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ABSTRACT

The two-layer model baroclinic stability parameter, meridional surface
temperature gradients, and monthly mean meridional stationary, transient
and total eddy heat transports, computed as functions of latitude and long-
itude for three individual Januaries, are described and discussed. Corre-
lation analyses for all possible combinations are computed, and relation-
ships between these quantities are discussed. The results indicate that
no direct relationship exists between stationary eddy heat transports and
baroclinically unstable conditions. However, a direct relationship is
found between transient eddy heat tra--ports and baroclinically unstable
conditions. For example, the correlation between the transient eddy flux
and the two-layer instability parameter is .52, which is statistically sig-
nificant at the 99% confidence level. However, the strength of the corre-
lation suggests that the degree of baroclinic instability only accounts
for some of the variation in the transient eddy heat transport. Apparently,
other factors also play an important role in the forcing of transient eddy
heat transports.
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CHAPTER ONE

INTRODUCTION

1.1 Background

In the troposphere, the equator is warmer than the poles, and this

is a result of radiational imbalances. We observe a net heating due to

radiation at the equator, and at the poles a net radiational cooling occurs.

If this was the only process working, the equator to pole temperature gra-

dient would change and become larger. Looking at a long-term average, the

temperature structure of the atmosphere is essentially in equilibrium. For

this condition to exist, heat must be transported poleward.

In the atmosphere, the south-to-north transport of sensible heat

at a given time and location can be expressed mathematically as

HT = (pC AZ)VT (1.1)
p

where HT is the local south-to-north sensible heat transport, V is the

south-to-north wind component, T is the absolute temperature, C is the
p

specific heat of dry air at constant pressure, p is the density of the

air, and AZ is the thickness of the layer in which the heat transport is

to be computed. In developing the thermodynamic equation for practical

use and study, this transport is often averaged over an appropriate time

interval and averaged zonally (i.e. averaged around a latitude circle).

This averaging may be represented symbolically by:

[HT] = (pC AZ)[VT] (1.2)
p
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where the bar represents a time average and the brackets represent an

average around a latitude circle. Equation 1.2 represents the mean meri-

dional heat transport. This transport is commonly broken down into three

components by expressing the individual instantaneous values, V and T, in

terms of their means and anomalies, as

V = V + VI, V = [V] + V*, T = T + T', T = [T] + T*

The bars and brackets have their previously defined meanings, and the

prime and asterisk superscripts represent departures from the time and

space averages, respectively. By making the above substitutions, we see

that

[VT] = [V][T] + [V*T*] + [V'T'] (1.3)

recognizing that the time and zonal averages of the departures are zero

by definition.

The first term on the right hand side of equation 1.3 represents

the heat transport due to the mean meridional circulation. This is the

heat transport due to the Hadley, Ferrel, and Polar cells. The last two

terms represent the meridional eddy heat transport broken down into its

components. The term [V*T*] depicts the standing or stationary eddy heat

transport. Stationary eddies are waves in the mean flow that persist over

the averaging time period. For example, if we select an averaging time of

a month, then the waves on a monthly mean 500 mb map would be stationary

eddies. The last term in equation 1.3 represents the meridional transient

eddy heat transports. Transient eddies are all deviations in tht- eddy

------ -- ---



- 11 -

circulations within the averaging time period. For example, according to

Clapp (1970), if the averaging time interval is a month, transient eddies

are the part of the mean meridional heat transport due largely to travel-

ing cyclones and anticyclones.

Steady state models used to simulate climate cannot calculate

transient eddy heat transports. The other two terms (the stationary eddy

and mean meridional circulation heat transports) involve the covariance

or product of the time-averaged quantities and can, therefore, (at least

in principle) be predicted explicitly by a steady state model (Clapp, 1970).

For this reason, studies have been directed toward the understanding and

parameterization of the transient eddy heat transports.

1.2 Brief Review of Previous Work

Parameterization of transient eddy heat transport using an "Aust-

ausch coefficient" approach was originally proposed by Defant (1921). In

this approach, the transient eddy heat transport term in equation 1.3 is

approximated by

[T'V'] = -K(a[T]/3Y) (1.4)

where the bar and brackets signify time and zonal averages as before, and

K is the Austausch coefficient. White and Jung (1951) were among the

first to estimate the Austausch coefficient using mean heat transports

computed from synoptic weather maps. In their study, they also observed

a negative correlation between eddy heat transports and temperature

gradients for short averaging periods up to twelve days; however, they did
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not separate stationary and transient eddy components in their computa-

tions. Later Saltzman (1967), basing his ideas on the linear-pertur-

bation form of the hydrodynamic and thermodynamic equations, suggested

that

K = -B(a[T]/3Y) (1.5)

where B is a stability coefficient. Substituting equation 1.5 into equa-

tion 1.4 gives

[T'V'] = B(a[T]/3Y)2  (1.6)

indicating that the transient eddy heat transport is proportional to the

square of the temperature gradient.

. Clapp (1970) used two independent sets of data to obtain new esti-

mates of K and B, and investigated the Austausch formulae. His investiga-

tion suggests that the Austausch formulae may be fairly successful in es-

timating the zonally averaged meridional transport. In attempting to ex-

tend this test to explain longitudinal variations, his preliminary efforts

were not successful. This suggests that further investigations and obser-

vations of meridional eddy heat transports are needed, especially studies

containing longitudinal variations.

Oort and Rasmusson (1971) have compiled a very complete set of

computed transports for the five year period May 1958 to April 1963. Their

computations included meridional heat transports for each month broken down

into the three components described previously. All their work was direct-

ed at zonally averaged quantities, so they could not observe longitudinal

differences. Latitudinal, seasonal and monthly variations in the heat
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transports were observed and discussed. Many of their observations are

relevant to our investigation, and we will refer to their work often in

the course of this paper.

Blackmon et al. (1977) performed an observational and statistical

study of heat fluxes. They used time-filters to study fluctuations of

different periods. The most definitive results involved "band-pass" fluc-

tuations (fluctuations having a period of 2.5-6 days) which appeared to be

associated with developing baroclinic waves. Their investigation suggested

a relationship between poleward eddy heat fluxes and baroclinic instability

associated with the strong thermal gradients at the earth's surface. This

is one of the results that influenced the structure of our study.

The main motivation for our study was a paper by Stone (1978). In

his paper, he compared zonal mean meridional temperature gradients in the

atmosphere to critical temperature gradients predicted by a two-layer baro-

clinic model. Stone observed that eddy heat fluxes are sensitive to changes

in meridional temperature gradients (i.e. baroclinic instability). This

observation suggests a relationship between these two quantities.

We intend to statistically investigate the relationship between

meridional eddy heat transports, meridional surface temperature gradients,

and the two-layer model stability parameter, since baroclinic theory and

results from previous studies have suggested a possible relationship be-

tween these quantities. We will deal only with the Northern Hemisphere,

where the raw data are more abundant. In order to observe latitude and

longitude variations, quantities were used which had been calculated for

evenly spaced grid points. In this study, values of the total tropospheric
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meridional eddy heat transport were used which were defined as follows:

h

EF= pc (V-[V]) (T-[T])dZ (1.7)

0

A time averaging period of a month was used, and h is the height of the

tropopause. This flux was divided into two components. The meridional

stationary eddy heat transport at each grid point was computed from the

equation

h

SE J pC (V*T*)dZ (1.8)

0

i.e., SE represents the monthly mean meridional stationary eddy heat trans-

port. Once the stationary and total eddy heat transport were computed, a

transient eddy heat transport was simply determined by subtraction,

TE = EF - SE (1.9)

where TE is the monthly mean meridional transient eddy heat transport. It

is important to note that fluctuations in the meridional mean circulation

are not included in the TE term, but are included in the transient eddy

heat transport term in equation 1.3.

With the quantities calculated at each grid point, we are able to

perform a correlation analysis for all possible combinations of these quan-

tities. We will concentrate our investigation on longitudinal variations,

since this area has not been explored. Once the correlation analysis is

perfo:rmed, empirical parameterization schemes for the meridional transient

eddy heat transport will be investigated.
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CHAPTER TWO

SOURCES AND DESCRIPTION OF DATA

2.1 Meridional Eddy Heat Transport Data

The meridional eddy heat transport data was calculated at the

Goddard Institute for Space Studies (GISS), under the direction of Pro-

fessor Peter H. Stone, Massachusetts Institute of Technology. The raw

data for the calculations was provided by the National Meteorological Cen-

ter (NMC). Mean monthly values of eddy heat transport were available for

January 1973, 1974, and 1975. The data was recorded for every four degrees

of latitude 900 S, 860 S, ... 860N, 90*N, and every ten degrees of longitude

175 0W, 1650W, ... 165*E, 175 0E. This study was based on the data between

18*N and 70*N latitude. All the meridional eddy heat transport data are

vertically averaged values for the troposphere, and are in units of 1017

calories per day per five degrees longitude with positive indicating

northward. Before the vertical averaging, the tropopause was determined

separately for each grid point. The meridional eddy heat transport data

was separated into stationary eddy and transient eddy components for the

monthly mean data.

2.1.1 Meridional Stationary Eddy Heat Transport Data

Oort and Rasmusson (1971) observed that the meridional stationary

eddy heat transports (MSEHT) were strongest in the winter. This is one

of the main reasons the month of January was used for our study. Haines

- and Winston (1963) first noted that the MSEHTs were dominated by three

main features, the Aleutian low, the Icelandic low, and the Siberian high
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pressure systems. They also observed that the peaks of the transports are

located to the east of these features, i.e. the transportof coldair south-

ward by the northerly flow over eastern Siberia and the transport of warm

air northward over the central North Atlantic and Gulf of Alaska. The

exact position and relative importance of these features varies from year

to year, as pointed out by Blackmon et al. (1977). Tables 2.1, 2.2, and

2.3 contain the MSEHT data for our three months. From the tables, we can

see that the Icelandic low was very strong and the dominant feature for

the monthly mean MSEHT in January 1973. For January 1974, all three fea-

tures were strong, but the Icelandic low was still slightly dominant and

shifted 20*E of its previous years position. In January1975, the Siberian

high and the Aleutian low pressure systems were the dominant features.

. The latitude of the peak MSEHT fluctuates annually. Table 2.4 con-

tains the MSEHT summed around each latitude circle. By examining the summed

values of our MSEHT, we see the peak transport occurred at 58*N for January

1973. In January 1974, the peak MSEHT was located at 46*N. January 1975's

peak was situated at 50*N. These fluctuations from year to year indicate

not only the variability of the transports, but also that we have avariety

of data to study, rather than a bias sampling of one particular case. The

position of the peak MSEHT for the average over the three months was at

latitude 500N. Oort and Rasmusson (1971) also found the peak MSEHT in this

location with data over a five year period.

