7.9817</td>
</tr>
<tr>
<td>1.3420</td>
<td>190.45</td>
<td>6.1190</td>
<td>0.908</td>
<td>250.48</td>
<td>8.0477</td>
</tr>
<tr>
<td>1.3200</td>
<td>197.73</td>
<td>6.3526</td>
<td>0.917</td>
<td>259.73</td>
<td>8.3446</td>
</tr>
<tr>
<td>1.2800</td>
<td>212.95</td>
<td>6.8418</td>
<td>0.919</td>
<td>277.21</td>
<td>8.9063</td>
</tr>
<tr>
<td>1.2400</td>
<td>231.80</td>
<td>7.4475</td>
<td>0.912</td>
<td>297.56</td>
<td>9.5601</td>
</tr>
<tr>
<td>1.2000</td>
<td>255.14</td>
<td>8.1972</td>
<td>0.907</td>
<td>322.71</td>
<td>10.3681</td>
</tr>
<tr>
<td>1.1600</td>
<td>286.02</td>
<td>9.1894</td>
<td>0.914</td>
<td>356.58</td>
<td>11.4562</td>
</tr>
<tr>
<td>1.1200</td>
<td>332.82</td>
<td>10.6929</td>
<td>0.936</td>
<td>408.03</td>
<td>13.1094</td>
</tr>
<tr>
<td>1.1000</td>
<td>368.72</td>
<td>11.8464</td>
<td>0.951</td>
<td>447.29</td>
<td>14.3708</td>
</tr>
<tr>
<td>1.0800</td>
<td>421.86</td>
<td>13.5538</td>
<td>0.965</td>
<td>507.02</td>
<td>16.2897</td>
</tr>
<tr>
<td>1.0700</td>
<td>459.17</td>
<td>14.7525</td>
<td>0.971</td>
<td>553.32</td>
<td>17.7774</td>
</tr>
<tr>
<td>1.0600</td>
<td>506.61</td>
<td>16.2765</td>
<td>0.972</td>
<td>622.77</td>
<td>20.0087</td>
</tr>
<tr>
<td>1.0500</td>
<td>566.28</td>
<td>18.1936</td>
<td>0.971</td>
<td>718.37</td>
<td>23.0802</td>
</tr>
<tr>
<td>1.0440</td>
<td>609.69</td>
<td>19.5885</td>
<td>0.972</td>
<td>779.11</td>
<td>25.0315</td>
</tr>
<tr>
<td>1.0200</td>
<td>930.74</td>
<td>29.9032</td>
<td>0.983</td>
<td>1183.45</td>
<td>38.0226</td>
</tr>
</tbody>
</table>

