Applications of
 Two-Dimensional
 Vidicon Photometry:
 Venus

by
Philip Henry Schaller, Jr.

Submitted in
Partial Fulfillment
of the Requirements for the Degree of Master of Science
at the
Massachusetts Institute of
Technology
June, 1973

Department of Earth and Planetary Sciences, May 11, 1973
Certified by:
Accepted by:
Chairman, Departmental Committee on Graduate Students
WITMMRRAINTN

TABLE OF CONTENTS

Acknowledgements 2
A. INTRODUCTION 3
B. GRAY SCALE EXPANSION 6
C. IMAGE REFLECTION AND ROTATION 8
D. LAPLACIAN IMAGE 10
E. INTENSITY TRAVERSES 12
F. CONCLUSIONS 14
References 15
Figure Captions 16
Figures 19
Appendix 54

ACKNOWLEDGEMENTS

I would like to thank my advisor, Thomas B. McCord, and all my friends at MITPAL for their help. Also, thanks go to R. Beebe and others at the New Mexico University for supplying their photographic plates for comparison.

A. INTRODUCTION

The vidicon tube and the theory of its operation, and an operating camera and data system have been described by McCord and Westphal (1972). The hardware and software systems have been described in detail by Kunin (1972). This thesis describes one application of the vidicon system to as astronomical problem.

It has been known for some time that the planet Venus exhibits a featureless shroud of clouds in the visible portion of the spectrum. In the ultraviolet portion, however, features are visible (Boyer and Guerin 1969) (Scott and Reese 1972). These features, and in particular the curious "Y"-shaped cloud which rotates around the planet in approximately four days, are of extremely low contrast. Conventional photographic pictures are printed on high contrast paper to bring out the low contrast clouds. The vidicon system is ideally suited for this problem for three reasons.

1) The system has a wide dynamic range, incorporating many sray levels.
2) The system is linear over this wide dynamic range.
3) The data are already in digital form.

Analyses of the vidicon images are simple using a computer.
The vidicon images presented in this thesis were taken using the Kitt Peak National Observatory 84" telescope on April. 23, 24, 25, and 26, 1972. The first night the instrument was mounted at the Coude focus. The other nights it was
mounted at the Cassegrain focus. Film photographs were taken the same nights at the New Mexico State University.

Thirteen vidicon images were selected for study in this thesis. These represent the best pictures at each of the several wavelengths taken during each night of the run. On the first night (the only Coude pictures) the Y-shaped cloud had apparently rotated out of view. The second night many quality pictures were obtained at $.358, .383$, and .402 microns. The cloud is clearly visible on this night although only one of the branches of the Y is seen. The third night only three pictures were obtained and were of less quality than the night before. The final night all pictures were taken through infared filters (see figures 1-13).

Figures 14 through 17 are the best pictures taken with conventional photographic plates during each night of the run. They are all at . 37 microns. Correspondence with the vidicon pictures should be noted. They also show only one branch of the Y cloud and confirm the phase of the cloud during this time. The approximately four-day rotation can be observed, noting that the cloud was rotated out of view on the night of the 23rd. These pictures, however, are not suitable for entering into the rotation rate controversy of 4 or 4.5 days (Boyer and Guerin 1969) (Scott and Reese 1972).

Various image processing techniques were developed in the course of this thesis research which were used to enhance the cloud features above the background planet. The remainder
of this thesis is devoted to a description of these techniques and their application to the Venus cloud problem. While the data were not taken for the purpose of this thesis, a good deal of it was usable. Although no great scientific problems were solved, it is hoped that this work will be the guide for future Venus research.

B. GRAY SCALE EXPANSION

To make such low contrast features such as the Y cloud on Venus more visible, various image enhancements can be performed on the computer. The first of these attempts at contrast enhancement is gray scale expansion. The vidicon system has 256 gray levels. The actual feature may extend over only tens of gray levels. These gray levels are linearly expanded over the full 0 to 255 range. Points elsewhere in the picture falling below 0 are set to 0 and those rising above 255 are set to 255 .