2.1.2 Meridional Transient Eddy Heat Transport Data

The meridional transient eddy heat transport (MTEHT) is of the same

order of magnitude as the MSEHT, when comparing the summed values in Table



Stationary Eddy Hoat Flup

Jonuary 1973

Long itude
17S 165 155 14S 135 125 115 105 95 'e5 75 85 S9 45 39 29 15 5 5 15 25 35 45 55 5 75 95 95 105 115 125 135 145 155 165 175

70 -2 -1 0 0 0 -1 -1 0 3 4 3 0 4 3 14J 27 29 25 I 15 0 -11 -15 -10

2 3 -2 -3

S 8 1 -5

10 15 6 -59 H 11 -3
11 22 14 -1

12 23 13 -1

13 18 4 -3

13 7 -5 -3

6 0 -7 -2

2 1 -3 -1

2 1 0 0

1 0 0 -1

1 0 00

-1 4

-2 3

-5 1

-7 -2

-8 -4

-7 -4

-3 -2

0 3

1 7

3 9

? 11

5 7

-2 1

1 3

0 a

3 12

3 16

3 18

6 22

11 18

11 9

9 3

5 1

3 4

3 7

8 51 53 37 15 -5 -16;21I -11

37 66 37 8 -8 -18:-23 -9

46 7 63 4 -4 -10 -14 -18 -6

48 F6 47 8 -11 -10 -10 -10 -2

45 53 29 -7 -13 -S -6 -4 1

37 36 10 -17 -14 0 -2 -1 1

?3 17 -2 -16 -10 0 0 0 1

6 2 -6 -7 -1 0 -1 0 0

1 -4 -3 0 7 0 -4 0 0

1 -2 0 4 9 2 -7 -2 1

3 -1 1 6 7 2 -8 -4 2

2 -3 0 5 4 1 -8 -5 1

0 6 4 0

4 10 4 -2

8 11 0 -7

9 8 -10 -14

11 1 -15 -13

9 -6 -9 -5

6 -9 -3 1

3 -6 -3 0

2 -1 -2 5

0 0 0 14

-1 -1 0 0

-3 -3 0 1

-3 -1 1 1

66

62

L 58

A 54

T 50

I 46

T 42

U 38

D 34

E 30

26

22

18

0 .1

1 2

2 2

5 1

4 2

3 3

1 3

-3 3

-4 3

-3 0

0 -2

4 -1

0 1

-1 2

-3 3

-4 5

-S 6

-2 9

4 12

3 11

0 8

-5 1

-1 -1

1 -3

1 -3

1 -3

1 -3

2 0 1 2 -1 -5 -4 70

5 6 8 6

9 15 20 11

13 21 25 16

16 24 20 17

14 24 18 13

11 21 16 5

11 16 a 0

7 9 4 1

4 5 4 8

4 8 10 14

4 9 a 11

3 4 2 6

1 2 50

-1 -6 -5 66

-2 -7 -S 62

-2 -7 -5 5

3 -5 -4 54

4 -3 -2 50

1 -1 2 46

0 3 5 42

6 9 7 3

12 11 3 34

11 7 -9 30

6 3 -15 26

6 -3 -12 22

-4 -11 -9 18

175 165 155 145 135 125 115 105 95 85 75 65 55 45 35 25 15 5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175

Table 2.1

3 1 1 3 1 1 0 -1 0 -1 -1 -3 -6 0 0 1 -1 2



Stationary Eddy Heat Flux

January 1974

Longitude
1J7 165 15 145 135 125 115 185 96 86 75 65 5 45 35 25 15 5 5 15 25 35 45 55 6s 75 S5 95 105 115 125 135 145 155 165 175

0 -2 -4 -5 -2 6 14 16 9 -1 -2 -2

1 0 -3 -6 -6 3 16 12 -2 -2 2

5 6 -1 -7 -10 -4 11 19 15 1 0 6

14 20 6 -6 -11 -10 1 14 14 6 0 12

21 33 26 6 -16-13 -9 4 7 5 2 11

21 34 62 22-19 -14 -9 -3 2 1 1 S

18 32 59 35 -16 -16 -6 -5 2 7 3 --1

14 26 48 41 10 -16 -4 -1 11 20 7 -2

11 22 35 38 -5-16 -4 4 22 26 11 -2

9 18 22 24 1 -13 -1 8 0231 1814 -6

4 8 8 14 6 -8 0 8 13 11 10 1

-2 -5 3 11 3 1 -2 4 10 S S 0

-8 10 2 6 1 2 2 1 0 1 0 0

-10 -9 0 0 2 1 1 -2 -2 -1 -1 2

11 16

I 0

-8 -1

-3 2

0 4

1 0

1 0

37 36 19 8 1 -1

S, 47 20 8 -2 -5

E 51 19 6 -3 -4

6 43 8 0 -4 -1
0 -9 -6 -2 2

Al 12 -15 -9 1 4

24-10 -10 -3 3 3

3-2 2 -6 7 3 -2

-4 -18 1 18 1 -7

-2 -1 12 -1 -9

1 4 16 a -7 -10

2 1 12 18 -14 -10

1 8 5 6 -7 -8

0 0 0 0 -1 1

2 3

6 9

8 13

2 7

-4 0

-5 -1

-5 1

-3 0

-1 -2

-1 -1

-3 1

-4 -5

-5 -5

-5 -2

-1 -3 -5 -2 2

-3 -8 -7 -3 3

8 -8 -4 -2 1

7 1 5 2 -2

11 11 14 9 0

9 14 26 22 11

7 14 34 39 23

4 10 31 27

1 6 19 30 16

-1 4 12 13 6

0 10 12 4 S

4 12 13 3 2

1 7 7 5 0

-3 -3 8 2 1

175 166 155 145 135 15 115 105 95 OS 75 SS 5 45 36 25 15 5 5 15 26 3S 4 SS SS 7S 86 95 10115 12S 13S 145 15 165176

Table 2.2

L

A

T

I

T

U

D0

E

1 70

1 66

2 62

5 58

8 S4

9 50

6 46

3 42

8 38

12 34

6 30

0 26

-3 22

-6 18



175 165 155 145 135 125 115 105 95 S5 7S 85 95 45

70 0 0 0 0 1 3 3 6 7

66 0 0 0 1 0 0 1 5 12

62 0 0 0 3 2 -2 0 2 13

L 58 0 3 3 7 8 -1 -5 0 9

A 54 2 7 8 12 13 -2 -9 -2 6

T 50 3 14 18 22 12 -8 -13 -6 4

146 6 21 28(3) 7,-ii-15 -9 2

T 42 10 28 29 28 91-33:-16 -7 1

U 38 10 26 20 20 8.-32:-14 -3 3

0 34 1 15 11 12 2 -13 -8 0 6

E 30 -6 3 3 4 2 -5 0 0 -1

26 -8 -4 0 1 1 -1 0 -3 -4

22 -8 -6 -1 0 0 1 -2 -2 -6

18 -8 -5 -1 -1 -1 0 0 -1 -3

-4 -1

-3 -3

-1 -1

I 1

1 3

2 4

3 7

3 6

-1 -4

-6 -11

-7 -9

-3 -4

0 0

1 0

Stationary Eddy Heat Flux

January 1975

Long itude
35 25 15 5 S 15 25

0 -1 -3 0 8 0 4

-1 2 3 11 17 9 3

2 8 18 24 18 6 -2

8 11 27 29 12 -3 -10

15 13 29 16 7 -14 -14

16 16 2 9 -1 -16 -11

12 14 5 0 -9 -9 -S

8 4 -3 -4 -10 -1 1

1 -3 -4 -1 -4 8 4

-1 -3 0 1 2 10 3

-1 1 2 1 2 3 3

1 0 Z I 1 -1 2

1 -1 e 1 0 -1 0

0 -1 -1 1 0 0 0

35 45 55 65 75 86 95 105 115 125 135 345 155 165 175

0 0 0 -1 0

0 1 0 0 4

1 3 S 4 10

2 9 16 11 12

4 15 29 22 L3

4 14 37 33 21

1 10 37 37 28

-2 6 25 20

-1 2

0 -1 2 8 6

2 0 2 4 6

3 2 4 5 3

3 2 3 7 -1

2 0 1 2 2

2 1 0 0 70

3 1 -1 0 66

4 -1 -1 -1 62

6 -2 -2 -1 59

8 -2 -5 -3 54

6 -S -8 -4 50

2 -12 -9 -3 46

-1 -11 -2 2 42

-2 2 7 4 38

9 13 9 -1 34

9 13 0 -10 30

7 7 -7 -13 26

4 1 -8 -11 22

0 0 -5 -6 18

175 165 ISS 145 135 125 115 105 95 85 75 65 55 45 35 25 15 S 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175

Table 2.3



Latitude MSEHT MTEHT Total EHT

*N (10 19 cal/day) (10 19 cal/day) (1019 cal/day)

1973

1 .79

3.51

5.12

5061

5.29

4.85

3.75

2.48

1 .69

1 .63

1 .56

1.30

0*61

-. 43

1974

2.76

4.24

5.60

6.15

6.10

6.o27

6.35

5.26

4.07

3.35

2.86

1 .70

-.02

-.38

1975

o.65

1 .31

2.23

3*00

3.60

3.80

3059

2099

2.14

1 .35

0.53

0002

- .40

-. 50

1973

1 .66

2.10

2067

3.18

3.77

4.80

5081

6034

5.82

4.21

2.33

1 .11

0.41

I .1 _____ ____I

1974

1.47

1 .70

1.74

2.05

2*97

3080

3.63

2.89

2.27

1,.85

1.13

0.43

0.04

-. 10

1975

2.29

2.73

3.13

3.63

4.15

4.69

4.79

4.66

4.20

3.02

1.54

0.46

0.03

-- 11

1973

3.46

5.61

7079

8.79

9.06

9.64

9.56

8.82

7.51

5.83

3.89

2.41

1.02

-- 38

1974

4.23

5.93

7.34

8020

9007

10.07

9.98

8.15

6.34

5.21

3*99

2.14

0.03

-. 48

1975

2.94

4-04

5.36

6.63

7.75

8.49

8.38

7.65

6.34

4.37

2.07

0.48

-. 37

-.61

Table 2.4

70

66

62

58

54
50

46

42

38

34

30

26

22

18
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2.4; however, the peaks of the MSEHT are generally larger than the peaks of

the MTEHT. The MTEHT are spread more uniformly over the globe than the

MSEHT. Even though the MTEHTs are dispersed around the globe,

there are locations where peak transports do exist. Tables 2.5,

2.6, and 2.7 display the transient compound of the meridional

eddy heat transports. Notice that the position of the peaks

supports the observation made by Blackmon et al. (1977) that the

peaks are closely related to the major storm tracks. Three major

storm tracks, along the east coast of the United States extending

to Greenland, along the east coast of Asia up to Alaska, and a

short track along the west coast of the United States and Canada,

are primarily emphasized by our data. The exact position and

strength of these peaks varies annually. In January 1973, the

peaks were mainly along the east coasts of Asia and the United

States. These two peaks were again the dominant features in

January 1974; however, they were displaced further north and east

of the previous year's position. January 1975 was dominated by

three peaks. The peaks along the east coasts of Asia and the

United States were still evident and were located primarily be-

tween the January 1973 and January 1974 positions. A third peak

was located along the west coast of Canada and the United States.

It was smaller in area coverage but of the same magnitude as the

other two peaks. The variability of these peaks reflect the

variability of the storm tracks from year to year.

Comparing the summed values of the MSEHT and the MTEHT listed in



iranelnt Eddy Heat Flux

Jonuary 1973

Long I tude
175 165 155 145 135 125 115 186 95 95 79 SS 9 49 35 25 15 5 S 15 25 35 45 55 65 75 85 96 185 115 125 135 145 155 165 175

8 16 15 9 1 0 1 3 4 3 2 3 4 3 4 2 1 1 1 2 2 1 -1 -2 -2 -2 0 -1 -2 -4 -2 -1 0 3 6 5 70

11 2 21 6 -3 0 2 6 6 4 2 4 4 4 9 0 -2 -1 1 0 1 4 -1 -4 -2 -1 1 0 -2 -2 0 1 1 4 6 4 66

11 22 2 -4 4 6 7 8 5 2 7 9 7 8 0 -S -1 1 -2 0 4 -5 -5 0 0 1 1 0 0 2 3 1 3 6 5 62

8 23 16 -4 -2 10 11 7 11 8 8 10 15 16 13 2 -9 -1 -1 -2 -3 1 -6 -4 0 1 1 2 4 3 3 4 0 1 6 6 50

9 12 12 -1 -2 14 13 6 12 13 12 12 22 26 18 6 -1 -2 -1 -2 -6 -1 -6 -3 1 1 1 0 3 5 3 3 0 2 4 6 54

8 10 13 4 0 14 11 2 10 17 18 13 24 ( 18 7 6 -1 -4 -1 -3 0 -7 1 4 2 1 0 2 6 4 3 2 4 6 10 50

11 10 14 10 1 12 6 -1 10 20 26 17 24 29 17 10 9 -1 -6 1 2 2 -4 S 4 2 0 1 3 6 S 5 7 10 13 14 46

14 9 13 12 4 8 5 1 15 22 15 16 21 9 4 -1 -5 5 5 3 0 6 2 2 1 2 4 6 5 10 14 17 18 42

13 8 10 9 3 4 6 5 19 21 11 10 17 15 13 5 -1 -1 -3 7 8 1 3 4 3 1 0 1 5 5 4 14 16 15 19 19 38

12 11 7 4 -3 2 6 6 20 16 6 4 11 9 6 1 -2 1 -1 7 7 3 S 1 2 2 -8 -3 5 3 3 11 13 10 14 IS 34

6 9 3 1 -6 1 5 8 20 11 1 3 7 4 2 -1 -2 1 0 6 5 3 s -1 2 3 -8 -1 3 0 0 4 4 4 7 10 30

