Theories & models of musical pitch
The search for the missing fundamental: theories & models of musical pitch

• Brief review of basics of sound & vibration
• Brief review of pitch phenomena
• Distortion theories (nonlinear processes produce F0 in the cochlea)
• Spectral pattern theories
 – Pattern-recognition/pattern-completion
 – Fletcher: frequency separation
 – The need for harmonic templates (Goldstein)
 Terhardt’s Virtual pitch: adding up the subharmonics
 – Musical pitch equivalence classes
 – Pitch classes and neural nets: Cohen & Grossberg
 – Learning pitch classes with connectionist nets: Bharucha
• Temporal theories
 – Residues: Beatings of unresolved harmonics (Schouten, 1940’s)
 – Problems with residues and envelopes
 – Temporal autocorrelation models (Licklider, 1951)
 – Interspike interval models (Moore, 1980)
 – Correlogram demonstration (Slaney & Lyon, Apple demo video)
 – Population-interval models (Meddis & Hewitt, Cariani & Delgutte)
• Problems & prospects
Vibrations create compressions and expansions of air

(Series of figures from Handel, S. 1989. Listening: an Introduction to the Perception of Auditory Events. MIT Press. Used with permission.)

Sound waves are alternating local changes in pressure
These changes propagate through space as “longitudinal” waves

Condensation phase (compression): pressure increases
Rarefaction (expansion) **phase**: pressure decreases
Waveforms

Microphones convert sound pressures to electrical voltages. Waveforms plot pressure as a function of time, i.e. a “time-series” of amplitudes. Waveforms are complete descriptions of sounds.

Audio CD’s sample sounds at 44,100 samples/sec.

Oscilloscope demonstration.
Most physical systems have multiple modes of vibrations that create resonances that favor particular sets of frequencies.

Vibrating strings or vibrating columns of air in enclosures exhibit harmonic resonance patterns.

Material structures that are struck (bells, xylophones, percussive instruments) have resonances that depend partly on their shape and therefore can produce frequencies that are not harmonically related.

More later on what this means for pitch and sound quality.
Frequency spectra

Joseph Fourier (1768-1830) showed that any waveform can be represented as the sum of many sinusoids (Fourier spectrum). George Ohm (1789-1854) and Hermann von Helmholtz (1821-1894) postulated that the ear analyzes sound analogously, first breaking sounds into their partials.

Each sinusoid of a particular frequency (frequency component, partial) has 2 parameters:

- 1) its magnitude (amplitude of the sinusoid)
- 2) its phase (relative starting time)

A sound with only one frequency component is called a pure tone. A sound with more than one is called a complex tone.

A complex tone whose partials are all part of the same harmonic series is called a harmonic complex. Such a tone is periodic -- its waveform repeats with a period equal to 1/fundamental frequency (i.e. the fundamental period). If any of the partials are not part of a harmonic series, then the sound is inharmonic.
Fundamentals and harmonics

- Periodic sounds (30-20kHz) produce pitch sensations.
- Periodic sounds consist of repeating time patterns.
- The fundamental period (F0) is the duration of the repeated pattern.
- The fundamental frequency is the repetition frequency of the pattern.
- In the Fourier domain, the frequency components of a periodic sound are all members of a harmonic series (n = 1*F0, 2*F0, 3*F0...).
- The fundamental frequency is therefore the greatest common divisor of all of the component frequencies.
- The fundamental is also therefore a subharmonic of all component frequencies.
Demonstrations

- **Oscilloscope demonstrations**
 - Armenian flute
 - Human voice

- **Spectrum analyzer demonstrations**
 - Flute
 - Violins
 - Human voice

- **Real time spectrogram demonstrations** *(iTunes/SpectroGraph plugin)*
 - Armenian flute
 - Violins
 - Vocal music
Harmonic series

A harmonic series consists of integer multiples of a fundamental frequency, e.g. if the fundamental is 100 Hz, then the harmonic series is: 100, 200, 300, 400, 500, 600 Hz, etc.

