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THE ROLES OF LHERZOLITE AND GARNET PYROXENITE
IN THE CONSITIUTION OF THE UPPER MANTLE

by: J. B. Reid, Jr.

Textural, major element and trace element data for xeno-
liths from Salt Lake Crater, Hawaii indicate that typical
four phase lherzolite inclusions (olivine, orthopyroxene,
chrome diopside and spinel) found worldwide in basalts are
not samples of primitive upper mantle. Rather, lherzolite
may be the recrystallized residue left after a basaltic
melt extracts the easily fused components from pre-existing
garnet pyroxenite.

Some xenoliths from Salt Lake Crater contain lherzolite
in contact with garnet pyroxenite. Previous workers have in-
terpreted these xenoliths to be fragments of deep-seated
regions where upper mantle peridotite (lherzolite) was in-
truded by a melt which crystallized to the pyroxenite assem-
blage. Textures at the lherzolite-pyroxenite contact indic-
ate that therzolite is younger, having formed from pre-ex-
isting garnet pyroxenite. Lherzolite orthopyroxene is de-
rived from both pyroxenite pyroxenes. Lherzolite olivine
has formed at the expense of pyroxenite orthopyroxene. Lher-
zolite chrome diopside and spinel originate as remnants of
pyroxenite clinopyroxene and spinel, most of which are
consumed in the transformation event.

Rare earth data support the proposed view. Application
of crystal/liquid distribution coefficients to pyroxenite
"pre-garnet" clinopyroxene REE patterns gives hypothetical
liquids unlike any Hawaiian basalt. If the pyroxenites crys-
tallized from such liquids, pyroxenite formation and the
current Hawaiian vulcanism are probably genetically unrel-
ated. Garnet pyroxenites have REE patterns capable of giving
rise to tholeiitic REE patterns on partial melting. Clino-
pyroxenes from the lherzolite and pyroxenite portions of a
single xenolith have very similar REE distributions. This
is consistent with the textural observation that the chrome
diopside forms from pyroxenite clinopyroxene. It is incon-
sistent with the view that lherzolite has been intruded by
a melt which crystallized at depth to the pyroxenite assem-
blage.

Sr isotopic data suggest: (1) some garnet pyroxenites
have developed and maintained Sr isotopic disequilibrium
for a period of time longer than the age of current Hawai-
ian vulcanism. (2) Xenoliths and host basalt have different
Sr87/Sr86 ratios, suggesting the absence of a genetic rel-
ationship.
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The similarity of lherzolite inclusions at Salt Lake
Crater to those around the world suggests that garnet pyro-
xenite, not lherzolite, may be the dominant rock in the up-
per mantle. This is in accord with geophysical evidence that
the density of the upper mantle may be greater than that al-
lowed by the pyrolite model.
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Frontespiece

Garnet pyroxenite and spinel lherzolite in contact
within a single xenolith from Salt Lake Crater, Oahu.
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ABSTRACT

Textural, major element and trace element data for

xenoliths from Salt Lake Crater, Hawaii indicate that typ-

ical four phase lherzolite inclusions (olivine, orthopyro-

xene, chrome diopside and spinel) found worldwide in basalts

are not samples of primitive upper mantle material. Rather,

lherzolite may be the recrystallized residue left after a

basaltic melt extracts the easily fused components from pre-

existing garnet pyroxenite.

Some xenoliths from Salt Lake Crater contain lherz-

olite in contact with garnet pyroxenite. Previous workers

have interpreted these xenoliths to be fragments of deep-

seated regions where upper mantle peridotite (lherzolite)

was intruded by a melt which crystallized to the pyroxenite

assemblage. Textures at the lherzolite-pyroxenite contact

indicate that the therzolite is younger, having formed from

pre-existing garnet pyroxenite. Lherzolite orthopyroxene is

derived from both pyroxenite pyroxenes. Lherzolite olivine

has formed at the expense of pyroxenite orthopyroxene. Lher-

zolite chrome diopside and spinel originate as remnants of

pyroxenite clinopyroxene and spinel, most of which are con-

sumed in the transformation event.

Rare earth data support the proposed view. Applica-

tion of crystal/liquid distribution coefficients to pyrox-

I NOWN000-



enite "pre-garnet" clinopyroxene REE patterns gives hypothet-

ical liquids unlike any Hawaiian basalt. If the pyroxenites

crystallized from such liquids, pyroxenite formation and the

current Hawaiian vulcanism are probably genetically unrelat-

ed. Garnet pyroxenites have REE patterns capable of giving

rise to tholeiitic REE patterns on partial melting. Clino-

pyroxenes from the lherzolite and pyroxenite portions of a

single xenolith have very similar REE distributions. This

is consistent with the textural observation that the chrome

diopside forms from pyroxenite clinopyroxene. It is incon-

sistent with the view that lherzolite has been intruded by

a melt which has crystallized at depth to the pyroxenite as-

semblage.

Sr isotopic data suggest: (1) some garnet pyroxenites

have developed and maintained Sr isotopic disequilibrium for

a period of time longer than the age of the current Hawaiian

vulcanism. (2) Xenoliths and host basalt have different

Sr87/Sr86 ratios, suggesting the absence of a genetic rel-

ationship.

The similarity of lherzolite inclusions at Salt Lake

Crater to those around the world suggests that garnet pyro-

xenite, not lherzolite, may be the dominant rock in the up-

per mantle. This is in accord with geophysical evidence that

the density of the upper mantle may be greater than that al-

lowed by the pyrolite model.



CHAPTER I

RESULTS OF PREVIOUS STUDIES OF LHERZOLITE XENOLITHS

Lherzolite xenoliths in basalts have been known

for over a century, yet their origin is still a matter of

considerable debate., The debate centers on whether the in-

clusions are genetically related to their host basalt, or

whether they were accidentally incorporated in the ascend-

ing magma. Several modes of origin for genetically related

xenoliths can be envisioned: cumulates, residues from par-

tial fusion, and parental material. Exotic xenoliths can al-

so be of several types including primitive upper mantle mat-

erial, residue from other melting events, cumulates from un-

related events, and crystallization of entrapped melts. Chap-

ter I summarizes some of the significant studies of these

inclusions.

Ross, Foster and Myers (1954) determined major and

minor element compositions for minerals from lherzolite xen-

oliths from widely separated localities around the world

( Hawaii, Arizona, Manchuria, California, Alaska, Mexico,

Austria, Germany and Africa ). All xenoliths analysed con-

sist of the four minerals - olivine, enstatite, chrome diop-

side and spinel. A plot showing the range in major element

composition in olivines, enstatites and chrome diopsides



is shown in Figure I-1. The remarkable result is that these

silicate minerals show very limited compositional variation

despite their geographic dispersion. The range in MgO con-

tent, for example, is less than two weight percent in oli-

vines and enstatites, and less than three weight percent in

chrome diopsides. The other major elements show similar

uniformity. The authors interpret the lherzolites' identi-

cal mineralogy and compositional uniformity to indicate that

the xenoliths represent fragments of a worldwide upper man-

tle peridotite zone. Contrary to the notion that the xeno-

liths have segregated from basaltic liquids at depth, they

note than in many inclusions, the grain size is considerably

larger than that of typical basalt phenocrysts. Also, the

Cr203 contents of the pyroxenes and particularly, the spi-

nels, are too high to have resulted from basaltic liquids

usually containing less than 0.1% Cr203. Spinels, however,

from the same xenoliths show large compositional variatian.

No interpretation of spinel heterogeneity is given. Carter

(1969) noted a similar situation in the lherzolites from

Kilbourne Hole, New Mexico. The results reported in this

paper for the Salt Lake Crater lherzolites also show non-

uniform spinels in rocks with relatively uniform olivine,

enstatite and chrome diopside. A discussion of this condi-

tion is given in Chapter II.
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The three petrological groups into which the Ha-

waiian basalts are generally classified (tholeiite, alkali

basalt, and highly undersaturated nepheline and melilite-

bearing basalts) contain distinctive xenolith suites (White,

1966). Tholeiite inclusions are small and sparse, and are

apparently agglomerations of minerals found occurring indi-

vidually as phenocrysts in tholeiites. The xenoliths in

the alkali basalt suite are more varied, and are composed

dominantly of dunite, wehrlite (olivine and clinopyroxene),

and gabbro. A number of textural and compositional features

of this xenolith group suggests they may be cumulates from

magma chambers at depth.

In the Hawaiian Islands, spinel lherzolite (oli-

vine, chrome diopside and spinel) occurs preferentially in

the late stage undersaturated basalts. White found evidence

in the lherzolites arguing against an origin as cumulates

from basaltic magma. Unlike cnimulate rocks, lherzolite xen-

oliths show remarkably restricted mineral chemistry and mo-

dal proportions. Poikilitic pyroxenes are not found in

lherzolites, and plagioclase is very rare. Glass is com-

monly found in lherzolites as the result of incipient par-

tial melting caused by the enclosing basalt. A cumulate

would not be expected to melt in the liquid from which it

crystallized without a drastic change in environment. Evi-

dence of solid state recrystallization prior to incorpora-



tion in the basalt is common (exsolution in pyroxenes, de-

formation banding in olivines and pyroxenes). White notes

the constant association of lherzolites and very undersa-

turated basalts, and considers the association as strong

evidence favoring a genetic relationship between the in-

clusions and the host rocks. Harris, Reay and White (1966)

note, however, that the undersaturated basalts are more py-

roclastic and explosive than alkali basalts or tholeiites,

and would be more likely to carry entrained fragments to

the surface. Hence, a genetic relationship, although pos-

sible, is not necessary. It is also possible that the un-

dersaturated basalts originate at greater depths than the

lherzolites and the association could be the result of the

presence of lherzolite in the path of the rapidly ascending

undersaturated basalt. The very low potassium contents of

lherzolites have beennoted by several authors (Ross et al.,

1954; Kushiro and Kuno, 1963; Oxburgh, 1964), and is felt

by White to indicate that lherzolite inclusions probably

are not fragments of the primitive upper mantle. Rather,

they are residues from fusion or fragments of infusible

parts of a heterogeneous mantle.

Recently, Green and co-workers have conducted an

extensive geochemical investigation of a selected group of

lherzolite xenoliths from Victoria, Australia. Using neu-

tron activation and gamma-ray spectrometry, Green, Morgan
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and Heier (1968) analyzed the lherzolites and-their host

basalts for K, Th, and U. They found that the lherzolites

differed little from their host rocks in Th/U, but showed

marked differences in K/Th and K/U. They state that the

large differences in K/Th and K/U can be interpreted in

one of two ways. The xenoliths either are mantle fragments

incorporated accidently in a genetically unrelated basalt;

or, if the xenoliths represent residuerelated to the host

basalt production, potassium is partitioned into the liquid

more strongly than either Th or U. The fact that the K/Th

and K/U ratios show little variation despite considerable

variation in the xenoliths' contents and relative propor-

tions of hornblende, phlogopite and apatite (accessory min-

erals with expected high K, Th or U contents), favors an

accidental origin. Glass-bearing xenoliths do not show ele-

ment ratios intermediate between glass-free inclusions and the

host rocks, suggesting that the lherzolite contents of K, Th

and U are not dominated by material absorbed from the host

basalts. Some of the lherzolites analyzed contain sufficient

U and Th to be considered possible parent material for low-

potassium tholeiites. None contains sufficient K to be pa-

rental to anything but the very low potassium tholeiites.

They are felt to be residue left after the extraction from

pyrolite of an undersaturated magma or after the selective

removal of minor incompatible elements by reaction of the
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conduit walls with a permeating melt.

Using the fission track method, Kleeman and others

(1969) analyzed nine lherzolites from the same group for

their uranium concentrations. Most of the rocks analyzed

showed incipient partial melting at contacts between the

clinopyroxene and spinel. In the glass formed at these

sites, a second clinopyroxene with euhedral outline is found

apparently crystallized from the liquid formed from the ori-

ginal spinel and clinopyroxene. A clinopyroxene-liquid dis-

tribution coefficient for uranium can be determined from

the measured uranium concentrations. When the coefficient

is applied to the uranium content of the unaltered original

clinopyroxene, hypothetical liquids result having uranium

contents 10-100 times the levels found in basalts. This

observation is interpreted as evidence that the lherzolites

containing these high uranium clinopyroxenes are samples of

primordial upper mantle material. A pyrolite upper mantle

containing 15-20% high uranium clinopyroxene could give

rise to the uranium contents found in various basaltic rock

types, when partial melting percentages previously proposed

for those rock types by Green and Ringwood (1967) are applied

to the parent pyrolite composition. Other lherzolites from

Victoria show primary clinopyroxene uranium contents on the

order of a few tens of parts per billion; these are inter-

preted as possible residue from partial melting processes

at depth.
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Cooper and Green (1970) reported the results of a

lead isotopic study of lherzolites from the same suite.

They found that the host basalts have Pb206/Pb204, and

Pb208/Pb204 ratios with small but real variation, while

the corresponding lherzolite ratios show greater varia-

bility. The lherzolite ratios range from basanite values

to ones depleted in radiogenic Pb206 and Pb208 relative to

Pb204. Although the variation could possibly be explained

by mixing different proportions of basanite lead and the

end-member lherzolite lead, it is inescapable that the

lherzolites and basanites show clearly different lead iso-

topic compositions. They must, therefore, have come from

different immediate source areas in the upper mantle. The

data preolude a genetic relationship between the peridotites

and the basalts.

A number of studies of the strontium isotopic com-

positions of lherzolites and their host rocks have been made.

Most conclude that the lherzolites are genetically unrelated

to their host rocks. Leggo and Hutchison (1969) found lher-

zolite inclusions from the Massif Central, France, having

generally higher and more variable Sr8 7/Sr86 ratios than

their hosts. They proposed that those with the highest

ratios may have been derived from a zone similar to alpine

peridotites (characteristically having high Sr87/Sr86 ratios),

while those with lower 87/86 ratios may be derived from a
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postulated pervasive upper mantle peridotite zone. The

dissimilarity in Sr isotopic composition between host and

inclusions is interpreted as excluding a cognate origin

fQr the lherzolites. Stuaber (1969) has analyzed a whole-

rock lherzolite inclusion, from Camperdown, Australia, and

its constituent olivine, enstatite and chrome diopside,

for their Rb, Sr, and Sr87/Sr86 contents. He found that

the data form an isochron plot with a definitely non-zero

age. Since the basalt containing the lherzolite is Pleis-

tocene to Recent, the measurably non-zero age for the in-

clusion is strong evidence for an accidental origin. Stue-

ber and Murthy (1968) were the first to report a strontium

study of ultramafic rocks, and found similar Sr87/Sr86 ra-

tios in the inclusions and their hosts. Such a result is

equivocal in choosing between a cognate and an accidental

origin for the inclusions.

Kuno (1969) has analyzed lherzolite and garnet py-

roxenite samples from Salt Lake Crater, Hawaii, for their

major elements. In contrast to other authors (e.g., Ross

et al., 1954) who have stressed. the uniformity of lherzolite

inclusions, Kuno notes the variation in lherzolite chemistry.

They range in MgO/FeO from 6.0 to 2.3, and show systematic

variation of the other major elements with the MgO/FeO ratio.

He considers the lherzolites fragments of a worldwide upper

mantle peridotite zone. Their variation in composition may
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have been produced by crystal settling in the past, though

the estimated composition of the parent melt is unlike any

known mafic magma. Kuno suggests that the lherzolites with

low MgO/FeO ratios are the potential source of basaltic mag-

mas, and that others may be residual. Ringwood's pyrolite

has a composition comparable to an intermediate member of

the Hawaiian lherzolite series (Fig. 11-19).

The garnet pyroxenites are considered basaltic

melts which have been trapped at depth and have undergone

subsolidus recrystallization on cooling to their present

assemblages. The compostional variation shown by pyrox-

enites is distinct from the variation in the lherzolite

series. Kuno, however, does not stress the observation

that together, the lherzolites and pyroxenites form smooth

and often linear compositional trends with the pyroxenite

group as one end member. The possible significance of this

continuity in composition between the two groups is consi-

dered in Chapter II.