4 4 0 -1 -4 -1 3 4 12 6 0 2 5 2 0 -1 -1 0 0 4 3 4 2 1 3 2 -2 -2 0 0 -1 0 1 2 2 5 26

3 2 -1 -2 -3 0 1 2 4 3 1 1 3 1 -2 -1 0 2 -1 1 3 5 -2 -1 1 0 -1 -1 0 0 -1 -1 1 1 1 2 22

-1 0 -1 -1 -2 0 0 2 0 2 1 1 1 -1 -1 0 1 1 0 0 0 5 0 -1 0 -1 -1 1 0 1 -2 -1 0 0 2 0 18

175 165 155 145 135 125 115 105 85 75 65 55 45 35 25 15 5 r IS 25 35 45 55 65 75 85 95 105 115 125 13S 145 155 165 175

Table 2.5

70

66

62

L 58

A 54

T 50

1 46

T 42

U 38

D 34

E 30

26

22

19



iransient Eddy Heat riux

January 1974

Longitude
175 165 155 145 135 12S 115 105 95 85 75 65 99 45 39 25 IS 5 5 1S 25 35 45 S5 65 75 8S 95 LOS 115 12S 13S 145 195 165 175

11 3 -2 -6 -3 a 0 -1 -1 -1 1 I 1 2

17 24 15 1 -6 -9 -3 3 3 0 -1 0 1 1 1 2

14 29 20 1 -9 -9 0 7 4 1 0 2 1 1 0 3

9 29 29 0: -16-6 8 10 4 1 3 6 3 0 2 9

5 21 3 -19 2 19 13 2 -3 9 12 8 5 12 12

1 1 33 9 -9 10 10 -1 -3 11 12 11 12

0 9 27 3 2 17 15 1 -1 0 10 12 10 14 7

2 13 19 9 10 1 7 - 0 1 -7 12 7 6 7 3

-7 14 10 2 15 12 0 -6 2 1 4 6 6 2 4 2

7 9 2 2 14 8 -6 -3 -1 3 2 S 2 2 3 1

S 6 -2 0 6 4 -7 -2 1 1 3 0 1 2 2 1

4 2 -2 -1 3 0 -4 -2 -1 0 2 0 0 2 0 1

2 1 -2 -1 0 -1 -1 -1 a 0 0 0 0 2 -1 -1

10 1 2 -3 -1 -2 -1 9 -1 S 0 0 S -2 5 -1 0

4 4 3 3 S 6 4 3 0 -1 -2 -2

2 1 1 1 3 S 6 S 4 0 -3 -2 -3

2 -1 -1 -3 2 6 0 3 S 1 -4 -1 -3

3 0 -3 -4 -1 3 -3 2 4 2 -2 -- 1 1

5 0 -1 -3 -4 0 -2 1 3 3 1 2 3

6 1 1 -4 -1 -1 1 2 3 2 3 2 4

S 3 0 -6 2 0 1 2 3 1 1 1 3

3 0 -1 -7 2 2 0 2 3 1 1 0 1

2 -1 -2 -5 4 1 0 2 5 1 1 0 1

1 -1 -4 -1 4 1 3 1 6 0 0 0 1

1 1 -2 1 S 2 4 0 3 0 -1 -1 2

2 2 -1 1 7 3 -1 -2 -1 -1 -1 -1 0

1 1 0 0 6 6 -6 -1 -2 -2 -1 -1 0

a 0 0 0 a 6 0 a a -2 -1 -1 1

0 2 4 0 -4 3 70

1 4 4 5 2 -3 2 66

0 S 3 2 3 1 2 62

0 4 -1 0 4 5 4 SS

2 0 -4 -3 1 6 6 64

4 -2 -3 -2 -2 4 6 50

4 0 0 1 -1 2 6 46

2 3 3 2 3 3 3 42

2 6 5 4 5 3 1 3

6 6 6 4 6 3 -1 34

3 4 3 4 2 0 0 30

2 3 2 1 1 0 1 26

1 0 1 a 0 1 0 22

1 -1 0 a 0 I 0 is

175 165 165 146 136 12S 116 105 95 95 76 65 6 45 36 26 1S S 5 16 26 35 46 55 6 75 85 36 105 116 126 135 14S 155 166 175

I Table 2.6

70

66

62

L S8

A S4

T SO

1 46

T 42

U 38

D 34

E 30

26

22
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Table 2.4, we can see the annual variability of the dominance of the sta-

tionary and transient components with latitude. The transient component

was larger at all the latitudes for January 1975. Just the opposite was

observed in January 1974. January 1973 had the stationary component larger

from 50*N to 70*N, and the transient component was larger from 30*Nto 46*N.

Also looking at Table 2.4, we see that the peak of the MTEHT varied

in latitude from year to year. In January 1973, the peak was at 42*N.

The peak in January 1974 was at 50*N. Latitude 46*N was the location of

the peak in January 1975. When averaged over the three months, the peak

was at 460N. Oort and Rasmusson (1971) also observed the peak in this lo-

cation over their five years of data. This indicates our data set is rep-

resentative of a typical set of Januaries.

2.1.3 Total Meridional Eddy Heat Transport Data

Since the total meridional eddy heat transport is just the sum of

the stationary and transient components, it contains some of the charac-

teristics described above. These transports are displayed in Tables 2.8,

2.9, and 2.10. The total meridional eddy heat transport resembles the

MSEHT to a large extent, because of the dominance of the stationary peaks.

This is particularly true because there are some similarities between the

stationary and transient components so that when added together they rein-

force each other. This is especially noticeable in the North Atlantic.

Looking at the summed values in Table 2.4, we see that the peak

transports did not vary with latitude annually. For all three months,

the peak was found at 500N. Oort and Rasmusson (1971) observed that over

their five-year period, the peak transport was also located at 50*N.



total Eddy Heat Flux

fonuary 1973

Long i tude
175 165 155 14S 13S 12S 115 105 9S 85 75 85 S5 45 35 29 15 5 5 15 25 35 45 55 G5 75 B5 95 105 115 125 135 145 155 165 175

6 15 is 9 1 -1 0

10 25 22 8 0 -2 -1

11 COD 24 7 4 5 1

9 25 18 6 13 16 6

11 17 13 8 18 25 10

12 14 15 15 22 28 10

14 13 17 22 24 25 5

16 10 16 25 22 12 2

13 5 13 22 10 -I 3

6 7 10 10 -3 -5 4

-2 6 3 3 -5 -2 4

-3 4 -2 1 -3 -1 3

0 6 -2 -1 -3 0 0

-4 0 0 0 -2 0 0

30 26 16 2 -9 -14 -11

36 16 -S -15 -17 -12

36 9 -10 -16 -19 -14

58 z3 -5 -12 -17 -17 -12

46 6 -12 -12 -16 -11 -8

S -8 -17 -6 -9 -4 -6

19 -18:-20, 1 0 1 -3

2 -17 -15 5 5 3 1

-7 -8 -4 7 7 1 3

-S 1 6 7 3 3 5

-2 5 9 8 -2 1 6

0 6 7 6 -5 0 4

0 7 3 2 -S 0 -1

0 1 -1 -1 -3 -1 0

4 2 0 -2

8 3 -1 -3

11 0 -6 -3

8 -9 -13 -3

2 -14 -12 -2

-2 -7 -4 4

-5 -1 1 4

-4 -1 1 2

2 -1 5 -4

2 2 6 -4

1 3 -8 0

0 2 -1 -1

0 1 0 0

1 -2 1 2

0 -2 -2 0 2 2 1 1 70

1 3 6 9 7 3 0 -1 66

5 9 17 23 12 1 -1 0 62

10 16 24 29 16 -1 -1 1 58

12 21 27 23 17 5 -1 2 54

14 20 28 21 15 8 3 8 50

14 17 26 21 12 11 12 16 46

12 17 21 18 14 17 23 23 42

6 12 13 18 17 21 28 26 38

4 7 8 15 21 22 25 18 34

0 4 8 14 18 15 14 1 30

-3 4 8 8 12 B 5 -10 26

-3 3 3 1 7 7 -2 -10 22

-3 2 0 4 0 -4 -9 -9 18

175 165 155 145 135 125 115 105 95 85 75 G5 5 45 36 25 15 5 5 15 25 35 45 55 65 7S 85 9S 105 115 125 135 145 155 165 175

Table 2.8

70

66

62

L 58

A 54

T SO

I 46

T 42

U 38

D 34

E 30

26

22

18



total Eddy Heat Flun

January 1974

Longitude
17S 165 15, 14S 135 12S 115 105 95 O5 7S 89 95 45 8 29 15 5 S 15 25 35 45 S6 65 76 96 96 10S 115 126 135 145 155 165 175

14 16 7 -2 -4 1 11 16 9 -2 -3 -3 -2

18 24 12 -5 -12 -S 13 23 15 -2 -3 2-3

19 35 19 -6 -19-13 11 26 19 2 0 8 0

23 49 3S -6 -2-15 9 UJ4 19 7 3 17 10

26 61 9.1-3S I 1 9 17 9 2 10 17

22 4 85 1 23 -4 13 7 1 -2 12 216

1 41 66 48 14 1 9 -4 1 7 13 19 12

16 67 50 1 3 -6 11 21 14 10 8

18 36 45 40 10 -4 -4 -2 24 27 15 4 2

16 27 24 26 16 -5 -7 S 2 2 16 -1 -1

9 13 6 14 12 -4 -7 6 14 12 13 1 0

2 -3 1 10 6 1 -6 2 9 5 7 0 0

-6 11 0 5 1 1 1 0 0 1 0 0 -2

-9 -7 -3 -1 0 0 1 -3 -2 -1 -1 2 -5

11 14 19

1 3 2

0 -7 0

0 -2 3

-2 1 6

-3 is I

-1 1 S

141 40 22 11 5 4

5 46 21 11 3 1

68 50 6 8 2 -4

66 4 -1 -1 -4

460 29 -12 -10 -2 0

51 3 -19 -10 0 5

27 -10 -16 -1 3 4

3:-26:-13 9 5 -2

-5 20 -4 2 -?

-3 -5 11 29 0 -6

2 2 17 -5 -6

4 0 13 25 -11 -11

2 0 5 12 -1 -14

0 0 a 0 4 1

3 2

4 6

4 11

6 10

6 6

7 2

8 -2

3 -4

-3 1

-5 6

-6 2

-6 -3

-4 -2

1 -2

-3 -3 -3 2 6 4

-6 -7 -3 1 8 7

-3 -8 1 1 3 8

8 1 9 1 -2 7

14 13 14 5 -3 -1

13 18 23 19 9 -3

10 16 24 3

5 12 34 ED 29 8
2 8 24 3S 20 9

0 9 1 19 10 16o

2 13 16 7 9 9

4 14 16 5 3 8

1 8 7 6 0 0

-2 -2 7 2 1 3

175 16S 156 145 136 126 115 106 95 5 75 6 56 45 3 25 15 5 5 15 25 3S 46 5 66 75 O5 95 105 116 126 135 146 156 166 17S

Table 2.9

L

A

'7

I

U

D

c

4 70

3 66

4 62

9 S8

14 S4

16 s

11 46

6 42

9 39

11 34

6 30

1 26

-3 22

-6 19



Total Eddy Heat Flux

Sanuory 1975

Longitude
175 165 155 145 135 125 115 105 95 85 79 85 59 45 35 25 15 5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175

70 6 7 7 5 3 3 6 13 17 5 -1 -5 -3 0 0 1 -1 3 12 13 9 7 2 0 3 6 7 5 4 5 3 3 3 -2 -1