The 100 Hz fundamental is the first harmonic, 200 Hz is the second harmonic. The fundamental is often denoted by F0.

The fundamental frequency is therefore the greatest common divisor of all the frequencies of the partials.

Harmonics above the fundamental constitute the overtone series.

Subharmonics are integer divisions of the fundamental:
 e.g. for F0= 100 Hz, subharmonics are at 50, 33, 25, 20, 16.6 Hz etc. Subharmonics are also called undertones.

The fundamental period is 1/F0, e.g. for F0=100 Hz, it is 1/100 sec or 10 msec. Periods of the subharmonics are integer multiples of the fundamental period.
Synthetic vowels

Waveforms

Power Spectra

Autocorrelations

Formant-related
Vowel quality
Timbre

Pitch periods, 1/F0

125 Hz
100 Hz

[ae]
F0 = 100 Hz

[ae]
F0 = 125 Hz

[er]
F0 = 100 Hz

[er]
F0 = 125 Hz

Time (ms)

Frequency (kHz)

Interval (ms)
Pitch: basic properties

- **Highly precise percepts**
 - Musical half step: 6% change F0
 - Minimum JND's: 0.2% at 1 kHz (20 usec time difference, comparable to ITD jnd)

- **Highly robust percepts**
 - Robust quality Salience is maintained at high stimulus intensities
 - Level invariant (pitch shifts < few % over 40 dB range)
 - Phase invariant (largely independent of phase spectrum, f < 2 kHz)

- **Strong perceptual equivalence classes**
 - Octave similarities are universally shared
 - Musical tonality (octaves, intervals, melodies) 30 Hz - 4 kHz

- **Perceptual organization (“scene analysis”)**
 - Fusion: Common F0 is a powerful factor for grouping of frequency components

- **Two mechanisms? Temporal (interval-based) & place (rate-based)**
 - Temporal: predominates for periodicities < 4 kH (level-independent, tonal)
 - Place: predominates for frequencies > 4 kHz(level-dependent, atonal)
Periodic sounds produce distinct pitches

Many different sounds produce the same pitches

Strong
• Pure tones
• Harmonic complexes
• Iterated noise

Weaker
• High harmonics
• Narrowband noise

Very weak
• AM noise
• Repeated noise

Schematic diagram representing eight signals with the same low pitch.
Pitch as a perceptual emergent

Missing F0

Line spectra

Autocorrelation (positive part)

Pure tone 200 Hz
Frequency ranges of (tonal) musical instruments
Duplex time-place representations
"Pitch is not simply frequency"

Musical tonality: octaves, intervals, melodies

Strong phase-locking (temporal information)

temporal representation
level-invariant, precise

place representation
level-dependent, coarse

Frequency (kHz)
Pitch height and pitch chroma

Please see Figure 1, 2, and 7 in Roger N. Shepard. "Geometrical Approximations to the Structure of Musical Pitch." *Psychological Review* 89 no. 4 (1982): 305-322.
Duplex time-place representations

temporal representation
- level-invariant
 - strong (low fc, low n)
 - weak (high fc, high n; F0 < 100 Hz)

place-based representation
- level-dependent
 - coarse

Similarity to place pattern
Similarity to interval pattern

cf. Terhardt's spectral and virtual pitch
A "two-mechanism" perspective (popular with some psychophysicists)

unresolved harmonics
- weak temporal mechanism
- phase-dependent; first-order intervals

resolved harmonics
- strong spectral pattern mechanism
- phase-independent
- rate-place? interval-place?

place-based representations
- level-dependent
- coarse

Dominance region: f, F0

n = 5-10
Some possible auditory representations

Local
Rate-place

Masking phenomena
Loudness

Central spectrum

CF

Synchrony-place
Phase-place
Interval-place

Pure tone pitch JNDs: Goldstein

Central spectrum

CF

Population-interval

Population-interval
Complex tone pitch

Global

All-at-once
Stages of integration

Peristimulus time (ms)
Characteristic freq. (kHz)

