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Abstract—Abbreviation Completion is a novel technique to 
improve the efficiency of code-writing by supporting code 
completion of multiple keywords based on non-predefined 
abbreviated input—a different approach from conventional 
code completion that finds one keyword at a time based on an 
exact character match. Abbreviated input is expanded into 
keywords by a Hidden Markov Model learned from a corpus 
of existing code. The technique does not require the user to 
memorize abbreviations and provides incremental feedback of 
the most likely completions. This paper presents the algorithm 
for abbreviation completion, integrated with a new user 
interface for multiple-keyword completion. We tested the 
system by sampling 3000 code lines from open source projects 
and found that more than 98% of the code lines could be 
resolved from acronym-like abbreviations. A user study found 
30% reduction in time usage and 41% reduction of keystrokes 
over conventional code completion. 

Code Completion; Hidden Markov Model; Abbreviation; 
Multiple Keywords; Code Assistants; Data Mining 

I.  INTRODUCTION 
Many programmers use code completion to accelerate 

code-writing by avoiding typing the whole character 
sequence of keywords. This paper describes a method for 
accelerating code completion still further by completing 
multiple keywords at a time based on non-predefined 
abbreviated input, utilizing frequent keyword patterns 
learned from a corpus of existing code. For example, Figure 
1 shows a user entering ch.opn(n);, which is translated into a 
list of code completion candidates that includes 
chooser.showOpenDialog(null) as the most likely candidate. 
Entering slightly different abbreviations such as 
cho.opdlg(nl); or cs.sopd(nu); should also lead to the same 
best candidate because the system accepts non-predefined 
abbreviations of keywords. 

The system aims to address the following limitations of 
the conventional code completion systems:  

First, conventional systems complete only one keyword 
at a time. Therefore, the number of extra keystrokes 
increases in proportion to the number of completed 
keywords. For example, a typical code completion 
interaction, like the one shown in Figure 2, might take 20 
keystrokes to complete three keywords of 29 characters. 

Second, conventional code completion systems find a 

keyword based on an exact match of leading characters. 
Because the leading parts of keywords are often identical 
among candidates while the ending parts are more 
distinguishable, as in showOpenDialog and showSaveDialog, 
programmers often need to type potentially lengthy 
sequences of leading characters before they type distinctive 
characters close to the end. 

Third, the default selection of a code completion 
candidate is often far from ideal. Conventional code 
completion selects the first match in an alphabetically sorted 
candidate list, ignoring any context implied by surrounding 
keywords. This leads to additional Up/Down Arrow 
keystrokes to adjust the selection to a correct candidate. 

Here are a few motivating examples the new code 
completion system is designed to handle: 

what you type…              what you get… 
pv st nm    private String name 
gval(r,c)   getValueAt(row,col) 
f(i i=0;i<ls.sz();i++)   for(int i =0; i<list.size();i++) 
pb st v m(st[] ag)    public static void main(String[] 

args) 

This paper presents a new model and algorithm, based on 
a Hidden Markov Model (HMM), which has been integrated 
into a new code completion system called Abbreviation 

This research was supported by Samsung Scholarship Foundation.

 
Figure 1. Abbreviation Completion can complete multiple keywords from 

abbreviated input in a single code completion dialog. 

 
Figure 2. Code completion of multiple keywords requires many extra 

keystrokes for driving code completion dialogs. 
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Completion. An HMM has been applied to various 
engineering domains; however, Abbreviation Completion is 
believed to be its first application to the code completion 
domain. This paper also presents a new user interface for 
interactive multiple keyword completion because different 
usability concerns arise than in single keyword completion, 
such as manually overriding some of the keywords suggested 
by the system. 

Compared to prior systems for completing multiple 
keywords, Abbreviation Completion does not require 
programmers to memorize predefined abbreviations, an 
improvement over code template systems [2,3], which 
convert a predefined token, such as sysout, into a predefined 
keyword sequence, such as System.out.println(), and 
provides incremental feedback of the most likely 
completions based on frequent keyword patterns, an 
improvement over Keyword Programming [4], XSnippet [5], 
and Prospector [6], all of which perform a single-pass search 
based on type constraints, optionally guided by heuristics 
based on keywords, frequencies, or paths. In addition, 
Abbreviation Completion is not limited to handling type-
constrained expressions [4-6], but can generate any arbitrary, 
frequent sequence of keywords, including code for: 
declaration; loop construction; and a list of arguments. 
Previous work on improving the ordering of code completion 
candidates [7,8] can be related to Abbreviation Completion; 
however, our work focuses on prioritizing multiple-keyword 
code completion candidates using a difference source of 
information and a different algorithm. 

Our key contributions are: 

• A new application of an HMM to solve decoding of 
multiple keyword completion based on abbreviated 
input. An HMM has been extended in consideration 
of two distinctive characteristics of our problem 
domain.  

• Development of a regression model for estimating a 
probabilistic distance between any given pair of an 
original keyword and an abbreviated keyword. This 
model is essential for the system to handle non-
predefined abbreviated input. 

• A user interface for interactive multiple keyword 
completion. A code editor supporting Abbreviation 
Completion has been implemented to demonstrate 
the new user interface. It can be downloaded from: 
http://cadlab6.mit.edu/sangmok/abbrcompletion/. 

• Evaluation of the system’s accuracy, time savings, 
and keystroke savings. Accuracy was measured by 
counting how many of the code lines sampled from 
open source projects could be reconstructed from 
abbreviated input. The system achieved average 
98.9% accuracy against 3000 lines of code from six 
open source projects. Time savings and keystroke 
savings were measured by comparing time usage and 
the number of keystrokes of the system with those of 
a conventional code completion system. The system 
achieved average 30.4% savings in time and 40.8% 
savings in keystrokes in a user study with eight 
participants. 

The next section describes models and algorithms for 
multiple keyword completion. We then present estimation 
methods to learn probability distributions required by the 
models. We describe a user interface for Abbreviation 
Completion. The setup and results of two evaluations follow. 
Finally, we discuss related work, future direction, and 
present conclusions. 

II. MODEL AND ALGORITHM 
This section describes a model and algorithm to resolve 

the most likely keyword sequences from abbreviated input. 
Two structural extensions of an HMM and a modified 
backtracking mechanism of the Viterbi algorithm will be 
highlighted. 

