
MIT Open Access Articles

Code Completion From Abbreviated Input

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sangmok Han, D.R. Wallace, and R.C. Miller. “Code Completion from Abbreviated
Input.” Automated Software Engineering, 2009. ASE '09. 24th IEEE/ACM International
Conference on. 2009. 332-343. © 2010 Institute of Electrical and Electronics Engineers.

As Published: http://dx.doi.org/10.1109/ase.2009.64

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/59377

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59377

Code Completion From Abbreviated Input
Sangmok Han, David R. Wallace, and Robert C. Miller

Massachusetts Institute of Technology
Cambridge, MA

{sangmok, drwallace, rcm}@mit.edu

Abstract—Abbreviation Completion is a novel technique to
improve the efficiency of code-writing by supporting code
completion of multiple keywords based on non-predefined
abbreviated input—a different approach from conventional
code completion that finds one keyword at a time based on an
exact character match. Abbreviated input is expanded into
keywords by a Hidden Markov Model learned from a corpus
of existing code. The technique does not require the user to
memorize abbreviations and provides incremental feedback of
the most likely completions. This paper presents the algorithm
for abbreviation completion, integrated with a new user
interface for multiple-keyword completion. We tested the
system by sampling 3000 code lines from open source projects
and found that more than 98% of the code lines could be
resolved from acronym-like abbreviations. A user study found
30% reduction in time usage and 41% reduction of keystrokes
over conventional code completion.

Code Completion; Hidden Markov Model; Abbreviation;
Multiple Keywords; Code Assistants; Data Mining

I. INTRODUCTION
Many programmers use code completion to accelerate

code-writing by avoiding typing the whole character
sequence of keywords. This paper describes a method for
accelerating code completion still further by completing
multiple keywords at a time based on non-predefined
abbreviated input, utilizing frequent keyword patterns
learned from a corpus of existing code. For example, Figure
1 shows a user entering ch.opn(n);, which is translated into a
list of code completion candidates that includes
chooser.showOpenDialog(null) as the most likely candidate.
Entering slightly different abbreviations such as
cho.opdlg(nl); or cs.sopd(nu); should also lead to the same
best candidate because the system accepts non-predefined
abbreviations of keywords.

The system aims to address the following limitations of
the conventional code completion systems:

First, conventional systems complete only one keyword
at a time. Therefore, the number of extra keystrokes
increases in proportion to the number of completed
keywords. For example, a typical code completion
interaction, like the one shown in Figure 2, might take 20
keystrokes to complete three keywords of 29 characters.

Second, conventional code completion systems find a

keyword based on an exact match of leading characters.
Because the leading parts of keywords are often identical
among candidates while the ending parts are more
distinguishable, as in showOpenDialog and showSaveDialog,
programmers often need to type potentially lengthy
sequences of leading characters before they type distinctive
characters close to the end.

Third, the default selection of a code completion
candidate is often far from ideal. Conventional code
completion selects the first match in an alphabetically sorted
candidate list, ignoring any context implied by surrounding
keywords. This leads to additional Up/Down Arrow
keystrokes to adjust the selection to a correct candidate.

Here are a few motivating examples the new code
completion system is designed to handle:

what you type… what you get…
pv st nm private String name
gval(r,c) getValueAt(row,col)
f(i i=0;i<ls.sz();i++) for(int i =0; i<list.size();i++)
pb st v m(st[] ag) public static void main(String[]

args)

This paper presents a new model and algorithm, based on
a Hidden Markov Model (HMM), which has been integrated
into a new code completion system called Abbreviation

This research was supported by Samsung Scholarship Foundation.

Figure 1. Abbreviation Completion can complete multiple keywords from

abbreviated input in a single code completion dialog.

Figure 2. Code completion of multiple keywords requires many extra

keystrokes for driving code completion dialogs.

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.64

320

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.64

334

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.64

334

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.64

332

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.64

332

Completion. An HMM has been applied to various
engineering domains; however, Abbreviation Completion is
believed to be its first application to the code completion
domain. This paper also presents a new user interface for
interactive multiple keyword completion because different
usability concerns arise than in single keyword completion,
such as manually overriding some of the keywords suggested
by the system.

Compared to prior systems for completing multiple
keywords, Abbreviation Completion does not require
programmers to memorize predefined abbreviations, an
improvement over code template systems [2,3], which
convert a predefined token, such as sysout, into a predefined
keyword sequence, such as System.out.println(), and
provides incremental feedback of the most likely
completions based on frequent keyword patterns, an
improvement over Keyword Programming [4], XSnippet [5],
and Prospector [6], all of which perform a single-pass search
based on type constraints, optionally guided by heuristics
based on keywords, frequencies, or paths. In addition,
Abbreviation Completion is not limited to handling type-
constrained expressions [4-6], but can generate any arbitrary,
frequent sequence of keywords, including code for:
declaration; loop construction; and a list of arguments.
Previous work on improving the ordering of code completion
candidates [7,8] can be related to Abbreviation Completion;
however, our work focuses on prioritizing multiple-keyword
code completion candidates using a difference source of
information and a different algorithm.

Our key contributions are:

• A new application of an HMM to solve decoding of
multiple keyword completion based on abbreviated
input. An HMM has been extended in consideration
of two distinctive characteristics of our problem
domain.

• Development of a regression model for estimating a
probabilistic distance between any given pair of an
original keyword and an abbreviated keyword. This
model is essential for the system to handle non-
predefined abbreviated input.

• A user interface for interactive multiple keyword
completion. A code editor supporting Abbreviation
Completion has been implemented to demonstrate
the new user interface. It can be downloaded from:
http://cadlab6.mit.edu/sangmok/abbrcompletion/.

• Evaluation of the system’s accuracy, time savings,
and keystroke savings. Accuracy was measured by
counting how many of the code lines sampled from
open source projects could be reconstructed from
abbreviated input. The system achieved average
98.9% accuracy against 3000 lines of code from six
open source projects. Time savings and keystroke
savings were measured by comparing time usage and
the number of keystrokes of the system with those of
a conventional code completion system. The system
achieved average 30.4% savings in time and 40.8%
savings in keystrokes in a user study with eight
participants.