11 12 12 7 2 -2 4

16 17 15 8 6 -3 1

17 19 14 13 13 0 -4

16 18 14 21 22 2 -9

15 21 22 32 31 -2 -14

15 26 28 39 28 -12 -17

17 33 32 36 2 21' -17

17 33 27 29 2 -21 -13

7 19 16 18 14 -12 -7

-1 3 4 7 8 -1 0

-6 -6 -2 1 4 0 2

-8 -? -s -1 1 1 -1

13 9 1 -i -5 -1 08

8 25 13 3 0 -2 2 8 13

3 21 16 5 6 3 9 22 23

0 18 18 8 8 9 26 34 29

-6 16 15 12 13 16 36 24

-9 17 18 18 17 24 3827 16

-4 19 16 20 26 18 9

3 17 2? 18 8 4 11 7 -2

6 15 16 13 -2 -8 0 3 -2

4 8 9 8 -6 -7 -3 2 2

0 0 5 3 -3 -3 -2 3 2

-1 -s 2 -1 1 1 0 1 -1

18 -8 -6 -4 -2 -1 0 0 -1 -3 -2 0 1 1 -1 0 -1

175 165 155 145 135 125 115 105 95 85 75 65 55 45 35 25

14 21 15

27 20 12

26 13 3

19 7 -8

11 -2 -11

2 -11 -5

-4 -11 3

-1 -2 1

-1 -1 1

-1 0 -2

0 2 -4

3 3 -3

3 4 1

1 5 2

-4 -2 -4 8 5 0 1 3 2 0

2 0 2 10 S 1 3 2 -1 0

5 0 2 3 5 1 3 -2 -3 -1

4 0 2 -1 3 3 6 -4 -3 -3

2 0 0 -1 0 3 3 0 -1 -4

0 1 0 0 0 0 0 1 0 -3

5 4 3 7 S -2 0 G 66

6 6 6 13 6 -2 2 7 62

8 15 14 15 8 0 4 9 58

13 27 25 16 11 4 4 9 54

13 37 36 24 13 4 2 8 50

10 39 0 33 13 -1 3 8 46

72 4 28 11 3 12 8 42

3 1 0 20 13 6 1 38

0 7 14 IS 18 193 7 34

1 5 7 9 13 18 4 -5 30

3 5 6 4 8 9 -6 -11 26

2 3 7 0 4 2 -8 -10 22

0 1 2 3 0 0 -5 -6 18

15 5 5 15 25 35 45 55 65 75 85 95105 115 125 135 145 155 165 175

Table 2.10

66

62

L 58

A 54

T 50

1 46

T 42

U 38

D 34

E 30

26

22

4 70
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2.2 Meridional Surface Temperature Gradient

2.2.1 Acquisition of Data

Land stations' mean surface temperatures for January 1973, 1974,

and 1975 were obtained from "Climatic Data of the World", published month-

ly by the U.S. Environmental Data Service (NOAA). Effects of elevation

were taken into account by reducing the temperature to sea level based on

the U.S. Standard Atmosphere lower tropospheric lapse rate of 6.5 degrees

Celsius per kilometer. The temperatures were plotted and analyzed on a

northern hemispheric map. Temperatures every ten degrees of longitude and

every four degrees of latitude were read and recorded on a separate table

to use in obtaining meridional tempeiature gradients at the points where

the meridional eddy heat transport data was available. Meridional surface

temperature gradients were determined by taking north-south centered dif-

ferences, and are recorded in units of degrees Celsius per four degrees

latitude. Negative values mean that the temperature is decreasing toward

the north. The meridional surface temperature gradients are listed in

Tables 2.11, 2.12, and 2.13.

Some problems with the data occurred, causing the analysis to be

somewhat subjective. High elevation stations, when reduced to sea level,

gave unrepresentative temperatures compared to the surrounding lower ele-

vation stations. The problem was primarily in the Alps, and these stations

were discarded. Large data-sparse areas occurred in the Sahara, the Arab-

ian Peninsula, and the People's Republic of China. In these areas, we

followed the general pattern of the surrounding isotherms and thus lost

any small scale features which may have existed.



