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Abstract

Tailoring the nanostructure of electrodeposited Al-Mn films to achieve high
hardness and toughness is the overarching goal of this thesis. Binary Al-Mn alloys
are electrodeposited using a conventional current waveform in a chloroaluminate
electrolyte at ambient temperature. It is found that alloys with low Mn contents
comprise micrometer-sized FCC grains. At intermediate Mn contents, the FCC grain
size decreases abruptly to the nanometer regime upon the appearance of a secondary
amorphous phase. In these dual-phase alloys, the phases are distributed in a
characteristic domain-network structure. At high Mn contents, an amorphous phase
that contains pre-existing nanoquasicrystalline nuclei dominates. Leveraging the
effects of surface kinetics at the electrode on the alloy microstructure, a reverse-pulse
current waveform is designed to tailor the grain size and phase distribution of the
electrodeposits; single phase FCC alloys. with nanocrystalline grains, as well as dual-
phase alloys with homogeneous phase distribution are synthesized. Solute
distributions in these alloys are investigated using atom probe tomography.
Implanted Ga ions are used as chemical markers for the amorphous phase; this
method permits more robust phase identification and measurement of their
compositions. Whereas uniform Mn distributions are observed in the single phase
alloys, Mn is found to weakly partition into amorphous phase of the dual-phase alloy
by -2 at.%. Micro-indentation of the reverse-pulsed alloys and the guided bend tests
reveal high hardness and toughness that are comparable to steels. High hardness is
attributed to a combination of solid-solution strengthening effects and structural
refinement; high toughness of the nanostructured alloys arises from the activation of
both grain boundary- and dislocation-mediated deformation mechanisms;
malleability of the amorphous alloys stems from the simultaneous operation of
multiple shear bands during deformation. An unprecedented combination of high
hardness, toughness and lightweight is thus achieved in our electrodeposited Al-Mn
alloys.
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1. Introduction

Lightweight alloys with high hardness and toughness are potentially valuable in

structural, aerospace and flexible armor applications, due to their high strength-to-weight

ratio and ability to dissipate impact energy by plastic deformation. While most

commercial Al alloys exhibit high ductility, as shown in Figure 1.1, their hardness do not

suffice for most structural applications, where a minimum hardness of 3 GPa is usually

required. This thesis research seeks to tailor the microstructure of lightweight Al to

achieve high hardness and toughness that are comparable to those of structural steels

(also shown in Figure 1.1).

4* 4

0
0 20 40

Elongation at fracture (%)
Figure 1.1 Ashby plot showing hardness vs. tensile elongation at
amorphous and commercial Al alloys, as well as structural steels [1-4].

60
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Efforts to improve the hardness of Al alloys commonly involve structural

refinement down to the nanocrystalline and amorphous regimes [1-3]. As illustrated in

Figure 1.1, an improvement in hardness often occurs at the expense of ductility for most

nanocrystalline and amorphous alloys. Low ductility in these alloys can be attributed to

the absence of dislocation activity and rapid shear band propagation leading to

catastrophic failure. However, some nanocrystalline alloys are capable of plastic



deformation up to -10 % (Figure 1.1), likely because of low artifact and vacancy contents

[2], as well as grain sizes that are above -10 nm, which allow dislocation- and grain

boundary-mediated deformation mechanisms to operate simultaneously [5-8]. These

results point to the importance of synthesizing artifact-free and fully-dense

nanocrystalline alloys with tailorable grain sizes.

Because the large volume fraction of high energy interfaces results in a huge

thermodynamic driving force for grain coarsening, it is often challenging to synthesize

nanostructured materials. A feasible approach that has proven successful in producing

nanometer grain sizes involves adding secondary alloying elements [9-16]. Broadly,

alloying elements facilitates nanostructure formation either by segregating to the grain

boundaries to thermodynamically stabilize these high energy interfaces [17-20], or by

forming competing secondary phases, which kinetically restrict structural coarsening [21-

25]. In addition to its role in nanostructure formation and/or stabilization, alloying also

introduces a multitude of avenues for tuning the properties of nanostructured materials.

Whereas properties of pure nanocrystalline metals are primarily dictated by grain size,

those of single phase alloys are also affected by chemical composition, solute distribution

and chemical ordering [33, 35-58]. Properties of multi-phase alloys are additionally

governed by phase composition, phase fraction and phase distribution [26-35]. Thus,

alloying not only promotes nanostructure formation, but it also creates a broad range of

microstructural features; these additional variables offer more opportunities to tailor the

properties of nanostructured materials.

Due to their non-equilibrium states, details of the abovementioned microstructural

features also hinge on the processing science pertinent to the synthesis technique

employed. Techniques that have been developed to synthesize nanostructured alloys

include mechanical milling [36-39], gas phase synthesis [36, 40], chemical and physical

vapor deposition [36, 41], magnetron sputtering [36, 42] and electrochemical deposition

[9, 36, 43-49]. Of these processing methods, electrochemical deposition (herein referred

to as electrodeposition) has proven particularly attractive because each of the easily-

adjustable processing variables, such as electrolytic bath composition, temperature, and

applied current or voltage waveform, often affects some microstructural facet of the

electrodeposit. Recent works have also demonstrated processing advances that permit a



fine level of control over the electrodeposited nanocrystalline grain size [9, 44, 50].

Besides offering more exact microstructural control, electrodeposition is also a readily

scalable technique and can be used with substrates of virtually any shape. Thus, it has

proven particularly important as a technology for creating nanostructured metal and alloy

coatings as well as free-standing electroforms, with exceptional physical properties [46-

48, 51] and good thermal stability [52, 53].

In addition to the abovementioned advantages, electrodeposition also allows a

wide range of metals and alloys to be fabricated upon the judicious selection of an

appropriate electrolyte. Many alloy systems, including copper-, iron- and nickel-based

alloys, can be electrodeposited in aqueous electrolytes [9, 36, 43-49]. Metals which

exhibit lower reduction potentials than water, such as titanium, magnesium and

aluminum, can be electrodeposited in non-aqueous electrolytes, such as molten salts. In

part because of the processing challenges involved, such as high temperature

requirements and the corrosive effects of molten salts, efforts to tailor the microstructure

and properties of electrodeposited titanium, magnesium and aluminum alloys have been

relatively scarce. Fortunately, recent progress in the development of less hazardous ionic

liquids has opened up the possibilities to electrodeposit these lightweight metals and

alloys at reasonable processing temperatures that are below -200'C [54-59].

In this thesis, the concept of nanostructure formation and/or stabilization by

alloying is employed to synthesize nanostructured lightweight aluminum alloys with high

hardness and respectable toughness by electrodeposition. Experimental works span the

processing, characterization, as well as property measurements of electrodeposited

aluminum alloys. In the following sections, the relevant literature on (a)

electrodeposition of aluminum and (b) the use of electrodeposition current pulses to tune

alloy microstructure are reviewed to provide background for the thesis research that

follows.

1.1. Electrodeposition of aluminum alloys

With an eye to electrodeposit aluminum alloys that exhibit a wide range of

nanostructures, this section reviews previous works that have been performed to

synthesize pure nanocrystalline aluminum, identifies suitable alloying elements and



presents a comprehensive summary of prior results that have been obtained for the

selected system.

1.1.1. Selection of alloy system

Electrodeposition of nanocrystalline Al has been achieved by other researchers

using additives, such as nicotinic acid and benzoic acid to chloroaluminate ionic liquid

electrolytes [57, 59]. While additives effectively refine grain size, the range of grain

sizes that can be obtained is limited; for instance, very small amount of benzoic acid

(0.02 mol/L) reduces the Al grain size from >100 nm to 20 nm and further increase in

benzoic acid concentration does not cause further reduction in grain size [59]. The

narrow range of grain size, coupled to the limitations in tuning the properties of pure

metals (as described in the previous section), points to a need to introduce a secondary

element.

Possible solute elements that can be co-deposited with Al include manganese,

titanium and nickel [60-65]. Of these, manganese (Mn) was selected because the binary

Al-Mn system exhibits a rich variety of equilibrium phases, including solid solutions and

at least nine intermetallic phases, thus suggesting the possibility of nanostructure

formation and stabilization via secondary phase formation. Additionally, because the

ratio of the atomic radius of Mn to that of Al is close to that which is ideal for icosahedral

packing (0.923 and 0.905, respectively), Mn additions have been found to frustrate FCC

packing in Al, thus resulting in icosahedral phase formation [66-68]. That Mn promotes

disorder hints of possible structural refinement down to the amorphous limit under non-

equilibrium processing conditions. A review of prior works on electrodeposition of Al-

Mn at elevated temperatures is discussed in what follows.

1.1.2. Electrodeposition of Al-Mn at elevated temperatures

A rich variety of equilibrium and metastable phases that the Al-Mn system

exhibits can be produced by a single technique, i.e., electrodeposition from acidic

chloroaluminate salts [61, 62, 64, 69-78]. Figure 1.2 summarizes the different phases that

have been electrodeposited at different temperatures as a function of Mn content in prior

studies [69]. While phases predicted by the equilibrium phase diagram have been



electrodeposited in the temperature range of 250 to 4250C [73, 74], non-equilibrium

phases, such as the quasicrystalline phases, amorphous phase, and supersaturated FCC

phase, have been deposited at lower temperatures from 150 to 3250C [61, 64, 71, 73, 75-

77].
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Figure 1.2 A schematic summarizing the different phases that have been electrodeposited at different
temperatures as a function of Mn content in prior studies [69].

Despite the significant number of works conducted on electrodeposited Al-Mn

alloys [61, 62, 64, 70-79], only a few studies have provided detailed characterization of

the deposited structure. In 1966, Read and Shores presented transmission electron

diffraction patterns of Al-Mn alloys electrodeposited from a chloroaluminate molten salt

electrolyte (AlCl3-KCl-NaCl-MnCl 2) presumably at 200' C [76]. Their data suggested

that for alloys with low Mn content below about 6 at.%, a single FCC phase was

deposited, with higher Mn content promoting apparently finer grains. At somewhat

higher Mn contents up to about 12 at.%, a second phase coexisted with the FCC phase, as

evidenced by an additional diffuse reflection between the first and second rings in the

electron diffraction patterns. The authors identified the second phase as the intermetallic

compound A16Mn. However, because no transmission electron microscope (TEM)

images were provided, the grain size and structure, as well as phase distribution of these

Al-Mn alloys were not discussed.



Later, Grushko and Stafford carried out structural studies on Al-Mn alloys

electrodeposited from AlCl3-NaCl-MnCl2 molten salt at 150 C [61, 70]. Their x-ray

diffraction (XRD) results suggested that, similar to the results of Read and Shores,

intermediate Mn levels between 6 and 15 at.% led to a second phase coexisting with the

FCC Al(Mn) solid solution. However, unlike Read and Shores, Grushko and Stafford

identified the second phase as amorphous, due to the broad diffraction halo it exhibited.

In these two-phase alloys, increasing the Mn content also caused some broadening of the

dominant XRD peaks for the FCC phase, which might suggest a gradual size reduction of

the FCC crystals (although no quantitative grain size measurements were made). Some

bright-field TEM images of the duplex structures were presented, but without local area

diffraction or dark-field images to identify the phases present.

Takayama and co-workers investigated the local structure and concentration of

the two-phase Al-Mn alloys electrodeposited from eutectic molten salts of AlCl3-NaCl-

KCl-MnCl2 at 200 0C [77]. Micro-area elemental analysis on deposits containing 5.8, 8.8

and 14.9 at.% Mn provided direct evidence that the amorphous phase was enriched with

Mn relative to the crystalline phase. Using high resolution TEM (HRTEM) and electron

microbeam diffraction, the authors implied that there was actually one crystalline phase

with two distinct morphologies coexisting with the amorphous phase, but the

micrographs presented did not clarify the two proposed morphologies. Furthermore,

while the micro-area images showed that the local structures of the 5.8, 8.8 and 14.9 at.%

Mn alloys were somewhat different, the trends were unclear and only qualititative

because of the limited fields of view.

Although the above studies provide some hints about the structural changes that

occur as the Mn content rises in Al-Mn electrodeposits, many details are clearly missing

for a complete understanding of the duplex structures; the crystal morphology and size

remains unclear, as does the spatial distribution of the crystalline and amorphous phases.

What is more, the nature of the amorphous phase remains ambiguous as well, especially

in light of other studies that hint of possible relationships between the amorphous and

quasicrystalline phases: First, Grushko and Stafford found that the amorphous phase

deposited at 150 C transformed into the quasicrystalline phase upon annealing [73]. In a



separate study, Grushko and Stafford directly electrodeposited the quasicrystalline phase,

instead of the amorphous phase, at a higher deposition tempertature of 325 "C [71].

Thus, although Grushko et al. [61, 70] and Takayama et al. [77] have identified an

"amorphous" second phase in Al-Mn deposits owing to its broad diffraction halo, this

could also correspond to an extremely fine ensemble of quasicrystalline domains [80].

Such "micro-quasicrystalline" (or, more aptly, "nano-quasicrystalline") structures have

been observed in Al-Mn alloys produced by techniques other than electrodeposition, and

are indeed characterized by a broad, amorphous-like diffraction halo at the primary

reflection. For example, Bendersky and Ridder used HRTEM and diffraction to suggest

that rapidly-quenched Al-14 at.% Mn "amorphous" droplets might in fact contain nano-

quasicrystalline domains smaller than 2-3 nm [81]. Chen and co-workers used a

combination of HRTEM and differential scanning calorimetry (DSC) to establish that

"amorphous" Al-17 at.% Mn produced by sputtering had a nano-quasicrystalline

structure [82-84]. These findings are decidedly relevant for interpretation of the

structures formed in electrodeposited Al-Mn alloys where an "amorphous" phase has

been frequently observed, and call for renewed study of such electrodeposits.

1.1.3. Film deposition at low temperatures

The recent development of ionic liquid electrolytes has enabled room temperature

electrodeposition of Al. However, the processing, structure and mechanical properties of

Al-Mn alloys electrodeposited at ambient temperature have not been explored, to our

knowledge. Recently, a kinetic Monte Carlo model of nanocrystalline film deposition

has been developed to study the effects of processing conditions, such as temperature and

deposition rate, on film microstructure. This study is described in detail in Appendix A

and has been published in [85]. Low temperature is found to increase nano-scale

roughness and stabilize surface grain nuclei, thus promoting structural refinement, as

illustrated in Figures 1.3(a)-(c), where a fixed deposition rate was employed to simulate

film deposition at three different normalized temperatures. In these figures, atoms that

belong to the same grain share the same color and trapped vacancies are colored black.

That the average grain size decreases as temperature decreases indicates the potential of



electrodepositing nanostructured Al-Mn alloys at room temperature and further stimulate

such low temperature experiments.

(a) T* = 0.35 (b) T* = 0.65 (c) T* =0.91

V
x

Figure 1.3 Microstructures of films deposited at different temperatures at a fixed deposition rate
[85]. Only the top 1000 layers are shown.

1.2. Pulsed electrodeposition

In the studies described in section 1.1.2, electrodeposition was carried out under

conventional galvanostatic conditions, where the power supply applies a constant current

across the electrodes throughout the duration of the electrodeposition process, as shown

in Figure 1.4(a). With advances in technology, power supplies can now apply pulsed

current waveforms, such as those shown in Figure 1.4(b)-(d). This section provides

background information on pulsed electrodeposition and reviews its effects on alloy

microstructure.
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Figure 1.4 Schematic of four types of electrodeposition current waveforms, where cathodic current is
defined as positive. Waveform (a) illustrates constant current density; waveform (b) contains two
cathodic pulses; waveform (c) contains one cathodic pulse and one "off-time" pulse and waveform (d)
contains one cathodic pulse, and one anodic pulse.

Each of the current waveforms illustrated in Figure 1.4(b)-(d) comprises cycles.

Each cycle can, in turn, contain segments or pulses; and each pulse has a defined pulse

current density (e.g "i1") and pulse duration (e.g. "ti"). Herein, cathodic current (i.e.

current that flows in such a direction as to reduce metal ions into atoms on the cathode

surface) is defined as positive. In Figure 1.4, waveform (b) is characterized by a cycle

that contains two cathodic pulses, since i1>0 and i2>0. The cycle in waveform (c)

contains one cathodic pulse (ii>O) and one "off-time" pulse (i2 =0); during the "off-time"

pulse, no current flows across the electrodes. The cycle in waveform (d) contains one

cathodic pulse (ii>O) and one anodic pulse (i2<0); during the anodic pulse, atoms on the

cathode surface are oxidized into metal ions, which usually dissolve back into the

electrolyte.

The waveforms illustrated in Figure 1.4 have been used to electrodeposit metals

and alloys in aqueous electrolytes [9, 86-100], and to a much lesser extent in ionic liquids

[59, 101]. The "off-time" illustrated in waveform (c) has been found to affect aspects of

the deposits, such as chemical composition [87, 91, 95, 96], chemical homogeneity [87],

surface roughness [87, 89, 98], grain size distribution [59, 89, 93, 95, 97] and texture

[91]. In recent years, reverse-pulsed waveforms, such as that shown in Figure 1.4(d),

have been gaining much attention because anodic pulses have been found to significantly

affect chemical composition [9, 101], chemical homogeneity [88], grain size [9, 102], and

improve surface appearance [89, 99, 102] and internal stress in the deposits [9, 102]. In

the case of single phase alloys, the anodic pulse selectively removes the element with the



highest oxidation potential, thus allowing control over the alloy composition. For

multiphase alloy systems, the situation is more complicated-the extent to which each

phase is removed during the anodic pulse depends not only on the relative

electronegativity of each phase, but also on the arrangement and distribution of various

phases. The use of reverse-pulsed waveforms to affect the phase composition, phase

distribution and microstructural length-scales of multiphase alloy systems has been

relatively unexplored.

1.3. Problem statement

The above sections suggest a number of possible areas for the development of

nanostructured electrodeposited Al films for practical applications and fundamental

studies. This thesis specifically seeks to address the following issues pertaining to their

processing, structure and properties:

e Theoretical results in Appendix A indicate that low deposition temperature

favors structural refinement. However, the processing, structure and

properties of Al-Mn alloys electrodeposited at ambient temperature has not

been investigated.

e Even though experimental works discussed in section 1.1.2 provide some

hints that Mn promotes grain size refinement in Al-Mn electrodeposits, the

crystal morphology and size, spatial distribution of the different phases, as

well as nature of the amorphous phase, remain ambiguous.

e As discussed in section 1.2, reverse-pulsing improves the properties of metals

and alloys deposited in aqueous electrolytes. However, this technique has not

been employed in ionic liquids or to the deposition of Al alloys, nor has it

been used to tune the structure of multi-phase alloys.



1.4. Structure of thesis

To address the issues outlined in section 1.3, the chapters of this thesis are

organized as follows:

e Chapter 2: A detailed characterization of Al-Mn alloys electrodeposited at

ambient temperature using a conventional current waveform is carried out to

investigate the effects of Mn on nanostructure formation, and the character of

the "amorphous" phase in electrodeposited Al-Mn alloys is established. The

hardness and ductility of these alloys are assessed and related to alloy

microstructure.

e Chapter 3: Using the processing-structure-property relationships established

in chapter 2, a reverse-pulse current waveform is designed to tune the

microstructure, so as to achieve high hardness and toughness.

e Chapter 4: To further characterize the Al-Mn alloys electrodeposited with a

reverse-pulse current waveform in chapter 3, solute distribution in the

nanocrystalline, amorphous, as well as dual-phase alloys are examined using

three-dimensional atom probe tomography. A method is developed to

enhance phase contrast in the dual-phase alloy, revealing in detail the

composition and distribution of the two phases.



2. Electrodeposited Al-Mn alloys with microcrystalline,

nanocrystalline, amorphous and nano-quasicrystalline

structures'

In this chapter, Al-Mn alloys are prepared at ambient temperature using a

different electrodeposition solution than used in the studies reviewed in section 1.1.2.

The purpose of this work is to systematically investigate the structure of electrodeposited

Al-Mn alloys across a broad range of compositions (from 0 to 16 at.% Mn), through the

transition from a microcrystalline to an amorphous structure. A detailed analysis of

structure and composition, using combined analysis by XRD, DSC, TEM, HRTEM and

scanning transmission electron microscopy (STEM) is presented. This chapter examines

the "amorphous" phase for pre-existing grain nuclei. In addition, preliminary studies of

the mechanical properties of these electrodeposits are discussed, and structures with

hardness that exceeds 3 GPa are identified. The toughness of alloys with high hardness is

also assessed using the guided bend test.

2.1. Experimental procedures

The Al-Mn alloys used in this study were prepared through a process of

electrodeposition from a non-aqueous ionic liquid. All chemicals were handled in a

glove box under a nitrogen atmosphere, with H2 0 and 02 contents below 1 ppm. The

organic salt, 1-ethyl-3-methyl-imidazolium chloride, [EMIm]C1 (>98% pure, from

IoLiTec), was dried under vacuum at 60 C for several days prior to use. Anhydrous

AlCl3 powder (>99.99% pure, from Aldrich) was mixed with [EMIm]C1 in a 2:1 molar

ratio to prepare the deposition bath. Prior to deposition, pure Al foil (99.9%) was added

to the ionic liquid, and the solution was agitated for several days, in order to remove

oxide impurities and residual hydrogen chloride [57, 104]. After filtering through a 1.0

pm pore size syringe filter, a faint yellowish liquid was obtained. The nominal

manganese chloride (MnCl 2) concentrations were varied between 0 and 0.20 mol/L by

The content of this chapter has been published in ref. [103]



controlled addition of anhydrous MnC12 (>98% pure, from Aldrich) to the ionic liquid;

the various MnCl 2 contents used in this study are listed in Table 2.1. Electropolished

copper (99%) was used as the cathode and pure aluminum (99.9%) as the anode.

Electrodeposition was carried out at room temperature under galvanostatic conditions at a

current density of 6 mA/cm2. Alloy sheets of approximately 20 pm thickness were

obtained after 4 hours.

Table 2.1 Summary of the various electrolytic compositions used in this study, and the deposits
produced with them. The global Mn content is measured by EDX and is reported with error bars;
the size of surface features is measured from SEM images; the area % of FCC peaks is calculated
from the X-ray diffractograms; average grain size is reported from both XRD and TEM
measurements; the extent of Mn enrichment in the amorphous phase, as determined by STEM, is
reported according to the formula of Equation (2-2).

