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Abstract

The optimal selection of experimental conditions is essential in maximizing the value
of data for inference and prediction, particularly in situations where experiments are
time-consuming and expensive to conduct.

A general Bayesian framework for optimal experimental design with nonlinear
simulation-based models is proposed. The formulation accounts for uncertainty in
model parameters, observables, and experimental conditions. Straightforward Monte
Carlo evaluation of the objective function - which reflects expected information gain
(Kullback-Leibler divergence) from prior to posterior - is intractable when the like-
lihood is computationally intensive. Instead, polynomial chaos expansions are intro-
duced to capture the dependence of observables on model parameters and on design
conditions. Under suitable regularity conditions, these expansions converge expo-
nentially fast. Since both the parameter space and the design space can be high-
dimensional, dimension-adaptive sparse quadrature is used to construct the polynomial
expansions. Stochastic optimization methods will be used in the future to maximize
the expected utility.

While this approach is broadly applicable, it is demonstrated on a chemical kinetic
system with strong nonlinearities. In particular, the Arrhenius rate parameters in
a combustion reaction mechanism are estimated from observations of autoignition.
Results show multiple order-of-magnitude speedups in both experimental design and
parameter inference.

Thesis Supervisor: Youssef M. Marzouk
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Alternative fuels, such as biofuels [75] and synthetic fuels [39], are becoming increas-

ingly popular in the energy market over the past years. For example, world ethanol

production for transport fuel tripled between 2000 and 2007, while biodiesel ex-

panded eleven-fold [10]. These fuels are excellent sources for safeguarding the volatile

petroleum price and to ensure energy security, but more importantly, they carry the

flexibility in promoting new and desirable properties that traditional fossil fuels might

not offer.

Current knowledge about alternative fuels is relatively new. Their thermochemi-

cal properties and combustion kinetics remain poorly characterized, and fundamental

research in their properties is still ongoing (e.g., [21, 74]). The environments designed

to produce, process, and utilize the fuels may be far from optimal. These suboptimal

operating conditions lead to low efficiency and adverse emissions such as high levels

of nitrogen oxides (NOx) and particulate matter (PM), both of which are not only

sources of environmental and health hazard [2, 3], but are also becoming the center of

political debates.

With the rapid growth of computational capability worldwide, numerical modeling

has become an indispensable tool for capturing, explaining, and predicting physical



phenomena. Reliable predictions from models can lead to better designs and poli-

cies for utilizing the alternative fuels, which in turn can improve their efficiency and

emission rates.

One way to improve the models is to perform parameter inference. All numerical

models have parameters (or constants), such as the gravitational constant in Newton's

universal law of gravitation. For some models, these parameters have been experimen-

tally determined or theoretically derived with great accuracy and precision; but these

cases are the exception rather than the rule, since there are substantially more models

where their parameters still carry significant uncertainty. For example, in combustion,

many thermodynamic and kinetic parameters still have large uncertainties today [8, 9].

In an extreme example, the rate constant of a methyl elementary reaction has an un-

certainty factor of 500% [82]. The accuracy of these parameters directly affect how

good the models are able to represent the physical reality. Therefore, it is important

to continue to refine these parameters, and reduce their uncertainty.

In order to perform inference, experimental data need to be used, but not all data

are created equal - while some data can be very helpful in reducing the parameters'

uncertainties, other data may not be useful at all. Since experiments, especially in

the combustion field, are expensive, time-consuming, and delicate to perform, it is

thus crucial to design experiments that yield data of the highest quality. This process

is called optimal experimental design, and shall be the centerpiece of this thesis. A

Bayesian approach to the optimal experimental design shall be undertaken, which is

able to account for uncertainties in model parameters, observables, and experimental

conditions.

Further background information and literature review are presented in each of the

chapters accordingly, as the thesis progresses.



1.2 Objective and Outline

The primary objective of this thesis is to formulate a mathematical framework of

computing the optimal experimental designs for nonlinear models under a Bayesian

setting. In particular, this framework is demonstrated on a challenging chemical com-

bustion system to illustrate its effectiveness and practicality. However, this nonlinear

optimal experimental design framework is very general, and can be applied to many

other models in a wide range of applications.

This thesis is outlined as follows. The physical problem of interest, the combus-

tion problem, is introduced in Chapter 2. Its understanding is essential in establishing

the goals of the physical experiment. Chapter 3 then provides the tools necessary to

achieve the experimental goals, and these tools also create the foundation on how to

quantify the value of an experiment. With the aid of concepts from information the-

ory, the goodness indicator is developed in Chapter 4. This subsequently enables the

optimization of experimental designs, and the experimental results from the optimal

design would allow the experimenter to best achieve his or her experimental goals.

However, this nonlinear optimal experimental design framework is shown to be too

expensive to be practical, and its acceleration through model reduction is necessary.

Chapter 5 presents one such reduction method, by forming polynomial chaos expan-

sions for random variables. Combining all the tools, the experimental design problem

for the combustion system is solved in an accelerated manner, and the results are pre-

sented in Chapter 6. Finally, the thesis ends with a summary, and some conclusions

and future work in Chapter 7.





Chapter 2

Combustion Problem

Each experiment is performed with some purposes or goals. These goals are important

i

1. determining which experimental states should be observed; and

2. quantifying the goodness of an experiment, which subsequently allows the opti-

mization of experimental designs.

In order to perform these tasks, it is essential to have a good understanding of the

physical problem relevant to the experiment. The physics, along with the first task,

are described in this chapter; the second task is discussed in Chapter 4.

2.1 Background

The hydrogen-oxygen (H2-0 2 ) combustion is chosen as the physical problem of interest.

Better understanding of this simple yet representative combustion paves the path

to better understanding of the combustion of larger molecules. In fact, H2-0 2 has

already been studied extensively in the history of combustion [24, 98, 99, 106], and is

currently one of the best-understood mechanisms, thus conveniently providing ample

data for validation. The so-called "hydrogen economy" [68], or even simply blending

hydrogen with traditional fuels (e.g., [53]), has also received considerable attention



as the cleaner future replacement to the current "hydrocarbon economy", further

motivating continued research in the fields related to H2-0 2 .

The combustion of a fuel is a very complicated process, involving the time evolu-

tion of numerous chemical species. A spectrum of mechanisms have been developed

to describe the H2-0 2 combustion. On one extreme, a one-step global mechanism

resembles a "black-box" type of approach. It captures the development of the major

reactants and products, but does not reflect what is really happening with the interme-

diate species (i.e., the detailed kinetics). Also, the global kinetic relation often relies

on curve-fitting of experimental data, leading to non-integral reaction orders which

can be non-intuitive. On the other extreme, a very detailed mechanism composed of

elementary reactions is able to reveal comprehensive interactions among the interme-

diate species. The tradeoff, however, is its high computational cost and complexity.

As a result, it is important to find the simplest mechanism that captures the reaction

behaviour that is relevant to the experimental goals.

This study has taken an in-between approach, by choosing a mechanism of interme-

diate complexity - a 19-reaction mechanism proposed in [106], which is reproduced

in Table 2.1 (a more extensive table containing the recommended values of kinetic

parameters can be found in Appendix A). A detailed discussion of the roles of each

reaction can also be found in [106].

For demonstration purposes, constant pressure, adiabatic, and no-transport (i.e.,

homogeneous) conditions are considered. To some extent, these conditions can imi-

tate the conditions of shock tube experiments for a short period of time right after

the passing of the reflection wave (in some cases, constant-volume and isothermal

conditions may be more appropriate). This can be of significance because shock tube

experiments are one of the standard experimental methods for analyzing chemical

kinetic properties [18, 19] (some other alternatives include static-, stirred-, and flow-

reactors, as well as rapid compression machines and even premixed flames [44]). In an

engineering example, jet engines burn fuel in the combustor at near constant pressure

condition [46]. The methodology to be developed in this thesis can be easily applied



to various different, more complex reaction conditions, and has great potential in a

wide range of applications.