A. Code Completion of Multiple Keywords As a Decoding 
Problem of a Hidden Markov Model 
An HMM is a graphical model that concerns two 

sequences. Only one of these sequences, called the 
observation symbol sequence, is observable while the other 
sequence, called the hidden state sequence, is the one of 
interest. Decoding of an HMM refers to a process of finding 
the most likely state assignment to a hidden state sequence 
based on an observation symbol sequence. The Viterbi 
algorithm [1] is an efficient dynamic programming algorithm 
for decoding an HMM. 

Code completion of multiple keywords based on 
abbreviated input can be modeled as a decoding problem of a 
particular HMM. Figure 3 shows an example of the HMM 
for decoding str nm = th.gv(r,c). Given two pieces of 
information, abbreviated input by a user and a set of 
keywords collected from a corpus of existing code, the two 
sequences of the HMM are created as follows:  

str nm th gv r c= . ( ,

c1 = "   " c2 = "=" c3 = "." c4 = "(" c5 = ","

String name this getValueAt row col

String name = this.getValueAt(row, col)str nm = th.gv(r,c)

x1 x2 x3 x4 x5 x6

s1 s2 s3 s4 s5 s6

observable:

hidden:

)

c6 = “)"

 
Figure 3. Resolution of multiple keywords is solved as a decoding problem of Hidden Markov Model. 

321335335333333



First, an observation symbol sequence is created by 
splitting abbreviated input into a sequence of string tokens 
that have non-alphanumeric characters, such as spaces, dots 
or commas, between each one. For example, the result of 
splitting abbreviated input str nm = th.gv(r,c) is shown in 
Figure 3. Note that, in our implementation for Java language 
code completion, the underscore character was not treated as 
a splitting non-alphanumeric character because it is a valid 
character for the identifier name.  

Second, a hidden state sequence is created by sequentially 
arranging keywords that have the same non-alphanumeric 
characters between each one, as in the observation symbol 
sequence.  

Given the setup for creating the two sequences from 
abbreviated input and keywords collected from a corpus of 
existing code, finding the most likely code completion 
becomes a problem of finding the most likely assignment of 
keywords to a hidden state sequence. 

B. An Extended Hidden Markov Model 
We have extended a standard HMM [1] in two ways to 

take the following characteristics of our problem domain into 
account: 

• Keyword transition always occurs through non-
alphanumeric characters. For example, in Figure 3, 
transition from String to name occurs through a 
space character, and transition from name to this 
occurs through an equal character. 

• The number of observation symbols is not finite 
because users are allowed to abbreviate keywords in 
their own non-predefined way. 

The first extension is intended to exploit the keyword 
transition characteristics by modeling transition probability 
distributions in a more sophisticated way than conventional 
HMMs. Unlike conventional HMMs that employ a single 
transition probability distribution for any type of transition, 
the HMM for multiple keyword completion employs 
different transition probability distributions depending on the 
type of transition, identified by non-alphanumeric characters 
at the transition.  

As a result, the transition probability distribution 
becomes dependent not only on a previous keyword but also 
on non-alphanumeric characters. Generally, allowing 
transition probabilities to be conditioned by a greater number 
of surrounding states results in better prediction, although 
more data is necessary for training. We assume that users can 
find training data that is large enough to take advantage of 
this extension because they have access to source code in 
their existing projects or in open source projects. 

The second extension is to resolve issues with estimating 
emission probabilities, the probability of a hidden state 
generating an output symbol. Because the number of 
possible observation symbols is infinitely many, it is 
impossible to develop an estimation model that is guaranteed 

to produce a valid probability distribution—a valid emission 
probability distribution must sum to one when it is integrated 
over all possible observation symbols. However, it is 
possible to work around this issue by modifying the structure 
of an HMM as shown in Figure 4. The trick is to introduce a 
match indicator node, whose value is one if an observation 
symbol (an abbreviated keyword) is a correct match of a 
hidden state (an original keyword) and zero otherwise.  

Then, we define a match probability as a probability of a 
match indicator becoming one given an observation symbol 
and hidden state pair. The match probability is equivalent to 
the emission probability in the sense that both measure a 
probabilistic distance between an abbreviated keyword and 
an original keyword. As we will see in the next section (II-C), 
the match probability is computationally equivalent to the 
emission probability, so it can replace the emission 
probability in the Viterbi algorithm. Once we have replaced 
the emission probability with the match probability, it is 
straightforward to develop a valid estimation model for the 
match probability because it is a probability of finite, binary 
events. For a formal description, we will use the following 
notation to characterize the HMM for multiple keyword code 
completion: 

ts :  State at time t (original keyword). 
S :  A set of all possible states 

tx :  Observation at time t (abbreviated keyword). 

ty :  Match indicator at time t. The value of ty  is one if 

tx   and ts  are a correct abbreviation match. ty is one at 
 any time because tx is assumed to be abbreviated 
 input. 

tc :  Non-alphanumeric characters between ts  and 1+ts , 
 called a connector at time t. 

)(sT : Start probability of state s .  
)|'( ssTc : Transition probability from state s  to state 's  

 through connector c . 
)|( sxE : Emission probability of state s emitting 

 observation symbol x . 
),|( xsyM : Match probability. ),|1( xsyM =  indicates 

 the probability that state s  and observation x  are a 
 correct match. 

str nm

String name

x1 x2

s1 s2

y1 y2

1 1

c1 = "   "

observable:

hidden:

matched:

th=

this

x3

s3

y3

1

c2 = "="

 
Figure 4. A modified HMM with match indicator nodes. 
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T :  The length of an observation symbol sequence, 
 which  is always equal to the length of a hidden 
 state sequence. 

C. Modified Viterbi Algorithm 
This section presents a modified version of the Viterbi 

algorithm for multiple keyword completion. Notably, two 
modifications have been made: First, the emission 
probability is replaced with the match probability; second, 
the backtracking part of the original Viterbi algorithm has 
been replaced with a new backtracking algorithm that 
retrieves N-best candidates, instead of the single best 
candidate of the original algorithm. 

1) Match Probability 
The Viterbi algorithm finds the most likely hidden state 

sequence by calculating joint probabilities of possible 
assignments of state values to a hidden state sequence. 
Because the joint probability distribution of the extended 
HMM is different from that of the original HMM (without 
match indicators), the Viterbi algorithm needs to be modified 
to accommodate the difference.  