Molarity of 0.0 0.015 0.03 0.05 0.07 0.075 0.09 0.11 0.13 0.20
MnC12  in
electrolyte
(mols/L)
Alloy 0.0 2.4 4.1 6.0 7.5 8.2 9.2 10.8 12.3 15.8
composition ±0.1 ±0.1 ±0.2 ±0.2 ±0.2 ±0.2 ±0.3 ±0.3 ±0.3
(at.% Mn)

SEM surface 14±4 12±4 10±3 8±3 7±3 5±2 5±2 5±2 6±2 3±1
features (pm)

Area % of 100 100 100 100 100 73±1 46±1 32±1 21±1 0
FCC peaks

XRD grain - - - - - 19±4 8±2 4±1 3±1 -

size (nm)

TEM grain - - - - 4000 40±10, 7±2 6±2 4±1 -

size (nm) ±1000 4±1

Extent of Mn 0.13± 0.28± 0.30± 0.34±
enrichment in 0.01 0.02 0.02 0.02
amorphous
phase

Scanning electron microscope (SEM) images of the as-deposited surfaces were

obtained using a Leo 438VP SEM, and chemical composition was quantified via energy

dispersive x-ray analysis (EDX, X-ray Optics/AAT #31102). Prior to XRD

measurements, the copper substrates were removed by dissolution in concentrated nitric

acid. X-ray patterns of the free-standing Al-Mn films were obtained using a PANalytical

X'Pert Pro diffractometer operating at 45 kV and 40 mA with a Cu-Ka radiation source

and Bragg-Brentano parafocusing geometry. Diffraction data was collected over a range



of 5 to 130 020 with a 0.0167 '0 step size and 60 s count time per step. Data analysis was

carried out using the software package MDI Jade 8. After accounting for a linear

background profile, each diffraction peak was fitted with a regular Pearson VII function,

yielding the position of the peak center and the full width at half maximum. The peak

positions were used to refine the unit cell lattice parameters, while the full width at half

maximum values were used to estimate the crystallite size via a modified Williamson-

Hall method: A Cauchy-Gaussian relationship was used to separate instrumental from

intrinsic (i.e., strain plus size) broadening. Strain broadening was approximated by a

Gaussian function, while effects of crystallite size were captured with a Cauchy profile

[105].

TEM specimens were prepared from the free-standing Al-Mn films by twin-jet

electropolishing at 10 V in a 20% solution of perchloric acid in methanol at -60 C.

Selected alloy films were also ion-milled at -80 0C with an ion accelerating voltage of 4

kV and source current of 4 mA (Fischione Model 1010). The TEM specimens were

examined using two TEM instruments: a JEOL 200CX and a JEOL 2010F, both of which

were operated at 200 kV. The probe area used to obtain the selected area diffraction

patterns was 1 pm in diameter. Statistical analysis of the average grain size was carried

out using both the bright-field and dark-field images; for each bright-field image, at least

4 dark-field images were obtained using the (111) and (200) reflections. These dark-field

images were used to identify the grains on the bright-field image by hand. The grain size

corresponds to the diameter of a circle with an equivalent area. For each specimen, at

least 200 grains were analyzed. Chemical composition of the different nanostructures

was studied quantitatively by EDX using the JEOL 2010F in STEM mode. A probe size

of 1 nm was used and typical acquisition times were 200 s. Inca software was used to

process the STEM/EDX data.

Calorimetric measurements of films with 15.8 at.% Mn were carried out in a

Perkin-Elmer Diamond DSC under a nitrogen atmosphere. For each measurement, 4.0

mg of free-standing film pieces were sealed in an aluminum pan. Scanning

measurements were made at 10 "C/min up to 520 C. The sample was cooled to room

temperature, and then re-heated to 520 0C at the same rate to obtain the baseline heat

flow. Isothermal experiments were performed by heating the sample at 10 0C /min to 310



C and then maintained at 310 C for 55 minutes before cooling to room temperature.

The baseline heat flow was obtained by repeating the isothermal experiment a second

time on the same sample. X-ray diffractograms of the alloys subjected to both scanning

and isothermal experiments were obtained using the PANalytical X'Pert Pro

diffractometer following similar procedures as described earlier. Samples from the

isothermal experiment were also observed using TEM (JEOL 2010F).

To evaluate the hardness of the alloys, nanoindentation tests were carried out

using a Ubil nanoindenter from Hysitron Inc. (Minneapolis, MN) using a diamond

Berkovich indenter. Samples were prepared for indentation through a standard regimen

of mechanical polishing, to a surface roughness of less than 1 nm. The indentation depth

was in all cases significantly less than 1/10th the film thickness, ensuring a clean bulk

measurement. Each indentation was carried out with a loading rate of 4 mN/s and the

maximum applied load was 10 mN. The instantaneous contact area was determined

using the calibrated area function of the Berkovich tip, and hardness was determined

using the Oliver-Pharr method [106]. Each reported data point represents an average of

at least 36 indentations.

The guided-bend test, as detailed in ASTM E290-97a (2004), was employed to

assess the ductility of selected alloys. The thickness, t, of tested samples (i.e. film and

copper substrate together) was measured using a micrometer and ranged from 0.220 ±

0.02 mm to 0.470 ± 0.02 mm; and the radii of the end of the mandrel, r, ranged from

0.127 to 1.397 mm. After the guided bent test, the convex bent surfaces of our films

were examined for cracks and fissures using the SEM. For each bent sample (i.e. film

and copper substrate together), the thickness of the film was less than 10% that of the

substrate. Thus, to a good approximation, the film lies on the outer fiber of the bent

specimen, and experiences a state of uniaxial tension. The top half of the bent sample is

in a state of tension, while the bottom half is in compression, and the neutral plane is

approximately midway between the convex and concave surfaces. The true tensile strain

on the convex surface is approximated as e = In 11), where 1 is the convex arc length



and lo is the arc length of the neutral plane. Geometric considerations give

E=ln +1

2.2. Results

In this section we present detailed characterization results on all of the alloys

prepared in this study. Rather than refer to the composition of the deposition bath, it is

more convenient to label samples with their alloy composition, which is presented in

Table 2.1 based on EDX analysis. Table 2.1 also assembles quantitative results from our

SEM, XRD, TEM and STEM investigations, along with uncertainty ranges on all of our

measured values.

2.2.1. SEM-Surface Morphology

A series of representative surface morphologies of the deposited alloys are shown

in Figure 2.1. Broadly, two distinct classes of surface morphologies are observed. Alloys

with global Mn content below about 7.5 at.% exhibit angular or polyhedral-like structures

(Figure 2.1 (a)-(d)), while alloys with higher Mn content exhibit a smoother morphology

comprising rounded nodules (Figure 2.1 (e)-(h)). The characteristic lengths of the surface

structures are determined using a linear intercept method and the results are shown in

Table 2.1. As the Mn content increases from 0 to 7.5 at.%, the characteristic length of the

angular surface structures decreases continually from 14 to 7 pm. For alloys with

compositions between 8.2 and 12.3 at.% Mn, the average diameters of the nodules are

about 5 pm. For the 15.8 at.% Mn alloy, the nodules are only about 3 pm in diameter.

The facetted and angular structures seen in Figure 2.1 (a)-(d) are characteristic of

conventional microcrystalline films, where each angular feature corresponds to a single

grain [107]. The rounded nodule structures seen in Figure 2.1(e)-(h) are commonly

observed in nanocrystalline electrodeposits when no organic leveling agents are used in

the deposition; in such cases each nodule is a "colony" of many smaller grains [10, 99,

108]. The present data thus indirectly suggest that a structural transition from coarse- to

fine-grained structures occurs in the vicinity of -8 at.% Mn; more detailed structural

analysis will clarify this point in what follows.
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Figure 2.1 SEM images of as-deposited Al-Mn alloys with global Mn content as shown in the lower-
left corner of each panel. Note the transition from facetted features in images (a)-(d) to rounded
nodules in images (e)-(h).

2.2.2. XRD-Phase identification and characteristics

Figure 2.2 illustrates the X-ray diffractograms of the as-deposited alloys. For

alloys with global Mn content between 0 and 7.5 at.%, we observe peaks that are all

consistent with the FCC Al(Mn) solid solution reflections. A broad and low-intensity

amorphous-like halo starts to appear at 20 ~ 420 for the 8.2 at.% Mn alloy, and for alloys

with global Mn content between 8.2 and 12.3 at.%, the patterns suggest that the Al-rich

FCC phase coexists with an amorphous phase. The percent contribution of the FCC

peaks to the total integrated intensities observed in each diffractogram is calculated and

tabulated in Table 2.1. As the alloy composition increases from 8.2 to 12.3 at.% Mn, the

FCC peak contribution decreases from 73 to 21%. For alloys with Mn content between

13.6 and 15.8 at.%, no FCC peaks are observed.
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Figure 2.2 X-ray diffractograms of as-deposited Al-Mn alloys, the compositions of which are shown
at the right. Locations of the FCC Al(Mn) reflections are shown at the top. Note also the emergence
of a broad amorphous halo at -42 020 for compositions above 8.2 at%.

Also evident in Figure 2.2 is the shift in FCC peak positions as the alloy

composition changes. We employ the Jade software to solve for the lattice parameter of

each XRD profile; the software explicitly solves and corrects for systematic errors, such

as in specimen positioning, and then uses the refined peak positions to obtain a least-

squares fit for the lattice parameter. Figure 2.3 shows the lattice parameter of the FCC

phase as a function of global Mn content of the alloys. As the Mn content increases from

0 to 7.5 at.%, the lattice parameter decreases from 4.049 to 4.005 A. Beyond this point,



for the two-phase alloys, the opposite trend is observed: increasing the global Mn content

from 8.2 to 12.3 at.% causes the lattice parameter to increase from 3.996 to 4.044 A.
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Figure 2.3 Lattice parameter of the FCC phase, as calculated from peak positions in the X-ray
diffractograms of Figure 2.2. Also shown for comparison are data obtained for Al-Mn alloys
electrodeposited at 150 *C by Grushko and Stafford in ref. [61], and for melt-spun alloys by Schaefer
et al in ref. [109].

As shown in Figure 2.2, for alloys with Mn content between 0 and 7.5 at.%, the

FCC peaks are narrow. Thus, instrumental broadening effects dominate and the modified

Williamson-Hall method is insufficiently resolved to determine the grain sizes of these

alloys, which are greater than about 100 nm. On the other hand, the two-phase alloys

with Mn content between 8.2 and 12.3 at.% exhibit significant FCC peak broadening,

which increases with Mn content. Over this compositional range, the XRD grain sizes of

these alloys, as tabulated in Table 2.1, decrease from 19 to 3 nm.

2.2.3. TEM-Phase distribution and structure

TEM samples that were jet-polished exhibited similar features to the ion-milled

ones, and we conclude that sample preparation did not significantly alter the

microstructure of the alloys. Bright field images and electron diffraction patterns of

alloys with compositions ranging from 7.5 to 15.8 at.% Mn are shown in Figure 2.4.
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Figure 2.4 Bright-field TEM images and electron diffraction patterns of as-deposited alloys with
global Mn content as shown in the lower-left corner of each panel. Note the transition from micron-
size grains in image (a) to nanocrystalline grains in images (b)-(e). Note also that images (b)-(e) show
-20-50 nm convex domains surrounded by a matrix or network structure.

The bright field image of an alloy with 7.5 at.% Mn (Figure 2.4(a)) shows that the

grains have characteristic sizes between 3 and 10 pm, in line with the -7 pm surface

features seen in the SEM in Figure 2.1(a). The electron diffraction pattern exhibits

discrete spots consistent with a single phase FCC crystal structure. The zone axis of the

electron diffraction pattern in Figure 2.4(a) is [111].



As shown in the bright field image in Figure 2.4(b), an 8.2 at.% Mn alloy consists

primarily of grains that are approximately 40 nm in diameter. The rings in the electron

diffraction pattern, as shown in Figure 2.5(a) for better clarity, are indexed consistently

with an FCC crystal structure. The spottiness of the rings confirms that the FCC phase

consists of small grains. However, unlike a conventional grain structure, these grains are

apparently embedded in a matrix; rather than being separated by grain boundaries, they

are separated by a network of matrix ligaments about 10 nm thick. At first glance, it

might appear that what we term the "matrix" or "network" region in this system is

amorphous, as suggested by the diffuse ring between the (111) and (200) reflections in

the diffraction pattern (see Figure 2.5(a)). However, HRTEM reveals that the matrix

region is more complex than this: a typical high resolution image is shown in Figure 2.6,

revealing that the -10 nm thick matrix region between large FCC grains (which are

labeled 'A' in Figure 2.6) comprises small (-4 nm) crystallites (labeled 'B') in a

featureless amorphous-like field (labeled 'C'). We conclude that the 8.2 at.% Mn alloys

consists of two phases- an amorphous-like phase and a FCC phase that has bimodal grain

size distribution with peaks at -40 nm and -4 nm; the larger grains are surrounded by a

network of the amorphous-like phase containing the smaller grains.

( 12.3

Figure 2.5 Electron diffraction patterns of two-phase alloys with global Mn content labeled in each
panel. Peak positions of the sharp reflections are indexed to be consistent with FCC AI(Mn), as
shown in panel (a). Note that the relative intensity of the broad halo, whose peak position is located
between the (111) and (200) reflections, increases as the global Mn content increases.

(c) 10.8 at.% 4



Figure 2.6 HRTEM image of an 8.2 at.% Mn alloy, showing the "matrix" or "network" region
between two large grains that are labeled 'A'. This region comprises small -4 nm crystallites (some
of which are circled and labeled 'B') embedded in an amorphous-like field (labeled 'C').

The bright-field image of a 9.2 at.% Mn alloy is shown in Figure 2.4(c). We

observe domains that are between 20 and 40 nm in diameter, again surrounded by a

network region that is about 10 nm thick. However, unlike the 8.2 at.% Mn sample, in

this sample the domains do not appear to be crystalline, and we can more clearly see a

population of small crystallites located in the network structure, with sizes in the range of

5 - 10 nm. HRTEM image of the domains and their surrounding network structure is

shown in Figure 2.7(a). Here the domains are outlined in bold and labeled 'D', and seem

featureless. A higher magnification image of the network region, taken from the region

denoted by dotted lines in Figure 2.7(a), is shown in Figure 2.7(b). Figure 2.7(b)

provides compelling evidence that the network comprises mainly small crystallites

(labeled 'E'). The spots that constitute the FCC rings in the electron diffraction pattern of

the 9.2 at.% Mn alloy (Figure 2.5(b)) are finer than in the 8.2 at.% Mn alloy (Figure

2.5(a)), which is consistent with the smaller grain sizes observed in the bright field

images. In addition, the electron diffraction pattern in Figure 2.5(b) also shows that the

intensity of the diffuse ring relative to the FCC rings is higher than that shown in Figure

2.5(a), suggesting a higher amorphous phase fraction in line with the XRD results in

Table 2.1. In short, the 9.2 at.% Mn alloy apparently also has two phases, comprising an

amorphous-like phase that exists as large convex domains, embedded in a network of

small FCC crystals of about 5 tol0 nm diameter.



10nm - 5 nm
Figure 2.7 HRTEM images of a 9.2 at.% Mn alloy, showing domains and the surrounding network
structure in (a), where the domains are outlined in bold and labeled 'D', and appear featureless. A
higher magnification image of the surrounding network region, taken from the region denoted by
dotted lines in (a), is shown in (b). The network region comprises mainly small crystallites (labeled
'E').

Bright field images of the 10.8 and 12.3 at.% Mn alloys are shown in Figures

2.4(d) and (e). The features observed in these images are very similar to those seen in

Figure 2.4(c): amorphous domains are surrounded by a network structure comprised

mainly of crystallites. As the alloy composition increases from 10.8 to 12.3 at.% Mn, the

average crystallite diameter decreases to just a few nm. The electron diffraction patterns

of both alloys (Figure 2.5(c) and (d)) consist of continuous FCC rings and the diffuse

halo, consistent with a duplex structure of fine grains and an amorphous-like phase. As

the Mn content increases from 10.8 to 12.3 at.%, the relative intensity of the diffuse ring

increases, thus suggesting an increasing amount of amorphous-like phase, which agrees

with the XRD results in Table 2.1.

For alloys with compositions above 13.6 at.% Mn, the TEM images appear

featureless. Figure 2.4(f) shows a HRTEM image of an as-deposited 15.8 at.% Mn alloy.

No lattice fringes are observed, indicating that the alloy lacks long-range order, thus

resulting in the halo observed in the electron diffraction pattern.

2.2.4. STEM-Phase composition

As noted above, for a range of Mn contents between about 8.2 and 12.3 at.%, we

observe two-phase structures that comprise larger grains or domains embedded in a

matrix or network. For these alloys, the local chemical compositions of the domains and



the network regions are analyzed using STEMI/EDX and the results are shown in Figure

2.8.
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Figure 2.8 STEM results comparing local compositions of domain and network regions of the two-
phase alloys, along with a dashed line showing the expected composition for a homogeneous alloy.
The amorphous phase is located in the network regions for the 8.2 at.% Mn alloy, but in the domain
regions for alloys with higher Mn contents. Thus, Mn preferentially partitions to the amorphous
phase for all these alloys.

For an 8.2 at.% Mn alloy, recall that the -40 nm diameter "domains" were in fact

FCC solid solution crystals (see Figure 2.4(b) and the regions labeled 'A' in Figure 2.6).

In Figure 2.8 we now see that these larger grains are depleted of Mn, whereas the

featureless regions on the network (labeled 'C' in Figure 2.6) are enriched with Mn.

Their compositions are 7.9 and 9.0 (±0.2) at.%, respectively. For alloys with higher

global Mn content, the partitioning tendency of Mn is reversed: the domains, which are

apparently amorphous (see Figure 2.4(c) and regions 'D' in Figure 2.7(b)) are enriched

with Mn, while the surrounding network of crystallites is depleted of Mn. As the global

Mn content increases from 9.2 to 12.3 at.%, the Mn content of the larger domains

increases from 10.1 to 13.4 at.% and the composition of the network increases from 7.5

to 9.2 at.%. In all of the data collected in Figure 2.8, there is thus one common feature:

the microstructures are duplex, and the amorphous-like regions are always found to have

an enrichment of Mn, while the crystalline regions are depleted of Mn. The specific

arrangement of these phases is different from lower to higher Mn content, but the

tendency of Mn to preferentially populate the amorphous regions is consistent.



2.2.5. DSC--Structure of the amorphous phase

The scanning calorimetry signal from a 15.8 at.% Mn sample at a heating rate of

10 "C/min is shown in Figure 2.9(a), exhibiting a first exothermic peak at 341 C and a

second at 463 "C. The enthalpy of the first transformation is 900 J/mol, much smaller

than that of the second transformation at 2770 J/mol. Qualitatively, we note that both

peaks are asymmetric, and whereas the rising edge of the first peak is steeper, the

converse is observed for the second peak. Figure 2.9(b) shows the calorimetric signal

from another 15.8 at.% Mn sample that is subject to isothermal heat treatment at 310

"C-just at the onset of the first transformation-where a monotonically decaying signal

is observed. The total heat evolved is 840 J/mol, which is close to that of the first

crystallization event observed in the scanning experiment.
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Figure 2.9 (a) A Scanning-mode DSC trace showing the two exothermic peaks observed when a 15.8
at.% Mn alloy was heated from 30 *C to 520 "C at 10 *C/min. Using the dotted lines as baselines, the
enthalpies of the two transformation events were 900 J/mol and 2770 J/mol respectively. (b) The
isothermal DSC output for a 15.8 at.% Mn alloy annealed at 310 *C for 55 minutes; the total heat
evolved was 840 J/mol.

X-ray diffractograms of samples subjected to these thermal cycles in the DSC are

shown in the bottom panel of Figure 2.10 along with data for an as-deposited specimen.

Along the top of this figure the expected peak positions and relative intensities of the

icosahedral and orthorhombic Al6Mn phases are shown, as obtained from the x-ray

powder diffraction files (PDF#00-044-1195 and 00-041-1285 respectively) [110]. The



diffractogram of the as-deposited alloy, labeled (a), exhibits a broad halo at 20 ~ 420, and

another lower intensity hump at 20 ~ 80'. After isothermal annealing at 310 C, however,

a series of additional broadened peaks appear at positions that correspond well to the

icosahedral Al6Mn produced by rapid quenching [111]. The diffractogram (labeled (c))

of the sample that was heated to 520 0C during the scanning experiment (i.e., across both

exothermic reactions) exhibits sharp peaks that are consistent with orthorhombic A16Mn

[112].
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Figure 2.10 X-ray diffractograms of 15.8 at.% Mn samples (a) in the as-deposited state, (b) after
isothermal treatment at 310*C for 55 minutes and (c) after being heated from 30 "C to 5200C at 10
*C/min. For comparison, the top panel shows peak positions and relative intensities of icosahedral
Al 6Mn produced by rapid quenching in ref. [111], while the second panel shows those for
orthorhombic Al 6Mn in ref. [112].

Figure 2.11 shows a HRTEM image of a 15.8 at.% Mn sample that was subject to

isothermal annealing at 310 0C. Lattice fringes are clearly evident and the grain size is

approximately 2 nm. This value agrees well with the results of a Williamson-Hall

analysis of the XRD data in Figure 2.10 (curve b), which yields a grain size for the

icosahedral phase of -2 nm. The electron diffraction pattern, as shown in Figure 2.11



exhibits continuous rings. The diffraction peak positions are similar to those of

icosahedral Al-Mn particles studied by Bendersky and Ridder [81]. Figure 2.12(a) and

(b) show the electron diffraction patterns of the as-deposited and annealed samples

respectively. We note that the diffraction pattern of the annealed sample consists of rings

that are sharper and more discernible than that of the as-deposited sample, and which are

consistent with the reflections expected for the icosahedral phase.

5 nm
Figure 2.11 HRTEM image and electron diffraction pattern of a 15.8 at.% Mn alloy after isothermal
annealing at 310*C for 55 minutes. As compared to the as-deposited condition, which was apparently
amorphous (Figure 2.4(f)), this specimen exhibits small regions with clear lattice fringes. Some of the
crystallites are outlined in bold; the average grain size is about 2 nm.

Figure 2.12 Electron diffraction patterns of 15.8 at.% Mn alloys (a) in the as-deposited state and (b)
after isothermal annealing at 310 "C for 55 minutes. Note the appearance of additional reflections in
(b), which are indexed as consistent with the icosahedral phase. The arrows indicate the positions of
the rings in each panel.

2.2.6. Nanoindentation-hardness

Figure 2.13 shows the measured hardness values of the various deposits, in

comparison to their structural length scales. The hardness of pure microcrystalline

(a) als-deposited

15.8 at.% ,10

(b) annealed



electrodeposited Al is about 1 GPa. For the single FCC phase alloys, increasing the Mn

content from 0 to 7.5 at.% Mn causes the hardness to increase from 1 to 2.8 GPa. At 8.2

at.% Mn, hardness reaches a local maximum value of 5.2 GPa. Further increase in Mn

content causes the hardness to decrease to a local minimum of 4.3 GPa near 10.8 at.%

Mn, followed by an increase to 5.4 GPa for our sample with highest Mn content.
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Figure 2.13 (a) Plot summarizing the grain/crystal size measurements of the FCC solid solution phase
as determined by various techniques. Phase compositions of the alloys are labeled at the top of the
panel. (b) Plot of hardness vs. alloy composition; notice that the dramatic decrease in grain size at
-8.2 at.% Mn is accompanied by an increase in hardness by about a factor of 2.