Reaction No.
R1
R2
R3
R4
R5
R6
R7
R8
R9

RIO
R11
B12
R13
R14
R15
R16
R17
R18
R19

Elementary Reaction
H+0 2

O + H2

H2 +OH
OH + OH

H2 + M
O+OA+M
O+H-+ M

H + OH + AM
H + 02 + M

H02 + H
HO2 + H
H02 + O

H0 2 + OH
HO2 + HO2

H20 2 + M
H2 0 2 + H
H20 2 + H
H2 02 + O

H2 0 2 + OH

Kz~

O+OH
H+OH
H2 0+H
O + H2 0

H±H+M

0 2 + M
OH + M
H20 + M
H02 + M

H2 + 02
OH + OH
02 + OH
H2 0 + 0 2

H2 0 2 + 02
OH+-OH+M

H2 0 + OH
HO2 + H2
OH + HO2

HO 2 + H2 0

Table 2.1: 19-reaction hydrogen-oxygen mechanism. Reactions involving M
are three-body interactions, where Al is a wild-card with different
efficiencies for different species.

2.2 Governing Equations

The state of the chemical system can be completely described by the species mass frac-

tions Y [dimensionless], j = 1, . . . , n. (where n, is the total number of species), and

the system temperature T [K]; they shall be referred to as the state variables. Given

the assumed conditions described earlier (constant pressure, adiabatic, no transport),

i



the system is governed by the following set of ordinary-differential equations (ODEs):

dY gW.
(2.1)dt p

dT 1fs
- - ZhwnW (2.2)

dt Ppn=

Initial Conditions = I o' V (2.3)
T 0o = To

where LOj [kmol -m-3 s -1] is the molar production rate of the jth species, W [kg - kmol-1]

is the molecular weight of the jth species, p [kg m m-3] is the mixture density, c,

[J - - kg-1] is the mixture specific heat capacity under constant pressure, and h"

[J kg 1 ] is the specific enthalpy of the nth species. More specifically, the molar

production rate is defined as

d [ Xj | 
j 24COj = dt = rn (v v ) kf,,m 11 [Xn]"" kr,mn f [Xn]"1 ,Vj 24

m=1 n=1

where [Xj] [kmol m- 3] is the molar concentration of the jth species, nr is the total

number of reactions, and v and v [dimensionless] are the stoichiometric coefficients

on the reactant and product sides of the equation, respectively, for the nth species in

the mth reaction.

The forward and reverse reaction rate constants of the mth reaction, denoted

by kf,m [(m3 -kmol- ) " - _ sI and kr,m [(m3 - kmol-±)Z * -s- 11 re-

spectively, are assumed to have the modified Arrhenius form:

kf,m = AmTb- exp ( 4 n) (2.5)

kr, - kf,mrn kfrn (2.6)
Kc,m exp (jjC '



where Am [(m3 kmol 1) - s-1 - K-b" is the pre-exponential factor, bm

[dimensionless] is the exponent of the temperature dependence, Ea,m [J -kmol 1 ] is

the activation energy (Am, b.m, and Ea,m are collectively called the kinetic parameters

of reaction m), R, = 8314.472 [J kmol' -K-] is the universal gas constant, Kc,,

(3 -kmol-1) _ is the equilibrium constant, and AG'm [J kmol

is the change in Gibbs free energy at standard pressure (101,325 Pa) and temperature

T.

The initial conditions of the ODEs are described by Equation 2.3, where Y,o and

To are the initial species mass fractions and temperature, respectively. In most cases,

the initial mass fractions of all species are zero except for H2 and 02. This leads to

a compact, equivalent method to express Y,o, using the equivalence ratio # [dimen-

sionless], which is an indication of whether the fuel-oxidizer mixture is rich, lean, or

stoichiometric:

(Y0 2 /YH2)stoic (X0 2/XI 2 )stoic (2.
(Yo2/YH2) (Xo 2/XH 2)

where the subscript "stoic" refers to the stoichiometric ratios, and Xj [dimensionless]

is the molar fraction of the jth species, related to the mass fraction through

Wj Y (2.8)
Xj W J("' = Yn / Wn

Often, the xj's are used in place of the Yj's as the state variables, and this is adopted

for the rest of the thesis.

Finally, perfect gas mixture is typically assumed, closing the system with the fol-

lowing equation of state:

p = (2.9)
RT E",( Yn/W/n'

where p [Pa] is the (assumed constant) pressure. Note that different reaction conditions

would lead to different variations of the governing equations.



Example 2.2.1 demonstrates how Equation 2.4 can be formed through a concrete

case.

Example 2.2.1. Two-Reaction Mechanism

Consider a hypothetical two-reaction mechanism described in Table 2.2, which is

simply constructed by reactions RI and R3 from the 19-reaction H2-0 2 mechanism

described in Table 2.1. The reactions and species of this mechanism are arbitrarily

ordered according to Table 2.3. Consequently, the stoichiometric coefficient matrices

are

, 1 0 0 0 1 0 ,, 0 0 0 1 0 1
v0n 0v, 1. (2.10)

0 1 0 0 0 1 0 0 1 0 1 0

Equation 2.1 for j = 6 (i.e., species OH), for example, can be formed as

d[X 6] d[OH]
- dt dt

= (1 - 0) (kf,1 [X1 ] [X5] - kr,, [X4] [X6]) +

(0 - 1) (kf,2 [X2] [X6] - kr,2 [X3] [X5])

= kf,i [02] [H] - kr,1 [0] [OH] - kf,2 [H2] [OH] + kr,2 [H20] [H] . (2.11)

Reaction No. Elementary Reaction
RI H+0 2  < 0 +OH
R3 H2 +OH M H2 0+ H

Table 2.2: Hypothetical two-reaction mechanism for Example 2.2.1. The two
reactions are RI and R3 from the 19-reaction hydrogen-oxygen
mechanism.

m 1 2 n 1 2 3 4 5 6
Reaction RI R3 Species 02 H2 H20 0 H OH

Table 2.3: Index ordering of the reactions and species of the hypothetical
2-reaction mechanism for Example 2.2.1.

D



2.3 Experimental Goals

Experiments can be designed and performed with different goals. For example, while

one experiment may be used to infer certain parameters in the model, a different

experiment can be more suited to predict the future behaviour of the system. The

experimental goals will ultimately dictate what outputs should be observed or com-

puted, and what the criteria are for a good experiment. The former is discussed in

the next section (Section 2.4) while the latter is to be discussed later on (Chapter 4).

In this study, the experimental goals are to infer the values of (some or all of)

the kinetic parameters (AM, bm, and E,m) of a subset of elementary reactions

described in Table 2.1.

In the future, thermodynamic and transport parameters may also be explored.

2.4 Selection of Observables

Typical evolution profiles of the state variables are shown in Figure 2-1. In the fol-

lowing discussions, the initial conditions of the system shall be assumed to cause an

ignition (explosion), unless otherwise specified.

The most complete and detailed set of observables of the system is simply the

state variables as a function of time. To handle this numerically, one could, for ex-

ample, discretize the time domain. However, too few discretization points would fail

to capture the state behaviour, while too many discretization points would lead to

an impractically high dimension of the observable vector. Also, as to be discussed

at the end of Section 5.2, time-discretized states would be difficult to capture using

polynomial chaos expansions. Therefore, one should transform the state variables to

some new observables that in some sense compress the information, while retaining

the information relevant to the experimental goals (analogous to sufficient statistics

from information theory).

