

15.905 Technology Strategy

15.905 Technology Strategy

Transitions and disruption Michael A M Davies 11 April 2007

Agenda for today, Wednesday 11 April 2007

- ~12:45
- ~13:15
- ~14:15

- Transitions and disruption
- Apple in 2006 ... and 2007
- End of class

Technological innovation and the diffusion of innovations cause transitions

Incremental and radical innovations have very different competitive consequences

Incremental innovation

System design and management

- Introduces relatively minor changes
- Happens once dominant design has been established
- Typically drives rapid performance improvement
- Exploits the potential of the established design
- Typically reinforces position of incumbents

Radical innovation

- Based on a different set of engineering principles
- May open up whole new markets and potential applications
- Often creates great difficulties for incumbent firms
- Can be basis for successful entry by insurgents

But sometimes, "...apparently modest changes..." have dramatic consequences

Xerox and Canon in small copiers

- Pioneers plain paper copiers
- In 1970's competitors win share with much smaller, more reliable copiers
- Little new scientific or engineering knowledge
- But Xerox takes ~8 years to launch competitive product
- ...and it loses 50% of its market share

Sony and RCA in portable radios

- Mid-1950's RCA develops prototype portable radio
- Sony- small new insurgent uses transistorized radio to enter US market
- Sony's radios produced with technology licensed from RCA
- But RCA doomed as a follower, can't match Sony

Rebecca Henderson and Kim Clark, "Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms", Administrative Science Quarterly, March 1990, pages 9-30

Two different sorts of knowledge: component or modular; architectural or integrative

Component

DESIGN AND MANAGEMEN

• Knowledge about each of the core design concepts

system

- How they are implemented in a particular component within a product
- Specialized and focused, can be mastered by an individual or a small team
- Constant focus once dominant design established
- Radical change obvious

Architectural

- Knowledge about ways in which components link together into coherent whole and are interdependent
- Tends to become embedded as tacit knowledge
- Communication channels, information filters and problem-solving strategies
- Shift may not be apparent

Rebecca Henderson and Kim Clark, "Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms", Administrative Science Quarterly, March 1990, pages 9-30

A framework for thinking about different types of innovation and the resulting transitions

Changed Linkages and interdependencies amongst core concepts and components Unchanged	Modular Innovation	Radical Innovation	Rebecca Henderson and Kim Clark
	Incremental Innovation	Architectural Innovation	"Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms", Administrative Science Quarterly
Core concepts	Reinforced	Overturned	March 1990, pages 9-30

Architectural innovation and the consequences of transitions in semiconductor capital equipment

	Generation				
	1	2	3	4	5
<u>Firm</u>	Contact	Proximity	Scanner	Step and Repeat (1)	Step and Repeat (2)
Nikon					70
GCA				55	12
Perkin-Elmer			78	10	<1
Canon		67	21	9	
Kasper	17	8			
Cobilt	44		1		

Rebecca Henderson and Kim Clark, "Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms", Administrative Science Quarterly, March 1990, pages 9-30

Difficult transitions also happen when technological innovation outstrips the demand opportunity

Image by MIT OCW.

Michael A M Davies 11 April 2007, Page 9

Disruptive technologies have two key characteristics

DESIGN AND MANAGEMENT

 Products and services that embody these technologies in their early stages have attributes that make them unattractive to incumbents' current mainstream customers, and typically appeal only to small and emerging markets or segments, and offer inferior returns

system

• These technologies have the potential for rapid innovation along trajectories that will in future enable products BUT and services that are attractive to incumbents' mainstream customers, allowing insurgents to later invade established markets and displace the incumbent

Three things are needed for these technologies to empower insurgents and threaten incumbents

Investment

System design and management

Even though products and services that embody these technologies are unattractive to incumbents' current mainstream customers at the outset, insurgents perceive sufficient demand opportunity to fuel investment and innovation

Innovation trajectory

• The innovation trajectory for these technologies evolves in the right direction and fast enough to meet the evolving requirements of the incumbents' current mainstream customers

Indifference

 The demand opportunity represented by incumbents' mainstream customers is evolving along a different trajectory than can best continue to be met using incumbents' sustaining technologies

Disruptive innovations in disk drives

- An alternative explanation
 - could have mastered the architectural transition
 - but novel technologies did not meet needs of current customers
- Response to transition depends on technical knowledge <u>and</u> on the perceived demand opportunity, business model and capabilities

Image by MIT OCW.