2.2.7. Guided bend test-ductility

Figure 2.13 shows that the nanostructured and amorphous Al-Mn alloys with Mn

content above 8.2 at.% exhibit impressive hardness that exceeds 3 GPa. Guided bend

tests were performed on alloys containing 8.2 at.%-Mn and 13.6 at.%-Mn. Figure 2.14

illustrates SEM images of the convex bent surfaces of these alloys upon application of



-5% tensile strain. Figures 2.14(a) and (c) show that both alloys exhibit multiple cracks

that propagate across the entire sample widths and the corresponding higher

magnification images on the right illustrate relatively straight crack paths, which is

characteristic of catastrophic failure in brittle materials. Thus, Figure 2.14 shows that the

ductility of these alloys falls below -5%.

(c) 13.6 at.%-Mn,
strained ~5%

1 mm 50 pm

Figure 2.14 SEM images of the convex bent surfaces of the 8.2 at.% -Mn and 13.6 at.%-Mn alloys
upon application of -5% tensile strain are shown in (a)-(b) and (c)-(d), respectively. The relatively
straight crack paths are characteristic of brittle fracture.

2.3. Discussion

The above results show the following general trend as Mn increases in our

deposits. First, at low Mn levels below about 7.5 at.%, the deposits are FCC and have

micron-scale grains that decrease in size with Mn content. Second, at intermediate Mn

levels (between 8.2 and 12.3 at.%) we see complex dual-phase structures involving nano-

scale FCC crystallites and domains of amorphous-like material. Finally, at sufficiently

high Mn levels (above 13.6 at.%) we see only the amorphous-like phase, which

transforms first to a quasicrystalline phase and then intermetallic AI6Mn upon heating. In

the following sections, we discuss in more detail the phases and microstructures in these

alloys.



2.3.1. Phase composition

Even though the maximum equilibrium solubility of Mn in Al is 0.62 at.% [113],

Figure 2.2 shows that our electrodeposited alloys exhibit a single FCC phase up to about

7.5 at.% Mn. Such extended solubility is frequently found in electrodeposited alloys

because of the non-equilibrium processing conditions [69]. For our single FCC phase

alloys, the decrease in lattice parameter with increasing Mn content, as shown in Figure

2.3, is indicative of Mn (which has a smaller Goldschmidt radius than Al by about 11%)

being substitutionally incorporated into the Al lattice. Figure 2.3 also shows that our

results are in very good quantitative agreement with those obtained for melt-spun alloys

[109] and alloys electrodeposited from AlCl3-NaCl electrolyte at 150 C [61]. The

following equation relates the lattice parameter, a (A), of our single phase alloys to the

global atomic fraction of Mn, XMf:

a = ao -bXMn (2-1)

where ao is the lattice parameter of pure Al (4.049 A) and b = 0.640 A.

At the first appearance of the amorphous phase at 8.2 at.% Mn, the FCC lattice

parameter is the lowest at 3.996 A. While this result may suggest that the FCC phase is

the most super-saturated at this composition, we note that the microstructure of an 8.2

at.% Mn alloy exhibits two types of crystallites, which differ not only in their grain size,

but also in their local environment (Figure 2.4(b) and 2.8). Thus, these two types of

crystalline grains may have different lattice parameters. Additionally, the bimodal grain

size distribution may have implications on the XRD peak locations, which may thus

affect the accuracy of our lattice parameter calculations.

For even higher Mn contents ( 9.2 at.%), Figure 2.3 reflects an increasing lattice

parameter of the FCC phase. We suggest that this increase is a result of Mn partitioning

into the amorphous-like phase (cf. Figure 2.7), depleting from the FCC crystallites and

thus reducing their lattice parameter according to Equation 2-1). Using our STEM data,

we compare the extent of Mn enrichment in the amorphous phase by introducing a

normalized enrichment parameter, Rq, as:



(Xamorphous - x FCC
rq = Mn XnMn )1 22

where X 1 orphou' and X C correspond to the atomic fraction of Mn in the regions that

consist primarily of the amorphous and FCC phases respectively. The results are shown

in Table 2.1. As the global Mn content increases from 8.2 to 12.3 at.%, the Mn

enrichment in the amorphous phase increases from 0.13 to 0.34.

Our results above are broadly in line with those for alloys electrodeposited at 150

C by Grushko and Stafford [61, 70]. They observed a single FCC phase up to 5.9 at.%

Mn, and at 8.7 and 11.9 at.% Mn found an amorphous phase co-existing with an FCC

phase depleted in Mn [61, 69]. Whereas these authors only inferred the composition of

the FCC crystals from the inflection in lattice parameter measurements (cf. Figure 2.3),

here we have more direct confirmation of Mn partitioning from our STEM data and the

values of ri in Table 2.1. Because Grushko and Stafford did not examine alloys of

composition between 5.9 and 8.7 at.% Mn, we are not able to precisely compare the

composition at which the alloys transition from a single crystalline phase to a duplex

structure, although it is clearly in the general vicinity of the transition that we observe in

our deposits.

2.3.2. Amorphous phase character

The shapes of the peaks in the DSC signal obtained from heating the 15.8 at.%

Mn alloy (Figure 2.9(a)) give an indication that the first and second exotherms

correspond to different types of transformation events. [114] and Chen et al. [82-84]

modeled the nucleation-and-growth process during such a linear heating profile using a

modified Johnson-Mehl-Avrami equation. They showed that for a transformation

involving nucleation and growth of a new phase, the trailing edge of the exothermic peak

should be steeper than the leading edge. On the other hand, for the case of phase growth

from pre-existing nuclei, the leading edge should be steeper than the trailing edge. With

these results in mind, examination of Figure 2.9(a) suggests that the first exotherm

corresponds to a transformation that proceeds by growth from pre-existing nuclei,

whereas the second corresponds to a nucleation-and-growth process. Additionally, the

enthalpy of the first transformation event (900 J/mol) is unusually small compared to that



of crystallization from a truly amorphous metal (usually a few kilojoules per mole),

which is consistent with the first event being one of growth from pre-existing nuclei [83,

115].

While scanning calorimetric experiments provide qualitative hints on the nature of

a transformation event, isothermal experiments such as those in Figure 2.9(b) allow

unambiguous determination of the transformation type. Again, the work of Chen et al.

[82-84] provides some guidance in the interpretation: for nucleation and growth a peak

should be observed in the heat flow at non-zero time due to the formation of nuclei,

whereas during a growth process from pre-existing nuclei, a monotonically decreasing

signal should be observed. Thus, the monotonically decreasing signal obtained upon

annealing our 15.8 at.% Mn alloy (Figure 2.9(b)) provides compelling evidence that our

as-deposited alloy, nominally called "amorphous" based on diffraction data, in fact

contained pre-existing nuclei.

Our microscopic and XRD evidence also conform to the above interpretation. In

the as-deposited state, HRTEM reveals an amorphous-like structure, whereas after

isothermal annealing at 310 'C pre-existing nuclei grew to a clearly discernible size in the

range of 1-3 nm (see Figure 2.11). What is more, these grains exhibit diffraction patterns

consistent with the icosahedral phase (Figures 2.10(b), 2.13 and 2.14(b)). Thus, these

HRTEM and DSC results together establish that our as-deposited 15.8 at.% Mn is seeded

with pre-existing quasicrystalline nuclei that grow into nano-quasicrystalline domains

upon annealing at low temperatures (-310 C). Annealing at higher temperatures leads

to the nucleation-and-growth transformation to orthorhombic Al6Mn crystalline grains.

Our results present a clear parallel to those of Chen and co-workers, who carried

out a calorimetric study on magnetron sputtered Al-17 at.% Mn films [82-84]. In their

scanning experiments, two exotherms qualitatively similar to ours were observed. The

first exotherm obtained in both that study and ours have similar peak temperatures (341

*C and 337 "C) and heats of transformation (900 J/mol and 1046 J/mol, respectively).

Monotonically decreasing signals were obtained upon isothermal annealing of their

samples in the vicinity of the first exothermic peak, and their annealed samples exhibited

diffraction patterns consistent with the icosahedral phase. The structure of the



"amorphous" phase in the sputtered films of Chen et al. is thus believed to be essentially

similar to that seen in our electrodeposited films.

We note that when Grushko and Stafford thermally annealed their "amorphous"

16 at.% Mn alloy that was electrodeposited at 150 C, they also observed the formation of

very small icosahedral grains, which transformed to intermetallics with further annealing

[73]. However, to our knowledge, our results here represent the first time that the

apparently "amorphous" structure of Al-Mn electrodeposits has been established as

containing pre-existing nanoquasicrystalline nuclei. Additionally, our observation that

these pre-existing nuclei grow into clearly discernible quasi-crystals at about 3000 C

helps to unify prior reports in the literature, where deposition at 325' C directly yielded

the quasicrystalline phase [71], while deposition at lower temperatures led to an

apparently amorphous phase [61, 69, 70]. In combination with these literature results,

our analysis suggests that quasicrystalline order is in fact preferred at all deposition

temperatures; below about 300' C, the quasicrystalline nuclei are sufficiently small that

the structure appears amorphous, while above this temperature they grow to the -2-3 nm

required to discern them in diffraction data and HRTEM images.

2.3.3. Structure-composition relationship

The structures produced in this study span an impressive range of length scales,

ranging from supermicron FCC grains (e.g., Figure 2.1(a)) to extremely fine nanocrystals

of dimension -3 nm (e.g., Figure 2.6). No single characterization technique can be used

to assess grain/domain sizes across this entire range, so in this section we compile our

measurements from various techniques, to develop a picture of how the characteristic

structural length scales change with composition.

Across the entire range of composition examined, the size of the FCC solid

solution phase, including grains and embedded crystallites, decreases as the global Mn

content increases, as shown in Figure 2.13(a). For the single phase alloys, as the Mn

content increases from 0 to 7.5 at.%, the average crystallite size decreases from 15 to 7

pim. At around 8 at.%, the grain size decreases drastically from several microns to

nanometer-scale dimensions, and it is also at this composition that we observe a bimodal

distribution of crystallites (-40 and 4 nm). At higher Mn content, from 9.2 to 12.3 at.%,



the average crystallite size decreases further to about 4 nm. Beyond this point, the

apparently amorphous structure contains nano-quasicrystalline nuclei, which must be of

-1 nm or finer scale.

The monotonic relationship between grain size and solute content of our single

phase alloys (i.e., 0 to 7.5 at.%) has also been observed in other alloy systems, such as

Ni-W and Ni-P [17, 20], where the observed trend has been attributed to grain boundary

segregation effects (i.e. because solute segregation to the grain boundaries reduces the

grain boundary energy, increasing the solute content allows promotes finer grains [16,

116]). In light of this possibility, we carried out STEM analysis of the grain boundaries

and grain interior regions for some of our single phase alloys. We also used Auger

electron spectroscopy to compare the Mn content at the intergranular and transgranular

regions using standard procedures [117]. Both techniques yielded similar results: there

was insignificant variation in composition between the bulk and grain boundaries. We

conclude that the progressive refinement of structure as summarized in Figure 2.13 is not

principally driven by segregation of solute to intergranular regions.

On the other hand, the structure-composition relationship may be related to

nucleation kinetics at the electrode. Stafford carried out linear sweep voltammetry in a

2:1 mole ratio AlCl3:NaCl electrolyte and found that as the content of MnCl2 in the

electrolyte increases, the cathodic overpotential becomes more negative [64]. A similar

trend was also observed in the AlCl3-NaCl-KC1 electrolyte by Hayashi [118]. Assuming

that our ionic liquid electrolyte behaves similarly, an increase in MnCl2 content in the

electrolyte would drive the cathodic overpotential more negative, which in turn favors the

nucleation of new grains, and thus a finer grain size, during electrodeposition [119-121].

Upon the appearance of a second phase at higher Mn content (> 8 at.%), the FCC

grain size decreases drastically from microns to nanometers. Recall that the structures of

all the two-phase alloys exhibit one similarity: they all contain domains that are between

10 and 25 nm in radius, and surrounded by a network or matrix structure. We speculate

that this recurring characteristic length scale may be associated with the characteristic

diffusion distance, L, for atoms on the surface of the growing film. Given a deposition

rate of 5 pm/hr, we take r~ 0.2 s as a characteristic time to deposit one monolayer, and

for Al surface self-diffusion, a typical diffusivity D ~ 4x10-1 cm2/s at ambient



temperature [122]. With these values we approximate a diffusion length of L ~ 2Dr =

18 nm, very close to the characteristic radius (10-25 nm) of the domains in our deposits.

Interestingly, in Grushko and Stafford's studies, similar domains were also observed in a

12 at.% alloy, but with a larger characteristic domain size ranging from 125 to 250 nm in

radius [61, 69, 70]. Because Grushko and Stafford used higher current densities (as much

as ten times higher), we approximate r ~ 0.02 s, and given their higher deposition

temperature of 150 0C, D 3x10-9 cm2/s. The approximate surface diffusion length in

this case is about 150 nm, again in good agreement with the experimental scale of the

structural domains. These considerations offer some support for the notion that phase

separation in these alloys is a surface phenomenon that occurs during electrodeposition,

and that the surface diffusion length governs the domain size of two-phase

electrodeposits (cf. Figure 2.4(b)-(e)).

2.3.4. Hardness of the deposits

It is beyond our scope to provide a detailed mechanistic interpretation of the

hardness trends seen in Figure 2.13(b), especially in light of the fact that many of our

deposits have extremely complex duplex structures, the hardness of which is not simply

predicted. However, since these measurements are, to our knowledge, the first

mechanical property data presented for Al-Mn alloys electrodeposited from ionic liquid,

we offer a few observations about our results.

First, the initial increase in hardness from 0 to 7.5 at.% Mn covers the range of

compositions where the alloys remain single-phase FCC solid solutions and the grain size

decreases; the strength increase can likely be attributed to the combined effects of

solution strengthening and the Hall-Petch effect. Second, within the composition range

of 13.6 to 15.8 at.% Mn, the alloys are "amorphous" (containing nanoquasicrystalline

nuclei), and hardness increases with Mn content. The role of solute content on the

strength of amorphous phases is neither simple nor well understood, but the negative heat

of mixing of our system indicates that Mn additions increase the average bond strength in

the alloy, which, all other things being equal, would promote higher hardness. Other

amorphous Al alloys are hardened by increases in solute content in a similar way [123-

125]. Changes in the degree of chemical order (the density of nano-quasicrystalline



nuclei) with Mn content are also plausible, and could lead to strengthening in the manner

well-known for amorphous metals containing nanocrystals [126-128]. A similar

argument could explain the decrease in hardness from 8.2 to 10.8 at.% Mn, over which

range the structure is essentially an amorphous/nanocrystal composite, but with a

decreasing volume fraction of reinforcing nanocrystalline particles at higher Mn levels.

In any event, it is interesting to observe that the complex changes in structure we observe

with Mn content in these alloys are mirrored by unusual trends in hardness; the

suggestion that there may be local optimums in the composition space (e.g., at -8 at.%

Mn) is also of practical interest.

2.3.5. Ductility of nanostructured and amorphous alloys

Even though the nanostructured and amorphous alloys exhibit high hardness that

exceeds 3 GPa, their low tensile ductility (<5%) renders them unsuitable for structural

applications. That the amorphous 13.6 at.%-Mn alloy exhibits low ductility is in line

with catastrophic failure commonly observed in amorphous alloys and bulk metallic

glasses, where shear band formation followed by rapid shear band propagation leads to

macroscopic failure. Thus, it is also likely that the brittle amorphous phase in the

nanostructured 8.2 at.%-Mn contributes to its low toughness. As shown in Figures 2.4(b)

and 2.6, this two-phase alloy exhibits a bimodal grain size distribution centered at -40

and -4 nm. Since nano-grains that are less than -10 nm are considered incapable of

dislocation pinning and accumulation [7, 8]; it is also plausible that these extremely fine

grains impair the alloy's ability to deform plastically. Additionally, inhomogeneous

phase distribution, as evidenced by the characteristic domain-network structures in Figure

2.4(b), may also affect ductility.

2.4. Conclusions

We have presented a detailed microstructural study of Al-Mn alloys

electrodeposited from an ionic liquid at room temperature. Additionally, we have

provided the first measurements of hardness in Al-Mn electrodeposits across a broad

range of structural conditions. Three structural regimes, defined by the alloy Mn content,

are identified:



(a) 0 to 7.5 at.% Mn: These alloys are microcrystalline FCC solid solutions

exhibiting rough angular surface morphologies. As the Mn content increases over this

range, the grain size decreases from 15 to 7 prn due to kinetic effects on deposition, and

the hardness increases from about 1.0 to 2.8 GPa.

(b) 8.2 to 12.3 at.% Mn: These deposits have a smooth, nodular surface structure,

and comprise nanometer-scale crystals of the FCC solid solution phase coexisting with an

amorphous phase. The amorphous phase is Mn-enriched, and its volume fraction

increases with the global Mn content. The phases are arranged as domains of one phase

embedded in a network or matrix of the other; the characteristic radius of the domains is

about 10-25 nm, which is consistent with the surface diffusion length during-

electrodeposition. These alloys exhibit a local peak in hardness of 5.2 GPa at 8.2 at.%,

where the FCC phase is the majority phase.

(c) 13.6 to 15.8 at.% Mn: These alloys exhibit a single amorphous phase, whose

hardness increases from 4.8 to 5.5 GPa as Mn content rises. For the first time, we

confirm that this apparently amorphous phase contains pre-existing nano-quasicrystalline

nuclei in the as-deposited state; these nuceli grow into nano-quasicrystals at about 3000C.

The observation of nano-quasicrystalline nuclei in the amorphous alloys unifies

prior reports in the literature, where deposition at temperatures above 300' C directly

yields the quasicrystalline phase, while deposition at lower temperatures leads to an

amorphous phase. These experimental results are in line with those obtained from our

theoretical model in Appendix A, where low deposition temperatures promote nano-scale

roughness and increase the stability of surface nuclei, thus resulting in structural

refinement.

Even though the nanostructured and amorphous alloys exhibit impressive

hardness, they exhibit extremely low tensile ductility. Their brittleness is likely due to

nanocrystalline grain sizes (<10 nm) that are incapable of the usual dislocation activities,

inhomogeneous phase distribution, as well as rapid shear band propagation that leads to

catastrophic failure in the amorphous phase.



3. Tailoring the grain size and phase distribution of

electrodeposited Al-Mn alloys to achieve high hardness and

toughness 2

As described in the chapter 2, Mn effectively promotes nanostructure formation in

electrodeposited Al-Mn alloys and the nanostructured and amorphous alloys exhibit

impressive hardness. Unfortunately, structure refinement into the nanometer regime

occurs concomitantly with the appearance of a brittle amorphous phase. Additionally, the

nanocrystalline phase of these duplex alloys contains a large fraction of grains that are

less than -10 nm and incapable of dislocation pinning and accumulation.

Inhomogeneous phase distribution in these alloys likely induces brittle failure as well.

Therefore, synthesis of Al alloys with high hardness and toughness relies on the ability to

tailor both the grain size and phase distribution of Al-Mn alloys.

Results obtained in chapter 2 indicate that microstructural features of

electrodeposited Al-Mn alloys appear principally governed by nucleation kinetics at the

electrode. Progressive grain refinement with increasing Mn content of the

microcrystalline FCC phase is postulated to be controlled by nucleation kinetics at the

electrode and phase distribution of the duplex structures is plausibly related to adatom

surface diffusion during electrodeposition. Since the characteristic length of the domain-

network structures observed in the dual-phase alloys is probably related to the

characteristic diffusion length of an adatom on the film surface (see section 2.3.3 and

Figure 2.4), it is likely that the shape of the applied current waveform would affect the

extent of phase segregation.

Various current waveforms that each comprise two unique pulses, as shown in

Figures 1.4(b)-(d), were used to deposit alloys with -8 at.% Mn content; details of these

experiments and the results obtained are described in Appendix B and [129]. The

parameters of the first cathodic pulse were kept the same for all waveforms; the current

density was set at 6 mA /cm 2, which was the cathodic current density of the direct-current

waveform used in chapter 2; the pulse duration was fixed at 20 ms. As discussed in

2 Much of the content of this chapter has been submitted in a patent application [129]



section 2.3.3, for an applied current density of 6 mA /cm2, the time required for

monolayer coverage is -200 ins. The cathodic pulse duration was chosen to be 1/ 1 0 th this

time interval (i.e. 20 ms), to reduce the extent of phase segregation before the application

of the next pulse. One of the waveforms that yielded the best results comprises, in

addition to the cathodic pulse described above, an anodic pulse with pulse duration of 20

ms and anodic current density of 3 mA/ cm2 . This reverse-pulse waveform was selected

to deposit films of different compositions to systematically analyze their structures and

properties.

Herein, alloys deposited with the selected reverse-pulse waveform will be called

the "RP" alloys; those produced by the conventional current waveform, as described in

the previous chapter, will be named the "DC" alloys. In this chapter, the composition and

microstructure of the RP alloys are analyzed using SEM/EDX, XRD and TEM.

Particular emphasis is placed on the effects of reverse pulsing on the characteristic grain

size, grain size distribution, as well as phase distribution. The hardness and toughness of

these alloys are then assessed. The effects of reverse-pulsing on the structures and

properties of alloys electrodeposited in a non-aqueous medium are thus studied for the

first time. .

3.1. Experimental procedures

The chloroaluminate ionic liquid used to electrodeposit our RP Al-Mn alloys was

prepared using the same procedures detailed in section 2.1 and ref. [103]. The current

waveform comprises a cathodic and anodic pulse, as illustrated in Figure 1.4(d), where

both pulse durations were 20 ms and the cathodic and anodic current densities were 6 and

3 mA /cm2, respectively. Alloys with different Mn contents were obtained by controlled

additions of anhydrous manganese chloride to the electrolytic baths. Electrodeposition

experiments were carried out at room temperature until film thicknesses of -10 ptm were

obtained. Alloy chemical composition was measured using SEM/EDX; phase

composition was determined with XRD; grain size and phase distributions were

examined in the TEM. These procedures are identical to those described in section 2.1

and ref. [103].



Using the results obtained from our microstructural analysis, three RP alloys with

unique phase contents (and hence, solute contents) were selected for mechanical testing.