Given the experimental goals of inferring the kinetic parameter values, the observ-

ables must be able to reflect the variations in the kinetic parameters. For example,
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Figure 2-1: Typical evolution profiles of temperature and species molar frac-
tions in a H2-0 2 combustion.

temperature and species molar fractions at steady-state or equilibrium would not be

able to reflect the kinetics of the system, although they would be good candidates for

inferring thermodynamic parameter values. Another desirable property of the observ-

ables is that they are common and easy to measure in real experiments. For example,

ignition delay is a very common and relatively easily measurable output in kinetics-

related experiments, with ample data available in the literature. On the other hand,

a characteristic time in which [H20] reaches 75% of its equilibrium value would be

more difficult to pinpoint, and almost never reported in the literature.

Taking the above factors into consideration, observables listed in Table 2.4 are

selected for this study. The first 5 are characteristic times related to peak values, and

the last 5 are the corresponding peak values. Note that dh/dt < 0 when enthalpy is

released or lost by the system (i.e., exothermic). The species chosen for the observables

are radical species (reactive due to unpaired electrons), which possess a peak in the

mole fraction profiles (or a double peak in the case of H20 2). The peaks are caused by

the following phenomenon. Prior to the ignition, radicals slowly accumulate in a pool

by the chain-initiating reactions. After surpassing some threshold, they activate the

chain-branching reactions, which further produce radicals very rapidly, leading to the

........... .... .... -



ignition of the system. Soon after, reverse reactions balance the forward radical pro-

ductions, while the chain-terminating reactions finally convert them to stable forms.

Examples of ig, TH, Lh . and XH,, are shown in Figure 2-2. The time of the peak

enthalpy release rate approximately matches the point when temperature rises most

rapidly, as expected. As to be discussed later on in the thesis, the ln of the charac-

teristic times shall be used in the actual implementation, that is, ln r's instead of T's.

This does not make any difference in the formulations except that the constructions of

the polynomial chaos expansions in Chapter 5 would be for approximating the ln T's

instead of the r's.

Observable Explanation
T ign Ignition delay, defined as the time of peak enthalpy release rate.
TO Characteristic time in which peak XO occurs.
TH Characteristic time in which peak XH occurs.

rHO2  Characteristic time in which peak XHO2 occurs.

TH2 0 2  Characteristic time in which peak XH 202 occurs.

dt 1T Peak value of enthalpy release rate.
XO,r Peak value of XO.
XH,r Peak value of XH.

XHO2,T Peak value of XHO2 '
XH202,T Peak value of XH 202 '

Table 2.4: Selected observables for this study. Note that dh/dt < 0 when
enthalpy is released or lost by the system.

2.5 Numerical Solution Tools

The governing equations are solved using Cantera version 1.7.0 [1, 33], which is an

open-source chemical kinetics software. The Cantera input file used is presented in

Appendix B. In particular, Cantera solves the system of ODEs with the help of

CVODE [16], a suite of nonlinear differential algebraic equation solvers that solves stiff

ODE systems implicitly, using the backward differentiation formulas. The validity and

performance of the software are not assessed in this study, but extensive benchmark

testings have been done by their developers [4]. One may view the software simply as
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Figure 2-2: Illustration of Tgn, TH, and XH,T.

third-party tools used in this study.

It has been occasionally encountered under some conditions that Cantera would

fail. This may be caused by the fact that Cantera enforces the constant pressure

condition via a high-gain controller for adjusting the volume, which can sometimes

cause the system to "overreact", leading to negative volumes. Through some experi-

mentation, most of these problems can be solved with "engineering solutions" such as

relaxing the tolerances of the CVODE time integrator, and perturbing the final time

to be integrated to.

: : . ..... ...... _ _ .............................



Chapter 3

Bayesian Inference

The experimental goals have been defined in Section 2.3, which are to infer the kinetic

parameter values of the mechanism reactions. These goals can then be used to quan-

tify the goodness of an experimental design. However, before that can be done, the

method of solving this inference problem needs to be introduced, as the indicator of

goodness typically requires solving the inference problem itself. Furthermore, solving

the inference problem is necessary in validating the final design optimization results.

3.1 Background

Parameter inference can be broadly divided into two schools of thought - Bayesian

and non-Bayesian. The former treats the unknown as a random variable, incorporating

both the experimenter's prior knowledge and belief, as well as observed data, via Bayes'

theorem. The latter models the observed data as being parameterized by the unknown

variable, which has a deterministic, albeit unknown, value. While both approaches

have been studied extensively, there does not appear to be a clear superior method;

rather, one method can be a more suitable choice depending on the problem structure.

Some discussions about the advantages and disadvantages of the two approaches can

be found in, for example, [25] and [92].

In this study, the Bayesian approach is selected. It can, for example, provide a



natural structure for sequential parameter inference as well as sequential experimental

design. An introduction to Bayesian analysis can be found in [84], while a more

theoretical discussion can be found in [45].

Let (Q, F, P) be a probability space, where Q is the sample space, F is the --field,

and P is the probability measure. Let the vector of random variables 6: Q -+ RiO be

the uncertain parameters of interest whose values are to be inferred, y {y}U be

the set of nmeas data, where Y, : Q -+ R ' is one particular datum, and d E Rnd be

the experimental conditions. Here, no is the number of uncertain parameters, ny is

the number of observable categories (e.g., Table 2.4 results in ny=10), and nd is the

number of design variables.

At the heart of the Bayesian inference framework is, of course, Bayes' theorem. It

can be expressed in this context as

p (y|6, d) p(6 d)
p (01 y, d) = (3.1)

p (yl d)

where p (61 d) is the prior probability density function (PDF), p (y| 6, d) is the likeli-

hood PDF, p (61 y, d) is the posterior PDF, and p (yl d) is the evidence PDF. More-

over, the common assumption that the prior knowledge is independent of the experi-

mental design can be made, simplifying p (61 d) = p (6). Upon obtaining the posterior

PDF, point or interval estimates may also be constructed.

3.2 Prior and Likelihood

For the purpose of demonstration, the unknown kinetic parameters are chosen to

be A1 and Ea,3 (i.e., the pre-exponential factor of reaction RI and the activation

energy of reaction R3), while all other kinetic parameters are set to their recommended

values, tabulated in Appendix A. In particular, instead of controlling A1 directly, a

transformation of A1 = ln (A1 /A*) (where A* is the recommended value of A1 ) shall

be used instead, which is useful in constraining A1 to positive values only. Extension

to additional parameters is easily generalizable.



The support of the parameter prior usually reflects constraints of physical admis-

sibility, experimental limits, or regions of interest. Ranges for kinetic parameters,

however, are not as intuitive as more familiar variables such as temperature. There-

fore, some preliminary tests have been performed to determine "interesting regions" of

these parameters using the error models constructed in the next section. More specif-

ically, these regions are those having relatively large posterior values. Furthermore, a

uniform prior is assigned across the support adhering to the principles of indifference

and maximum entropy [41]. The uniform prior is also the non-informative Jeffreys

prior [42] using the Gaussian likelihood models to be introduced shortly. The prior

support is summarized in Table 3.1.

Parameter Lower Bound Upper Bound
A1  -0.05 0.05

Ea,3 0 2.7196 x 107

Table 3.1: Prior support of the uncertain kinetic parameters A1 and Ea,3.
Uniform prior is assigned.