The next section describes models and algorithms for
multiple keyword completion. We then present estimation
methods to learn probability distributions required by the
models. We describe a user interface for Abbreviation
Completion. The setup and results of two evaluations follow.
Finally, we discuss related work, future direction, and
present conclusions.

II. MODEL AND ALGORITHM
This section describes a model and algorithm to resolve

the most likely keyword sequences from abbreviated input.
Two structural extensions of an HMM and a modified
backtracking mechanism of the Viterbi algorithm will be
highlighted.

A. Code Completion of Multiple Keywords As a Decoding
Problem of a Hidden Markov Model
An HMM is a graphical model that concerns two

sequences. Only one of these sequences, called the
observation symbol sequence, is observable while the other
sequence, called the hidden state sequence, is the one of
interest. Decoding of an HMM refers to a process of finding
the most likely state assignment to a hidden state sequence
based on an observation symbol sequence. The Viterbi
algorithm [1] is an efficient dynamic programming algorithm
for decoding an HMM.

Code completion of multiple keywords based on
abbreviated input can be modeled as a decoding problem of a
particular HMM. Figure 3 shows an example of the HMM
for decoding str nm = th.gv(r,c). Given two pieces of
information, abbreviated input by a user and a set of
keywords collected from a corpus of existing code, the two
sequences of the HMM are created as follows:

str nm th gv r c= . (,

c1 = " " c2 = "=" c3 = "." c4 = "(" c5 = ","

String name this getValueAt row col

String name = this.getValueAt(row, col)str nm = th.gv(r,c)

x1 x2 x3 x4 x5 x6

s1 s2 s3 s4 s5 s6

observable:

hidden:

)

c6 = “)"

Figure 3. Resolution of multiple keywords is solved as a decoding problem of Hidden Markov Model.

321335335333333

First, an observation symbol sequence is created by
splitting abbreviated input into a sequence of string tokens
that have non-alphanumeric characters, such as spaces, dots
or commas, between each one. For example, the result of
splitting abbreviated input str nm = th.gv(r,c) is shown in
Figure 3. Note that, in our implementation for Java language
code completion, the underscore character was not treated as
a splitting non-alphanumeric character because it is a valid
character for the identifier name.

Second, a hidden state sequence is created by sequentially
arranging keywords that have the same non-alphanumeric
characters between each one, as in the observation symbol
sequence.

Given the setup for creating the two sequences from
abbreviated input and keywords collected from a corpus of
existing code, finding the most likely code completion
becomes a problem of finding the most likely assignment of
keywords to a hidden state sequence.

B. An Extended Hidden Markov Model
We have extended a standard HMM [1] in two ways to

take the following characteristics of our problem domain into
account:

• Keyword transition always occurs through non-
alphanumeric characters. For example, in Figure 3,
transition from String to name occurs through a
space character, and transition from name to this
occurs through an equal character.

• The number of observation symbols is not finite
because users are allowed to abbreviate keywords in
their own non-predefined way.

The first extension is intended to exploit the keyword
transition characteristics by modeling transition probability
distributions in a more sophisticated way than conventional
HMMs. Unlike conventional HMMs that employ a single
transition probability distribution for any type of transition,
the HMM for multiple keyword completion employs
different transition probability distributions depending on the
type of transition, identified by non-alphanumeric characters
at the transition.

As a result, the transition probability distribution
becomes dependent not only on a previous keyword but also
on non-alphanumeric characters. Generally, allowing
transition probabilities to be conditioned by a greater number
of surrounding states results in better prediction, although
more data is necessary for training. We assume that users can
find training data that is large enough to take advantage of
this extension because they have access to source code in
their existing projects or in open source projects.

The second extension is to resolve issues with estimating
emission probabilities, the probability of a hidden state
generating an output symbol. Because the number of
possible observation symbols is infinitely many, it is
impossible to develop an estimation model that is guaranteed

to produce a valid probability distribution—a valid emission
probability distribution must sum to one when it is integrated
over all possible observation symbols. However, it is
possible to work around this issue by modifying the structure
of an HMM as shown in Figure 4. The trick is to introduce a
match indicator node, whose value is one if an observation
symbol (an abbreviated keyword) is a correct match of a
hidden state (an original keyword) and zero otherwise.

Then, we define a match probability as a probability of a
match indicator becoming one given an observation symbol
and hidden state pair. The match probability is equivalent to
the emission probability in the sense that both measure a
probabilistic distance between an abbreviated keyword and
an original keyword. As we will see in the next section (II-C),
the match probability is computationally equivalent to the
emission probability, so it can replace the emission
probability in the Viterbi algorithm. Once we have replaced
the emission probability with the match probability, it is
straightforward to develop a valid estimation model for the
match probability because it is a probability of finite, binary
events. For a formal description, we will use the following
notation to characterize the HMM for multiple keyword code
completion:

ts : State at time t (original keyword).
S : A set of all possible states

tx : Observation at time t (abbreviated keyword).

ty : Match indicator at time t. The value of ty is one if

tx and ts are a correct abbreviation match. ty is one at
 any time because tx is assumed to be abbreviated
 input.

tc : Non-alphanumeric characters between ts and 1+ts ,
 called a connector at time t.

)(sT : Start probability of state s .
)|'(ssTc : Transition probability from state s to state 's

 through connector c .
)|(sxE : Emission probability of state s emitting

 observation symbol x .
),|(xsyM : Match probability.),|1(xsyM = indicates

 the probability that state s and observation x are a
 correct match.

str nm

String name

x1 x2

s1 s2

y1 y2

1 1

c1 = " "

observable:

hidden:

matched:

th=

this

x3

s3

y3

1

c2 = "="

Figure 4. A modified HMM with match indicator nodes.

322336336334334

T : The length of an observation symbol sequence,
 which is always equal to the length of a hidden
 state sequence.

C. Modified Viterbi Algorithm
This section presents a modified version of the Viterbi

algorithm for multiple keyword completion. Notably, two
modifications have been made: First, the emission
probability is replaced with the match probability; second,
the backtracking part of the original Viterbi algorithm has
been replaced with a new backtracking algorithm that
retrieves N-best candidates, instead of the single best
candidate of the original algorithm.