Carter (1969) has determined major element compo-

sitions for spinels from lherzolite and pyroxenite inclu-

sions from Kilbourne Hole, New Mexico. Pyroxenite spinels

are Al-rich and Cr-poor, and homogeneous. Lherzolite spi-

nels have widely varying composition within a given xeno-

lith, from relatively Al-rich to Cr-rich. He attributes

the wide range in lherzolite spinel composition to their
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crystallization over a wide range of temperatures or oxygen

fugacities. Another possible explanation proposed is the

existence of a large solvus in the spinel prism. Although

there is a solvus along the hercynite-magnetite join below

8600C (Turnock and Eugster, 1962), formation temperatures

of these xenoliths were probably higher (950-1000 0C), based

on.typical lherzolite clinopyroxene composition data. Fur-

ther, there is no indication of a solvus along the spinel-

picrochromite join - the join near which all Kilbourne Hole

spinel compositions lie (Muan and Soyima, 1959). The data

of Carter's study compare very closely to spinel composi-

tions from lherzolite and pyroxenite xenoliths from Salt

Lake Crater (Fig. II-9Iof this study) and hence may be re-

lated in the manner proposed in subsequent chapters for the

Hawaiian inclusions.

Jackson and Wright (1970) have determined major

element compositions for xenoliths and host basalts from'

the Honolulu Series, Hawaii. They find two potential pa-

rent-residue pairs in the xenoliths which may be related

to the generation of the Honolulu basalts. (1) Pyroxene-

rich lherzolite -+ olivine-rich lherzolite + basalt; and

(2) spinel-bearing garnet websterite + garnet websterite +

basalt. Neither parent material contains sufficient Ti0 2 ,

K20 nor P205 to account for the basalt levels of these ele-

ments, which may be provided through selective leaching of

I IMMMMMMk*
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the wall rock. No xenolith pairs can account for the pro-

duction of tholeiite in the manner: "parent = basalt + re-

sidue". Either the parent material for tholeiites has been

entirely consumed, or a multistage process is necessary.

Garnet lherzolite, a relatively rare xenolith type, is con-

sidered the best parent for the tholeiites.

The following chapters consider the contact between

lherzolite and pyroxenite in Salt Lake Crater bimodal xeno-

liths. Chapter II describes textural and major element da-

ta; Chapter III and Chapter TV consider the contributions

of rare earth and strontium isotopic data respectively to

an understanding of the contact relationship.
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CHAPTER II

PETROGRAPHIC RELATIONSHIPS IN SALT LAKE CRATER XENOLITHS

CONTAINING LHERZOLITE AND GARNET PYROXENITE IN CONTACT

Introduction

Jackson (1966, 1968) has shown that the xenolith

suite at Salt Lake Crater, Hawaii, has a basically bimodal

distribution. One group of inclusions is typical spinel

lherzolite of the type discussed in Chapter I. Occurring

in nearly equal volume are inclusions of garnet pyroxenite,

consisting mainly of clinopyroxene and garnet, with smaller

amounts of orthopyroxene, spinel, olivine, and often phlo-

gopite. A small proportion of inclusions contain the two

materials intimately associated within a single hand spe-

cimen. Jackson was first to mention these two-assemblage

rocks. Kuno (1970) reports major element compositions for

associated lherzolite and garnet pyroxenite from such a

xenolith. He interprets the lherzolite as a fragment of

the pervasive upper mantle peridotite zone intruded by a

melt which crystallized at depth to the pyroxenite assem-

blage. Jackson and Beeson (in press) note that lherzolite

minerals exhibit abundant deformation banding, while asso-

ciated pyroxenites do not. They do not elaborate, but con-

sider this observation evidence that the lherzolite was
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deformed prior to its association with the pyroxenite, and

hence that it predated the pyroxenite.

The petrography of these two-assemblage xenoliths

is reported in three parts. Sections 1 and 2 describe the

pyroxenite and lherzolite as they appear in regions well

removed from the contacts separating them, and a third sec-

tion is devoted to the appearance of the contact regions

themselves.

1. Lherzolite Portions

A petrographic description of lherzolites from the

Hawaiian Islands and from some localities in the western

U.S. is given by White (1966, p.263). The lherzolites in

this study are similar to the Hawaiian lherzolites of White's

study.

Wholly lherzolite xenoliths show a granoblastic

fabric of large, fresh, roughly equant olivine anhedra,-

with smaller amounts of enstatite, chrome diopside and

spinel. As described by White, the orthopyroxene occurs

in part as large porphyroblasts characterized by rela-

tively small amounts of clinopyroxene exsolution along

(100), and by ordered exsolution of thin euhedral flakes

of spinel. Small rounded olivine blebs commonly occur

within the large enstatites, and small rounded orthopy-

roxene blebs are found enclosed by olivine. Some includ-



18.

ed blebs of each extinguish together within a- single host

grain of the other, though many do not. Interstitial to

the large orthopyroxenes and olivines, are smaller grains

of the same minerals, and it is commonly found that small,

rounded neighboring grains of enstatite separated from one

another by olivine do extinguish together. The suggestion

is that they may be parts of a formerly larger contiguous

orthopyroxene grain. Chrome diopside is generally less

abundant than enstatite, and is often found closely asso-

ciated with or entirely enclosing grains of spinel (Fig.

II-1). The spinel is generally fine grained and ameboid

in shape, although small euhedral spinels are sometimes

found enclosed by chrome diopside, and enstatite as well.

Spinel color ranges from greenish-black to reddish brown,

in transmitted light. Pyroxene grain size in the inter-

growths around spinels is generally smaller (0.1 to 0.3

mm) than the average (1 to 5 mm). Exsolution in chrome

diopside is minor, and occurs as thin lamellae, in con-

trast to the advanced exsolution in pyroxenite clinopy-

roxenes described in a later section.

Contacts between minerals are generally very sharp,

with little crack-filling material between mineral grains.

An exception is the observation that the chrome diopside

commonly displays a "spongy" periphery (Fig. 11-2) result-

ing from patterns of tiny inclusions of a black isotropic
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Figure II-1: Chrome diopside enclosing spinel. (Lherz-
olite portion of R7444; view in reflected light of a
polished surface.)
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Figure II-2: Lherzolite chrome diopside (cpx) in R7444
showing peripheral inclusions of tiny glass beadlets.
(plane polarized light)
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material whose index of refraction is lower than that of the

clinopyroxene. The chrome diopside extinguishes uniformly

through such material, which appears to be clusters of glass

beadlets showing no optical evidence of altering the host

pyroxene. White (1966) and Wilshire and Binns (1961) have

reported similar peripheral material in chrome diopsides.

In the Australian lherzolites of the latter study, the

spongy material appears to be decomposed glass. White

found the clinopyroxene depleted in Na and Al in regions

near the glass droplets. In the Hawaiian lherzolites, nar-

row trains of similar glass beadlets are found in the oli-

vine and orthopyroxene. They appear to be fluid droplets

trapped along fractures which have since healed. The oli-

vine, and orthopyroxene, like the chrome diopside, show no

optical evidence of alteration by this material.

The compositions of spinel grains found intersti-

tial to pyroxenes show remarkably high variation in Cr203/

A1203 even among spinel grains within a single xenolith.

Wide range in spinel composition is a feature both of near-

contact lherzolite material (R7444, Table II-1), and xeno-

liths showing no attached pyroxenite (R7397, Table 11-2;

also Ross, Foster and Myers, 1954; Carter, 1969). Ortho-

pyroxene grains with enclosed spinels have higher alumina

contents (based on qualitative probe scanning) than neigh-

boring grains with no spinel inclusions. The unusual fea-



TABLE II-1. Major element compositions for 4 separate spinel grains from the

lherzolite

1

portion of R7444

2

(Wt.%); Total iron

3

as FeO.

4

15.60(±0.48) 15.50(±0.51) 1.6.81(±0.55) 17.00(±0.48)

48.55(±1.50) 47.75(±1.84) 46.96(±1.85) 52.83(±1.92)

17.04(±1.35) 15.25(±0.48) l'5.38(±0.49) 1-1.74(±0.38)

17.51(±0.20) 21.57(±0.26) 21.99(±O.26) 20.45(±0.24)

98.70 100.07 101.14 102.02

0.351 0.319 0.328 0.222

MgO

A1 203

Cr20 3

FeO

TOTAL

Cr 2 0 3

A1 203



TABLE 11-2. Major element compositions for 5 separate

lherzolite portion of R7397 (Wt.%); Total

spinel grains from the

iron as FeO.

1 2 3 4 5

19.55(±0.45) 20.49(±0.341) 20.29(±0.41) 19.05(±0.52) 19.66(±0.45)

49.36(±1.83) 55.20(±1.90) 50.47(±1.84) 46.02(±1.79) 47.92(±1.83)

18.02(±0.31) 12.56(±0.23) 15.03(±0.26) 21.66(±0.36) 17.51(±0.30)

12.63(±0.16) 11.73(±0.15) 12.35(±0.16) 13.46(±0.17) 12.81(±0.16)

99.56 99.98 98.14 100.19 97.90

0.365 0.228 0.298 0.471 0.365

MgO

Al 2 0

Cr 2 0

FeO

TOTAL

Cr 2 03

A1 2 0 3
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ture of wide compositional variation in spinels associated

with rather uniform silicates and the presence of deforma-

tion textures in lherzolite, while not in pyroxenite, are

considered in detail in a later section, for their bearing

on an understanding of the relative ages of the lherzolite

and pyroxenite.

2. Pyroxenite Portions

The pyroxenites as a group show greater variation

in the relative proportions of their constituent minerals

than do lherzolites, yet all the observed pyroxenites share

a common set of textures. These textures have recorded a

large amount of information concerning the rocks' subsolidus

histories.

Pyroxenite mineralogies are dominated by two alu-

minous pyroxenes, with clinopyroxene generally more abundant

than orthopyroxene (Jackson and Wright, 1970; Beeson and

Jackson, in press). Pyroxene constitutes between 60 and

80% of the rock, with the remainder consisting of pyrope-

rich garnet, green aluminous spinel, and generally a small

proportion of olivine with a higher fayalite content than

lherzolite olivine (White, 1966). Small flakes of phlogo-

pite and blebs of amphibole are present in trace amounts

in most pyroxenites, along with traces of pyrrhotite and

ilmenite.
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Within a given inclusion, clinopyroxenes vary con-

siderably in grain size, in turbidity, and degree of ortho-

pyroxene exsolution. Large clinopyroxenes have irregular

anhedral shape, and owe their rather turbid appearance to

abundant trains and patches of glass droplets, to tiny dis-

crete grains and exsolution patterns of a dark green-brown

spinel, and to the presence of small amounts of included

phlogopite and amphibole. Large amounts of exsolved ortho-

pyroxene characterize the large clinopyroxenes, as noted by

Yoder and Tilley (1962), Jackson and Wright (1970) and Bee-

son and Jackson (in press). The exsolution is initially

lamellar, but grains showing advanced orthopyroxene exso-

lution have developed a complicated and often "zebra-like"

myrmekitic pattern (Fig. 11-3).

Beeson and Jackson have determined the major ele-

ment chemistry of exsolved orthopyroxenes and their host

clinopyroxenes in four pyroxenite xenoliths from Salt Lake

Crater. Using the relative modal proportions of exsolved

and host material within single pyroxene grains, they have

reconstructed the compositions of clinopyroxenes prior to

the exsolution of orthopyroxene. When the reconstructed

compositions are plotted on the 30 kb enstatite-diopside

solvus (Davis and Boyd, 1966) they show equilibration tem-

peratures between 1300 and 14000C (Fig. 11-4). As Beeson

and Jackson note, this temperature range is not necessarily
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Figure 11-3: Pyroxenite clinopyroxene (in R7399-SLC6)
showing abundant exsolution of orthopyroxene from host
clinopyroxene. Exsolved orthopyroxene appears light;
host clinopyroxene dark.
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that of the initial equilibration of the pyroxene, but re-

presents a minimum temperature estimate of the oldest envi-

ronment recorded in the rocks' present textures. If the

initial crystallization took place at higher temperatures

but was followed by exsolution which formed separate ortho-

pyroxene and clinopyroxene grains, the rock would have a

similar appearance. (Salt Lake lherzolite chrome diopsides

have very little exsolved orthopyroxene and show equilibra-

tion temperatures about 950-10000 C [Fig. II-4; Table II-3]).

Beeson and Jackson have also plotted the measured composi-

tions of exsolved orthopyroxene blebs, and their clinopy-

roxene hosts on the same diagram and have found a re-equil-

ibration temperature range of 1080-11500C for the pyroxen-

ites. Whether the measured and reconstructed compositions

represent a cooling history along the solvus (Beeson and

Jackson) or the spinodal as suggested by Wones (personal

communication, 1970) is debatable. It is clear in either

case that the pyroxenite textures have recorded a history

involving temperatures considerably higher than the mate-

rial had at its time of incorporation into the Salt Lake

eruption. The lherzolite shows.no evidence of such a high

temperature past. The effect of Fe on the En-Di solvus

has been studied by Green (unpublished data; personal com-

munication, T. R. McGetchin, 1970). The positions of the

solvus for clinopyroxenes with two Fe contents are shown
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TABLE 11-3. Partial major element analyses for chrome

diopsides from R7404, and from lherzolite

portion of R7444.

Si02

A1 203

FeO

MgO

CaO

TiO 2

Cr 2 0 3

MnO

Na 2 0

R7404

47.61

4.23

3.53

15.60

20.08

0.80

1.71

0.10

1.87

R7444

51.47

4.93

3.31

14.53

19.66

0.15

1.05

0.13

1.66

TOTAL 95.53 96.89

mol fraction
0.960 0.985

Ca/(Ca + Mg)

MgO 0.823 0.814
TeU+MgO
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Figure 11-4l: Compositions of pyroxenite and iher-
zolite clinopyroxenes plotted on the En-Di solvus
(Davis & Boyd, 1966). Solid triangles are lherzo-
lite chrome diopsides (this study). Open circles
and solid squares are for pyroxenite clinopyroxenes
from Beeson 9 Jackson, in press (see text). Dashed
solvi are for Fe/(Ca+Ng+Fe) =0.0641 and 0.12 (D.H.
Green, unpublished data; personal communication, T.
R. McGetchin, 1970).
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as dashed lines in Fig. II-4. The upper solvus corresponds

to Fe/(Ca+Mg+Fe) = 0.064, a value typical of lherzolite

chrome diopsides. The lower solvus is for typical pyrox-

enite clinopyroxenes with.Fe/(Ca+Mg+Fe) = 0.12. The dif-

ference between initial pyroxenite clinopyroxene crystalli-

zation temperatures and the corresponding lherzolite chrome

diopside temperatures is lowered by this consideration.

The distinction, itself, that pyroxenites contain evidence

of a high temperature past, and that lherzolites do not,

remains unchanged.

Smaller clinopyroxene grains occur in the same

rocks, but are considerably less turbid in general. They

show little or no orthopyroxene exsolution, and have sharp-

er and more rounded outlines. These grains may represent

a more advanced stage of exsolution - one involving the

formation of separate ortho- and clinopyroxene grains,

rather than blebs of exsolved orthopyroxene within contig-

uous clinopyroxenes. This hypothesis is supported by the

observation that neighboring small orthopyroxene grains

often extinguish in unison, despite being separated from

one another by clinopyroxene.

Amphibole and phlogopite occur in trace amounts,

and often together within a single pyroxene grain. They

almost invariably show the same relationship to the pyrox-

ene host. Both hydrous phases are found either at the
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contacts between exsolved blebs of orthopyroxene and their

host clinopyroxene, or at the edges of exsolved clinopyrox-

ene in orthopyroxene. This constant association suggests a

secondary origin for the mica and amphibole. Although in-

conclusive in some cases, orthopyroxene rather than clino-

pyroxene seems to be preferentially replaced.

The degree Qf turbidity in the orthopyroxenes seems

to increase less with grain size than in clinopyroxene, and

for grains of a given size, orthopyroxene is less turbid

than clinopyroxene. Compared with clinopyroxene, orthopy-

roxene shows considerably less exsolution, as would be ex-

pected from the small temperature dependence of composition

of enstatite coexisting with diopside (Davis and Boyd, 1966;

Fig. 11-4). The exsolution is largely confined to thin la-

mellae along (100), although these lamellae broaden in

places to become subhedral blebs of clinopyroxene. Recon-

structed original orthopyroxene compositions are not very
I

useful in specifying ancient temperature environments be-

cause the enstatite limb of the solvus is nearly vertical.