In constructing the likelihood, an additive error model is assumed for the observ-

ables

Y; (0, d) = g (0, d) + c (d), V1, (3.2)

where g (0, d) is the output from the comfputational model (i.e., Cantera), and F (d) =

(ei (d) , - - -, (d)) is the additive error. Furthermore, the error shall be assumed to

be i.i.d. zero-mean Gaussians ci ~ A(0, of (d)). This independence property conve-

niently makes the different entries in a datum vector to be independent conditioned

on the parameters 0. Additionally, data measurements (i.e., the different yj's) can be



reasonably assumed to be independence conditioned on 6, and hence

fmeas

p(yj6,d) = p(y 1 l0,d)

nmeas fy

= fJ p (yl, 1 0, d)
1=1 i=1

1 (e- g (0, d))2
- 111 exp 2. (3.3)

=1 i=1 v 2o
The o 's are allowed to be a function of the design variables (but not of uncertain

parameters). The reason for this choice is that the observables in the combustion

problem can vary over orders of magnitude when the design variables are changed

within reasonable ranges - for example, such an H2-0 2 combustion at T = 900 K has

Tg, on the order of 10-1 seconds, while at T = 1000 K, 10-3 seconds. Thus having

the same error "width" at the two design conditions with such different observable

values would seem unrealistic. For example, measurement error magnitudes generally

increase with the measurement magnitudes. On the other hand, preliminary testings

indicate that the observables are much less sensitive to the unknown parameters within

the prior support set earlier, and thus the 0 dependence is not included in the oi's. Its

inclusion, if desired, would be trivial to implement. Additionally, because of the large

variations of the characteristic time observables, instead of directly using the T's in

the implementation, their natural log values, ln T's, are used for the rest of this thesis.

However, the c's are still Gaussian with respect to the non-log values. Thus, the only

difference this would make is that, as to be introduced in Chapter 5, the polynomial

chaos expansions would approximate the ln T'S instead of the T'S.

The ojs are determined as follows. At the desired design conditions d, a simulation

at the recommended parameter values is performed to obtain the nominal observable

values. For the peak-value observables ( T, X0,T, XH,T, XHO2 ,T, and XH 2 0 2 ,), USs are

simply chosen to be 10% of the nominal observable values. For the characteristic-time

observables (rig,, TO, TH, THO2 , and TH0 2 ), a common value of o shall be used (because



all five of these characteristic times typically have very similar magnitudes), which is

represented by a linear model:

a = a + bTo. 75  (3.4)

TO7 5 is the characteristic interval length of the 75% peak values in the profile of the

enthalpy release rate - this is illustrated in Figure 3-1. The purpose of a is to establish

some minimum level of error, reflecting the resolution limit of timing technology. The

purpose of b is to represent an assumed linear dependence on some width measure of

a peak. The rationale is that pinpointing the maximum of a flatter peak would be

experimentally more challenging, since the measurement error on the magnitude of the

quantity would be more significant compared to the variation of the quantity across

the peak - in other words, similar values would be more difficult to differentiate. This

might be counter-intuitive since one often expects a very acute peak to be harder to

detect. However, the detection issue is a matter of sensor resolution, which is reflected

by the constant term a, not by b. For this study, a = 10- seconds is a realistic choice,

while b = 10 appears to work well after some experimenting.

3.3 Markov Chain Monte Carlo (MCMC)

In this section, all data and analysis are assumed to be from a fixed design condition,

d. With this assumption in mind, conditioning of d in PDFs shall be dropped in the

notation for simplicity.

In general, the PDF of the posterior does not have an analytical form. The obvious

method to construct the posterior is to simply form a grid in E (where E is the

support of p (6)), and evaluate the posterior values at the grid points. While this can

be done if E is of very low dimensions, it becomes impractical for more than, say,

two dimensions, as the number of grid points grows exponentially with the number of

dimensions. Instead, a more economical method is to generate independent samples

from the posterior PDF (e.g., via Monte Carlo). However, since the posterior generally
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Figure 3-1: Illustration of T0.75 , the characteristic interval length of the 75%
peak values in the profile of the enthalpy release rate.

does not have an analytic form, direct sampling from it would be difficult. Even if it

does have some analytic form, the inverse-cumulative density function (CDF) sampling

method cannot be used in multiple dimensions. The most robust method is perhaps

the acceptance-rejection method, but that would almost always be very inefficient.

Markov chain Monte Carlo (MCMC) offers a solution, by constructing a Markov

chain whose target distribution is the posterior, while trading off the independence

of the samples. Nonetheless, a well-tuned MCMC can offer samples with very low

correlation. The main advantage of MCMC is that the target distribution can be

constructed solely based on point-wise evaluations of the unnormalized posterior. The

resulting samples can then be used to either visually present the posterior or marginal

posteriors, or to approximate expectations with respect to the posterior

EP(o1y) [f (0)] = j f (6) p (0|y) dO (3.5)



with the Monte Carlo estimates

ffn l f (6(t), (3.6)
nMt=1

where nm is the number of MCMC samples, and 6 ()'s are the MCMC samples. For

example, the popular minimum mean square error (MMSE) estimator is simply the

mean of the posterior, while the corresponding Bayes risk is the posterior variance.

MCMC is supported by a strong theoretical foundation, and also requires finesse

in its implementation - a well-implemented MCMC is an art itself. Awareness of its

numerous variations, diagnostics, tricks, and caveats is essential in creating an effective

MCMC algorithm. This thesis does not attempt to survey the enormous number of

theoretical and practical topics of MCMC, but rather, the reader is referred to [5] for

a brief review, and [31, 78] for detailed discussions.

3.3.1 Metropolis-Hastings (MH)

One simple and popular variation of MCMC is the Metropolis-Hastings (MH) algo-

rithm, first proposed by Metropolis et al. [61], and later generalized by Hastings [38].

The algorithm is outlined in Algorithm 1.

Additionally, if the proposal is symmetric (i.e., q (e (t) =) q (0' 0(t))), then

the acceptance probability in Equation 3.7 reduces to

a' (0, ') =pmin 1 p (6'l y) (3.8)

which is known as the Metropolis algorithm [61].

3.3.2 Delayed Rejection Adaptive Metropolis (DRAM)

Two useful improvements to MH are the concepts of delayed rejection (DR) [34, 62] and

adaptive Metropolis (AM) [37], which are recently combined together (DRAM) [35].



Algorithm 1: Metropolis-Hastings algorithm.

Initialize 0 (t) where t = 1;
while t < nM do

Sample candidate state 0' from proposal PDF q (.| 0(o);
Sample U ~ U (0, 1);
Compute

a(6w, 6') = min 1, .Oly M0 (3.7)
p- FOt y) q ( 'l OGt

if U < a (O of') then

0t+ = 0' (accept);

else

0 (t+1) _ 0 (t) (reject);
end
t = t +1;

end

Delayed Rejection (DR)

The idea behind DR [34, 62] is that, if a proposed candidate in MH is to be rejected,

instead of rejecting it right away, a second (or even higher) stage proposal is induced.

The acceptance probability in the higher stages are computed such that the reversibil-

ity of the Markov chain is preserved. This multi-stage strategy can allow different

proposals to be mixed, for example, with the first stage proposal to have a large

proposal "width" to detect potential multi-modality, while the higher stages to have

smaller "widths" to more efficiently explore local modes. Additionally, it has been

shown [93] that DR improves MH algorithm in the Peskun sense [73], by uniformly

reducing its asymptotic variance.