MODEL Ia
<table>
<thead>
<tr>
<th>c</th>
<th>f</th>
<th>m = 7</th>
<th>U</th>
<th>f</th>
<th>m = 8</th>
<th>U</th>
<th>f</th>
<th>m = 9</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6000</td>
<td>127.51</td>
<td>4.0966</td>
<td>0.482</td>
<td>142.71</td>
<td>4.5850</td>
<td>0.621</td>
<td>166.96</td>
<td>5.3641</td>
<td>0.501</td>
</tr>
<tr>
<td>3.5000</td>
<td>128.22</td>
<td>4.1195</td>
<td>0.482</td>
<td>143.83</td>
<td>4.6211</td>
<td>0.621</td>
<td>167.92</td>
<td>5.3950</td>
<td>0.501</td>
</tr>
<tr>
<td>2.5000</td>
<td>136.96</td>
<td>4.4002</td>
<td>0.546</td>
<td>157.43</td>
<td>5.0579</td>
<td>0.689</td>
<td>179.91</td>
<td>5.7801</td>
<td>0.545</td>
</tr>
<tr>
<td>1.8000</td>
<td>158.99</td>
<td>5.1082</td>
<td>0.825</td>
<td>192.03</td>
<td>6.1696</td>
<td>0.829</td>
<td>210.11</td>
<td>6.7504</td>
<td>0.841</td>
</tr>
<tr>
<td>1.6500</td>
<td>176.04</td>
<td>5.6560</td>
<td>1.011</td>
<td>207.57</td>
<td>6.6691</td>
<td>0.802</td>
<td>232.24</td>
<td>7.4614</td>
<td>0.984</td>
</tr>
<tr>
<td>1.5000</td>
<td>215.00</td>
<td>6.9077</td>
<td>1.028</td>
<td>235.59</td>
<td>7.5690</td>
<td>1.062</td>
<td>269.03</td>
<td>8.6437</td>
<td>0.927</td>
</tr>
<tr>
<td>1.4500</td>
<td>229.02</td>
<td>7.3581</td>
<td>0.905</td>
<td>262.39</td>
<td>8.4430</td>
<td>1.129</td>
<td>288.55</td>
<td>9.2706</td>
<td>1.090</td>
</tr>
<tr>
<td>1.4000</td>
<td>248.34</td>
<td>7.9788</td>
<td>1.166</td>
<td>288.83</td>
<td>9.2797</td>
<td>0.998</td>
<td>331.07</td>
<td>10.6367</td>
<td>0.999</td>
</tr>
<tr>
<td>1.3900</td>
<td>260.84</td>
<td>8.3803</td>
<td>1.243</td>
<td>294.80</td>
<td>9.4714</td>
<td>1.076</td>
<td>336.42</td>
<td>10.8088</td>
<td>0.944</td>
</tr>
<tr>
<td>1.3800</td>
<td>278.10</td>
<td>8.9349</td>
<td>1.230</td>
<td>306.11</td>
<td>9.8349</td>
<td>1.222</td>
<td>341.96</td>
<td>10.9866</td>
<td>0.995</td>
</tr>
<tr>
<td>1.3700</td>
<td>290.30</td>
<td>9.3271</td>
<td>1.100</td>
<td>330.61</td>
<td>10.6220</td>
<td>1.250</td>
<td>354.28</td>
<td>11.3825</td>
<td>1.241</td>
</tr>
<tr>
<td>1.3650</td>
<td>294.06</td>
<td>9.4478</td>
<td>1.039</td>
<td>339.57</td>
<td>10.9099</td>
<td>1.138</td>
<td>374.27</td>
<td>12.0248</td>
<td>1.296</td>
</tr>
<tr>
<td>1.3600</td>
<td>297.34</td>
<td>9.5530</td>
<td>1.016</td>
<td>344.10</td>
<td>11.0554</td>
<td>1.012</td>
<td>397.78</td>
<td>12.7800</td>
<td>1.237</td>
</tr>
<tr>
<td>1.3550</td>
<td>300.91</td>
<td>9.6677</td>
<td>1.071</td>
<td>347.43</td>
<td>11.1625</td>
<td>0.970</td>
<td>404.50</td>
<td>12.9959</td>
<td>0.987</td>
</tr>
<tr>
<td>1.3500</td>
<td>309.99</td>
<td>9.9594</td>
<td>1.276</td>