To measure hardness, micro-indentation tests were carried out using a load of 5 grams

and a holding time of 15 seconds. The indentation depth was in all cases significantly

less than 1/ 1 0 th the film thickness, ensuring a clean bulk measurement. Each reported

data point represents an average of at least 8 indentations. To assess tensile ductility,

guided bend tests following ASTM E290-97a (2004) were performed, as described in

section 2.1. For each of the three unique alloys, multiple samples were subjected to

different amounts of tensile strain during the guided bend tests. After the bent tests, the

convex bent surfaces were examined for cracks and fissures using the SEM. The

reported ductility value for each alloy corresponds to the largest applied strain at which

no cracks or fissures were observed on the bent film.

For samples that did not exhibit any cracks after the bend test, their copper

substrates were dissolved in concentrated nitric acid. Both the bent portions of the Al-

Mn films, as well as the regions that were far from the bend, were jet-polished for post-

mortem TEM analysis. Because samples that failed during the bend tests exhibited

cracks that were narrow, the fracture surfaces were not sufficiently exposed for

microscopic analysis. Thus, an Instron machine was used to fracture fresh specimens

(film and substrate together) in tension. The fracture surfaces were analyzed in the JEOL

6700 SEM at 5 kV and the back-scattered detector was used to distinguish between the

film and copper substrate.

3.2. Microstructure characterization

In this section, we present characterization results on all of the RP alloys prepared

in this study and compare the alloy microstructure to that of the DC alloys.

3.2.1. Alloy composition

RP alloys with Mn contents between 0 and 13.8 at.% were synthesized in this

study. Figure 3.1 compares the relationship between electrolyte composition and alloy

composition for experiments conducted with the DC and RP waveforms. For electrolytes

that contained up to -0.08 mol/L MnCl 2, the applied current waveform had negligible



effects on the alloy composition. However, for electrolyte compositions between -0.08

and -0.17 mol/L MnCl 2, the as-deposited RP alloys exhibited lower Mn contents. Thus,

Figure 3.1 indicates that within this range of electrolyte composition, the anodic pulse

preferentially removes Mn from the as-deposited alloy. Interestingly, as shown in Figure

3.1, the corresponding alloy compositions lie between -8 and -14 at.%-Mn. Recall that

for the DC alloys, Mn content of -8 at.% corresponds to the onset of a duplex structure,

where nanocrystalline grains co-exists with an amorphous phase, and -14 at.% coincides

with the disappearance of the crystalline phase (see Figures 2.2 and 2.4). Therefore, the

results presented in Figure 3.1 provide hints that reverse-pulsing exerts an interesting

effect on the dual-phase alloys. In what follows, we will focus on the effects of reverse-

pulsing on the alloy microstructure.
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Figure 3.1 Plot showing the effects of current waveform on alloy composition at different electrolyte
compositions.

3.2.2. Phase content

Figure 3.2 shows X-ray diffractograms of the RP alloys. At low Mn content, the

alloys exhibit a FCC Al(Mn) solid solution phase; at intermediate Mn content between

8.0 and 10.4 at.%, an amorphous phase, which exhibits a broad halo in the diffraction

pattern at -42' 20, co-exists with the FCC phase; at high Mn content above 11 at.%, the

alloys contain a single amorphous phase.
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Figure 3.2 X-ray diffractograms of as-deposited RP Al-Mn alloys, the compositions of which are
shown at the right. Locations of the FCC Al(Mn) reflections are shown at the top. Note also the
emergence of a broad amorphous halo at -42 020 for compositions above 8.0 at%.

Figure 3.3 compares the percent contribution of FCC peaks to the total integrated

intensities observed in the XRD patterns for the DC and RP alloys. Even though both

DC and RP alloys transition from a single FCC phase to a duplex structure at about the

same composition of -8 at.% Mn, the composition range over which the alloys exhibit a

two-phase structure is narrower for the RP alloys (between 8.0 and 10.4 at.% Mn) than

that of the DC ones (between 8.2 and 12.3 at.% Mn). The XRD results presented in

Figure 3.2 suggest that reverse-pulsing alters the phase content of the alloys. The grain



size distribution and phase distribution in the RP alloys will be examined in the following

section.
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Figure 3.3 Percent contribution of FCC peaks to the total integrated intensities observed in X-ray
diffractograms, as shown in Figure 2.2 for the DC alloys and Figure 3.2 for the RP alloys.

3.2.3. Grain size and phase distribution

Figure 3.4 shows the TEM images along with the electron diffraction patterns of

the RP alloys. The phase contents, as inferred from the electron diffraction patterns in

Figure 3.4, are consistent with the XRD results shown in Figure 3.2 - alloys with up to

7.8 at.%-Mn comprise a single FCC phase; alloys with Mn contents between 8.2 and 10.4

at.% contain an amorphous phase co-existing with the FCC phase, as evidenced by the

diffuse halo between the (111) and (200) FCC rings; alloys with more than 11 at.%-Mn

consist of a single amorphous phase.

Figures 3.4(a) and (b) indicate that when the Mn content increases from 0 to 6.1

at.%, the average grain size decreases from -2.5 to -1 pm. Interestingly, alloys with 7.0

and 7.8 at.% Mn contents exhibit nanometer-sized grains, with averages of -500 and

-160 nm, respectively (see Figures 3.4(c)- (d)). Further increase in Mn contents from 8.2

to 10.4 at.% causes the average grain size to decrease from to -37 nm to -5 nm.
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Figure 3.4 Bright-field TEM images and electron diffraction patterns of the RP alloys. Note the
single phase nanocrystalline structures in (c)-(d). Images (e)-(g) shows that the two-phase alloys no
longer comprise the domain-network structures observed in the DC alloys in Figure 2.4.
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The relationships between solute content and crystalline grain size for both the

DC and RP alloys are illustrated in Figure 3.5(a), where the region shaded gray

corresponds to the composition range where the alloys exhibit a single crystalline phase.

Whereas the DC alloys show an abrupt microcrystalline-to-nanocrystalline transition

upon the appearance of an amorphous phase at -8 at.%-Mn, the grain size of the RP

alloys gradually transitions from microns to nanometers at -7 at.%-Mn, before an

amorphous phase emerges at -8 at.%-Mn. Thus, Figures 3.4(c)-(d) and 3.5(a) underscore

that with the use of a reverse-pulsed waveform, nanocrystalline grain sizes can be

achieved in single phase Al-Mn electrodeposits.
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Figure 3.5 (a) Average grain sizes of DC and RP alloys at different Mn compositions. Region shaded
gray represents the composition range within which both the RP and DC alloys contain a single FCC
phase. The grain size distribution of -250 grains observed in the 8.2 at.%-Mn alloys are shown in (b)
for the DC alloy and (c) for the RP alloy. Also shown in (c) is a lognormal distribution curve.

The grain size distribution of -250 grains observed in the DC and RP alloys

containing 8.2 at.%-Mn are shown in Figures 3.5(b) and (c), respectively. The thick solid

line in Figure 3.5(c) represents a lognormal distribution curve. In contrast to the DC

alloy, which exhibits a bimodal grain size distribution centered at -40 and -4 nm, that of

the RP alloy concurs well with the lognormal distribution, with an average grain size of

-37 nm. In addition to changing the grain size distribution, the TEM images presented in

Figures 3.4(e)-(h) show the duplex RP alloys do not exhibit the characteristic domain-

(b) DC 8.2 at.%-Mn

- F



network structure that was observed in the DC alloys (cf. Figures 3.4(b)-(e)). Instead, the

FCC grains appear uniformly dispersed and the amorphous phase is assumed to be

distributed in the intergranular regions.

The results presented in this section shows that the use of a reverse-pulsed

waveform effectively allows us to (a) synthesize single phase nanocrystalline Al-Mn

alloys, (b) alter the grain size distribution and (c) homogenize the phase distribution in

duplex Al-Mn alloys.

3.3. Mechanical properties

Based on the results presented in the previous section, the RP alloys exhibit three

distinct phase compositions: a single FCC phase, an FCC phase co-existing with an

amorphous phase and a single amorphous phase. One alloy is selected from each of these

phase regimes for mechanical testing. The solute compositions, phase contents and

crystalline grain sizes of these alloys are summarized in Table 3.1.

Table 3.1 Solute contents of the three RP alloys selected for mechanical testing are listed on the top
row. Also shown are the phase composition, FCC grain size, micro-hardness and tensile elongation
at fracture of each alloy.

Alloy composition (at.%-Mn)

7.8 8.2 13.8

Phase content FCC FCC + amorphous amorphous

FCC grain size (nm) 159 37 -

Microhardness (GPa) 3.0 3.4 4.5

Tensile elongation (%) >37 13 5

3.3.1. Micro-hardness

Results of our micro-indentation tests are tabulated in Table 3.1. That the 7.8

at.%-Mn alloy exhibits a high hardness of -3.0 GPa is likely due to solid solution

strengthening effects and its nanocrystalline grain size. Further increase in Mn content

and reduction in grain size causes the hardness of the 8.2 at.%-Mn alloy to increase to

-3.4 GPa. The 13.8 at.%-Mn amorphous sample exhibits the highest hardness of -4.5

GPa. Even though the role of solute on the strength/hardness of amorphous phases is not

well understood, the negative heat of mixing between Al and Mn indicates that Mn



additions increase the average bond strength in the alloy, which would promote higher

hardness.

3.3.2. Tensile ductility

SEM images of the Al-Mn films that were subject to -37% tensile strain during

the guided bend tests are presented in Figure 3.6. Low-magnification images of the entire

bent surfaces are shown on the left column; images on the right correspond to higher

magnification images of the bent regions.

mm

(e) 13.8 at.%-Mn (f) 13.8 at.%-Mn

1 MM 50 pm

Figure 3.6 SEM images of the entire bent surfaces of films that were subject to -37% tensile strain
are shown on the left column. Corresponding higher magnification images of the bent regions are
presented on the right.



Figures 3.6(a)-(b) show that the 7.8 at.%-Mn specimen remained crack-free, thus

indicating that its ductility exceeds 37%. On the other hand, the same level of strain

resulted in micron-sized fissures with topologically rough edges in the 8.2 at.%-Mn alloy,

as shown in Figures 3.6(c)-(d). The extent of cracking increased further in the

amorphous 13.8 at.%-Mn film (Figures 3.6(e)-(f)), where cracks initiated at the sample

edge and terminated slightly more than halfway across the sample width. Even though

Figures 3.6(c)-(f) indicate that the 8.2 and 13.8 at.%-Mn specimens exhibit lower

ductility than their single phase nanocrystalline counterpart, their abilities to resist crack

propagation, together with the jagged crack edges point to some degree of toughness.

Reduction of the applied strain to -13% and -5% during the bend tests resulted in

fissure-free surfaces for the 8.2 and 13.8 at.%-Mn specimens, respectively. The tensile

elongations at fracture of these alloys are listed in Table 3.1.

3.3.3. Fractography

The fracture surfaces of the 7.8 and 8.2 at.%-Mn films are presented in Figures

3.7(a)-(b) and (c)-(d), respectively, where higher magnification images are shown on the

right column. In these images, black solid lines are used to demarcate the Al-Mn film

and copper substrate; the tensile axis points out of the page. Chisel-type or knife-edge

fracture is observed in both samples; such fracture surfaces, which are more aptly called

"rupture surfaces" since the corresponding reduction in area is almost 100%, occur when

failure is delayed until a high degree of necking has occurred, i.e. they are commonly

observed in metals and alloys that exhibit high ductility [130-137]. Upon necking, zones

of localized shear develop and rupture occurs when two opposing diagonal shear zones

cross through the center of the neck [131, 133, 136]. It is proposed that chisel-type

fracture is an alternative fracture mode to "cup-and-cone" fracture in ductile materials

when void development and coalescence are suppressed [130, 131]. Thus, the chisel-

edges observed in Figures 3.7(a)-(d) provide corroborating evidence of non-negligible

toughness in these nanostructured alloys.
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Figure 3.7 SEM images of the fracture surfaces of films containing (a)-(b) 7.8, (c)-(d) 8.2 and (e)-(f)
13.8 at.%-Mn. In images (a)-(d), the solid black lines demarcate the Al-Mn film and its copper
substrate and the double-headed arrows are used to roughly approximate the film thickness in the
trailing regions of the fracture.

The double-headed arrows in Figures 3.7(a)-(c) represent rough approximations

of the film thicknesses at the trailing regions of the rupture. The values are -6-7 and -9-

10 pm for the 7.8 and 8.2 at.%-Mn films, respectively. Even though these values do not

reflect the exact film thickness prior to fracture, similar measurements along other

regions of the fracture surfaces consistently yielded values that are less than -7 pm for

the 7.8 at.%-Mn film while those for the 8.2 at.%-Mn are -9 pm. Since the as-deposited



film thickness was -10 prm for both alloys, it is reasonable to deduce that the 7.8 at.%-

Mn alloy fractured after necking down more extensively than the 8.2 at.%-Mn film. This

explanation is consistent with the higher tensile ductility observed in the 7.8 at.%-Mn

alloy (see Table 3.1).

Figures 3.7(e)-(f) illustrate different features observed along the fracture surface

of the amorphous 13.8 at.%-Mn film; these images were obtained from different regions.

Both images show that the fracture surface is inclined at an angle to the plane normal to

the tensile axis, which is consistent with catastrophic failure due to shear-banding-a

deformation mechanism commonly observed in amorphous alloys and metallic glasses.

In contrast to a simple shear-off appearance observed in brittle alloys, the fracture

surfaces in these images appear rough. The vein-like patterns in Figure 3.7(e) reflect

local viscous flow and indicate some amount of plastic flow is involved in fracture [138-

140]. Additionally, step-like relief in Figure 3.7(f) could be related to multiple shear

bands operating at once, which has been associated with enhanced malleability since the

microscopic strain is the sum contribution of local strain from every shear band [141,

142].

The results presented in Figure 3.7 provide corroborating evidence that legitimate

plastic flow can occur in these nanostructured and amorphous alloys, and also

qualitatively illustrate the decreasing trend in toughness as solute content and amorphous

phase fraction increase.

3.3.4. Post-mortem TEM

Post-mortem TEM images of a 7.8 at.%-Mn film that sustained a tensile strain of

-37% without cracking are shown in Figure 3.8(a)-(b), where (a) corresponds to a region

far away from the bend and (b) corresponds to a strained/bent region. This specimen is

single phase FCC, and has a grain size of -159 nm. Comparison of both images reveals

higher dislocation density within the grains of the deformed region, possibly due to

dislocation nucleation and emission from grain boundaries and dislocation entanglement

during deformation [143]; these results are consistent with the notion that nanocrystalline

grain sizes above -100 nm are capable of normal dislocation activity [7, 8].
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Figure 3.8 TEM image in (a) belongs to a region far from the bend; image (b) corresponds to a bent
region where the applied tensile strain is -37%. The corresponding grain size distributions are
shown in (c) and (d), along with the lognormal distribution curves. The cumulative grain size
distribution plots of both regions are illustrated in (e).

A comparison of the bright-field images in Figure 3.8(a) and (b) also hints of

coarser grains in the strained region. The corresponding electron diffraction pattern in

Figure 3.8(b) comprises bigger and more discrete spots than that of the as-deposited

sample (Figure 3.8(a)), also suggesting the possibility of some deformation-induced grain

coarsening. The grain size distributions in the un-deformed and strained regions are

plotted in Figures 3.8(c) and (d), respectively, along with the corresponding lognormal

distributions, which are represented by thick solid curves. Grain sizes were measured on

more than 400 grains in each region. In the un-deformed region, the grain size

distribution concurs rather well with the lognormal distribution (Figure 3.8(c)). The grain

size distribution of the deformed region, as shown in Figure 3.8(d), exhibits greater

deviation from lognormal. More specifically, grain sizes between -70 and 90 nm, as well

as -300 and 400 nm, are observed more frequently than expected for a lognormal



distribution. The cumulative grain size distributions in both regions are presented in

Figure 3.8(e), where grain sizes in the strained region are evidently larger than in the un-

deformed region. Our post-mortem analysis indicates that upon deformation, the average

grain size increased from 159 to 184 nm. Deformation-induced grain growth could be

facilitated by grain sliding, which brings grains of similar orientation into close contact

[143], or by grain rotation, which causes neighboring grains to coalescence [144, 145], or

by stress-assisted grain-boundary migration [146]. That a 16% increase in grain size is

insufficient to account for the 37% applied tensile strain shows that both dislocation

activities and grain boundary mediated deformation mechanisms, such as deformation-

induced grain coalescence, contribute to the high toughness of the 7.8 at.%-Mn alloy.

Based on the above discussion, we expect that the 8.2 at.%-Mn alloy exhibits

lower toughness because it comprises smaller nano-grains (-37 nm) that are less capable

of dislocation storage and accumulation. Also, this specimen is dual-phase, and we

believe that the amorphous phase is located in the intergranular regions; this would tend

to inhibit grain growth and coalescence by conventional mechanisms. Consequently,

statistically significant changes in the grain size distribution were not observed from our

post-mortem TEM images, as shown in Figure 3.9.

Post-mortem TEM analysis of the 13.8 at.%-Mn sample revealed that an

amorphous phase prevailed at the deformed region; thus, ruling out the possibility of

deformation-induced crystallization.

200 nm 200 nm
Figure 3.9 TEM images of a 8.2 at.%-Mn sample; image (a) belongs to a region far from the bend;
image (b) corresponds to a bent region where the applied tensile strain is -13%.



3.3.5. Hardness vs. toughness

Figure 3.10(a) compiles the hardness and ductility of our alloys. The solid red

diamonds denote alloys that did not exhibit any crack or fissure after the guided bend

tests while the white diamonds outlined in red represent alloys that cracked. Also shown

in the plot are the corresponding values for commercial Al alloys and structural steels.

The hardness, H, of some Al- alloys are approximated from their reported yield stress, ay,

by using Tabor relation, i.e. H ~ 3 cy . Figure 3.10(a) shows that our alloys exhibit high

hardness and toughness that not only outperform other Al alloys, but are also comparable

to structural steels. Because our alloys weigh three times less than steels, a remarkable

combination of high specific hardness and tensile elongation is achieved, as shown in

Figure 3.10(b).

7
(a) Al-Mn (no cracks) (b)

6 Al-Mn (cracked) 20006 Commercial Al alloys'
A Al alloys (H~3a

5 0 Steels
3/ 1500

4
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r2A

(b)

20
5 500

0 20 40 60 0 20 40 60
Elongation at fracture (%) Elongation at fracture (%)

Figure 3.10 Ashby plot showing (a) hardness and (b) specific hardness vs. tensile elongation at
fracture of our electrodeposited Al-Mn alloys. Samples that did not exhibit any crack after the
guided bend test are represented by solid red hexagons. The solid black arrows pointing to the right
of these hexagons indicate that the ductility of these samples exceeds the values represented by the
data points. Samples that failed, i.e. exhibited fissures or cracks of any length and width, are denoted
by pentagons outlined in red. Also shown in this plot are the properties of commercial Al-based
alloys, as well as structural steels.

The toughness exhibited by our nanocrystalline and nanostructured alloys

outperforms many electrodeposited nanocrystalline metals and alloys. In contrast to

common methods that are used to electrodeposit nanocrystalline metals and alloys, such

as by adding organic additives into the electrolytic bath to promote grain nucleation, the

1 -7



technique employed here does not introduce additional impurities into the deposits. In

fact, experimental evidence of nanocrystalline metals and alloys with low impurity

contents that are produced by severe plastic deformation also suggests that such materials

can exhibit high ductility and that the low tensile ductility observed in other studies could

be related to contaminants [5, 6].

Therefore, the combination of high hardness and toughness reported in this study

is mainly attributed to our ability to (a) synthesize single-phase nanocrystalline grains

without using organic additives and (b) create uni-modal grain size distribution and

homogeneous phase distribution in nanocrystalline/amorphous duplex alloys through the

application of a reverse-pulsed current waveform.

3.4. Conclusions

With an eye to achieve high hardness and toughness in electrodeposited Al-Mn

alloys, we employ a reverse-pulse current waveform to tailor the characteristic grain size,

grain size distribution, as well as phase distribution of the alloys. In this study, alloys

with Mn contents between 0 and 13.8 at.% were synthesized. Between 0 and -7.8 at.%-

Mn, the alloys comprise a single FCC solid solution phase; between -8.0 and -10.4 at.%-

Mn, the FCC phase co-exists with an amorphous phase; above 11.0 at.%-Mn, a single

amorphous phase dominates. Unlike Al-Mn alloys electrodeposited with conventional

DC current, the following microstructures were achieved:

* Single phase nanocrystalline grains.

e Uni-modal nanocrystalline grain size distribution.

0 Homogeneous phase distribution.

As a result of the fine microstructural length-scales and structural homogeneity,

these alloys were found to exhibit an impressive combination of hardness and toughness:

e The single phase 7.8 at.%-Mn alloy exhibits a high micro-hardness of -3.0

GPa because of its nanocrystalline grain size (-159 nm) and solid-solution

strengthening. Activation of grain boundary mediated deformation

mechanisms, such as grain growth, in addition to dislocation-mediated

plasticity result in an impressive ductility of >37%.



e The 8.2 at.%-Mn two-phase alloy exhibits finer nanocrystalline grains

(-37 nm) and thus, higher micro-hardness of -3.4 GPa. Because of its

unimodal grain size distribution, low fraction of grains that are less than

-10 nm and homogeneous phase distribution, its elongation at fracture

reaches a respectable value of -13%. It is likely that the amorphous phase

inhibits grain boundary-mediated deformation mechanisms, thus resulting

in lower toughness than its single phase nanocrystalline counterpart.

* The 13.8 at.%-Mn amorphous alloy exhibits the highest hardness of -4.5

GPa. Because of shear band formation and rapid shear band propagation,

its ductility value is only -5%. That some degree of toughness is observed

in this amorphous alloy can be attributed to multiple shear band formation.

This work highlights the use of reverse-pulsing to tailor the microstructure of

multi-phase electrodeposits and underscores that high hardness and toughness can be

simultaneously achieved in nanocrystalline, nanostructured and amorphous alloys.



4. An atom probe investigation of weak solute partitioning in

nanocrystalline and amorphous phases of Al-Mn 3

Because of homogeneous phase distribution and very fine microstructural length-

scales (<40 nm) in the dual-phase RP alloys, traditional techniques like STEM and EDX

in the TEM are inadequate to probe solute partitioning between the different phases of

these alloys. Three-dimensional atom probe tomography (APT), on the other hand, offers

atomic-level resolution. In this chapter, we employ APT to characterize our

nanostructured and amorphous RP alloys. Using single phase alloys as baselines for

comparison, we specifically aim to understand the solute distribution in a two-phase

nanocrystal/amorphous alloy, where the solute is only weakly partitioned between the

two phases, which are themselves homogeneously distributed spatially. We show that

although the compositional difference between the two phases is far too small to provide

contrast for imaging and analysis by standard data analysis techniques, we can identify

the phases by using implanted Ga ions as markers, because they preferentially decorate

the amorphous phase. The use of such chemical markers can enhance the capability of

APT as an avenue for probing the structures of nanostructured and amorphous alloys with

subtle composition inhomogeneities. A review of APT studies on nanostructured and

amorphous alloys is provided in section 4.1.

