
Comparing and Contrasting Web Services and

Open Source *oI&T IwI

by JUN 16 2010

Jeremy Lee Katz LIBRARIES

Submitted to the System Design and Management Program
in partial fulfillment of the requirements for the degree of

Master of Science in Engineering and Management

at the ARCHIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2010

© Jeremy Lee Katz, MMX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A uthor
Systenydesign atglga nagement Program

February, 2010

Certified by
U Michael Cusumano

Sloan Management Review Distinguished Professor of Management
Thesis Supervisor

Accepted by.................
Patrick Hale

Director, System Design and Management Program

Comparing and Contrasting Web Services and Open Source

by

Jeremy Lee Katz

Submitted to the System Design and Management Program
on February, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Engineering and Management

Abstract

Software can either be developed in a way such that the source code is available
to others, open source, or such that it is not, closed source. Open source software
has a number of architectural advantages over traditionally developed closed-source
software including modularity, a frequent release pattern and a strong culture of reuse.

As there has been a shift away from developing software that runs locally to a
model where service based computing and web services are some of the most important
software used on a daily basis by people, there has been a shift away from developing
such software as open source.

This thesis looks at a comparison between open source and web services and shows
how they compare on some of the aspects which are the most important architectural
advantages of open source. This examination is based on a look at literature and
specific web services. Through this examination, it shows that many of the benefits
of open source can be found as a result of other architectural characteristics of web
services.

Thesis Supervisor: Michael Cusumano
Title: Sloan Management Review Distinguished Professor of Management

4

Contents

1 Introduction 13

1.1 Background and Motivation . 13

1.2 A pproach . 14

1.3 Structure of thesis . 14

2 An Overview of Open Source 17

2.1 Software Binaries vs Source . 17

2.2 History of Source Code Availability 18

2.3 The Free Software Foundation . 19

2.4 "Open Source" is Born . 19

2.4.1 Open Source Successes . 20

2.4.2 Open Source Licenses . 21

2.4.3 Open Source in a Non-Software Context 22

2.5 Benefits of Open Source . 22

3 An Overview of Web Services 23

3.1 History of Computing . 23

3.2 Growth of the Internet . 24

3.3 Computing as a Service Returns . 25

3.3.1 Platforms and Web Services 26

3.3.2 Web Applications . 29

3.3.3 A Fuzzy Line.. 30

3.3.4 Benefits of Web Services . 30

4 Modularity 33

4.1 W hat is M odularity? . 33

4.2 Modularity in Open Source . 34

4.2.1 The Increasing Modularity of Mozilla 34

4.3 Modularity in Web Services . 35

4.3.1 Modularity and Service Oriented Architecture (SOA) 36

4.3.2 Modularity in Salesforce.com 37

5 The Bazaar Model 39

5.1 What is the Bazaar Model? . 39

5.2 The Role of Bazaar Style Development in Open Source 40

5.2.1 The Bazaar Model and the Linux Kernel 41

5.3 The Role of Bazaar Development in Web Services 42

5.3.1 Amazon Web Services and the Bazaar Model 44

6 Reuse 47

6.1 W hat is Reuse? . 47

6.2 Reuse in Open Source . 48

6.2.1 Reuse in the Google Chrome Web Browser 49

6.3 Reuse in W eb Services . 50

6.3.1 Reuse of Facebook Web Services. 51

6.3.2 Facebook's Reuse of Open Source 53

7 Economics 55

7.1 Making Money with Open Source . 55

7.1.1 Making Money as an Open Source Software Company 56

7.1.2 Making Money with Open Source as a Complement 57

7.2 Making Money with Web Services 58

7.2.1 Making Money with Consumer Web Services 59

7.2.2 Making Money with Business Web Services 59

8 Conclusion 61

A Facebook Connect Sample Code 65

8

List of Figures

3-1 IBM System/360 computer from 1964. Image courtesy of Computer

History Museum. [Computer History Museum] 24

4-1 Elements of a service oriented architecture[Lindner]. 37

5-1 The release dates of various Linux kernel versions[Kernel.org] 42

6-1 MotionBased and Facebook . 52

6-2 Before logging in, the user sees a Connect button 53

6-3 The user allows the site to use their Facebook identity 53

6-4 The site can then show the user's Facebook identity and use it 54

A-1 CNN and Facebook Connect . 66

10

List of Snippets

2-1 Sample Source Code . 18

3-1 An HTTP GET Request . 25

3-2 An HTTP GET Response] . 25

3-3 A Simple SOAP Request . 27

3-4 A Simple SOAP Response . 28

3-5 A Simple REST Request . 28

3-6 A Simple REST Response . 29

A-1 Facebook Connect sample source code 67

A-2 Facebook connect security snippet . 68

12

Chapter 1

Introduction

1.1 Background and Motivation

I have been involved both professionally and personally in the world of open source

development for a long time. This involvement has led to a great passion for the ideals

of the open source community that are based around the availability of software source

code for purposes of education as well as to modify and extend for my own needs.

There has been a shift over the course of the decade away from the distribution of

software to be run on local computers to a world in which much of the most critical

software applications used by people are instead accessed on remote servers. With

this shift has also come a standard for not having the source code of such applications

available. This concerns me for future software developers who may not have access

to a rich set of open source applications to inspect, modify and improve.

Also, I have started at a new job during my time at MIT where I will be much

more directly involved in the use of web services in the development of a larger web

based application.

Therefore, I hope that a comparison of some of the architectural characteristics of

open source and web services will help me to make that professional transition as well

as showing that some of the properties of open source can be found in web services

even without the source code being made available.

1.2 Approach

My approach to the research necessary for this thesis was largely based upon my own

experiences and an extensive literature review.

My own experiences are drawn from over a decade of work as an open source

developer contributing to a wide variety of projects as well as leading the development

on several of open source projects. This gave me a good foundation to start from on

the intricacies of how open source works and an instinct for what some of the most

important architectural characteristics were.

For a literature review, I consulted a variety of sources that are publicly available.

These included a number of articles and theses as well as a wide variety of Internet

publications. Many of these Internet publications have also had alternate methods of

distribution including presentations at conferences or printed versions of the content.

I also have tried to let these findings influence my full-time employment and tried

to learn from both the results of applying the knowledge as well as applying knowledge

gained from the job to the contents of this thesis.

1.3 Structure of thesis

To organize this thesis, I first take a look at an overview of and the history which has

led to the growth of both open source and web services. This history and overview

can be found in Chapters 2 and 3.

From there, there are a set of chapters in the middle looking at three important

characteristics which can be found in both open source and web services: modularity,

the bazaar model of development, and reuse. As a final point of comparison, there

is a look at some of the challenges faced by both open source and web services in

Chapter 7.

Finally, Chapter 8 pulls all of these together wrapping up to show how web services

share architectural properites with open source without the need for the release of

source code.

16

Chapter 2

An Overview of Open Source

2.1 Software Binaries vs Source

Open source software is, at the most basic level, computer software for which the

source code is available to people other than the original developer.

To execute software on your computer, you require the software in a format which

can be interpreted by the actual hardware; this is generally referred to as machine

code. In general, this is how most software is distributed. While convenient and

understandable by the computer, it is not a format which is really consumable by

humans as it is a stream of very simple, low-level instructions. Writing software using

just machine code would be an extremely time-consuming and error-prone process.

Instead, most computer programmers write software using a higher level language

with statements that can be more easily read and understood (see Snippet 2-1).

This higher level language code is then compiled, or translated, into the lower-level

machine code. This code is referred to as the source code and can be written in any

of a number of languages including C, C++ and more. In some cases, the source code

is in an even higher level language such as Java or Python which then gets processed

by an intermediate interpreter to turn the source code instructions into machine code

at runtime.

int main() {
printf ("Hello World!");

}

Listing 2-1: Simple Hello World source code written in the C programming language

For open source software, in addition to the distribution of the compiled machine

code as with most software, the source code code is also made available and able to

be studied or modified.

2.2 History of Source Code Availability

As the computer age dawned in the 1950s, this availability of source code was seen as

the normal case. Software was, at the time, not seen as an artifact with any inherent

monetary or intellectual property value. It was instead seen by vendors such as IBM

as a tool to take advantage of the computing hardware which had a clearly high

monetary value. The availability of software source code allowed users to extend and

modify the vendor-provided functionality as they needed.

There began to be a shift away from such openness as computing platforms were

introduced during the 1960s which were targeted to more users. The source code

originally still had to be available due to the customization needs, but there were

frequently contractual restrictions restricting disclosure or sharing.

With the introduction of the personal computer in the 1970s, the final step away

from source code availability was made as software made the final transition from a

tool to a good with a significant monetary value and very large businesses have been

formed around the development and sale of software outside of the benefits by selling

other things [Campbell-Kelly, 2008].