<td>351.33</td>
<td>11.2876</td>
<td>1.088</td>
<td>407.90</td>
<td>13.1053</td>
<td>0.925</td>
</tr>
<tr>
<td>1.3460</td>
<td>344.93</td>
<td>11.0821</td>
<td>1.288</td>
<td>379.10</td>
<td>12.1800</td>
<td>1.327</td>
<td>412.34</td>
<td>13.2480</td>
<td>1.193</td>
</tr>
<tr>
<td>1.3420</td>
<td>351.32</td>
<td>11.2875</td>
<td>1.016</td>
<td>410.27</td>
<td>13.1815</td>
<td>1.006</td>
<td>468.76</td>
<td>15.0605</td>
<td>1.147</td>
</tr>
<tr>
<td>1.3200</td>
<td>364.55</td>
<td>11.7124</td>
<td>0.904</td>
<td>423.00</td>
<td>13.5903</td>
<td>0.846</td>
<td>484.61</td>
<td>15.5699</td>
<td>0.855</td>
</tr>
<tr>
<td>1.2800</td>
<td>391.49</td>
<td>12.5780</td>
<td>0.909</td>
<td>448.42</td>
<td>14.4071</td>
<td>0.856</td>
<td>513.40</td>
<td>16.4949</td>
<td>0.844</td>
</tr>
<tr>
<td>1.2400</td>
<td>424.32</td>
<td>13.6329</td>
<td>0.897</td>
<td>480.39</td>
<td>15.4341</td>
<td>0.867</td>
<td>547.63</td>
<td>17.5945</td>
<td>0.846</td>
</tr>
<tr>
<td>1.2000</td>
<td>464.02</td>
<td>14.9083</td>
<td>0.890</td>
<td>521.95</td>
<td>16.7694</td>
<td>0.881</td>
<td>591.04</td>
<td>18.9893</td>
<td>0.860</td>
</tr>
<tr>
<td>1.1600</td>
<td>515.90</td>
<td>16.5751</td>
<td>0.898</td>
<td>579.92</td>
<td>18.6320</td>
<td>0.903</td>
<td>650.88</td>
<td>20.9117</td>
<td>0.885</td>
</tr>
<tr>
<td>1.1200</td>
<td>592.14</td>
<td>19.0247</td>
<td>0.917</td>
<td>670.93</td>
<td>21.5561</td>
<td>0.931</td>
<td>744.01</td>
<td>23.9038</td>
<td>0.919</td>
</tr>
<tr>
<td>1.1000</td>
<td>647.38</td>
<td>20.7993</td>
<td>0.928</td>
<td>740.53</td>
<td>23.7920</td>
<td>0.944</td>
<td>817.55</td>
<td>26.2667</td>
<td>0.943</td>
</tr>
<tr>
<td>1.0800</td>
<td>723.57</td>
<td>23.2472</td>
<td>0.941</td>
<td>837.58</td>
<td>26.9103</td>
<td>0.951</td>
<td>933.36</td>
<td>29.9874</td>
<td>0.967</td>
</tr>
<tr>
<td>1.0700</td>
<td>774.61</td>
<td>24.8871</td>
<td>0.950</td>
<td>900.39</td>
<td>28.9281</td>
<td>0.953</td>
<td>1016.86</td>
<td>32.6703</td>
<td>0.970</td>
</tr>
<tr>
<td>1.0600</td>
<td>841.28</td>
<td>27.0290</td>
<td>0.963</td>
<td>977.60</td>
<td>31.4089</td>
<td>0.958</td>
<td>1115.25</td>
<td>35.8313</td>
<td>0.964</td>
</tr>
<tr>
<td>1.0500</td>
<td>962.98</td>
<td>30.9390</td>
<td>1.007</td>
<td>1086.45</td>
<td>34.9059</td>
<td>0.983</td>
<td>1234.42</td>
<td>39.6600</td>
<td>0.969</td>
</tr>
<tr>
<td>1.0440</td>
<td>1115.71</td>
<td>35.8462</td>
<td>0.989</td>
<td>1277.39</td>
<td>41.0405</td>
<td>1.008</td>
<td>1417.56</td>
<td>45.5440</td>
<td>1.024</td>
</tr>
<tr>
<td>1.0200</td>
<td>1688.89</td>
<td>54.2616</td>
<td>0.982</td>
<td>1941.61</td>
<td>62.3811</td>
<td>0.981</td>
