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A Low Order Model for Vertical Axis Wind Turbines

Isaac M. Asher, Mark Dreldand Jaime Peraite
Massachusetts Institute of Technology, Cambridge, MA 02139, U.SA.

A new computational model for initial sizing and performance prediction of vertical axis wind turbines
is presented. The model uses a 2D hybrid dynamic vortex and atle element momentum approach. Each
airfoil is modeled as a single vortex of time varying strengh with an analytical model for the influence of the
shed vorticity. The vortex strengths are calculated by impsing a flow tangency condition at the three-quarter
chord location on each airfoil, modified in the case of stall. The total blade forces and the momentum-based
streamtube deceleration are then obtained using pre-compad ¢, and ¢, 2D blade profile characteristics.
Model fidelity is improved over previous models because flomagvature, dynamic vortices, blade interactions,
static stall, and streamtube changes are all taken into acemt. Fast convergence is obtained for a large range
of solidity and tip speed ratio, which allows optimization d various parameters, including blade pitch angle

variation.
Nomenclature

Letters P = M - O, instantaneous power.
A frontal area, taken axR (unit span). R radius of turbine (origin to leading edge of blade).
Ay, Az pitch angle modulation coefficients. 7.ss  quarter chord point.
b = 2/7, wake vorticity calibration constant. Tep control point, the three-quarter chord.
c blade airfoil chord. Tle vector fromz, y origin to leading edge of foil.
C(T") stall model leakage velocity. Re chord Reynolds number.
ca  coefficient of drag. T thrust (componentof andD in z-direction).
1) coefficient of lift computed using. TSR = QR/V,., tip speed ratio.
Ac; = 0.05, stall onset parameter. V.  external freestream velocity far upstream.
Cimin,max - Stall thresholds. V. (7) external freestream velocity evaluated-at
Cm coefﬁge?t of3moment. o using stream tube deceleration model.
Cp  =NyP/5pV A, average power coefficient. -~ _ _ G =velocity due to rotatiors?,
Cr = NbT/iproA, average thrust coefficient. —

Note thatC'r > 0 corresponds to windmilling. ‘fc" relative velocity at the control point

B _ %P‘73/400d, drag force (along7c/4). Vesa  relative velocity a_lt the quarter chord
L _ 1 it curve slope parameter used for calculating aerodynamic forces,
-2 ) P ’p . ) includes vortex-induced velocities.
K, = 40, stall 'leakage’ velocity factor. — - oo
- Vr = —T'ii/mc, velocity induced afcp
K., drag coefficient factor.
7 T (Vs X —3) + pel (Vs x —3)/V, - by the.voitex ar. 4.
|ift/]ZOI'CEC/4 petiVe/a e/4 Vi = [-bI'/Vep- 8], wake-induced velocity.
14 stream-tube parameter. Symbols X
M - %p(Vc?M X 1) C2Cm, Qg angle between-§ and chord lines,
moment, positive counter clockwise. positive clockwise about the leading edge.
Mo = M + g X (EJF 5) T strength of vortex located a4,
moment due td\/, drag, and lift. positive clockwise.
N, number of blades 0 rotation angle of blade,
il unit vector normal to airfoil camber line &. measured counter-clockwise frofy-axis.
P density of air.

*Research Assistant, Dept. of Aeronautics and Astronaut&s Massachusetts Avenue Room 37-442, Cambridge, MA 02139,
isaaca@alum.mit.edu, AIAA Student Member.
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o = ¢/R, solidity. r,8  frame centered at the leading edge of the airfoil

1) pitch angle modulation phase offset. with 7 away from the origin and counterclockwise.

0 = 62 angular velocity of blade rotation, st frame centered at the leading edge of the airfoil
positive counterclockwise. with 5 along the chord line andperpendicular.

wo = qyp, pitch rate of blade. z perpendicular to the plane (spanwise direction).

Coordinate systems
x,y  non-rotating, inertial, absolute frame.

[. Introduction

Darrieus-type vertical axis wind turbines (VAWTS) have adiages in omni-directionality and structural simplicity
over traditional horizontal axis wind turbines (HAWTS) tlthey are more complex aerodynamically. Current VAWT
designs are in general not as efficient as HAWTS, and oneibatitrg factor is a deficiency in design tools. Most
simple, low order models cannot capture enough physicditohg predict performance. More accurate models tend
to be too slow and prevent fast design iterations. The toe¢ldged in this project is computationally efficient and
incorporates many of the salient features of the accurats,tthus giving the designer the ability to search the desig
space effectively.