2.3 The Free Software Foundation

This shift was not without its opponents, though. Some who had been involved in

computing since its earlier days were upset with this movement away from sharing see-

ing it as detrimental to the furthering of computer science as a field. Most famously,

Richard Stallman founded the Free Software Foundation in 1985 in an effort to en-

courage cooperation and the sharing of software, including its source code[Stallman,

2008].

Free software refers to software which is free as in libre and not necessarily free in

terms of cost. This freedom is embodied in the four freedoms which the Free Software

Foundation calls for

1. To run the program for any purpose

2. To study how the program works and modify it. This requires access to the

source code of the program

3. To redistribute copies

4. To improve and distribute your improved version

While the Free Software Foundation and the associated GNU Project, an attempt

to build an entirely free operating system, made progress on their goals to develop an

entirely free system, the primary interest in it came from those involved in computer

science research and not business. Some usage of free software in a business context

existed with firms such as Cygnus Solutions, Red Hat and others but it was the

exception rather than the rule.

2.4 "Open Source" is Born

One problem with the adoption of the ideals of free software was the use of the term

"free". Businesses were, not unreasonably, concerned about the confusion involved in

trying to sell software which was also marketed as "free". The difficulty is two-fold,

both in that people do not expect to pay for something which is "free" and also there

is a negative stigma in terms of quality associated with things which are "free".

This concern came to a head in early 1998 as Netscape was beginning to look

at the idea of releasing the source code to their web browser software, Netscape

Navigator, in an attempt to help with their struggle against the growth of Microsoft's

Internet Explorer browser. A group of the thought leaders in the free software world,

notably without Richard Stallman, met and came up with the term "open source" as

a term to communicate many of the same ideas but without the negative, for business,

connotations of the word "free" [, OSI].

While Free Software was focused on the idea that source code should be available

only as a step towards satisfying the four basic freedoms, open source was instead

focused most strongly on the access to the source code used for the program as well

as the ability to improve and build upon such software. While the official definition

of open source from the Open Source Initiative[, OSI] includes the same aspects of

freedom as the four freedoms called for by the Free Software Foundation, they are

not the primary focus of the document. This change of focus away from freedom has

helped greatly in making the idea of open source more attractive for businesses to

use.

2.4.1 Open Source Successes

The list of successful open source projects could itself fill a substantial volume, but

the past decade has seen a massive growth in adoption of an open source philosophy

while developing software. A short list includes

* The Linux operating system kernel is used in everything from embedded devices

all the way up to supercomputers as the foundation for the system.

* The Apache httpd web server powers nearly half of the web sites running on

the Internet today[Netcraft Ltd, 2009].

* The MySQL database server is used for many database-backed web sites and

was deemed important enough to be purchased by Sun Microsystems in early

2008.

* The Eclipse development environment was originally developed by IBM but

has since been released as open source and is a fully-featured and community

developed development environment for Java and other programming languages.

* The Firefox web browser is the evolution of the original Netscape Navigator

source code released by Netscape in 1998 and is currently used for over 45% of

web browsing[Refsnes Data, 2009].

2.4.2 Open Source Licenses

Even under the umbrella of "open source" there is a great variety in exactly what is

meant and required. This variety is largely reflected by the various licenses which exist

and are used to govern the distribution and modification of open source software. At

one end of this are the licenses promoted by the Free Software Foundation including

the GNU Public License (GPL) which require that you include the source code if you

distribute the software with any modifications. Other licenses such as the BSD and

MIT licenses, which originated at the University of California at Berkeley and MIT

respectively, have no requirements to distribute your changes in source code form.

While this variety of terms is slightly confusing, it has also helped to ensure that

open source software can be used in a wide variety of circumstances where there may

be other constraints that have to be considered.

2.4.3 Open Source in a Non-Software Context

Given the success seen with open source software, there has been a movement to try

to apply the term "open source" to other, non-software based contexts. These include

things such as MIT's Open Courseware system providing access to open educational

materials or the community developed and edited encyclopedia Wikipedia. For the

purposes of this thesis, though, I will focus purely on the advantages of open source

in the context of software.

2.5 Benefits of Open Source

As the adoption of open source software has grown, there have been efforts to try to

determine if there are characteristics which make this growth likely. From this work,

there have been a number of things which have an overall impact on the architecture

of the software system which seem to be emergent as a result of developing a piece of

software as open source. A few of the most notable of these include:

" Modularity

" Bazaar development

" Reuse, both in terms of reusing specific code elements as well as by providing a

platform to build upon

" Symbiotic relationship for companies [Feller et al., 2005]

In the later chapters of this thesis, each of these will be looked at in greater detail.

Chapter 3

An Overview of Web Services

3.1 History of Computing

The rise of computing as a service is not really a new idea or paradigm. In the early

days of computing, all computing was basically "computing as a service" where there

were large server computers located somewhere. Users then interacted with these

computers "remotely", at first via physical interfaces such as punch cards and later

via terminals or other electronic interfaces. The concept of running software "locally"

was somewhat unheard of as computers were very large machines taking up entire

rooms, or even floors in some cases!

It was only in the late 1970s and early 1980s that the idea of a personal computer

and running software locally began its rise to prominence as a result of the invention

of the microprocessor. This movement to personal computers was a substantial shift

in the dominant paradigm of computing at that time. Many of the companies that we

see today as large or important computer companies such as Microsoft, Apple, and

others got their start during this era by seeing the growth opportunity and jumping

on it. With this and later advancements such as graphical user interfaces like the

Macintosh and Windows, there was a great growth in the importance of software

running on a machine,which was "'local".

Figure 3-1: IBM System/360 computer from 1964. Image courtesy of Computer
History Museum. [Computer History Museum]

In doing so, users were able to have more intuitive interactions with the software

they were running the machine via things like a mouse. And as the computing power

of microprocessors continued to increase, this became even more viable for computing.

The later growth of laptops began to allow for such interactions to occur while not

tethered to a desk and be carried with you wherever you went. The dominant usage

mode for the computer had changed.

3.2 Growth of the Internet

In the 1990s, a new mode of computing began to rise in importance as the Internet

grew from infancy to an incredibly important resource. While the Internet's roots can

be traced to work on ARPAnet in the 1980s, ARPAnet was limited in its usefulness

to a small class of computing users at the time.

The invention of the World Wide Web and the Hypertext Transfer Protocol

(HTTP) by Sir Tim Berners Lee in the early 1990s began the growth of a valu-

able network resource for end users. Originally conceived as a way for people to

communicate and share information, in many ways it is responsible for the expansion

and growth of the Internet.

HTTP is a relatively simple, text-based protocol involving requests from a client

to a server and then a response from that server. One of these requests is the GET

request which asks the server to send a given file as its response. Another type of

request is the POST request which also provides some data which is meant to be

processed by the server before getting back a response. Simple examples of a GET

request and the corresponding response can be found in Listings 3-1 and 3-2.

GET / HTTP / 1.1
Host: www.myhost.com

Listing 3-1: An HTTP GET Request

HTTP/1.1 200 OK
Date: Thu, 19 Nov 2009 22:38:34 GMT
Server: Apache/2.2.13 (Fedora)
Connection: close
Content-Type: text/html; charset=UTF-8

hello world!

Listing 3-2: An HTTP GET Response]

In the early days of the Web, the primary usage was for sharing and displaying

static information which was retrieved from websites rather than any form of inter-

active applications. Much of the effort through the decade was spent on concerns of

interoperability, ease of information transfer and security[Berners-Lee, 1996]. These

efforts were important, but kept the Web as a largely read-only environment.

3.3 Computing as a Service Returns

To a small degree at the very end of the 1990s but especially over the course of the

first decade of the twenty-first century, there has been a movement towards a more

interactive and immersive Web experience. Tim O'Reilly is well-known for having

made a statement that a change was underway from the original Web 1.0 world of

non-interactive websites to a new world of interactive web sites which he referred to

as Web 2.0[O'Reilly, 2005].

This change has been characterized by a shift towards more things hosted on the

Internet which can be perceived as platforms or applications as opposed to pages list-

ing information or simple e-commerce shops. This is interesting as it allows people's

interactions with their computers to change back to where the local computer is just

more of a terminal interacting with a remote server as opposed to having all of your

important applications running locally on your own machine.

This has also been helped by the growth of the mobile Internet. The drive to be

able access one's data from anywhere from your computer to your cell phone has led

to a need for easily accessible services. The ubiquity of the HTTP protocol and the

ease of implementing access with it on any platform has made it an obvious choice

for this transition of computing services.

3.3.1 Platforms and Web Services

The primary part of computing as a service today which will be focused on for this

thesis are the platforms or web services which are then used by others to build their

own applications. As the patterns for building the platforms have matured, there has

been a convergence around basing these platforms and services around the protocol

which Tim Berners Lee initially developed and built the World Wide Web on, the

HyperText Transfer Protocol.