<td>2194.33</td>
<td>70.5006</td>
<td>0.981</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
<td>m = 10</td>
<td>U</td>
<td>f</td>
<td>m = 11</td>
<td>U</td>
<td>f</td>
<td>m = 12</td>
<td>U</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>3.6000</td>
<td>182.53</td>
<td>5.8644</td>
<td>0.593</td>
<td>203.16</td>
<td>6.5273</td>
<td>0.491</td>
<td>222.67</td>
<td>7.1542</td>
<td>0.542</td>
</tr>
<tr>
<td>3.5000</td>
<td>183.68</td>
<td>5.9013</td>
<td>0.637</td>
<td>204.26</td>
<td>6.5625</td>
<td>0.578</td>
<td>224.07</td>
<td>7.1990</td>
<td>0.542</td>
</tr>
<tr>
<td>2.5000</td>
<td>199.08</td>
<td>6.3962</td>
<td>0.784</td>
<td>219.29</td>
<td>7.0545</td>
<td>0.878</td>
<td>242.51</td>
<td>7.7914</td>
<td>0.609</td>
</tr>
<tr>
<td>1.8000</td>
<td>237.01</td>
<td>7.6167</td>
<td>0.874</td>
<td>261.94</td>
<td>8.4157</td>
<td>0.848</td>
<td>282.05</td>
<td>9.0618</td>
<td>0.745</td>
</tr>
<tr>
<td>1.6500</td>
<td>256.49</td>
<td>8.2407</td>
<td>0.874</td>
<td>286.90</td>
<td>9.2176</td>
<td>0.848</td>
<td>307.70</td>
<td>9.8861</td>
<td>0.987</td>
</tr>
<tr>
<td>1.5000</td>
<td>303.62</td>
<td>9.7550</td>
<td>1.021</td>
<td>324.58</td>
<td>10.4282</td>
<td>1.061</td>
<td>364.40</td>
<td>11.7077</td>
<td>0.855</td>
</tr>
<tr>
<td>1.4500</td>
<td>322.56</td>
<td>10.3633</td>
<td>0.903</td>
<td>364.79</td>
<td>11.7203</td>
<td>1.144</td>
<td>384.16</td>
<td>12.3425</td>
<td>1.048</td>
</tr>
<tr>
<td>1.4000</td>
<td>367.22</td>
<td>11.7981</td>
<td>1.245</td>
<td>394.13</td>
<td>12.6628</td>
<td>0.997</td>
<td>444.63</td>
<td>14.2853</td>
<td>0.972</td>
</tr>
<tr>
<td>1.3900</td>
<td>386.59</td>
<td>12.4205</td>
<td>1.165</td>
<td>407.26</td>
<td>13.0846</td>
<td>1.229</td>
<td>451.61</td>
<td>14.5095</td>
<td>0.962</td>
</tr>
<tr>
<td>1.3800</td>
<td>395.49</td>
<td>12.7065</td>
<td>0.946</td>
<td>437.75</td>
<td>14.0643</td>
<td>1.254</td>
<td>462.73</td>
<td>14.8670</td>
<td>1.175</td>
</tr>
<tr>
<td>1.3700</td>
<td>401.32</td>
<td>12.8938</td>
<td>0.929</td>
<td>455.67</td>
<td>14.6401</td>
<td>1.015</td>
<td>495.76</td>
<td>15.9279</td>
<td>1.215</td>
</tr>
<tr>
<td>1.3650</td>
<td>405.26</td>
<td>13.0205</td>
<td>1.068</td>
<td>459.90</td>
<td>14.7759</td>
<td>0.966</td>
<td>504.98</td>
<td>16.2244</td>
<td>1.066</td>
</tr>
<tr>
<td>1.3550</td>
<td>456.48</td>
<td>14.6660</td>
<td>1.261</td>
<td>483.59</td>
<td>15.5371</td>
<td>1.300</td>
<td>518.79</td>
<td>16.6678</td>
<td>1.192</td>
</tr>
<tr>
<td>1.3500</td>
<td>465.34</td>
<td>14.9507</td>
<td>1.001</td>
<td>512.34</td>
<td>16.4606</td>
<td>1.129</td>
<td>562.07</td>
<td>18.0583</td>
<td>1.247</td>