4.1. APT studies on nanostructured and amorphous alloys

The properties of nanostructured and amorphous alloys rely on details of the

solute content and its distribution at the finest scales. For example, in nanocrystalline

alloys, chemical ordering and solute enrichment at grain boundaries affect such properties

as strength and thermal stability [17, 19, 20, 31, 147-149]. In amorphous alloys, subtle

changes in chemical composition influence crystallization behavior and glass forming

ability [29, 30, 150-165]. In dual-phase nanocrystal/amorphous composites, the phase

composition, phase fraction and phase distribution impact, for instance, their magnetic

3 The APT experiments described in this chapter were done in collaboration with G.B.Thompson and
K.L.Torres at the University of Alabama, Tuscaloosa.



[26-32] and mechanical properties [33-35]. Thus, a sound understanding of solute

distribution at scales from the nanometer down to the sub-nanometer regime is central to

tailoring the properties of nanostructured and amorphous alloys. Unfortunately, many

traditional chemical mapping methods like Auger microscopy and energy dispersive x-

ray spectroscopy in the transmission electron microscope (TEM) lack the resolution

necessary for these advanced problems. On the other hand, three-dimensional atom

probe tomography (APT) has very high spatial and chemical resolution, as well as equal

sensitivity for all elements [166-168]; as a result, APT has been increasingly used to

probe the spatial distribution of atoms in nanostructured and amorphous alloys.

There have been several APT studies on nanocrystalline alloys. Among these, the

most common issue addressed is local chemistry at grain boundaries [33, 35-38, 43, 129-

136]; nanostructure formation in many such alloy systems is attributed either to the

thermodynamic effect of solutes in decreasing grain boundary energy [19, 20, 147], or to

the kinetic effect of solutes in inhibiting grain growth [169, 170]. Additionally, APT

studies on some Ni-P [17, 31] and Co-P [147] alloys help account for their high thermal

stabilities; in such systems, as the alloys are heated to higher temperatures, the extent of

solute segregation to grain boundaries increases, thus decreasing the driving force for

grain growth. APT has also been employed to elucidate the phase transformation

sequence and mechanisms in nanocrystalline alloys [17, 31, 53, 147, 171, 172]: as

temperature increases, solute enrichment occurs at the grain boundaries until a new

solute-rich phase precipitates there.

Valuable knowledge about amorphous alloys, such as their crystallization

mechanism during heat treatment, has also been acquired from APT studies [29, 30, 150-

165]. In these studies, clusters of atoms are identified by considering the local density

around each atom [28-30, 151-155, 157, 160, 162-165, 173, 174]. The chemical identity

of atoms in these pre-nuclei, in turn, helps rationalize the effects of subtle chemical

composition changes on the nucleation behavior of the alloys. Dual-phase

nanocrystalline/amorphous composites formed by such partial devitrification processes

have also been the subject of many APT studies, where the segregation tendencies of

solute atoms to the different co-existing phases are established [26-29, 31-35, 159, 161,

175-183]. In some of these works, the volume fraction of each phase, together with its



composition, is quantified, and the microstructures that optimize the magnetic properties

[26-32] and malleability [33-35] are identified.

The above studies contribute significantly to our fundamental understanding of

nanostructured and amorphous alloys. However, most of these studies are restricted to

alloy systems that exhibit strong tendencies for solute segregation to interfaces [17, 19,

20, 31, 147] or among different phases [26-35], and to alloys that experience long

thermal exposures [26-29, 31-35, 150, 159, 161, 175-183], which aids redistribution of

solute atoms among the different phases. In such cases the extent of solute segregation

often exceeds a factor of two, so compositional differences are easily visualized via atom

dot maps, and quantified by standard atom probe data analysis techniques, such as ladder

diagrams and one-dimensional composition profiles. Very few APT studies have been

carried out on weakly-segregating systems, or on multi-phase alloys that are formed by

driven or out-of-equilibrium processes without post-annealing, because in such cases, it is

challenging to distinguish the different phases and features [19, 20, 178].

4.1. Experimental procedures

Four RP alloys were prepared using the procedures described in section 3.1. The

compositions of these alloys were measured by energy-dispersive spectroscopy (X-ray

Optics/AAT #31102 in a Leo 438VP scanning electron microscope) and confirmed by

atom probe tomography (see Table 4.1). In what follows we will refer to these samples

by the average compositions determined by both methods, i.e. -8.0, 9.2, 10.2, and 15.0

at% Mn for samples 1-4, respectively. XRD and TEM characterization of these alloys

were performed using the procedures described in section 2.1.

Sharp atom probe tips with radii of curvature between 50 and 100 nm were

prepared from the alloy sheets by annular focused ion beam (FIB) milling. The in situ

lift-out technique described by Thompson and co-workers was used to shape the tips into

the appropriate geometry [184]. The lift-out procedure was conducted using a FEI

Quanta 3D dual-beam FIB. Initial milling was performed at 30 keV and final milling at 5

keV. The atom probe tips were analyzed using an Imago Scientific Instruments Local

Electrode Atom Probe (LEAP @) 3000XSi. All analyses were performed at 10-9 Pa, with

a tip temperature of 60 K, a pulse fraction of 25%, and a pulse repetition rate of 200 kHz.



Multiple atom probe tips were prepared and analyzed to ensure data reproducibility.

Table 4.1 lists the total number of atoms collected for each APT tip; the typical sample

size was between 5 and 15 million atoms. Data analysis was conducted with custom

software programs written by the authors.

Table 4.1 A summary of the total number of atoms collected for each APT specimen, along with its
APT and SEM/EDX alloy composition. Also shown are the grain sizes determined from XRD and
TEM analysis.

Deposition APT Total number Composition (at.%) Grain size (nm)
number sample of atoms APT SEM/EDX

collected Ga Mn Mn XRD TEM

1 A 5,977,410 0.02 8.25 7.8±0.2 - 159

B 8,765,416 0.17 8.39

2 C 14,197,531 0.34 9.12 9.5±0.3 25±4 19
D 9,604,795 0.25 9.03

3 E 13,401,688 0.24 10.07 10.5±0.3 - 5

F 10,153,271 0.23 10.21
G 7,342,614 0.22 10.13

4 H 2,202,166 0.12 16.15 14.0±0.3 - -

4.2. Composition and structure of the deposits

This section provides a short review of the composition and structure of the four

RP alloys used in this study; the details are discussed earlier in chapter 3. Note, however,

that in chapter 3, the alloys are labeled according to the compositions determined using

SEM/EDX; in this chapter, the average compositions determined from SEM/EDX and

APT are employed (see Table 4.1).

In electrodeposited Al-Mn, there is a well-documented transition in structure as

the deposit composition increases through the range of -6-15 at.% Mn, as discussed in

chapters 3 and 4 and prior literature [61, 70, 76, 77, 103]. Generally, single-phase FCC

Al(Mn) solid solutions prevail at lower Mn contents, near 6-9 at.%, a second amorphous

phase emerges and coexists with nanocrystalline FCC Al(Mn), and at higher Mn contents

the structure becomes entirely amorphous [61, 70, 76, 77, 103]. The present set of

samples was designed to explicitly cover this range of compositions, to better explore the

attendant structural changes. And, our results in Figure 4.1, which shows the XRD



patterns and TEM images of the four samples, bear out the trend described above and

discussed in prior literature [61, 70, 76, 77, 103].

In Figure 4.1(a), XRD reveals sharp and narrow peaks in the 8.0 at.%-Mn alloys,

which are also consistent with the bright spots observed in the electron diffraction pattern

in Figure 4.1(b), and are indexed with the FCC Al(Mn) solid solution reflections. TEM

reveals that the grain size of the 8.0 at.%-Mn alloy ranges from 50 to 500 nm, with a

number average size of -159 nm and volume-average spherical-equivalent grain size of

373 nm.

In Figure 4.1(c), the XRD pattern of the 9.2 at.% Mn alloy reveals a broad and

low-intensity amorphous-like halo at 20 ~ 42', in addition to the FCC Al(Mn) solid

solution reflections. The calculated XRD grain size of the FCC phase is 25 nm.

Consistent with this, the bright-field TEM image in Figure 4.1(d) shows a two-phase

structure comprising crystals between -10 and 80 nm in diameter (21 nm number-

average and 36 nm spherical equivalent diameter), randomly distributed in an amorphous

matrix, which constitutes about one-third of the dual phase structure.

At a higher Mn content of about 10.2 at.%, the amorphous halo dominates the X-

ray diffractogram, as shown in Figure 4.1(e), with a barely discernible FCC (111) peak

superimposed. Consistent with this, TEM imaging reveals mostly featureless regions,

although a very few -5 nm crystallites can be found embedded in an amorphous matrix;

the bright-field image in Figure 4.1(f) shows one of these relatively rare instances. These

samples are thus "near-amorphous".

Finally, at a Mn content of about 15.0 at.%, the alloy comprises only the

amorphous phase, as evidenced by the rounded amorphous halo in the XRD pattern and

the diffuse ring in the electron diffraction pattern in Figures 4.1(g) and (h), respectively.

The bright-field image reveals a featureless microstructure, which is characteristic of an

amorphous alloy.
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Figure 4.1 XRD patterns of the electrodeposited Al-Mn alloys are shown on the left column. The
corresponding bright-field TEM images and electron diffraction patterns are shown on the right.
The four rows respectively correspond to samples 1, 2, 3, and 4, from Table 4.1. Notice the
transition from a single FCC phase to an amorphous phase as Mn content increases.



4.3. APT analysis of Mn distribution

Perspective views of a few typical APT specimens are shown on the left column

of Figure 4.2; the Al and Mn atoms are represented by yellow and blue dots, respectively.

Although no dot maps are shown for the 15.0 at% Mn specimen, the data appear very

similar those from the 10.2 at% Mn sample in Figures 4.2(e)-(f). In all three specimens,

Al and Mn atoms appear randomly distributed to the eye. Similar uniformity in solute

distribution is observed in the corresponding two-dimensional atom dot maps shown on

the right. These 2 nm-thick cross-sectional slices are extracted perpendicularly to the z-

axis of the sampling volume, which lies along the acquisition direction. The only

possible suggestion of local compositional variations is for the 9.2 at% Mn specimen in

Figures 4.2(c)-(d), which appears somewhat more mottled in appearance than the other

samples. To further evaluate the distribution of Mn we now present a quantitative

analysis using standard atom probe data analysis techniques. In the following we present

typical data for each deposit composition, but we stress that in every case where duplicate

APT specimens were analyzed (see Table 4.1), the results were reproducible between

samples of the same composition.

First, we employ Mn composition profiles to evaluate characteristic length scales

present in the solute distribution. The specimen volume is divided into 1.5 x 1.5 x 1.5 nm

blocks on a fixed grid, resulting inn., n, and nZ blocks in each of the three directions.

The composition in each block is then computed, yielding c'(x, y,z), where i denotes the

composition of a given species, e.g., Mn. For each chain of composition blocks parallel

to the x-axis, its average solute content, c' (y,z), and the corresponding standard

deviation, a' (y,z), are also calculated. Figure 4.3 shows typical composition profiles

along the x-direction for all four specimens. The horizontal solid lines in these plots

represent the average composition, i.e., c' (y,z), and the dashed lines denote values that

are two standard deviations above or below the average composition, i.e.,

c' (y,z)±2a (y,z). Values exceeding the upper threshold represent statistically
0 0

significant solute enrichment; values below the lower threshold denote solute depletion.



(b) 8.0 at.%-Mn

(d) 9.2 at.%-Mn

(e) 10.2 at.%-Mn

Figure 4.2 Perspective views of a few representative APT specimens are shown on the left column
with corresponding two-dimensional atom dot maps in the x-y plane on the right. These images are
obtained from (a)-(b) sample 1A, (c)-(d) sample 2C and (e)-(f) sample 3E (see Table 4.1). The yellow
dots represent Al atoms and the blue dots denote Mn atoms.

Figure 4.3 shows that in samples from each of the four specimens, Mn content

fluctuates only mildly about its mean value. For each sample, the local Mn content

remains within two standard deviations of the mean value; only rarely does the

(a) 8.0 at.%-Mn



composition even approach the upper threshold, and there is no convincing spike of Mn

content that would be regarded as a clear signature of local enrichment. Such results are

in contrast to strongly-segregating systems, where the composition profiles not only

reveal regions of local solute enrichment or depletion, but also the characteristic length-

scales involved [185].
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Figure 4.3 Typical one-dimensional composition profiles of Mn in the APT specimens. The sampling
volume was divided into 1.5 x 1.5 x 1.5 nm blocks to compute the local solute content. The thin
horizontal line represents the average solute content; the thin dashed lines represent values that are
two standard deviations away from the average composition. In all four samples, Mn distribution
appears uniform.

The lack of periodicity in Mn composition distribution is also confirmed

statistically using the autocorrelation function along the long axis of each sample. Figure

4.4 shows a few representative autocorrelation functions (represented by solid lines),

which all decay rapidly to negligible values and exhibit no non-trivial peaks. Non-trivial

peaks in these data would indicate a characteristic wavelength in composition

distribution, and their absence is suggestive of a homogeneous Mn distribution. What is

more, all of the fluctuations and noise in the data here are purely an artifact of sample

size: when the chemical identities of the atoms in these samples are randomized at

constant compositions, the dashed lines in Figure 4.4 result. The similarity of the

autocorrelation functions for the true data and compositionally randomized data verify

that the Mn distribution is homogeneous.
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Figure 4.4 Autocorrelation functions of Mn content along the long axis of each sample, plotted as a
function of wavelength, k. The sampling volume was divided into 1.5 x 1.5 x 1.5 nm blocks to
compute the local solute content. The thick solid lines represent experimental results, whereas the
thin dashed lines denote results obtained for compositionally randomized structures with the same
atomic positions.

Finally, statistical analysis of the Mn content is performed by counting the

frequency of composition observations amongst small blocks within a single sample. For

this analysis we divide the specimen volume into blocks containing 100 Al and/or Mn

atoms. The results are shown by solid circles in Figure 4.5 for a set of typical specimens

spanning the four compositions. The dashed curves in Figure 4.5 represent the

probability density function, P(c), of a normal approximation to the binomial distribution:

1 (_____(4-1

P(c)= a exp-(- (2C
odz 2c2u2

where C2 =co(1-co)/n and n=100. The binomial distribution describes the case of a

perfectly random binary solid solution, since it represents n independent series of

Bernoulli trials; in a perfectly random alloy, the probability of a solute atom occupying

any atomic site is that of a Bernoulli trial, which depends only on the average

concentration, co. Since n is sufficiently large, the normal approximation holds [186].

(c) 10.2 at.%-Mn

I nm
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Figure 4.5 shows that the composition distributions in all of our specimens agree

rather favorably with the binomial distributions. In fact, for the samples containing 8.0,

10.2 and 15.0 at.%-Mn, the data are in excellent agreement with the binomial distribution
2

(c.f. Figures 4.5(a),(c) and (d)), with very high coefficients of determination of R2

0.985, 0.992 and 0.992, respectively. In these specimens, there is no suggestion from the

present data that there is any significant solute clustering or ordering; the data support the

interpretation of a homogeneous Mn distribution.

Only in the case of the 9.2 at% Mn sample is there any hint of non-random solute

distribution. For this specimen (Figure 4.5(b)) there is a small but reproducible

disagreement between the measurement and the binomial distribution, especially at

compositions between 8 and 11 at.% (highlighted by an arrow on the figure). The

experimental distribution is somewhat shorter than the binomial; such a deviation is

directionally suggestive of some degree of solute segregation or phase separation.

However, the difference is sufficiently small that, by itself, it cannot be construed as

decisive evidence of any structural heterogeneity. Quantitatively, the disagreement is

very slight for the two separate samples tested in this work (samples 2C and 2D in Table

4.1), their coefficients of determination for Equation (4-1) being high at R2 = 0.977 and

0.978, respectively.
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Figure 4.5 Composition distributions of Mn based on binning the APT data into blocks containing
100 Al and Mn atoms. Experimental results are denoted by solid circles and the binomial
distributions are represented by dashed lines. The coefficients of determination, R2, are (a) 0.985, (b)
0.977, (c) 0.992 and (d) 0.992. Notice that in (b), there is a slight discrepancy between the

experimental result and binomial curve, especially between 8 and 11 at.%-Mn (highlighted by an
arrow).

4.4. Enhancing APT phase contrast with Ga markers

The above section showed that both qualitatively and quantitatively, the

distribution of Mn in our alloys appears, to first order, very uniform at all four

compositions. And for the samples with 8.0, 10.2, and 15.0 at% Mn, this result may be

construed as reasonable, since these samples are all essentially single-phase (FCC, near-

amorphous, and amorphous, respectively). However, the 9.2 at% sample is a two-phase

structure that is about two-thirds FCC Al(Mn) and one-third amorphous (cf. Figure 4.1(c)

and (d)). Therefore, that the APT results suggest a uniform composition is somewhat



surprising for this sample. It is certainly interesting that for the 9.2 at% Mn sample, there

are a few subtle suggestions of irregular Mn distribution, such as the more mottled

appearance of the dot map in Figure 4.2(d) or the slight deviation of the composition

distributions from the binomial case in Figure 4.5. However, none of these hints

constitutes clear evidence of Mn partitioning into two identifiable phases. Because the

scale of the APT specimens (-100 x 100 nm) is significantly larger than the characteristic

scale of the dual-phase structure in the 9.2 at% Mn sample (-20-30 nm), there is little

doubt that the APT specimens should sample both phases, which are each present with

significant volume fractions. Thus, we conclude that the Mn partitioning between FCC

and amorphous phases must be very weak in this system. With no structural information

from the APT data, and Mn distributed nearly uniformly, we describe in what follows an

alternative method of revealing phase contrast in the APT data.

Because the present specimens were all prepared through the use of FIB milling

with Ga ions, they all contain implanted Ga. Combined with the well-known rapid

diffusion of Ga in Al [187-191], this leads to Ga atoms distributed throughout the APT

samples. The positions of Ga atoms in the specimens shown in Figure 4.2 are

represented by red dots in Figure 4.6. There are several noteworthy features in these

images. First, in Figures 4.6(a)-(b) and (e)-(f), we observe that in the single-phase

samples (FCC and near-amorphous), the distribution of Ga is quite homogeneous;

although it is not shown here, we find the same homogeneity of Ga in the fully

amorphous 15.0 at%-Mn sample as well. Second, the Ga atoms in the two-phase 9.2

at.%-Mn specimen, as illustrated in Figures 4.6(c)-(d), appear strongly segregated into

patches that have a width of about 10 nm, and which are situated around relatively Ga-

free domains of about -20 and 40 nm in diameter. Third, the total content of Ga is very

low in FCC Al(Mn) in Figures 4.6(a)-(b), while it is substantially higher in the near-

amorphous sample in Figures 4.6(e)-(f). Table 4.1 shows that the global Ga compositions

in these phases are more than an order of magnitude different at 0.02 at.% and 0.34 at.%,

respectively.



(b) 8.0 at.%-Mn

(c) 9.2 at.%-Mn_ (d) 9.2 at.%-Mn

(e) 10.2 at.%-Mn (f) 10.2 at.%-Mn

Figure 4.6 Perspective views of a few typical APT specimens are shown on the left column and the
corresponding two-dimensional atom dot maps are shown on the right. These images are obtained
from the same samples as those shown in Figure 4.2, i.e. (a)-(b) sample 1A, (c)-(d) sample 2C and (e)-
(f) sample 3E. In addition to the Al (yellow dots) and Mn (blue dots) atoms already shown in Figure
4.2, the dot maps presented here also show the Ga atoms (red dots). Figures 4.6(c)-(d) show a
strongly-partitioned Ga distribution.

(a) 8.0 at.%-Mn



Combining the above three observations from Figure 4.6 with the knowledge of

the structure and phases in these samples from Figure 4.1, we conclude that Ga

preferentially decorates the amorphous phase in these samples. The notion of structure-

dependent Ga distribution is supported by extensive experimental and theoretical studies

on the rapid penetration of liquid Ga along disordered intergranular regions in Al [187-

191]. By analogy, we suggest the Ga distribution in Figures 4.6(c) and (d) traces the

locations of the more disordered, amorphous phase in the dual-phase sample. This effect

is reproducible, being observed in both of the two dual-phase samples prepared for APT

analysis; Figure 4.7(a) shows a 2-nm thick slice of the second sample (sample 2D), also

revealing a dual-phase structure in the Ga distribution. In both Figure 4.6(c-d) and Figure

4.7(a), Ga atoms preferentially populate the periphery of regions that have the same

characteristic dimensions as the nanocrystals observed in Figure 4.1(d), i.e. between -15

and 40 nm in diameter.
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Figure 4.7 (a) Two-dimensional atom dot map of sample 2D, showing Ga atoms (red) preferentially
occupying patches that surround domains that are relatively Ga-free; these domains are between -15
and -40 nm in diameter. Such a non-uniform Ga distribution is similar to that observed in Figure
4.6(d) for sample 2C. For these 9.2 at.% -Mn samples, a typical composition profile of Ga is shown in
(b) and the autocorrelation function is shown in (c) with k the wavelength. The plots in (b) and (c)
indicate strong Ga segregation at a wavelength of -20 nm.

That Ga partitioning is observed and reveals the same basic structure expected

from TEM analysis in both samples 2C and 2D, and is not observed in any of our single



phase samples, strongly substantiates the use of Ga as chemical markers for the

amorphous phase. This information can be used in a more quantitative sense to analyze

the phases and structure of the dual-phase specimens, as discussed in more detail below.

Statistical analysis verifies that Ga distributes uniformly in the single-phase

samples: not only do their composition profiles reveal statistically insignificant variations

in Ga composition, but the autocorrelation functions for Ga also do not exhibit any non-

trivial peaks (not shown here). In stark contrast, the Ga composition profile of the dual-

phase specimen, as illustrated in Figure 4.7(b), is highly non-uniform, comprising a few

localized regions of very high Ga content-up to several percent, despite a global

concentration of just 0.34 at.%. Whereas some regions do not contain any Ga atoms,

those that do are either locally-enriched with Ga (i.e., contain significantly more than the

average concentration), or located in close proximity to other Ga-enriched regions. The

enrichment factor in these regions is as high as -8, and they occur at spatial intervals

between -15 and 25 nm.

The corresponding Ga autocorrelation function is presented in Figure 4.7(c).