1) Match Probability
The Viterbi algorithm finds the most likely hidden state

sequence by calculating joint probabilities of possible
assignments of state values to a hidden state sequence.
Because the joint probability distribution of the extended
HMM is different from that of the original HMM (without
match indicators), the Viterbi algorithm needs to be modified
to accommodate the difference.

The modification just replaces the emission probability
with the match probability. The difference is apparent
comparing the joint probability distribution of the original
HMM in equation (1) with the joint probability distribution
of the extended HMM in equation (2). The only difference is
that the emission probability)|(tt xsE is replaced with the
match probability),|(ttt xsyM .

∏∏
==

−−
=

T

t
tt

T

t
ttcTTT xsEssTsTccxxssP

t
12

11111)|()|()(),,(
1

 (1)

∏∏
==

−−
=

T

t
ttt

T

t
ttcTTT xsyMssTsTccxxssP

t
12

11111),|()|()(),,(
1

 (2)

2) Finding N-Best Candidates
The second modification to the Viterbi algorithm aims to

enhance the way it handles backtracking, the final step used
to construct the most likely state sequence using data
structures calculated from a dynamic programming step. The
original backtracking algorithm returns only one code
completion candidate because it finds the single most likely
sequence. However, a code completion system is expected to
provide N-best code completion candidates.

Several backtracking approaches that find N-most likely
sequences have been proposed [9-10]. We decided to take a
tree-trellis based backtracking algorithm [9] because it is an
exact algorithm that requires a negligible amount of
computation when compared to computation for the dynamic
programming step of the Viterbi algorithm:

)())log((22 NTOnnTO ⋅<<⋅ . The lowercase n, the number
of the N-best candidates, is generally much smaller than the
capitalized N, the number of all possible states.

III. PARAMETER ESTIMATION
Given a model and backtracking algorithm to compute

the N-most likely code completions, this section describes a
method to estimate model parameters. Three model
parameters need to be estimated for the extended HMM with
match indicators: start probability distribution, transition
probability distribution, and match probability distribution.
The first two probability distributions, which describe how
keyword transition occurs at the beginning and in the
remaining part of a sequence, are estimated from a corpus of
existing code. The third match probability distribution,
which describes how likely a pair of an abbreviated keyword
and an original keyword to be a correct match, is estimated
from examples of correct matches and incorrect matches.

A. Estimation of Start Probabilities and Transition
Probabilities

1) Preparation of training examples
Generally, a set of known state sequences is used as

training examples to estimate start probabilities and
transition probabilities. In case of multiple keyword code
completion, a corpus of existing code is used to generate
training examples. We took the following two-step approach
to convert a piece of source code into a set of state
sequences:

In the first step, a lexical analyzer tokenizes source code
into a sequence of lexical tokens that are one of the
following types: identifiers, string literals, character literals,
number literals, line breaks, non-line-breaking whitespaces,
comments, and non-alphanumeric characters. For example,
tokenizing String name = null;<LF> creates lexical tokens
in Table I. This step allows us to identify keyword states: A
lexical token of identifier type, string literal type, character
literal type, or number literal type will form a keyword state
in the state sequence.

In the second step, a state sequence generator scans
through lexical tokens and selectively uses them to construct
state sequences. Because keyword states were already
identified in the first step, this step aims to identify
connectors by concatenating non-alphanumerical characters
and removing redundant whitespaces. A state sequence is
extended by appending keyword states and connectors, one
next to the other. The beginning of a new state sequence is
signaled by a line or block separator, such as a semi-colon or
curly bracket character in Java, followed by a line break. For
example, lexical tokens of String name = null;<LF>

TABLE I. AN EXAMPLE OF LEXICAL ANALYZER OUTPUT

lexical token type
String identifiers
<space> non-line-breaking whitespaces
name identifiers
<space> non-line-breaking whitespaces
equal non-alphabetical characters
<space> non-line-breaking whitespaces
null identifiers
<semi-colon> non-alphabetical characters
<LF> line breaks

323337337335335

constructs the following state sequence in (3), in which φ
indicates the end of a state sequence:

 φ⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯ >−<><>< colonsemiequalspace nullnameString (3)

The implementation of the two-step approach is
language-specific because it involves lexical analysis.
However, it is often possible to customize a lexical analyzer
to handle a different language simply by updating regular
expressions so that they match language-specific lexical
tokens.

2) Learning maximum likehihood estimates
Given state sequences extracted from a corpus of existing

code, the maximum likelihood estimates of start probabilities
and transition probabilities are calculated by counting the
number of state transitions. Let us define)' COUNT(i, ss c⎯→⎯
as the number of transitions from state s to state s' through
connector c in the ith training example and) COUNT(i, s as the
number of occurrences of state s in the ith training example.

The maximum likelihood estimate of transition
probabilities from state s to state s' through connector c is
calculated as the ratio of the number of transitions from state
s to state s' through connector c to the number of transitions
from state s through connector c:

⎯→⎯

⎯→⎯
=

i s

c
i

c

c
ssi

ssi
ssT

'
)',(COUNT

)',(COUNT
)|'(ˆ (4)

The maximum likelihood estimate of start probabilities at
state s is calculated from the ratio of the number of
occurrences of state s to the number of occurrences of any
state, as shown in (5). Notice that the number of occurrences
is used instead of the number of beginning transitions. This
is justified by the fact that a user can invoke code completion
at any location in a code line. Therefore, the first keyword in
a code completion does not necessarily represent its
occurrence at the beginning of a code line, but can represent
its occurrences at any location.

 =

i s

i

si

si
sT

),(COUNT

),(COUNT
)(ˆ (5)

In practice, transition probabilities based on exact
counting, as in equation (4), may not generalize well because
the number of training examples may not be sufficiently
large to estimate transition probabilities of all possible state
combinations. A popular technique to address this issue is to
use the weighted sum of transition probabilities and
occurrence probabilities as transition probabilities. A weight
coefficient λ is set to 0.7 by following a common practice.
Finally, the actual transition probability in the system is
shown in equation (6).

)(ˆ)1()|'(ˆ)|'(~ sTssTssT cc λλ −+⋅= (6)

B. Estimation of Match Probabilities
1) An estimation model for match probabilites

The match probability indicates the probability of a
match event, which occurs when a pair of an abbreviated
keyword and an original keyword is a correct match. The
estimation of match probabilities can be challenging because
there are infinitely many combinations of abbreviated
keywords and original keywords; therefore, should someone
try to estimate match probabilities by directly counting the
occurrences of match events, the person may need an infinite
number of training examples.