The World Wide Web Consortium (W3C) defines a web service as

A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface de-

scribed in a machine-processable format (specifically WSDL). Other sys-

tems interact with the Web service in a manner prescribed by its descrip-

tion using SOAP messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards." [Booth

et al., 2004]

As stated in the definition, SOAP is used over HTTP and takes advantage of the

previously described POST request type. The data in this case is an XML-encoded

set of data that can then be processed by the server. By way of example, one could

have a web service implemented using SOAP to get the price for a given item in an

online shopping website as seen in Snippet 3-3.

POST /Price HTTP/1.1
Host: www.mystore.com

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns: soap="http: //www .w3. org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.mystore. com/price">

<m:Get ItemPrice>

<m:ItemName>Can of Soup</m:ItemName>

</m:Get ItemPrice>

</soap: Body>

</soap: Envelope>

Listing 3-3: A Simple SOAP request for the price of a can of soup

Upon receiving this request, the server would parse the XML-based SOAP request

and see that there was a desire to run the GetltemPrice method for an ItemName

of Can of Soup. This method could be implemented in any way on the server side

including a database lookup or anything else. The server would then send back a

response which is also SOAP encoded as seen in Snippet 3-4.

As it turns out, though, this definition that a web service must use SOAP is some-

what restrictive and in the five years since it was written, there have been substantial

developments of other ways to build web services. These include representational

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns : soap="http: //www. w3. org/2001/12/soap-envelope"
soap: encodingStyle="http: //www .w3. org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.mystore.com/price">
<m:GetItemPriceResponse>
<m:ItemPrice>0.99</m:ItemPrice>

</m:GetItemPriceResponse>

</soap: Body>

</soap: Envelope>

Listing 3-4: The SOAP response for the price of a can of soup

state transfer (REST) as first described by Roy Fielding in his work on network-based

software architecture [Fielding, 2000] and simpler transfer formats such as JavaScript

Object Notation (json). An example of the request to and response from a REST

service to find the price of a can of soup can be found in Snippets 3-5 and 3-6.

GET /rest/Price/CanOfSoup HTTP/1.1
Host: www.mystore.com
Accept: application/json

Listing 3-5: A Simple REST request for the price of a can of soup

As you can see, this is significantly less verbose of a protocol and as a result is

significantly easier for a developer to work with. The downside is that the lack of

verbosity makes it such that the protocol describes itself less and therefore requires

a clearer understanding of what the interface between the components are.

Given the wide usage of both types of service, I will not restrict my usage of the

term "web service" to only those services using SOAP and will instead rely on a more

general definition of a web service in referring to any software system operating over

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Content-Length: nnn

{ "price": 0.99 }

Listing 3-6: The REST response for the price of a can of soup using JSON

a network where the communication is conveyed via the HTTP protocol.

These web services can then either used by other web services to perform data

operations rather than options such as database queries due to the sheer volume

of data which is being worked with. Many of these web services began as internal

services within companies, but they have increasingly become more public. Examples

include many of the web services provided by Amazon around their online retailing

business or services provided by financial trading firms to access up-to-date stock

information.

3.3.2 Web Applications

The second part of computing as a service is the actual applications which live on the

network and are built on top of the platforms and web services above. The financial

tracking services provided by Mint.com, purchased by Intuit in the fall of 2009, take

advantage of other companies' web services to aid in the accessing of their users'

financial data. Another example that is used by many consumers are web based

games inside of Facebook such as Farmville which are then able to take advantage of

the social network to share your progress and achievements with your friends

Such web applications aren't limited to being used for consumer or end-user pur-

poses, though,. There are also a number of web applications that are more targeted

at usage by businesses. One such application is the HubSpot application suite for in-

bound marketing analysis; it makes substantial use of external web services including

those offered by companies such as Google and Salesforce.com to be able to integrate

information from all of these sources and allow a marketing department to maintain

and manage their funnel of incoming prospects and leads.

3.3.3 A Fuzzy Line

It is worth noting that the line between a web services platform and a web application

is not always clear. Applications can and frequently do provide their users with

web services which can be used for additional and innovative functionality or will

sometimes even provide such services to other developers.

This can be seen on end-user oriented applications such as Facebook. Many users

use just the basic functionality of Facebook, but there also exists an extensive platform

that other developers can build their own applications against. Today, this platform

is used by some thousands of developers for many applications that extend Facebook

to provide games, bring in other services and more.

Business web applications do not ignore this capability to straddle the line between

platform and applications as well. One needs look no further than the trail-blazer

of software as a service companies, Salesforce.com, to see a business web application

which is extensively used in its own form but as previously mentioned, they also

provide a variety of web services so that their users can integrate Salesforce.com with

other web applications that they would like to use.

3.3.4 Benefits of Web Services

The largest benefit of the growth of web services is clearly the ability to access them

from anywhere. This decentralized nature is increasingly important in today's world

where businesses have offices spread across the globe and need to allow access to

various services from any of these offices without requiring complex computer system

setups in each.

Going beyond that benefit, you can begin to see many of the same benefits as exist

when developing in an open source environment. The later chapters of this thesis will

look specifically at modularity, the bazaar development model, and reuse in a web

services context.

32

Chapter 4

Modularity

4.1 What is Modularity?

One of the major aspects of the architecture of a product or system is whether it is

integral (closed) or modular (open). As described by Ulrich and Eppinger, a modular

architecture is one in which each chunk or part implements a functional element

entirely and the interactions between the parts are well-defined and important to the

primary function of the system[Ulrich and Eppinger, 20081.

More modular systems have been shown to allow for a quicker product develop-

ment cycle through the creation of platforms[Muffato and Roveda, 2000]. There are

also strong gains to be had in terms of an ability to adapt to product change for

any of many reasons far more easily. This is because the architecture is such that a

minimum of physical changes are required to implement the functional change.

While modularity plays a strong part in the development [Baldwin and Clark, 1997]

of many more complex systems, it has not been shown to be a necessary precondition

for such systems. Especially in arenas where the driving factors are not related to the

flexibility of the product, you are more likely to see integral products. Also, integral

systems can tend to have a higher performance than their modular counterparts due

to being able to avoid expensive bottlenecks at module boundaries.

Another way to look at it is that integral systems are made up of very strongly

coupled subsystems where modular systems, instead, are much more decoupled or

decentralized. This makes it such that switching out parts of an integral system

ranges from difficult to impossible. On the other hand, well-defined interfaces make

it relatively straight-forward to do so in a more modular system.

It is important to note that modular vs integral systems is not a black or white

comparison; most systems have elements of both present. But at the same time, it

is possible to compare the modularity of systems and have a reasonable area about

which to discuss.

4.2 Modularity in Open Source

This decoupled or modular nature is an architectural characteristic which is strongly

present within open source. While some open source software projects make design

choices which explicitly lead to such modularity, even among those which do not,

there is a strong bias towards such modularity.

4.2.1 The Increasing Modularity of Mozilla

Alan MacCormack, et al performed a study to look at the modularity of open source

and especially how it compares to that of the more traditional closed source soft-

ware[MacCormack et al., 2006]. They used a Design Structure Matrix (DSM) to

look at dependencies of projects and used that DSM to assess the complexity and

modularity of the system. While this does not allow the assignment of any sort of

real "number" representing the modularity, it does allow for the comparison between

systems by looking at the various complexity characteristics of the DSMs developed.

In the study, they compared the Linux kernel and the initial release of the Mozilla

web browser. As previously mentioned, the Mozilla web browser was released by

Netscape in 1998 as the open source version of their Netscape Navigator browser.

Given the state of the source code at that time, MacCormack felt that it was a rea-

sonable proxy for a closed source developed software system, especially given the

difficulty in attaining the source code to closed source software. This initial compar-

ison showed a significantly more integral design being present in the Mozilla browser

as compared to the Linux kernel.

This left some questions, though, as to whether there were inherent differences

in the modularity of an operating system and that of a web browser. Therefore, the

researchers went a step further and looked at the source code of the Mozilla web

browser after its first significant redesign as an open source project. Comparing this

post-redesign and now open source architecture showed a significantly more modular

design than had been seen with the original source code release of Mozilla. Also, it

was a comparable modularity to that of the Linux kernel.

This led them to conclude that the software domain did not actually make a

significant difference in the modularity of the system. Instead, a modular and loosely

coupled system is a necessary outcome for the collaborative and distributed set of

developers which work on open source projects. In contrast, software systems which

are developed in a more proprietary fashion can be more strongly coupled. Some

of the problems of this more integrated architecture are offset by an ability to solve

problems through in-person interactions and sharing of information.

4.3 Modularity in Web Services

Given the inability to assign a concrete number defining the modularity of a system, it

is difficult to directly compare the modularity of web services to that of open source.

But one can look at the modularity of a web service based system vs a more traditional

system. While no formal study has been done, in early 2003 when Salesforce.com

was a relative newcomer to the Customer Relationship Management (CRM) market

compared to long-time industry heavyweights Oracle, Siebel and SAP, it was reported

on how much more modular Salesforce.com was than the incumbents [Sweeney, 2003].

Since that time each of Oracle, Siebel and SAP have worked towards turning their

CRM solutions into web services and thus have increased in modularity.