The modification just replaces the emission probability 
with the match probability. The difference is apparent 
comparing the joint probability distribution of the original 
HMM in equation (1) with the joint probability distribution 
of the extended HMM in equation (2). The only difference is 
that the emission probability )|( tt xsE  is replaced with the 
match probability ),|( ttt xsyM .  

∏∏
==

−−
=

T

t
tt

T

t
ttcTTT xsEssTsTccxxssP

t
12

11111 )|()|()(),,(
1

 (1) 

∏∏
==

−−
=

T

t
ttt

T

t
ttcTTT xsyMssTsTccxxssP

t
12

11111 ),|()|()(),,(
1

 (2) 

2) Finding N-Best Candidates 
The second modification to the Viterbi algorithm aims to 

enhance the way it handles backtracking, the final step used 
to construct the most likely state sequence using data 
structures calculated from a dynamic programming step. The 
original backtracking algorithm returns only one code 
completion candidate because it finds the single most likely 
sequence. However, a code completion system is expected to 
provide N-best code completion candidates.  

Several backtracking approaches that find N-most likely 
sequences have been proposed [9-10]. We decided to take a 
tree-trellis based backtracking algorithm [9] because it is an 
exact algorithm that requires a negligible amount of 
computation when compared to computation for the dynamic 
programming step of the Viterbi algorithm: 

)())log(( 22 NTOnnTO ⋅<<⋅ . The lowercase n, the number 
of the N-best candidates, is generally much smaller than the 
capitalized N, the number of all possible states. 

III. PARAMETER ESTIMATION 
Given a model and backtracking algorithm to compute 

the N-most likely code completions, this section describes a 
method to estimate model parameters. Three model 
parameters need to be estimated for the extended HMM with 
match indicators: start probability distribution, transition 
probability distribution, and match probability distribution. 
The first two probability distributions, which describe how 
keyword transition occurs at the beginning and in the 
remaining part of a sequence, are estimated from a corpus of 
existing code. The third match probability distribution, 
which describes how likely a pair of an abbreviated keyword 
and an original keyword to be a correct match, is estimated 
from examples of correct matches and incorrect matches. 

A. Estimation of Start Probabilities and Transition 
Probabilities 

1) Preparation of training examples 
Generally, a set of known state sequences is used as 

training examples to estimate start probabilities and 
transition probabilities. In case of multiple keyword code 
completion, a corpus of existing code is used to generate 
training examples. We took the following two-step approach 
to convert a piece of source code into a set of state 
sequences: 

In the first step, a lexical analyzer tokenizes source code 
into a sequence of lexical tokens that are one of the 
following types: identifiers, string literals, character literals, 
number literals, line breaks, non-line-breaking whitespaces, 
comments, and non-alphanumeric characters. For example, 
tokenizing String name = null;<LF> creates lexical tokens 
in Table I. This step allows us to identify keyword states: A 
lexical token of identifier type, string literal type, character 
literal type, or number literal type will form a keyword state 
in the state sequence. 

In the second step, a state sequence generator scans 
through lexical tokens and selectively uses them to construct 
state sequences. Because keyword states were already 
identified in the first step, this step aims to identify 
connectors by concatenating non-alphanumerical characters 
and removing redundant whitespaces. A state sequence is 
extended by appending keyword states and connectors, one 
next to the other. The beginning of a new state sequence is 
signaled by a line or block separator, such as a semi-colon or 
curly bracket character in Java, followed by a line break. For 
example, lexical tokens of String name = null;<LF> 

TABLE I. AN EXAMPLE OF LEXICAL ANALYZER OUTPUT

lexical token type 
String identifiers 
<space> non-line-breaking whitespaces 
name identifiers 
<space> non-line-breaking whitespaces 
equal non-alphabetical characters 
<space> non-line-breaking whitespaces 
null identifiers 
<semi-colon> non-alphabetical characters 
<LF> line breaks 
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constructs the following state sequence in (3), in which φ  
indicates the end of a state sequence: 

 φ⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯ >−<><>< colonsemiequalspace nullnameString  (3) 

The implementation of the two-step approach is 
language-specific because it involves lexical analysis. 
However, it is often possible to customize a lexical analyzer 
to handle a different language simply by updating regular 
expressions so that they match language-specific lexical 
tokens. 

2) Learning maximum likehihood estimates 
Given state sequences extracted from a corpus of existing 

code, the maximum likelihood estimates of start probabilities 
and transition probabilities are calculated by counting the 
number of state transitions. Let us define )' COUNT(i, ss c⎯→⎯  
as the number of transitions from state s to state s' through 
connector c in the ith training example and ) COUNT(i, s  as the 
number of occurrences of state s in the ith training example.  

The maximum likelihood estimate of transition 
probabilities from state s to state s' through connector c is 
calculated as the ratio of the number of transitions from state 
s to state s' through connector c to the number of transitions 
from state s through connector c: 

 
⎯→⎯

⎯→⎯
=

i s

c
i

c

c
ssi

ssi
ssT

'
)',(COUNT

)',(COUNT
)|'(ˆ  (4) 

The maximum likelihood estimate of start probabilities at 
state s is calculated from the ratio of the number of 
occurrences of state s to the number of occurrences of any 
state, as shown in (5). Notice that the number of occurrences 
is used instead of the number of beginning transitions. This 
is justified by the fact that a user can invoke code completion 
at any location in a code line. Therefore, the first keyword in 
a code completion does not necessarily represent its 
occurrence at the beginning of a code line, but can represent 
its occurrences at any location. 

 =

i s

i

si

si
sT

),(COUNT

),(COUNT
)(ˆ  (5) 

In practice, transition probabilities based on exact 
counting, as in equation (4), may not generalize well because 
the number of training examples may not be sufficiently 
large to estimate transition probabilities of all possible state 
combinations. A popular technique to address this issue is to 
use the weighted sum of transition probabilities and 
occurrence probabilities as transition probabilities.  A weight 
coefficient λ  is set to 0.7 by following a common practice. 
Finally, the actual transition probability in the system is 
shown in equation (6). 