0 10 20 30 40 50
General theories of pitch

1. Distortion theories
 – reintroduce F0 as a cochlear distortion component (Helmholtz)
 – sound delivery equipment can reintroduce F0 through distortion
 – however, masking F0 region does not mask the low pitch (Licklider)
 – low pitch thresholds and growth of salience with level not consistent with distortion processes (Plomp, Small)
 – binaurally-created pitches exist

2. Spectral pattern theories
 – Operate in frequency domain
 – Recognize harmonic relations on resolved components

3. Temporal pattern theories
 – Operate in time domain
 – Analyze interspike interval dists.
Psychological perspectives on pitch

Analytical: break sounds into frequencies (perceptual atoms), then analyze patterns (templates) (British empiricism; machine perception)

Relational: extract invariant relations from patterns (Gestaltists, Gibsonians, temporal models)

Nativist/rationalist: mechanisms for pitch are given by innate knowledge and/or computational mechanisms differences re: how recently evolved these are

Associationist: mechanisms for pitch (e.g. templates) must be acquired through experience (ontogeny, culture)

Interactionist: (Piaget) interaction between native faculties and structure of experience (self-organizing systems)
Spectral pattern theories

- Not the lowest harmonic
- Not simple harmonic spacings
- Not waveform envelope or peak-picking (pitch shift exps by Schouten & de Boer)
- Must do a real harmonic analysis of spectral fine structure to find common denominator, which is the fundamental frequency
- Terhardt: find common subharmonics
- Wightman: autocorrelation of spectra
- Goldstein, Houtsma: match spectral excitation pattern to harmonic templates
- SPINET: Use lateral inhibition/center-surround then fixed neural net to generate equivalence classes
- Barucha: adaptive connectionist networks for forming harmonic associations
Spectral pattern analysis vs. temporal pattern analysis

Note: Some models, such as Goldstein's, use interspike interval information to first form a Central Spectrum which is then analyzed using harmonic spectral templates.

There are thus dichotomies
1) between use of time and place information as the basis of the central representation, and
2) use of spectral vs. autocorrelation-like central representations

Pitch → best fitting template
Ear and cochlea

Traveling waves along the cochlea. A traveling wave is shown at a given instant along the cochlea, which has been uncoiled for clarity. The graphs profile the amplitude of the traveling wave along the basilar membrane for different frequencies, and show that the position where the traveling wave reaches its maximum amplitude varies directly with the frequency of stimulation. (Figures adapted from Dallos, 1992 and von Bekesy, 1960)
“Virtual” pitch: F0-pitch as pattern completion
From masking patterns to "auditory filters" as a model of hearing

Power spectrum
Filter metaphor

Notion of one central spectrum that subserves perception of pitch, timbre, and loudness

2.2. **Excitation pattern** Using the filter shapes and bandwidths derived from masking experiments we can produce the excitation pattern produced by a sound. The excitation pattern shows how much energy comes through each filter in a bank of auditory filters. It is analogous to the pattern of vibration on the basilar membrane. For a 1000 Hz pure tone the excitation pattern for a normal and for a SNHL listener look like this: The excitation pattern to a complex tone is simply the sum of the patterns to the sine waves that make up the complex tone (since the model is a linear one). We can hear out a tone at a particular frequency in a mixture if there is a clear peak in the excitation pattern at that frequency. Since people suffering from SNHL have broader auditory filters their excitation patterns do not have such clear peaks. Sounds mask each other more, and so they have difficulty hearing sounds (such as speech) in noise. --Chris Darwin, U. Sussex, http://www.biols.susx.ac.uk/home/Chris_Darwin/Perception/Lecture_Notes/Hearing3/hearing3.html
Shapes of perceptually-derived "auditory filters" (Moore)
Resolution of harmonics