Looking at a more abstract level, though, the ecosystem surrounding web services

tends to strongly emphasize modularity. This begins even at the definition of a web

service which includes the requirement of a definition of the service being provided.

This interface definition in turn sets an expectation for other components on how

they will interact with the system. These expectations in turn help to keep clear

boundaries between different parts of the system, which is one of the key aspects of

modularity.

4.3.1 Modularity and Service Oriented Architecture (SOA)

One of the most prominent and highly used patterns in web service development is

Service Oriented Architectures (SOA). Generally used in internal business applica-

tions to help tie various backend systems together, SOA involves having a number of

web services with their own functions to perform being pulled together to create an

even larger system.

The Organization for the Advancement of Structured Information Standards (OA-

SIS) is a group which helps to drive the adoption and definition of various web service

standards, especially within the domains of business. They define a Service Oriented

Architecture as

A paradigm for organizing and utilizing distributed capabilities that may

be under the control of different ownership domains. It provides a uni-

form means to offer, discover, interact with and use capabilities to pro-

duce desired effects consistent with measurable preconditions and expec-

tations.[OASIS, 2006]

This is a relatively complex definition but what is most important to recognize

Contract Implementation Interface

Business logic Data

Figure 4-1: Elements of a service oriented architecture [Lindner].

from it is the fact that SOA relies on having distributed capabilities as well as dis-

coverability around those capabilities. These are in fact the very characteristics that

were described earlier as required for a modular system. And in fact going beyond the

definition, best practices for building such an architecture state that the interfaces

between modules should be explicitly published in a standard format[Endrei et al.,

2004].

4.3.2 Modularity in Salesforce.com

Switching from the generalized case of modularity as promoted by Service Oriented

Architectures, we can look at the modularity present in Salesforce.com

Salesforce.com is probably one of the most well-known, if not best known, software

as a service providers. The company was founded in 1999 and provides a variety of

customer relationship management (CRM) functionality all as hosted software avail-

able via the web rather than software which is packaged and provided to customers.

Today, they have over 60,000 customers and are a publicly traded company with a

nearly eight billion dollar market cap[Salesforce.com, 2009a].

Salesforce.com has been a pioneer in the world of software as a service and have had

a strong bias towards allowing for large amounts of customization within their product

to help meet the widely varying needs of their customers. While some concepts are

applicable to all customers looking for a CRM tool such as customers, leads, and

salespeople, exactly how those objects interact and are connected is not common. To

help meet these needs, they have built a system made up of a large number of modules

that can be used together as needed for your specific business. These modules "can

be assembled with minimal coding in building-block fashion." [Salesforce.com, 2009b].

This ability to use modules as building blocks is enabled by having a well-defined

interface between them.

In addition to the customization of their own application, Salesforce.com provides

a rich set of web services interfaces that can be used not only to work with their

product but also to effectively tie it together with other products. These web services

are generally provided via both SOAP and REST interfaces as described in Chapter

3 and are documented with a standard interface file. These interfaces can either be

specific to the business of a customer to tie in with other backend processes that they

already have as part of a larger Service Oriented Architecture or they can also be

more general such that they can be used by other software.

This more general method of interacting with Salesforce.com is used from within

the HubSpot inbound marketing platform. With the functionality provided, HubSpot

is able to create leads within Salesforce.com that can be assigned to salespeople for a

follow-up and then also keep a general view of the state of those leads and prospects

within the view provided for tracking the effectiveness of your inbound marketing.

This integration is valuable to HubSpot's customers as it allows them to have a

complete view of their sales and marketing efforts which is trackable so that they can

determine which marketing efforts are the most effective.

Chapter 5

The Bazaar Model

5.1 What is the Bazaar Model?

The concept of a bazaar development model is an idea originally presented by Eric

S. Raymond at the Linux Kongress conference in 1997 as a further evolution of open

source. The idea has since been refined and further published in his essay The Cathe-

dral and the Bazaar[Raymond, 1999a]. In the essay, he contrasts a bazaar model in

which developers develop their software in a very public fashion which encourages

participation in the process of software development with that of the, more tradi-

tional, cathedral style in which development happens in the background and there

are then periodic, and typically infrequent, releases that users can consume. Even

within the world of open source, when the paper was written, many projects were de-

veloped more in line with the cathedral style and just had source code accompanying

the infrequent software releases.

As an outcome of the bazaar model, there are two substantial propositions which

have held up over the past decade with the growth of open source as the main ad-

vantages of the bazaar model.

The first of these is "given enough eyeballs, all bugs are shallow" [Raymond, 1999b].

Raymond terms this Linus's Law after Linus Torvalds, the creator of the Linux op-

erating system. The idea behind this proposition as originally stated is that with

more eyes looking at your system, bugs will be found more quickly. An important

corollary of the idea is that fixing of problems is less difficult of a problem than the

original act of finding the problems. Raymond cites this as the fundamental difference

between cathedral and bazaar style development. He asserts that due to a lack of

this property, cathedral style development sees problems and bugs as difficult things

which lead to the long release cycles frequently seen in cathedral style development.

The second very complementary proposition provided by Raymond is that of "re-

lease early, release often". The idea behind this is relatively straight-forward. Essen-

tially you wish to release your software early in its life and then continue to release

it frequently as it evolves. By doing so, you make it easier to get feedback earlier in

the life-cycle of the project. As has been shown in the standard cost of change curve,

this in turns reduces the cost of making any needed changes and can also be shown

to improve the quality of software. This is something of a pre-condition for the above

idea of more eyeballs making bugs shallow as you cannot get the eyeballs on what

you are working on without at least some type of release.

5.2 The Role of Bazaar Style Development in Open

Source

Clearly, given the original motivation for Raymond's work, open source is a prime

example of where the bazaar model of development occurs. It has become something

of a core tenet of a large number of open source projects including of course the

Linux kernel, many of the open source distributions including Ubuntu, Fedora and

OpenSuSE and the X Window System. From these examples, though, one might think

that the practice is limited to relatively large and in some ways mature projects. This

isn't the case, though. Just a casual look through some of the projects present on the

popular open source hosting site SourceForge shows examples such as the Alleyoop

memory profiler front-end[AlleyOOP] where some of the release news includes the idea

of living by a philosophy of releasing early and often or the Bluefish editor[Bluefish]

where they claim having received many benefits as a result of adhering as a result of

releasing early and often.

5.2.1 The Bazaar Model and the Linux Kernel

Perhaps the single best example when talking about bazaar style development is of

course the Linux kernel. Since the earliest days of its development, the Linux kernel

has been developed in the bazaar style. The earliest release of Linux by Linus Torvalds

in 1991 was stated to be a very immature release but Linus believed that the value in

getting the initial release out there and viewed by more people was more important

than it being "done". After this first 0.01 release, Linus made additional releases on

a relatively frequent basis.

As Linux began to be developed by more people, there came to be a split into

having two actively developed kernels at any one time. The first was the "stable"

kernel series into which smaller changes went. The second was a "development" kernel

series into which larger, more experimental, and more destabilizing changes went. The

development kernel was released on a very fast basis, sometimes with several releases

over the course of a week and with various changes at different stages of completion.

This was effective for a while but as the cycle of releasing new versions of the

stable kernel series stretched out (see Figure 5-1 simultaneously with the increasing

dependence on Linux by more companies, there was a need for some kind of change.

Torvalds then took things a step further than could have been imagined in 1997 in

terms of releasing early and often by announcing a change in the development style in

the summer of 2004[Corbet, 20041. This change was a switch to have all development

occurring in the primary, stable series of the kernel. This helped to focus all of the eyes

on one code tree for development and thus, in theory, making all bugs shallower and

more discoverable. Releases were still frequent and as people adjusted to the change,

Kernel Version Development vs Stable Release Date
v0.01 development 30 October 1993
v1.0 stable 13 March 1994
v1.2 stable 7 March 1995
v2.0 stable 9 June 1996
v2.2 stable 26 Januay 1999
v2.4 stable 4 January 2001
v2.5.2 development 15 January 2002
v2.5.3 development 30 January 2002
v2.5.4 development 11 February 2002
v2.5.5 development 20 February 2002
v2.6.0 stable 18 December 2003
v2.6.29 stable 23 March 2009
v2.6.30 stable 10 June 2009

Figure 5-1: The release dates of various Linux kernel versions [Kernel.org]

they actually began to come on a very regular schedule of every three months.

Even this was not quite enough for Torvalds, though. As the development of

Linux grew and became more complex, there started to be more contributors who

were actively working at any time on an area of the code. To help increase the

visibility of what was occurring and ease the effort of everyone working together,

Torvalds built the git distributed version control system[git] to provide an easier way

to allow anyone to look at the source code being developed by any individual. While

publishing unfinished changes in this manner is not the same as releasing them, it has

certainly served to get even more development done publicly and thus in the spirit of

the bazaar model.