Other than tiny flakes and grains of spinel which

occur as exsolution and inclusions within the pyroxenes,

all pyroxenite spinels occur as large, irregular anhedra~

(up to 3 mm), ranging in color from olive green to black.

The spinels are always separated from pyroxene by rims of

garnet (Fig. II-5)(Green, 1966; Jackson and Wright, 1970;

Beeson.and Jackson, in press). Partial rims of olivine
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Figure II-5: Garnet coronas surrounding corroded spinels.
Clinopyroxene encloses the garnet. ( H is a hole in the
thin section.)
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are found around the garnet in a few cases. Garnet is also

found as rounded blebs exsolving directly from pyroxene.

Most exsolved garnet in clinopyroxene appears superimposed

upon earlier orthopyroxene exsolution lamellae and blebs.

Garnet rarely exhibits clear outlines against neigh-

boring grains. At garnet-clinopyroxene contacts, material

is found ranging in color from amber to black, which inva-

riably has an index of refraction less than the pyroxene or

the garnet. Under crossed polars, this material ranges from

isotropic to fibrously birefringent, and in many cases leaves

little of the garnet unaffected (Figs. 11-6, 11-7). Amber

material has a composition determined with the electron mi-

croprobe, which is similar to the garnet composition, except

for the possibility of a slight enrichment in the K20 (Table

11-4). Black regions, generally showing more complete con-

sumption of the garnet in thin section, are also similar to

the garnet in composition, and also show excess K20. The

analyses must be improved, as discussed in Chapter VI. Both

from textural and compositional standpoints, the melt is

composed to a very large degree of garnet, with relatively

little of the clinopyroxene being involved. In the large

garnets surrounding corroded spinels, amber glass has formed

along cracks, leaving fresh, unaffected garnet in the re-

gions between the cracks (Fig. 11-6). The suggestion is

that melting has been initiated by the introduction of a



Figures 11-6 & 11-7: Appearance in plane polarized
light (II-6),and under crossed polars (11-7) of
a partially melted garnet corona in R7444 garnet
pyroxenite. Note melting occurring preferentially
along fractures, leaving fresh garnet in between.
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TABLE 11-4. Partial major element analyses for garnet and

glass in the pyroxenite portion of R7444.

Typical Salt

Lake garnett

41.26

23.16

13.29

17.89

4.87

0.23

101.38

Amber glass

38.01

22.34

10.28

15.95

5.03

0.25

0.04

91.90

Black glass

41.52

22.08

11.11

17.03

L. 77

0.17

0.09

96.77

*
The low sums for columns 1 and 3 are probably due to

improper beam focusing, used inadvertently in early

analyses.

t From Beeson and Jackson (in press) 68-SAL26 "reacted

from spinel".

Garnet

SiO 2

A1203

FeO

MgO

CaO

Cr 2 0 3

K2 0

TOTAL

38.00

21.76

10.85

14.98

4.84

0.13

<0.01

90.57
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vapor or liquid along fractures, rather than by the addition

of the heat needed to reach the pyroxenite's dry solidus.

This notion is reinforced by the observation that the ex-

solution record of a long- subsolidus cooling history is

retained in rocks showing evidence of having undergone par-

tial melting.

3. Textures at the Pyroxenite-Lherzolite Contact

Within c. 5 mm of the lherzolite-pyroxenite contact

(hereafter referred to -as the L-P contact), the lherzolite

has a somewhat different appearance. The most striking dif-

ference at first glance is the much larger amount of inter-

granular material and included glass droplets in the lherzo-

lite near the L-P contact. Aside from having more included

glass, olivines differ relatively little in appearance in

nearing the L-P contact. The largest difference is displayed

by the chrome diopside. Near the contact, it is strongly

turbid; glass droplet trains and fringes are especially well

developed, and patterns of exsolved spinel euhedra (a fea-

ture rarely found in lherzolite far from the contact) are

common. The clinopyroxene is noticeably less green, is more

abundant modally, and shows a higher degree of orthopyroxene

exsolution. The large orthopyroxenes also show considerably

more exsolved spinel and included glass droplets as the L-P

contact is neared. Spinel is characteristically found in
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close association with or totally enclosed by-clinopyroxene

and clinopyroxene-orthopyroxene intergrowths, as in lherzo-

lites in general. The modal abundance of spinel seems to

decrease with distance from the L-P contact. Qualitative

electron microprobe analyses have shown that Mg/Fe in lher-

zolite olivines varies with distance from the L-P contact.

Count ratios for Mg/Fe are shown for olivine and chrome diop-

side grains in R7444 lherzolite in Table 11-5 and Table 11-6.

Olivine compositions are more Fe-rich at the contact. Chrome

diopsides show no systematic variation in Mg/Fe in this pre-

liminary investigation.

A striking texture at the L-P contact involves

spinel (Fig. 11-8). The figure shows a spinel grain exactly

astride the L-P contact in R7444-SLC48. The portion on the

left (in the pyroxenite portion) is a green aluminous, low

Cr spinel, identical in appearance to other spinels occurring

within the pyroxenite portion. The amber to black material

surrounding the green part of the spinel grain is the glass

formed from a thin garnet corona in the manner described in

the previous section. The glass, in turn, is surrounded by

the pyroxenite clinopyroxene. Toward the right, the spinel

changes color through deep brown to black, with a garnet

corona being absent from these portions of the spinel grain.

Chrome diopside is found partially enclosing the black por-

tions of the spinel, in a manner similar to regions in
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TABLE 11-5. X-ray counts (90 sec.) from Mg and Fe spectro-

meters for 7 olivine grains in R7444L as func-

tions of distance from the L-P contact.

Mg/Fe

1.545

1.589

1.589

1.574

1.773

1.807

1.739

Distance from contact

less than 1 mm

about 5 mm

TABLE 11-6. X-ray counts (90 sec.) from Mg and Fe spectro-

meters for 5 chrome diopside grains in R7444L

as functions of distance from the L-P contact.

Mg/Fe Distance from contact

11042 6428 1.717 less than 1 mm

10739 6435 1.668 "

10205 6079 1.678 about 3 mm

10688 5334 2.003

10534 5967 1.765 about 5 mm

Mg

31262

33044

32778

32119

33867

34355

33726

20236

20789

20626

20410

19099

19007

19393
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Figure 11-8: Appearance of a spinel grain astride
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text)
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wholly lherzolite xenoliths. Microcrystalline chrome diop-

side grains are found within the black spinel, a feature

found very rarely farther within the lherzolite. Electron

microprobe analyses of both types of spinel grains near the

L-P contact in R7444-SLC48 (Table 11-7) show the green py-

roxenite spinel to be homogeneous with a composition about

(Mg.82Fe. 18 )(Al. 8 9Fe.OgCr. 02)20 4 . The black grains are

heterogeneous, and considerably richer in Cr203 and poorer

in A1 203 than the green spinel. Table II-8 and Fig. II-9

show the variation in Cr203 , A1203 , and Fe203 for spinels

(assumed ideal) in the pyroxenite and lherzolite portions

of R7444-SLC48. The noteworthy feature is that the two

groups of spinels follow a smooth trend taken together.

Carter (1969) has analyzed spinels from a group of lherzo-

lites and pyroxenites from Kilbourne Hole, New Mexico, and

has found a nearly identical distribution in spinel compo-

sitions from green low-Cr spinels to brown-red high-Cr spi-

nels in the lherzolites. The superposition of the Salt

Lake Crater and Kilbourne Hole spinel data (Fig. 11-9) sug-

gests that whatever process related the lherzolites and py-

roxenites at Salt Lake Crater, a similar process has pro-

bably been active in the development of the material found

as inclusions at Kilbourne Hole.

Two types of pyroxene grains appear along the L-P

contact. Figs. II-10 and II-11 show the appearance in plane



TABLE 11-7. Major element analyses for spinels from the pyroxenite and lherzolite

portions of R7444.

Pyroxenite spineZs Lherzolite

1 2 3

22.06 22.94 20.60

57.75 57.78 57.12

2.28 2.16 2.46

14.49 13.61 14.26

96.58 96.49 94.44

1 2 3 4

15.60 15.50 16.81 17.00

48.55 47.75 46.96 52.83

17.04 15.25 15.38 11~.74

17.51 21.57 21.99 20.45

98.70 100.07 101.14 102.02

MgO

A1 203

Cr,2 03

FeO

TOTAL

spineis
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TABLE 11-8. Calculated molecular percentages of trivalent

cations in spinels from lherzolites and pyrox-

enites from Salt Lake Crater. For calculation

purposes, spinels were assumed ideal (R0 R203)-

Source

R7444

Pyroxenite

R7444

Lherzolite

R7397

Lherzolite

Fe+3

9.86

9.50

8.25

2.39

6.40

8.77

5.88

3.16

2.52

4.42

3.62

3.87

Al+ 3

87.82

88.19

89.17

79.02

77.09

74.79

81.91

70.00

84.58

79.66

73.25

77.52

Cr+3

2.32

2.30

2.58

18.59

16.51

16.44

12.21

25.55

12.90

15.91

23.12

18.61

Now-
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Figure 11-9: Mole fraction of Fe203 , A1 203 and Cr203 in

spinels from pyroxenites and lherzolites from Kilbourne Hole

and Salt Lake Crater. Tie lines connect spinels from single

xenoliths. Dashed tie line is for R7444-SLC48.



polarized light and under crossed polars respectively of a

Type I pyroxene grain astride the L-P contact in R7629-SLC76.

In Fig.II-10, it is seen that the left side of the grain

(the part in the pyroxenite) is more turbid. Under crossed

polars (Fig. II-11), the turbid portion of the grain is

found to be clinopyroxene with a high degree of orthopyrox-

ene exsolution. Theclearer part of the grain (in the lher-

zolite) is entirely orthopyroxene, and is crystallographi-

cally continuous with the orthopyroxene exsolution in the

turbid pyroxenite portion of the grain. The portion of the

grain which is entirely orthopyroxene shows undulatory ex-

tinction and deformation banding, neither of which are dis-

played by clinopyroxene portion of the same grain.

A second type of pyroxene grain (Type II) is en-

tirely orthopyroxene. The portions of these grains lying

in the pyroxenite portion are again more turbid, and con-

tain exsolved spinel and clinopyroxene. Their appearance

is very similar to orthopyroxene grains well.within the py-

roxenite. The portions of these grains in the lherzolite,

are less turbid, and contain little or no exsolution of ei-

ther kind (Fig. 11-12). Rounded olivine grains are found

both as inclusions and embayments in the portions of these

orthopyroxene grains within the lherzolite. In some in-

stances, single olivine grains along the L-P contact se-

parate small orthopyroxene grains all of which extinguish
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Figure II-10: Appearance in plane polarized light
of a "type I" pyroxene grain astride the lherzolite-
pyroxenite contact (R7629-SLC76). (Figure II-11
shows the same grain viewed under crossed polars.)
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Figure II-11: Appearance under crossed polars of
a "type I" pyroxene grain astride the lherzolite-
pyroxenite contact. (Figure II-10 shows the same
grain in plane polarized light.)



Figure 11-12: Appearance of a "type II" pyroxene grain
astride the lherzolite-pyroxenite contact (R7629-SLC76).
The contact runs vertically'through the middle of the
photograph, with the pyroxenite portion on the left, the
lherzolite on the right.
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in unison and have the same interference figure (Fig. II-

13). The suggestion is that the orthopyroxene grains are

parts of a formerly larger contiguous grain, which may have

been partially consumed in the growth of the intervening

olivine.

Interpretation of the Textures

The goal of the textural study has been to recon-

struct the histories of the rocks. The discussion which

follows considers the history of the pyroxenites separately,

and then evaluates the three possible age relationships be-

tween the pyroxenite and the lherzolite.

1. Petrologic Histories of the Pyroxenites

Green and Ringwood (1967) have studied the stabi-

lity fields of aluminous peridotite in the pressure range

10-40 kb. Although the pyrolite composition differs con-

siderably from a pyroxenitic composition, their experiments

were performed with materials having a pyrolitic composi-

tion less 40% olivine, for ease in identification of pro-

ducts. Olivine shows very limited solid solution with py-

roxene; thus, olivine need only be present but not necess-

arily in the pyrolitic proportion (about 60%) for the re-

sults to be applicable to the pyrolitic composition. The
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Figure 11-13: Near-contact olivine grain separating
three small orthopyroxene grains, which extinguish
in unison (see text).

I



50.

material actually analyzed by Green and Ringwood has a more

nearly pyroxenitic composition (Table II-9)and as seen in

Fig. 11-18 other Salt Lake pyroxenites (Kuno, 1969) have

rather similar compositions.

Fig. II-14 is a reproduction of the temperature-

pressure diagram determined for pyrolite III by Green and

Ringwood. If the same diagram applies to the pyroxenitic

material from Salt Lake Crater, limitations can be placed

on the pressure and temperature regimes from which these

inclusions came. (The corrected pyrolite composition has

a higher Cr203/Al20 3[0.ll3] than pyroxenite E0.043]. The

effect of this difference [MacGregor, in press] is to move

subsolidis boundaries about 1.5 kb lower for the pyroxenite,

than for the pyrolite to which the diagram applies.)

None of the pyroxenites contains primary plagio-

clase. (In regions of advanced formation of melt from the

garnet, small plagioclase laths are occasionally found in

a microcrystalline aggregate along with abundant opaques.

These probably formed along with the more common glass at

or near the surface.) At pressures less than P1 (Fig. II-

14) plagioclase is a primary phase, and hence a lower pres-

sure limit can be set for the pyroxenites of about 10 kb.

None of the pyroxenites of this study contains what is un-

questionably primary garnet - all the garnet having formed

either by direct exsolution from the pyroxenes or as coro-
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TABLE 11-9. A comparison of major element compositions for

Pyrolite III, Pyrolite 111-40% olivine*, and

Salt Lake Crater garnet pyroxenite R7444.

Pyrolite

45.20

3.54

0.48

8.04

37.48

3.08

0.71

0.43

0.57

III

Pyrohite III-

40% olivine

48.23

5.73

0.80

7.20

19.50

5.05

1.18

0.65

0.95

Olivine composition used is from Ross, Foster and Myers

(1954)(olivine #4, p. 707).

** Total iron as FeO.

Si0 2

A1 203

Fe 2 03

FeO

MgO

CaO

TiO 2

Cr 2 03

Na 2 0

R?444

48.46

8.96

9.34**

22.97

7.39

0.45

0.38

0.90
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nas around spinels (Fig. 11-5). Above P2 , garnet is a pri-

mary phase, indicating that the pyroxenites have originated

at pressures between 10 and 30 kb. (Beeson and Jackson re-

port Salt Lake pyroxenites with some apparently primary

garnet, but all these xenoliths also contain garnet formed

from spinel, so that the upper pressure limit for their xe-

noliths cannot be much greater than 30 kb.) When the re-

constructed equilibration temperatures of the clinopyrox-

enes determined by Beeson and Jackson are plotted on the

diagram of Green and Ringwood, it is found that the lower

and upper temperature limits intersect the solidus at pres-

sures (PL and PU) lying entirely within the range set by

the mineralogy (Fig. II-14). If the permissible pressure

range is considered to be from PL to PU (about 18 to 22 kb)

it is interesting to compare the actual textures and miner-

alogy of the pyroxenites with a predicted set of textures

which might result from a cooling history from 1300-1400 0 C

to about 1100 0C. (The effect of higher Cr203/Al2O3'in the

corrected pyrolite, than in the pyroxenite is to move sub-

solidus boundaries (Fig. II-14) to slightly lower pressures.

The effect of Fe on the En-Di solvus is to lower the tem-

peratures of initial equilibration for pyroxenite clinopy-

roxenes determined from the solvus in the Fe-free system.

However, the two effects do not alter the conclusions

reached, other than to lower by about 5 km the estimate
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of the depths from which the xenoliths may have come.) The

initial assemblage would be dominated by two aluminous py-

roxenes, with small amounts of olivine, and, in the cases

of high A1203/SiO 2, small'amounts of spinel. Depending on

the pressure, isobaric cooling will cause one of two phase

boundaries to be crossed. Spinel (lower pressures) and

garnet (higher pressures) would be expected to form at the

expense of aluminous pyroxene, perhaps by exsolution. Con-

tinued cooling in the lower pressure range would cause gar-

net to form at the expense of spinel and pyroxene by a re-

action of the general form:

Al-pyroxene + spinel = garnet ± oivine ± orthopyroxene

(MacGregor, 1964; Green, 1966; Ito and Kennedy, 1967; Green

and Ringwood, 1967; Jackson and Wright, 1970). The antici-

pated assemblage would be two pyroxenes, garnet, olivine,

and perhaps some remnant spinel within regions of garnet.