</tr>
<tr>
<td>1.3460</td>
<td>469.26</td>
<td>15.0765</td>
<td>1.040</td>
<td>517.72</td>
<td>16.6336</td>
<td>1.032</td>
<td>568.63</td>
<td>18.2092</td>
<td>0.954</td>
</tr>
<tr>
<td>1.3420</td>
<td>517.26</td>
<td>16.6187</td>
<td>1.255</td>
<td>569.19</td>
<td>18.2873</td>
<td>1.313</td>
<td>627.26</td>
<td>20.1530</td>
<td>1.332</td>
</tr>
<tr>
<td>1.3200</td>
<td>537.55</td>
<td>17.2708</td>
<td>0.892</td>
<td>588.10</td>
<td>18.8949</td>
<td>0.852</td>
<td>648.49</td>
<td>20.8351</td>
<td>0.821</td>
</tr>
<tr>
<td>1.2800</td>
<td>573.64</td>
<td>18.4304</td>
<td>0.874</td>
<td>624.81</td>
<td>20.0743</td>
<td>0.870</td>
<td>684.30</td>
<td>21.9855</td>
<td>0.833</td>
</tr>
<tr>
<td>1.2400</td>
<td>615.07</td>
<td>19.7612</td>
<td>0.860</td>
<td>671.41</td>
<td>21.5713</td>
<td>0.876</td>
<td>729.41</td>
<td>23.4348</td>
<td>0.849</td>
</tr>
<tr>
<td>1.2000</td>
<td>665.33</td>
<td>21.3761</td>
<td>0.863</td>
<td>730.55</td>
<td>23.4714</td>
<td>0.881</td>
<td>788.98</td>
<td>25.3488</td>
<td>0.871</td>
</tr>
<tr>
<td>1.1600</td>
<td>732.59</td>
<td>23.5372</td>
<td>0.882</td>
<td>809.99</td>
<td>26.0238</td>
<td>0.894</td>
<td>873.83</td>
<td>28.0749</td>
<td>0.899</td>
</tr>
<tr>
<td>1.1200</td>
<td>833.50</td>
<td>26.7791</td>
<td>0.909</td>
<td>927.16</td>
<td>29.7883</td>
<td>0.913</td>
<td>1008.83</td>
<td>32.4123</td>
<td>0.928</td>
</tr>
<tr>
<td>1.1000</td>
<td>908.63</td>
<td>29.1928</td>
<td>0.927</td>
<td>1011.57</td>
<td>32.5003</td>
<td>0.925</td>
<td>1109.96</td>
<td>35.6613</td>
<td>0.937</td>
</tr>
<tr>
<td>1.0800</td>
<td>1020.46</td>
<td>32.7858</td>
<td>0.955</td>
<td>1128.88</td>
<td>36.2694</td>
<td>0.942</td>
<td>1245.49</td>
<td>40.0157</td>
<td>0.943</td>
</tr>
<tr>
<td>1.0700</td>
<td>1109.84</td>
<td>35.6576</td>
<td>0.977</td>
<td>1211.49</td>
<td>38.9234</td>
<td>0.958</td>
<td>1333.61</td>
<td>42.8469</td>
<td>0.949</td>
</tr>
<tr>
<td>1.0600</td>
<td>1242.83</td>
<td>39.9303</td>
<td>0.981</td>
<td>1344.08</td>
<td>43.1833</td>
<td>0.991</td>
<td>1451.97</td>
<td>46.6497</td>
<td>0.971</td>
</tr>
<tr>
<td>1.0500</td>
<td>1389.02</td>
<td>44.6271</td>
<td>0.967</td>
<td>1544.04</td>
<td>49.6077</td>
<td>0.972</td>
<td>1694.16</td>
<td>54.4309</td>
<td>0.987</td>
</tr>
<tr>
<td>1.0440</td>
<td>1530.10</td>
<td>49.1599</td>
<td>1.017</td>
<td>1669.98</td>
<td>53.6561</td>
<td>0.993</td>
<td>1831.57</td>
<td>58.8455</td>
<td>0.978</td>
</tr>
<tr>
<td>1.0200</td>
<td>2447.05</td>
<td>78.6201</td>
<td>0.981</td>
<td>2699.77</td>
<td>86.7396</td>
<td>0.981</td>
<td>2952.49</td>
<td>94.8591</td>
<td>0.981</td>
</tr>
</tbody>
</table>