The model uses the Blade Element/Momentum method intratlog@emplin'. The entire turbine is assumed to
be a single actuator disc. The blade interactions captyrdtEimore intricate multiple and double-multiple strealpstu
models of Strickland and Paraschivoiiare here captured with the airfoil vortices. Variations lie streamtube
deceleration function form (constant, linear, and invéasgent) had little effect on the resultiag-, so it is assumed
that the single actuator disc with linear deceleration figantly accurate.

The airfoils are modeled by a vortex at the quarter chord ofing strength as Stricklarfctid. The shed vorticity
(due to varying vortex strength) is set to a 2D analytic agpnation. The model does not track the shed vorticity,
since its influence is generally small far from the airfoitri&land extended his vortex method to include static and
dynamic stall and 'flow curvature’. Static stall and flow catwre are both included in this model.

The model is a hybrid between the Blade Element/Momentunvartéx methods, and is accurate and fast enough
to be wrapped in an optimization loop and give good resultse €hortcoming is that solidity must not be allowed
to grow too large during optimization, because there ieliftenalty in the model for very high solidities (blade
interactions are approximate).

This model does notinclude 3D effects that are common toiguevmodels, although wind shear and tip vortices
could easily be included. At the moment, the model is us@fiuhEsessing the performance of straight-bladed turbines
with high blade aspect ratios, moderate to low solidities| moderate to high tip speed ratios.

II.  Assumptions

We take the simple case of a 2D airfoil rotating in the planeoaistant angular velocity (see Fig. 1 for geometry
setup). The freestream is equalﬁigg far from the airfoil. Near the airfoil, the freestream dexates linearly with the
net deceleration determined by the average thrust prodaycee airfoil. The air flow around the airfoil is assumed to
be incompressible and to have constant Reynolds and MachersmThe precise velocity and pressure distributions
are approximated by replacing the airfoils with a discretiead vortices. One main vortex is located at the quarter
chords of the airfoils, and a secondary wake vortex is latatehe trailing edgés The net induced velocity from the
freestream, kinematics (rotation and pitch angle changes)the main vortices of other airfoils (though not the wake
vortices of the other airfoils) is used to calculate the ésron a given vortex. Losses (drag) and moments are captured
with locally 2D airfoil profile drag characteristits The chosen reference units dte= 1, Voo = 1, andp = 1. We
enforce a flow tangency condition and the thrust coefficignagion and solve for'(6) andC'r.

*The distance over which the flow decelerates is set a-priori.

8The wake vorticity is proportional to the shed vorticify

9Taken at the nominal Reynolds number. Given the vortex gthsn we can compute; and usecy(c;) data. Fore; beyond stall, a linear
extrapolation is used. The same is done for the moment, ext&e,,, is assumed zero beyond stall.
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Figure 1. Turbine geometry and model setup

lll.  Model Algorithm

A. Streamtube Deceleration

For the streamtube model only, the turbine is assumed to egke aactuator disc, anﬁ’o’0 is calculated using the
stream tube deceleration implied 6%. A linear deceleration over a distanzeis assumet]

—

Vooa 517<—€,
7= V14 EFEL (14 8)], —r<a<e
‘700(\/1_CT), x> L.

An exampIeVO’0 distribution for{ = 6 andC7r = 0.8 is show in Fig. 2.

B. Blade-relative Velocities

The various contributing velocities &§, are calculated. The freestream velocity is calculated Withstreamtube
deceleration model. The kinematic velocity, or the blatlsesved velocity due to its movement (varythgnday) is

. . 3.
Wot—_[QXﬁe+Czé:|.