Unlike all the Mn autocorrelation data in Figure 4.4, the Ga autocorrelation curve

illustrated in Figure 4.7(c) exhibits a large negative trough followed by a positive peak at

20 nm. This curve is statistically significant, as verified by comparing with the dashed

line in Figure 4.7, which is constructed by using the same set of spatial coordinates and

randomizing the chemical identity of the atoms at fixed composition. The non-trivial

positive peak in Figure 4.7(c) corresponds to the average wavelength of the composition

variation, and the magnitude of the first negative minimum is indicative of the extent of

composition variation [185]; this data thus indicates strong Ga segregation at a

characteristic wavelength of -20 nm.

The length-scale of Ga segregation (-20 nm) obtained from Figure 4.7(c) concurs

remarkably well with the number average FCC grain size (-21 nm) measured from

Figure 4.1(d). Thus, the above quantitative analysis is in line with our qualitative

assessment of Figures 4.6 and 4.7: Ga preferentially populates the amorphous phase.

Careful cross-examination of Figures 4.2(d) and 4.6(d) suggests that the Ga-

enriched regions in Figure 4.6(d) may correspond to regions that are slightly Al-depleted

(or equivalently, Mn-enriched) in Figure 4.2(d). To quantitatively assess the co-



segregation behaviors of Mn and Ga, we employ contingency tables. The results

obtained for specimens of three compositions are shown in Tables 4.2-4.4; this analysis is

not possible for the 8.0 at% specimen because of its very low Ga content (0.02 at.%).

These tables are constructed from non-overlapping blocks that contain 100 Al atoms

each, following ref. [185]. Here the experimental values that exceed those expected for a

random, uncorrelated condition are shaded dark grey, whereas those that are lower are

shaded light grey. The chi-squared statistic is used to evaluate the extent of deviation

from randomness; the ratios between the chi-squared values computed from Tables 4.2-

4.4 and the corresponding values at the 0.001% significance level are 81, 1.2 and 1.1;

these respectively refer to the three compositions: 9.2, 10.2, and 15.0 at% Mn. Since the

ratios for the 10.2 and 15.0 at.%-Mn specimens are very close to unity, Mn and Ga

distributions are very likely uncorrelated in these specimens. On the other hand, there is

compelling evidence for Mn and Ga co-segregation in the 9.2 at.%-Mn specimen, with a

chi-squared ratio of 81, much greater than unity.

Table 4.2 Contingency table for blocks of atoms containing 100 Al atoms in the 9.2 at.%-Mn
specimen. The chi-squared statistic for experimental deviation from randomness is 2259 and the
corresponding value at the 0.001% significance level is 28.

1 1# Ga atoms

93445 20337 7746 3410

Table 4.3 Contingency table for blocks of atoms containing 100 Al atoms in the 10.2 at.%-Mn
specimen. The chi-squared statistic for experimental deviation from randomness is 33 and the
corresponding value at the 0.001% significance level is 28.

Total 49778 12106 1



Table 4.4 Contingency table for blocks of atoms containing 100 Al atoms in the 16.0 at.%-Mn
specimen. The chi-squared statistic for experimental deviation from randomness is 26 and the
corresponding value at the 0.001% significance level is 23.

# Ga atoms

0 1 >2 Total

0-11 16 870

# Mn atoms 12-16 47 4118

17-21 76 6192

>21 795246

Total 14350 1858 218 16426

Given that Ga partitions to the amorphous phase, and that Mn and Ga are

statistically co-segregated, we conclude that albeit subtle, Mn preferentially occupies the

amorphous regions in the dual-phase sample as well. To further verify this point, we now

employ Ga atoms as chemical markers for the amorphous phase and directly probe the

Mn content in the two phases. Using the 1.5 x 1.5 x 1.5 nm composition blocks

described earlier, blocks of atoms that contain more than 1.74 at.% Ga are considered Ga-

enriched (this level being two standard deviations, 1.40%, from the mean Ga content,

0.34%). Thus, the average Mn content in these Ga-enriched regions corresponds to that

of the amorphous phase. The solute content of the crystalline phase is obtained from the

blocks of atoms that lie in the center regions of the domains that are relatively free of Ga.

The average Mn contents in these regions are 10.1 at.% and 8.0 at.%, respectively.

The relatively subtle enrichment of only -2 at.%-Mn in the amorphous phase is

very reasonable in light of our statistical analyses in the previous section, which

concluded that any segregation was sufficiently subtle as to be transparent to

conventional statistical methods. However, we may return to the results of Figure 4.5(b)

to verify the small extent of Mn segregation in the dual phase sample. Although the data

in Figure 4.5(b) is close to a binomial distribution, the fit is not perfect, and the subtle

segregation of Mn to the amorphous phase could account for this. To incorporate the

effects of Mn preferentially partitioning into the amorphous phase, we modify equation

(4-1) by assuming that the composition distribution in each phase follows a binomial

distribution about its own unique average composition. Thus, the corresponding



composition distribution for an alloy that contains an a and P phase, with volume

fractionsfa andfpl, is given by:

P(c)= f eul 2 + exp 2 (4-2)
a a ?_ 2ora2 47,#2z 2ap2

under the constraints that fa + f,8 =1 and faco,a+fp - O, = cO. Without prior

knowledge on the volume fraction or composition of either of the two phases, two

adjustable parameters remain: fa or f/ and CO,a orcO,,.

Using a to denote the amorphous phase and 8 the crystalline phase, a least-squares

fit of equation (4-2) to our experimental data in Figure 4.5(b) is used to determine these

parameters. The result of this fit is shown in Figure 4.8 as a thick solid curve (labeled

"binomial-binomial").
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Figure 4.8 Composition distribution of Mn in the 9.2 at.% Mn sample; the experimental data are the
same as those shown in Figure 4.5(b), as is the expected binomial distribution curve (dashed line).
The two-phase binomial-binomial fit is represented by the thick solid line and its individual
components are represented by thin solid lines. The coefficient of determination, R2, of the binomial-
binomial fit is 0.999, much higher than that of the single binomial (0.977).

The parameters that yield the binomial-binomial fit are fa =0.25 and co,a,=0.115,

which leads to fp =0.75 and co;l =0.082. Figure 4.8 shows that modeling the composition

distribution with equation (5-2) provides a much better fit to our experimental data than a

single binomial distribution, with a coefficient of determination R2 = 0.999 for both

samples 2C and 2D (as compared to -0.977 and 0.978, respectively, for a single binomial

distribution). The Mn contents in the amorphous and crystalline phases obtained from



this indirect method (11.5 and 8.0 at.%) are also in reasonable agreement with those

obtained from directly measuring the Mn contents in the Ga-enriched and Ga-depleted

regions (10.1 and 8.0 at.%) - Both methods show that the local Mn enrichment is

between about 2 and 3 at.%. Finally, the phase fractions returned by fitting two binomial

curves (25% amorphous) match well with our estimate from TEM observations (-33%

amorphous).

We may also use the Ga markers to shed new light on the composition profile in

Figure 4.3(b), from which we observed that the standard criterion used to define solute

enrichment (i.e. two standard deviations) exceeded the actual extent of solute enrichment,

and the characteristic wavelength for Mn enrichment could not be identified. In Figure

4.9, we revisit the same Mn composition profile (Figure 4.9(b)), but now we use the

corresponding Ga composition profile (Figure 4.9(a)) as a criterion to identify the shaded

bands.
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Figure 4.9 Composition profile of (a) Ga and (b) Mn along the long axis of the 9.2 at.% -Mn specimen
(sample 2C). Regions containing Ga are shaded gray. Note that in these regions, the local Mn
contents are >2 at.% above the average composition (represented by the upper dashed line).

Although only two of these bands coincide with regions that would be considered

formally "Mn-enriched" according to the 2a criterion (see Figure 4.3(b)), we now

observe that all of the bands are associated with local rises in Mn content that exceed the

average solute content by more than -2 at.% (this value is represented by the upper

dashed line in Figure 4.9(a)). Thus, the co-segregation of Mn and Ga permits a more



nuanced view of these composition profiles. The Mn-enriched regions identified in this

way and shaded gray in Figure 4.9, are separated by a periodic distance of about 15 to 20

nm, consistent with the autocorrelation peak at 20 nm and the average crystal size

observed in TEM.

All of the characterization data in this section are mutually consistent, and suggest

that our dual phase sample is roughly comprised one-third of an amorphous phase, which

is slightly enriched in Mn by a factor of about 1.4. The use of Ga as a marker for the

amorphous phase permits this conclusion to be drawn with considerable certainty,

whereas without the use of the markers no conclusions about the phases, their distribution

or compositions, could be drawn.

4.5. Conclusions

One of the greatest challenges in using atom probe tomography to analyze

nanostructured alloys involves identifying different microstructural features, such as

grains, grain boundaries and different phases, from chemical signatures alone. In this

work, we employ APT to study the solute distributions in nanostructured Al-Mn alloys,

where the solute exhibits only a slight tendency to partition into the amorphous phase.

We examine four unique compositions that comprise different amounts of crystalline and

amorphous phases. Standard data analysis techniques show that Mn is uniformly

distributed in the fully crystalline and amorphous specimens. Additionally, even for a

specimen known to be dual-phase (amorphous plus FCC nanocrystals), these techniques

provided no convincing evidence of Mn partitioning between the phases.

Phase contrast in these samples was enhanced by examining the distribution of

Ga, introduced as an artifact from sample preparation by FIB machining of the APT

specimens. Whereas the Ga distributions observed in the single phase specimens (either

FCC or amorphous) are uniform, the amorphous phase incorporates much more Ga than

does the crystalline phase. Because of this, the dual phase specimen shows a large phase

contrast in the distribution of Ga atoms, which are markers for the amorphous phase. In

this sample, the Ga-enriched regions form a network that surrounds regions with

characteristic dimensions that are consistent with the average grain size. Direct

measurements of Mn contents in the Ga-enriched and Ga-poor regions reveal a slight



segregation tendency of Mn to the amorphous phase (10.1 vs. 8.0 at.%-Mn, respectively).

An indirect method, which involves modeling the Mn composition distribution in each

phase with a unique binomial distribution and fitting the resulting binomial-binomial

distribution to the experimental results, is also employed. The Mn contents in the

amorphous and crystalline phases are determined to be 11.5 and 8.0 at.%, respectively.

The good agreement in results obtained from both methods confirms that Mn segregates

subtly (by -2 at.%) to the amorphous phase and further validates the use of Ga ions as

chemical markers for the amorphous phase.



5. Conclusions

This thesis seeks to tailor the nanostructures of electrodeposited lightweight alloys

to achieve high hardness and toughness. To this end, this thesis research involves (a)

electrodeposition of nanostructured lightweight Al-Mn alloys at ambient temperature, (b)

tailoring the structures of Al-Mn alloys to improve their mechanical properties, as well as

(c) developing a method to characterize dual-phase nanostructured alloys with atomic-

level resolution.

Using Al-Mn as a model system that exhibits a wide range of structures and

phases, factors that promote nanostructure formation are investigated through

electrodeposition experiments. Al-Mn alloys with Mn content ranging from 0 to 15.8

at.% are prepared by electrodeposition from an ionic liquid at room temperature and their

structures are systematically analyzed. For alloys with Mn content up to 7.5 at.%,

increasing Mn additions leads to a decrease in grain size of microcrystalline FCC

Al(Mn). Between 8.2 and 12.3 at.% Mn, an amorphous phase appears, accompanied by a

dramatic reduction in the size of the coexisting FCC crystallites to the -2-50 nm level.

At higher Mn contents, the structure is apparently entirely amorphous. For the first time,

we show that these apparently "amorphous" electrodeposits contain pre-existing nano-

quasicrystalline nuclei. Coupled to prior reports on the direct deposition of quasicrystals

at 325'C, our results indicate that low temperature favors nanostructuring down to the

amorphous limit. Even though the nanostructured and amorphous alloys exhibit high

hardness above 3 GPa, their ductility falls below 5%, likely because of grain sizes that

are less than -10 nm, the appearance of a brittle amorphous phase, as well as

inhomogeneous phase distribution.

Based on the experimental results, which indicate that electrode kinetics govern

the structure of electrodeposited Al-Mn alloys, a reverse-pulse current waveform is used

to synthesize Al-Mn alloys for the first time. Reverse-pulsing is found to promote

nanocrystalline grain sizes in the single phase FCC alloys, alter the grain size distribution

of the dual-phase alloys (such that a low fraction of grains are less than 10 nm in

diameter), as well as homogenize the phase distribution of the dual-phase alloys.

Consequently, a combination of high hardness (>3GPa) and toughness (>5% elongation)



is achieved in lightweight Al-Mn alloys. The deformation mechanisms of the

nanocrystalline alloys include dislocation pinning and accumulation, as well as grain

coalescence. In the amorphous alloys, simultaneous operation of multiple shear bands

likely induces some degree of malleability.

The homogeneous phase distribution in the reverse-pulsed alloys, coupled to the

weak partitioning tendency of Mn into the different phases, renders traditional

techniques, such as STEM and EDX in the TEM, inadequate for probing solute

distribution in the RP alloys. To this end, a method to enhance phase contrast in atom

probe tomography is developed. Standard APT data analysis techniques show that Mn

distributes uniformly in single phase (nanocrystalline or amorphous) specimens, and

despite some slight deviations from randomness, standard methods reveal no convincing

evidence of Mn segregation in dual-phase samples either. However, implanted Ga ions

deposited during sample preparation by focused ion-beam milling are found to act as

chemical markers that preferentially occupy the amorphous phase. This additional

information permits more robust identification of the phases and measurement of their

compositions. Our results indicate weak partitioning tendency of Mn into the amorphous

phase in these alloys. Thus, our work shows that the use of chemical markers can

enhance the capability of APT as an avenue for probing the structures of nanostructured

and amorphous alloys with subtle composition inhomogeneities

In closing, this thesis research presents the first systematic structural

characterization and property measurement of Al-Mn alloys electrodeposited at ambient

temperature. A new method of using chemical markers to enhance phase contrast in APT

is also developed. The major highlight of this thesis is our ability to tailor the

nanostructure of Al-Mn alloys to achieve an unprecedented combination of high hardness

and toughness in these lightweight alloys. We are optimistic that the use of chemical

markers will extend the capability of APT for nanostructure characterization and that the

hard and tough Al-Mn alloys synthesized in this work will have useful practical

applications.



6. Directions for Further Research

This thesis represents significant improvements in our ability to synthesize, tailor

and characterize the structures of electrodeposited lightweight alloys. Future research

will most definitely help expand on the knowledge gained here and open the doors to

useful practical applications of these alloys. More specifically, the following issues can

be further explored:

e In chapter 2, grain size refinement in the microcrystalline regime is attributed to

nucleation kinetics at the electrode, based on linear sweep voltammetry results

obtained for other molten salts. To better control grain size in the single phase

regime, future work can investigate the electrochemical effects of adding

manganese chloride to the chloroaluminate ionic liquid.

* The existence of nano-quasicrystalline nuclei in the amorphous 15.8 at.%-Mn

alloy is proved indirectly from calorimetric measurements in chapter 2. It would

be of great scientific interest to directly identify these clusters of atoms from APT

experiments. In fact, such experiments can be carried out on amorphous alloys

with different Mn contents to establish possible relationships between solute

content and the density of pre-existing nano-quasicrystalline nuclei. The

existence of such nuclei may affect the toughness of Al-Mn alloys, thus

establishing such relationships may be of practical importance.

e In chapters 2 and 3, the effects of temperature have not been explored. More

specifically, results from chapter 3 indicate that structural homogeneity enhances

the toughness of the deposits. By extension, high temperature electrodeposition

experiments should also result in more uniform structures that exhibit desirable

mechanical properties. Future experiments can be performed to verify this

hypothesis.

e The use of reverse-pulsing to improve the ductility of Al-Mn alloys is illustrated

in chapter 3 for a specific waveform. Variations in pulse durations, pulse current

densities, shape of the current waveform, etc. are likely to influence the alloy's

structure and property as well. Experiments that seek to identify the set of



experimental variables that optimize the mechanical properties of the alloys are in

order.

* Results in chapters 2 and 3 indicate that reverse-pulsing enhances the malleability

of the amorphous alloys. It is well-known that the ductility of amorphous

materials is very sensitive to vacancy content and chemical ordering. Thus, future

research can employ small angle x-ray and neutron scattering to obtain

information about the pair distribution functions in these alloys, so as to better

comprehend the effects of reverse-pulsing on the structure of amorphous alloys,

as well as identify local structures that enhance malleability.

e That reverse-pulsing dramatically improves the properties of Al-Mn alloys hints

of potential benefits in extending this technique to other lightweight alloys, such

as Mg and Ti.



Appendix A. Kinetic Monte Carlo simulations of

nanocrystalline film deposition4

A.J. Introduction

Various deposition techniques, such as chemical and physical vapor deposition,

molecular beam epitaxy, electrochemical deposition and reactive sputtering, have been

successfully employed to produce nanostructured films. While extensive experimental

works [36, 41, 192-195] have been carried out to investigate the effects of processing

conditions on such properties as film porosity, surface roughness and grain size, the

growth mechanisms of nanostructured films are, as yet, incompletely understood on a

microscopic level.

A variety of computer simulations have also been used to study polycrystalline

film growth. Continuum models have been proposed for the evolution of grain

microstructure, surface roughness and texture during film growth [196, 197], and involve

evaluation of the equations of motion for grain boundaries. Such models can incorporate

various driving forces, including grain boundary curvature and anisotropic grain

boundary energy. However, these models do not explicitly consider other defects formed

during film growth, such as vacancies and voids [198, 199], and it is not straightforward

to incorporate nucleation of new grains-a process that must occur during nanostructured

film growth [200]. On the other hand, discrete models based on molecular dynamics

have not only been employed to simulate kinetic processes such as diffusion and grain

boundary migration [201], but also to simulate vacancy entrapment and void formation

during the film growth process [202, 203]. For example, Smith and co-workers explored

the mechanism of void formation during film growth [202], as well as interactions

between voids and grain boundaries in bi-crystals [203]. The major drawback of

molecular dynamics pertains to the small length and time scales it can access, which, in

the above studies limited the deposited film thickness to at most 100 monolayers. Kinetic

4 The content of this chapter has been published in ref. [85]



roughening and subsequent grain nucleation during film growth thus cannot be

adequately captured via molecular dynamics methods.

By excluding details of atomic vibrations and using a rigid lattice, discrete models

that are based on the kinetic Monte Carlo (kMC) algorithm [204] are less

computationally expensive and have been used to simulate film growth up to 104

monolayers thick and beyond [205-209]. Various kMC models have been employed to

study how the growth interface roughens during film deposition [205-214]. Among these

models, the most realistic ones incorporate vacancy and void formation but only consider

the growth of a single crystal [206-209]. One approach to extend this method to the

growth of polycrystalline films is to use multiple lattices to represent different grain

orientations. However, this approach is computationally expensive and has not been

successful at simulating film growth over a reasonable time scale [215-218]. Bruschi and

co-workers used a quasi-continuous coordinate system, such that the simulated film was

represented by a two-dimensional array of square cells with the exact positions of the

atoms within each cell represented by a continuous x-y coordinate system [215]. While

this method allowed different grain orientations to be represented, the simulated films

were at most one monolayer thick. Using similar concepts as Bruschi et al., Rubio et al.

restricted the positions within each cell to those commensurate with ten possible sub-

lattices [217]. However, their simulated films were less than 50 monolayers thick.

Huang and Zhou proposed a memory-efficient method to map multiple lattices onto a

single lattice, but even so, their simulated films were less than 100 monolayers thick

[216]. Thus, these methods also pose problems for the simulation of nanocrystalline film

growth, during which the frequent nucleation of new grains must occur.

A more viable approach to simulate polycrystalline film growth over longer time

scales is to incorporate some features of the Q-state Potts model proposed by Srolovitz

and co-workers [219, 220]. This method essentially involves prescribing a spin number

to each atom that is added to a fixed lattice during deposition. This spin number

represents which grain the atom belongs to; nearest-neighbor atoms that possess the same

spin number belong to the same grain. Using this approach, the kMC algorithm has been

employed by several authors to study polycrystalline film growth; they explored the

effects of substrate temperature, deposition rate and incident angle of deposition flux, on



grain morphology and crystallographic orientation of deposited films [221-227].

However, these models suffer from several limitations, such as the unrealistic imposition

of an infinite energy barrier for diffusion across grain boundaries [223, 224, 226],

deposition times that span less than 100 monolayers [221-227] and restrictions on the

number of grains by forbidding new grains to nucleate during the film growth process

[221-227]. Additionally, these works either qualitatively treat or completely ignore

kinetic roughening and void formation. Even though kinetic roughening, vacancy

entrapment, grain nucleation and grain evolution all occur during nanostructured film

growth, to our knowledge, there is no model that incorporates all these phenomena over

an appreciable thickness.

The purpose of this study is to take some steps towards addressing the issues

outlined above in a kMC model of nanocrystalline film growth. We do not aim to

simulate any specific deposition process, nor a specific material; our main objective here

is to develop a reasonable schematic model that permits study of the basic mechanisms

that lead to nanostructure formation during film growth. It is hoped that with improved

understanding of the factors that control grain size in nanocrystalline deposits in general,

future modeling efforts may focus more effectively on details specific to a given material

and process. The model used here includes diffusion, permits voids and vacancies to

form, and also allows new grains to nucleate and grow during the film growth process; it

can access film thicknesses that comprise many nano-scale grains through the thickness.

Thus, the interplay between kinetic roughening, void formation and grain evolution can

be analyzed.

A.2. Model

KMC simulations are performed in (1+1) dimension using a close-packed

(hexagonal) lattice as the simulation grid. Each lattice site can either be unoccupied, or

occupied by a single atom that is also assigned a grain number corresponding to its grain

identity. In the initial configuration, the substrate comprises a row of L atoms of the

same grain number, which are locked into position and unable to change their grain

numbers. Figure A. 1 shows a schematic of a growing film, where growth occurs in the y



direction. Periodic boundary conditions are imposed in the x-direction, which is parallel

to the substrate.

The simulation involves three basic types of events:

(i) deposition: a new atom is added onto the lattice,

(ii) diffusion: a single atom hops to an adjacent vacant lattice site while

retaining its grain number, and

(iii) grain boundary switching: a grain boundary atom switches its grain

number without changing its location.
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Figure A.1 A schematic diagram of the close-packed lattice and coordinate system used to simulate
film growth. Deposition occurs in -y direction. Light grey atoms belong to the process zone; dark
grey atoms belong to the bulk. Atoms in the lowest columns are outlined in bold. The atom labeled
'g1' is allowed to hop in directions indicated by solid arrows; dashed arrows represent forbidden
hops. Atom 'g1' can also switch its grain number to g2 or g3. Interlayer transport of atom g4 occurs
if it carries out two successive jumps, as indicated by the solid arrows. The first jump results in a net
loss of one bond and brings the atom to an activated state.