Maridional Surface Temperature Gradient

January 1973

175 165 155 145 135 125 115 105 95 85 75 65 5

-7 -3 -1 1 0 -2 -2 -2 -2 -2 -4 -4 -2

-6 3 -4 -3 -3 -5 -5 -4 -2 0 2 -2

-8 -5-10-12 -9 -5 -4 -4 -5 -4 -3 -1 -1

-2 -8 -9 -7 -12 -11 -13 -9 -3 -4 -5 --2 1

-2 -4 -8 -1 -5 -9 -9 --6 -6 -5 -6 -6 -1

-2 -2 -2 -2 -2 -4 1 -3 -4 -8 -6 -6 -4

-3 -2 -3 -2 -2 -1 -3 -6 -4 -6 -7 -7 -4

-3 -3 -2 -3 -2 -a -1 4 -S -4 -6 -7 -6

-3 -3 -3 -3 0 -2 -4 -7 -4 -5 -4 -7 --7

-3 -3 -3 -3 -4 -2 -9 -7 -S -2 -6 -8 1

-3 -3 -3 -1 -1 -2 -5 -4 -1 -S -6 -2 -4

-2 -3 -2 -2 -2 -2 -2 -6 -6 -7 -4 -1 -5

-1 -2 -2 -1 -2 -3 -4 -2 -4 -4 -2 -3 -2

-1 -1 -1 -1 -2 -2 -2 -3 -6 -2 -1 -1 0

175 1I5 155 145 135 125 115 105 95 85 75 65 55

45 35 25

-4 -4 -6

-4 -S -8

-1 -3 -3

-2 -3 0

--1 1 0

0 -2 -3

-5 -3 -1

-s -2 -1

-3 -4 -2

--1 -6 -2

-5 -5 --4

-4 0 2

0 3 -4

1 -3 2

45 35 25

Long i tude
15 5 5 15 25 35 45

-8 -4 -4 -2 5 3 0

-5 -4 -2 -1 -3 2 6

-Z 0 1 2 -2 -1 -1

-1 0 1 -2 2 1 -1

-2 -1 -I 1 0 -1 -1

0 0 2 0 -2 -2 -2

-1 -1 -4 -6 -1 -S -6

-3 -2 -5 -3 -6 S -7

-3 -2 -1 -3 -7 -5 -3

-1 -2 -2 0 -3 -3 -4

1 -2 -2 -2 1 -3 -2

-4 -4 -2 -2 -2 -2 -4

-2 -1 -1 -4 -3 -4 -4

0 -2 -6 -4 -4 -4 -3

15 5 5 15 25 35 45

55 65 75 85 95 105 115 125 135 145 155 165 175

3 1 2 -2 -2 -1 0 1 7 3 3 5 -7 70

1 0 -2 -3 -3 -3 -4 -1 -2 7 6 -14 -13 66

-3 -3 -3 -3 -8 -9 -5 -2 -12( 9 -7 -4 62

-2 -2 -2 -5 -1 -3 0 -2 -7 -11 -10 -11 -S 58

0 -1 -7 -4 -4 -3 -4 -6 4 0 --5 -4 -3 54

-1 -5 -4 -3 -3 -4 -6 5 -7 -3 -5 -3 -2 50

-7 -6 -5 -5 -4 -3 -6 -8 E -9 -6 -4 -4 46

-8 -5 -4 -5 -6 -5 -5 -7 -9 -7 -4 -S -4 42

-5 -9 -8 --8 -9 -6 -5 -5 -4 -4 -4 -4 -4 38

-4 -4 -8 -6 -6 -8 -6 -7 -6 -4 -3 -3 -2 34

-4 -2 -2 -3 -4 -4 -5 -6 -2 -3 -3 -3 -3 30

-4 -7 -4 -3 -3 -3 -3 -4 -2 -2 --2 -2 -2 26

-3 -4 -4 --5 -3 -2 -5 -5 --2 -2 -1 -1 -1 i2

-3 -4 -3 -1 -2 -3 -5 -2 -2 -1 -1 -1 --1 18

55 65 75 85 95105 S115 126 135 145 155 165 175

Table 2.11



Meridional Surface Temperaturs Gr-ltent

January 1974

175 165 156 145 135 12S 115 105 95 85 75 65 55 45 35 25

-3 -3 -2 -1 0 -2 -1 0 2 3 1 0 -4 --5 -4 --5

-7 -6 2 2 0 -1 0 -2 3 0 0 1 -2 -4 --7 -6

-8 -4 -10 -14 -5 -1 -2 -1 -4 -4 -3 -1 0 -2 -2 -3

-7 -9 -11 --10 ED-11 -9 -S -4 -4 -2 -1 0 -2 -2 -2

-3 -4 -4 -2 -3 -13 -10 -7 -5 -4 -3 -3 -1 -2 -3 -1

--3 -1 -1 -1 -1 -3 -8 -10 -9 -13 --9 -10 -5 -3 -2 -2

-3 -3 -2 -2 -2 -2 -4 -9 -5 -8 -11 -10 -8 -S -3 -2

-5 -3 -3 -3 -3 -2 -3-3 -3-7 -7 - -14 10 --5 -2 -2

-3 -3 -3 -2 -3 -2 -3 -5 -7 -7 -9 -S -4 -3 -2 -2

-2 -4 -4 -4 -4 -2 -7 -S -7 -7 -6 -4 -1 -2 -2 -2

-3 -3 -2 -2 -1 -2 -3 -6 -5 -3 -3 -2 -2 -1 -1 -2

-3 -3 -3 -2 -2 -2 -2 -1 -4 -3 -2 -2 -1 -1 -1 -1

-2 -1 -1-1-1 -2 -4 -3 -3 -2 -1 --1 -1 -2 -1 0

-1 -1 1-1-1 -1 -3 -2 -4 0 -2 -2 -- -1 0 -1

175 165 155 145 135 125 115 105 95 BS 75 65 55 45 35 25

Long I tude
15 5 5

-6 -2 --3

-5 -4 -2

-2 -1 -1

-2 -1 1

-1 -1 -1

-2 -1 -1

-1 -1 -2

-1 -2 -3

-1 -3 -1

-2 --2 -1

-1 --1 -1

-1 -3 -2

-2 -2 -3

-3 -1 -3

1 b S

25 35

1 2

0 3

-1 0

0 -2

0 -1

0 -3

-1 -5

--6 -6

-6 -3

-2 -3

-1 -2

-1 -3

-2 -4

-4 -3

25 35

65 65 75 86 96 105 116 125 135 146 155 165 175

1 2 2 2 2 3 4 4 8 6 6 5 0 70

1 1 0 0 0 -1 -3 -2 -5 -1 -1 -6 -7 b6

0 -1 -2 -5 -9 -7 -9 -120-15-11 62

0 -2 -4 -7-1 -4 -4 -3 -G -8 -11 58

-1 -2 -6 --G -4 -2 -5 -2 -1 -4 --3 -6 -3 54

-6 0 -- 4 -4 -6 -3 -S -5 -3 -2 -3 50

-4 -8 f-10f-3 -9 -8 -7 -6 -4 -2 -3 -4 -4 46

-6 -7 -5 -S -S -6 -8 -8 -5 -6 -6 -5 42

-5 -4 -8 -8 -7 -6 -6 -5 --5 -3 -5 -4 -3 38

-6 - 6 -5 -5 -6 -7 -7 -6 -3 -3 -3 -3 34

-5 -4 -3 -2 -2 -2 -3 -5 -7 -1 -2 -2 -2 30

-4 -3 -4 -2 -3 -3 -2 -4 -2 -4 -3 -3 -3 26

-2 -2 -3 -3 -3 -3 -4 -3 -2 -2 -2 -2 -2 22

-4 -4 -4 -1 0 -2 -2 -2 -2 -2 -2 -1 -1 18

55 65 'I5 85 95 105 115 125 136 14S 155 166 175

Table 2.12



Meridional Surface Temperature Gradient

January 1975

175 16S 155 145 135 125 115 105 95 85 75 65

-2 -3 -4 -3 -2 -5 -4 -3 0 0 -1 0

-7 -6 -3 -11 -13 -5 -2 -3 -1 -2 -2 0

-9 -6 -9 -13 -10 -11 -7 -6 -S -5 -4 -1

-9 -9 -10 -6 -11 -13 -12 -7 -6 -5 -4 -2

-7 -9 -9 -2 --3 -6 -11 -8 -S -5 -5 -5

-3 -1 -1 -2 -2 -4 -3 -10 -8 -1e -7 -7

-3 -3 -2 -2 -2 -1 -4 -4 -6 -7-0-11

-4 -3 -3 -4 -3 -1 -3 -2 -5 --5 -8 -7

-3 -3 -4 -2 -2 -1 -4 -4 -6 -6 -4 --7

-4 -5 -4 -5 -3 -3 -2 -5 -S -4 -6 -7

-3 -3 -2 -1 -1 -2 -1 -4 -3 -4 -S --1

-3 -2 -1 0 0 -1 -2 -1 -3 --6 -2 --1

-1 -1 -1 -1 -1 -2 -3 -4 -2 -1 -I -1

-1 -1 -1 -1 -2 -3 -2 -4 -6 -3 -1 -1

175 165 155 145 135 125 115 105 95 85 75 65

55 45

-2 -4

-3 -6

-4 -2

2 -3

--1 -2

-5 -1

-6 -4

-7 -6

-7 -3

-2 -1

-1 -1

--2 -1

-2 -2

-1 -1

'35 45

Long I tude
35 25 15 5 5 15

-S -10 -10 -S -4 -3

-8-11 --7 -4 -3 1

--8 --5 -3

-2 -1 -2

-3 -2 -1

-4 -2 -1

-2 -2 -1

-2 -2 -2

-2 -2 -2

-2 -2 -1

-2 -1 -1

-2 -1 2

0 0 -3

0 0 -2

35 25 15

-2 -2 -3

-2 -1 -4

-2 -1 -1

-1 -1 0

-1 -2 -3

-1 -2 0

-3 -2 -3

-1 -1 -1k

-1 -1 0

-2 -1 -1

-2 -3 -1

-3 -2 -6

5 5 15

25 35 45 55 65

0 1 -2

0 -2 -3

-4 -4 -.4

0 -2 -1

-1 -1 0

-1 -1 -2

1 -2 -6

-2 -4 -4

-7 -4 -4

0 -2 1

-1 -3 -4

-1 -3 -4

-3 -3 -2

-3 -4 -4

25 35 45

75 85 95 105 115 125 13S 145 155 165 175

-2 0 0 -1 0 0 1 3 8 5 4 7 1 70

-3 -3 -3 -4 -4 -3 -3 0 -2 7 6 -7 -6 66

-6 -4 -5 -4 -7 -6 -6 -14F3 -1-12 -13 62

-1 -3 -3 -4 -8 -6 -1 -2 -3 -10 -10 -10 -11 58

1 2 1 -1 -4 -3 -1 0 3 1 --6 -10 --5 54

0 -1 -2 -4 -6 -6 -8 -5 -7 -5 -9 --3 -3 50

-9 - 0 -7 -5 -8 -7 -6 -6 --6 -2 -2 -2 46

-4 -3 -6 --5 -4 -4 -7 -6 -8 -4 -7 -5 -4 42

-4 -3 -4 -4 -4 -4 -5 -6 -5 -6 -5 -4 -4 38

-3 -4 -4 -3 -4 -5 -5 -7 -7 -S -3 -3 -3 34

-3 -4 -2 -2 -4 -3 -3 -6 -6 -2 -2 -3 -3 30

-5 -4 -4 -3 -4 --6 -3 -6 -3 -4 -4 -4 -4 26

-4 -3 -3 -4 -2 -2 -5 -2 -1 -2 -2 -2 --1 22

-3 -3 -3 -2 -2 -1 -3 -3 -2 -1 -1 -1 -1 18

55 65 75 85 95 105 115 125 135 145 155 165 175

Table 2.13
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Air temperature data was not available over the oceans, and so we

used sea surface temperatures. Although these temperatures may not relate

directly to corresponding air temperatures, their gradients are likely to

correspond. Mean sea surface temperatures were available directly from

data compiled by the National Marine Fisheries Service (NOAA). The tem-

peratures were averaged values over a five-by-five degree square and were

in degrees Celsius. They were plotted, analyzed, and the gradients were

determined in the same manner as over the land. Whenever land and sea data

analysis overlapped, the land analysis was used. This did not occur enough

to make a reasonable comparison of the gradients.

2.2.2 Data Characteristics

The strongest meridional surface temperature gradients for all

three months occurred where oceans lie to the south of land in the upper

mid-latitudes. The strongest of these was in eastern Asia, north of Japan.

Southern Alaska and western Canada's coastline also had a very strong sur-

face temperature gradient that was present for all three months. Looking

at the zonally averaged meridional surface temperature gradients, we see

that the peak was always at 620 N. In January 1974 and 1975, the tempera-

ture gradient on the south coast of Nova Scotia was quite noticeably strong;

however, in January 1973 the temperature gradient was only half as intense.

Minor peak temperature gradients occurred just to the south of the semi-

permaaent cold core highs in Siberia and Northern Canada. The Siberian

high produced the stronger of the two gradients. The position and magni-

tude of these last two meridional surface temperature gradients varied

slightly from year to year. The data south of 30*N should not be trusted
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to any large extent, because this area contains large data-sparse areas,

and very large areas where sea surface temperature data was used.

2.3 Two-Layer Model Stability Parameter

In the two-layer model, the troposphere is divided into two equal

mass layers. The mass averaged parameters describing the lower layer will

be denoted by the subscript 1, the subscript 2 will denote the upper layer.

The stability parameter can now be defined as: U2 - U - U c; Stone (1978).

U2 - U is just the vertical shear of the two layer troposphere. Uc is

the critical wind shear, and was determined by Phillips (1954) and Stone

(1978) as:

BR(e2- 0 1)
U = 2(2.1)
c f

where B = , f =20 sin #, R is the gas constant, and el and e2 are the
ay

mass averaged potential temperatures of the two layers. The stability

parameter was provided from the same source and in the same format as the

meridional eddy heat transport data. Units are meters per second, and

positive values indicate instability, while negative values indicate sta-

bility.

2.3.1 Model Stability Parameter Characteristics

The model stability parameter is noisy, mainly because of the large

variation in U2 - U . To solve this problem, the stability parameter was

smoothed over a number of degrees of longitude. The smoothing distance

was 2Lr (#) rounded to the nearest 5 degrees, where L (#) is the mean radius
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of deformation. For example, the smoothing distance for the latitudes 38*N

to 50*N was 40 degrees longitude.

To a good approximation, U was constant along a latitude circle
C

(Stone, personal communication). Having Uc essentially constant on a lati-

tude circle enables us to calculate the variation of the vertical wind

shear from the variation of the model stability parameter. The vertical

wind shear can be related to the horizontal temperature gradient by the

thermal wind relationship. Thus to a large extent, we will be correlating

the mean meridional tropospheric horizontal temperature gradient to the

meridional eddy heat transports, when we correlate the latter with the

stability parameter.

2.3.2 Data Characteristics

Tables 2.14, 2.15, and 2.16 contain the stability parameter. One

striking feature of the data was the dominance of negative values south of

30*N. The reason for this is two-fold. Primarily, it is because U cincreases

as the latitude decreases. Also, the vertical wind shear is much smaller

in the tropics than in the extratropical latitudes, so U2-U1 decreases as

we move into the tropics. Obviously, the atmosphere is not as completely

stable as the model stability parameter indicates at and below 30*N, since

the eddy transports are not zero. Nevertheless, they are relatively small

in this region.

There are two main areas where the mean monthly stability parameter

has a large positive value for all three months. One unstable area is just

off the east coast of Japan. The other unstable area is located south of

Nova Scotia. It is interesting to notice that these areas are located in



Two-l ayer Model Stabl Ifty Parvameter

January 1973

Long I tude
175 165 155 145 13S 125 115 10S 95 BS 75 65 SS 4S 3S 25 15 5 5 15 25 35 45 55

1 2 3 3 4 3 3 2 1 0 -1 -1 0 1 2 2 3 4 4 3 2 2 1 1

2 3 4 S 5 5 4 3 2 1 0 0 1 1 2 3 3 3 3 3 2 1 1 0

3 4 4 4 4 4 4 3 2 1 0 0 0 0 1 2 2 2 1 1 0 0 0 -1

3 3 3 3 3 3 3 3 2 2 1 0 0 -1 0 0 0 -1 -2 -2 -2 -2 -2 -1

2 2 2 2 1 1 1 1 1 2 1 1 0 0 -1 -1 -2 -3 -4 -5 -5 -4 -3 -2

2 1 1 1 1 0 1 0 0 1 2 2 1 1 -1 -2 -4 -6 -6 -6 -6 -4 -3 -2

2 1 0 0 0 0 0 0 1 2 3 4 3 2 0 -3 -5 -7 -7 -7 --5 -4 -2 -1

4 2 1 0 0 -1 -1 0 2 4 6 6 5 2 0 -3 -5 -6 -6 -5 -3 -1 1

5 3 1 0 -1 -2 -3 -1 1 3 5 5 3 0 -2 -5 -6 -6 -4 -2 0 2 3 3

-4 0 -2 -2 -2 -3 -2 -1 0 -1 -6 -7 -9-10 -11 -6 -5 -4 -3 -1 0 2 4 5

-15 -16 -16 -14 -13 -12 -4 -4 -11 -12 -14 -16 -17 -17 -17 -15 -14 -S -4 -3 -2 -9 0 0

65 75 85 95 105 115 125 135 145 155 165 175

0 -1 -1 -1 -2 -2 -2 -2 -2 -1 -1 0 70

0 -1 -1 -1 -1 -1 -2 -2 -1 0 0 1 66

0 0 -1 0 -1 -1 -1 0 0 0 1 2 62

0 0 1 1 1 1 0 0 0 1 2 2 5

0 1 3 3 3 1 0 0 0 1 2 2 54

0 2 2 3 2 0 0 1 1 2 3 2 50

1 2 2 2 0 0 0 2 3 4 4 3 46

2 1 2 2 1 2 3 5 6 7 7 5 42

2 3 3 3 5 6 7 9 |10 10) 9 738

9(911 11010 8 8 8 7 0 -2 34

4 4 4 3 4 -2 -S -5 -7 -10 -12 -13 30

-30 -29 -28 -25 -23 -22 -21 -21 -22 -23 -24 -26 -26 -25 -24 -23 -21 -20 -9 -8 -7 -17 -17 -18 -19 -20 -21 -22 -23 -24 -24 -26 -26 -28 -29 -30 26

-54 -53 -51 -48 -46 -44 -43 -43 -44 -44 -44 -44 -44 -42 -41 -39 -37 -36 -34 -33 -34 -34 -35 -37 -40 -43 -46 -48 -50 -51 -53 -54 -55 -56 -56 -56 22

-87 -84 -81 -78 -77 -76 -76 -75 -75 -75 -75 -75 -74 -72 -71 -70 -67 -66 -65 -66 -67 -67 -69 -71 -74 -78 -82 -85 -88 -90 -92 -94 -93 -92 -91 -90 18

175 165 155 14S 135 12S 115 105 95 85 75 65 55 45 35 25 15 5 5 15 25 35 45 55 65 75 8S 95 105 115 125 135 145 155 165 175

Table 2.14

Units are meters per second

70

66

62

L 58

A 54

T 50

1 46

T 42

U 38

D 34

E 30



Two-layer Model StabiIity Parameter

January 1974

Longitude
175 165 155 14S 13S 12S 11S LOS 95 85 7S F5 SS 45 3S 2S15 5 5 15 25 35 45 56 66 75 65 95 105 115 125 135 145 155 165 17S