5.3 The Role of Bazaar Development in Web Ser-

vices

At first glance, web services do not seem to have any of the advantages of bazaar

development as characterized by Raymond and instead are purely the result of cathe-

dral style development efforts. While there are isolated instances of open source web

services that can then get the benefits of a bazaar style of development just as any

other open source software system, that is the exception and not the norm for web ser-

vices. Interestingly, though, as you look closer, the two primary advantages of bazaar

development manifest themselves more generally with web services development even

without them being developed in an open source fashion.

First of all, many web services actually end up following the ideas behind release

early, release often. One of the problems with following this philosophy in more

traditional and proprietary software is that it is then very difficult to keep customers

running on the "current" version if they must frequently download and install a new

revision of the software. With open source, this tends to be less of a concern as

there is less of a support component as the users are less likely to be paying for

the frequent releases. Web services are able to sidestep this problem, though, as the

software is running on servers under the control of the company or organization doing

the development of the web services[Rhoads Lindholm, 2007]. This makes things

significantly easier to update and leads to an ability to release far more frequently.

One extreme example of this is Yahoo's Flickr web photo sharing service. Two

Flickr employees gave a presentation on their development and deployment practices

at the O'Reilly Velocity conference in June of 2009 where they revealed an average

of over ten releases of the software stack per day[Allspaw and Hammond, 20091.

While not all web services are released on such an aggressive schedule, most seem

to take advantage of the idea of releasing early and often. Salesforce.com puts out

releases with a frequency mirroring the change of seasons[Garner, 2003). Google also

regularly rolls out changes to their many web services, generally on a schedule of

when things are ready to be used.

The idea of many eyes as expressed in Linus's Law, though, is less clearly a part

of the web service development process. Certainly there are web services with large

numbers of users to help in identifying issues. Therefore, the corollary regarding

the fact that finding the problems is more difficult than fixing them is covered in

these services. And also, the open interfaces also at times helps in determining where

problems occur. Overall, though, this is an area where web services do not receive

the advantages of open source development.

5.3.1 Amazon Web Services and the Bazaar Model

For a look at the use of a bazaar development model in web services, I will look at

the suite of Amazon Web Services. Amazon Web Services is a set of services provided

by Amazon largely to improve developer productivity, especially when building web

applications[Amazon, 2009]. There are a number of services available now, but the

value of releasing early and often to Amazon can be seen by focusing on one of the

original services - the Elastic Compute Cloud (EC2).

The EC2 service provides computing infrastructure in an on-demand fashion to

allow developers to scale out without the purchase and installation of additional

hardware. While EC2 provides more than just simple web services, the functionality

is all exposed via web services and is extensible as such. When originally opened to

the public in late 2006, the functionality available was extremely limited. Users could

launch and terminate instances, put instances into some simple security groupings and

create your own images. Users were also limited to a maximum of twenty instances

at any one time.

While these limitations were fairly severe and ruled out usage for some users,

others were able to get started and provide very early feedback to Amazon on how

the service could be improved. While releasing such an unfinished version of the

product could be seen as detrimental, Amazon instead saw the value in releasing

early and iterating to improve the product over time[O'Grady, 2009]. The feedback

they received from the early releases coupled with the high frequency with which

they were able to update the web services and environment have led to Amazon's

commanding leadership in the space of on-demand computing infrastructure.

Over time, the new functionality which has been added to these services include

minor tweaks such as improved performance as well as more substantial changes

including support for Windows in addition to just Linux, multiple sizes of machines

being available, multiple locations for running instances and the integration of virtual

private networking functionality for connecting your EC2 cloud to your own private

infrastructure. They have also rolled out a completely new REST based interface in

addition to the original SOAP interface which was available for interacting with the

service.

This model of releasing early and often has since been continued as they have ex-

panded the services provided via Amazon Web Services. Today the services available

also include file storage (Simple Storage Service), a simple distributing queuing sys-

tem (Amazon Simple Queue Service), a content distribution network (Amazon Cloud-

front), a very simple database (Amazon SimpleDB), a way to take advantage of a new

method of distributed computing pioneered by Google known as Map-Reduce (Elas-

tic Map Reduce) and a full-fledged relational database (Amazon Relational Database

Services). As each of these has been launched, they have had the bare minimum

of functionality to be useful to someone but they have been quickly updated and

increased in functionality. Given their online nature, this is able to be done with-

out requiring the users to do anything other than start taking advantage of the new

functionality.

46

Chapter 6

Reuse

6.1 What is Reuse?

The concept of reuse is one which is strongly linked to that of modularity. In its very

simplest form, reuse is taking a component and using it within another context. The

linkage to modularity comes in that the interfaces and well-defined nature of modular

components make them easier to reuse in another context. More integral systems

tend to be less appropriate for reuse as the components would require significant

re-engineering to be useful in another context.

Applying the idea of reuse to software is something which has been an ongoing

area of work and research over the history of computing. Much of the early research

into software reuse looked at it from a very systemic view and showed it to be dif-

ficult to do in a very general fashion[Frakes and Isoda, 1994]. Even more recent

studies[Desouza et al., 2006] have shown that reuse continues to lag as a general rule

due to the difficulty involved in doing so even as the benefits of such reuse have

become increasingly clear.

In the early 1990s, object oriented programming was seen as providing the solution

to the problems of software reuse. Formally, object oriented programming involves

classes or other types of "object". These objects are able to be modified and reused

throughout your software so that you can write code as few times as possible. The

growth of languages such as C++, Java and later C# are, to some extent, attributable

to their primarily object oriented focus as opposed to the more procedural focus of

earlier programming languages.

Much of the reuse that occurs within these languages has been strongly influ-

enced by the book Design Patterns[Gamma et al., 1994] which is perhaps the most

widely read book on software reuse and how to implement such reuse within your own

software. The authors strongly stress that you should strive for ensuring that reuse

within your software be more black box than white box; that is, that you should ensure

that the software doing the reuse is isolated from the details of what is being reused

such that internal implementation details can change without any need to change the

callers.

While these have certainly increased the amount of reuse, there is not evidence that

following such methodologies actually has a significant improvement on productivity

in software development[Potok et al., 1999] or on software quality[Colagrosso, 1993].

6.2 Reuse in Open Source

Open source is a factor which tends to increase the amount of code reuse which is

possible and which occurs [Haefliger et al., 2008]. By having the source code available,

it becomes easier for other developers to examine and learn from the original software.

This can lead to these new developers using what they have learned to develop better

software.

But another far more practical point is that the licensing used for most open source

software is written such that it not only allows, but encourages, other developers to

take a piece of software and modify it. One of the most popular open sources licenses,

the GNU General Public License (GPL) [GPL], not only encourages such modifications

but then requires that developers who distribute such modified versions must also

distribute the modified source code for others to read and learn from. The modified

work can either be distributed described as a modification of the original software or

it can be the basis of a new software project.

In addition to modification, another common practice with open source software

is the reuse of unmodified open source software to build larger and more complex

systems. This is enabled by a combination of the modularity as previously described

as well as the licensing and cultural norms around open source software. While

such reuse can and does happen with proprietary software, it usually requires that

developers acquire potentially expensive licensing to do so. With open source, the

largest cost is either the expertise required to build the new software system or the

fact that, with some licenses, the resulting software once distributed must also be

distributed as open source.

6.2.1 Reuse in the Google Chrome Web Browser

In September of 2008, Google made headlines by announcing that they had developed

and were releasing a new web browser, Google Chrome[Pichai and Upson, 2008]. This

browser was largely functional at that point and was to be released as open source

and then continue to be worked on and improved by Google engineers in collaboration

with other open source developers who wished to contribute.

What is interesting is that rather than develop everything for the browser them-

selves, they decided to reuse a large number of existing open source components

within their browser and only replace the things which they felt "needed" to be re-

done. Looking at the initial release of the Chrome source code, they were reusing at

least twenty-five existing open source libraries [Krumins, 2008]. While some of these

were other projects developed within Google such as the v8 JavaScript engine and

the Breakpad crash reporting system, some of the reuse was of components which are

notable large parts of competing open source browsers. These include the Netscape

Portable Runtime (NSPR) and Netscape Security Services (NSS) initially developed

by Netscape for use in Netscape Navigator and still in use today with the Firefox web

browser and also the open source Webkit HTML rendering engine which is used by

the Safari web browser.

Without such reuse, Google would have needed to develop all of these compo-

nents themselves. Instead, they have built their browser on top of them and even

contributed changes back to the initial projects as a result of their use within Chrome.

6.3 Reuse in Web Services

Reuse in web services can also take on several different characteristics.

The first of these is the reuse of other web services. While not intrinsic to web

services, the simple architectural nature tends to lead to a desire to reuse the services.

There also is a large cultural aspect among web service developers that encourages

such reuse which is rooted in the idea of a mashup. According to the Open Mashup

Alliance[Open Mashup Alliance, 2009] a mashup is a combination of other existing

data sources, including web services, to produce more interesting data.