The observed textures in the Salt Lake pyrox-enites closely

fit this expected mineralogy. Spinel and garnet are found

as exsolution from both pyroxenes, and garnet coronas every-

where surround primary spinel grains.

Hence, the Salt Lake pyroxenite suite originated

at depths of 60 to 75 km in the upper mantle, where:they

underwent an extended cooling history from about 13001C

to 11000 C prior to being brought to the surface in the Salt

Lake eruption.
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2. The Relative Ages of Pyroxenite and Lherzolite

It will be helpful to summarize the textural ob-

servations:

[1] The pyroxenites formed at temperatures about 13000C

and underwent extensive cooling at depth, while the lherzo-

lites formed at about 950O-1000OC and show evidence of very

little pre-eruptive cooling.

[2] Single contiguous spinel grains at the L-P contact

show wide compositional range. The portion in the pyrox-

enite is green, low Cr/Al, and shows garnet coronas. The

lherzolite portion is black, high Cr/Al and shows no garnet

corona, but is mantled by and contains chrome diopside

grains (Fig. 11-8).

[3] Spinels within wholly lherzolite xenoliths are also

intergrown with chrome diopside. These spinels also show

wide range in composition colinear with the variation found

at the L-P contact (R7397, Table II-4; Fig. 11-9).

[4] Type I pyroxene grains astride the L-P contact are

turbid clinopyroxene with abundant orthopyroxene exsolution

in the pyroxenite portion (Figs. 11-10, 11). The portion

of the same grain lying in the lherzolite is clearer exso-

lution-free orthopyroxene continuous crystallographically

with the orthopyroxene exsolution in the pyroxenite part of

the grain. Deformation banding is present in the lherzolite

orthopyroxene, not in the pyroxenite clinopyroxene.
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[5] Wholly orthopyroxene grains (Type II) astride the

L-P contact show turbidity, clinopyroxene and spinel ex-

solution lamellae in the pyroxenite portion, while parts

of the same grains in the.lherzolite portion are clearer

orthopyroxene, showing little or no exsolution and con-

taining rounded olivine blebs and embayments (Fig. 11-12).

Orthopyroxenes well within the pyroxenite, and others well

within the lherzolite, have appearances similar to their

respective portions of grains astride the L-P contact.

[6] At the L-P contact and within lherzolite portions,

single olivines commonly separate small orthopyroxene grains

which extinguish in unison, appearing to be parts of for-

merly larger contiguous grains (Fig. 11-13).

[7] Clinopyroxenes in the lherzolite portions become

less turbid, contain less orthopyroxene exsolution, and

become more green (Cr-rich) with distance from the L-P

contact. Their appearance near the L-P contact is very

similar to that within regions of pyroxenite. The modal

abundance of clinopyroxene decreases with distance from

the L-P contact (in the lherzolite).

[8] Trains of glass droplets abound in lherzolite near

the L-P contact, but no alteration of the host silicates

is microscopically observable. Far less intergranular ma-

terial is found in lherzolite far from the L-P contact.
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[9] Olivines become richer in Mg relative to Fe with dis-

tance from the L-P contact (Table II-5).

[10] Garnet has formed around the aluminous spinels in py-

roxenite portions, and has melted to varying degrees (Figs.

11-6, 7); no garnet nor evidence of melting is found in the

lherzolite.

[11] Lherzolite minerals, both at the contact and within

the lherzolite, show more compositional variation than mi-

nerals from attached portions of pyroxenite.

[12] Lherzolites show deformation textures; pyroxenites

do not.

Simultaneous Origin

The 300-400*C discrepancy between the calculated

temperatures of initial equilibration of the clinopyroxenes

from lherzolite and pyroxenite (Fig. II-4) is sufficiently

difficult to reconcile with the notion that the two mate-

rials formed simultaneously, that this possibility is not

considered further.

Lherzolite Predates the Pyroxenites

Kuno (1969) reports major element compositions for

a pyroxenite ("olivine eclogite" HK61082601c) and an enclosed

region of lherzolite (HK61082601c-B) occurring in the same
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hand specimen. He interprets the lherzolite to be a frag-

ment of the pervasive upper mantle peridotite zone incor-

porated in a basaltic liquid which was trapped and crystal-

lized at depth.

Under this supposition, it is interesting to re-

consider the textures, particularly those at the L-P contact.

Textures in lherzolite having no attached pyroxenite, must

be considered inherent properties of the upper mantle peri-

dotite zone. On the other hand, the presence of similar

textures at the L-P contact might be thought to have resul-

ted from an interaction between the fragment and the melt.

If so, the similarities are coincidental. For example,

spinels in wholly lherzolite xenoliths the world over show

extreme compositional variation (Ross, Foster and Myers,

19541, Carter, 1969), despite the relatively uniform sili-

cates associated with them. Spinel grains astride the L-P

contact (Fig. 11-8) could be thought to result if a heter-

ogeneous Cr-rich lherzolite spinel on the fragment's exte-

rior acted as the nucleation for the crystallization of

spinel from the more aluminous liquid. The colinearity

of compositional trends in spinels at the L-P contact, and

those within lherzolites must, in this view, be coinciden-

tal (see items 2 and 3 in the textural summary above).

The presence of chrome diopside in and around spinel might

also have been explained as the interaction between the li-
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quid and the fragment's spinel, were it not for the similar

mantled spinels throughout lherzolites.

The presence of garnet around the aluminous por-

tions of contact-straddling spinels, and its absence around

the Cr-rich lherzolite portions of the same grains presents

some serious difficulty for the view that pyroxenites are

entrapped melts in host lherzolite. As shown earlier, gar-

net forms from the solid state recrystallization of spinel

and clinopyroxene. MacGregor (in press) demonstrated that

increases in spinel Cr/Al ratios increase the pressure (for

constant temperature) at which the garnet reaction occurs.

The absence of garnet from the Cr-rich spinels might, there-

fore, imply that the pressure was sufficient to form garnet

around aluminous spinels, but not around the Cr-rich spinels.

However, garnet formation takes place after spinel crystal-

lization and requires ion diffusion in the solid state. The

first garnet forms where spinel and clinopyroxene are in con-

tact. Very little ion migration is needed. However, garnet

coronas may be 1 mm wide, and hence additional garnet at

this stage can only form if ion diffusion in clinopyroxene,

garnet and spinel can take place. If ion diffusion in spi-

nel must occur to form garnet, it is not reasonable that the

spinel in Fig. 11-8 could have maintained its compositional

gradient (no ion migration) during garnet formation. (One

end has a Cr203 content about 2.4%. The other end of a
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grain no more than two mm long, as about 20% Cr203.) It

seems, therefore, that the development of the spinel he-

terogeneity postdates the formation of garnet. This would

avoid the additional problem, that maintenance of a high

compositional gradient is unlikely at temperatures of 13000C

(the initial crystallization temperatures for the pyroxenite).,

Two types of pyroxene grains are found astride the

L-P contact. Type I shows clinopyroxene with abundant or-

thopyroxene exsolution in the pyroxenite portions, and clear

exsolution-free orthopyroxene in the lherzolite (Figs. II-

10, 11). The clear orthopyroxene is crystallographically

continuous with the exsolved orthopyroxene in the pyroxen-

ite portions (Fig. 11-12). The clinopyroxene appears simi-

lar to clinopyroxene well within the pyroxenite. As in

Type I, Type II grains show clear orthopyroxene in their

lherzolite portions. However, the parts of Type II grains

in the pyroxenite have the appearance of pyroxenite ortho-

pyroxenes. These observations are difficult to reconcile

with the idea that lherzolites are xenoliths in melts trap-

ped at depth. Ostensibly, the turbid, exsolution-rich por-

tions of such grains of both types might have resulted from

an interaction between the liquid and peripheral orthopy-

roxenes of the lherzolite fragment. If so, it is unreason-



61.

able that some grains would acquire the appearance of py-

roxenite clinopyroxenes, while others assumed the appear-

ance of pyroxenite orthopyroxenes. Moreover-, because of

the pyroxenite's initial temperatures of about 13000C, it

is unlikely that the pyroxenes would have been affected to

depths of less than 1 mm, or that the compositional gradi-

ents could have been maintained.

Also inconsistent with the hypothesis that pyrox-

enite postdates the lherzolite is the observation that none

of the lherzolite minerals shows any evidence of melting.

Trains of glass droplets are indeed found in lherzolite mi-

nerals, but they show little alteration of the host grains.

Kushiro et al. (1968) determined the solidus for a Salt Lake

Crater lherzolite xenolith under anhydrous consitions and

saturated with water (Fig. 11-15). The wet solidus crosses

the 10-30 kb range at about 10000C. If the supposed melt

from which the pyroxenite crystallized contained appreciable

water, that melt could have been as much as 3000C above the

solidus of the lherzolite fragment being incorporated. The

absence of melting 6videice is very difficult to explain.

Even if the lherzolite fragment had not undergone partial

melting, its reaching a temperature of 13000C was unavoid-

able. The increased solubility of enstatite in diopside

at elevated temperature should have caused the homogeniza-

tion of clino- and orthopyroxenes at mutual contacts in



62.

i t I /10 0 0 4 5

POOesURI ( A1Ab) tA 198

Figure II-15: Melting relations for a natural spinel
lherzolite from Salt Lake Crater under anhydrous and
water-saturated conditions.
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the lherzolite. Subsequent cooling with the pyroxenite

should then have produced exsolution in lherzolite clino-

pyroxenes more nearly comparable to that in pyroxenite

clinopyroxenes. Striking features of lherzolite pyrox-

enes are their high Ca/(Ca + Mg) ratios and the small

amounts of exsolution they display.

Single olivine grains along the L-P contact often

show small orthopyroxene grains around them extinguishing

in unison (Fig. 11-13). It is difficult to imagine these

orthopyroxenes randomly acquiring identical crystallogra-

phic orientation; hence, it is suggested that the orthopy-

roxene grains are parts of a formerly larger contiguous

grain. The consumption by a lherzolite mineral (olivine)

of pyroxenite orthopyroxene requires that lherzolite post-

dates the pyroxenite.

In light of the preceeding discussion, the hypo-

thesis that lherzolites in contact with pyroxenite are frag-

ments of a lherzolite mantle intruded by melts trapped at

depth is considered very unlikely.

Pyroxenite Predates the Lherzolite

Eliminating the first two possible age relation-

ships leaves the hypothesis that the lherzolite formed at

a time later than the pyroxenite. Several feasible models



can be devised for which the remaining hypothesis would be

true. (1) the pyroxenite could have been the floor of a

magma chamber onto which the lherzolite settled as a crys-

tal cumulate. (2) the two materials could have been jux-

taposed in faulting. (3) the lherzolite formed from the

pyroxenite.

White (1966) stressed the unlikelihood that lher-

zolite formed as a cumulate from a basaltic magma. His

reasoning is summarized in Chapter I. Further evidence

against this hypothesis is the observation that in R7444-

SLC48 lherzolite occurs as small irregular disconnected

patches each entirely enclosed by pyroxenite. This obser-

vation also eliminates the possibility that the two mate-

rials are in fault contact, as does the complexly inter-

grown nature of the L-P contact.

The following discussion deals with the possibil-

ity that the lherzolite has formed at the expense of pre-

existing pyroxenite. A number of difficulties encountered

by the Kuno hypothesis (lherzolite as xenoliths in trapped

melts at depth) are quickly eliminated. Most notable is

that of the high initial temperature of the pyroxenite.

Lherzolite clinopyroxenes show equilibration temperatures

(about 950-10001C) comparable to those of the re-equili-

brated pyroxenite clinopyroxenes (1050-11000 C). If lher-

zolite has formed from pyroxenite, and the process took

mw
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place after the cooling and subsolidus recrystallization of

the pyroxenite, the high temperature difficulties are entire-

ly avoided.

Four textures at the L-P contact support the idea

that lherzolite is a constant-volume replacement product of

the pre-existing pyroxenite (See Fig.6 II-16 and =E-5). In

each of these textures, a pyroxenite mineral is found in

transition to a lherzolite mineral. The result is that the

four textures jointly account for the formation of the en-

tire lherzolite mineralogy. Three of the four textures in-

volve the appearance of pyroxenes astride the L-P contact

(items 4-6 in the textural summary). Pyroxenite clinopy-

roxene is transformed to lherzolite orthopyroxene (A).

Orthopyroxene is also transformed to lherzolite orthopy-

roxene (B). Olivine appears -to grow at the expense of

orthopyroxene of both types (C). Taken together, the three

textures account for the formation of lherzolite orthopy-

roxene and olivine from pyroxenite clino- and orthopyroxene.

The formation of the remainder of the lherzolite mineralogy

can be interpreted from the spinel grains straddling the

L-P contact (Figs. II-8' 16, (D) and (E)). Related garnet,

spinel and clinopyroxene grains are transformed to chrome-

diopside-spinel intergrowths. Garnet appears to be eradi-

cated by melting and by re-entering solid solution in the

clinopyroxene. In the process, the combined volume of
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Figure II-16

Schematic appearance of textures at the lherz-
olite-pyroxenite contact. Encircled letters refer to
descriptions in the text.
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clinopyroxene and spinel is considerably reduced. (In

R7444-SLC48, spinel constitutes 8%, and clinopyroxene 38%

of the pyroxenite. Chrome diopside constitutes 9% and spi-

nel less than 1% of the associated lherzolite.) Both lherz-

oli'te minerals are left enriched to widely varying degrees

in Cr203. Heterogeneity results from an inability to reach

equilibrium on the scale of the whole rock. Ross, Foster

and Myers (1954) analysed lherzolite chrome diopsides for

their minor elements, and in contrast to very uniform Mn

and Ni contents, Cr in the clinopyroxenes shows a much lar-

ger variation (Fig. 11-17). As noted in the petrographic

description, small orthopyroxenes are generally associated

with chrome diopsides around spinel. These orthopyroxenes

should also show variable Cr203, and indeed, they do. As

additional support for the idea that lherzolite spinels are

remnants of pyroxenite spinels, compositional trends in lher-

zolite spinels from Kilbourne Hole, New Mexico, and Salt

Lake Crater define rather straight lines with pyroxenite

spinels as one end member (Fig. 11-9).

In light of the preceeding discussion, the lherzo-

lite mineralogy can be fully accounted for by transformations

of the pre-existing pyroxenite mineralogy. Three lherzolite

minerals, chrome diopside, orthopyroxene and spinel are pre-

sent largely as modified relict minerals from the pyroxenite.

Very little to none of the lherzolite olivine has pyrox-
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enite ancestry. Overall, the process transforms an assem-

blage of clinopyroxene, orthopyroxene, spinel, garnet and

perhaps small amounts of olivine into the lherzolite assem-

blage: olivine, orthopyroxene, chrome diopside and spinel.

Melting and dissolution in clinopyroxene apparently elimin-

ate all garnet.

The presence of deformation textures in lherzo-

lites from Salt Lake Crater, and their absence in associated

pyroxenites has been used as evidence that the lherzolite

pre-dates the pyroxenite in contact with it (Beeson and Jack-

son, in press). However, transitional Type I pyroxene grains

found at the L-P contact often show deformation banding in

their lherzolite portions, and not in their pyroxenite por-

tions (Fig. II-11). In the proposed model, if lherzolite

minerals form by recrystallization under conditions of stress,

as might be expected in regions of magma generation and move-

ment, the recrystallized minerals might be expected to show

deformation textures.

Olivine in Salt Lake Crater lherzolites shows con-

siderably more deformation banding than enstatite. Chrome

diopside shows very little deformation. In the envisioned

transformation of pyroxenite to lherzolite, olivine crystal-

lizes for the first time at the contact. Most of the enst-

atite and chrome diopside in lherzolite has ancestry in the

pyroxenite pyroxenes. This distinction may explain the
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abundance of deformation textures in the olivine, and their

paucity in lherzolite pyroxenes. Regardless, the presence

of deformation in lherzolite and its absence in pyroxenite

does not necessitate that the lherzolite predates the pyrox-

enite.