4 4 3 2 1 0 -1 -2 -3 -3 -3 --3 -2 -1 0 1 2 2 2 2 2 1 0

S 6 5 4 3 2 0 -1 -3 -3 -4 -3 -3 -2 -1 1 2 2 2 2 1 0 -1

4 5 6 6 5 4 3 1 -1 -2 -3 -4 -4 -3 -2 0 1 2 2 1 0 -1 -2

1 4 5 6 6 6 5 4 3 1 0 -1 -2 -2 -2 --1 0 1 0 -1 -2 -3 -4

-2 0 2 4 6 6 6 6 7 7 6 G 4 3 2 2 2 1 0 -2 -4 -4 -4

-5 -4 -2 0 1 2 4 6 8 11 13 13 11 9 7 5 3 1 -1 -3 -4 -4 -3

-S -4 -4 -3 -2 036 Jr 3143 15 13 11 8 5 2 - -3 -3 -3 -2

0 -2 -2 -2 -1 1 4 6 8 9 9 8 ? 5 3 1 -2 -3 -4 -5 -3 -2 0

4 2 -1 -2 -11 0 1 2 t 0 --1 --1 -1 --2 -2 -4 -6 -O - -? -4 -1 2

4 1 -3 -5 -S -S -S -S --6: -1 -11 -7 -7 -6 -7 - -9 -S. .7 -3 1 4

-11 -14 -16 -18 -18 -12 -12 -12 -17 -17 -17 -17 -11 -11 -11 -10 -9 --8 -7 --S -2 0 1

-28 -20 --28 -29 -28 -28 -27 -19 -26 -26 -24 -23 -16 -14 -12 -10 -9 -7 -6 -S -4 -4 -4

-2 -3 -2

-2 -3 -3

--2 -1 -1

-2 -1 0

-2 0 1

0 2 4

3 4 5

4 6 7

4 3 2

2 -1 -3

-2 -5 -7

-3 -3 -3 -1 0 2 3 4 70

-3 -4 -3 -2 -1 1 2 4 66

-2 -3 -3 -3 -3 --2 0 2 62

0 -1 -2 -3 -S -4 -2 -1 58

1 -1. -2 -4 -6 -6 -5 -4 54

3 1 -2 -4 -5 -S -7 -7 5

5 3 1 -2 -3 -4 -5 -5 46

6 6 4 4 3 2 2 1 42

2 5 7 9 10 10 10 8 36

-1 2 8 12F13 11 8 34

-7 -9 -6 -5 -4 -5 --? -9 30

70

66

62

L 58

A 54

T 5 W

I 46

T 42

U 38

D 34

E 30

26

22

18

-48 -46 -44 -44 -44 -44 -43 -43 -43 -41 -39 -37 -34 -31 -29 -27 -25 -24 -24 -23 -15 -16 -27 -30 -34 -38 -44 -47 -50 -51 -52 -53 -51 -50 -49 -49 22

-79 -77 -75 -73 -71 -70 -68 -68 -67 -665 -4 -64 -64 -64 -63 -62 -61 -61 -62 -63 -63 -64 -66 -69 -74 -79 -82 -84 -86 -87 -88 -87 -86 -84 -81 18

175 165 156 146 135 125 115 105 95 85 75 65 55 45 35 25 15 5 5 15 25 35 45 55 65 75 85 95 1O5 11M 125 135 145 155 165 175

Table 2.15

Units are meters per second

-6 -17 -20 -13 -24 -25 -26 -27 -27 -26 -27 -27 26

w
-.4



Two-loyer Model StabilIt Parameter

Jonuory 1975

17c 165 155 145 135 125 115 105

1 2 3 3 3 3 2 1

1 2 2 3 3 4 3 3

2 2 2 3 3 4 4 3

3 4 5 5 S 5 5 4

3 S 7 8 B 7 5 4

4 8 9 9 9 7 S 4

6 6 6 S 5 4 4 4

5 1 0 -1 -I 0 3

5 0 -4 -12 -12,.-7 -5 -1

-712;-16.19 -1 -18:-9 -7

Long I tude
95 B5 75 SS 55 45 35 2515 5 5 15 25

0 0 -1 -1 0 1 2 3 4 5 5 5 5

2 1 0 0 1 2 4 5 6 7 6 6 5

3 2 1 1 1 2 4 8 7 7 6 5 4

3 3 3 3 4 4 8 8 6 5 4 3 2

3 4 6 7 8 9 9 8 5 3 1 0 -1

4 5 7 9 9 8 5 3 0 -2 -2 -3

5 7 8 8 7 5 2 0 -2 -4 -5 -5 -5

S 7 7 6 3 -1 -4 -6 -7' -8 -8 8; -6

2 3 3 i -2 -4 -7:-9 -10 -10 -9 -8 -5

-4 -9 -9-10:-12-14 -15:-10 -11: -9 -7 -5 -3

E 30 -16 -21 -24 -26 -26 -24 -22 -13 -18 -17 -18 -20 -21 -21 -20 -19 -11 -9 -6 -4 -3 -2

45 55 65 75 85 95 105 115 125 135 145 155 165 175

4 4 3 3 2 1 0 -1 -2 -3 -3 -2 -2 -1 70

4 4 4 3 2 0 -1 -2 -3 -3 -3 -2 -1 0 66

3 3 3 3 1 0 -2 -3 -3 -3 -2 -1 0 1 62

1 1 1 1 1 0 -1 -2 -3 -3 -2 -1 1 2 58

-1 -1 -1 0 0 -1 -1 -3'-3 -4 -3 -2 0 2 54

-2 -2 -1 -1 -1 -1 -2 -3 -3 -3 -2 0 2 3 50

-3 -2 -1 -1 -1 -1 -1 -2 -1 0 2 4 6 6 46

-3 -2 -1 -1 -2 -1 0 1 3 6 8 9 10 9 42

0 1 0 -2 -3 -2 0 4 8 11 13 13 12 6 38

1 0 -2 -4 -4 -3 -1 3 3 6 6 5 2 -3 34

-2 -3 -5 -7 -7 -6 -6 -11 -9 -8 -8 -10 -12 -14 30

-30 -31 -32 -33 -32 -32 -31 -31 -29 -29 -29 -29 -29 -28 -26 -24 -22 -12 -11 -11 -20 -21 -21 -22 -23 -IS -16 -16 -27 -28 -29 -29 -29 -29 -29 -29 26

-48 -48 -47 -46 -46 -46 -46 -46 -45 -44 -44 -43 -41 -39 -38 -36 -36 -37 -38 -40 -41 -42 -43 -44 -44 -45 -47 -48 -49 51 -52 -52 -52 -51 -50 -49 22

-80 -78 -76 -75 -74 -73 -73 -73 -72 -71 -70 -69 -68 -67 -67 -67 -68 -70 -72 -75 -77 -79 -80 -81 -81 -82 -83 -83 -83 -84 -65 -85 -84 -64 -83 -81 18

175 165 155 145 135 125 115 105 95 85 75 65 55 45 35 25 15 S 5 15 25 35 45 5S 65 75 85 95 105 115 125 135 145 155 165 175

Table 2.16

Units are meters per second
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the vicinity of the major winter storm tracks. The position and magnitude

of these unstable region varies slightly from year to year. The area off

the east coast of Japan had the largest values for January 1973, and 1975.

The area south of Nova Scotia was the dominant peak in January 1974. For

January 1973, both areas were noticeably weaker compared with the other

two months. A third, smaller unstable area appeared in January 1975 along

the west coast of Canada. This area was not present in the previous two

years.
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CHAPTER THREE

METHODS OF ANALYSIS

3.1 Correlation Analysis

Correlations were only performed along the latitude circles for

several reasons. Latitudinal correlations were not performed because of

the limited degrees of freedom in that direction, and because the results

are fairly obvious just by examining the data tables (i.e. peak transports

occur in mid-latitudes where baroclinic instability is the largest). Also,

latitudinal correlations were not computed because the quality of the data

was not -. good below 34*N latitude. Therefore, each of the fourteen lat-

itudes were treated separately. It is important to note that any similar-

ities between different latitude correlations must be attributed solely to

the data, so the persistence of large correlations at different latitudes

adds to the significance of the correlations.

The correlation coefficients for the 36 points around the latitude

circle was computed as follows:

r (X-Xm) (Y-Ym) (3.1)
36 Ux Cy

where r is the correlation coefficient, X and Y are the variable values,

Xm and Ym are the zonal averages of the two variables, and G x and Fy are

the individual standard deviations. The correlation coefficients were not

only computed directly, but also using spatial lags of 10 to 350 degrees

of longitude in increments of ten degrees. To better explain the use of



- 41 -

the term spatial lags, let us take an example of correlating two arrays X

versus Y. This means that we are correlating the first array X(A) with

the second array Y(k+A), where X is the longitude, and A = 0, 10, 20, ...

350 degrees longitude is the eastward shift of the second variable (spa-

tial lag). This allowed us to calculate 36 correlation coefficients for

each of the 14 latitudes, for each pair of input arrays. Since the data

along the latitude circle looped completely around the earth, there was no

lop-off error with the spatial lags.

Each January had five input arrays. By correlating each input

array with itself and the other four arrays, we obtained fifteen different

correlation coefficient arrays per year. Of the fifteen combinations, five

were autocorrelations which were used for determining the degrees of free-

dom in the data. The other ten combinations are the crux of our investi-

gation. By comparing these ten different combinations for each January,

it was obvious that the patterns were quite similar. There were some minor

differences from year to year, and we will refer to these differences as

noise. This noise may have been caused by any of a number of factors,

such as errors in data measurements or handling, or natural variability,

etc. Our data does not span a long enough period to test any explanation

for the interannual variability, so the noise is of little importance to

this investigation. To reduce the noise level, we averaged the correla-

tion coefficient arrays over the three Januaries. The averaging reduced

the peak correlation coefficients, but did not change the significance of

the important peaks, because it tripled the number of data points, thus

increasing the degrees of freedom. These averaged correlation coefficient

WOMMMM80MMOWA-
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arrays are contained in the tables and will be discussed in the next chapter.

3.2 significance Testing

The major difficulty in significance testing is determining the

degrees of freedom of the data. To determine the degrees of freedom, we

used a method prescribed by Davis (1976). In our case, the degrees of

freedom (N) are defined as

36AX
N = 3( ) (3.2)

AN

where

XN 90
---= C (Ai)C y(Xi) (3.3)

A.=-9 0

C (Xi) and C (Xi) are the autocorrelation functions for the two correlated

data arrays averaged over the three Januaries. The three in the definition

of N is present because we are averaging over the three completely inde-

pendent Januaries. Unlike Davis, we limited our spatial lags to + 90 de-

grees in order to avoid the influence of continents, which introduces a

strong wave number two component in the data. As it turned out, this pro-

cedure only slightly affected our confidence level determination. The

AN
series for XN converges very rapidly as we can see in the examples in

Figure 3.1. Because of the continental effect, we limit our discussion of

correlation peaks to those within * 90 degrees spatial lag.

Once the degrees of freedom were known, it was a simple procedure

to use the t test tables to determine the 95% and 99% confidence levels



3.5

C .... . - -... . - ----- - - - -

u 3
m
U

1.,
a 2.5-
t

i

e.
2

1.5
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Figure 3.1: Convergence of series for Am /a', fc- correlation of Model Stability
Parameter with Transient Eddy Heat Transport (Avg 1973, 1974, and 1975)
- Latitude 50*N, ---- Latitude 38*1N, (see Eq. 3.3)
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for an individual correlation. These confidence levels apply to a priori

correlation peaks. A priori correlation peaks are correlation peaks cen-

tered around zero degrees spatial lag, because correlation peaks at zero

degrees spatial lag are physically expected. Correlation peaks centered

at other spatial lags are a posteriori peaks. We are limited in our abil-

ity to test the significance of the a posteriori peaks, because we only

have three months of data. This allows us only three degrees of freedom

for these peaks, giving their 95% and 99% confidence levels as .80 and .93,

respectively. A larger data base would be necessary to fully test the

relationship suggested by peaks at finite lags.

The confidence levels for the a priori correlation peaks are listed

in Table 3.1 for the two correlations of most interest. There was no sig-

nificance testing performed for the other combinations, since preliminary

investigation showed results of little importance (Stailey, personal com-

munication). It is interesting to note from Table 3.1 that there is little

latitudinal variation in the 99% confidence level for the combination of

surface temperature gradient versus transient eddy heat transport. Lati-

tudinal variation is a little more pronounced for the model stability para-

meter versus transient eddy heat transport, and the degrees of freedom are

noticeably smaller than for the first combination. This can be explained

by the fact that the model stability parameter was smoothed longitudinally.

One final point to note is that the degrees of freedom are fewest in mid-

latitudes for both combinations. This would indicate that the variables

do not differ as rapidly with longitude as they do for the other latitude

circles.



Table 3.1: Significance Testing

Surface Temperature Gradient Two-Layer Model Stability Parameter
versus versus

Transient Eddy Heat Transport Transient Eddy Heat Transport

Degrees of 95% 99% Degrees of 95% 99%
Latitude 6A'y Freedom Confidence Confidence -'- Freedom Confidence Confidence

*N N Level Level N Level Level

70

66

62

58

54

50

46

42

38

34

2*29

1 .87

1.94

2.11

2*05

2.41

2.47

2.38

2*20

1 .84

47

58

56

51

53

45

44

45

49

59
_________ .1 _______ 1 ___________

.24

.22

.22

.23

.23

.24

.25

.24

.23

.21

.33

.30

.31

.32

.31

.34

.34

.34

.32

.30

2.94

1.88

1.90

2 .'29

2*90

3.11

3*27

3.36

3.04

2.42
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.38
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CHAPTER FOUR

DISCUSSION OF CORRELATIONS

All of the averaged correlation coefficient arrays, except for the

autocorrelations and the two trivial combinations, transient eddy heat

transport versus total eddy heat transport and stationary eddy heat trans-

port versus total eddy heat transport, will be discussed in this chapter.