Secondly, web services themselves are frequently able to take advantage of a small

loophole in open source licensing often referred to as the ASP loophole [FabrizioCapobianco,

2006]. As the restrictions of most open source licenses only take effect when the soft-

ware is distributed, web services can generally reuse open source components without

having to be released themselves as open source. Thus a huge number of web services

reuse, modify and improve on existing open source software but do not necessarily

contribute back any of their modifications. Also, and perhaps more importantly, they

do not in turn force their own software to be open source.

The growing use of this loophole has been met, with the creation of new licenses

such as the Affero GPL[AGPL] which places strong restrictions around the require-

ments for the distribution of changes even in cases where there is no actual software

distribution taking place and instead users are interacting with a web service. AGPL

adoption rate is still quite slow compared to the overall growth of both web services

and open source, being measured at a rate of only fifteen projects per month[Kuhn,

2008] in December of 2008 and with only a total of 229 projects having adopted the

license overall as of November 2009[Black Duck].

That said, if AGPL adoption were to begin to pick up at a significantly greater

pace, it would lead to a need for change by web services providers either so that

their services would be open sourced as well or to no longer reuse the open source

components that they can today.

6.3.1 Reuse of Facebook Web Services

Facebook is a social networking site that was founded in 2004, originally to help college

students connect with others they went to college with. Since then, it has grown into

a site allowing anyone to join and with a massive global appeal, seeing nearly 100

million visits per months as of late 2009[Eldon, 2009]. The service is comprised of a

number of features from real-time communication and offline messaging to a platform

that others build games and other applications on top of. Virtually all of these

are developed either as web services or on top of the web services provided as the

"Facebook platform".

The first way that Facebook allows for reuse is by having relatively easy to use

web services[Facebook] to have a developer's own application appear as a Facebook

application and thus usable and viewable by any Facebook user. Part of this integra-

tion allows for things such as the addition of comments by other Facebook users who

may not use your own application. These comments can then be pulled back to your

own application using the Comments.get web service call.

This has allowed other web applications for a variety of other users to be present

within Facebook. For example, this gets used by fitness related applications to let

their users share information via Facebook. One example is the Motionbased.com

site which allows a user to publish any fitness activities that they have tracked with a

O MyMotionBased

sAver Lmap s

Figure 6-1: The integration of MotionBased within Facebook, Facebook.com, 24
November 2009

GPS to their Facebook profile and then pull information from that posting back into

Motionbased site (Figure 6-1). A second example that works similarly but with less

of an interactive nature is the MapMyRide.com application[MapMyRide.com, 2009];

this application allows a cyclist to upload their ride information to MapMyRide.com

and then reuse that data on Facebook.

This ability to easily embed and reuse components via web services calls is a

delivery on some of the promises which were made with object oriented programming,

just fifteen to twenty years later and via a substantially different programming model.

Facebook also encourages the reuse of some of their components completely inde-

pendent of the use or integration with Facebook itself. An example of this is their

Facebook Connect service[Facebook]. As the usage of the Internet and various web

sites has grown, people have frequently needed to provide a log in to websites to store

information or be recognized on future visits. Reasons for this are from simple things

such as remembering layout choices which you have made for a site to remember-

ing your identity when contributing content in the way of comments or reviews to a

complete knowledge of who you are on e-commerce sites to be able to allow you to

purchase items without entering your credit card information every time.

Facebook Connect provides a simple API that a website owner can use to allow

their users to log in with their Facebook username and password rather than having

a new identity. This frees website owners from having to build complex systems and

worry about the security of their system and instead allows them to just put in simple

references to use existing JavaScript and then the HTML tag <fb:login-button />. A

full example web page making use of this can be found in Appendix A.

This web page is a very simple comment form, but is illustrative of how a more

complex site could easily make use of the Facebook connect API and how allows a

user to log in to your site using Facebook by clicking the Connect button (Figure

6-2), authorizing the site (Figure 6-3) and then being logged in (Figure 6-4).

Give me feedback

Name:

Figure 6-2: Before logging in, the user sees a Connect button

Connect katzitestapp with Facebook to interact with your friends on this
site and to share on Facebook through your Wall and friends' News
Feeds,

katzjtestapp Bring your friends and info

Publish content to your Waill

Figure 6-3: The user allows the site to use their Facebook identity

6.3.2 Facebook's Reuse of Open Source

In addition to allowing for these types of reuse of their own components, Facebook

has been a strong user of open source software in the building of their own software

fConnect

Give me feedback

Figure 6-4: The site can then show the user's Facebook identity and use it

stack. They make heavy use of open source components such as Linux, Apache,

MySQL, PHP, and Memcached[Agarwal, 20081. Therefore, without these open source

components, they would have had a substantially more difficult time building and

growing the service. While they could be doing so without any contributions back to

the greater open source community, Facebook is actually considered to be a "good

citizen" and extensively does attempt to give back their modifications to open source

software that they themselves use.

This giving back, though, does not extend to the software which makes up Face-

book itself. If you wanted to build your own Facebook, you would only have the

building blocks and not the entirety of the code which makes up the site. One could

argue that in this case, the code itself isn't even the interesting or important part but

instead the data which is contained within Facebook is more necessary.

Chapter 7

Economics

While the technical aspects of open source and web services are interesting, each

also faces significant challenges when it comes to actually using the technologies in a

business to make money.

Looking at the software industry as a whole, there have historically been two

primary ways in which software companies have been able to make money. The first

of these is as product companies, in which the software company develops software

and then sells it. The second is services companies where the software exists to help

in the sale of complementary services. [Cusumano, 2004]

In the worlds of open source software and web services, we can find elements of

each of these but there are also unique twists and problems encountered by each.

7.1 Making Money with Open Source

Making money with open source software is a concept that seems counter to some

of the primary ideas behind such software. The idea of a community of contribution

and allowing others access to not just modify but also redistribute the source code to

your software means that the typical method of charging for software becomes much

more difficult. Generally, you would not be able to have a copy of the software until

you pay a licensing fee to the author and distributor of the software. In open source,

a user can instead always get access to the software and even install and execute

the software. This challenge is perhaps why there are so few successful open source

software companies.

7.1.1 Making Money as an Open Source Software Company

As previously mentioned, one benefit of open source can be the symbiotic relationship

which can exist between a company and the open source software that they distribute.

This is mostly seen in software product companies which are focused on building a

software product to distribute and sell to customers. Looking at the set of these com-

panies, the biggest success is probably Red Hat. Red Hat is a pure software company

which builds and distributes several successful open source products including:

* The Red Hat Enterprise Linux operating system is a certified and tested build

of a variety of open source components.

" The JBoss Enterprise Middleware Suite is a certified stack of components nec-

essary to build internal business-critical applications

All of the components of both Red Hat Enterprise Linux and JBoss are open

source and thus available to anyone in the world who wishes to download, compile

and assemble them on their own. And in fact, in the case of Red Hat Enterprise Linux,

one can actually download such a compilation and run it in the form of CentOS, a

rebuild of the Red Hat Enterprise Linux components with the trademarks removed.

But Red Hat has managed to make nearly $650 million in revenue in their last fiscal

year, $550 million from the sales of software[rht, 2009]. This is because businesses are

willing to pay Red Hat to receive a copy of the software which has been certified by

Red Hat as being extensively tested and supported to a standard meeting their needs

according to the results of that testing. They also pay for a version of the software

which is certified by any of a number of independent software and hardware vendors

to play well with this third party product.

As this software is available to anyone to download, Red Hat also has taken

the stance of providing the software on a "subscription" basis. That is, a customer

purchases access to copies of the certified software and the support for a period of time

and continues to pay on a recurring basis for that access. Given that new versions

of the software would be available to anyone, this subscription includes the idea of

not being tied to any specific version of the software that is distributed by Red Hat

and instead provides access to all versions. While not a concept which is unique to

open source, the angle of doing it as a result of the availability of all versions of the

software is and it is one which has been somewhat useful to Red Hat in encouraging

adoption of newer versions of their software.

It is unclear whether this approach, though, is one which can be easily replicated

by others. [Vance, 2009] Other software companies such as Alfresco, which provides

an open source content management system, and SugarCRM, which provides an open

source customer relationship management system, do not seem to have the same level

of success as Red Hat. It is possible that this can be attributed to their more limited

time being available for customers to purchase. But it is equally possible that there

is something different about these other businesses where the market which they are

selling into is one which is less technical and where there is less desire to become an

expert in the system.

7.1.2 Making Money with Open Source as a Complement

That said, there are now a number of other companies which are able to make money

more as a services company as a result of their open source software contributions and

distribution, although it is not the primary source of their revenue. In many cases, it

is not even selling software which leads to the revenue stream for these complement

companies. But the expertise gained in the software through being involved in its

development places them in a unique position to provide value to their customers in

a services role.