Some constraints can be placed on the transformation

process. None of the transformations infered from textures

at the L-P contact is isochemical. An inspection of the ma-

jor element compositions of co-existing pyroxenite and lherz-

olite (Table II-10), shows that if the process is at constant

volume, the original pyroxenite has been greatly enriched in

MgO, while strongly depleted in CaO, A1203 , Na20, TiO2 and

SiO 2 - Studies of R7444-SLC48 (Chapter III, Fig. 3) show the

pyroxenite strongly depleted in REE by the process, leaving

the residual lherzolite with a total REE content less than

1/5 that of the original material.

Both from a textural and compositional standpoint,

it seems likely that a liquid has been involved. Abundant

glass droplet trains and intergranular material occur in

the transitional region. Qualitative electron microprobe

analyses of this material show it to be very heterogeneous.

This observation is consistent with the variable lherzolite

mineral chemistry, if the envisioned process is responsible

for their formation.



TABLE II-10. Partial major element compositions for the

lherzolite and pyroxenite portions of R7444.

R?444P minus
R?444P

Si02

A1203

FeO

MgO

CaO

Cr 2 03

Ti02

Na2 0

48.46

8.96

9.34

22.97

7.39

0.38

0.45

0.90

R7 44 4L

43.84

1.26

11.68

39.13

1.67

0.29

0.16

0.16

R7444L

+ 4.52

+ 7.70

- 2.34

-16.16

+ 5.72

+ 0.09

+ 0.29

+ 0.74

TOTAL 98.85 98.19 + 0.66

72.
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Initially the process might appear to be a closed-

system partial melting of the pyroxenite leaving the lherz-

olite as refractory residue. Glass formed from melted gar-

net is present in all pyroxenites, and might constitute the

partial melt. Such glass is never more abundant modally

than about 20%, and is often no more than 5%. Mass balance

calculations can be attempted for a situation where parental

pyroxenite (MgO = 20%) melts to a liquid (MgO = 44%). Such

attemptes fail for the reason that small degrees of partial

melting imply large percentages of residue. In R7444-SLC48,

for example, the pyroxenite portion contains about 18% glass

and would under closed-system partial melting retain 82% as

residual lherzolite. One hundred grams of R7444 pyroxenite

as starting material can supply 22.97 gm of MgO (Table II-10)

whereas the production of 82 gm of lherzolite requires 32.09

gm of MgO. Only negative concentrations of MgO in the asso-

ciated liquid can satisfy mass balance. For degrees of melt-

ing smaller than 18%, the discrepancy is larger. However,

for degrees of melting around 80%, a mass balance can be

written resulting in a calcium-rich "basaltic melt" and

lherzolite residue. Such high degrees of melting would ne-

cessitate the consumption of both garnet and clinopyroxene

in melt formation, and supporting textural evidence in L-P

xenoliths is lacking. Some Salt Lake pyroxenites, without

attached lherzolite, show microcrystalline material formed



at clinopyroxene's expense, as well as glass-formed from

garnet. The degree of melting in these rocks is higher

than 20%, and they could have been involved in the gener-

ation of liquid. These rocks show no incipient lherzolite

formation, however.

The pyroxenite-lherzolite transformation, must

then, have been open with respect to material transport.

The process envisioned is the attack of the pyroxenite by

a permeating melt. The melt removes the labile components

and leaves barren residual lherzolite in its place. The

liquid becomes enriched in Ca, Al, Ti, Si, alkalis, REE and

presumably other trace elements, and is depleted in Mg. Fe,

Ni, and Mn and Cr apparently are neither enriched nor de-

pleted (Fig. 11-18). If lherzolite now occupies a volume

equal to that of the original pyroxenite, a comparison of

the major element compositions of the lherzolite and asso-

ciated pyroxenite gives an indication of the compositional

changes experienced by the liquid, but cannot directly pre-

dict the degree to which the formation of a given mass of

lherzolite changes the composition of the permeating liquid.

The following algebraic relation can be written for each

element:

mM1 + m = mM2 + mL

where m is the mass of the element; Mi refers to the melt

prior to incursion, and M2 to the melt after performing
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the transformation of a unit quantity of pyroxenite (P) to

lherzolite (L). If large relative quantities of liquid are

necessary, the transformation of a given amount of pyrox-

epite changes the liquid composition to a minor degree.

(The same permeating liquid, however, could presumably

transform more pyroxenite to lherzolite as its composition

was being changed.) Some reasonable limits can be placed

on the minimum quantity of liquid involved per unit lherz-

olite formed. The formation of 100 gm lherzolite involves

the deposition from the liquid of about 20 gm MgO (the dif-

ference between pyroxenite and lherzolite MgO contents),

and the removal of about 8 gm each A1203 and CaO. Clearly

equal proportions of liquid and pyroxenite are not reason-

able estimates. The liquid's MgO content would be reduced

by 20 weight percent. Almost no basalts have MgO contents

greater than 20%, nor less than about 5%. It seems, there-

fore, that the volumes of liquids involved must be at least

several times greater than the volume of lherzolite formed.

A Comparison of the Proposed Model with Data of

Previous Studies

It is interesting to consider the major element

data of Kuno (1969) in light of the model for the forma-

tion of lherzolite. Figure II-18 is a representation of

these data. Kuno notes that the variation in lherzolite
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compositions is distinct from that in pyroxenite composi-

tions. He does not mention, however, the observation that

these two variations taken together form smooth and often

linear trends. He interprets the garnet-bearing pyroxen-

ites as pockets of trapped melts at depth, but feels the

lherzolite compositional variation is related to their

formation either as brystal cumulates, or as material de-

pleted to different degrees in the production of basaltic

magma. (Kuno admits that neither of these explanations is

without difficulty. In both cases, the hypothetical magma

is unlike Hawaiian basalts.) The smooth trends of lherzo-

lite and pyroxenite compositional variation would, in his

interpretation, be coincidental.

Under the hypothesis that the pyroxenites are en-

trapped melts in a lherzolitic upper mantle, one might ima-

gine that the variation is lherzolite composition is due to

contamination of some initial magnesian lherzolite by the

entrapped melts (the pyroxenites). In this case, the com-

positions of lherzolites and pyroxenites taken together

would fall on straight lines between the initial lherzolite

composition and the pyroxenite composition. For certain

elements (Mg, Fe, Si, Ti, and Mn) straight trends do exist.

Straight trends do not result for A1 203 nor particularly

for CaO. Figure 11-19 is an enlargement of Kuno's CaO dia-

gram, with the addition of pyroxenite and lherzolite whole-

rock compositions from Jackson and Wright (1970), and this
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' Figure II-19

Enlarged view of the CaO variation diagram of
Kuno (1969, p. 216). Data are added for lherzolite
and garnet pyroxenites from Jackson and Wright (1970)
and for coexisting lherzolite and garnet pyroxenite
(R7444) from this study. Diamonds,,q enclose data
points for lherzolite and pyroxenite from the same
xenolith (R7444 and HK61082601c, respectively).
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study (R7444P and R7444L). All lherzolites, even those with

low MgO/EFeO ratios, are strongly depleted in CaO relative

to the pyroxenites. A mixing model is not applicable to the

A1 203 and CaO data, and hence cannot be the explanation of

any of the smooth compositional trends.

The combined variation in lherzolite and pyroxenite

compositions is consistent with the model proposed in this

study for the origin of lherzolite. If, as textures suggest,

most of the pyroxenite clinopyroxene is transformed to lherz-

olite orthopyroxene in the immediate vicinity of the contact

(Fig. 11-16, [A]), lherzolites will be strongly depleted in

clinopyroxene from their earliest formation. Hence, near-

contact lherzolite will be strongly depleted in CaO relative

to the pyroxenites, since clinopyroxene is the only phase

containing large amounts of CaO. Much of the A1203 in the

pyroxenite is contained in clinopyroxene as well. It is

therefore consistent that all lherzolites, even those near

the L-P contact, are also strongly depleted in A1203 rela-

tive to the pyroxenites (Fig. 11-18). Thus, the proposed

model - forming lherzolite as the residue when a permeating

melt leaches basaltic components from the pyroxenite - can

explain both the smooth linear and non-linear trends in com-

position displayed by Salt Lake Crater lherzolites and py-

roxenites.
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Summary

Figure 11-20 is a schematic historical summary of

a pyroxenite from the time of its initial crystallization

to its transformation to spinel lherzolite. The pyroxen-

ites initially crystallized as coarse-grained assemblages

dominated by aluminous clinopyroxene, with smaller amounts

of aluminous orthopyroxene, Al-rich spinel, and in some

cases a few percent olivine. Upon subsequent cooling,

large amounts of orthopyorxene have exsolved from clino-

pyroxene, and smaller amounts of clinopyroxene have un-

mixed from orthopyroxene. Pyroxenes generally display

ordered patterns of euhedral spinel flakes, which are also

an exsolution pro.duct on cooling. Garnet has formed both

by direct exsolution from pyroxene (mainly clinopyroxene),

and as coronas around primary spinel grains resulting from

a reaction between spinel and the enclosing clinopyroxene.

Pyroxenites generally contain between 5% and 15% glass,

which is not material absorbed from the host basalt (Chap-

ter III, Fig. 1) but is the product of a melt formed from

garnet.

The transformation of pyroxenite to lherzolite ap-

parently entails the removal of basaltic components from

the pyroxenite by a permeating melt, leaving lherzolite as

a barren residue. Several textures occurring at the lherz-

olite-pyroxenite contact indicate that the lherzolite min-



82.

Figure 11-20

Schematic history of a pyroxenite from the time
of its initial crystallization as a garnet-free assem-
blage to its transformation to spinel-lherzolite.
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1. initial assemblage:
aluminous clinopyroxene,
aluminous orthopyroxene,
Al-rich spinel.

2. upon cooling, clino-
pyroxene exsolves ortho-
pyroxene, and vice versa.
garnet unmixes from py-
roxene, and forms coronas
around spinels.

3. a melt attacks the py-
roxenite, leaching basal-
tic components, leaving
barren residual lherzo-
lite. Lherzolite opxcpx
and spinel are remnants
of the same pyroxenite
minerals. Olivine forms
from pre-existing ortho-
pyroxene.

4. eventual lherzolite
assemblage: olivine, orth-
opyroxene, chrome diop-
side, and spinel. The lat-
ter two occupy much less
volume than their pyrox-
enite counterparts.
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eralogy originates through transformations of pyroxenite

minerals. Most of the pyroxenite clinopyroxene is trans-

formed to lherzolite orthopyroxene (Fig. 11-16, [A]). As

a result, the lherzolite is left with a strong depletion

in CaO relative to the pyroxenite within a short distance

from the contact. Exsolution-bearing pyroxenite orthopy-

roxene is also transformed to exsolution-free lherzolite

orthopyroxene (B). Olivine is found as embayments in these

near-contact lherzolite orthopyroxenes, and apparently ori-

ginates when the permeating liquid leaches silica from the

orthopyroxene (C). Associated grains of clinopyroxene,

garnet and spinel in the pyroxenite are transformed to

chrome diopside-spinel intergrowths in the lherzolite (D)

and (E). The process involves the reduction of the volume

of both clinopyroxene and spinel, and the eradication of

the garnet. Apparently, the garnet disappears by under-

going melting and also by re-entering solid solution in

the clinopyroxene. During their volume reduction, both

clinopyroxene and spinel become more chrome-rich (Tables

11-7, 11-10). Enrichment in Cr203 in these two minerals

varies widely within small regions of near-contact lherz-

olite. This heterogeneity in spinel and chrome diopside

Cr203 contents is apparently maintained, as wholly lherz-

olite inclusions in several studies show wide ranges in

the composition of these minerals with respect to Cr203/
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A1203 (Ross et al., 1954; Carter, 1969; this study). The

overall transformation results in the four phase assemblage:

olivine, orthopyroxene, chrome diopside and spinel, the lat-

ter three of which have ancestry in pyroxenite minerals.

In summary, the textural and major element data are

inconsistent with the idea that the Salt Lake Crater pyrox-

enites are liquids which have intruded pre-existing lherzo-

lite and solidified at depth to their present assemblages.

Rather, the data favor the idea that lherzolite is the se-

condary material, having formed as a barren residue, when a

permeating melt removed basaltic components from pre-exist-

ing pyroxenite.

The following chapter discusses the distributions

of'rare earth elements in whole-rock and separated mineral

samples from near-contact lherzolite and garnet pyroxenite,

to further elucidate the contact relationship.
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ABSTRACT

Spinel lherzolite occurs at Salt Lake Crater, Ha-

waii intimately associated in single xenoliths with garnet

pyroxenite. Investigations of the rare earth element (REE)

distributions in these two-assemblage rocks show (1) pyrox-

enite mineral REE patterns sum very nearly to their whole-

rock pattern, (2) ch6ndrite-normalized REE patterns for py-

roxenites are gently curved and convex-upward; they have

maxima in the range Pr to Gd, with total REE contents 4 to

10 times average chondrites, (3) lherzolites are depleted

in REE relative to associated pyroxenites, but show a great-

er light REE enrichment, (4) lherzolite chrome diopsides and

associated pyroxenite clinopyroxenes have very similar REE

distributions.

The data snggest the following interpretations:

(1) Xenoliths are not contaminated by the host-rock. (2)

Solid/liquid distribution coefficients applied to pyroxenite

clinopyroxenes give liquids with REE pattern s unlike any

Hawaiian basalt. If the pyroxenites crystallized from li-

quids no longer present, their formation is probably unre-

lated to the Hawaiian vulcanism. The pyroxenites may be

trapped liquids occurring as components in tholeiites, or

may be parental to tholeiites. (3) Similarity in REE pat-

tern between associated lherzolite and pyroxenite clinopy-

roxenes is inconsistent with the usual interpretation of
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these bimodal xenoliths - that the pyroxenite is a liquid

which intruded upper mantle lherzolite and crystallized at

depth. REE data, supported by textural observations, sug-

gest that lherzolite has formed as residue when basaltic

'components were removed from original pyroxenite by a per-

meating melt. Relative to lherzolite, pyroxenite is the

more primitive upper ,mantle material.
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INTRODUCTION

Inclusions of spinel lherzolite (olivine, enstatite,

chrome diopside and spinel) have been found in a large number

of basaltic localities, and they are generally the most abun-

dant ultramafic rock in a given xenolith suite (Forbes and

Kuno, 1967). The inclusions show remarkably uniform mineral

chemistry (Ross, Foster and Myers, 1954; Wilshire and Binns,

1967; White, 1966) despite being incorporated in host rocks

of varied composition. The ubiquity and uniformity of lher-

zolites has been used to support the peridotite upper mantle

model.

Jackson (1966, 1968) has shown that the xenolith

suite at Salt Lake Crater, Hawaii, has a bimodal distribu-

tion. One group of inclusions is typical spinel lherzolite.

Salt Lake Crater lherzolites were analyzed in the studies

of Ross et al., and White. Occurring in nearly equal vol-

ume are xenoliths of garnet pyroxenite composed dominantly

of garnet and clinopyroxene, with smaller amounts of ortho-

pyroxene, olivine, spinel and in some cases, phlogopite.

As noted by Green (1966), and by Beeson and Jackson (in

press), subsolidus recrystallization textures indicate a

cooling history from about 1300-1400 0 C to about 1100 0 C at

pressures on the order of 20 kb. Attached lherzolites,

however, show evidence of having formed at 1000-11000 C,

and show no record of a high temperature past.
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Several Salt Lake Crater xenoliths containing re-

gions of lherzolite in contact with garnet pyroxenite have

been studied. Inclusions of this type were mentioned by

Jackson. Kuno (1969) reports major element compositions

for the associated lherzolite and pyroxenite of such a xe-

nolith. He interprets the lherzolite to be a fragment of

the pervasive upper mantle peridotite zone incorporated in

a basaltic melt which crystallized at depth to the pyroxen-

ite assemblage. Another interpretation has been proposed.

From a detailed petrographic and electron microprobe study

of the lherzolite-pyroxenite contact in several xenoliths,

Reid (1970) has concluded that the lherzolite has formed

from pre-existing pyroxenite, as the residue left after

the extraction of basaltic components from the pyroxenite

by a permeating melt. The two studies lead to different

interpretations as to which of the two rock types is the

more primitive upper mantle material.