We propose an approach based on a logistic regression
model that predicts match probabilities from a set of
similarity features between an abbreviated keyword and an
original keyword. In this approach, an abbreviation pair—an
abbreviated keyword and an original keyword—is
represented as a feature vector, elements of which describe
different aspects of similarity. Similarity features include the
number of consonant matches or the percentage of matched
letters in an original keyword. Table II shows a list of
similarity features used in the latest implementation of
Abbreviation Completion.

The feature-vector-based representation of abbreviation
pairs allows us to use standard machine learning techniques
to develop an estimation model of match probabilities.
Notably, a logistic regression model fits well in our problem
because it can learn probabilities of a binary event, like the
match event.

2) Preparation of training examples
To train a logistic regression model, a set of positive

training examples and a set of negative training examples are
necessary. To prepare positive training examples, 400
abbreviation pairs were generated by two human volunteers.
Some examples of the abbreviation pairs are buffer bf,
getProperty gppt, and moveCaretPosition mvcarpos.
Then the abbreviation pairs were converted into a feature
vector representation by calculating similarity features. 400
negative training examples were generated by pairing
original keywords with randomly selected wrong
abbreviations and converting the wrong pairs into a feature
vector representation.

3) Learning maximum likelihood estimates

TABLE II. SIMILARITY FEATURES FOR ESTIMATING MATCH
PROBABILITIES

feature name feature description
Sim1(s,x) number of consonant letter matches
Sim2(s,x) number of capitalized letter matches
Sim3(s,x) number of non-alphabet character matches
Sim4(s,x) number of standard abbreviation matches
Sim5(s,x) number of letter matches with ordering ignored
Sim6(s,x) number of letter matches with ordering enforced
Sim7(s,x) percentage of matched capital letters in s
Sim8(s,x) percentage of matched consonant letters in s
Sim9(s,x) percentage of matched letters in s
Sim10(s,x) percentage of matched letters in x

324338338336336

Having collected 800 positive and negative examples,
200 examples were held for testing and 600 examples were
used for training. The logistic regression model has 11
unknown parameters, denoted as 1010 ,,, βββ , because 10
similarity features are included in the model. The logistic
regression model for match probabilities is shown in
equation (7):

)),(),((),|1(1010110 xsSimxsSimgxsyM ⋅++⋅+== βββ (7)

ze

zg −+
=

1
1)(where

The maximum likelihood estimates of 1010 ,,, βββ were
calculated by a generalized linear model regression function
in a statistics package. The result is shown in equation (8).
The train error and test error of the logistic regression model
were recorded as 1.5% and 0.5%, respectively. Because the
test error is slightly lower than the train error, the model is
not expected to have an issue with overtraining.

 1.2,- 1.3,- 2.3, 7.5, 8.7, 1.2, [-41.2,],,,[1010 =βββ (8)
 44].0 29,.0 0.04,- 0.07,-

4) Discussion of the training results
The training result reflects the relative importance of

different similarity features, although it is specific to a
certain style of abbreviation exhibited by our training data.
We first notice that 2β for the number of capitalized letter
matches has the largest value among all number-of-matches
parameters 61 ,, ββ . It implies that an abbreviation pairs is
likely to be a match if there are many capitalized letter
matches. 5β and 6β for the number of letter matches with
and without ordering are given negative values. Considering
that 1β for the number of consonant matches is positive, it
implies that the larger number of vowel matches an
abbreviation pair has, the less likely it is a correct match.

It is noteworthy that different users may have different
preferred ways of abbreviating keywords, and even the same
user may not abbreviate consistently over time. If such
differences necessitate retraining of match probability
parameters for each user or at any point of time, it would

make the Abbreviation Completion system very expensive to
use. However, the parameter values in equation (8) were
found to work reasonably well in running an artificial corpus
study and a user study in Section V and VI, without further
retraining. This is promising because it indicates that the
parameter values can serve as system defaults, which may
attract users to the system. The default parameter values can
later be updated from actual abbreviation examples collected
from system usage. This updating is to be considered in
future work.

IV. USER INTERFACE AND IMPLEMENTATION

This section describes a user interface for multiple
keyword code completion. Three design requirements have
been identified for the user interface: acceptance of
abbreviated input that may include non-alphanumeric
characters including spaces; allowance for users to override
the system’s suggestion; and display of code completion
candidates in an effective way. The user interface has been
implemented on a demonstrational code editor.

A. User Interface
It is important to support a scenario in which some part

of a code line is typed, while another part is completed using
Abbreviation Completion. For example, a user may first type
this.getValueAt() and then try to complete row, col inside the
parentheses from abbreviated input r,c. The demonstrational
code editor utilizes an input popup that floats over the code
editing area, shown as a light blue rectangle in Figure 5. The
area accepts abbreviated input, including non-alphanumeric
characters. The input popup appears at the current caret
position when a user presses Ctrl+Space, so it can be used to
insert completed code at any location in the code. Since the
input popup tries to initialize its content from any
highlighted text in the code editing area, a user may type
abbreviated input in the code editing area and expand it by
highlighting and pressing Ctrl+Space.

The second requirement is handled by a keyword-pinning
capability, which is invoked using a keyboard shortcut
Ctrl+B. The system highlights a pinned keyword in the input

 (a) (b) (c)

Figure 5. A user interface for multiple keyword code completion: (a) the list is alphabetically sorted when there is one keyword, (b) the list is sorted by the
likelihood when there are more than one keyword, and (c) a user can override the system’s suggestion

325339339337337

popup by making it boldface with a light yellow background,
as shown in Figure 5-(c). Internally, the system treats a
pinned keyword as an observation symbol that matches all
possible states with an equal probability. Once code
completion candidates are generated using the match
probabilities, they are displayed to users with keyword
tokens at a pinned location replaced with overriding text.