Atoms are deposited onto the surface of the growing film along the close-packed

direction denoted 'y' in Figure A. 1, using a random solid-on-solid deposition rule [228].

Each new atom is assigned a unique grain number, so that every atom can form the

nucleus of a new grain. These deposition events occur at a fixed interval of real time, so

as to simulate a constant deposition rate. By defining the height of each column, h, as the

'y' value of its topmost occupied site, each deposition event causes the height of the

chosen lattice column to increase by one unit. Therefore, h(x, t) is a discrete function that

describes the growing surface at time, t.

Between deposition events, the kMC algorithm is used to implement diffusion and

grain boundary switching events [229, 230]. During diffusion, each atom can hop to a



vacant nearest neighbor lattice site while retaining its grain number. However, hops that

lead to desorption are not allowed, i.e. an atom must retain at least one nearest neighbor

atom after the jump. As an illustration, in Figure A. 1, the atom with grain number g1 can

only hop to two of the four vacant sites, because if it were to perform the hops indicated

by dashed arrows, it would not have any nearest neighbor atoms around it after the hop.

The rate of a diffusion event, where an atom changes from state i to state f, is given by

r_ = kexp(- AEd'f /kBT), where kB is Boltzmann's constant, T is absolute

temperature, ko = kBT / h' is the vibration frequency of an atom, h' is Planck's constant

and AEdtff is the activation energy for the corresponding change in state of the atom

during diffusion. The activation energy is assigned as AEd' = Edj,,. + -E )/2,

where Ed,,, is the energy barrier for diffusion (defined to be positive), E, and Ef are

the binding energies at the initial and final states respectively (defined to be negative)

[229]. The binding energy of an atom is a function of its local environment and is

assumed pair wise-additive and limited to nearest-neighbor interactions. For an atom that

is surrounded by ns nearest neighbors with the same grain number as itself, and nd nearest

neighbors with different grain numbers, the binding energy, E, of that atom is given by

E = nE, +n dEd, where Es and Ed represent the bond energies between two atoms that

have the same and different grain numbers respectively. We define the difference

between Es and Ed as the grain boundary energy per bond, i.e. Egb = Ed - E,. Thus, an

atom that traverses a grain boundary experiences an additional energy penalty that is

proportional to Egb .

Grain boundary switching involves a grain boundary atom changing its grain

number to that of one of its nearest neighbors, while remaining in the same location on

the lattice. For example, atom gi in Figure A. 1 may change its grain number to g2 or g3.

The rate of a grain boundary switching event is given by r,_, = ko exp(- AEswitch /kBT),

where AE swtch is the activation energy for the corresponding change in state of the grain

boundary atom. The activation energy is assigned AEswitch = Eswitch + (Ef - E, )/2, where

Es,"i't. is the energy barrier for grain boundary switching (defined to be positive). In our

100



model, we assign the same value to Edjrer and E rI,.. Herein, we will use AE and

Ebarner to denote the activation energy and energy barrier for both diffusion and grain

boundary switching.

In experimental film growth settings, there is often an orders-of-magnitude

difference in surface vs. bulk atomic kinetic rates, especially for energetic deposition

processes, such as those involving pulsed lasers, plasmas, or ion beams, as well as in

sputter deposition and electrochemical deposition. In these cases there is enhanced

kinetic activity in the upper layers of the film (perhaps spanning some dozens of

monolayers) [231-237]; the enhanced kinetics are sometimes due to the naturally lower

activation barriers for surface processes, sometimes due to higher local temperatures at

the interface, or sometimes due to extrinsic effects, such as from the film/electrolyte

interface during electrodeposition. In any case, an important aspect of the present model

is the ability to roughly model such situations through the inclusion of a "process zone",

in which the kinetics are allowed to be different from the bulk of the growing film. In this

zone, the site-independent energy barrier for diffusion is defined as EPZ whereas the

corresponding parameter in the bulk is represented by E b," where E"" >EPz,. The
barrier barrier barrier

process zone is assigned to lie above a prescribed height, which is Ah units below the

topmost atom of the lowest lattice column, h.in. In Figure A. 1, we show an example to

illustrate; the atoms in the lowest lattice columns are circled in bold and all the atoms that

lie in the process zone are shaded light grey. Bulk atoms that lie below the process zone

are represented by the dark grey atoms. In Figure A. 1, Ah = 1. However, in all of the

simulations described below, Ah is set at a fixed value of 20.

The kMC algorithm computes a list of all possible diffusion and grain boundary

switch events in the process zone and the bulk, and their corresponding rates. For atoms

that are surrounded by multiple vacant sites and/or nearest neighbors with different grain

numbers, each possible diffusion and/or grain boundary switch is considered as a distinct

and separate event; for instance, atom gi in Figure A. 1 contributes two diffusion and two

grain boundary switching events to the list of all possible events. An event is then chosen

based on its relative rate. Since all the individual event rates are independent, the

residence time for the system is related to the reciprocal of the sum of the rates of all
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possible events, and the system time is advanced by this amount after each event. This

process of event selection and execution is repeated until the prescribed time interval

between deposition events is exhausted, at which point a new atom is deposited and the

algorithm continues.

To avoid strong finite-size effects, the system size must be much larger than the

effective diffusion length of an atom; we find that for L = 500, this condition is fulfilled

for the conditions employed in this study. For all simulations, the bond energy between

atoms with the same grain number is kept at E, = -0.4000 eV, and the diffusion barrier for

surface diffusion in the process zone is E'rner = 0.5000 eV. Using the relationship

between melting temperature and cohesive energy, Tm = Ecoh /6 , where Ecoh = 3E, we

define the normalized temperature as T* = T / Tm and the normalized grain boundary

energy as Eb = EgbI E,. The normalized deposition rate, D*, is given by the ratio of

the rate of monolayer coverage, Db, and the rate of a characteristic surface diffusion

event at T * =1, i.e. D* = Db /kB m /h' eXp(-Elrnber /kBT m)]. Simulations are carried out

over a range of T*between 0.35 and 0.91 and D* spanning more than two orders of

magnitude between 2.10x10- 3 and 0.84, for a fixed grain boundary energy of Eb =

0.48. The effects of grain boundary energy are studied at T* = 0.43 and 0.78 with three

different values of Eb : 0.48, 0.24 and 0.12.

We have conducted two different sets of simulations in this paper. In the first set,

which may more closely represent thermal deposition techniques, EbarIer is assigned a

conservative value of 1.0000 eV; while this is twice the activation barrier for diffusion in

the process zone, it still permits activity in the bulk. In the second set, which may more

closely relate to energetic deposition processes, we take E baIer -* 00; that is, bulk

diffusion is suppressed, and all atomic activity is relegated to the process zone.

102



A.2. Steady-state microstructure

All our simulated films exhibit microstructural defects: rough surfaces, bulk

vacancies and grain boundaries. In this section, we investigate the time evolution of

these defects and confirm the existence of a steady-state film microstructure.

Figure A.2 shows typical time evolution plots of (a) surface step height, (b)

surface peak spacing, and (c) vacancy content, expressed in units of average monolayer

coverage time (ML). The surface step height is defined as G(1, t) = (|h(x +1, t) - h(x, t)|),

where the average is taken over all L lattice columns, and the peak spacing refers to the

average distance along the x axis between local height maxima. For each layer of the

simulated film, we also calculated its grain dimensions along the x and y axes, herein

referred to as the grain minor and major, respectively. The results are shown in Figure

A.2(d) and (e), respectively. Together, these plots illustrate that after an initial period of

transient growth, the defect concentrations in our simulated films exhibit a steady-state

regime that is characterized by a steady-state step height, peak spacing, vacancy content

and grain dimensions.

Interestingly, the above observations are found to be true whether or not bulk

diffusion processes are permitted (i.e., with an activation barrier Eb,, = 1.000 eV or

with E bu,, ->oo). Figure A.2(f) shows the cumulative distribution of the steady-state

grain size (circular equivalent diameter) for both sets of conditions; the results are

essentially identical at low to moderate temperatures and only exhibit small differences

that are still within measurement scatter at high temperatures. The surface features and

vacancy contents are also found to be statistically similar for both sets of simulations.

From these results we conclude that nanostructure formation in deposited films (at least

under the conditions studied here) is principally controlled by activity in the rapid-kinetic

"process zone" near the surface. We shall see in later sections that this is indeed true, and

that the surface structure plays a determinant role in governing the bulk film

microstructure. These results also suggest that the effects of bulk diffusion are relatively

insignificant for the conditions of the present simulations; in what follows, then, we do
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not differentiate between the two sets of simulations (with E bbIk = 1.000 eV vs.

Eber -> oo), which give the same results.
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Figure A.2 Time evolution of (a) surface step height, (b) surface peak spacing and (c) vacancy content
of films deposited at a rate of 0.252 when diffusion is restricted to the process zone. Average
dimensions of the grains found in each layer of these films are shown in (d) and (e). Cumulative
grain size distribution plots are shown in (f), where the dashed lines represent results obtained when
bulk diffusion is permitted.

These results in parts (a)-(c) of Figure A.2 are in good agreement with the work of

Schimschak and Krug, where a surface diffusion model was used and the simulated films

also exhibited steady-state step heights and vacancy contents [208]; the present results

further confirm that the grain structure reaches a steady-state on roughly the same

timescale as these other features of the microstructure. Typical steady-state

microstructures of our simulated films are shown in Figures A.3 and A.4.
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(a) T* = 0.35, D,' = 0.252 (b) T =0.65, D;, = 0.252 (c) T* = 0.91, D, =0.252

I t

(d) T* = 0.65, D* = 0.505 (e) T' = 0.65, D, = 0.084 (f) T* 0.65, D,* = 0.063

Figure A.3 Microstructures of deposited films with fixed grain boundary energy of 0.48. Images (a)-
(c) show films deposited at different temperatures at a fixed deposition rate of 0.252. Images (d)-(e)
illustrate films grown at different deposition rates at a constant temperature of 0.65. Only the top
1000 layers are shown.
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(a) E4=0.48 (b) 4=0.12

Xd

Figure A.4 Microstructures of films with different grain boundary energies; these films are deposited
at a temperature of 0.43 and deposition rate of 0.025. Only the top 1000 layers are shown.

Approximately 1000 monolayers are shown in these figures, where the lattice

sites are color-coded according to their grain numbers and vacancies that are trapped in

the bulk are colored black. Figures A.3(a)-(c) show the effects of temperature, Figures

A.3(d)-(f) illustrate the effects of deposition rate, and Figures A.4(a)-(b) highlight the

effects of grain boundary energies. From Figures A.2-A.4 it is clear that deposition

conditions dramatically impact the steady-state film microstructure; a more quantitative

treatment is presented in what follows. Because of the complex intertwined relationships

among the different types of defects (surface morphology, vacancies and grain

boundaries), we begin by systematically investigating factors controlling surface

morphology and vacancy content. As we shall see later, both of these factors in turn

affect the grain structure.
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A.3. Surface morphology

Figure A.5 summarizes the effects of deposition conditions on the steady state

step height, G(1, t). While the effect of deposition rate is quite minimal (a decade change

in rate yields a change in step height on the order of one atom), temperature has a

determinant role on the steady-state step height (doubling temperature yields an order-of-

magnitude decrease in step height). Figure A.5 also suggests that under most deposition

conditions, grain boundary energy does not significantly affect step height, except at high

deposition rates and low temperatures, where lower grain boundary energy results in a

higher step height.
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Figure A.5 Steady-state step height vs. deposition rate of films deposited at different temperatures
and grain boundary energies.

The above results can be rationalized through comparison with the work of

Schimschak and Krug, who developed a model to investigate surface roughening during

epitaxial growth [208]. They employed a square lattice and their model incorporated

random deposition and isotropic surface diffusion. Surface diffusion was restricted to

singly-coordinated atoms and the number of diffusion trials per mobile surface atom was

explicitly fixed for each simulation. If a selected singly-bonded surface atom had a

vacant nearest neighbor site, the atom would hop to that empty site with unit probability.

However, if it did not have any vacant nearest neighbor but had a vacant next-nearest
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neighbor, the atom would hop to that empty site with probability exp(-Esep), where Estep

denotes the Schwoebel-type step-edge energy barrier. The authors observed that as they

increased the number of diffusion trials per surface atom from 200 to 800, which

translates into a four-fold decrease in deposition rate, the steady-state step height

decreased from about 0.90 to 0.56. This observation is broadly in line with ours, where

decreasing the deposition rate by an order of magnitude causes the step height to decrease

by about 1.

Even though our model does not explicitly incorporate the Schwoebel-type step-

edge barrier, the effects of decreasing Estep on step height in Schimschak and Krug's

study are qualitatively and quantitatively similar to those of increasing temperature in our

study. Figures A.2 and A.3 (a)-(c) show that as temperature increases, the surface

morphologies of our films transition from tall pointed peaks to shorter, more rounded

ones; quantitatively, this translates into a decrease in steady state step height from -16 to

-2. In Schimschak and Krug's study, as Estep decreased from 3 to 0, a similar

morphological transition was observed and the step heights decreased from -10 to -1.

Schimschak and Krug suggested that such differences in surface morphologies could be

attributed to the effects of the step-edge barrier in restricting interlayer diffusion and

preventing the formation of overhangs, thus causing pointed peaks to dominate the

surface morphology as Estep increased.

In the present model, the basic process of interlayer transport is illustrated by the

atom labeled g4 in Figure A. 1. Unlike the square-lattice model of Schimschak and Krug

[208], on our hexagonal lattice interlayer transport does not require a next-nearest

neighbor hop. Rather, atom g4 traverses a step through two successive jumps, where the

first involves a net loss of one bond and results in an overhang formation. To a good

approximation, the entire two-step process of interlayer transport may be considered as

an activated event with a barrier corresponding to the lost energy of the broken bond.

Thus, relative to an average diffusion event that involves no energy bias, its probability

is exp(- Ebod /b2kBT), where Ebond is the average bond energy; we may thus approximate

Peff = E /2k T as the effective Schwoebel-type step-edge barrier in our model.
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Using E,,,, = -0.4000 eV, the bulk bond energy used in our simulations, we

computed Ee at different temperatures. These results, together with the range of steady-

state step height values obtained at each temperature, are presented in Figure A.6. Also

shown in Figure A.6 are the results obtained by Schimschak and Krug [208], which are

consistent with ours; this supports our interpretation that a Schwoebel-type step-edge

barrier implicitly operates in our model. Therefore, the trend observed in Figure A.5

where step height increases as temperature decreases, can be attributed to the

corresponding increase in Eef , which restricts overhang formation and interlayer

transport. The relatively weak dependence of surface step height upon deposition rate

(Figure. A.5) also then follows, since its effect on the rate of interlayer transport is

through the linear pre-exponential attempt frequency, as compared to the exponential

effect of temperature. Grain boundary energy affects step height by altering Eb,,, , where

lower grain boundary energy results in higher Eb,,f ; this effect becomes dominant at low

temperature and when the fraction of grain boundary bonds is high (i.e. high deposition

rates).

* Schinschak el al.
O Current study

10

100

0 1 2 3
Effective step edge barrier

Figure A.6 Steady state step height vs. effective Schwoebel-type step edge barrier of films deposited
at different temperatures. Also shown are data obtained from ref. [208].

Figure A.7 summarizes the effects of deposition conditions on peak spacing: peak

spacing increases when deposition rate decreases, temperature increases and grain

boundary energy decreases. Across the range of temperatures and grain boundary

energies examined, decreasing deposition rate by an order of magnitude causes the peak
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spacing to approximately double. At a constant normalized deposition rate of 0.252,

increasing the temperature from 0.35 to 0.91 causes the peak spacing to double from -10

to -20. Since decreasing deposition rate and increasing temperature allow more diffusion

events to occur, Figure A.7 suggests that peak spacing is primarily diffusion-controlled,

and may be indicative of the characteristic diffusion length of the atoms during the initial

stages of film growth, as postulated by Schimschak and Krug [208]. Figure A.7 also

presents an interesting relationship between grain boundary energy and peak spacing,

where decreasing Eb from 0.48 to 0.12 causes the peak spacing to increase subtly but

consistently; this effect is stronger at low temperatures, where the maximum increase in

peak spacing is about 30%.

40 - -
A r=.35 $ T=Q43

35 r r=a43 * r=Q78
r T=.52 4=&12

30 + r=Q165 y T=0.43
25 hr .=0.78 7-=078

gT'=091

S25 A

20
A*C

15 Ar [U

10 A

5
0-3 0-2 10-1 10

104 104 104 10
Normalized deposition rate

Figure A.7 Steady-state peak spacing vs. deposition rate of films deposited at different temperatures
and grain boundary energies.

A.4. Bulk nanostructure of the deposits

The bulk features of the deposited films, well below the process zone, involve

vacancies (and agglomerations thereof) and grain structures. We discuss these features,

their original genesis in the process zone, as well as their inter-relations, in the following.
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A.4.1. Vacancy incorporation

Figure A.8 summarizes the effects of deposition conditions on the steady state

vacancy content. Except at T* = 0.35, vacancy content increases predictably and quickly

as deposition rate increases. Diffusion has a dual role in vacancy generation and

annihilation. In the limiting case where there is negligible diffusion (i.e. high deposition

rate), the film is expected to exhibit zero vacancy content since deposition does not create

vacancies. In the other extreme scenario, infinite diffusion also results in extremely low

bulk porosity, because excess (non-equilibrium) vacancies would tend to be healed by

diffusion. In the present simulations, the situation is intermediate; with limited diffusion,

overhang and void formation occurs via non-volume-conserving diffusion events, and

only a fraction of these vacancies are healed by volume-conserving diffusion events

[208]. Thus, the resulting vacancy content depends on the competing effects between

these two types of diffusion events. For most of the conditions employed in this study,

increasing deposition rate decreases the ratio of volume-conserving to non-volume-

conserving diffusion events, thus causing the vacancy content to increase. The

anomalous inflection observed at T* = 0.35 is attributed to the relatively low rate of

defect-forming diffusion events at very high deposition rate.
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Figure A.8 Steady state vacancy density vs. deposition rate of films deposited at different
temperatures and grain boundary energies.
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That non-volume conserving diffusion events lead to formation of overhangs and

voids implies that void morphology is intimately related to the surface profile of the

growing film. Figures A.3 and A.4 qualitatively show that films that exhibit steep step

heights also exhibit elongated voids (c.f. Figure A.3(a) and A.4), whereas films with

smoother surfaces contain voids that are more equiaxed (c.f. Figure A.3(c)). Despite the

close relationship between surface morphology and void structures, they exhibit quite

different dependencies on deposition conditions. Whereas the surface step height is

essentially independent of deposition rate and dependent only on temperature (Figure

A.5), vacancy content is dependent primarily upon rate (Figure A.8). As we will see in

the following section, vacancy content has important implications for the evolution of the

grain structure.

A.4.2. Grain nucleation mechanism

The above analyses on surface morphology and vacancy content are broadly in

line with prior surface diffusion deposition models that do not incorporate grain structure.

Of more interest in this study is the fact that the grain structure that evolves in deposited

films is directly related to the surface morphology and vacancy content, since new grains

form on the surface and their growth in the bulk is affected by vacancies. This can be

quickly appreciated by examining supplementary movies 1-2 [85] and Figures A.9-A.10.

These figures highlight a principal finding of our work: the nucleation of new grains

during deposition occurs essentially exclusively atop surface peaks.

A typical example showing the birth and growth of a new grain is denoted by a

blue ellipse in Figure A.9(a); this nucleus continues to grow in the vertical direction (cf.

Figures A.9(b)-(e)) until its further growth is inhibited by the nucleation of a new grain

above it (cf. Figure A.9(f)). The red ellipses in Figures A.9(c)-(e) illustrate another

example of vertical grain growth being interrupted by subsequent grain nucleation events

on a surface peak (cf. Figure A.9(e)). Additionally, the red ellipses in Figures A.9(f)-(h)

illustrate a typical example of grain growth in the lateral direction, which appears limited

by peak separation. In other words, grains initially develop independently of one another

on separate peaks, and become lateral neighbors by growing into mutual contact.
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Figure A.9 Snapshots of the film growth process at T* =0.43, D =0.051 and Eb =0.48; these

images are taken at a time interval of 10 ML. Notice that grains nucleate preferentially on surface
peaks (see solid blue ellipses in (a)-(f) and red ellipses in (c)-(e)). Grain growth in lateral direction
appears limited by peak spacing (see red ellipses in (e)-(h)). Regions enclosed in blue boxes in (a)-(h)
illustrate grain boundary migration until the grain boundaries are pinned by voids.

Within the bulk, grains continue to change their size and shape in more subtle

ways. Generally, we observe some grain boundary motion shortly after grains impinge,

but grain boundary migration is usually arrested soon after, once the grain boundaries

encounter voids and become pinned; an example of this is illustrated by the regions

enclosed in the blue boxes in Figures A.9(a)-(h)). This stagnation of grain boundary

migration happens very early in the life of a grain, usually when it is still located within
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the process zone (as for the example in Figure A.9). Of course, once the grains enter the

bulk region, the kinetics of structure evolution is further slowed.

The images in Figure A.9 are also complemented by those in Figure A. 10, which

show many of the same features, but for a higher deposition temperature with a

correspondingly smoother surface. The same basic mechanisms are observed here: grains

nucleate on surface peaks; their height (grain major) is principally governed by the

likelihood that a new grain forms atop them, while their width (grain minor) is governed

by the spacing of peaks and lateral pinning by strings of vacancies and voids. In what

follows, we present a quantitative analysis of the factors governing grain evolution,

separately examining the minor and major axes of the grain structure.
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(b)
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Figure A.10 Snapshots of the film growth process at T* =0.78, Db* = 0.126 and Eg* =0.48; these

images are taken at a time interval of 10 ML. The solid red ellipse in (b) shows a nucleus that
eventually grows into a grain; this nucleus forms a triple point with nearby grains in (d). The dashed
blue ellipse in (b) shows a nucleus that is eventually eliminated in (f). Regions enclosed in blue boxes
in (g)-(h) illustrate grain boundary migration until the grain boundaries are pinned by voids.
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A.4.3. Factors controlling grain dimensions

Figures A. 11(a) and (b) show that increasing temperature and decreasing

deposition rate cause both grain minor and major to increase; such trends are generally

consistent with experimental observations [238-248]. One plausible explanation for these

trends is that increasing temperature and decreasing deposition rate correspond to more

time-at-temperature, promoting more grain boundary migration. However, Figures

A. 11(a) and (b) also show that decreasing grain boundary energy has an opposite effect

on grain major and minor dimensions, despite the fact that this change lowers the driving

force for grain growth, reduces grain boundary migration, and should simultaneously

reduce both grain dimensions. Thus, consistent with the qualitative results shown in

Figure A.9, Figure A. 11 presents quantitative evidence that grain minor and major are

principally governed by different factors, and that grain minor is not primarily controlled

by the rate of grain boundary migration, which is the case for conventional grain growth.
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Figure A.11 Average (a) grain minor and (b) grain major vs. deposition rate of films deposited at
different temperatures and grain boundary energies.