*¢ is chosen a-priori
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The total freestream velocity, which corresponds to thegemot multiplyingl in Eq. (2), is then
¥4 ! V4 (= oIV 3
Vep = Vi + Viot = VI (Tep) — 2 X Tie — ey 8

The velocity at;, due to the main vortex (which becomes the term multiplyiirig Eq. (2)) is

—

— n
Vp=-T—.
e
Note that the direction is taken &s which is not
strictly true if the airfoil has camber. However, it Streamtube Deceleration Model, ¢ = 6, Cr = 0.8
is important numerically to preserve the magnitude 11 ‘ ‘ ‘
of {3 1
The influence of the main vortices of the other 00
airfoils are also calculated. The effect of the main [
vortex of foil i on the control point for foilj is gos
Fop — T ;07
— cpg — /4, &
Vi =T = - . 8=
" 27| Tep,j — Teya,il? g0o
=
0.5
The wake velocity is based on a calibrated ap- oal
proximation to the velocity induced by the trailing '
wake vortex sheét 03, - 5 s 10
X
- —b 3
Vi = 59—t
ch(ﬁ;p) -8 Figure 2. Example of streamtube velocity distribution

This introduces &' term, which turns Eq. (2) into
a rate equation far'.

C. Flow Tangency and Stall Model

The model assumes that the airfoil can be represented bytexwairthe quarter chord of strendglit). The standard
practice is to computeB(f) to enforce flow tangency at a control point on the airfoil. fisaal is found such that

V(7ep) - = 0. no-stall (1)

HereV includes contributions from the rotatiol;(rgt), the external flow(70’0), the vortex (7p), and the Wake‘?w).
In this model, we add a simple stall model by setting the rigintd side of Eq. (1) to some non-zero velocity 'leakage’
at high¢;. The equation becomes

%p K.Aerlo 1+exp [(Cl - Clmax)/ACl]
s2CL 208 1+ exp [(cimin — &)/ Acy]’

V(Fcr)) = Anh

stall (2)

where we takér = 1/2, Ky = 40, andAc¢; = 0.05. ¢jmax andemin are found manually. The leakage velocity is
plotted in Fig. 3 versus;.

The control point is chosen to be tlﬁechord point to be consistent with thin airfoil theory. The normal vedor
perpendicular to the airfoil camber line at the control pdatz = %).

Once al is found to satisfy Eq. (2), outputs such as lift, drag, motmpower out, and power coefficient may be
computed. Liftis computed using the vortex strength, amdjd@nd moment are computed using the lift and 2D airfoil
section polars. Power coefficient is computed at gbahd integrated numerically to obtairy.

IINote thatrcp here always lies along the chord line, rather than on the ealirte or aligning with the local freestream. This is donsitoplify
the computation.
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D. Circulation Evolution Equation

Now Eq. (2) is of the form

B A elio 3)
m Vip- §

where(' is the right hand side that constitutes the stall model (kiepends om; and thereford™). Note thatCr

is an input (needed to calculat_ép) and an output (based on forces generated), sobaitdCr must be computed
iteratively. This is done by Newton iterations to drive tlesidual of the above equation to zero. In order to obtain an
expression folC7, we need to calculate the forces on the blades.

E. Force and Moment Calculation

Given a guess df andC'r, the velocity at any point in the resulting flow field can beriduForces and moments are
evaluated using the ‘infinity’ velocity at the vortex loaati

. . . - 1. bl .
Vc/4 = V(Fc/4) = V(;o(Fc/AL) — QX Tle—c—5— =+t r,.
4 %p(rcp) ]

Thel term accounts for the blade’s own near-wake shed vortm'rth,Vpi term accounts for the bound vortices of the
other N, — 1 blades. The near-wake shed vorticity of the other bladegnisried.L is calculated directly froni’

L= PF(‘_/)C/AL x —2)+ pCF(‘_/:Z/4 X =£)/Veyas

and a corresponding is found
2(F +cl'/V.4)

q=—"".

cVeya

Note that during iterations, tHe used here is the derivative of the gu&s<D airfoil section data are used to fing
andc,, corresponding to the (see below). The drag and moment are calculated
D = %pVCQ/ALCCdv

—

M = 3p(V2, x i)cPepm.

Note that the moment is positive nose down, so positive moneémforces the motion.

F. Drag and Moment Coefficient Model

For each¥, the associated; is mapped to &, andc,, using blade profile characteristi;saugmented by the stall
model. Foremin < ¢ < cimax the polar file data are interpolated using" order polynomial, thereby obtaining
andc,,. The stall behavior implies a change in thecurve fore; outside this range. The;(¢;) imported from the
polar files is augmented bya,_,:

Cd(Cl)a Cimin < €1 < Cimax

cq = Cd(clmax) + i_if

(Cl - Clmax)a C; > Clmax . (4)

Clmax

(Cl - Clmin)a ¢; < Cimin

Cd (Clmin) + %

Climin

This defines how the drag polar should be extended throughwgtach is a simple linear function,(¢;), as shown
in Fig. 4.