MODEL Ia
PLATE 5
Model Ia: Group Velocity
PLATE 6
Model Ia: Group Velocity
PLATE 7
Model Ia : Group Velocity
APPENDIX IV

LISTING OF 704 PROGRAM IN SAP LANGUAGE
MAY 18, 1959

REM R.A. PHINNEY SOLUTION OF FOUR LAYER ACOUSTIC PROBLEM
ORG 1000

COMMON BSS 50
A BSS 11
K7 BSS 780
GROUP BSS 780
N7 RES 720
MD RES 60
ANS RES 2450
P BSS 41

NA34.1 LIR SQUARE ROOT
UARDC1 LIR BINARY TO DECIMAL
UASTTH1 LIR OUT PRINT ON LOGICAL 2
CLTAN1 LIR TANGENT
UARDC1 LIR INPUT DECIMAL TO BINARY
UACSH2 LIR ON LINE CARD READER) SS1 DOWN

REM INSERT INVERSE TANGENT DECK= B1 UA ATN1
REM END OF INVERSE TANGENT DECK= B1 UA ATN1
REM INSERT TANH DECK = R2 RA F113
REM END OF TANH DECK= R2 RA F113

AT DFC 1.57079
AU DEC 3.14159,6.28318,9.42477,12.56636,15.70795,18.84954,21.99113
DEC 25.13772,28.27431,31.41590,34.55749,37.69908
AV BSS 1
GUTFN DEC 60
AJ DEC 6283.18,1.0001,1.1,2.
RECAP PZE 720,0.779
INDEX PZE 60,0,12
TSX LOAD,4
PZE NZ,0,NZ+59
TSX LOAD,4
PZE A,0,A+10
CLA INDEX,2
REM BEGIN CALULATION OF PARAMETERS DEPENDING ON THE MODEL
LDQ A+1
FMP A+1
STO P
LDQ A+2
FMP A+2
STO P+1
LDQ A+3
FMP A+3
STO P+2
CLA A+7
FDP A+6
STO P+3
CLA A+6
REM BEGIN CALCULATION OF PARAMETERS DEPENDING ON PHASE VELOCITY

PHASE

<table>
<thead>
<tr>
<th>LXD INDEX,</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDO MD,</td>
<td>2</td>
</tr>
<tr>
<td>FMP MD,</td>
<td>2</td>
</tr>
<tr>
<td>TZE CRAMR+1</td>
<td></td>
</tr>
<tr>
<td>STO P+12</td>
<td></td>
</tr>
<tr>
<td>FDP P+2</td>
<td></td>
</tr>
<tr>
<td>STO P+13</td>
<td></td>
</tr>
<tr>
<td>CLA AJ+2</td>
<td></td>
</tr>
<tr>
<td>FSR P+13</td>
<td></td>
</tr>
<tr>
<td>TSX SORT,</td>
<td>4</td>
</tr>
<tr>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>CHS</td>
<td></td>
</tr>
<tr>
<td>STO P+13</td>
<td></td>
</tr>
<tr>
<td>CLA P+12</td>
<td></td>
</tr>
<tr>
<td>FDP P+1</td>
<td></td>
</tr>
<tr>
<td>STO P+14</td>
<td></td>
</tr>
<tr>
<td>CLA P+14</td>
<td></td>
</tr>
<tr>
<td>FSR AJ+2</td>
<td></td>
</tr>
<tr>
<td>TMI LIMBO</td>
<td></td>
</tr>
<tr>
<td>REM BEGINNING OF PAGE 4</td>
<td></td>
</tr>
<tr>
<td>TSX SORT,</td>
<td>4</td>
</tr>
<tr>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>TRA GARRO</td>
<td></td>
</tr>
<tr>
<td>LIMBO CHS</td>
<td></td>
</tr>
<tr>
<td>TSX SORT,</td>
<td>4</td>
</tr>
<tr>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>CHS</td>
<td></td>
</tr>
<tr>
<td>GABRO STO P+14</td>
<td></td>
</tr>
<tr>
<td>CLA P+12</td>
<td></td>
</tr>
<tr>
<td>FDP P</td>
<td></td>
</tr>
<tr>
<td>STO P+15</td>
<td></td>
</tr>
<tr>
<td>CLA P+15</td>
<td></td>
</tr>
<tr>
<td>FSR AJ+2</td>
<td></td>
</tr>
<tr>
<td>TMI LIMBO</td>
<td></td>
</tr>
<tr>
<td>TSX SORT,</td>
<td>4</td>
</tr>
<tr>
<td>TAG A3</td>
<td></td>
</tr>
<tr>
<td>TAG A4</td>
<td></td>
</tr>
</tbody>
</table>
NOP
TRA GARRA
LIMRS CHS
TSX SQRT,4
NOP
CHS
GARRA STO P+15
CLA P+12
FMP AJ+2
TSX SQRT,4
NOP
STO P+16
LDO AJ
FMP P+11
FDP MD,2
REM BEGIN PAGE 5
STQ P+17
LDO P+16
FMP P+6
STO P+18
LDO P+15
FMP P+7
STO P+19
CLA P+14
TPL SPECS
CLA P+19
TPL SOUPS
TRA SLURP
SPECS FAD P+19
SOUPS FAD P+18
TRA SLUMP
SLURP CLA P+18
SLUMP STO P+20
FDP SLUMP+4
STQ P+28
TRA *+2
DEC *+25
CLA A+6
FDP P+14
STQ P+21
CLA P+21
SSP
FDP A+5
FMP P+15
STO P+21
STZ P+22
CLA A+5
FDP P+15
STO P+22
CLA P+22
SSP
FDP A+4
FMP P+16
STO P+22
BEGIN CALCULATION OF EIGENVALUES