![Graph showing threshold shift (dB) vs. frequency (Hz) for harmonics resolution. The graph displays oscillations with peaks and troughs across the frequency range from 0 to 4000 Hz.](image-url)
Goldstein’s harmonic templates

Terhardt's method of common subharmonics

Spectral vs. virtual pitch: duplex model
Virtual pitch computation:
1. Identify frequency components
2. Find common subharmonics
3. Strongest common subharmonic after F0 weighting is the virtual pitch
Terhardt's model has been extended by Parncutt to cover pitch multiplicity and fundamental bass of chords
Terhardt references

Neural tuning as a function of CF
Broad tuning and rate saturation at moderate levels in low-CF auditory nerve fibers confounds rate-based resolution of harmonics.

Low SR auditory nerve fiber

![Graph showing frequency (Hz) vs. spikes/s for different sound intensities and B.F. = 1700 Hz.](image)
Spectral pattern theories - pros & cons

Do make use of frequency tuning properties of elements in the auditory system
No clear neural evidence of narrow (< 1/3 octave) frequency channels in low-BF regions (< 2 kHz)

Operate on perceptually-resolved harmonics
Do not explain low pitches of unresolved harmonics

Require templates or harmonic pattern analyzers
Little or no neural evidence for required analyzers
Problems w. templates: relative nature of pitch

Do not explain well existence region for F0
Learning theories don't account for F0 ranges or for phylogenetic ubiquity of periodicity pitch
Existence region for missing fundamentals of AM tones

Boundary of Existence Region of Low Pitch

Nominal Frequency Equivalent of Low Pitch

Frequency of Components
ANFs

Stimulus waveform

Voice pitch

Fundamental period 1/F0

Peristimulus time histograms
(100 presentations @ 60 dB SPL)
Temporal pattern theories

Σ First-order intervals (renewal density)

- Schouten’s temporal theory (1940’s) depended on interactions between unresolved (high) harmonics. It was displaced by discovery of dominance region and binaural combination pitches in the 1960’s. The idea persists, however in the form of spectral mechanisms for resolved harmonics and temporal ones for unresolved harmonics.

Σ All-order intervals (temporal autocorrelation)

First-order intervals
(renewal density)

All-order intervals
(temporal autocorrelation)

Licklider’s (1951) duplex model of pitch perception

Licklider’s binaural triplex model

J.C.R. Licklider
“Three Auditory Theories”
Delay lines

Basic schema of neuronal autocorrelator. A is the input neuron, B₁, B₂, B₃, is a delay chain.
Autocorrelation and interspike intervals

Autocorrelation functions

$$\text{Corr}(\tau) = \sum_{t} S(t) S(t - \tau)$$

Fundamental period $1/F_0$

Shift
Multiply
Sum the products for each delay τ to compute autocorrelation function

Autocorrelations of spike trains = Histograms of all-order intervals
Correlograms: interval-place displays (Slaney & Lyon)

Correlograms

Auditory nerve

Peristimulus time (ms)

Characteristic freq. (kHz)

0 1 2 3 4 5 10
Temporal coding in the auditory nerve

Work with Bertrand Delgutte
Cariani & Delgutte (1996ab)

Dial-anesthetized cats.
100 presentations/fiber
60 dB SPL

Population-interval distributions are compiled by summing together intervals from all auditory nerve fibers.

The most common intervals present in the auditory nerve are invariably related to the pitches heard at the fundamentals of harmonic complexes.
The population-interval distribution of the auditory nerve
Stimulus Autocorrelation

Pitch = 1/F0

All-order interval histograms

Characteristic frequency (kHz)

-5
-2
1
2
5

500

Population-interval histogram

Interval (ms)

Corr(\tau) = \sum_{t} S(t) S(t - \tau)

Fundamental period

1/F0

Shift
Multiply
Sum the products for each delay \tau to compute autocorrelation function

Autocorrelation functions

Autocorrelations of spike trains = Histograms of all-order intervals
Percept-driven search for neural codes:

1. Use stimuli that produce equivalent percepts
2. Look for commonalities in neural response
3. Eliminate those aspects that are not invariant

Metameric stimuli (same percept, different power spectra)

Stimulus A (AM tone, fm = 200 Hz)

Stimulus B (Click train, F0 = 200 Hz)

Neural response pattern

Common aspects of neural response that covary with the percept of interest

Neural codes, representations: those aspects of the neural response that play a functional role in subserving the perceptual distinction

Candidate "neural codes" or representations

Other parameters for which percept is invariant

Intensity

Location

Duration
Pitch equivalence

Six stimuli that produce a low pitch at 160 Hz

- **Pure tone**
 - 160 Hz

- **AM tone**
 - $F_m: 160$ Hz
 - $F_c: 640$ Hz

- **Harms 6-12**
 - $F_0: 160$ Hz

- **Click train**
 - $F_0: 160$ Hz

- **AM noise**
 - $F_m: 160$ Hz

- **AM tone**
 - $F_m: 160$ Hz
 - $F_c: 6400$ Hz

Waveform Power spectrum Autocorrelation

Population interval distribution

<table>
<thead>
<tr>
<th>Lag (ms)</th>
<th>Frequency (Hz)</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

Pitch frequency

Pitch period

Interspike interval (ms)

Strong pitches

Weak pitches
Level-Invariance Pitch Equivalence

Neural Data

E Pure Tone \(F_c=640 \text{ Hz}, F_m=160 \text{ Hz} \)

F AM Tone \(F=160 \text{ Hz} \)

G Click Train \(F_0=160 \text{ Hz} \)

H AM Noise \(F_m=160 \text{ Hz} \)

Pitch Equivalence
The running population-interval distribution

Population interval histograms
(cross sections)

A

B
Please see Figure 1, 2, and 7 in Roger N. Shepard. "Geometrical Approximations to the Structure of Musical Pitch." *Psychological Review* 89 no. 4 (1982): 305-322.
Pitch shift of inharmonic complex tones

Fm = 125 Hz
Fc = 750 Hz

n = 6

n = 5.86

n = 5.5

n = 5

Population interval distributions

Stimulus waveform

1/Fm

Stimulus autocorrelation

1/Fm

Freq (kHz)

Peristimulus time (ms)

Lag (ms)

Interval (ms)
Pitch shift of inharmonic complex tones
Phase-invariant nature of all-order interval code

AM Tone
Fc=640 Hz, Fm=200 Hz

QFM Tone
Fc=640 Hz, Fm=200 Hz

C: Fc=640 Hz, Fm=160-320 Hz

D: Fc=640 Hz, Fm=160-320 Hz

de Boer's rule
1/Fm
AM Tone

\[F_c=640 \text{ Hz}, \ F_m=200 \text{ Hz} \]

QFM Tone

\[F_c=640 \text{ Hz}, \ F_m=200 \text{ Hz} \]

E
AM \[F_c=640 \text{ Hz}, \ F_m=320 \text{ Hz} \]
PST=225-275

F
QFM \[F_c=640 \text{ Hz}, \ F_m=320 \text{ Hz} \]
PST=225-275

G
AM \[F_c=640 \text{ Hz}, \ F_m=256 \text{ Hz} \]
PST=335-385

H
QFM \[F_c=640 \text{ Hz}, \ F_m=256 \text{ Hz} \]
PST=335-385
Cochlear nucleus IV: Pitch shift

Variable-Fc AM tone $F_m = 125$ Hz $F_c = 500-750$ Hz Pitch ~ de Boer's rule

Pooled ANF (n=47)

69-153 Unit 35-40 CF: 2.1 kHz Thr: 5.3 SR: 17.7

45-15-8 CF: 4417 Thr: -18, SR: 39 s/s

Interval (ms)

Peristimulus time (ms)

Chop-S (PVCN) Pauser (DCN)

Primarylike (AVCN)