Because of their coherent and systematic geochem-

istry, the REE are particularly well suited to the study of

a contact relationship of this sort. Considerable effort

has been made in recent years to determine the distribution

of the REE between mafic rock-forming minerals and their

coexisting liquids (Schnetzler and Philpotts, 1968, 1970;

Onuma et al., 1969; Masuda and Kushiro, 1969). Clinopyrox-

ene/liquid distribution coefficients determined by these

several groups of workers differ by as much as a factor of
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three in absolute magnitude. All results, however, indicate

the tendency of clinopyroxene to accomodate the heavy REE

equally well, and to increasingly discriminate against the

light REE. This consistency in relative distribution coef-

ficients justifies their use in the study of systems like

Salt Lake Crater xenoliths where clinopyroxene is the domi-

nant REE-bearing phase.

EXPERIMENTAL

Analyses were made using the neutron activation

procedures of Haskin et al. (1968). Xenoliths were trimmed

of host basalt skins, and coarse crushed in an acid-cleaned

steel percussion mortar. Fine crushing was performed in a

boron carbide mortar. Powders were leached in warm acetic

acid, or dilute HCl under agitation in an ultrasonic cleaner

to remove deuteric CaCO 3. Separates of clinopyroxene from

lherzolite and pyroxenite xenoliths were readily.made using

the Frantz isodynamic separator alone. The separation of

garnet required the use of Clerici solution. Mineral se-

parates were cleaned in warm HCl with the use of the ultra-

sonic vibrator. The purity of minerals to be analyzed was

checked under the binocular microscope, and contaminating

grains were picked out by hand. Powders weighing between

0.25 and 0.85 grams were irradiated, the amount being de-

termined by the anticipated REE levels and the sample supply.
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REE distributions are displayed as comparison diagrams

(Masuda, 1962; Coryell et al., 1963) normalized to a com-

posite of nine chondritic meteorites analyzed by Haskin et

al. (1968). Duplicate analyses of pyroxenite R7444 indi-

cate an average precision of about ± 7%. Accuracy is be-

lieved equal to the precision. The results are shown in

Table 1 and Figures 1 through 6.

RESULTS and DISCUSSION

The Question of Contamination from the Host BasaZt

Recent studies of trace element distributions in

mantle-derived xenoliths have demonstrated the need for

caution in applying results to the discussion of processes

taking place in the upper mantle. Erlank (1969) has shown

that the garnets in eclogites from Roberts-Victor Mine, South

Africa, contain alteration rims and crack-filling material

rich in alkali elements. Often impossible to remove, such

contamination drastically alters the indigenous trace ele-

ment patterns of the xenoliths. Since the xenoliths at Salt

Lake Crater have been brought to the surface in a basalt with

unusually high trace element contents (Schilling and Winches-

ter, 1969), it is necessary to determine whether the xeno-

liths' trace element contents are dominated by material ab-

sorbed from the host basalt. Relevant data have been ob-
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tained from garnet pyroxenite, R7401.

Clinopyroxene and garnet together comprise 83% of

the rock and contain virtually all of the REE. Olivine,

orthopyroxene and spinel, each with much lower REE contents

make up the remainder. When the REE patterns of the care-

fully cleaned garnet and clinopyroxene are added together

in their modal proportions, their sum very closely matches

the whole-rock pattern (Figure 1).

This result indicates that the alteration free

clinopyroxene and garnet are the important host phases for

REE in the pyroxenite. The relative enrichment of the gar-

net in heavy REE is expected from crystal chemical limita-

tions. This is evidence against the importance of minute

inclusions rich in REE. Additional evidence against conta-

mination is that the garnet La abundance is 0.019 ppm com-

pared to a typical Honolulu Series nephelinite La abundance

of 68 ppm (Schilling and Winchester, 1969). These data

justify the use of REE data in Salt Lake Crater pyroxenites.

as indicators of processes taking place in the upper mantle.

There is some indication that the pyroxenites have

been closed systems since before the formation of garnet.

None of the garnet-bearing pyroxenites examined contains

what is unquestionably primary garnet (R7401 and R7444 con-

tain no primary garnet; at least 90% of the garnet in R7629

is definitely secondary). All garnet has formed during sub-
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solidus cooling either by direct exsolution from clinopy-

roxene, or as the product of a reaction between spinel and

clinopyroxene. On the other hand, no Salt Lake pyroxenite

has been found which has not undergone some degree of re-

crystallization to form garnet. Spinel pyroxenite inclu-

sions found at Kilbourne Hole, N.M., however, are textur-

ally like the Salt Lake Crater pyroxenites, except that no

garnet has formed. REE data for the Kilbourne Hole pyrox-

enite (R7634) and its separated cliiopyroxene indicate that

the whole-rock REE pattern is strictly dominated by the

clinopyroxene (Figure 2). Clinopyroxene constitutes about

80% of the rock, with spinel and olivine making up the re-

mainder. The shapes of the REE patterns for R7634 and R7401

are quite similar (Figures 1 and 2). This similarity indi-

cates that garnet formation in R7401 has caused a simple

closed-system redistribution of REE from the original, clino-

pyroxene to the eventual garnet-clinopyroxene pair. The

crystallization of garnet, which preferentially accomodates

the heavy REE has left the clinopyroxene with a depletion

of heavy REE relative to the original clinopyroxene pattern.

REE Distributions in the Pyroxenites

The pyroxenites have chondrite-normalized REE dis-

tributions which are gently curved convex-upward. Enrich-

ment of the light REE is uniformly low (La/Yb ranges from
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Figure 2

REE distributions in whole rock and

separated clinopyroxene samples from R7634

(Kilbourne Hole, N.M.) spinel pyroxenite;

R7629 garnet pyroxenite; R7629 lherzolite.

Lightly dashed curve is the REE distribution

for a clinopyroxene in equilibrium with a

liquid having the REE pattern of R7629 whole

rock garnet pyroxenite.
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1.2 to 2.0). Except for R7444 (Figure 3), all show maxima

in the range Pr to Gd. (The REE pattern for R7444 pyroxen-

ite is straight, and nearly flat. Its separated clinopyroxene,

however, shows a maximum at Nd [Figure 3]. The simple combi-

nation of this clinopyroxene pattern with a typical garnet

pattern [R7401, Figure 11 yields a whole-rock pattern which

is curved, not straight. A third phase, not present in ap-

preciable amounts in R7401, must be present and must contri-

bute the light REE necessary to create the straight pattern.

The nature and significance of this phase is considered in a

later section).

An indication of the conditions of crystallization

can be obtained by applying solid/liquid distribution coef-

ficients to the REE patterns of the originaZ pyroxenite cli-

nopyroxenes. The present clinopyroxenes have REE patterns

altered by the subsolidus formation of heavy REE-enriched

garnet, and hence will not give useful information about (the

initial pre-garnet crystallization of the pyroxenites. How-

over, clinopyroxene alone is the dominant REE bearing phase

in the garnet-free assemblage- (R7634, Figure 2). Hence the

present whole-rock and the initial clinopyroxene have REE

distributions with the same shape, though differing REE con-

centrations. The approximate initial (pre-garnet) clinopy-

roxene REE abundances can be obtained by multiplying the

present whole-rock pattern by the inverse of the modal pro-

portion of clinopyroxene in the rock. Since major element
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compositions of the clinopyroxene used in the study of Onuma

et al. (1969) most closely matche pyroxenite clinopyroxenes,

their distribution coefficients have been used. (Other sets

of coefficients lead to the same conclusions). When these

coefficients are applied to the REE patterns of pre-garnet

clinopyroxenes in R7401 and R7629, hypothetical liquids are

obtained which do not resemble any Hawaiian basalt (Figure

4). All Hawaiian basalts analyzed by Schilling and Winches-

ter have convex-upward patterns. The hypothetical liquids

are clearly concave-upward.

This dissimilarity can be interpreted in a number

of ways. (1) If the pyroxenites crystallized from liquids

no longer present, their formation is probably unrelated to

the vulcanism creating the Hawaiian island chain. The con-

clusion of Green (1966) that the Salt Lake Crater pyroxenites

are early crystallizations from alkali basalt magma is not

supported by this data. (2) The pyroxenites may be the com-

plete crystallizations of entrapped liquids, whose REE pat-

terns were retained by the pyroxenites. Pyroxenite REE pat-

terns are not equivalent to any basalts, though some tho-

leiites have patterns which are more REE-enriched but have

similar shapes (Figure 4). Though similar to tholeiites in

major element composition, Salt Lake Crater pyroxenites have

been shown by Jackson and Wright (1970) to have considerably

higher CaO contents and lower alkali element and TiO 2 levels



101.

CALCUL ATE:D
200 s COEXsricIG LIQUIDS

-- X-X-- F76Z9 CPX
100 -

:-
50

t. XE

20

LU

10-

5 :- 7- X

ta (e Pr Wd Pm Sm Et Gd -lb Dy Ho Er Tm Yb LuA

ATOMIC WUM&EI2..
Figure 4: REE Distributions in liquids coexisting with
"pre-garnet" clinopyroxenes from garnet pyroxenites
R7401 and R7629. Distribution coefficients used are
from Onuma et al., 1969. Lightly dashed curves are Haw-
aiian lavas (Schilling and Winchester, 1969).



102.

than Hawaiian tholeiites. Hence, if pyroxenites are en-

trapped liquids, no equivalent liquid is found at the sur-

face. They may be crystallizations of liquids occurring

only as components of tholeiitic basalts. (3) Pyroxenites

may have similar major element and REE chemistry by being

parental to tholeiites. Partial melting of a rock composed

of garnet, clinopyroxene, orthopyroxene, olivine and spinel

would result in initial liquids dominated by clinopyroxene

and garnet (Ito and Kennedy, 1967). Pyroxenite REE patterns

would be inherited by the liquids if all garnet and clinopy-

roxene underwent melting. (Ito and Kennedy have shown that

garnet and clinopyroxene are both entirely melted within

500C of the solidus for a natural garnet peridotite compo-

sition at 20 kb.) Raising the REE level in the liquid from

pyroxenite concentrations to those found in Hawaiian basalts

would require either fractional crystallization of phases

with low REE abundances, or perhaps an- enrichment process

like the one proposed in this paper for the origin of lher-

zolite.

Contribution of REE data to the understanding of the

Lherzolite-Pyroxenite contact relationship

Textural studies of these two-assemblage xenoliths

suggest two alternative explanations for their paragenesis.

As proposed by Kuno (1969), one possibility is that the
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pyroxenite is a basaltic melt which has intruded the perva-

sive upper mantle lherzolite zone and crystallized at depth.

The other interpretation is that the lherzolite is the youn-

ger material, having formed as residue when a permeating

melt removed labile components from the pre-existing pyrox-

enite (Reid, 1970). The possibility of the two materials

having formed simultaneously is small. Initial crystalli-

zation temperatures based on clinopyroxene exsolution data

(Beeson and Jackson, in press; Reid, 1970) differ by 300-

400 0 C for the two materials.

1. Pyroxenite has intruded lherzolite

If the pyroxenite is a basaltic melt which intruded

deep'-seated lherzolite, and if one assumes that the melt and

the intruded lherzolite came to equilibrium within several

centimeters of the contact, the REE distribution in the

lherzolite clinopyroxene can be predicted. (The assumption

of equilibrium is justified on the basis of the high ini-

tial temperatures of the pyroxenites - 1300-14000C - and

the knowledge that the analyzed chrome diopside was sepa-

rated from material within 2 cm. of the contact). A clino-

pyroxene equilibrating with a basaltic liquid with the REE

distribution of either R7444 or R7629 whole-rock will have

a REE distribution increasingly depleted toward the light

REE relative to the pyroxenite (the supposed liquid). The

MMMMMM



104.

dotted lines in Figures 2 and 3 are these clinopyroxene

patterns. Actually analyzed lherzolite clinopyroxenes

from R7444 and R7629 have distributions quite different

from these hypothetical clinopyroxene patterns. Rather

than depleted, they are enriched in the light REE, and

contain higher absolute REE contents of the light REE

than the associated pyroxenite. Despite the descrepancy

in the absolute value of the clinopyroxene/liquid distri-

bution coefficients (Schnetzler and Philpotts, 1967, 1970;

Onuma et al., 1969; Masuda and Kushiro, 1969) none show any

tendency for clinopyroxene to accomodate more light REE than

its associated liquid. The lherzolite clinopyroxene REE

distributions, hence, cannot be reconciled with the idea

that the pyroxenite is a melt which has intruded the lher-

zolite and solidified at depth.

2. Lherzolite formed from pyroxenite

In bimodal inclusions, lherzolite is invariably

fresher. Pyroxenite pyroxenes are considerably more tur-

bid than lherzolite pyroxenes stemming from included trains

of glass beadlets, and exsolution patterns of tiny euhedral

spinel flakes in the former. Glass apparently formed from

melted garnet constitutes up to 15% of some pyroxenites.

Lherzolite mineral grains have very clean contacts, and

show no sign of melting. (Experimental studies of lher-

zolite melting at high pressures and high water pressures
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Figure 5

Schematic appearance of the lherzolite-

pyroxenite contact. Letters (A) through (E)

refer to statements in the text.
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[Kushiro et aZ., 1968] indicate that the lherzolite should

be partially melted if intruded by a pyroxenite melt at

1300-1400 0C.) There is also no evidence of invasion of

lherzolite by pyroxenite. Close petrographic inspection

of the contact region in a number of inclusions has re-

vealed transitional grains of several types which suggest

that the lherzolite mineralogy originates from the pyrox-

enite (Figure 5). Lherzolite orthopyroxene originates by

transformation of both pyroxenite pyroxenes (A) and (B).

Lherzolite olivine grows at the expense of orthopyroxene

(C). Clinopyroxene-spinel-garnet intergrwoths in the py-

roxenite are transitional to chrome diopside-spinel inter-

growths in the lherzolite (D) and (E). The chrome diopside-

spinel pair are enriched to widely varying degrees in Cr203

within a given xenolith. The enrichment results from the

reduction in volume of chrome diopside and spinel relative

to the corresponding pyroxenite minerals, and perhaps by the

removal of Cr203 from the permeating liquid. Olivine and

orthopyroxene near the contact show less range in composi-

tion, but are variable in MgO/FeO. Pyroxenite minerals by

contrast are homogeneous.

If the lherzolite has originated by reaction of a

melt with the pyroxenite, as proposed, the REE contents of

near-contact lherzolite chrome diopsides may reflect this

lack of equilibrium, and hence, the chrome diopsides may

still retain some of the REE characteristics of the pyrox-
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enite clinopyroxenes from which they formed. -Lherzolite

chrome diopside and associated pyroxenite clinopyroxene

have been analyzed from two Salt Lake Crater garnet pyrox-

enites. In each case (R7444, Figure 3; and R7629, Figure

2), the associated clinopyroxenes have similar REE distri-

butions. (The agreement is poorer for R7629, Figure 2,

than for R7444, Figure 3, perhaps because of a higher con-

tent of exsolved orthopyroxene in R7629 pyroxenite clino-

pyroxene [which acts as a diluent], than in the correspond-

ing separate from R7444.) In each rock, the associated

lherzolite and pyroxenite clinopyroxenes show less simi-

larity in their heavy REE distributions, than in the light

REE. Lherzolite clinopyroxene in each case has greater re-

lative concentrations of the heavy REE than its pyroxenite

counterpart. This difference may be related to the disap-

pearance of garnet at the contact. If garnet is eradicated

in part by re-entering solid solution in the clinopyroxene,

as textural observations indicate, the high heavy REE con-

centrations in the garnet would account for the enrichment

in heavy REE in the lherzolite chrome diopside relative to

its associated pyroxenite clinopyroxene.

REE data from pyroxenite R7444 suggest the possible

presence of the liquid responsible for the transformation of

pyroxenite to lherzolite. Although the modal sum of the REE

patterns for garnet and clinopyroxene add precisely to the

whole-rock pattern in the case of R7401 (Figure 1), the

MMWAWA
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whole-rock pattern for R7444 cannot be accounted for entirely

by these two minerals. Garnet with very low concentrations

of the light REE, and the curved REE distribution of R7444

pyroxenite clinopyroxene (Figure 3) cannot yield the observed

straight-line whole-rock distribution. A small amount of a

phase rich in the light REE must also.be present. Contami-

nation from the host nephelinite basalt is a possibility

(Figure 4 shows a nephelinite REE distribution). However,

calculations show that the whole-rock pattern in R7444 lher-

zolite is more nearly matched by its separated mineral REE

contents than is the whole-rock pattern for R7444 pyroxenite.