 )(ˆ)1()|'(ˆ)|'(~ sTssTssT cc λλ −+⋅=  (6) 

B. Estimation of Match Probabilities 
1) An estimation model for match probabilites 

The match probability indicates the probability of a 
match event, which occurs when a pair of an abbreviated 
keyword and an original keyword is a correct match. The 
estimation of match probabilities can be challenging because 
there are infinitely many combinations of abbreviated 
keywords and original keywords; therefore, should someone 
try to estimate match probabilities by directly counting the 
occurrences of match events, the person may need an infinite 
number of  training examples.  

We propose an approach based on a logistic regression 
model that predicts match probabilities from a set of 
similarity features between an abbreviated keyword and an 
original keyword. In this approach, an abbreviation pair—an 
abbreviated keyword and an original keyword—is 
represented as a feature vector, elements of which describe 
different aspects of similarity. Similarity features include the 
number of consonant matches or the percentage of matched 
letters in an original keyword. Table II shows a list of 
similarity features used in the latest implementation of 
Abbreviation Completion. 

The feature-vector-based representation of abbreviation 
pairs allows us to use standard machine learning techniques 
to develop an estimation model of match probabilities. 
Notably, a logistic regression model fits well in our problem 
because it can learn probabilities of a binary event, like the 
match event. 

2) Preparation of training examples 
To train a logistic regression model, a set of positive 

training examples and a set of negative training examples are 
necessary. To prepare positive training examples, 400 
abbreviation pairs were generated by two human volunteers. 
Some examples of the abbreviation pairs are buffer bf, 
getProperty gppt, and moveCaretPosition mvcarpos. 
Then the abbreviation pairs were converted into a feature 
vector representation by calculating similarity features. 400 
negative training examples were generated by pairing 
original keywords with randomly selected wrong 
abbreviations and converting the wrong pairs into a feature 
vector representation. 

3) Learning maximum likelihood estimates 

TABLE II. SIMILARITY FEATURES FOR ESTIMATING MATCH 
PROBABILITIES 

feature name feature description 
Sim1(s,x) number of consonant letter matches 
Sim2(s,x) number of capitalized letter matches 
Sim3(s,x) number of non-alphabet character matches 
Sim4(s,x) number of standard abbreviation matches 
Sim5(s,x) number of letter matches with ordering ignored 
Sim6(s,x) number of letter matches with ordering enforced 
Sim7(s,x) percentage of matched capital letters in s 
Sim8(s,x) percentage of matched consonant letters in s 
Sim9(s,x) percentage of matched letters in s 
Sim10(s,x) percentage of matched letters in x 
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Having collected 800 positive and negative examples, 
200 examples were held for testing and 600 examples were 
used for training. The logistic regression model has 11 
unknown parameters, denoted as 1010 ,,, βββ , because 10 
similarity features are included in the model. The logistic 
regression model for match probabilities is shown in 
equation (7): 

)),(),((),|1( 1010110 xsSimxsSimgxsyM ⋅++⋅+== βββ  (7) 

                             
ze

zg −+
=

1
1)(where  

The maximum likelihood estimates of 1010 ,,, βββ  were 
calculated by a generalized linear model regression function 
in a statistics package. The result is shown in equation (8). 
The train error and test error of the logistic regression model 
were recorded as 1.5% and 0.5%, respectively. Because the 
test error is slightly lower than the train error, the model is 
not expected to have an issue with overtraining. 

 1.2,- 1.3,- 2.3, 7.5, 8.7, 1.2, [-41.2,],,,[ 1010 =βββ  (8) 
                                                 44].0 29,.0 0.04,- 0.07,-  

4) Discussion of the training results 
The training result reflects the relative importance of 

different similarity features, although it is specific to a 
certain style of abbreviation exhibited by our training data. 
We first notice that 2β  for the number of capitalized letter 
matches has the largest value among all number-of-matches 
parameters 61 ,, ββ . It implies that an abbreviation pairs is 
likely to be a match if there are many capitalized letter 
matches. 5β  and 6β  for the number of letter matches with 
and without ordering are given negative values. Considering 
that 1β  for the number of consonant matches is positive, it 
implies that the larger number of vowel matches an 
abbreviation pair has, the less likely it is a correct match. 

It is noteworthy that different users may have different 
preferred ways of abbreviating keywords, and even the same 
user may not abbreviate consistently over time. If such 
differences necessitate retraining of match probability 
parameters for each user or at any point of time, it would 

make the Abbreviation Completion system very expensive to 
use. However, the parameter values in equation (8) were 
found to work reasonably well in running an artificial corpus 
study and a user study in Section V and VI, without further 
retraining. This is promising because it indicates that the 
parameter values can serve as system defaults, which may 
attract users to the system. The default parameter values can 
later be updated from actual abbreviation examples collected 
from system usage. This updating is to be considered in 
future work.  

IV. USER INTERFACE AND IMPLEMENTATION 
 

This section describes a user interface for multiple 
keyword code completion. Three design requirements have 
been identified for the user interface: acceptance of 
abbreviated input that may include non-alphanumeric 
characters including spaces; allowance for users to override 
the system’s suggestion; and display of code completion 
candidates in an effective way. The user interface has been 
implemented on a demonstrational code editor.  

A. User Interface 
It is important to support a scenario in which some part 

of a code line is typed, while another part is completed using 
Abbreviation Completion. For example, a user may first type 
this.getValueAt() and then try to complete row, col inside the 
parentheses from abbreviated input r,c. The demonstrational 
code editor utilizes an input popup that floats over the code 
editing area, shown as a light blue rectangle in Figure 5. The 
area accepts abbreviated input, including non-alphanumeric 
characters. The input popup appears at the current caret 
position when a user presses Ctrl+Space, so it can be used to 
insert completed code at any location in the code. Since the 
input popup tries to initialize its content from any 
highlighted text in the code editing area, a user may type 
abbreviated input in the code editing area and expand it by 
highlighting and pressing Ctrl+Space. 

The second requirement is handled by a keyword-pinning 
capability, which is invoked using a keyboard shortcut 
Ctrl+B. The system highlights a pinned keyword in the input 

 
          (a)                                                                              (b)                                                                      (c) 

Figure 5. A user interface for multiple keyword code completion: (a) the list is alphabetically sorted when there is one keyword, (b) the list is sorted by the 
likelihood when there are more than one keyword, and (c) a user can override the system’s suggestion 
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popup by making it boldface with a light yellow background, 
as shown in Figure 5-(c). Internally, the system treats a 
pinned keyword as an observation symbol that matches all 
possible states with an equal probability. Once code 
completion candidates are generated using the match 
probabilities, they are displayed to users with keyword 
tokens at a pinned location replaced with overriding text.  