Michael A M Davies 11 April 2007, Page 12

Each of these generations involved innovation along a new and different trajectory

	<u>Generation</u>				
	1	2	3	4	5
	14"	8"	5.25"	3.5"	2.5"
Demand opportunity	Mainframe	Mini- computers	Desktop computers	Portable computers	iPods
Leader(s)	CDC	Shugart	Seagate	Conner Quantum	
New attributes		Internal power supplies Smaller	Higher density Lower unit cost	Rugged Lightweight Low-power	Tiny

Clayton Christensen, "Exploring the Limits of the Technology S-Curve - Part I: Architectural Technologies", Production and Operations Management, Fall 1992, pages 358-366

System design and management

Even where incumbents pursue radical innovations, cognitive limitations may doom them

• Polaroid was the leader in instant photography

SYSTEM DESIGN AND MANAGEMENT

- Technology-driven company
 - long-term, large-scale research
- Believed in consumables
 - "What's the business model? It's the razor/blade ... so we make money with the film"

- Commits to digital imaging
 - '86 Microelectronics Lab
 - by '89, 42% of budget
 - superior imaging technology
- Did not invest in other areas
 - low cost electronics manufacturing
 - rapid product development
 - new marketing and sales
- Takes long time, capabilities erode, people leave

Mary Tripsas and Giovannit Gavetti "Capabilities, Cognition and Inertia: Evidence from Digital Imaging", Strategic Management Journal, 2000, pages 1147-1161

The evolution of capabilities and beliefs at Polaroid

Image by MIT OCW.

Michael A M Davies 11 April 2007, Page 15

Innovation and transitions

- Incremental versus radical
 - minor changes within established dominant design
 - different set of engineering or scientific principles
- Modular versus architectural
 - component knowledge, localized
 - architectural knowledge, about interdependence amongst concepts and components, often tacit and embedded within organization
- Sustaining versus disruptive
 - fits customers, business model and capabilities
 - does not fit well with current customers, business model or capabilities, initially irrelevant but eclipses

Some terminology for timelines and transitions

Michael A M Davies 11 April 2007, Page 17

Era noun

- 1. a period of time marked by distinctive character, events and so on¹
- 2. the period of time to which anything belongs or is to be assigned¹
- 3. a period of time as reckoned from a specific date serving as the basis of its chronological system²

1: Random House Unabridged Dictionary, © Random House Inc. 2006 2: American Heritage[®] Dictionary, © 2000 Houghton Mifflin

Epoch noun

- 1. a period of time marked by distinctive character, events and so on¹
- 2. the **beginning** of a distinctive period in the history of anything¹
- 3. a **point of time** distinguished by a particular event or state of affairs¹
- 4. a notable event that marks the **beginning** of a period of history, especially one considered remarkable or noteworthy²

1: Random House Unabridged Dictionary, © Random House Inc. 2006 2: American Heritage[®] Dictionary, © 2000 Houghton Mifflin

Episode noun

- 1. a portion of a narrative that relates an event or a series of connected events and forms a coherent story in anf of itself¹
- 2. an incident in the course of a series of events²

1: American Heritage[®] Dictionary, © 2000 Houghton Mifflin 2: Random House Unabridged Dictionary, © Random House Inc. 2006

Organization response to transition ultimately depends on four key factors

Demand opportunity who your customers are and what they want

Business ecosystem your chosen niche, its business model and hence how you make money

Technological infrastructure explicit and tacit component and architectural knowledge

Your mental models - beliefs about the future, about how to make money, communication channels, information filters and problemsolving strategies

Domains, players and pattern recognition

- Digital displays: E Ink
- USB flash: Lexar Media, SanDisk, msystems and Sony
- Digital photography: Kodak, Polaroid, Sony, Canon and Nikon
- Portable radios: Sony and RCA
- Semiconductor capital equipment: Cobilt, Canon, Perkin Elmer and Nikon
- Disk drives: CDC, Fujitsu, IBM, Seagate, Conner and Quantum

- Technologies and innovation trajectories
- Demand
 opportunity,
 adoption and
 diffusion
- Life cycles, transitions and disruption

Nine key concepts

DESIGN AND MANAGEMENT

- Technological infrastructure, technologies, innovation, parameters and trajectories
- ✓ Demand opportunity, adoption and diffusion
- 3 Business ecosystems, niches and co-opetition
- ✓ Co-evolution, life-cycles, epochs and transitions
- 5 Value creation, value capture and inimitability
- 6 Systems, architecture, modules, interfaces, standards, platforms, portfolios and pipelines
- 7 Activities, tasks, competences and capabilities
- 8 Ambiguity and scenarios, uncertainty and real options
- 9 Simple rules, prepared mind, active waiting, overload

A roadmap for the course

<u>A</u> Introduction	<u>B</u> Patterns of change	<u>C</u> Capturing Value	<u>D</u> <u>Deciding</u> and Delivering
Demand opportunity			
Business ecosystems, niches and co-opetition	Co-evolution, life-cycles, epochs and transitions	Value creation value capture and inimitability	Ambiguity and scenarios, uncertainty and real options
Technological infrastructure			