That is, more of the light REE enriched phase is present in

the pyroxenite than in the lherzolite. If the source of

this mineral were the host basalt, both materials should

have comparable contamination and the lherzolite REE pattern

should be affected to the greater degree, since it contains

about 5 times lower REE concentrations than the pyroxenite.

Garnet in R7444 pyroxenite has undergone nearly complete

melting; R7401 garnet shows relatively little glass. In

regions of advanced melting of garnet in R7444, electron

microprobe analyses have revealed the presence of excess

alkalis relative to the garnet from which the glass has

formed. The source of these alkalis and the excess light

REE may be the liquid performing the leaching process which

leaves residual lherzolite in the place of original garnet

pyroxenite.



110.

An earlier REE study of lherzolites may be consistent

with this model. Nagasawa et al. (1969) have reported REE dis-

tributions for whole-rock and separated chrome diopside samples

from several Salt Lake Crater lherzolites. When distribution

coefficients are applied to the REE patterns of chrome diop-

sides, the associated liquids have chondrite-normalized dis-

tributions which are concave-upward, like the hypothetical li-

quids associated with pyroxenite clinopyroxenes of this study.

In fact, a lherzolite chrome diopside analyzed by Nagasawa et

al. (Sample no. 2) has a REE pattern nearly identical to the

R7401 pyroxenite clinopyroxene reported here. In terms of the

model proposed in this paper, this chrome diopside came from

near-contact lherzolitic material, and retained the REE cha-

racteristics of the pyroxenite clinopyroxene from which it

formed.

The REE distribution has been determined for a chrome

diopside separated from a Salt Lake Crater lherzolite having no

attached pyroxenite. Its pattern is unlike any pyroxenite cli-

nopyroxene (Figure 6). Application of distribution coefficients

to this pattern indicates that the liquid last in equilibrium

with this pyroxene had a distribution similar to the more alka-

li-rich, silica-undersaturated Hawaiian basalts. In the pro-

posed model, this lherzolite may have been brought from a re-

gion in the mantle further removed from the lherzolite-pyrox-

enite contact, and may represent a more nearly equilibrated

assemblage. The liquid may be all or a component of the per-
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meating melt involved in the hypothetical leaching process.

CONCLUSIONS

This investigation of Salt Lake Crater xenoliths

having lherzolite and garnet pyroxenite in mutual contact,

suggests it is unlikely that the lherzolite represents pri-

mitive mantle material intruded by a liquid which has crys-

tallized to garnet pyroxenite at depth (as suggested by Kuno,

1969). Textural, REE, and major element data indicate that

lherzolite is the younger material, having formed from the

pre-existing garnet pyroxenite. Depletion of REE and basal-

tic major element components (Ca, Al, Na, K, Ti) in the lher-

zolite relative to the pyroxenite (Table 2) suggests that the

transformation involves the removal of these materials from

the pyroxenite, leaving lherzolite as a barren Mg-rich resi-

due. If true, our view of a predominantly peridotitic upper

mantle may be inaccurate. If lherzolite forms from pyrox-

enite, lherzolite is not primitive upper mantle material,

and would occur only in regions where basalt generation has

taken place. The preponderance of lherzolite as a xenolith

type in basalts may be more a function of its local abun-

dance in the region through which the basalt was erupted,

and of its greater stability in the presence of basaltic

melt (Kutolin, 1970), than of its ubiquity in the upper man-

tle in general.
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In the model presented here, garnet pyroxenite is

more primitive upper mantle material than spinel lherzolite.

A comparison of the major element compositions of typical

garnet pyroxenite and spinel from Salt Lake Crater lherzo-

lite with that of "pyrolite III" (Green and Ringwood, 1967)

appears in Table 2. The densities of pyrolite III and typi-

cal spinel lherzolite from Salt Lake Crater are comparable.

Density for the pyroxenites is variable, and depends on the

extent to which recrystallization to form garnet has pro-

gressed. Xenoliths with about 5% garnet have densities near

3.38; those with garnet contents above 30% have densities at

least 3.50 gms/cm 3 . Press (1969) has shown that the litho-

shere may have densities greater than those predicted by the

pyrolite model. Salt Lake Crater garnet pyroxenites have

densities consistent with the results of Press, and show

textural evidence of having been derived from depths of about

60-80 km (Green, 1966). The uniformity of spinel lherzolite

inclusions the worldover (Ross et al., 1954)-suggests that

other lherzolites may have originated from pyroxenite in

events similar to that preserved in the Salt Lake Crater

xenoliths. If so, garnet pyroxenite may constitute a large

proportion of the upper mantle.
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TABLE 1. Concentrations of the REE in whole-rock and

separated mineral samples from xenoliths from Salt Lake

Crater, Hawaii and Kilbourne Hole, New Mexico

R7401 R7401 R74.01 R7404 R7444P R7444L

WR CPX Gt CPX WR WR

La 2.57 3.65 0.018 5.30 1.56 0.49

Ce 5.81 9.56 ... ... 4.26 0.98

Pr 0.97 1.70 0.29 3.97 0.56 0.14

Nd 4.97 7.93 2.87 22.18 2.50 0.85

Sm ... ... (0.76) ((3.97)) 0.76 0.20

Eu 0.64 1.27 0.56 1.60 0.27 0.067

Gd 2.26 2.55 4.95 6.73 1.05 0.21

Tb ... ... 0.73 0.70 0.20 0.037

Y 10.21 5.84 28.30 10.19 6.17 0.92

Ho 0.39 0.25 1.07 0.32 2.74 0.038

Er 1.00 0.53 3.31 1.45 0.87 ...

Tm 0.14 0.062 0.48 0.13 0.089

Yb 0.73 0.25 ... 0.66 0.65

Lu ... ... 0.48 0.12 0.40

Missing data points are due variously to (1) incomplete

separation of adjacent REE

(2) laboratory mishaps and

in the ion exchange procedure,

(3) allowing insufficient

time for the oxalate precipitations in early runs. Brack-

eted values correspond to elements for which the standard

was lost in analysis. Double bracketed data are assumed

values against which single bracketed data are compared.
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TABLE 1. (Cont 'd.

R7444P R7444L R7634 R7634 R7629P R7629P R7629

CPX CPX WR CPX WR CPX CPX

2.88 2.67 4.30 4.80 1.45 2.17 2.90

... ... ... 15.42 3.97 ... 6.20

1.18 1.08 2.28 2.88 0.56 0.67 1.00

6.37 5.60 12.97 15.41 3.02 4.54 5.34

1.66 1.43 3.31 3.94 0.89 1.33 1.54

0.60 0.44 1.28 1.42 0.31 0.43 0.56

2.21 2.09 5.63 6.62 1.46 1.78 2.10

(0.29) (0.25) 0.55 0.85 0.28 ((0.26)) 0.41

(8.25) (12.9) 16.3 19.2 7.17 ((9.41)) 5.59

0.25 0.31 0.84 0.95 0.35 0.28 ...

0.67 .*0 1.71 2.02 0.80 0.68 ..

0.074 0.12 0.30 0.34 0.12 0.087 0.16

0.32 0.70 1.76 1.87 0.74 0.50 0.90

0.044 0.094 0.26 0.30 0.096 0.068 0.14
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TABLE 2. A comparison of major element compositions of

pyrolite III, with typical Salt Lake Crater lherzolite

and garnet pyroxenite.

Pyrolite III

45.20

3.54

0.148 1
0 8.47t

8.04J

37.48

3.08

0.57

0.13

0.71

0.43

99.66

Typical

Lherzolite*

43.40

2.29

1.00]
18.6B4*

7. 7 4J

42.98

1.60

0.17

<0.03

0.15

0.42

99.78

Typical

Garnet Pyroxenite**

48.46

7.96

3. 55] . 2

4.92

19.96

12.00

1.90

0.19

0.43

0.54

99.91

MgO/("FeO")4.43 4.97 .2.46

Lherzolite #2, Kuno, 1969, p. 194

**Pyroxenite #16, Kuno, 1969, p. 195

t Total iron as FeO ("FeO")

Si0 2

A1203

Fe 2 03

FeO

MgO

CaO

Na2 0

K2 0

TiO 2

Cr 2 0 3

TOTAL
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CHAPTER IV

STRONTIUM ISOTOPIC RELATIONSHIPS IN XENOLITHS AND THEIR HOST

BASALT FROM SALT LAKE CRATER, HAWAII

Two goals motivated this strontium investigation:

first, a desire to determine the presence or absence of a

genetic relationship between the Salt Lake Crater xenoliths

and their host basalt. Secondly, radiometric age data was

obtained from the inclusions themselves, in an effort to

find fragments of old and possibly primitive upper mantle

material.

Are the xenoliths and the host basalt genetically related?

The host basalt at Salt Lake Crater is too young

(Pleistocene to Recent, [Winchell, 1947; Jackson and Wright,

1970]) to have undergone a measurable increase in its Sr87/

Sr86 ratio since eruption. The xenoliths, with lower Rb/Sr

than the basalts, are even less able to change their Sr87/

Sr8 6 in the same time interval. Hence xenoliths and host

basalts showing the same isotopic compositions today, were

in isotopic equilibrium at the time of eruption. Conversely,

xenoliths now showing Sr87/Sr86 ratios different from the

host rock values were not in isotopic equilibrium at the

time of eruption. There are three possible relationships

between Sr87/Sr86 ratios in the basalt and the'xenoliths.
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(1) Basalt and inclusions showing the same isotopic composi-

tion are possibly but not necessarily genetically related.

(2) If the basalt 87/86 ratio is higher than the xenolith

values, it is possible but unlikely, that the two are coge-

netic. (If a disequilibrium melting process selectively

attacked minerals rich in alkalis [with high Rb/Sr] the re-

sulting liquid might have a higher 87/86 ratio than the re-

sidue. This requires that the parent material was not homo-

geneous with respect to Sr8 7/Sr86 .) (3) Lower 87/86 in the

basalt than in the inclusions is strong evidence for the lack

of a genetic relationship. The xenoliths, and particularly

their clinopyroxenes, have very low Rb/Sr ratios. Since

87/86 ratios lower than the initial ratio cannot be obtained

in a closed system, a basalt with an 87/86 ratio lower than

its low-Rb/Sr xenoliths cannot be related in a simple gene-

tic manner to those inclusions.

O'Neill et al. (1970) reported Sr isotopic composi-

tions in some xenoliths and basalts from Oahu. They found

no appreciable differences in Sr87/Sr86 between a group of

four Salt Lake Crater pyroxenites, and two nephelinitic ba-

salts from vents other than Salt Lake Crater in the Honolulu

Series group. From the similarity in these isotopic compo-

sitions, the authors conclude the possibility of a genetic

relationship between the two groups of material.

Although sufficient data has not been taken to be

conclusive, the Sr data of the present study suggests a
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different conclusion. Good samples of host basalt at Salt

Lake Crater are rare. The xenoliths occur in an agglomer-

ate tuff composed primarily of fragmental tholeiite and co-

ral reef material. Thi material is clearly not representa-

tive of the host rock. Some xenoliths, on the other hand,

show partial skins of dense fine grained nephelinite, which

taper to zero thickness at their edges (Fig. IV-1). The

suggestion is that these skins have crystallized against

the inclusions prior to their most violent abrasion, and

hence represent part of a liquid/inclusion system some dis-

tance below the surface. These basalt skins are considered

the best samples of the composition of the Salt Lake Crater

host basalt. Fig. IV-2 is a histogram of the Sr isotopic

results of this study. Xenolithic minerals and whole-rock

material are cross-hatched and show no overlap with the ba-

salt values. The data suggest that the Salt Lake Crater

xenoliths are not genetically related to the basalt which

brought them to the surface.

Lower 87/86 ratios in the basalt than in the inclu-

sions are consistent with the idea that the melt came from

a greater depth in the upper mantle incorporating the xeno-

lithic material in its path of ascent. Since Rb is more

strongly fractionated than Sr in partial melting processes,

the upper mantle should become depleted in Rb relative to

Sr with depth and time. A reduction in Rb/Sr lowers the
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ability to grow Sr87 relative to Sr86 , and with time the

upper mantle should also show decreasing Sr87/Sr86 with

depth. Basalts derived from different levels should re-

flect this fractionation, with those generated at the greatest

depths showing the lowest Sr8 7/Sr86 ratios.

Based on major element compositions of some Salt

Lake garnet pyroxenite xenoliths (the same samples analyzed

by O'Neill et at.) Jackson and Wright demonstrated that cer-

tain pairs of pyroxenites have chemistry consistent with

their being parent and residue respectively to the produc-

tion of the Honolulu Series basalts. The Sr data of this

study do not support this conclusion. Textural evidence in

the pyroxenite suite is also inconsistent with the conclu-

sions of Jackson and Wright. The garnet pyroxenites pro-

posed as residues (68-SAL6, 68-SAL24) contain textures which

are evidence of extensive cooling at very nearly isobaric

conditions. These textures, discussed in Chapter II, in,

volve the abundant exsolution from clinopyroxene of ortho-

pyroxene and garnet, and the formation of additional garnet

by the subsolidus recrystallization of spinel and clinopy-

roxene. A cooling from 1300 or 1400 0C to about 11000C, at

about 20 kb has been inferred. It is difficult to envision

an isobaric process at a depth of 70 km involving the rapid

cooling of material through 200-3001C. Hence it is unrea-

sonable that rocks showing evidence of such extended cool-
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ing could have been residual in the formation of the basalt

in which they were carried to the surface, particularly in

light of the highly explosive nature of the Salt Lake Cra-

ter eruption.

Possible fragments of ancient upper mantle material

A second goal of the strontium investigation has

been the search for old fragments of the upper mantle. Again

the data reported are too few to be conclusive, but there is

indication that such a search would not go unrewarded.

Caution must be exercised in the interpretation of

strontium isotopic data from ultramafic inclusions of sup-

posed mantle 6rigin. Erlank (1969) has shown that the gar-

nets from xenoliths from Roberts-Victor Mine, South Africa,

contain alkali-rich alteration rims, and crack-filling ma-

terial. In some cases removal of this material is impossible,

rendering trace element data on the present mineral systems

useless as information about the upper mantle. Contamination

from crustal material is also a danger in the study of xeno-

liths brought to the surface in continental basalts. The

search for old mantle fragments in xenolith suites is a

search for high Sr87/Sr86 ratios. Continental crustal ma-

terial has relatively high Rb/Sr ratios and high Rb and Sr

contents. Through time, large amounts of radiogenic Sr87

are developed, and through contamination, can cause large
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changes in the Sr87/Sr86 ratios of xenoliths with low Sr

contents. Bence (1966) found no Hawaiian basalt with Sr87/

Sr86 outside the range from about 0.703 to 0.707. Hence

xenolithic material from the Hawaiian Islands which shows

Sr87/Sr86 ratios above 0.710 or so, must be a fragment of

old mantle material, since contamination from the host rocks

could raise the xenolith ratio no higher than about 0.707.

A garnet- and phlogopite-bearing pyroxenite xeno-

lith (R7399-SLC6) from Salt Lake Crater has given some pro-

mising results. The Rb and Sr data for it are shown in

Table 1. Sr87/Sr86 determined for the clinopyroxene, phlo-

gopite and whole-rock fall in a narrow range from 0.7036 to

0.7041. The very low Rb/Sr ratio in the clinopyroxene al-

lows its Sr87/Sr8 6 ratio to be considered the initial ratio

for the rock. The near-equivalence of the Rb-rich phlogo-

pite and whole-rock values with the clinopyroxene ratio

suggest either that the rock has recently formed or that

the phlogopite has continually equilibrated with the clino-

pyroxene through time. The high Sr87/Sr86 values in the

garnet indicate the likelihood of the second alternative.

It is important to establish that the garnet 87/86

values are real properties of the mineral itself, especially

in light of the low Sr concentrations it contains. Several

factors might produce apparently high Sr87/Sr8 6 ratios in

samples with low Sr contents and otherwise low Sr87/Sr86



TABLE IV-i. Rb, Sr and Sr isotopic results for R7399.