IBM is perhaps the largest of these companies. In 2000, IBM committed to the

idea of spending one billion dollars on open source software[Lock, 2002]. Now, nearly

a decade later, they are one of the largest contributors to the world of open source

with contributions ranging from low-level work such as the Linux kernel to a variety

of web infrastructure projects under the Apache umbrella to being one of the largest

contributors of code to the Eclipse Integrated Development Environment. Even with

all of these contributions, though, the amount of revenue that they get as a direct

result of this distribution is relatively small. The vast majority of their revenue

continues to come from a combination of their hardware and services businesses;

open source serves purely as a complement helping to drive customers to purchase

more IBM services and hardware.

7.2 Making Money with Web Services

Web services face some challenges as well when it comes to making money. This isn't,

though, generally a result of the easy availability of the software.

One of the big challenges faced by web services is that their costs are not, as with

most software, purely based on the cost to develop the software. Instead, there is a

large cost associated with actually hosting and providing the software to its users.

This operational cost can range from extremely small if there are few users to a very

large amount if the number of users is large. In addition to the operational costs for

hosting the software, one thing which is extremely important in these web services

is the data which goes along with it. Collecting, retaining, backing up and all of the

other operations needed on a day to day basis to ensure that your customers do not

lose data can also be a huge cost.

Therefore, to make money with web services, a provider has to have some way

to make up for these operational costs in addition to recouping the costs of the

development of the software itself.

7.2.1 Making Money with Consumer Web Services

Consumer web services face a huge challenge when it comes to monetization. Con-

sumers are at this point largely accustomed to the idea of not paying for things which

they access and use on the Internet. While there are exceptions of services which can

effectively charge for access, even these rare cases seeing decreasing acceptance and

usage as the idea that the Internet means free continues to take hold.

The only way that really seems to be effective for monetizing these services at this

point tends to be advertising included along with the service. Advertising as a way of

making money goes back to the early days of the World Wide Web when banner ads

were displayed on pages and users "clicking through" to view the destination of the

ad would in turn provide some small amount of revenue to the operator of the original

web site. The value in these has decreased as users have become more accustomed to

them and find that they are not relevant to what they care about.

Advertising in web services today, therefore, takes a far more targeted approach.

The data about how you use the web service is used to help increase the applicability

of the ad and thus increase the value of its display. One example of this is the

advertising within the Google search engine; Google allows their customers to bid

and pay for ads to show up when people search for certain keywords. This allows you

to know that your ad as a fireplace company will show up when people are searching

for information on fireplaces. This sort of targeted advertising is far more effective at

attracting customers and thus much more valuable.

7.2.2 Making Money with Business Web Services

With businesses, this idea of everything on the Internet being free is less prevalent and

companies are, in fact, willing to spend money for things which they see as providing

them value.

One of the bigger concerns for a business in paying for use of a web service is

that there is little concrete which you actually receive for your purchase. Since the

software you are using is not directly running on hardware that is physically owned

by the company, what would happen if the company you had paid a fixed rate were to

go out of business and thus no longer be able to provide you with their service? Given

this concern, much as Red Hat has done with open source software, most business

web services are purchased on a subscription basis. This allows companies to have

access to the service for a discrete chunk of time and then pay again to continue to

have access for the next discrete chunk.

This has provided a couple of benefits for the purchasers of these web services.

The first is that there is less liability around what happens if a service were to go

away. Given that you have only paid for a short period of time, the chances are that

you have gotten to use the service for a significant chunk of that time. The other

benefit is that you are able to transform these software purchases from having to be

recorded as capital expenditures in your financial statements and instead can record

it as an operational expenditure. This has some advantages in making your financial

statements less complex as well as not having to worry about any depreciation over

time for the software as the usable lifetime of the software is just what you have paid

for up until that point.

Chapter 8

Conclusion

While there are a small number of open source web services currently being developed

and in use, the growth there has not mirrored that of the growth of open source in

general. Even companies which are focused around open source technologies have

tended to build far less open web services. This has been seen everywhere even

including Red Hat with their Red Hat Network service for systems management

which was only opened after many years of requests and criticism[Red Hat, Inc.].

While open source provides a set of advantages in terms of the architecture of

the system developed, many of the more prominent of these are also present in web

services as an emergent property for other reasons.

Modularity is a strong focus of open source development as a result of the dis-

tributed nature of the development teams. Web services also achieve a high degree

of modularity, but rather than it being based on the distribution of the developers

working on the software, it is instead based on the way in which the software is run

on a distributed network of computers providing the services. Modularity also occurs

as a result of the defined standards for web services and the requirements for clear

interfaces between the components.

Web services also are able to follow with some of the strongest tenets of bazaar

development through frequent releases. There may even be an easier path to achieving

this goal with web services than with open source software as one does not have to

actually deliver any software to a user that then has to be installed and configured.

By having these frequent releases, web services are able to iterate and meet the needs

of their users.

The combining and reuse of web services via mashups is also very similar to the

reuse of open source components. There is a strong culture of working with existing

services rather than inventing your own wheel. Since one does not necessarily have

to pay expensive licensing fees to use data from another web service also helps to

encourage this reuse. As the licenses of most open source software only require the

release of modifications or your own code on a distribution event of your software,

web services are exempt from this reciprocal nature of open source licensing and can

also reuse substantial amounts of open source software without themselves having to

be released as open source.

And finally, given the relative difficulty in making money off of web services, devel-

opers of such services are unwilling to give up anything which could be an advantage

towards doing so. If that means that the source code of the service remains propri-

etary and they cannot share the development costs, then that is the approach that is

taken. Given that the majority of the cost for the services is not the development cost

and is rather the operational expenditures to run the service, releasing the software

as open source and reducing the development cost is of little benefit.

Given all of this, the growth of open source in web services seems unlikely without

another more significant change occurring. That said, the growth of a licensing model

such as the Affero GPL as mentioned in Section 6.3 could lead to a growing number

of open source web services due to a requirement of either open sourcing or no longer

being able to reuse other open source components.

The other area of web services that is seeing some open source growth is as an exit

strategy. When a web service is bought or has to shut down for some reason, there is

perhaps the beginning of a trend to release the source code which is used for running

the service as open source. Most recently, this was seen with Google's acquisition

and shut down of the Etherpad service in December of 2009. Due to the outcry from

the existing user-base, the source code behind Etherpad has been released as an open

source project[Iba, 2009].

64

Appendix A

Facebook Connect Sample Code

The HTML source code in the listings below gives an example web page making use

of the Facebook Connect[Facebook] API to provide a way for a user to log in to a

web site. This is the trivial example as used for Figures 6-2, 6-3 and 6-4. Two files

are required for this functionality.

* index.html provides most of the necessary functionality and all of the displayed

content for the page (Listing A-1)

* Xdxreceiver.html is a simple file which is looked at by the server side of Facebook

to ensure that you are intending to allow users to log in via the Facebook

Connect API (Listing A-2)

In a non-trivial example, this type of code could be integrated as a part of a

larger web site which allowed a user to comment on articles or any other action which

requires a user login. One example that does this is CNN.com where they allow

logging in for discussion of their news articles (Figure A-1).

Connect CNNMoney.com stories with Facebook to interact with your
friends on this site and to share on Facebook through your Wall and
friends News Feeds.

Bring your friends and info

Publish content to your Wal)

Email: jeremy.katz@gnmal~com

Password:

Sign up for Facebook SWo Cancel I

Figure A-1: Using Facebook Connect on CNN.com, 24 November 2009

Listing:

<!DOCIYFE html PUBLIC " -//W3C//DTD XHTML 1.0 S t r i c t //EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict .dtd">

<html xmlns-"http://www.w3.org/1999/xhtml"
xmlns: fb=" http: //www. facebook . com/2008/fbml">

<body>
<form>

<div id=" userdiv">
Name: <input name-'name"7>
<fb : login-button onlogin=" login () ; "></fb: login-button>

</ div>
<textarea name"message" rows=5 cols=80></textarea>
<input type=" submit" value=" Submit">

</form>
<script type=" text /javascript ">
function login () {

var u = document. getElementByld("userdiv");
u.innerHTML = "Name: <fb:name uid=loggedinuser

useyou=false />" ;
u. innerHTML += "<fb: profile -pic uid=loggedinuser

facebook-logo=true />" ;
FB.XFBML. Host .parseDomTree ()
}
</script>
<script type=" text /javascript "

src=" http:// static . ak. connect . facebook .com/js/\
api-lib /vO.4/ FeatureLoader. js .php">

</script>
<script type=" text /javascript ">

FB. init ("APIKEY" ," xd-receiver . html")
</script>
</body>
</html>

Listing A-1: Sample source code for interacting with Facebook Connect

Listing:

<html>
<body>
<script

src=" http:// st atic . ak. connect. facebook .com/js /\
a p i-li b / vO.4/ XdCommReceiver. js"

type=" text / j avascript ">
</script>
</body>
</html>

Listing A-2: xd-receiver.html standard code to provide access between Facebook
and your website

Bibliography

Alleyoop valgrind frontend. World Wide Web, March 2009. URL http: //alleyoop.
sourceforge .net/.