Regarding the third design requirement, users are 
assumed to have two concerns when using the code 
completion candidate list. First, users want to know which 
candidates are more likely to be correct and should be 
examined first. A list sorted by the likelihood is useful for 
this purpose. Second, users want to navigate the list of 
candidates efficiently in a predictable manner. An 
alphabetically sorted list is useful for this purpose. We 
implemented the code completion candidate list such that it 
can be sorted one of the two ways depending on the number 
of keywords in the input popup. When there is only one 
keyword, the list is sorted alphabetically; the system’s 
default suggestion can be often incorrect because the 
transition pattern cannot be utilized. When there is more than 
one keyword, the list is sorted by the likelihood; two 
keywords are often enough to locate the correct candidate in 
the top-10 list, so users may want to examine candidates 
from the most likely one. Figure 5-(a) and Figure 5-(b) 
demonstrates the behavior of the candidate list. 

B. Incremental feedback of Code Completions 
Responsive incremental feedback is essential for the 

usability of the multiple keyword code completion system. 
We applied a filtering technique to improve responsiveness 
of the system. The filtering technique effectively reduces the 
search space of the Viterbi algorithm by removing some of 
the states that are impossible to appear in the most likely 
candidates. Filtering based on characters and connectors (the 
non-alphanumeric characters between keywords) has been 
implemented. For example, given abbreviated input “sys.”, 
the system first applies character-based filtering so that only 
the states that have both ‘s’ and ‘y’ characters remain.  Then 
the system applies connector-based filtering so that only the 
states that have a transition through ‘.’ remain.  

C. Incremental Indexing of Source Code 
The demonstrational code editor supports incremental 

indexing of source code using a background thread. The 
code editor monitors changes of source code, which may 
occur inside the code editor or on the file system, and 
updates the HMM to reflect the changes. As a result, 
Abbreviation Completion can be used to complete code lines 
that may include recently introduced variable or method 
names. A full indexing of 400 source code files (3000 
kilobytes in size) usually takes less than 3 seconds on a 
laptop computer with Intel Core 2 Duo P8400 CPU and 3 
gigabyte ram. Therefore, an incremental indexing of a few 
changed entries can be processed in a negligible time 
compared to a normal lag between code edits. Note that users 

can specify the target directories for incremental indexing in 
a configuration file. 

V. ARTICIFIAL CORPUS STUDY 
The artificial corpus study aims to evaluate the accuracy 

of the Abbreviation Completion system. A total of 3000 
frequent code lines was collected from 6 open source 
projects. The code lines were converted into acronym-like 
abbreviations by applying a particular text transformation 
rule. We measured how many of the original code lines 
could be completed from the abbreviated code lines. We 
report top-N accuracy, which refers to the rate of finding the 
original code line within the top-N candidates of code 
completion. 

A. Study Setup 
1) Selection of Open Source Projects 

Six open source projects were selected from 14 open 
source projects that were used in a previous artificial corpus 
study of Keyword Programming in [4].  

The six open source projects are: CAROL, a library for 
using different RMI implementations; DNSJava, an 
implementation of DNS in Java; JEdit, a source code editor 
implemented in Java;  JRuby, a Java implementation of the 
Ruby programming language; RSSOwl, a news reader 
application for RSS feeds; and TV-Browser, a Java-based 
TV guide application. 

2) Preparation of Original Code Lines 
The 500 most frequent code lines, which are at least 20 

characters long and include at least 2 keyword tokens, were 
collected from each open source project; a total of 3000 code 
lines was collected from six open source projects. Frequent 
code lines were selected since they are more likely to be a 
target of multiple keyword code completion. The minimum 
length requirement is introduced to exclude short code lines 
that are not likely to be targets of multiple keyword code 
completion. It also helps to include more of the challenging, 
longer code lines in the test set. Code lines are required to 
have at least 2 keyword tokens because we are interested in 
evaluating the code completion of multiple keywords. 

3) Preparation of Abbreviated Code Lines 
Given the large number of code lines, we decided to 

generate their abbreviations using an artificial abbreviation 
generator, implemented as a computer program. The 
artificial abbreviation generator creates acronym-like 
abbreviations with the maximum length of three characters, 
such as bao abbreviated from ByteArrayOutputStream; th 
abbreviated from throw; and i abbreviated from if. The 
artificial abbreviation generator takes the following steps to 
transform a keyword into an abbreviation: 

• First, it determines the target length of an 
abbreviation to be created, which is always between 
one and three characters based on the following 
equation: 
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• Second, it appends the first letter and as many 
capitalized letters (0, 1, or 2 letters) as possible to the 
abbreviation within the limit of the target length. All 
characters are appended in lower case. 

• Third, if the abbreviation is still shorter than the 
target length, append letters following the first letter 
one by one until the abbreviation has the target 
length (for Object, obj).  

Using this computer-based approach, we limit ourselves 
to testing the system against the particular style of 
abbreviation with potential biases. However, acronym-like 
abbreviation is believed to be one of popular ways of 
abbreviating keywords and therefore the result of this study 
may provide a reasonable estimate of the system’s 
performance against human-generated abbreviations. We 
also imposed the maximum length limit of three characters 
as an effort to make a conservative estimate. 

4) Test Procedure 
To measure top-N accuracy of six open source projects, 

we repeated the following steps for each open source project: 

• Train an HMM from the source code. 
• Decode abbreviated code lines using the HMM. 

Count the number of successful decoding. 
• Calculated top-N accuracy by dividing the 

occurrences of successful decoding within top-N 
candidates by the number of code completion 
invocations. 

B. Results and Discussion 
1) Top-N Accuracy 

The top-10 accuracy against 3000 code lines from six 
open source projects was 98.9%. The top-5, top-3 and top-1 
accuracies were 97.2%, 94.3%, and 80.0%, respectively. 
Table III shows accuracy values of individual open source 
projects. 

There are two positive findings about the system’s 
performance on accuracy. First, the accuracy itself is 
remarkably high, close to 99%. Although the accuracy is 
measured against a particular style of acronym-like 
abbreviations, such a high accuracy shows potential for 
achieving similarly high accuracy against human-generated 

abbreviations. Second, the system’s accuracy is consistent 
across the six open source projects, which may involve 
different class libraries, use different naming conventions, 
and exhibit different code patterns. Figure 6 shows that there 
is no noticeable difference in top-N accuracy across the 
projects.  