Sr(ppm)

0.514

130

0.866

Sr87/Sr8 6

0.718

0.740

0.7041

0.7036

0.7105

0.7038

0.7038

0.715

0.727

126.

Rb(ppm)

0.037

.. 0

.100

Gar #1

Gar #2

Whole-
Rock

Phlog

Gar #3

Cpx

Cpx

Gar #4

Gar #5
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ratios. (1) Memory in the mass spectrometer of spiked Rb

runs could raise the measured 87/86 ratio, by contributing

Rb8 7 to the 87 peak despite showing a low Rb8 5 peak, which

indicates a small normal Rb correction. The fact that the

Rb at the outset of these runs was normal, and that the mea-

sured 87/86 ratio was quite constant over the course of the

runs, suggests that this is not the explanation of the high

garnet 87/86 ratios. (2) Double ionization of ytterbium,

whose isotopes at masses 174 and 172 are in the proper re-

lative abundance to cause an increase in the measured 87/86

ratio, is a possibility. Calculations show, however, that

if doubly ionized Yb were present in the beam in sufficient

amount to cause a run whose true 87/86 ratio was 0.704 to

appear to be 0.727, for example, the measured 86/88 ratio

would be 0.1160. No run has shown a 86/88 ratio further

than 0.0007 from the normalization value of 0.1194. Hence

it is unlikely that the garnets show high 87/86 ratios as

a result of rare earth interferences.

A third possibility is that of contamination intro-

duced in the chemical procedure. In the course of Sr analy-

ses of lunar material, Hurley (personal communication, 1970)

has found that most of the Sr blank level is introduced in

the ion exchange procedure. Although whole-process blanks

for Rb and Sr have shown measured levels of 7 nanograms Rb

and 16 nanograms Sr in the present study, the runs on which
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these values were determined were very badly overspiked, and

hence are unreliable. The measured Sr contents of the gar-

net are between 500 and 800 nanograms/gm, and contamination

could have been an appreciable fraction of the analyzed Sr.

Sr87/Sr86 values of 0.715 to 0.740 might have been attribu-

ted to contamination from the ion exchange columns if those

columns had been used in the analyses of Precambrian conti-

nental rocks whose 87/86 values often exceed 1.0. However,

the columns themselves, and the resin, were new at the start

of these analyses. No Sr samples other than those from ul-

tramafic xenoliths and their host basalts were eluted through

the columns, so that contamination from the columns is not a

likely explanation of the high 87/86 ratios displayed by the

garnet, though it is a likely source of the variability the

garnet 87/86 ratios show. Laboratory dust, with high 87/86

values, could give the observed garnet numbers, but if it

is responsible, the relative contributions to the blank of

the various parts of the procedure observed by Hurley would

have to have been different in this work.

The measured garnet ratios therefore are probably

real. Taken together, the Rb/Sr and Sr isotopic data for

R7399-SLC6 do not form an isochron. The results suggest

that garnet and clinopyroxene have acted as sinks for the

radiogenic Sr87 produced in the phlogopite, which it easily

loses because of the loose fit of the Sr87 atom in the site
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formerly occupied by its larger radioactive parent, Rb 87 .

The isotopic disequilibrium between garnet and clinopyroxene

requires that temperatures were not high enough to allow ex-

change of Sr87 between these minerals. Recent results indi-

cate the persistence of isotopic disequilibrium at these

conditions is possible. Peterman et al. (1970) report data

for a lherzolite from Dish Hill, California, showing clear

isotopic disequilibrium between the chrome diopside, oli-

vine, and orthopyroxene. Over short periods of time (on

the order of tens of millions of years), the addition of

radiogenic Sr87 from the mica to the Sr-rich clinopyroxene

would cause no observable change in the pyroxene 87/86 ra-

tio. Similar additions to the very Sr-poor garnet over the

same times would measurably alter its isotopic composition.

An estimate of the minimum age of the formation of

garnet in R7399-SLC6 can be made by assuming that at that

time the garnet's 87/86 ratio fell on the mantle growth

curve, and that it and the clinopyroxene absorbed radiogen-

ic Sr from the mica in proportion to their modal abundances.

(It is more likely that each would absorb Sr in proportion

to its Sr content, but the present assumption will give a

lower limit on the age of garnet formation.) Garnet with

0.5 ppm Sr requires the addition of 0.0012 ppm radiogenic

Sr87 to change its Sr87/Sr8 6 from 0.704 to 0.727. Propor-

tionate absorbtion of Sr87 by pyroxene requires a total of
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about 0.014 pgm Sr87 to have been produced for each gram of

garnet, or by each 0.2 gm of phlogopite, whose modal abun-

dance in R7399-SLC6 is about 1/5 that of garnet. Phlogo-

pite with 150 ppm Rb can produce this' Sr87 in about 35 mil-

lion years. If garnet and clinopyroxene absorb radiogenic

Sr87 in proportion to their Sr concentrations, the age of

garnet formation would be on the order of 1.5 billion years.

This is an estimate of the age of an event which took place

in the rock at some time after its formation as a garnet-

free assemblage. The time necessary for that garnet-free

assemblage to have cooled to the point where the garnet

forming reaction could take place is unknown. The rock

itself would be older than 1.5 billion years. Textural

data (Chapter II) and REE data (Chapter III) indicate that

the spinel-lherzolites occurring world-wide as inclusions

in basalt have formed from pre-existing garnet pyroxenites

like R7399-SLC6. An old age for pyroxenite material is

consistent with this view.

The variability in 87/86 ratio in the garnet from

R7399-SLC6 is probably due to three factors. (1) Garnet

and phlogopite are unevenly distributed with respect to

each other in the rock. Migration of Sr87 fr6m the mica

might be expected to affect garnet near the mica more than

more distant garnet. (2) Garnet varies in grain size and

in the degree to which it is fractured. CaCO 3 is present
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along most fractures in the rock, and although care was ta-

ken to leach such carbonate from the garnet separates using

an ultrasonic cleaner, remnant carbonate would contaminate

Sr87/Sr86 ratios in the garnet in varying degrees toward

about 0.708. (3) Common Sr from the ion exchange columns

may have altered the garnet ratios.

The petrographic and REE study of the xenolith

suite from Salt Lake Crater has suggested worldwide impor-

tance for this material in the composition of the upper

mantle. In the course of the rare earth part of this study,

a pyroxenite xenolith (similar to R7399-SLC6) and its con-

stituent garnet and clinopyroxene were analyzed for their

REE patterns (Chapter III, Figure 1). When the garnet and

clinopyroxene REE patterns are added together in their mo-

dal proportions, the fit to the whole-rock pattern is very

close. The data indicate that, unlike the Roberts-Victor

inclusions (Erlank, 1969), the Salt Lake Crater xenoliths

have not been contaminated by the host basalt, and hence

studies of their trace element distributions constitute

valuable aids in understanding the upper mantle. The stron-

tium isotopic part of this study is not sufficiently com-

plete to warrant conclusions of a general sort. It has,

however, shown that the xenoliths at Salt Lake Crater de-

serve a closer look, and with more detailed strontium iso-

topic work, they very likely would reveal new information
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about the age of the upper mantle and the processes by

which crustal material is generated from it.



CHAPTER V

THE ROLES OF LHERZOLITE AND GARNET PYROXENITE

IN THE CONSTITUTION OF THE UPPER MANTLE

Earth scientists commonly assume an upper mantle

with a peridotitic composition. The assumption stems from

models based on comparison of the earth with meteoritic, so-

lar and stellar element abundances, and models based on ter-

restrial rocks thought to have been derived from the upper

mantle.

The assumption that the earth's non-volatile element

abundances are similar to those in carbonaceous chondrites

is the basis of a calculation by Ringwood (1966) which allows

an estimate of the composition of the mantle as a whole. Un-

der the additional assumptions that the FeO/(FeO+MgO) in the

mantle is 0.12, and that the earth's silicate/metal ratio is

69/31, he has shown that the chondrite model leads to comp-

osition for the whole mantle which compares closely with the

pyrolite composition. This similarity is considered evidence

for relatively little fractionation of the major rock-form-

ing elements throughout the whole mantle. It would seem more

appropriate if one of Ringwood's conclusions were an assump-

tion; namely, that " if the whole mantle has not undergone

appreciable fractionation of its major rock-forming elements,

and if the overall earth has a chondritic composition in its

non-volatile elements, then the overall mantle and pyrolite
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have similar compositions." The upper mantle to a depth of

150 km. constitutes only 8.2% of the volume of the whole

mantle. Hence, the chondrite model could be valid, and the

overall mantle could have a peridotitic composition, and yet

the upper mantle may indeed have been fractionated.

The other source of evidence for a peridotitic upper

mantle is based on terrestrial rocks supposed to have

come from the upper mantle. Harris, Reay and White (1967)

have noted the similarity in bulk composition between alpine

ultramafic rocks, inclusions in basalts and inclusions in

kimberlite. Although each group shows wide ranges in compos-

ition, the authors feel that "estimates of the composition

of undepleted mantle derived independently from each source

approach a common value" (p. 6359). The variation is largely

in the rocks' contents of basaltic components, particularly

CaO and A1203. They reason that rocks from each group show-

ing the highest CaO and A1203 contents are representative'

of undepleted upper mantle material, and that others less

rich in these elements represent residual material depleted

to varying degrees in basaltic constituents. A possible

alternative interpretation of this variation stems from the

observation that most xenoliths are coarse-grained, and of-

ten show mineralogical banding. Xenoliths with greater-than-

average contents of clinopyroxene may have originated in the

same episode as nearby material richer in olivine, and yet
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analyses of these rocks would give the impression that the

clinopyroxene-rich rock is more undepleted in CaO and A1 203

and hence more primitive than the olivine-rich rock. The

conclusions of Harris et al. hence are not necessarily in-

dicative of peridotitic material from the mantle which shows

a range of degrees of depletion in its basaltic components.

Typical spinel lherzolite occurs in xenoliths at

Salt Lake Crater in contact with garnet pyroxenite. Sev-

eral lines of evidence (textures, major element distribu-

tions, REE distributions, and Sr isotopic data) converge

to the conclusion that garnet pyroxenite pre-dates the lher-

zolite, and that the lherzolite has formed from the pyrox-

enite. The striking similarities shared by the lherzolite

inclusions of the study of Ross et al. (1954), White (1966),

and Carter (1969) are indications that they have formed in

similar events; that is, that garnet pyroxenite was present

in regions of basalt production in many parts of the world.

Salt Lake pyroxenites have textures which indicate that

they have originated at depths of 60-75 km (Chapter II).

Press (1969) has shown that the material from this region

of the upper mantle may have density greater than that of

lherzolite or pyrolite. Densities of separated minerals

from Salt Lake garnet pyroxenites can be estimated from

data given by Deer, Howie and Zussman (1963). Table V-1

shows modal analyses for the pyroxenites of the REE study,



136.

and the whole-rock densities calculated from them. The

densities of Salt Lake Crater pyroxenite xenoliths fall

within the cluster of curves for models found to satisfy

Press' model. (Inclusions richer in garnet than R7444,

R7401 or R7629 occur at Salt Lake Crater, and would have

somewhat higher densities [3.50-3.55]). Hence, the py-

roxenites have appropriate densities and come from the

proper depths to qualify as the dominant material of the

upper mantle. The uniformity and ubiquity of lherzolite

xenoliths has been considered evidence favoring the idea

that the upper mantle has a lherzolite or peridotite com-

position. However, if typical lherzolite at Salt Lake

Crater has formed from more primitive pyroxenite, the uni-

formity and ubiquity of lherzolite may be more of an indi-

cation of the pervasive distribution of the pyroxenitic

material from which they formed, rather than of the wide-

spread occurrence of the lherzolites themselves. Lherzo-

lite would occur only in regions of the upper mantle where

basalt production and differentiation has taken place. The

relative scarcity of pyroxenite as a xenolith type would

result if it were largely consumed by basalt production,

and because it is less likely to survive the trip to the

surface in the host basalt than lherzolite which is resi-

dual in nature and hence relatively more stable in the

presence of basaltic melt (Kutolin, 1970).
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TABLE V-1. Modal percentages and densities for some Salt

Lake Crater xenoliths.

R?401

R7444

R7629

p=3. 75*

SPINEL

2.9

8.0

0.9

p=3. 75*

GARNET

18.0%

18.0

9.2

3.34

CPX

65.0

37.5

66.2

3.34

OPX

9.0

36.5

23.7

3.36*

OLIVINE

5.1

tr

p

3.43

3.45

3.38

As noted by Jackson (1966), some pyroxenites have

up to 50% garnet. (Density for 50% clinopyroxene, 50% gar-

net is 3.54.) Garnet shows evidence of being preferenti-

ally melted in all xenoliths observed in thin section (about

30). The xenolith population at Salt Lake Crater may be

poorer in garnet than the region from which they came, if

garnet-rich xenoliths were more easily disaggregated in the

eruption as a result of garnet's melting.

Densities for spinel, clinopyroxene, orthopyroxene and

olivine estimated from data in Deer, Howie and Zussman,

1962. Garnet and spinel have nearly identical densities

as seen in Clerici separations.
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The entire discussion applies only to the region

in the mantle from which spinel lherzolite is derived. Al-

pine peridotites probably come from shallower depths; the

xenoliths in kimberlites from depths greater than about 100

km. The fact that Press' model cannot resolve features of

the upper mantle shallower than about 50 km enables nothing

to be said of this sort about the outermost upper mantle.

Below about 150 km Press' model predicts densities more

nearly in accord with the pyrolite model. It is therefore

possible that olivine-rich compositions, perhaps material

similar to the garnet peridotites from kimberlites, are

representative of the lower portions of the upper mantle.

It is argued here, however, that regions of the upper man-

tle between 50 and 150 km do not have compositions rich in

forsteritic olivine, and that the garnet pyroxenites from

Salt Lake Crater, Hawaii, may be representative of this

zone of the upper mantle.
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CHAPTER VI

SUGGESTIONS FOR FURTHER RESEARCH

The main purpose-of the present study has been to

determine the genetic relationship between pyroxenite and

lherzolite in mutual contact. The decision as to which is

the older material has a large effect on proposed upper man-

tle compositions. A very useful study would be the deter-

mination of the Rb-Sr ages of associated lherzolite and gar-

net pyroxenite. This would involve the analysis of whole-

rock and separated mineral samples from the two rock types

for their Sr87/Sr8 6 and Rb8 7/Sr86.

More major element.analyses of near-contact lher-

zolite minerals using the electron microprobe would be help-

ful in clarifying the process by which lherzolite appears

to form from pyroxenite. Detailed mapping of the variation

of Cr203 and A1203 in coexisting spinel and chrome diopside

in the lherzolite portions of two-assemblage. xenoliths is a

first priority. It would also be interesting to know the

precise variation of Mg/Fe as a function of distance per-

pendicular to the contact, and radially from the centers of

olivine, orthopyroxene and chrome diopside grains. Type 1

pyroxene grains at the contact (pyroxenite clinopyroxene

and lherzolite orthopyroxene in a single grain) would also

be interesting to carefully map with the microprobe for
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their total major element compositions, particularly their

Mg/Fe and CaO contents. Further microprobe analyses of the

crack-filling material near the lherzolite-pyroxenite con-

tact are also suggested by the present study.

The fission track technique is capable of showing

the microscopic distribution of once trace element, urani-

um, relative to the textures of the rock. Maps of uranium

distribution in minerals on both sides of the contact might

clarify processes such as suggested in the rare earth study.

Lherzolite chrome diopside and its associated pyroxenite

clinopyroxene have very similar REE patterns. With the fis-

sion track technique, one could get detailed and possible

elucidating information on the distribution of uranium

across transitional grains of the types shown in Figure 5,

Chapter III.

Additional REE analyses could be very informative.

R7444 contains about 18% glass, which has a major element

composition similar (except for excess alkalis) to the gar-

net from which it formed. Either by use of heavy liquids,

or by selective dissolution, the glass could be removed and

analyzed for its REE distribution. Since the glass may con-

tain components of the liquid performing the pyroxenite-

lherzolite transformation (see Chapter III), a knowledge of

its REE pattern, and hence its relationship to Hawaiian la-

vas would be most useful.
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