Regarding the third design requirement, users are
assumed to have two concerns when using the code
completion candidate list. First, users want to know which
candidates are more likely to be correct and should be
examined first. A list sorted by the likelihood is useful for
this purpose. Second, users want to navigate the list of
candidates efficiently in a predictable manner. An
alphabetically sorted list is useful for this purpose. We
implemented the code completion candidate list such that it
can be sorted one of the two ways depending on the number
of keywords in the input popup. When there is only one
keyword, the list is sorted alphabetically; the system’s
default suggestion can be often incorrect because the
transition pattern cannot be utilized. When there is more than
one keyword, the list is sorted by the likelihood; two
keywords are often enough to locate the correct candidate in
the top-10 list, so users may want to examine candidates
from the most likely one. Figure 5-(a) and Figure 5-(b)
demonstrates the behavior of the candidate list.

B. Incremental feedback of Code Completions
Responsive incremental feedback is essential for the

usability of the multiple keyword code completion system.
We applied a filtering technique to improve responsiveness
of the system. The filtering technique effectively reduces the
search space of the Viterbi algorithm by removing some of
the states that are impossible to appear in the most likely
candidates. Filtering based on characters and connectors (the
non-alphanumeric characters between keywords) has been
implemented. For example, given abbreviated input “sys.”,
the system first applies character-based filtering so that only
the states that have both ‘s’ and ‘y’ characters remain. Then
the system applies connector-based filtering so that only the
states that have a transition through ‘.’ remain.

C. Incremental Indexing of Source Code
The demonstrational code editor supports incremental

indexing of source code using a background thread. The
code editor monitors changes of source code, which may
occur inside the code editor or on the file system, and
updates the HMM to reflect the changes. As a result,
Abbreviation Completion can be used to complete code lines
that may include recently introduced variable or method
names. A full indexing of 400 source code files (3000
kilobytes in size) usually takes less than 3 seconds on a
laptop computer with Intel Core 2 Duo P8400 CPU and 3
gigabyte ram. Therefore, an incremental indexing of a few
changed entries can be processed in a negligible time
compared to a normal lag between code edits. Note that users

can specify the target directories for incremental indexing in
a configuration file.

V. ARTICIFIAL CORPUS STUDY
The artificial corpus study aims to evaluate the accuracy

of the Abbreviation Completion system. A total of 3000
frequent code lines was collected from 6 open source
projects. The code lines were converted into acronym-like
abbreviations by applying a particular text transformation
rule. We measured how many of the original code lines
could be completed from the abbreviated code lines. We
report top-N accuracy, which refers to the rate of finding the
original code line within the top-N candidates of code
completion.

A. Study Setup
1) Selection of Open Source Projects

Six open source projects were selected from 14 open
source projects that were used in a previous artificial corpus
study of Keyword Programming in [4].

The six open source projects are: CAROL, a library for
using different RMI implementations; DNSJava, an
implementation of DNS in Java; JEdit, a source code editor
implemented in Java; JRuby, a Java implementation of the
Ruby programming language; RSSOwl, a news reader
application for RSS feeds; and TV-Browser, a Java-based
TV guide application.

2) Preparation of Original Code Lines
The 500 most frequent code lines, which are at least 20

characters long and include at least 2 keyword tokens, were
collected from each open source project; a total of 3000 code
lines was collected from six open source projects. Frequent
code lines were selected since they are more likely to be a
target of multiple keyword code completion. The minimum
length requirement is introduced to exclude short code lines
that are not likely to be targets of multiple keyword code
completion. It also helps to include more of the challenging,
longer code lines in the test set. Code lines are required to
have at least 2 keyword tokens because we are interested in
evaluating the code completion of multiple keywords.

3) Preparation of Abbreviated Code Lines
Given the large number of code lines, we decided to

generate their abbreviations using an artificial abbreviation
generator, implemented as a computer program. The
artificial abbreviation generator creates acronym-like
abbreviations with the maximum length of three characters,
such as bao abbreviated from ByteArrayOutputStream; th
abbreviated from throw; and i abbreviated from if. The
artificial abbreviation generator takes the following steps to
transform a keyword into an abbreviation:

• First, it determines the target length of an
abbreviation to be created, which is always between
one and three characters based on the following
equation:

326340340338338

40%))lengthrdceil(Keywo min(3, max(1, lengthTarget ×← (9)

• Second, it appends the first letter and as many
capitalized letters (0, 1, or 2 letters) as possible to the
abbreviation within the limit of the target length. All
characters are appended in lower case.

• Third, if the abbreviation is still shorter than the
target length, append letters following the first letter
one by one until the abbreviation has the target
length (for Object, obj).

Using this computer-based approach, we limit ourselves
to testing the system against the particular style of
abbreviation with potential biases. However, acronym-like
abbreviation is believed to be one of popular ways of
abbreviating keywords and therefore the result of this study
may provide a reasonable estimate of the system’s
performance against human-generated abbreviations. We
also imposed the maximum length limit of three characters
as an effort to make a conservative estimate.

4) Test Procedure
To measure top-N accuracy of six open source projects,

we repeated the following steps for each open source project:

• Train an HMM from the source code.
• Decode abbreviated code lines using the HMM.

Count the number of successful decoding.
• Calculated top-N accuracy by dividing the

occurrences of successful decoding within top-N
candidates by the number of code completion
invocations.

B. Results and Discussion
1) Top-N Accuracy

The top-10 accuracy against 3000 code lines from six
open source projects was 98.9%. The top-5, top-3 and top-1
accuracies were 97.2%, 94.3%, and 80.0%, respectively.
Table III shows accuracy values of individual open source
projects.

There are two positive findings about the system’s
performance on accuracy. First, the accuracy itself is
remarkably high, close to 99%. Although the accuracy is
measured against a particular style of acronym-like
abbreviations, such a high accuracy shows potential for
achieving similarly high accuracy against human-generated

abbreviations. Second, the system’s accuracy is consistent
across the six open source projects, which may involve
different class libraries, use different naming conventions,
and exhibit different code patterns. Figure 6 shows that there
is no noticeable difference in top-N accuracy across the
projects.

2) Time per code completion
Code completion of a code line took 0.41 seconds on

average over 3000 code lines. The right-most column in
Table III summarizes the average code completion time of
the six open source projects. Code completion time varies
considerably across the projects. It is because the time
complexity of code completion increases in proportion to the
number of keywords and the number of transitions.