2) Time per code completion 
Code completion of a code line took 0.41 seconds on 

average over 3000 code lines. The right-most column in 
Table III summarizes the average code completion time of 
the six open source projects. Code completion time varies 
considerably across the projects. It is because the time 
complexity of code completion increases in proportion to the 
number of keywords and the number of transitions.  

Since none of the projects took more than one second for 
code completion on average, the responsiveness of the 
current implementation is considered acceptable. However, 
there is a room for improvement because two of the projects, 
JRuby and TV-Browser required more than 0.7 second per 
code completion, which is a noticeable lag. 

3) Number of resolved keywords per code completion 
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Figure 6. The system gives consistent top-N accuracy across the open 

source projects. 
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Figure 7. The histogram of the number of keywords resolved per code 

completion. 

TABLE III.  THE SUMMARY STATISTICS OF HIDDEN MARKOV MODELS AND CODE COMPLETION RESULTS 

 Source Code HMMs Code Completion Results 
project files code lines keywords 

(a) 
transitions 

(b) 
ratio 

(b)/(a)  
top-10  

accuracy 
top-5 

accuracy 
top-3  

accuracy 
top-1 

accuracy 
time per code 

completion  
DnsJava 123 35,658   2,962   15,790 5.3 99.0% 97.2% 94.8% 79.8%        0.10 sec 
CAROL 157 44,166   2,729   12,810 4.7 99.2% 97.6% 94.2% 80.4%        0.11 sec 
RSS Owl 412 147,162   7,579   40,565 5.4 99.0% 98.4% 96.0% 83.2%        0.25 sec 
JEdit 394 233,908   13,803   80,769 5.9 98.8% 97.2% 94.0% 79.6%        0.43 sec 
JRuby 677 320,124   21,157   123,115 5.8 98.8% 96.6% 93.0% 77.0%        0.70 sec 
TV-Browser 852 348,942   20,358   112,830 5.5 98.6% 96.8% 94.8% 81.0%        0.88 sec 
Average 436 188,326 11,431 64,313 5.4 98.9% 97.3% 94.5% 80.2%        0.41 sec 
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The number of keywords in each code line was recorded 
to inspect how many keywords were resolved per code 
completion. A histogram in Figure 7 shows that resolution of 
3 to 5 keywords was most frequent.  The average number of 
keywords was 4.6. 

4) Statistics about Hidden Markov Models 
Table III shows statistics of HMMs trained by source 

code of six open source projects. The number of code lines is 
measured by counting effective code lines ignoring blank 
lines and comments. One interesting finding is that the ratio 
between the number of transitions and the number of 
keywords is about 5 in all six open source projects. This 
implies that a graph connecting keywords (nodes) through 
transitions (edges) is very sparse because a keyword is 
connected to just five keywords on average among many 
possible keywords.  

5) Inspection of Unsuccessful Code Completions 
There were 33 unsuccessful code completions among 

3000 trials, in which none in the top-10 candidates was the 
original code line. Two common failure types were identified 
by inspecting them.  

Failure Type I: This type of failure is caused by the new 
keyword in Java language. Not only many keywords (states) 
make a transition to the new keyword (a state) but the new 
keyword also makes a transition to many keywords. Because 
transition probabilities of the first-order HMM like ours are 
conditioned by only one previous state, such a universally 
connected previous state cannot provide useful guidance in 
decoding. This failure type applies to 18 of 33 failures. 

Failure Type II: This type of failure is caused by similar 
keywords making similar transitions. In this study, we have 
restricted the maximum length of an abbreviated keyword to 
three characters. The HMM tries to resolve ambiguity 
introduced by such a short abbreviation using a transition 
pattern. However, there are cases in which similar keywords 
make transitions in a similar fashion. Then it becomes 
difficult for the HMM to locate the original code line within 
the top-N candidates. For example, a code line } catch 
(Exception e1)  could not be resolved from its abbreviation } 
ca (exc e) because there were other similar keywords making 
similar transitions such as } catch (Exception e), } or } catch 
(IOException e). This type of failure potentially applies to all 
failures.  

VI. USER STUDY 
The user study focuses on evaluating time savings and 

keystroke savings when a programmer uses the Abbreviation 
Completion system. The time usage and the number of 
keystrokes needed in the Abbreviation Completion system 
are compared with those needed in a conventional code 
completion system in Eclipse, a popular Java development 
tool. We report that time savings and keystroke savings were 
30.4% and 40.8% and the difference in time and keystrokes 
was statistically significant. 

A. Paritipants 
Eight Java programmers were recruited using flyers and a 

mailing list in a college campus. They were informed that the 
user study would take about 30 minutes and one of the 
participants would be awarded a $25 gift certificate. There 
were six males and two females among the participants. The 
average age of the participants was 28.1.  

All of them had a minimum of 5 years of general 
programming experience. Five people had used Eclipse for 
more than 3 years while three people had not used it or used 
it just briefly because they used different Java development 
tools, which they confirmed have a code completion 
capability similar to Eclipse. 

B. Usage Scenario and Assumptions 
We are interested in evaluating code completion systems 

in a particular test scenario, in which a programmer writes 
lines of code based on a concrete idea of what needs to be 
written. That is, a programmer can write multiple keywords 
without having to stop to ponder about the next keyword.  

To simulate such a code-writing scenario, we decided to 
provide our subjects with a visual reference of code lines, 
which was always visible on the computer screen. We 
assumed that such a visual reference could work as an 
external memory, which would enable our subjects to type 
multiple keywords continuously as if they had what needs to 
be written in their minds. We also assumed that using a 
visual reference would not slow down code-writing 
significantly as long as subjects were familiar with the code 
lines in the visual reference. 

C. Study Setup 
The user study was performed at an office area in a 

college campus using a computer with a full-sized keyboard. 
One subject, assisted by one experiment facilitator, 
performed a set of code-writing tasks at each run of the user 
study. 