Note that, during iterations, the used here is calculated from the infutSince the polynomials are quite invalid
beyond the input data range, afnyoutside the range of the polar file will givg, = 0.
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Stall model: drag polar extension

Stall model: leakage velocity
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Lift coefficient Drag coefficient

Figure 3. Control point leakage velocity for stall model. Figure 4. 2D profile drag polar

G. Thrust and Power Coefficients

The thrust, net moment about the origin, and power are ctiedilfor one foil from the force, with positive power
corresponding to the power extracted from the air,

The thrust and power are averaged over the cycle (using tipaifit rule for the integration), and the thrust and power
coefficients for the entire turbine are then calculated

TN, PN,

Cr=—t U
tTlpvza T

(5)

The thrust is normalized by the freestream dynamic presmuolg¢urbine area, and the power extracted is normal-
ized by the total power available in the external flow throttghturbine region of area.

V. Solution Method

All quantities are expressed in termsdand are implicitly assumed periodic. We discretfzanto m points'
0; = 2mi/m,i = 0..m — 1. The unknowns that we solve for are thEn = T'(6;) and the averaged quantiyy .
Assuming thal is sufficiently smooth, a spectrally accurate finite diffefation matrix is used to calculate from
Fy
m_q

2 1 i+1 i
. =(—1 cot (&), m#0
I = E dil'j 4, di_{ 2( ) 0 (m) e 0
i=— 41 ’

Initial guesses td" andCy are supplied by a simpler model (no stalllarwhich only requires iterations ofi;), or
assumed zero. Newton iterations to drive point-wise redglof Egs. (2) and (5) to zero. The residuals are

Rr = (-0 +Vop+ ﬁl“ﬁ) i —C(T),
RCT = CT 15‘]/\:%714

*m is taken as an integer multiple of the number of blades, wewse 16 for the results below.
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The residuals are checked for convergence (using a predefiterance). A Jacobian matrix is constructed using
analyitcal derivatives of the terms in the residtigls

S _ [oRc/or  oRc/oCy
= |8Rc, /0T 9Rc, /0Cr |

Pl_[D]_ B8]
Cr Cr Rcy
Because of the square root in tﬁg equation, &7 > 1 will result in imaginary coefficients. The actual Newtongste

is scaled down in this case (under-relaxed Newton). Thigggly occurs with high solidity and high TSR, since this
can result inC'r very close to 1.

And finally the solutions are updated:

V. Optimization Results

The model was wrapped in an optimization loop in order to wtthe isolated affects of TSR angy(#) on
efficiency (C'p). The pitch variation is assumed sinusoidal (one-perecyatiation) so

ag = Ag + A sin(9 + ¢),

where A is the pitch offset,A; is the oscillation amplitude, ang is the phase. In addition, the affect of ‘dirty
blades’ was simulated with increasing factors multiplying In all of the cases below, we repdrt> versus TSR,
with varying oy parameters oty factors. All designs have three blades with NACA0012 alisfoa reference Re

3 x 10°, a streamtube deceleration factaf ¢ = 6R, and optimizedsr. In addition, the baseline case is optimized
for all parameters (with the, factor K., = 1), and each figure represents sensitivity of the baselinat@atons

in a single parameter. The baseline (optimized) caseshas0.29, TSR= 2.17, and a pitch modulation function
ap = 7.6 + 6.2sin(f + 21.5) degrees, which yield§'p = 0.534.

Varying pitch offset Optimal pitch offset over TSR

0.6 11
__ 10t
0.5f e
<
T 9
#
g o4y S g
g <
= et
H B o7t
M 0.37 3
< 6
=9
0.27 @)
5,
\
L L L L 4 1 L | L
0'11 2 3 4 5 6 1 2 3 4 5 6
Tip Speed Ratio Tip Speed Ratio
Figure 5. Efficiency vs tip speed ratio and pitch offsetd, Figure 6. Variation of optimal pitch offset A with tip speed ratio

First, we vary the pitch offsed,, while keeping the sinusoidal component constantidpd= 1. Fig. 5 shows that
there is an optimaH, since the peak efficiency increases and then decreasegiwvitim addition, asA, increases,
the dependence on TSR increases. This is essentially treased sensitivity of operating the turbine closer to stall
conditions. In addition, the peak efficiency shifts slighidward lower TSR, where the pitch variation takes advamtag
of the larger variation in blade-relative velocities. Taéésends can be seen in the variation of the optirhawith
TSR, as shown in Fig. 6.