The first stage has the same acceptance probability as described in the MH algo-



p (-6'| y( ) q 0(t)
= min 

1, p 00 y) q (0'\10

= min 1, N

and the second stage has an acceptance probability

a2 (OM, 0/'10) = ~~ min 1, (2y) q1 (' 1\0') q2 06 0'1,'2- 0 1c (O'2, Of,)]

p ( t y) q1 ( '1\0(t)) q2 (0 1 O(t) ,1 [ - a1  (O(t),'1]

= min 1 . (3.10)

In general, the ith stage has an acceptance probability

( O ' r ( y ) 1 ( O 'i - | ) 2 ( 0 - | I - , s .i (I)0 , ,
= min 1, i- 0 )q O' 2 '-1 1 . i(0t -0 -- ' -

(8 )y)qi (0'10(t))q2 ( 010t), 0/)--qi (01J00,0",---,'01_1

[1 - a1 (0', 0'_1) [1 - a2 (0', 0'_1, 0'-2] .[ - I (00, - 01)]

[1 ai(8 ),0)] i a2(80, 1,0) - - [ - i-1 (0), 01, - - 01

= m in 1 (3.11)

Upon reaching the ith stage, all previous stages must have led to rejection, and hence

N3 < D. for j=1,*-, i-1. Thus, a3 (6t)0, 0'i, ., ) - Nj/D, which leads to a

convenient recursive formula

Di = qi ' 0l 0(t), 0'), - - - , 1). (3.12)

Since each stage independently preserves the reversibility of the Markov chain, DR

may be terminated after any finite number of stages. An alternative is to terminate

with probability PDR at each stage. Upon termination, the original state 0 (t) is retained

as in a rejection case.

rithm

i 0(t), 0')

(3.9)

2i (0), 0,.. ,01)



Adaptive Metropolis (AM)

The tuning of the proposal "width" and "orientation" in MH is a tedious, but necessary

task. It requires trial-and-error, and the resulting optimal parameters are different for

different problems. For example, too large of a width would lead to high rejection

probability, causing slow movement of the chain and thus poor mixing; too small of

a width would lead to high acceptance probability, but each accepted state would be

very close to the previous state, again leading to slow mixing. An automated way of

tuning is desirable.

There exists numerous adaptation algorithms that are based on past samples in

the chain history (e.g., [79, 94]). However, such alterations often destroy the Markov

property of the chain, and hence the usual MCMC convergence results are no longer

valid. This problem can be avoided if the adaptation is not performed constantly (e.g.,

only during a burn in period to tune the proposal parameters), or else the algorithm's

ergodicity has to be proven separately. The AM algorithm by Haario et al. is an

example of the latter, and is introduced below.

A multivariate Gaussian proposal centered at the current state, q (o'i6 ~(t)

.N (o(1, E), is assumed, with the proposal width and orientation reflected through its

covariance matrix E. Haario et al. [36] first proposed the Adaptive Proposal algorithm,

where it updates E with the sample covariance matrix using samples in a fixed window

of history. However, this algorithm was shown to be non-ergodic. Improvements are

then made by Haario et al. [37] to introduce the AM algorithm, which uses all the past

samples in history to form the sample covariance matrix, and is proven to be ergodic.

This algorithm is described in detail below.

Let E1 be some initial proposal covariance matrix set by the user, the subsequent

update at iteration t is then

E , t < nA

S(t) -sdCov -1 ,6 ) + SdEld, t > nA,



nA is the iteration number in which the adaptive covariance matrix replaces the initial

covariance matrix. The reason for this delay is that some initial samples are required

for the sample covariance to have some significance, but of course the larger nA is,

the longer before AM starts to have its effect. At the same time, E1 cannot be

totally unreasonable - for example, if all samples before nA are rejected, the sample

covariance would be singular, and does not give much useful information in adapting

E(). Id is the d-dimensional identity matrix, and E > 0 is a small perturbation that

makes sure E(t) is non-singular. Sd is a scaling factor for the proposal. For example,

sd = 2.4 2 /d is the optimal value for Gaussian target distributions [26].

The sample covariance needs not be re-computed from all samples at each iteration,

but can be simply updated through the formula

Cov (6(1 ---. '(t)) t - 1 ( (t) (6(t)) - to(t) ( (t) , (3.14)

where

() I _ t -_l( 1) I 6
Y(t) - - _ + 6 (3.15)

i=1

is the sample mean, and can be easily updated with the recursive formula above.

Substituting Equations 3.14 and 3.15 into Equation 3.13 yields the recursive formula

(t - 2) E dt) + (t - 1) 0(t- - (t) M - 0(t) 0(t)T + El . (3.16)
(t - 1) t - 1 ( (

One may also choose to update E every n iterations instead of every iteration.

Combining DR and AM

There are various ways to combine DR and AM [35]. The most direct method, as

adopted by this study, is as follows.

* Perform DR at each iteration as described. At the ith rejection stage, one can

simply set qi = yqi_,, where -y is a scaling factor. The magnitude of -y reflects



how rapidly the covariance resizes upon each rejection. Experience shows that

choosing a slightly larger Ei and setting -y E (0, 1) works well (e.g., y = 0.1).

* At the end of an iteration, only one sample would emerge - either the same

sample as the previous iteration (i.e., rejected through all stages before termi-

nating DR), or a sample accepted at some stage. That sample is used to update

E(') using the AM method described.

3.3.3 Numerical Examples

Two simple test cases are presented to compare the performance between MH, DR,

AM, and DRAM. The first case involves a series of multivariate Gaussians, which are

relative easy target distributions for MCMC; the second case involves a variant of the

Rosenbrock function, which has a very nonlinear, banana-shaped peak that provides a

more difficult challenge to these algorithms. The examples are similar to those found

in [35], but not exactly the same.

Multivariate Gaussians

In this test case, correlated zero-mean multivariate Gaussians .A (0, Etr) of different

dimensions are used as the target distributions. In order for the comparisons across

dimensions to be meaningful, Eta, for each dimension is randomly generated, while

fixing the condition number at 10. The initial proposal covariance matrices, the E1 's,

are taken to be proportional to the Etr's. Two situations are considered:

1. the proposal is too small, by setting E1 O=OlsdEtar; and

2. the proposal is too large, by setting Ei 4 sdEtr.

In other words, the proposal covariances are well-oriented, but not well-scaled. The

initial position is taken to be (-1, - -- , -1), away from the Gaussian mean. For DR,

a maximum of 2 stages are allowed (i.e., a total of 2 levels of proposals), with 7y = 0.1.

For AM, nA = 500 is selected. A chain length of 20,000 iteration is used for all runs,



with no burn in. At each dimension, statistics are averaged over 100 independent

MCMC runs.

The L 2 errors of the sample means are computed. The results are shown in Fig-

ure 3-2. The errors grow as dimension grows, due to the fixed length of the Markov

chains. More interestingly, the AM and DRAM outperform MH and DR when E1 is

too small, while all four algorithms have similar performance when Ei is too large. The

reason for this observation is that, since DR only scales down the proposal covariance,

DR has no effect when E1 is already too small.
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Figure 3-2: L2 errors of the mean estimates for multivariate Gaussians.

Another analysis is to compute the fractions of sample points that fall within the

50% and 90% credible regions centered around the mean of the Gaussians (i.e., the

origin). In a 2D contour, such region is simply an ellipse centered around the origin.

The results are shown in Figure 3-3. In all cases, the AM and DRAM algorithms tend

to oversample from the central regions of the Gaussians, especially as the number

of dimensions increases. However, MH and DR are able to resist such phenomenon.

This indicates a potential drawback in AM, that a too well-tuned proposal may induce

oversampling in the high probability regions. One possible method to alleviate this

problem in high dimensions is to choose a larger nA or to adapt less frequently (e.g.,

adapt every ni iterations).
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Figure 3-3: Sample fractions within the 50% and 90% regions for multivariate
Gaussians.