The discussion will be confined primarily to the area between and including

latitudes 34*N to 70*N and + 90 degrees spatial lag, for the reasons men-

tioned earlier. Significance testing was performed on the two combina-

tions, surface temperature gradient versus transient eddy heat tranvart

and two-layer model stability parameter versus transient eddy heat trans-

port, because from baroclinic theory one expects a correlation. For these

combinations, the correlation coefficients greater than or equal to the

99% confidence level for an individual correlation are contoured with a

solid line. The other combinations are also of some interest, and for

these combinations, correlation coefficients exceeding .34 are contoured

with a dashed line. The .34 cutoff was selected because this would ap-

proximately be the 99% confidence level.

4.1 Meridional Surface Temperature Gradient versus Two-Layer Model

Stability Parameter

The results are contained in Tables 4.lA and 4.lB. The large

negative correlations are easily explained. Since U is essentially in-

. dependent of longitude, it is normalized out in the correlation process,

and in essence we are correlating the meridional surface temperature gra-

dient with the meridional mean tropospheric temperature gradient. It is not
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surprising, then, to have a strong correlation between these two quantities near

zero degrees spatial lag. The negative sign exists because of the opposite sign

convention of the two quantities. A large negative surface temperature gradient

means a strong northward decrease in temperature; whereas a large positive model

stability parameter means large baroclinic instability, which in the Northern

Hemisphere indicates a strong decrease in temperature to the North.

The strongest negative correlations occurred, on the average, at a

spatial lag of 10 to 20 degrees. This indicates that the peak baroclinic

instability occurs 10 to 20 degrees downstream (to the east) of the peak

surface temperature gradients. Obviously, this just reveals the vertical

slope of '.he mean temperature field. It is interesting to observe that

the only latitude which strongly deviates from this behavior is latitude

62*N, where the surface temperature gradients were the strongest.

Looking at the spatial lags 270 to 330 degrees, we see positive

peak correlations. These correlations appear to differ in location with

latitude; however, on the average the positive peak correlations are about

90 degrees apart from the negative peaks. This indicates that both quan-

tities have, in general, a two wave cycle around the earth, corresponding

with two major land masses and two oceans. The variation in latitude can

be explained by the variation in land and ocean distribution around the

latitude circles. At and above 58*N, the latitude circles are dominated

by land masses. This would explain the disruption in the two wave pattern

at these latitudes. The two wave pattern is clearly visible in the lati-

tudes from 42*N to 540N. South of 42*N, the continent of North America

becomes much smaller than the Asiai continent, and again the two wave pat-

tern is disrupted. Looking at the autocorrelations, this continental
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effect is most strongly evident with the surface temperature gradients.

Interannual variability is interesting in this case. The corre-

lation patterns and values are very similar for January 1973 and 1974.

The peak correlation coefficients occurred at latitude 58*N, with spatial

lags of 10 and 20 degrees. The average correlation coefficient for this

location was -.74. January 1975 was radically different, especially for

latitude 58*N. The correlations were weaker and shifted considerably

farther eastward. To explain this phenomenon, we would need a much larger

data base, but this does suggest that the relationship between these two

quantities is dependent on other variables.

4.2 Meridional Stationary Eddy Heat Transport versus Meridional Transient
Eddy Heat Transport

The relationship between the two components of the total meri-

dional eddy heat transport was investigated by using the correlation analy-

sis scheme. Tables 4.2A and 4.2B contain the results. Looking at these

tables, we see there is no strong systematic relationship between these

two components. We do have a peak in the correlation coefficients at

latitudes 34*N and 38*N with spatial lags of 10 and 20 degrees, but this

peak is weak and covering a very few points, suggesting it is not signifi-

cant. Another peak is centered at latitude 62*N with-a spatial lag of 200

degrees. The spatial lag is so large that the significance of this peak

is questionable at best. Therefore, no obvious relationship exists between

these components. Looking at the individual monthly correlations, we see

this observation supported in each case. This suggests that the position

and strength of the stationary and transient eddy heat transports are
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mainly caused by different, and unrelated factors.

4.3 Meridional Surface Temperature Gradient versus Meridional Stationary
Eddy Heat Transport

Due to the sign convention used for the surface temperature gra-

dient, a direct relationship will be indicated by a negative correlation.

This fact should be remembered whenever we are discussing a correlation

with the surface temperature gradient. Obviously, Tables 4.3A and 4.3B

indicate that there is no convincing relationship between the surface

temperature gradient and the stationary eddy heat transport. We do have

two peaks in our correlation coefficients; however, they involve very few

points and are weak. The low correlation coefficients cannot be attri-

buted to the averaging because the individual monthly correlation coeffi-

cients are small and there is no large interannual variation in the cor-

relation pattern. In general, it is interesting to observe that the cor-

relation coefficients at zero degrees spatial lag are very weak. This

indicates that for the monthly mean values the surface temperature gra-

dient peaks do not occur in the same location as the stationary eddy heat

transport peaks. A possible explanation for this observation is that the

stationary eddy heat transports are so strong and effective in alleviating

temperature differences that strong surface temperature gradients cannot

develop in their location.

4.4 Two-Layer Model Stability Parameter versus Meridional Stationary
Eddy Heat Transport

Tables 4.4A and 4.4B contain the correlation analysis. There is
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one peak in the correlation coefficients at latitude 38*N and a spatial lag

of 20 degrees. This peak contains only five points and the correlation

coefficients are weak, indicating that the importance of the peak is ques-

tionable. Looking at the individual monthly correlation arrays, we noticed

that this peak was always present. Other than this peak, no large correla-

tions appeared in the analysis. It is interesting to observe that this peak

is located in the same vicinity as the peak in the correlation analysis for

the stationary eddy heat transport versus transient eddy heat transport,

Table 4.2A. This indicates that the only place where the model stability

parameter and the stationary eddy heat transport is even slightly related is

where the stationary eddy heat transport 1 ehaves similarly to the transient

eddyheat transport. Since the peak in the correlation analysis covers such

a small'numberof points and the correlation coefficients are weak, no strong

relationship is indicated between these two quantities.

4.5 Meridional Surface Temperature Gradient versus Meridional Transient

Eddy Heat Transport

Sinceour correlation involves the surface temperature gradients, a

direct relationship is indicated by a negative correlation coefficient.

Tables 4.5A and 4.5B display alarge areaof high correlation coefficients,

located between latitudes 46*N and 70*N, and centered around 30 to 50 de-

grees spatial lag. The largest correlation coefficient, -. 73, is located

at latitude 62*N and 50 degrees spatial lag. For the individual monthly

correlation arrays, the strongest correlation was always found in this loca-

tion. The largest correlation coefficient, -. 83, was found in January 1973.

Interannual variability of the correlation coefficients is quite interesting
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inthis case. Althoughthe largest correlation coefficient always occurred

in the same location, the area of high correlation coefficients varied from

year to year. In January 1973, the area extended from latitude 46*N to

66*N. High correlation coefficients existed only at latitudes 62*N and

66*N in January 1974. No high correlation coefficients existed at lati-

tude 66*N, but they did occur for the latitudes 50*N to 62*N in January

1975. Latitude 62*N was the only latitude where high correlation coeffi-

cients existed for all three months. An interesting observation is that

the strongest correlation always occurred at the latitude where the sur-

face temperature gradient had its largest value. On the other hand, where

the trans4ent eddy heat transport was the strongest, at latitudes 42*N and

460N, the correlation was weak. This would indicate that the relationship

between these two variables is weak, and the transient eddy heat transports

may depend mainly on other factors. The positive correlation coefficients

occurring in Table 4.5B are due to the wave characteristics of the two

quantities around the latitude circles.

The contoured area of correlation coefficients in Table 4.5A is

significant at the 99% confidence level for an a priori correlation peak;

however, the area exists away from the zero degrees spatial lag. This in-

dicates that it is an a posteriori probability peak, and has only three

degrees of freedom. In that case, the 95% confidence level is for corre-

lation coefficients greater than .80. None of the correlation coefficients

are this large. The largest correlation is only at the 91% confidence

level. This does not mean that the spatial relationship does not exist,

it just indicates that the spatial zelationship is not certain. In order



- 62 -

to completely test this relationship, a larger data base would be needed.

4.6 Two-Layer Model Stability Parameter versus Meridional Transient

Eddy Heat Transport

Tables 4.6A and 4.6B display a large area of positive correlations.

Considering all the latitudes-from 34*N to 70
0N, we see that the area is

centered at zero degrees spatial lag. This indicates that it is an a priori

probability peak, and the contoured area is significant at the 99% confi-

dence level. The significance of the correlations is strengthened, since

adjacent latitudes display the same relationship. The analysis discloses

that the peak transient eddy heat transports occur at approximately the

same location as the peak baroclinic instability. This observation sup-

ports the theory that transient eddy heat transports are in part caused by

and exist to alleviate baroclinic instability (i.e. mean tropospheric tem-

perature gradients). Obviously, the analysis indicates a direct relation-

ship between these two quantities.

At latitudes 66*N and 70*N, a negative correlation peak exists at

approximately 80 degrees spatial lag. This observation can be explained

by looking over the whole latitude circle. Clearly, a two-wave pattern

exists for both quantities at these latitudes, and this observation is

supported by their autocorrelations. At latitudes 34*N and 38*N, a nega-

tive peak occurs between 290 and 310 degrees spatial lag. Again, this can

be explained by the cyclic behavior of both quantities. In this case, both

quantities have a single wave pattern around the latitude circles. Another

interesting observation is that the area of positive correlation appears

to have a slope from low latitudes with a small positive lag, to high lati-
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tudes with a small negative lag. This apparent slope is not clearly rep-

resented in all the individual monthly correlation arrays, and may be just

a result of the averaging process. Obviously, more observations would be

necessary to draw any conclusions about the validity of this apparent

slope.

The individual monthly correlation arrays are interesting in this

case.* For January 1973 and 1975, the peak correlation coefficients occur-

red at the latitude where the transient eddy heat transport had its largest

value. In both cases, the correlation coefficient was greater than .70.

This observation did not occur in January 1974. In fact, this month was

quite different, having much weaker correlations for almost all latitudes.

Perhaps this is because the transient eddy heat transports were muchweaker

in January 1974 (see Table 2.4). In general, the correlation coefficients

appear to increase when the transient eddy heat transports become larger.

4.7 Meridional Surface Temperature Gradient versus Total Meridional
Eddy Heat Transport

The result of this correlation, displayed in Tables 4.7A and 4.7B,

is one we might have expected. The correlation array appears to be simi-

lar to an average of the correlation arrays obtained with the surface tem-

perature gradient versus the two components of the total eddy heat trans-

ports. Since the stationary component displayed no clear relationship and

the transient component indicated at best a weak relationship, we should

have expected only a very weak relationship. The analysis clearly indi-

cates this logic to be true. It is interesting to observe that no differ-

ent relationships are suggested when we combine the two eddy components.
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We do have a few peak correlation coefficients; however, they reflect the

relationships already discussed. The relationship between the surface

temperature gradient and the transient eddy heat transport is greatly re-

duced, if not eliminated, when both components are considered together.

This indicates that the only relationship that exists between the surface

temperature gradient and eddy heat transports is the weak relationship

with the transient component.