Since none of the projects took more than one second for
code completion on average, the responsiveness of the
current implementation is considered acceptable. However,
there is a room for improvement because two of the projects,
JRuby and TV-Browser required more than 0.7 second per
code completion, which is a noticeable lag.

3) Number of resolved keywords per code completion

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

To
p-
N

ac
cu

ra
cy

Top 10

Top 5

Top 3

Top 1

Figure 6. The system gives consistent top-N accuracy across the open

source projects.

0
200
400
600
800

1000

2 3 4 5 6 7 8 9 > 10

oc
cu

rr
en

ce
s

number of keywords resolved per code completion

Figure 7. The histogram of the number of keywords resolved per code

completion.

TABLE III. THE SUMMARY STATISTICS OF HIDDEN MARKOV MODELS AND CODE COMPLETION RESULTS

 Source Code HMMs Code Completion Results
project files code lines keywords

(a)
transitions

(b)
ratio

(b)/(a)
top-10

accuracy
top-5

accuracy
top-3

accuracy
top-1

accuracy
time per code

completion
DnsJava 123 35,658 2,962 15,790 5.3 99.0% 97.2% 94.8% 79.8% 0.10 sec
CAROL 157 44,166 2,729 12,810 4.7 99.2% 97.6% 94.2% 80.4% 0.11 sec
RSS Owl 412 147,162 7,579 40,565 5.4 99.0% 98.4% 96.0% 83.2% 0.25 sec
JEdit 394 233,908 13,803 80,769 5.9 98.8% 97.2% 94.0% 79.6% 0.43 sec
JRuby 677 320,124 21,157 123,115 5.8 98.8% 96.6% 93.0% 77.0% 0.70 sec
TV-Browser 852 348,942 20,358 112,830 5.5 98.6% 96.8% 94.8% 81.0% 0.88 sec
Average 436 188,326 11,431 64,313 5.4 98.9% 97.3% 94.5% 80.2% 0.41 sec

327341341339339

The number of keywords in each code line was recorded
to inspect how many keywords were resolved per code
completion. A histogram in Figure 7 shows that resolution of
3 to 5 keywords was most frequent. The average number of
keywords was 4.6.

4) Statistics about Hidden Markov Models
Table III shows statistics of HMMs trained by source

code of six open source projects. The number of code lines is
measured by counting effective code lines ignoring blank
lines and comments. One interesting finding is that the ratio
between the number of transitions and the number of
keywords is about 5 in all six open source projects. This
implies that a graph connecting keywords (nodes) through
transitions (edges) is very sparse because a keyword is
connected to just five keywords on average among many
possible keywords.

5) Inspection of Unsuccessful Code Completions
There were 33 unsuccessful code completions among

3000 trials, in which none in the top-10 candidates was the
original code line. Two common failure types were identified
by inspecting them.

Failure Type I: This type of failure is caused by the new
keyword in Java language. Not only many keywords (states)
make a transition to the new keyword (a state) but the new
keyword also makes a transition to many keywords. Because
transition probabilities of the first-order HMM like ours are
conditioned by only one previous state, such a universally
connected previous state cannot provide useful guidance in
decoding. This failure type applies to 18 of 33 failures.

Failure Type II: This type of failure is caused by similar
keywords making similar transitions. In this study, we have
restricted the maximum length of an abbreviated keyword to
three characters. The HMM tries to resolve ambiguity
introduced by such a short abbreviation using a transition
pattern. However, there are cases in which similar keywords
make transitions in a similar fashion. Then it becomes
difficult for the HMM to locate the original code line within
the top-N candidates. For example, a code line } catch
(Exception e1) could not be resolved from its abbreviation }
ca (exc e) because there were other similar keywords making
similar transitions such as } catch (Exception e), } or } catch
(IOException e). This type of failure potentially applies to all
failures.

VI. USER STUDY
The user study focuses on evaluating time savings and

keystroke savings when a programmer uses the Abbreviation
Completion system. The time usage and the number of
keystrokes needed in the Abbreviation Completion system
are compared with those needed in a conventional code
completion system in Eclipse, a popular Java development
tool. We report that time savings and keystroke savings were
30.4% and 40.8% and the difference in time and keystrokes
was statistically significant.

A. Paritipants
Eight Java programmers were recruited using flyers and a

mailing list in a college campus. They were informed that the
user study would take about 30 minutes and one of the
participants would be awarded a $25 gift certificate. There
were six males and two females among the participants. The
average age of the participants was 28.1.

All of them had a minimum of 5 years of general
programming experience. Five people had used Eclipse for
more than 3 years while three people had not used it or used
it just briefly because they used different Java development
tools, which they confirmed have a code completion
capability similar to Eclipse.

B. Usage Scenario and Assumptions
We are interested in evaluating code completion systems

in a particular test scenario, in which a programmer writes
lines of code based on a concrete idea of what needs to be
written. That is, a programmer can write multiple keywords
without having to stop to ponder about the next keyword.

To simulate such a code-writing scenario, we decided to
provide our subjects with a visual reference of code lines,
which was always visible on the computer screen. We
assumed that such a visual reference could work as an
external memory, which would enable our subjects to type
multiple keywords continuously as if they had what needs to
be written in their minds. We also assumed that using a
visual reference would not slow down code-writing
significantly as long as subjects were familiar with the code
lines in the visual reference.

C. Study Setup
The user study was performed at an office area in a

college campus using a computer with a full-sized keyboard.
One subject, assisted by one experiment facilitator,
performed a set of code-writing tasks at each run of the user
study.

The two code completion systems under investigation are
called Abbreviation Completion and Eclipse Code
Completion. To counterbalance the effect of trying one
system first and the other later, we separated subjects into
two groups. The first group, named Abbreviation-First,
started using Abbreviation Completion first while the second

JPanel content = new JPanel(new BorderLayout())

content.add(BorderLayout.CENTER, panel)

public void actionPerformed(ActionEvent evt)

label.setHorizontalAlignment(SwingConstants.CENTER)

GridBagLayout layout = new GridBagLayout()

cons.anchor = GridBagConstraints.WEST

label.setBorder(new EmptyBorder(0,0,0,12))

fireTableRowsUpdated(row,row)

SwingUtilities.invokeLater(new Runnable())

StringBuffer buf = new StringBuffer()

Figure 8. Code lines used in the user study to measure time usage and
keystrokes needed for code-writing using two code completion systems.