45-17-4 CF: 408 Hz Thr: 21.3 SR: 159

de Boer's rule (pitches)

$1/F_m$

$1/F_c$

$1/Fm$

$1/Fc$

Interval (ms)

Peristimulus time (ms)

$de Boer's rule (pitches)$

$sub-harmonics of Fc$
Dominance region for pitch (harmonics 3-5 or partials 500-1500 Hz)

<table>
<thead>
<tr>
<th>F_{0.3-5}</th>
<th># Intervals</th>
<th>Interval (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 Hz</td>
<td>Harmonics 3-5 alone</td>
<td></td>
</tr>
<tr>
<td>160 Hz</td>
<td>Harmonics 6-12 alone</td>
<td></td>
</tr>
<tr>
<td>240 Hz</td>
<td>Harmonics 3-5 and 6-12 together</td>
<td></td>
</tr>
<tr>
<td>320 Hz</td>
<td>1/F_{0_{6-12}}</td>
<td></td>
</tr>
<tr>
<td>480 Hz</td>
<td>1/F_{0_{3-5}}</td>
<td></td>
</tr>
</tbody>
</table>
Harmonics 3-5 and 6-12 presented separately

A

Estimated pitch (Hz)

500

400

300

200

100

0

0

100

200

300

400

500

F0: Harmonics 6-12

F0: Harmonics 3-5

C

Estimated salience

4

3

2

1

0

0

100

200

300

400

500

F0: Harmonics 3-5

F0: Harmonics 6-12

Harmonics 3-5 and 6-12 presented concurrently

B

Estimated pitch (Hz)

500

400

300

200

100

0

0

100

200

300

400

500

F0: Harmonics 6-12

F0: Harmonics 3-5

D

Estimated salience

4

3

2

1

0

0

100

200

300

400

500

F0: Harmonics 3-5

F0: Harmonics 6-12

F0 of harmonics 3-5 (Hz)

F0 of harmonics 3-5 (Hz)
Summary

Population-interval representation of pitch at the level of the auditory nerve

Pitch of the "missing fundamental"

Pitch Equivalence

Level invariance

Pitch shift of inharmonic AM tones

Phase invariance

Dominance region

Pitch salience
Temporal theories - pros & cons

Make use of spike-timing properties of elements in early processing (to midbrain at least)
Interval-information is precise & robust & level-insensitive
No strong neurally-grounded theory of how this information is used

Unified model: account for pitches of perceptually-resolved & unresolved harmonics in an elegant way (dominant periodicity)
Explain well existence region for F0 (albeit with limits on max interval durations)
Do not explain low pitches of unresolved harmonics

Interval analyzers require precise delays & short coincidence windows
Little or no neural evidence for required analyzers
Physiological and functional representations

Rate-place profiles

Interval-place Spatiotemporal pattern (Place & time)

Global interval

Central spectrum
Frequency-domain representation

Central autocorrelation
Time-domain representation
Different representations can support analogous strategies for pitch extraction, recognition, and comparison.
Reading/assignment for next meeting

• Tuesday. Feb. 24
• Pitch mechanisms, continued
• Perception of timbre

• **Reading:**

 Moore Chapter 8, pp. 269-273

 Chapter in Deutsch by Risset & Wessel on Timbre

 (first sections up to p. 113-118)

 Handel, chapter on Identification
Pitch classes and perceptual similarity

Build up harmonic associations from repeated exposure to harmonic complex tones

Harmonic similarity relations are direct consequences of the inherent structure of interval codes
Figure 4. Similarities between population-interval representations associated with different fundamental frequencies. Simulated population-interval distributions for pure tones (left) and complex tones (right) consisting of harmonics 1-6.
Octave similarity

Pitch height and pitch chroma

Please see Figure 1, 2, and 7, in Roger N. Shepard. "Geometrical Approximations to the Structure of Musical Pitch." Psychological Review 89 no. 4 (1982): 305-322.

Musical tonal relations