4.8 Two-Layer Model Stability Parameter versus Total Meridional Eddy
Heat Transport

Tables 4.8A and 4.8B contain the correlation analysis. Again,

there is no different relationship suggested by this analysis other than

those already mentioned. The correlation array appears to be like an aver-

age of the correlation arrays obtained with the model stability parameter

versus the two components of the total eddy heat transport. In general,

the correlation coefficients are smaller than those obtained with the model

stability parameter versus the transient eddy heat transport, except at

low latitudes and small spatial lags. The reason that the correlation

coefficients are not reduced in this location is because of the similarity

between the stationary and transient components (see Table 4.2A). Thus,

the analysis indicates that the only clear relationship is between the

model stability parameter and the transient eddy heat transport.
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D 34 .13 .26 .33 .36 .37 ..9 .38 .3 .33 .29 .30 .29 .26 .19 .12 .03 :07 :19

E 30 :11 :05 .02 .02 :01 .04 .07 .11 .13 .16 .22 .27 .32 .33 .27 .19 .1o .06 .03

26 :05 :04 :02 .02 .00 .o00 01 :04 :11 :11 :05 .03 .12 .15 .1o :01 :11 416 :16

22 :02 :05 :03 .02 .04 .05 .06 .07 .05 .04 .02 .01 .00 .01 .01 :03 :05 :06 :11

18 .09 .13 .19 .24 .28 .31 .31 .30 .28 .24 .20 .14 .09 .04 :01 :05 :10 :15 :18

Table 4.8A
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CHAPTER FIVE

SUMMARY AND CONCLUSIONS

5.1 Assessment of Results

In Chapter Four, we looked for possible relationships involving

the meridional stationary eddy heat transport. The analysis indicated

that no relationship existed between the meridional stationary eddy heat

transport and the meridional surface temperature gradient. Also, no con-

vincing relationship was discovered between the stationary eddy heat trans-

port and baroclinic instability (i.e. the two-layer model stability para-

meter). This indicates that the posit' n and strength of the stationary

eddy heat transports are primarily caused by other factors, such as topo-

graphy.

The meridional transient eddy heat transports, on the other hand,

display a spatial relationship with strong meridional surface temperature

gradients. A stronger relationship was indicated by the analysis between

the transient eddy heat transport and the two-layer model stability para-

meter. This suggests that meridional temperature gradients act as a di-

rect forcing agent to the transient eddy heat transports. The two-layer

model stability parameter has a stronger relationship with the transient

eddy heat transport, and this is logical, since the model stability para-

meter reflects the average meridional temperature gradient for the tropo-

sphere. The relationship between the model stability parameter and the

transient eddy heat transport will be investigated further in section 5.2.

An interesting, but not totally unexpected observation occurred
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when we considered the total eddy heat transport. No new relationships

were suggested by the analysis, and the relationship was weaker than that

between the transient eddy component and the meridional temperature gra-

dients. The relationship was weaker because of the dissimilarity between

the stationary and transient components. The dissimilarity between the

two eddy components suggests that they are primarily caused by unrelated

factors. This indicates that it is necessary to separate the total eddy

heat transport into its two eddy components, when investigating for possi-

ble relationships.

5.2 Determining the Two-Layer Model Stability Parameter and MeridJ-.,al
Transient Eddy Heat Transport Relationship

The transient eddy heat transport had its largest values at lati-

tudes 42*N and 46*N (see Table 2.4). Looking at Table 4.6A, the largest

correlation coefficients at these latitudes occurred with a spatial lag

of ten degrees. For these reasons, we used these two locations to inves-

tigate an empirical relationship between the model stability parameter

and the transient eddy heat transport.

5.2.1' Investigating a Linear Relationship

Figure 5.1 contains a graph of the model stability parameter ver-

sus the transient eddy heat transport at latitude 42*N and with a spatial

lag cf ten degrees. In this graph, all three months of data were used.

This provided us with 108 points to determine a linear relationship. A

linear regression was performed in order to determine the best fit line.

The equation of this line was



10-

0

6. E

2.

W2 2 -

,aa

0

-6 02 .014182

Trnin Edd HetTasot(070lre/a/*lniue

Figur 5,zPo faltremnh o aiue4* n e ere pta

la*Ec iceaondapitidctsante on tta
loaton



- 74 -

F = 3.57(MSP) + 1.11

where F is the transient eddy heat transport in units of 1017 calories

per day per five degrees longitude and (MSP) is the model stability para-

meter in units of meters per second. Looking at the graph in Figure 5.1,

we see a large scatter around the line. The correlation coefficient be-

tween the two quantities was .42, indicating that only 18% of the varia-

tion of the transient eddy heat transport is accounted for by differences

in the model stability parameter.

The same calculation was performed for latitude 46*N and a spatial

lag of ten degrees. Figure 5.2 contains the graph and best fit line. The

equation of the line was

F = 4(MSP) + 1.48

The correlation coefficient in this case was .40; therefore, only 16% of

the variation of the transient eddy heat transport is accounted for by the

differences in the model stability parameter. Obviously, only a weak

linear relationship is indicated in both cases. The accuracy of the fit

is questionable because of the large scatter around the lines. It is in-

teresting to observe, however, that the equations are quite similar for

the two different latitudes.

The large scatter about the lines may be due at least in part to

the smoothing of the model stability parameter. If we had not smoothed

the model stability parameter or smoothed this parameter in a different

manner, the scatter might have been reduced. On the other hand, the scatter

may well be due to other important factors that affect the transient eddy
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heat transport. Other possible factors could not be investigated with our

present data.

5.2.2 Investigating a Power Relationship

The scatter diagrams in Figures 5.1 and 5.2 did not clearly indi-

cate a power relationship; however, our investigation would not be complete

without testing this possibility. In order to test for a power relation-

ship, we added Uc to the model stability parameter. This made all these

values positive, so a log relationship could be used. The critical wind

shear is essentially a constant with latitude and is related to the smooth-

ing distance, A0 , by Stone (1978):

U a = 368 0 2 cos 3  (5.1)

where 0 is the earth's angular velocity, a is the mean radius of the earth,

# is the latitude, and X0 is the smoothing distance in increments of five

degrees longitude. Using this equation, Uc was calculated as 11.6 meters

per second and 9.5 meters per second for latitudes 42*N and 46*N, respec-

tively. The relationship we will be testing is

F = b(MSP+U )d (5.2)
c

where F is the transient eddy heat transport, MSP is the model stability

parameter, Uc is the critical wind shear, and b and d are constankts to be

determined. Taking the log of equation 5.2, we have

log F = d log (MSP+U ) + log b (5.3)
C
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Equation 5.3 is in the form of a line, and we can perform a linear regres-

sion on log F and log (MSP+U c) to calculate the values of b and d. All of

the data points were not used in this investigation, because zero or nega-

tive values of the transient eddy heat transport could not be employed in

equation 5.3.

Figure 5.3 displays a graph of (MSP+U c) versus F for our three

months plotted on log x log paper for latitude 42*N and a spatial lag of

ten degrees. Performing a linear regression on the data, two lines were

calculated. Line 1 is the best fit line calculated by minimizing the

variation of the transient eddy heat transport about a line, and has the

equation

F = .59(MSP+U ).86
C

As before, (MSP+U c) is in units of meters per second and F is in units of

17
10 calories per day per five degrees longitude. Line 2 is the best fit

line determined by minimizing the variation of (MSP+U c) about a line, and

its equation is

-9 8.3
F = (2.6x10 )(MSP+U )

C

If there were an exact relationship between these two quantities, it would

lie between or on one of these lines. The large difference between these

two lines is due to the large scatter. The correlation coefficient be-

tween log F and log (MSP+U c) is .32, indicating that only 10% of

the variation of log F is explained by the differences in log (MSP+U ).
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A test of the scatter about each line indicated that line 2 was by far the

best fit to our data.

Figure 5.4 is a graph of (MSP+U ) versus F at latitude 46*N and a
C

spatial lag of ten degrees. Line 1 was calculated by minimizing F about a

line, and has the equation

F = .86(MSP+U )'91
c

Line 2's equation is

F = (4.29x10-5) (MSP+U )5.1
c

and was calculated by minimizing (MSP+U ) about a line. Again, a scatter
C

test was performed, and strongly indicated that line 2 was the best fit to

our data. The correlation coefficient for log F and log (MSP+U ) was .42;
c

therefore, 18% of the variation of log F is explained by differences in

log (MS'P+U c). Since the correlation between these quantities is larger

than for latitude 42*N, the uncertainty in the relationship and the differ-

ence between the two equations is smaller. The equation for line 2 above had

the best fit of the relationships determined and agrees with Held's (1978) sug-

gested fifth power dependence. Still, as in the linear investigation, the

data is not conclusive enough to give a specific relationship.

5.3 Areas for Further Investigation

As we indicated in section 5.2.1, our smoothing of the model sta-

bility parameter may have caused some of the scatter in our graphs. In

smoothing, we may have eliminated some of the variation of the model sta-

bility parameter related to the variation of the transient eddy heat trans-

port, thus decreasing their correlation. An investigation with an un-

smoothed model stability parameter or the model stability parameter smoothed
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in a different manner may prove more fruitful. Another possibility is

that the relationship may be improved by performing the same smoothing

on both quantities.

Also, the data should be investigated over a much longer time

period. Our observations could then be checked to see if they persist,

and interannual variations could be investigated. With a larger data base,

the a posteriori correlation peak between the surface temperature gradient

and the transient eddy heat transport could be investigated more completely.

Different months should also be studied, to see if the relationships

change with season.

Furthermore, a time series of the local model stability parameter

and the transient local eddy heat transport should be examined, so the

importance of time lags between the two quantities could be investigated.

We attempted to do this over a ten day period in January 1973, with our

quantities calculated every twelve hours. Since the raw data was only

measured every twelve hours, we could not separate the eddy components.

This only allowed us to compare the model stability parameter with the

total eddy heat transport. The only peak in the correlation analysis oc-

curred in mid-latitudes at small spatial lags, similar to what we discov-

ered in our previous investigation of these two quantities. The peak was

always present in this location, regardless of the time lag, so the analy-

sis provided no new insights. This result may have been caused by the

dampening effect of the stationary eddy component on the relationship be-

tween the transient eddy heat transport and the model stability parameter,

when both eddy components are added together. If we had considered a
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longer time period and calculated the transient eddy heat transport for

every two or three days, then performed our analysis between the model

stability parameter and transient eddy heat transport, we may have dis-

covered a greater insight in their relationship.

Finally, relationships between meridional eddy heat transports

and other factors should be considered. In our investigation, the corre-

lation between the model stability parameter and the transient eddy heat

transport was weak, although significant. Possibly meridional temperature

gradients are not the only important forcing agents for meridional trans-

ient eddy heat transports. Other factors that may play an imortant role

in the formation and maintenance of tr .Isient eddy heat transports are

topography, latitudinal variations of temperature, etc.



- 83 -

References

Blackmon, M.L., 1976: A climatological spectral study of the 500 mb geo-
potential height of the Northern Hemisphere. J. Atmos. Sci., 33,
1607-1623.

_, et al., 1977: An observational study of the Northern

Hemisphere wintertime circulation. J. Atmos. Sci., 34, 1040-1053.

Clapp, P.F., 1970: Parameterization of macroscale transient heat trans-
port for use in a mean-motion model of the general circulation. J.
Appl. Meteor., 9, 554-563.

Davis, R.E., 1976: Predictability of sea surface temperature and sea
level pressure anomalies over the North Pacific Ocean. J. Phys.
Oceanogr., 6, 249-266.

Defant, A., 1921: Die Zirkulation der Atmosphire in den gemassigten
Breiten der Erde. Geograf. Ann., 3, 209-266.

Haines, D.A., and J.S. Winston, 1963: Monthly mean values and spatial
distribution of meridional transport of sensible heat. Mon. Wea. Rev.,
91, 319-328.

Held, I.M., 1978: The vertical scale of an unstable baroclinic wave and
its importance for eddy heat flux parameterization. J. Atmos. Sci.,
35, 572-576.

Oort, A.H., and E.M. Rasmusson, 1971: Atmospheric circulation statistics.
NOAA Prof. Paper 5, 323 pp., U.S. Government Printing Office, Washing-
ton, D.C., 1971.

Phillips, N.A., 1954: Energy transformations and meridional circulations
associated with simple baroclinic waves in a two-level, quasi-geo -
strophic model. Tellus, 6, 273-286.

Saltzman, B., 1967: Steady-state solutions for axially-symmetric climatic
variables. Research on the theory of climate. Contract Cwb-11389,
Rept., Travelers Research Center, 1-38.

Stone, P.H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561-571.

White, R.M., and G.H. Jung, 1951: Large-scale atmospheric exchange pro-
cesses as diffusion phenomena. J. Meteor., 8, 356-358.