328342342340340

group, named Eclipse-First, started using Eclipse Code
Completion first.

D. Tasks
The user study starts with the first task of learning two

code completion systems. Let us assume that a subject from
the Abbreviation-First group performs the first task. After
the facilitator explains how to use Abbreviation Completion,
the facilitator lets the subject practice using Abbreviation
Completion. A subject is allowed to ask questions during the
practice. For practice, the subject is required writes code
lines in Figure 8 using Abbreviation Completion. Once the
subject finishes writing the code lines, the facilitator explains
how to use Eclipse Code Completion. A same practice
session follows using Eclipse Code Completion.

The second task is a recording session to record time
usage and keystrokes in writing code lines in Figure 8. Note
that a subject is asked to write the same code lines that they
already have written twice because it may help simulate the
usage scenario of our interest. Let us assume that a subject
from the Abbreviation-First group performs this task. The
subject first writes the code lines using Abbreviation
Completion. The time usage and keystrokes are
unobtrusively recorded using custom-built instrumentation
facilities in code editors. Once the subject finishes writing
the ten code lines, the subject will have a short break and
then repeat the same recording process using Eclipse Code
Completion.

The ten code lines in Figure 8 were selected from JEdit,
one of open source projects used in our artificial corpus
study, through a random walk of its source code to find code

lines that satisfy the following characteristics: each code line
should appear at least four times in the whole project; each
code line should be at least 30 characters long and at most 50
characters long; and selected code lines should demonstrate
various styles of code-writing such as instantiations,
assignments, declarations, member access, and parameters.

E. Results
1) Time savings

The overall time savings averaged for all subjects and for
all code lines was 30.4%, as shown in Figure 9. The detailed
time usage is presented in two ways, first by averaging for all
code lines (Figure 9) and second by averaging for all subjects
(Figure 10). Time savings were calculated by dividing the
difference of time usage in two code completion systems by
the time usage of Eclipse Code Completion. The standard
deviation of time savings across subjects was 8.4%,
indicating that there is a certain amount of variation in time
savings depending on individual subjects. The standard
deviation of time savings across code lines was 6.3%. The
difference in the time usage between Abbreviation
Completion and Eclipse Code Completion was statistically
significant based on a paired t-test (df = 79, p < 0.001).

2) Keystroke savings
The overall keystroke savings averaged for all subjects

and for all code lines was 40.8%, as shown in Figure 11,
which is larger than the overall time savings. The number of
keystrokes is presented in two ways, first by averaging for all
code lines (Figure 11) and second by averaging for all
subjects (Figure 12). The standard deviation of keystroke

7.1 sec

10.2 sec

0

2

4

6

8

10

12

14

#1 #2 #3 #4 #5 #6 #7 #8 Average
(#1-#8)

ti
m

e
us

ag
e

(s
ec

on
d)

Subject

Time usage (average of all code lines)

Abbreviation Completion Eclipse Code Completion

30.4% saving

Figure 9. Time usage average of all code lines for each subject.

0

2

4

6

8

10

12

14

Line1 Line2 Line3 Line4 Line5 Line6 Line7 Line8 Line9 Line10

ti
m

e
us

ag
e

(s
ec

on
d)

Time usage (average of all subjects)

Abbreviation Completion Eclipse Code Completion

Figure 10. Time usage average of all subjects for each code line.

20.7 keystrk.

35.0 keystrk.

0
5

10
15
20
25
30
35
40
45

#1 #2 #3 #4 #5 #6 #7 #8 Average
(#1-#8)

nu
m

be
r o

f k
ey

st
ro

ke
s

Subject

Keystrokes (average of all code lines)

Abbreviation Completion Eclipse Code Completion

40.8% saving

--
45.8 keystrk. (baseline)

Figure 11. Keystrokes average of all code lines for each subject. The baseline

keystrokes, also an average of all code lines, are shown as a dotted line.

0

10

20

30

40

50

Line1 Line2 Line3 Line4 Line5 Line6 Line7 Line8 Line9 Line10

nu
m

be
r o

f k
ey

st
ro

ke
s

Keystrokes (average of all subjects)

Abbreviation Completion Eclipse Code Completion

Figure 12. Keystrokes average of all subjects for each code line. The baseline

keystrokes are shown as dotted lines.

329343343341341

savings was 6.7% across subjects and 7.5% across code lines.
The difference in the number of keystrokes between
Abbreviation Completion and Eclipse Code Completion was
statistically significant based on a paired t-test (df = 79, p <
0.001).

Unlike the time usage, the number of keystrokes has a
baseline value. A baseline value is the number of keystrokes
when the whole character sequence in a code line is typed
without using any code completion. Black dotted lines in
Figure 11 and Figure 12 show the baseline values. Multiple
dotted lines are shown in Figure 12 because each code line
has its own baseline value. Comparing average keystrokes by
Abbreviation Completion (20.7 keystrokes) with the baseline
value (45.8 keystrokes), we see 54% of keystroke savings.
Meanwhile, average keystrokes by Eclipse Code Completion
(35.0 keystrokes) is just 24% less than the baseline value.

F. Discussion
In the user study, the Abbreviation Completion system

achieved substantial savings in time and keystrokes. It is
noteworthy that the keystroke savings were larger than the
time savings. Obviously, the time usage is not a linear
function of keystrokes; it is also a function of various mental
operations, which could not be measured directly in the user
study.

From our observation of subjects’ behavior, one
noticeably time-consuming mental operation was a
validation of code completion candidates. After making
some keystrokes, subjects stopped to check if the list of code
completion candidates had the intended code line. Because
the system showed ten code completion candidates, it could
take seconds to scan through the list if the correct one did not
appear near the top in the list.

One subject told us that validation was more difficult in
Abbreviation Completion than in Eclipse Code Completion.
The subject explained that it was because multiple keywords
had to be validated all at once. Another subject told us that
the subject had a desire to hit the Enter key right after typing
abbreviated input without validating the candidates. He said
that it was because the system’s first suggestion seemed
usually correct.