As the contrast is enhanced (see figures 18-2.2), two effects are noticeable. 1) The size of the image decreases until under almost total contrast enhancement the image almost disappears. This is due to less and less of the image falling into the selected rance of gray levels for total expansion. 2) Artificial contours are introduced by the quantization noise. When only a few gray levels are used to cover the entire range of light levels, noticeable (to the eye) distinct changes in light level are visible across the image. While the original pictures had eight bits of gray resolution, every contrast enhancement of a factor of two reduces the number of significant bits by one. Thus these contours are not inherent to the actual image (which is continuous), but are introduced by the necessity of making arbitrary decision levels in digitizing the data. Since our object data is at one end of the gray scale, a logarithmic enhancement built into the film converter was
also tried. (see figures 23-27) The resulting images do not show much improvement. The vidicon system also contains a routine to contrast enhance an overexposed image without loss of precision, as well as the normal overexposed image reducing routines.

C. IMAGE REFLECTION AND ROTATION

The usual method of mapping a feature which appears only at selected wavelengths is to divide the picture at one of the selected wavelengths by the same scene at another, but featureless, wavelength. In this case, however, this cannot be done. The scattering function of the CO_{2} atmosphere, which is superimposed on the feature, is a strong function of wavelength and hence cannot be divided out.

As noted before, only one branch of the Y seems to be visible on this occasion. The southern hemisphere can be divided by the northern hemisphere at the same wavelength (using the same picture, obviously), and thus eliminate the CO_{2} scattering function. (This assumes a certain symmetry about the function, of course.) The vidicon system now contains a routine to reflect a picture about an arbitrary axis in the plane of the picture. The problems of such a reflection on a discrete grid of points are obvious, but the results are remarkably good. Note that the proper combination of two reflections can produce an arbitrary rotation about an axis perpendicular to the plane of the picture.

The reflected image of Venus is divided by the original and then contrast enhanced. (see figures 28-42) Two things are now immediately obvious. 1) There is a symmetry about the reflection axis. Where the image is dark on one side, it is light on the other side and vice versa. So in the same picture we have the southern hemisphere divided by the
northern hemisphere juxtaposed with the northern hemisphere divided by the southern hemisphere. 2) There is an edge effect to this process. The reflection, while good, is not perfect and the limbs of the planet in the two images. (original and reflected) do not match up exactly. Since the light level changes rapidly across the limb, the division process greatly enhances the edge. Contrast enhancement makes it worse. The problems of contrast enhancement mentioned in the previous section also apply here.
D. LAPLACIAN IMAGE

Another method of enhancing low contrast features is that of the Laplacian. Being a second derivative operator, the Laplacian is not sensitive to overall reflectivity levels or their uniform variations. It yields only changes in reflectivity variations. These are most of ten due to fine detail in the image.

The discrete Laplacian is performed on the image by subtracting the average level of the right nearest neighbors of a point from the level of the point. (Rosenfeld 1969) The resultant values are then contrast enhanced. (see figures 43-55) The absolute values of the Laplacian may also be used for display. (see figures 56-68)

Two items are noticeable in these pictures. 1) The ones taken at the Cassegrain focus show a considerable edge effect whereas the Coude pictures do not. This is due to our now enlarged raster (nine points instead of one) when taking the Laplacian. In the Cassegrain images the entire disk of the planet is approximately 32 points wide, while the Coude images show a disk 128 points wide. Since the Coude image is of smaller scale and the limb varies more slowly, the effect of the larger raster is not noticeable. One might try to circumvent this purely mechanical problem by enlarging the smaller picture in the computer before taking the Laplacian. Two methods of enlarging are common and both have problems. a) Each point is mapped into, say, four points at the same gray level. Its
problem is graininess. The Laplacian pictures appear grainy enough without making them worse by this method. b) Each of the four points in the enlarged picture can be interpolated in gray level between the positions of the original gray levels. This is an expensive process and does not yield enough quality to make it worthwhile. Frequently, artificial contours are introduced and are enhanced by the Laplacian process. Both these methods suffer from the problems associated with displaying a supposedly continuous function on a discrete grid. (see previous section)
2) The second branch of the Y cloud is now discernable. This has been unnoticed by any of the previously mentioned methods, which shows the power of this technique.