REPEA

LODF PZE 0.0,0

DOLE CLS AJ+2

ODEL STO P+35

LDQ P+23

FMP P+35

FAD AJ+2

STO P+36

CLA P+35

FSB P+23

FDP P+36

FMP P+21

TPL **4

STZ P+32

SXD P+33,1

TRA NEIL

SXD P+33,1

STO P+35

STZ P+32

END
LDO P+30
REM BEGINNING OF PAGE 8
FMP P+19
STO LATE
TSX TNH,4
LATE PZE 0,0,0
TRA TALF
TRA TEAL
TALE CLS AJ+2
TFAL STO P+36
LDQ P+35
FMP P+36
FSB AJ+2
STO P+37
CLA P+36
FSB P+35
FDP P+37
TRA LOUIE+2
RHINE SXD P+33,1
LXD INDEX,1
REM BEGINNING OF PAGE 9
FSB AT
STO P+34
STZ P+32
SUPER TMI INVER
FSB AV-12
STO P+34
CLA AV,1
STO P+32
CLA P+34
TIX SUPFR,1,1
LXD P+33,1
TRA CRAMR
INVER FAD AT
TSX TAN,4
STO P+35
LDQ P+35
FMP P+21
TRA DOWNS
NEIL CHS
DOWNS TSX ARTN,4
FAD P+32
STO P+34
LDQ P+30
REM BEGINNING OF PAGE 10
FMP P+19
FAD P+34
LXD INDEX,1
RESET INDEX FOR PHASE DETECTION USE
FSB AT
STO P+34
STZ P+32
SUPER TMI INVER
FSB AV-12
STO P+34
CLA AV,1
STO P+32
CLA P+34
TIX SUPET,1,1
LXD P+33,1
TRA CRAMR

INVE FAD AT
TSX TAN,4
LOUIE STO P+34
LDQ P+34
FMP P+22
TSX ARTN,4
FAD P+32
STO P+34
LDQ P+30
REM BEGINNING OF PAGE 11
FMP P+18
FAD P+34
PSI SUB 1
LXD P+32,1
CHS
FAD AV,1
FDP P+28
STQ P+34
CLA P+34
SSP
CAS AJ+1
TRA *+5
NOP
STZ P+36
STZ P+37
TRA *+6
CLA P+34
FAD P+30
STO P+30
LDQ P+30
TRA REPA+1
ALTER SXD P+36,2
SXD P+37,1
LDQ GUTEN
MPY P+37
STQ P+35
CLA P+35
ADD P+36
PDX 0,4
CLA P+30
FDP P+11
FMP MD,2
FDP AU+1
STQ KZ,4
HELP LDQ P+17
TLQ CRAMR
TIX HOBOE,1,1
MODIFY M
TRA CRAMR
HOBOF TRA CONE-4
REM BEGINNING OF PAGE 12
CRAMR TIX PHASE,2,1
MODIFY C AND RETURN

TAN-1 OF LII WITH CORRECT PHASE