We think that both of subjects’ comments point to a
single usability issue of the Abbreviation Completion system.
Information needed for validating code completion
candidates is not clearly visible to users. Users only see
abbreviated input and code completion candidates.
Information about how well or why a code completion
candidate matches the abbreviated input is not visible to
users. Also, from the very nature of code completion, it is
difficult to visually compare code completion candidates
with the intended code line because the intended code line is
in user’s mind.

To enhance the visibility, we may improve the system in
two ways. First, we may expose the system’s confidence
about code completion candidates. It can help users know
when they need to be more careful about validation. The

system’s confidence may be calculated from two sources of
information: a probabilistic model using the HMM and a
history data of using the Abbreviation Completion system.
Second, we may expose information about why a code
completion candidate makes a match of abbreviated input.
Instead of trying to explain a complicated probabilistic
model, an approximated model that can be communicated
easily may serve this purpose well. A simple visualization
technique, such as highlighting which part in abbreviated
input matches which part in a code completion candidate,
should be useful as well.

VII. RELATED WORK
Saving keystrokes and time for code-writing is one of the

major design objectives of source code editors. Generating
multiple keywords from a short character sequence is one
way of achieving the objective. There have been two major
approaches for supporting multiple keyword generation.

The first approach is based on a code template, a
predefined code fragment that can be inserted into the code
editor. Each code template is given an alias, such as sysout,
so that programmers can insert a code fragment using the
alias as a reference. Many code editors, including Emacs [2]
and Eclipse [3], implement this approach.

The code template approach is effective at handling a
handful of very frequently written code fragments. However,
the burden of memorizing aliases can put a limit on the
number of frequent code fragments a user can complete. The
time-consuming process of adding new code templates may
also be a limiting factor. Abbreviation Completion tries to
overcome such limitation by supporting non-predefined
abbreviations and by just requiring users to specify the
locations of source code. Abbreviation Completion can
automatically construct an equivalence of a library of code
templates from a corpus of source code.

The second approach is based on a type-constrained
search that can construct programming expressions
containing multiple keywords. Keyword Programming [4],
XSnippet [5], and Prospector [6] implement this approach,
but they have differences in the type of input queries and
output expressions and the kind of heuristics for guiding
type-constrained search. Prospector takes two Java types as
an input and outputs code lines for converting one type to the
other type using heuristics based on the graph path. XSnippet
also takes two Java types as an input, but optionally it can
take additional Java types to specify a context. XSnippet uses
heuristics based on snippet lengths, frequencies, and context
matches to generate multiple lines of code for instantiation.
Keyword Programming takes a set of keywords as input and
outputs a code line of Java expression using heuristics based
on the keyword matches.

Type-constrained search systems focus on serving a
specific type of users who need help with choosing or using
classes. They do not serve a different type of user who
already has a good idea of what needs to be written and
wants to write it more efficiently. Abbreviation Completion

330344344342342

demonstrates that some of the techniques used in type-
constrained search systems —notably, code mining and text-
based hints—can be used to serve the other type of users.

Abbreviation Completion can also be related to previous
work on improving the ordering of code completion
candidates [7,8] because in essence the Abbreviation
Completion algorithm tries to solve the problem of
prioritizing a large number of code completion candidates
using an HMM. Prototype systems in [7] and Mylyn [8]
explore the utility of the change history and the task context,
respectively, as additional sources of information for
prioritizing single-keyword candidates. Abbreviation
Completion explores the utility of keyword sequences
extracted from a corpus of source code for prioritizing
multiple-keyword candidates.

VIII. CONCLUSION AND FUTURE WORK
This paper has presented Abbreviation Completion, a

novel technique to complete multiple keywords at a time
based on non-predefined abbreviated input. We presented an
algorithm based on an HMM to find the most likely code
completions. We presented a method to learn parameters of
the HMM from a corpus of existing code and examples of
abbreviations. A new user interface for multiple keyword
code completion has been implemented on a demonstrational
code editor. The accuracy of the Abbreviation Completion
system is evaluated in an artificial corpus study, in which
3000 code lines from six open source projects were
completed from their abbreviations. The system achieved
average 98.9% accuracy. Time savings and keystroke
savings were evaluated in a user study, in which the
Abbreviation Completion system was compared with the
Eclipse Code Completion system. The overall time savings
and keystroke savings were 30.4% and 40.8%.

One of the important goals of future work is to further
improve the usability of the system. A user interface for
validating code completion candidates deserves investigation

because the user study revealed that the validation can be
time-consuming and difficult. Improving efficiency is
another goal because the system tended to be less responsive
when the number of keywords was over 20,000. Finally,
because the key benefit of our approach is keystroke savings,
application to programming environments with limited input
capabilities, such as mobile devices, may be worthy of
investigation.

ACKNOWLEDGMENT
We thank CAD Lab members who provided a creative

environment, UID group members who provided helpful
discussion, and study participants for their time and
comments. We thank anonymous reviewers for their
insightful comments.

REFERENCES
[1] L. R. Rabiner, "Tutorial on hidden Markov models and selected

applications in speech recognition," In Proc. IEEE, vol. 77, 1989.
[2] “Abbrevs,” in GNU Emacs Manual.

http://www.gnu.org/software/emacs/manual/emacs.html.
[3] “Editor Template,” in Eclipse Ganymede Documentation.

http://help.eclipse.org/ganymede/index.jsp.
[4] G. Little and R. C. Miller, "Keyword programming in Java," In Proc.

ASE, vol. 16, pp. 37-71, 2007.
[5] N. Sahavechaphan and K. Claypool, "XSnippet: Mining For sample

code," OOPSLA, pp 413-430, 2006.
[6] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman, "Jungloid mining:

Helping to navigate the API jungle," In Proc. PLDI, 2005.
[7] R. Robbes and M. Lanza, "How Program History Can Improve Code

Completion," In Proc. ASE, 2008.
[8] M. Kersten and G. C. Murphy, "Using task context to improve

programmer productivity," In Proc. FSE, 2006.
[9] F. K. Soong and E. F. Huang, “A tree-trellis based fast search for

finding the n-best sentence hypotheses in continuous speech
recognition,” In Proc. ICASSP, vol. 1, pp 705-708, 1991.

[10] D. Nilsson and J. Goldberger, “An efficient algorithm for sequentially
finding the n-best list,” In Proc. IJCAI, 2001.

331345345343343