Rosenbrock Variant

Let the target (unnormalized) PDF of the MCMC be the following variant of the 2D

Rosenbrock function for (x, y) E [-2,2] x [-2, 2]:

f (x, y) = exp {- [(1 -x)2 + 100 (y -x2)2] .

The original Rosenbrock function is often used to test optimization algorithms, and

it has a sharp banana-shaped valley which is near-flat along the bottom of the valley.

(3.17)

(b) 90% region initial proposal too small



In the variant, the negative inside the exponential "flips" the valley, turning it into

a peak. The exponential ensures the function to be positive, and at the same time

making the peak even sharper. The variant function is shown in Figure 3-4.
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Figure 3-4: The 2D Rosenbrock variant.

The MH, DR, AM, DRAM algorithms are run for 100,000 iterations, with a burn

in of 1000 iterations. The initial proposal covariance matrix is E, diag (10.0, 10.0)

(which is much "wider" than the "thickness" of the banana peak, or even the prior

support), and the initial position is (-2, -2). For DR, a maximum of 2 stages are

allowed (i.e., a total of 2 levels of proposals), with -y =0.1. For AM, 'nA =10 is

selected.

The last 20,000 samples from the algorithms are plotted in Figure 3-5, all of which

resemble the banana-shaped peak from Figure 3-4. However, the plots for MH and

DR appear less well mixed, indicating more rejections took place for them; this is

further supported by the corresponding chain history of the x component shown in

Figure 3-6, and the acceptance rates tabulated in Table 3.2.

The numbers of function evaluations in Table 3.2 reflect the computational time

of the algorithms. Note that if a proposed coordinate falls outside the prior support,

it is immediately rejected without evaluating f (x, y), and this point would not be

counted towards the total number of function evaluations. The results from the table



show that adding the AM feature requires about 4 times more function evaluations,

but the acceptance rate increases by a factor of 10. However, adding the DR feature

requires about 2 times more function evaluations, but the acceptance rate is almost

unchanged. These evidence supports DR's ineffectiveness.
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Rosenbrock variant.

Another method to quantify the mixing of a Markov chain is to compute its auto-

correlation function (ACF)

ACF (s) = Cov (OW) , 6 ) (3.18)
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which is a function of separation or lag, s =i - j, between the ith and jth samples in

the chain. Ideally, if independent sampling can be achieved, the ACF value would equal

to 1 when lag is 0, and 0 everywhere else. Samples from MCMC, of course, are not

independent; however, the rate in which the ACF decays with s is an indicator of the

degree of independence between the samples. For example, if the ACF decays to some

tolerance value, say 0.1, at a lag of 40, then loosely speaking, every 40 MCMC samples

may be viewed to be equivalent to a single independent sample. More rigorously, by
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Algorithm Acceptance Rate Function Evaluations
MH 0.0060 21,116
DR 0.0077 41,319
AM 0.0880 84,911

DRAM 0.0940 160,136

Table 3.2: Acceptance rate and number of posterior function evaluations for
the 2D Rosenbrock variant.

the Central Limit Theorem, the distribution of the estimator error is

(fnAl - Ep(oly) [f (0)]) -A (O 0 ) (3.19)

as nu --+ 00, where o- is a constant. The magnitude of o is given by

o.2 = Var,(oiy) (f (0)) + 2 Cov (o, 0() , (3.20)
i=1

where 0 0 is distributed according to p (01 y). Varp(oly) (f (0o)) is a property of the

posterior, and cannot be controlled; but E Coy (6, o), which is the integrated

ACF, can be controlled to reduce the variance of the error. The ACF's for the four

algorithms are shown in Figure 3-7. Clearly, the ACF decay is accelerated when the

AM feature is introduced, but is rarely improved, if at all, when the DR feature is

introduced.

The effect of ACF on the variance of the MC estimator can be seen in Figures 3-8

and 3-9, which plot the distributions of sample mean in x and y coordinates after

repeating the previously described MCMC algorithms for 1000 times each. Clearly,

the variance appears much smaller in AM and DRAM cases compared to MH and

DR. Note that since the analytic means of Equation 3.17 in the finite domain are

unavailable, it is thus not known whether or not these distributions have means equal

to the true means, which would be an indicator of unbiasedness. However, since MH

is known to be unbiased, and its distributions have the same means as the other three

algorithms, then it can be safe to conclude that all four algorithms are indeed all
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Figure 3-7: Autocorrelation functions for the 2D Rosenbrock variant.

unbiased, as expected by their constructions.

Conclusion

These numerical tests indicate that while the AM feature performs well in accelerating

the mixing of the Markov chain, the DR feature is largely ineffective. Also, AM can

induce over-sampling in high probability regions when the number of dimensions is

high, but this may be mitigated by using a less aggressive adaptation schedule. In all

remaining MCMC results in this thesis, only the AM algorithm is used.
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Chapter 4

Optimal Bayesian Experimental

Design

After identifying the appropriate experimental observables in Chapter 2, an attempt

can now be made to quantify the goodness of an experiment. Upon the development

of such an indicator, numerical optimization can be invoked to find the optimal ex-

perimental design. This experiment can then be carried out, and its data analyzed as

intended by the original experimental goals.

4.1 Background

What constitutes a good experiment? That, of course, depends on what the experi-

mental goals are. For example, if the goat is to confidently infer an uncertain param-

eter, then intuitively, a good experiment might be one that minimizes the variance of

the parameter's posterior. Before trying to construct an indicator for the combustion

experiment, some background of current research in optimal experimental design is

first introduced.



4.1.1 Optimal Linear Experimental Design

Optimal design theory for linear designs is well established, since the analysis can be

carried out in closed-form. For example, the book by Atkinson and Donev [6] and

the review paper by Chaloner and Verdinelli [13] provide a thorough treatment of the

subject.

The linear design problem is formulated as follows. Consider a linear model, defined

to have the form

g (0, d) = FL (d) 0, (4.1)

where 6 and d are the uncertain parameters and design variables, respectively, as

described earlier in the thesis; g E R'Y is the vector of model outputs; and FL E R yx"

is the local design matrix. Note that the model outputs only need to be linear with

respect to the uncertain coefficients 9, but not necessarily linear with respect to the

design variables d. The observed data y are assumed to have an additive noise

y 1 = g (0, d) + E, l = 1, - - , nmeas (4.2)

where the noise components ei's are assumed to be independent and have equal, fi-

nite variance. Given nmeas data points {yi}72"a, obtained under their corresponding

experimental conditions {di}U{a,, Equation 4.1 can be extended to become

Y1 g (0, di) FL (di)

Ynmeas g (0, dnmeas) FL (dnl)

-> k (0, d) =F (d) 0 (4.3)

where A E R-ynmeas and F E R (nynmea.s)xfe is the extended design matrix. An example

with a quadratic regression model is presented in Example 4.1.1.



Example 4.1.1. Quadratic Regression Formulation

Consider a quadratic model with a scalar output g (ny = 1) in a single design

variable d (nd = 1)

g(0, d) = 01 + 02 d + 03d2  (4.4)

where 0 = (01,0 2, 03) (no = 3). Suppose resources allow 4 experiments (nmeas - 4) to

be performed, then the experimental design formulation yields

9i 1 di di [01

92 1 d2 d2
2  02 (4.5)

9 3 1 d3  d 3 [ 3
4 1 d4 d4 03-

Typically, nmeas is constrained by the resources available to conduct the experi-

ments, but are chosen to at least satisfy (nynmeas) > no. Equation 4.3 can then be

solved as a least-squares problem by forming its normal equations

0
isq = (FT F)' FTg, (4.6)

where (FTF) is called the information matrix. If the system were under-determined,

then there is no unique solution. Physically, this means that not enough data is avail-

able to estimate the uncertain parameters - at best, only the relationships between

some of the parameters may be estimated.