Instead, the trends on grain minor may be understood by revisiting the

implications of supplementary movies 1-2 and Figures A.9-A.10: because new grains

nucleate principally on top of surface peaks, there is a consistent correspondence between

valley positions and grain boundary regions, as can also be appreciated from Figures A.3
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and A.4. That grain minor is intimately related to surface morphology is borne out in

Figure A.12, which shows grain minor plotted against mean peak spacing for the

simulated films. An approximate linear relationship is consistently observed for each

series of simulations (although the slope is a function of temperature). Figure A. 12 also

helps to explain why grain minor increases as grain boundary energy decreases (as this

causes an increase in the peak spacing).
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Figure A.12 Relationship between peak spacing and grain minor of films deposited under various
conditions. The dashed line represents a 1:1 relationship.

Grain major, on the other hand, appears to be primarily dictated by the rate of

grain nucleation atop the surface grains. Because each freshly deposited atom is

randomly assigned a grain number, each deposition event constitutes an opportunity to

nucleate a new grain. That new grains tend to nucleate on peaks is intuitively reasonable,

since freshly-deposited atoms are less likely to switch their grain numbers and join a pre-

existing grain if they are poorly coordinated by atoms of the pre-existing grain. Such

atoms can then form nuclei for new grain formation. Consider the case where an existing

grain with grain number gi is located at a surface peak. When a freshly-deposited atom

of grain number g2 lands on top of the peak, a gI-g2 grain boundary bond is formed. The

driving force for the new atom to switch its grain number from g2 to gi depends on the

grain boundary energy, and the activation energy for such a switch event is given

by AE = EPZ - Egb /2. If this switch event occurs, the new atom is assimilated into
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grain gi and no grain nucleation occurs. Even though such a switch event is always

thermodynamically favorable, it can be kinetically avoided depending upon the

deposition rate. More specifically, if another new atom of grain number g3 is added on

top of the atom of grain number g2, the topmost atom may join grain g2. When this

happens, the g2 atom that is in contact with grain gi has a g2-g2 bond, in addition to the

g1-g2 grain boundary bond. Because a switch event that converts the g1-g2 grain

boundary bond to a gi-gi bond would occur at the expense of converting the g2-g2 bond

into a g1-g2 grain boundary bond, there is no net change in the number of grain boundary

bonds for such a switch event. Thus, the activation energy for grain boundary switching

of the two-atom grain nucleus is AE = E ,, , which is higher than that of the one-atom

grain nucleus. Therefore, a grain nucleus of two atoms is significantly less likely to be

assimilated into pre-existing grains than a one-atom nucleus.

Thus, we view the nucleation of new grains as a kinetic competition between

switching events that assimilate freshly-deposited atoms into the existing grain structure

(with a rate proportional to ko exp(- (Eg,,,,, -- Eb /2)/kBT)), and the local clustering of

new atoms into incipient grain nuclei (with a rate governed by the addition of new atoms,

and thus proportional to Db, the rate of monolayer coverage). Assuming that the grain

major is primarily governed by the rate at which new grains nucleate on top of pre-

existing grains and neglecting the effects of subsequent grain boundary migration on the

grain major, this grain nucleation model suggests that the grain major is related to the

normalized switch rate, which we define as[ko exp(-( - TEh,. /2)/TkjB b . Figure

A. 13 shows the average grain major as a function of the normalized switch rate for our

simulations. That the data collapses reasonably well onto a single curve supports our

view of grain major being limited by the nucleation rate for new grains on the top of

surface peaks.

The data collapse in Figure A. 13 is especially good at lower normalized

temperatures, between 0.35 and 0.52, where we also observe that the relationship

between grain minor and peak spacing is close to a 1:1 correspondence (cf. Figure A. 12).

In this low temperature regime, each surface grain is clearly defined by a peak (cf.

Figures A.3(a) and A.4). Recall from Figure A.5 that this is also the temperature range
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where films exhibit steep step heights greater than -4-5 atomic distances. Because the

peaks are tall and separated, grains on each peak are isolated from those on neighboring

peaks and thus, they evolve independently and peak spacing corresponds to the grain

width. It is likely also significant that in this case, the grains within each peak form into a

bamboo structure with grain boundaries normal to the growth direction. Such a structure

is stable against coarsening (low boundary curvature), and therefore promotes the

retention of a nanoscale structure.
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Figure A.13 Relationship between grain major and normalized switch rate of films deposited under
various conditions.

At higher normalized temperatures above 0.52, the grain minor often exceeds the

peak spacing (cf. Figure A. 12) and the data collapse in Figure A. 13 is less convincing,

with a temperature dependence appearing to spread the data points. This is because at

these temperatures, the surface exhibits a smoother and more nodular structure, instead of

tall pointed peaks (cf. Figures A.3 and A. 10). Because of the gentler step height and peak

slope, the peaks communicate more readily with one another and do not evolve

independently as they do at lower temperatures. Consequently, some grain widths span

multiple peaks, as seen in Figures A.3(e), (f) and A.10. Despite the different surface

morphology, grains are still found to nucleate in the same basic way, i.e., nucleation

events still occur preferentially on surface peaks. However, supplementary movie 2 and

Figure A. 10 show that in these cases there is an additional factor that affects the stability
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of these grain nuclei. Specifically, nuclei located on peaks nearer the lateral edge of a

grain, i.e., in close proximity to adjacent grains, are more stable against elimination than

those that form in the center of a pre-existing grain. Compare, for example, the nucleus

enclosed in the solid red ellipse with the one is enclosed in dashed blue in Figure A. 10(b).

This additional stability of such edge-nuclei arises because shortly after they form atop a

first grain, film growth brings them into lateral contact with a second grain, forming a

triple junction. This stabilizes the nucleus by setting up a local kinetic competition; a

nucleus connected to only one grain experiences switch events at a higher rate than when

it is abutted by two. Therefore, as temperature increases and the surface becomes

composed of smaller and gentler peaks that are spanned by individual grains, more nuclei

survive through this additional mechanism, and the grain major decreases for the same

normalized switch rates, as shown in Figure A. 13.

A.4.4. Vacancy-grain boundary interactions

Upon closer inspection, supplementary movies 1-2 and Figures A.9-A.10 (see for

example regions enclosed in blue boxes in Figure A.9(a)-(h) and Figure A. 10(g)-(h)) also

show that vacancies and voids retard grain boundary migration; grain boundaries that are

not decorated with voids migrate freely until they encounter some, after which their

motion becomes impeded. These observations suggest that because of grain boundary

pinning, high vacancy and void contents (i.e. high deposition rates) favor small grains.

They also suggest that the state of vacancy incorporation in grain boundaries (or the grain

boundary free volume) is principally a dynamical feature of the microstructure. We may

verify this by examining the segregation state of the vacancies to grain boundaries.

Defining the vacancy segregation energy as the difference in formation energy of

the vacancy at the grain boundary and in the bulk, we obtain positive segregation

energies for all grain boundary energies employed in this study. From an energetic

standpoint, we thus expect vacancy segregation to be favored in all of our simulations,

with higher segregation tendencies as grain boundary energy increases; of course

temperature would tend to randomize the vacancy distribution and therefore decrease the

segregation tendency. To assess such trends, we use the Gibbsian interfacial excess,

defined as [N b / N gb - (Nulk /N gb bN / N bulk] , where N yb and Nulk are the number of
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vacancies in the grain boundary and grain interior regions, and N gb and N b"" are the total

number of sites in the grain boundary and grain interior regions, respectively. Although

we do not plot the results here, we find that in general the interfacial vacancy excess is a

weak function of deposition rate, and increases as temperature and grain boundary energy

increase. That interfacial excess increases as grain boundary energy increases is in line

with the energetic arguments laid out above. However, the effects of temperature on

interfacial excess defy energetic predictions. Such a discrepancy must be attributed to

kinetics, and is likely related to the more rapid grain boundary migration at higher

temperatures which leads to more interceptions of voids by boundaries.

A.4.5. Grain size vs. shape

As a final point, Figure A. 14 summarizes an overarching finding of our work,

which concurs with experimental findings [239, 249, 250]: as the average grain size (i.e.,

average circular-equivalent grain diameter) decreases, so does its aspect ratio.

=o48 4=024
T'=035 T'=Q43

T=0.43 T'=0.78
* T=.52 4=O12

o 1 + T=0.65 y T-=0.43
4 10 0 =0.78 4

ST'=0.91
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1 1010110 2

Grain diameter

Figure A.14 Relationship between grain aspect ratio and grain diameter of films deposited under
various conditions.

All other things being equal, we find that promoting finer grains through, e.g.,

more rapid deposition or lower deposition temperature, also promotes more equiaxed

structures. Our analysis provides a straightforward explanation of this common

observation. The grain minor is largely governed by the surface structure and specifically
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the separation of the peaks, both of which are only slightly affected by deposition

conditions (e.g., increasing the deposition rate by an order of magnitude reduces the peak

spacing by only -5 atomic units (cf. Figure A.7)). On the other hand, the grain major

exhibits a much stronger dependence on deposition variables since they directly affect the

grain nucleation rate (an order of magnitude increase in deposition rate increases the

grain major by almost two orders of magnitude (cf. Figure A. 13)). Therefore, changes in

the deposition condition that promote finer grains are more strongly manifested in the

grain major; grain size and aspect ratio are thus dynamically linked, and nano-scale

grains tend to be more equiaxed.

A.5. Conclusions

We employ a full diffusion kinetic Monte Carlo model to simulate nanocrystalline

film deposition. We find, in line with prior simulation works of film deposition, that the

surface structure (step height and peak spacing), as well as the vacancy content, achieve a

steady-state condition after an initial growth transient. What is more, these features of

the film change with temperature and deposition rate in ways consistent with prior

models. However, the present work also evaluates the evolution of the grain structure

and its dependence on deposition conditions, by associating individual atoms with

specific grains and permitting atoms to switch their grain allegiance based on a kinetic

law that incorporates a grain boundary energy penalty. Broadly, our conclusions in

regard to the grain structure of deposited nanocrystalline films are as follows:

- Like the surface structure and vacancy content, the grain structure of the

growing film exhibits a steady-state condition, in which the grain dimensions and

aspect ratio remain approximately constant.

- The grain structure of the film is essentially governed by the steady-state surface

morphology, because new grain nucleation occurs exclusively on surface peaks.

Thus, bulk nanocrystalline deposits are favored by the presence of nanoscale

roughness at the growth surface.

* Nucleation of new grains is viewed as a kinetic competition between the

clustering of a few atoms into a new grain at the surface peaks on the one hand,

and their incorporation into the grain beneath on the other. When freshly-
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deposited atoms cluster with one another rather than join the pre-existing grains of

the film below, a new grain can nucleate and form; this condition is facilitated by

the low coordination of atoms at surface peaks. At higher temperatures, the

surface peaks are small and closely spaced; in this case grain nucleation is

facilitated when a nucleus comes into contact with another adjacent grain, forming

a triple junction.

- As a result of the nucleation mechanism being relegated to surface peaks, the

grain minor dimension (in the plane of the film) is primarily dictated by surface

peak spacing, which in turn is reduced at low temperatures and high deposition

rates. The grain major dimension (in the growth direction) is related to the

probability of nucleating new grains on top of pre-existing ones, with finer grains

being formed at low temperatures, high deposition rates and low grain boundary

energies. Because vacancies and voids kinetically pin grain boundaries, high

vacancy (or free volume) content, which is obtained at high deposition rate, also

favors nano-grains.

- Because surface roughening and tighter peak spacing are less easily induced by

deposition conditions than grain nucleation events, as grains shrink, they

transition from columnar, to elongated, and eventually to equiaxed.

These results provide some initial insight on the kinetic mechanisms by which the grain

structure of deposited films may be tuned, and generally support empirical observations

common in the experimental literature.
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Appendix B. Effects of current pulses on the ductility of

electrodeposited Al alloys5

With an eye to alter the grain size and phase distribution of electrodeposited Al-

Mn alloys, a variety of current waveforms is employed to alter surface kinetics at the

electrode. The current waveforms comprise two unique pulses, as shown in Figures

1.4(b)-(d), where the pulse parameters of the first pulse were kept the same for all

waveforms. The current density of the first pulse, ii, was assigned the same value as the

cathodic current density used during our DC experiments in chapter 2, i.e. i1=6 mA/cm2.

Since the characteristic length-scale of the domain-network structures observed in the

dual-phase DC alloys was postulated to be controlled by the characteristic diffusion

length of a surface adatom, the pulse duration was chosen to be 1/ 10 th the time required

for monolayer coverage, in order to reduce the extent of phase segregation, i.e. t1=20 ins.

In the following sections, we present guided bend test results on Al-Mn alloys that were

electrodeposited using the waveforms illustrated in Figures 1.4(b)-(d). The bend tests

were carried out according to the guidelines described in ASTM E290-97a (2004) and

section 2.1. We also show preliminary results on Al-Mn-Ti alloys that were

electrodeposited in a different electrolytic solution at a different temperature.

B. 1. Effects of pulse current density, i2

To investigate the effects of varying the current density i2 on alloy composition,

we used waveforms "A", "B", "C", "D", "E" and "F" to electrodeposit Al-Mn alloys

from electrolytic baths containing the same amounts of MnCl2. Table B. 1 summarizes

the pulse parameters of these six waveforms.

Guided bend tests were carried out on alloys containing about 8 at.% Mn

produced by the six waveforms shown in Table B. 1; images of the strained surfaces are

presented in Figure B.l. Images on the left column correspond to alloys that were

strained to -37%; images on the right column correspond to alloys with an applied tensile

5 Much of the content of this Appendix has been submitted in a patent application [129]
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strain of -13%. Images on the same row belong to alloys that were produced by the same

current waveform. The current density i2 decreases from positive to negative from the

topmost to bottommost row. Table B.2 summarizes our observations.

Table B.1 Pulse parameters of waveforms used to investigate the effects of i2.

Waveform Pulse current density (mA/cm2 ) Pulse duration (ms) Temperature

ii i2 ti t2 ("C)

"A" 6 6 20 20 25

"B" 6 3 20 20 25

"C" 6 1 20 20 25

"D" 6 0 20 20 25

"E" 6 -3 20 20 25

"F' 6 -3.75 20 20 25

Figure B. 1 and Table B.2 show that decreasing the magnitude of i2 causes the

ductility of the alloys to increase; whereas the "A" alloys cracked across the sample

widths, those produced by most other waveforms did not. For positive values of i2 (i.e.

waveforms "A", "B" and "C"), decreasing the magnitude of the positive pulse current

causes the ductility to increase; whereas the "A" and "B" alloys cracked across the

sample width when strained to -37% and -13%, cracks did not propagate through the

widths of the "C" alloys. Interestingly, for the "D", "E" and "F" alloys, as i2 becomes

more negative, the ductility of the alloy decreases. When the alloys were strained to

-37%, alloys that were produced by waveform "F", where i2=-3.75 mA/cm2, exhibited

cracks that were relatively long and wide (-300 pm by -20 pm); whereas alloys

produced by waveform "D", where i2=O mA/cm2 , showed the smallest cracks (-40 pm by

-10 pm). When the alloys were strained to -13%, the "F" alloy exhibited a single crack,

whose dimensions are larger than that observed on the "E" alloy. The "D" alloy did not

exhibit cracks when the applied strain was -13%.
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Figure B.1 SEM images of bent surfaces of -8 at.% Mn alloys produced by different waveforms.
Images on the left column correspond to samples that were strained to -37%. Images on the right
correspond to samples that were bent strained to -13% true strain. i2 decreases from +6 mA/cm 2 to-
3.75 mA/cm2 from the topmost to bottommost row.
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Table B.2 Dimensions of cracks observed on strained surfaces of alloys containing -8 at.% Mn after
guided bend test, where applied tensile strains are -37% and -13%.

True strain Waveform i2 (mA/cm2) Crack length (pm) Crack width (pm)

-37% "A" 6 Across whole sample 40-150

"B" 3 Across whole sample 50

"C" 1 150 25

"D" 0 40 10

"E" -3 120 13

"F' -3.75 300 20

-13% "A" 6 Across whole sample 100

"B" 3 Across whole sample 40

"C" 1 50-300 20

"D" 0 x x

"E" -3 30 5

"F' -3.75 200 5

B.2. Effects of pulse duration, t2

To investigate the effects of varying the pulse duration t2 on alloy composition,

we used waveforms "A", "G", "H" and "E" to electrodeposit alloys from electrolytic

baths containing the same amounts of MnCl2. Table 5.3 summarizes the pulse

parameters for these four waveforms.

Table B.3 Pulse parameters of waveforms used to investigate the effects of t2.

Waveform Pulse current density (mA/cm2) Pulse duration (ms) Temperature

ii i2 ti t2 (C)

"A" 6 6 20 20 25

"G" 6 -3 20 5 25

"H" 6 -3 20 10 25

"E" 6 -3 20 20 25

Guided bend tests were carried out on alloys containing about 8 at.% Mn

produced by the "A", "G", "H" and "E" waveforms; images of the strained surfaces are

presented in Figure B.2. Images on the left column correspond to alloys that were

strained to -37%; images on the right column correspond to alloys with an applied true

strain of -13%. Images on the same row belong to alloys that were produced by the same
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current waveform. The pulse duration t2 increases from the topmost to bottommost row.

Table B.4 summarizes our observations.

M8. t%100 irm 11io at.
Figure B.2 SEM images of bent surfaces of -8 at.% Mn alloys produced by waveforms with different

t 2. Images (a)-(d) correspond to samples that were strained to -37%. Images (e)-(h) correspond to
samples that were subject to a tensile strain of -13%. The pulse duration t2 increases from 0 to 20 ms
from the topmost to bottommost row.
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Table B.4 Dimensions of cracks observed on strained surfaces of alloys containing -8 at.% Mn after
guided bend test, where applied tensile strains are -37% and -13%.

True strain Waveform t2 (Ms) Crack length (pm) Crack width (pm)

-37% "A" 0 Across whole sample 40-150

"G" 5 Across whole sample 25

"H"' 10 300 20

"E" 20 120 13

-13% "A" 0 Across whole sample 100

"G" 5 Across whole sample 20

"IH' 10 200 25

"E" 20 30 5

Figure B.2 and Table B.4 show that for the same pulse current density i2 (i.e. -3

mA/cm2), increasing the pulse duration t2 causes the ductility of the alloys to increase.

Both the "A" and "G" alloys (t2 = 0 and 5 ms, respectively) exhibit cracks that propagate

across the sample width when the applied tensile strains were -37% and -13%. On the

other hand, the "H" and "E" alloys did not crack across the entire width of the sample

when bent. As t2 increases from 10 ms (waveform "H") to 20 ms (waveform "E"), both

the crack length and width decrease.

B.3. Ternary alloy electrodeposited at non-ambient temperature

Al-Mn-Ti alloys were electrodeposited using the electrolytic bath composition

shown in Table B.5. A silicone oil bath was used to maintain the temperature of the

electrolyte at 80 0C during the electrodeposition experiments.

Table B.5 Composition of electrolytic bath used to electrodeposit Al-Mn-Ti alloys.

Chemical compound Composition (mols/L)

Aluminum chloride, anhydrous (AlCl3 ) 6.54

1-ethyl-3-methylimidazolium chloride ([EmIm]Cl) 2.57

Manganese chloride, anhydrous (MnCl 2) 0.08

Titanium chloride, anhydrous (TiCl2) 0.04

Two types of waveforms were used to electrodeposit Al-Mn-Ti, namely

waveform "I" and "J". Waveform "I" is direct current, while "J" is a reverse pulse
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current waveform. Table B.6 summarizes the pulse parameters of these waveforms,

along with the alloy compositions.

Table B.6 Pulse parameters of waveforms used to electrodeposit Al-Mn-Ti alloys.

Waveform Pulse current density Pulse duration Temperature Alloy composition
(mA/cm2) (ms) (*C) (at.%)

ii i2 ti t2 Mn Ti

"I" 6 6 20 20 80 7.1±0.2 1.1±0.1

"J" 6 -0.5 20 20 80 5.9±0.2 2.6±0.1

Table B.6 suggests that the anodic pulse decreases the Mn content of the

electrodeposited alloys, but increases the Ti content. The total solute content for the "I"

and "J" alloys are 8.2 and 8.5 at.% respectively. Figure B.3 assembles images of the

strained surfaces of these Al-Mn-Ti alloys after the guided bent-test. Images on the left

column correspond to bend tests where the applied strain was -37%, while images on the

right column correspond to bend tests where the applied strain was -8%. Images on the

top row belong to alloys produced by waveform "I"; while images on the bottom row

belong to alloys produced by waveform "J". Table B.7 summarizes our observations.

I Mn: 7.1 a/oITi: 1.1lat%
mF * 7.1 aa. /ivuim1 JIMT: 1.1 at%

IMn: 5.9 at% i~' IIMn: 5.9 at%~,i~1
'Ia: 2.6 at% m : 2.6 at%

Figure B.3 SEM images of bent surfaces of Al-Mn-Ti alloys produced by different waveforms.
Samples were strained to -37% in images (a)-(b); and -8% in images (c)-(d)).
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Table B.7 Dimensions of cracks observed on strained surfaces of Al-Mn-Ti alloys containing -8 at.%
solute after guided bend test, where applied tensile strains are -37% and -8%.

True strain Waveform Crack length (pm) Crack width (pm)

-37% "I" 300 20

"J" 150 10

~8% "I" 200 10

"J" 200 5

Figure B.3 and Table B.7 show that the application of an anodic pulse improves

the ductility of Al-Mn-Ti alloys. The alloy produced by the waveform "I" exhibited

cracks that were longer and wider than those found on the alloy produced by waveform

"J". This example illustrates that the application of an anodic pulse can potentially

improve the ductility of other Al-based alloys that are electrodeposited at non-ambient

temperatures as well.

B.4. Conclusions

In this study, waveforms that comprise cathodic, "off-time" and/or anodic pulses

are found to improve the ductility of electrodeposited films, as compared to those

produced by direct-current waveforms. Of all the waveforms employed, waveforms "D"

and "E", which respectively comprise an "off-time" and anodic pulse, are found to be the

most effective at improving film ductility.

Our results indicate that pulse current density and duration dramatically impact

film ductility. Clearly, there are many other combinations of pulse parameters that have

not been explored in this thesis research. More extensive experiments can be carried out

to find a waveform that simultaneously optimizes both hardness and toughness in

electrodeposited Al alloys.
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