E. INTENSITY TRAVERSES

While the CO_{2} scattering function is a complication for the purpose of observing the Y cloud, it is interesting in its own right. (see Appendix) This data is presented in the format of intensity traverses. The intensity of the image is scanned along a line perpendicular to the planet's terminator. All plots begin with the limb on the left and end with the terminator on the right. The organization of these 117 intensity traverses is first by image and then by latitude. In order there are nine plots for each of the thirteen previously mentioned selected images corresponding to figures one through thirteen, respectively. In each set of nine, the plots start at the northern end of the planet and end at the southern end. Note that in some cases, the first or last plot misses the planet altogether. The fifth plot in the sequence is reliably along the equator. The lines of traverse are as close to being at equivalent latitudes as is possible on a discrete grid, and very close in equivalent distance. A normalized distance scale, as well as the start and end points for each traverse, is given. Note that the traverses were taken before correction due to the mirror image reflection by the Cassegrain focus. This is apparent in the absolute coordinates only. Also note that the plots of the Coude images span about 128 points, making the Coude traverses appear smoother.

For interpretation, the plots at similiar latitudes, but through different filters, may be overlayed to show the
wavelength dependence of the CO_{2} scattering function. Small features, such as the Y cloud, seem to be masked by the small sampling rate when the cloud was visible.

F. CONCLUSIONS

The first data from the two-dimensional vidicon photometer are at least as good as that obtainable from conventional photographic film techniques. Further processing to bring out desired features is readily and easily done through computer techniques. These techniques produce better and cleancr results with more and more sophisticated methods. The next method to be tried should be some form of high pass filtering in the spatial frequency domain. Noise filtering can easily be done along with this.

Further observations of Venus with the vidicon system should span at least five nights in order to see one complete cloud cycle. The image should be as large as possible without reaching the edge of the target. Since the cloud feature spans just 10 or 20 gray levels out of 200 , the exposure should be such that the brightest part of the image is near the top of the gray scale range. Overexposed images should be retaken, as it is at best difficult to retrieve the information. Images should be taken at several wavelengths during each night and repeated on the other nights. Adequate logging of the setup of the observations and the data taken will ease the burden of the data reduction.

REFERENCES

Boyer, C. and P. Guerin (1969). Etude de la rotation retrograde, en 4 jours, de la couche exterieur nuageuse de Venus. Icarus 11, 338-355.

Kunin, J. S. (1972). A Technique for Two-Dimensional Photoelectronic Astronomical Imaging, with Application to Lunar Spectral Reflectivity Studies. Master's Thesis. Massachusetts Institute of Technology. McCord, T. B. and J. A. Westphal (1972). Two-dimensional Silicon Vidicon Astronomical Photometer. Appl. Opt. 11, 522-526.

Rosenfeld, A. (1969). Picture Processing by Computer. Academic Press, 94-102.

Scott, A. H. and E. J. Reese (1972). Venus: Atmospheric Rotation. Icarus 17, 589-601.

FIGURE CAPTIONS

North is to the top and east is to the right, unless otherwise noted. (Planetocertric coordinates)

1	4/24/72	Filter:	. 358	microns	
2	4/23/72	"	. 383	"	
3	4/24/72	"	. 383	"	
4	4/25/72	"	. 383	"	
5	4/23/72	\cdots	. 402	\cdots	
6	4/24/72	\cdots	. 402	\cdots	
7	4/23/72	\cdots	. 564	\cdots	
8	4/26/72	"	. 906	" Note:	Note: double exposure
9	4/26/72	\cdots	. 948	\cdots	
10	4/26/72	n	1.00		
11	4/26/72	\cdots	1.05	"	
12.	$4 / 26 / 72$	"	H_{B}		
13	$4 / 26 / 72$	"	1.10	microns	
14	4/22/72	"	. 37	New Me Uni	New Mexico State University
15	4/23/72	\cdots	. 37	"	
16	$1: / 24 / 72$	\cdots	. 37	"	"
17	4/25/72	\cdots	.37	"	"
18	gray levels	10 to	200	of figure 3	re 3
19	"	60 to	200	n	
20	"	100 to	200	"	
2.1	\cdots	160 to	200	"	
22	"	130 to	200	"	
23	figure 18	with lo	ogari	thmic enhancem	nhancement

FIGURES

Figure 1

Pigure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure $?$

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Figure 45

Figure 46

Figure 47

Figure 48

Figure 49

Figure 50

Figure 51

Figure 52

Figure 53

Figure 54

Figure 55

Figure 56

Figure 57

Figure 58

Figure 59

Figure 60

Figure 61

Figure 62

Figure 63

Figure 64

Figure 6.5

Figure 66

Figure 67

Figure 68