It can be shown that the covariance under random realizations of the noise C is

Cov (O1,q) = 02 (FTF)- , (4.7)

where o.2 is a positive constant that is independent of the design variable d, and thus

its exact value is irrelevant for the purpose of design optimization. A good design



should make the covariance "small" in some sense, and Equation 4.7 hints that this

can only be achieved by making FTF "large" in some sense.

A number of different ways have been proposed to "maximize" FTF, giving the

birth of the popular alphabetical optimality criteria. Here are some examples:

" A-optimality minimizes >3 1/Ar (or maximizes tr (FTF)), where Ai are the eigen-

values of FTF;

" D-optimality minimizes ]Jj 1/A, (or maximizes det(F T F));

" E-optimality minimizes maxi 1/At.

For nonlinear models, such closed-form analysis is typically not available. Various

approximation methods have been proposed, such as locally linearizing the model, or

approximating the posterior with different Gaussian distributions in which closed-form

analysis may still be derived (e.g., [13]). However, a more general framework that is

largely independent of the optimal linear design theory is usually preferred (e.g., [64]).

This involves the development of a desired utility function to be optimized, whose

value can often only be approximated through numerical techniques.

Applications of this optimal nonlinear experimental design framework are becoming

more prevalent - for example, in the fields of astrophysics [54], material science

(random fatigue model) [80], and geophysics (amplitude versus offset) [96]. However,

the models used in these applications are all relatively simple to evaluate compared to

the ODE system of the combustion problem described in Chapter 2. To date, no known

literature has applied optimal nonlinear experimental design in such computationally

expensive models, which, as evident by the result at the end of this chapter, becomes

impractically expensive to perform.

Many algorithms have been developed to target at the acceleration of the de-

sign process. For example, M6ller and Parmigiani [65] dedicated a paper discussing

numerical techniques in estimating information theoretic measures. Clyde and Parmi-

giani [15] combined the design and parameter spaces into a so-called "augmented"

space, which is then explored using a single MCMC process instead of having separate



inference-related and optimization processes. This idea is further improved upon by

M611er et al. [67] to introduce a simulated annealing type of update to the augmented

space, thus improving the optimization performance of the process, while requiring

inhomogeneous Markov chains. M6ller and Parmigiani [66 also proposed a curve

fitting scheme to the design space, which greatly accelerates the optimization proce-

dure; however, the assumption on the fitting model can be arbitrary, especially for

complicated models whose utility surface is not intuitive to expect.

The above methods mainly focus on the sampling and optimization techniques.

However, as presented in the next chapter, this thesis tries to mitigate the computa-

tional cost through a different perspective, by using model reduction.

4.2 Optimal Nonlinear Experimental Design

4.2.1 Expected Utility

The combustion model in this thesis is certainly a highly nonlinear model. The ap-

proach taken to quantify the goodness of an experiment applies concepts from infor-

mation theory. In particular, the goodness indicator will be based on the Kullback-

Leibler (KL) divergence, whose usage in experimental design was first demonstrated

by Lindley [52]. The relevant concepts from information theory are reviewed below.

The entropy (also known as the Shannon entropy or self-information) of a discrete

random variable 0 is defined to be

H (0) =- P () log [P ()] . (4.8)

The entropy is always non-negative, and it can be loosely interpreted as an indication

of the disorder (or lack of information) carried by the probability mass function (PMF)

of 0. If log 2 is used, it can be physically interpreted as the number of bits (say on a

computer) required to describe the random variable. Without loss of generality, the

natural log, In, shall be used in all subsequent analysis.



The continuous random variable counterpart, the differential entropy, is defined to

be

h (0) =- p (0) In [p (0)] dO. (4.9)

The interpretation of bits- (or nats-) representation is no longer suitable, as h may be

negative (while H is always non-negative). However, one can still use this quantity

as an indicator of the state of disorder (or lack of information) carried by the random

variable, the very reason why h (or H) is known as the self-information.

To compare the amount of information between two PDFs, it is natural to use the

relative entropy (also known as the Kullback-Leibler divergence or simply, information

divergence), defined as

D (pA (0) IpB (0)) PA (6) In [P ] dO. (4.10)

The KL divergence is always non-negative, but it is not strictly a distance metric

because it is not symmetric (i.e., D (PA (6) IPB (OB)) / D (PB (6) 1IPA (6))). Nonethe-

less, it is still a useful indicator quantity, as it reflects the difference in information

carried by the two PDFs. D (PA (0) IIPB (6)) is thus called the information gain about

6 if PA (6) is used instead of PB (6). For example, placed in the Bayesian inference

context, the mutual information between 6 and y is

I (6; y) - h (6) - h (61y) = D (p (0, y) IIp () p (y)) ;> 0. (4.11)

This implies that, although differential entropy may be positive or negative, obtaining

additional data (i.e., conditioning on y) can never increase the differential entropy (or

decrease information). Information theory is a vast subject area, and the two simple

concepts used in this framework are merely the tip of the iceberg. Curious readers who

wish to see more detailed discussions on information theory are referred to [17, 551.

The KL divergence between the posterior and the prior is adopted as the utility u



to reflect the goodness of an experiment:

u (d, y) - D (p (01 y, d) ||p (0)) fp (0 y, d) ln [p 'yd) dO. (4.12)
S- p(6) 1

The intuition is that a large KL divergence implies the data y have decreased the

disorder (or increased information) of the belief of 0 by a large amount, and hence

those data are more informative with respect to the experimental goal of inference.

There exist other similar quantities, such as the broader family of f-divergences, that

may be used as the utility. However, the KL divergence is chosen due to its strong

foundation in information theory, and the fact it reduces to the D-optimality condition

when applied to a linear design problem.

Equation 4.12 cannot be used directly, because it is a function of the data y, which

of course, are unknown when designing the experiment. Thus, an expectation is taken

over y~d to obtain the expected utility function, which is simply the utility averaged

over all possible data realizations under a particular d:

U(d) =Eyl [u (d, y)] =j p(O|y, d) In [P('y,d) d p (yl d) dy, (4.13)

where Y is the support of p (yl d). Finally, the expected utility needs to be maximized

to find the optimal experimental design

d* arg max U (d), (4.14)
dED

where D is the design space.

What if resources allow multiple ndesigns designs to be carried out simultaneously?

The answer is not simply to do all the experiments at d*, as that in general does

not yield the optimal total information gain from all the experiments. Instead, the

multiple experiments should be incorporated into the likelihood function, where now

d C R11designsfd and yi E Rndesignsy , and the data from the different experiments can be,

for example, reasonably assumed to be conditionally independent given 0. The new



optimal d* c R designsfy then carries all the ndesigns design conditions which optimize the

total information gain when simultaneously performed. One popular utility function

is to use the predictive variance, mainly due to its ease of numerical estimation - but

this utility is unable to perform multi-experimental design optimization, and would

naively suggest to repeat all experiments at the single-experimental design optimal.

If the ndesigns designs do not need to be carried out simultaneously, this gives rise

to sequential experimental design. The concept is straightforward. A single optimal

experimental design is initially computed and carried out, and the data are used to

perform the inference. The resulting posterior is then used as the prior for designing

the next experiment, and the process is repeated until all ndesigns designs are per-

formed. This sequential experimental design should be at least as good as when all

the experiments are designed simultaneously, because of the extra information gained

in the intermediate stages.