**The effects of one main vortex on another are small and natded in calculating the derivatives due to complexity. STtibes not appear to
affect the convergence of the residuals.
*Chosen to agree with experimental results: D. W. Ericksod, Wallace and J. Peraire (In preparation)
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In Fig. 7, the pitch oscillation amplitudé; is varied. Largerd; tends to decrease the maximum efficiency point
(excessive stall) and shift it toward smaller TSR. Agairg tlependence on TSR is stronger for higiHgerdue to
operating closer to the stall limits.

Varying pitch angle amplitude Varying pitch angle phase

0.6 0.6 — =0
—— =20
05! 057 |, —x— =401
- -¢=060
0.4r 0.4} Q - -9=80)
- >
= 031 g 03f
g g
= &
5 0.2) 5 0.2f
0.1f 0.1
or or
-0.1 : : ‘ : : -0.1 : : ‘ : :
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Tip Speed Ratio Tip Speed Ratio

Figure 7. Efficiency vs tip speed ratio and pitch modulation anpli- Figure 8. Efficiency vs tip speed ratio and pitch modulation fhase
tude A angle ¢

In Fig. 8, the phase is varied. As can be seen, the efficiency is somewhat semsitithe phase angle. Phase
lead reduces the peak efficiency and reduces off-desigompeahce (i.e. efficiency at higher TSR). Interestinglys thi
effect is very weak at low TSR.

Finally, variation of thez; factor is shown in Fig. 9. Clearly, largeg reduces efficiency. In addition, largét,,
shifts the optimal TSR downward, since operating at a higisR is more sensitive to drag.

Note that in all of the above cases,= ¢/R (solitidy) is optimized. This is done because there is ati@iahip
betweens and TSR in the optimal case, specificatf SR ~~constant. Since TSR is a ratio of velocities anis
a ratio of length scales; TSR is a ratio of time scales between the turbif¥ &4nd the freestream:AVOO). In an
optimized design, the velocity, length, and time scalesafimmatched. Fig. 10 shows this trend for the baseline case
(only varying TSR).

Varying Cd scale
0.7 w w

Optimal solidity over TSR

—K—=1 0.5
——K=1.5
0.6 ——K=2 | 0.45}
0.5 g - 0.4
& = 0.35)
o L - —
‘Ji 0.4 S
= = 0.3
3= | <
5| 0.3 g
7 0.25¢
0.2 . o
0.2
0.1 1
0.15¢
% 2 3 4 5 6 0.1 ‘ ‘ ‘ ‘
Tin Speed Rati 1 2 3 4 5 6
1p opeed ftalio Tip Speed Ratio
Figure 9. Efficiency vs tip speed ratio and drag coefficient fetor
Kg y PSP 9 Figure 10. Variation of optimal solitidy o with tip speed ratio
d
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VI. Future Work

Further improvements to the model would include accourfiimglynamic stall and Reynolds number variation
over the angld. The model converges well for moderate to leywmoderate to high TSR, and moderate Dynamic
stall modeling may give better accuracy at higand low TSR, but the model has been shown to be a good apprexima
tion to a high fidelity 2D Navier-Stokes solution with highlisiity and low tip speed ratio. The high fidelity solution
has vortices shedding at the airfoil leading edge (dynatai) swhich produces fluctuations in the resultiﬁgt(e)
and]\7[tot(9). The low order model predicts forces and moments that asedim the high fidelity results in regions
without dynamic stall, and the overd@llp is similar. Reynolds number variation ovewould have to be implemented
as an empiricat scaling and would not change the model results much for nadeléo high TSR.

This model is particularly easy to extend to various pitchtoa mechanisms. First of all, an optimal,(6)
variation can be computed by wrapping the model in an op#tion loop. This can be compared to forced one-per-
cycle pitch variation, where(0) = Ay + A; sin(f + ¢). One could also include passive pitch control mechanisms
such as a spring or an aerodynamic spring. This is simply dgrietroducing new state variables (6) anddg(6)
and calculating the appropriate additional velocities fomdes.
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