Bluefish editor. World Wide Web, October 2009. URL http: //bluef ish.
openoff ice .nl/.

git: The fast version control system. World Wide Web. URL http: //git- scm. com.

Red hat, inc 2009 form 10-k. World Wide Web, 2009. URL http: //www. sec. gov/
Archives/edgar/data/1087423/000119312509091983/dl0k.htm.

Aditya Agarwal. Facebook: Science and the social graph. In QCon
San Francisco 2008, 2008. URL http://www.infoq.com/presentations/
Facebook-Software-Stack.

John Allspaw and Paul Hammond. 10 deploys per day. In Velocity 2009, 2009.

Amazon. Amazon web services. World Wide Web, 2009. URL http: //aws . amazon.
com.

Carliss Y. Baldwin and Kim B. Clark. Managing in an age of modularity. Harvard
Business Review, 75(5):84 - 93, 1997. ISSN 00178012.

Tim Berners-Lee. The world wide web: Past, present and future. World Wide Web,
August 1996. URL http: //ww.w3. org/People/Berners-Lee/1996/ppf .html.

Black Duck. Open source license data. World Wide Web.
blackducksoftware.com/oss/licenses/#adoption.

URL http://www.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris, and David Orchard. Web services architecture. World Wide Web, February
2004. URL http://ww.w3. org/TR/2004/NOTE-ws-arch-20040211/.

Martin Campbell-Kelly.
source?. Communicati

Historical reflecions will the future of software be open
ons of the ACM, 51(10):21 - 23, October 2008. ISSN

00010782.

Piero Colagrosso. Formal specification of c++ class interfaces for software reuse.
Master's thesis, Concordia University (Canada), 1993.

Computer History Museum. Computer history museum. World Wide Web. URL
http: //www. computerhistory. org/tiimeline/?year=1964.

Jon Corbet. Kernel summit: Development process. World Wide Web, July 2004.
URL http: //lwn. net/Articles/94386/.

Michael A. Cusumano. The Business of Software: What Every Manager, Programmer
and Entrepreneur Must Know to Thrive and Survive in Good Times and Bad. Free
Press, 2004.

Kevin C. Desouza, Yukika Awazu, and Amrit Tiwana. Four dynamics for bringing
use back into software reuse. Commun. A CM, 49(1):96-100, 2006. ISSN 0001-0782.
doi: http://doi.acm.org/10.1145/1107458.1107 4 61.

Eric Eldon. Compete, comscore and quantcast show facebook us octo-
ber traffic up, myspace and twitter traffic down. World Wide Web,
November 2009. URL http://www.insidefacebook.com/2009/11/13/
compete-comscore-and-quantcast-show-facebook-us-october-traffic-up-myspace-and-

Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, Pal Krogdahl,
Min Luo, and Tony Newling. Patterns: Service-Oriented Architectures and Web

Services, page 21. IBM International Technical Support Organization, first edition,
April 2004.

FabrizioCapobianco. The honest public license. World Wide Web, August 2006. URL
http: //www. funambol .com/blog/capo/2006/08/honest-public-license.

html.

Facebook. Facebook developers api. World Wide Web. URL http: //wiki.

developers.facebook.com/index.php/API.

Facebook. Build and grow with facebook connect. World Wide Web. URL http:

//developers . facebook. com/connect . php.

Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors.
Perspectives on Free and Open Source Software, page 100. The MIT Press, 2005.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, Irvine, 2000.

William B. Frakes and Sadahiro Isoda. Success factors of systematic reuse. IEEE

Software, 11(5):14-19, 1994. ISSN 0740-7459. doi: http://doi.ieeecomputersociety.
org/10.1109/52.311045.

Free Software Foundation (FSF). Gnu affero general public license. World Wide Web,
June 2009a. URL http://www.gnu.org/licenses/agpl.html.

Free Software Foundation (FSF). Gnu general public license. World Wide Web, June
2009b. URL http://www.gnu.org/licenses/gpl.html.

Erich Gamma, Richard Helms, Ralph Johnson, and John M. Vlissides. Design Pat-
terns. Addison-Wesley Professional, 1994.

Rochelle Garner. Salesforce.com welcomes win-
ter with latest release. http://www.crn.com/it-
channel/ 18831164;jsessionid=4AL5IQSG5D513QE1GHRSKH4ATMY32JVN,
December 2003.

Stefan Haefliger, Georg von Krogh, and Sebastian Spaeth. Code reuse in open source
software. Management Science, 54(1):180-193, 2008. ISSN 00251909. URL http:
//www. jstor. org/stable/20122369.

Aaron Iba. Etherpad open source release. World Wide Web, December 2009. URL
http: //etherpad. c om/ep/blog/post s/etherpad- open-source-release.

Kernel.org. Linux kernel release dates. FTP. URL f tp: //f tp . kernel. org/pub/
linux/kernel.

Peteris Krumins. Code reuse in google chrome browser. World
Wide Web, September 2008. URL http://www.catonmat.net/blog/
code-reuse-in-google-chrome-browser/.

Bradley Kuhn. Agpl declared dfsg-free. World Wide Web, December 2008. URL
http://autonomo.us/2008/12/agpl-dfsg-free/.

Florian Lindner. Service oriented architecture elements. World Wide Web. URL
http://commons.wikimedia.org/wiki/File:SOAElements .png.

Tony Lock. Ibm's billion dollar linux gamble pays off. World Wide Web, 2002. URL
http: //www. it-director. com/content . php?cid=2521.

Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015-1030, July 2006.

MapMyRide.com. Mapmyride facebook application. World Wide Web, 2009. URL
http://apps.facebook. com/mapmyride.

M. Muffato and M. Roveda. Developing product platforms: analysis of the develop-
ment process. Technovation, 20(11):617-630, November 2000.

Netcraft Ltd. November 2009 web server survey. World Wide Web, November
2009. URL http: //news.netcraf t. com/archives/2009/11/10/november_2009_
webserversurvey.html.

OASIS. Reference model for service oriented architecture. World Wide Web, October
2006. URL http://docs.oasis-open.org/soa-rm/vl.0/soa-rm.pdf.

Stephen O'Grady. Amazon: Perfect is the enemy of good. World
Wide Web, May 2009. URL http://redmonk.com/sogrady/2009/05/22/
amazon-perfect-is-the-enemy-of-good/.

Open Mashup Alliance. Open mashup alliance frequently asked questions. World
Wide Web, 2009. URL http: //www. openmashup. org/f aq/#1.

Tim O'Reilly. What is web 2.0: Design patterns and business models for the next
generation of software. World Wide Web, September 2005. URL http: //oreilly.
com/web2/archive/what-is-web-20.html.

Open Source Initiative (OSI). The open source definition. World Wide Web, 2009a.
URL http://opensource.org/docs/osd.

Open Source Initiative (OSI). History of the OSI. World Wide Web, 2009b. URL
http: //www. opensource . org/history.

Sundar Pichai and Linus Upson. Google blogs: A fresh take on the browser. World
Wide Web, September 2008. URL http://googleblog.blogspot.com/2008/09/
fresh-take-on-browser.html.

Thomas E. Potok, Mladen Vouk, and Andy Rindos. Productivity analysis of object-
oriented software developed in a commercial environment. Software: Practice and
Experience, 29(10):833-847, 1999.

Eric S. Raymond. The Cathedral and the Bazaar. O'Reilly Media, October 1999a.

Eric S. Raymond. The Cathedral and the Bazaar, page FIXME. In Raymond [1999a],
October 1999b.

Red Hat, Inc. Spacewalk frequently asked questions. World Wide Web. URL http:
//www. redhat . com/spacewalk/faq. html#whynow.

Refsnes Data. Browser statistics. World Wide Web, 2009. URL http://www.
w3schools.com/browsers/browsersstats.asp.

Katrina Rhoads Lindholm. The user experience of software-as-a-service applications.
Technical report, UC Berkeley: School of Information, 2007.

Salesforce.com. Salesforce.com. World Wide Web, 2009a. URL http: //www.
salesforce . com/company/.

Salesforce.com. Salesforce.com programmable user interface. World Wide
Web, 2009b. URL http: //www. salesf orce. com/platf orm/cloud-platf orm/
programmable-ui.jsp.

Richard Stallman. About the gnu project. World Wide Web, January 2008. URL
http://www.gnu.org/gnu/thegnuproject.html.

Terry Sweeney. It executives take a more modular approach to crm software.
World Wide Web, May 2003. URL http://articles.techrepublic.com.com/
5100-10878_11-5034686.html.

Karl T. Ulrich and Steven D. Eppinger. Product Design and Development, page 165.
McGraw-Hill International, fourth international edition, 2008.

Ashlee Vance. Open source as a model for business is elusive. World Wide
Web, November 2009. URL http://www.nytimes. com/2009/11/30/technology/
business-computing/30open.html?_r=2&ref=business.