The two code completion systems under investigation are 
called Abbreviation Completion and Eclipse Code 
Completion. To counterbalance the effect of trying one 
system first and the other later, we separated subjects into 
two groups. The first group, named Abbreviation-First, 
started using Abbreviation Completion first while the second 

JPanel content = new JPanel(new BorderLayout()) 

content.add(BorderLayout.CENTER, panel) 

public void actionPerformed(ActionEvent evt) 

label.setHorizontalAlignment(SwingConstants.CENTER) 

GridBagLayout layout = new GridBagLayout()  

cons.anchor = GridBagConstraints.WEST 

label.setBorder(new EmptyBorder(0,0,0,12)) 

fireTableRowsUpdated(row,row) 

SwingUtilities.invokeLater(new Runnable()) 

StringBuffer buf = new StringBuffer() 

Figure 8. Code lines used in the user study to measure time usage and 
keystrokes needed for code-writing using two code completion systems. 
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group, named Eclipse-First, started using Eclipse Code 
Completion first. 

D. Tasks 
The user study starts with the first task of learning two 

code completion systems. Let us assume that a subject from 
the Abbreviation-First group performs the first task. After 
the facilitator explains how to use Abbreviation Completion, 
the facilitator lets the subject practice using Abbreviation 
Completion. A subject is allowed to ask questions during the 
practice. For practice, the subject is required writes code 
lines in Figure 8 using Abbreviation Completion. Once the 
subject finishes writing the code lines, the facilitator explains 
how to use Eclipse Code Completion. A same practice 
session follows using Eclipse Code Completion.  

The second task is a recording session to record time 
usage and keystrokes in writing code lines in Figure 8. Note 
that a subject is asked to write the same code lines that they 
already have written twice because it may help simulate the 
usage scenario of our interest. Let us assume that a subject 
from the Abbreviation-First group performs this task. The 
subject first writes the code lines using Abbreviation 
Completion. The time usage and keystrokes are 
unobtrusively recorded using custom-built instrumentation 
facilities in code editors. Once the subject finishes writing 
the ten code lines, the subject will have a short break and 
then repeat the same recording process using Eclipse Code 
Completion. 

The ten code lines in Figure 8 were selected from JEdit, 
one of open source projects used in our artificial corpus 
study, through a random walk of its source code to find code 

lines that satisfy the following characteristics: each code line 
should appear at least four times in the whole project; each 
code line should be at least 30 characters long and at most 50 
characters long; and selected code  lines should demonstrate 
various styles of code-writing such as instantiations, 
assignments, declarations, member access, and parameters. 

E. Results 
1) Time savings 

The overall time savings averaged for all subjects and for 
all code lines was 30.4%, as shown in Figure 9. The detailed 
time usage is presented in two ways, first by averaging for all 
code lines (Figure 9) and second by averaging for all subjects 
(Figure 10). Time savings were calculated by dividing the 
difference of time usage in two code completion systems by 
the time usage of Eclipse Code Completion. The standard 
deviation of time savings across subjects was 8.4%, 
indicating that there is a certain amount of variation in time 
savings depending on individual subjects. The standard 
deviation of time savings across code lines was 6.3%. The 
difference in the time usage between Abbreviation 
Completion and Eclipse Code Completion was statistically 
significant based on a paired t-test (df = 79, p < 0.001). 

2) Keystroke savings 
The overall keystroke savings averaged for all subjects 

and for all code lines was 40.8%, as shown in Figure 11, 
which is larger than the overall time savings. The number of 
keystrokes is presented in two ways, first by averaging for all 
code lines (Figure 11) and second by averaging for all 
subjects (Figure 12).  The standard deviation of keystroke 
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Figure 9. Time usage average of all code lines for each subject. 

0

2

4

6

8

10

12

14

Line1 Line2 Line3 Line4 Line5 Line6 Line7 Line8 Line9 Line10

ti
m

e 
us

ag
e 

(s
ec

on
d)

Time usage (average of all subjects)

Abbreviation Completion Eclipse Code Completion

 
Figure 10. Time usage average of all subjects for each code line. 
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Figure 11. Keystrokes average of all code lines for each subject. The baseline 

keystrokes, also an average of all code lines, are shown as a dotted line. 
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Figure 12. Keystrokes average of all subjects for each code line. The baseline 

keystrokes are shown as dotted lines. 
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savings was 6.7% across subjects and 7.5% across code lines. 
The difference in the number of keystrokes between 
Abbreviation Completion and Eclipse Code Completion was 
statistically significant based on a paired t-test (df = 79, p < 
0.001). 

Unlike the time usage, the number of keystrokes has a 
baseline value. A baseline value is the number of keystrokes 
when the whole character sequence in a code line is typed 
without using any code completion. Black dotted lines in 
Figure 11 and Figure 12 show the baseline values. Multiple 
dotted lines are shown in Figure 12 because each code line 
has its own baseline value. Comparing average keystrokes by 
Abbreviation Completion (20.7 keystrokes) with the baseline 
value (45.8 keystrokes), we see 54% of keystroke savings. 
Meanwhile, average keystrokes by Eclipse Code Completion 
(35.0 keystrokes) is just 24% less than the baseline value. 

F. Discussion 
In the user study, the Abbreviation Completion system 

achieved substantial savings in time and keystrokes. It is 
noteworthy that the keystroke savings were larger than the 
time savings. Obviously, the time usage is not a linear 
function of keystrokes; it is also a function of various mental 
operations, which could not be measured directly in the user 
study.  

From our observation of subjects’ behavior, one 
noticeably time-consuming mental operation was a 
validation of code completion candidates. After making 
some keystrokes, subjects stopped to check if the list of code 
completion candidates had the intended code line. Because 
the system showed ten code completion candidates, it could 
take seconds to scan through the list if the correct one did not 
appear near the top in the list.  

One subject told us that validation was more difficult in 
Abbreviation Completion than in Eclipse Code Completion. 
The subject explained that it was because multiple keywords 
had to be validated all at once. Another subject told us that 
the subject had a desire to hit the Enter key right after typing 
abbreviated input without validating the candidates. He said 
that it was because the system’s first suggestion seemed 
usually correct.  

We think that both of subjects’ comments point to a 
single usability issue of the Abbreviation Completion system. 
Information needed for validating code completion 
candidates is not clearly visible to users. Users only see 
abbreviated input and code completion candidates. 
Information about how well or why a code completion 
candidate matches the abbreviated input is not visible to 
users. Also, from the very nature of code completion, it is 
difficult to visually compare code completion candidates 
with the intended code line because the intended code line is 
in user’s mind. 

To enhance the visibility, we may improve the system in 
two ways. First, we may expose the system’s confidence 
about code completion candidates. It can help users know 
when they need to be more careful about validation. The 

system’s confidence may be calculated from two sources of 
information: a probabilistic model using the HMM and a 
history data of using the Abbreviation Completion system. 
Second, we may expose information about why a code 
completion candidate makes a match of abbreviated input. 
Instead of trying to explain a complicated probabilistic 
model, an approximated model that can be communicated 
easily may serve this purpose well. A simple visualization 
technique, such as highlighting which part in abbreviated 
input matches which part in a code completion candidate, 
should be useful as well. 

VII. RELATED WORK 
Saving keystrokes and time for code-writing is one of the 

major design objectives of source code editors. Generating 
multiple keywords from a short character sequence is one 
way of achieving the objective. There have been two major 
approaches for supporting multiple keyword generation. 

The first approach is based on a code template, a 
predefined code fragment that can be inserted into the code 
editor. Each code template is given an alias, such as sysout, 
so that programmers can insert a code fragment using the 
alias as a reference. Many code editors, including Emacs [2] 
and Eclipse [3], implement this approach.  

The code template approach is effective at handling a 
handful of very frequently written code fragments. However, 
the burden of memorizing aliases can put a limit on the 
number of frequent code fragments a user can complete. The 
time-consuming process of adding new code templates may 
also be a limiting factor. Abbreviation Completion tries to 
overcome such limitation by supporting non-predefined 
abbreviations and by just requiring users to specify the 
locations of source code. Abbreviation Completion can 
automatically construct an equivalence of a library of code 
templates from a corpus of source code. 

The second approach is based on a type-constrained 
search that can construct programming expressions 
containing multiple keywords. Keyword Programming [4], 
XSnippet [5], and Prospector [6] implement this approach, 
but they have differences in the type of input queries and 
output expressions and the kind of heuristics for guiding 
type-constrained search. Prospector takes two Java types as 
an input and outputs code lines for converting one type to the 
other type using heuristics based on the graph path. XSnippet 
also takes two Java types as an input, but optionally it can 
take additional Java types to specify a context. XSnippet uses 
heuristics based on snippet lengths, frequencies, and context 
matches to generate multiple lines of code for instantiation. 
Keyword Programming takes a set of keywords as input and 
outputs a code line of Java expression using heuristics based 
on the keyword matches.  

Type-constrained search systems focus on serving a 
specific type of users who need help with choosing or using 
classes. They do not serve a different type of user who 
already has a good idea of what needs to be written and 
wants to write it more efficiently. Abbreviation Completion 
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demonstrates that some of the techniques used in type-
constrained search systems —notably, code mining and text-
based hints—can be used to serve the other type of users. 

Abbreviation Completion can also be related to previous 
work on improving the ordering of code completion 
candidates [7,8] because in essence the Abbreviation 
Completion algorithm tries to solve the problem of 
prioritizing a large number of code completion candidates 
using an HMM. Prototype systems in [7] and Mylyn [8] 
explore the utility of the change history and the task context, 
respectively, as additional sources of information for 
prioritizing single-keyword candidates. Abbreviation 
Completion explores the utility of keyword sequences 
extracted from a corpus of source code for prioritizing 
multiple-keyword candidates. 

VIII. CONCLUSION AND FUTURE WORK 
This paper has presented Abbreviation Completion, a 

novel technique to complete multiple keywords at a time 
based on non-predefined abbreviated input. We presented an 
algorithm based on an HMM to find the most likely code 
completions. We presented a method to learn parameters of 
the HMM from a corpus of existing code and examples of 
abbreviations. A new user interface for multiple keyword 
code completion has been implemented on a demonstrational 
code editor.  The accuracy of the Abbreviation Completion 
system is evaluated in an artificial corpus study, in which 
3000 code lines from six open source projects were 
completed from their abbreviations. The system achieved 
average 98.9% accuracy. Time savings and keystroke 
savings were evaluated in a user study, in which the 
Abbreviation Completion system was compared with the 
Eclipse Code Completion system. The overall time savings 
and keystroke savings were 30.4% and 40.8%. 

One of the important goals of future work is to further 
improve the usability of the system. A user interface for 
validating code completion candidates deserves investigation 

because the user study revealed that the validation can be 
time-consuming and difficult. Improving efficiency is 
another goal because the system tended to be less responsive 
when the number of keywords was over 20,000. Finally, 
because the key benefit of our approach is keystroke savings, 
application to programming environments with limited input 
capabilities, such as mobile devices, may be worthy of 
investigation.  

ACKNOWLEDGMENT 
We thank CAD Lab members who provided a creative 

environment, UID group members who provided helpful 
discussion, and study participants for their time and 
comments. We thank anonymous reviewers for their 
insightful comments. 

REFERENCES 
[1] L. R. Rabiner, "Tutorial on hidden Markov models and selected 

applications in speech recognition," In Proc. IEEE, vol. 77, 1989. 
[2] “Abbrevs,” in GNU Emacs Manual. 

http://www.gnu.org/software/emacs/manual/emacs.html. 
[3] “Editor Template,” in Eclipse Ganymede Documentation. 

http://help.eclipse.org/ganymede/index.jsp. 
[4] G. Little and R. C. Miller, "Keyword programming in Java," In Proc. 

ASE, vol. 16, pp. 37-71, 2007. 
[5] N. Sahavechaphan and K. Claypool, "XSnippet: Mining For sample 

code," OOPSLA, pp 413-430,  2006. 
[6] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, "Jungloid mining: 

Helping to navigate the API jungle," In Proc. PLDI, 2005. 
[7] R. Robbes and M. Lanza, "How Program History Can Improve Code 

Completion," In Proc. ASE, 2008. 
[8] M. Kersten and G. C. Murphy, "Using task context to improve 

programmer productivity," In Proc. FSE, 2006. 
[9] F. K. Soong and E. F. Huang, “A tree-trellis based fast search for 

finding the n-best sentence hypotheses in continuous speech 
recognition,” In Proc. ICASSP, vol. 1, pp 705-708,  1991. 

[10] D. Nilsson and J. Goldberger, “An efficient algorithm for sequentially 
finding the n-best list,” In Proc. IJCAI, 2001. 

 

331345345343343