4.2.2 Numerical Methods

The expected utility almost always needs to be approximated numerically, due to the

nonlinearity of the model. To do that, first, Equation 4.13 is rewritten as

U (d) j p(|y, d) In P(0d) dOp (y d) dy,
Jy e .I (0

In [p(y'Od) p (yj0, d) p (0) d6 dy
V fe p(yj d)

-- J {ln [p (yj , d)] - In [p (y| d)]} p (yl 6, d) p (0) dO dy, (4.15)

where the second equality is due to the application of Bayes' theorem to the quan-

tities both inside and outside the ln. Monte Carlo (MC) integration is then used to

approximate the integral

)nout

U (d) 1 E {lIn [p (y(') 10 (i) d)] In [p (y I d)] },(4.16)
ot =1



where 0(') are drawn from the prior p (0); y(Z are drawn from the likelihood p (y 10 = 0

given the 0(') just sampled; and n 1ut is the number of samples in this "outer" MC ap-

proximation. The evidence, p (y() d) is typically unknown, and an additional "inner"

MC approximation needs to be made to approximate it:

p (y(| d) p (y(| 1, d) p (6) dO

nin

~ (y() d) = p (y(I0M, d), (4.17)
inE

where 0('a) are drawn from the prior p (0), and nin is the number of samples in this

"inner" MC approximation. As shown by Ryan [80], this MC estimator is biased. The

selection of nout and nin provides a tradeoff between estimator bias and variance.

This double-nested MC estimation can quickly become enormously expensive.

Some measures can be taken to limit the number of forward models evaluations re-

quired, by reusing samples between the outer and inner MC approximations, and

across the outer MC approximation. In total, three different sampling techniques are

proposed.

1. Let nout = nin, and use the same batch of (, i =1,- , nout samples for every

outer MC approximation, as well as inner MC approximations for every y(0.

2. Draw a fresh batch of nin samples for every y(') in the inner MC approxima-

tion, but these samples are then carried over to be used for every outer MC

approximation (i.e., for different d's).

3. Every single sample of 0 is sampled independently - this is the truly indepen-

dent sampling.

The computational cost is 0 (nout) for the first sampling technique, and 0 (noutnin)

for the second and third sampling techniques. There is no computational advantage

to choose option two over three. However, since only the difference between expected

utility values at different designs is important, using the same sets of samples for



the outer MC approximation (i.e., different d's) can help reduce the variance of the

difference estimate. This is known as the variance reduction technique of common

random numbers (e.g., [23, 32]). Reusing samples may potentially add bias, but as

observed from the numerical example results in Section 4.2.4, the effect is very small.

4.2.3 Stochastic Optimization

One last numerical tool needed for the experimental design process is an optimization

algorithm for Equation 4.14. More specifically, since only the MC approximation to

the expected utility (which is the objective function) is available, the optimization

method needs to be able to handle noisy objective functions - this topic is known

as stochastic optimization (not to be confused with optimization method that uses

random sampling techniques). Unfortunately, optimization is not yet implemented in

the current code, pending further research and testing. Nonetheless, some discussion

is given below. A more thorough discussion can be found in [91].

The simplest method of stochastic optimization is to use a large number of MC

samples at each d to obtain a good estimate of the objective function, and then

optimize according to any deterministic optimization algorithm. However, this is ex-

tremely expensive to do. A broad family of methods under the name of Stochastic

Approximation (SA) are specially designed for noisy function optimization, such that

the objective function needs not be well approximated. Two well known such algo-

rithms are the Robbins-Monro [77] and Kiefer-Wolfowitz [47] algorithms. The former

constructs a sequence that successively reduces the difference between the measured

function value and the true optimum value, which is assumed to be known a priori.

The latter uses finite-difference approximation to the gradient to aid the process.

Simultaneous Perturbation Stochastic Approximation (SPSA), developed by Spall

[89, 90], is another SA method that has recently received considerable attention [87].

The method is similar to a steepest-descent method that uses centered-difference es-

timation of the gradient, except that SPSA only needs a total of two random pertur-

bations to estimate the gradient regardless of the problem's dimension. The intuition



justification is that the error from misdirection would average out over large number of

iterations [90]. Further research in SPSA has incorporated the use of Hessian (approx-

imated using only a total of two additional perturbations) [88], and common random

numbers [48]. The inherent randomness in the objective function and finite-difference

perturbations also allow a global optimal convergence property [56].

Optimization capability is not implemented in the current version of the code.

Further research and testing is required to find the most suitable algorithm for the

combustion experimental design problem. as there is no single algorithm that is su-

perior for all problems (the so-called No Free Lunch theorem [101]). For now, the

optimization is only done through a grid-search (by computing the objective function

estimates in a tensor-product grid spanning the entire design space), but a reliable op-

timization method is absolutely essential when the design space is of high dimensions.

4.2.4 Numerical Example

The optimal nonlinear experimental design framework developed in this chapter is

applied to a simple, ID nonlinear model. Consider

y = g (0, d) + = 03d2 + , (4.18)

where e ~ N(0, U). Let the prior be 0 ~ U (-1, 1), and the design space be limited

to d - [-1,1].

The first analysis explores the three proposed sampling techniques from the end of

Section 4.2.2, using no, = 1001 and ni,, = 1001, with o = 10-2. The expected utility

results are shown in Figure 4-1, plotted using a 101-node grid in the design space. A

few observations can be made.

1. The expected utility is maximized at d = -1 and d = 1, and minimized at d = 0.

This can be intuitively explained by examining Equation 4.18. If a d with a small

magnitude is chosen, then the observation y would be dominated by the noise 6,

which would not yield much useful information on what the uncertain parameter



O might be. In the extreme case where d = 0, the measurement is purely noise,

which would yield no useful information at all. On the other hand, if a d with a

large magnitude is selected, such that the noise is insignificant compared to g,

then y would be very informative in inferring the value of 0.

2. The three proposed sampling techniques have no significant visible difference.

This suggests that the cheapest method (sampling method 1), by reusing the

same samples for nout and nih, might be sufficient.

3. The noise model chosen for this run is independent of d (fixed at o-2 = 10-2).

Thus, the first term in Equation 4.16 is expected to be independent of d as well,

and the optimization is simply a minimization of the second term, consistent

with a theorem proposed by Sebastiani and Wynn [83]. This is indeed observed,

as shown by the "1st Term" graph lines.

For the rest of this thesis, only the first sampling method is used unless otherwise

specified.

The second analysis explores the effect of noise intensity. Figure 4-2 compares the

expected utility using a 2 = 10-4 , 102, and 100. As the noise level is increased, the

expected utility becomes flatter. This is intuitively pleasing, since a smaller noise level

is expected to lead to better inference. In fact, the "widths" of the valleys in the plots

should be proportional to oa-, which can be shown through an order-of-magnitude

analysis. Roughly speaking, c - (o) and 0 ~ 0 (1), then in order for g to dominate,

d ~ 0 (f-) is needed.

An interesting phenomenon is observed when the second and third sampling tech-

niques are used for the or = 10- 4 case (not shown), where the expected utility becomes

infinity near large magnitudes of d. This is likely happening for the other two noise

levels as well, except is at d values beyond the [- 1, 1] range. The finiteness for the first

sampling method is due to the fact that at least one sample is guaranteed to have a

"reasonably large" likelihood, since the 60j samples being reused are exactly the ones

used to generate y(i); whereas in the other two sampling techniques, all the samples
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Figure 4-1: Expected utilities of the ID nonlinear experimental design ex-
ample with of = 102, using different sampling techniques. The
"1st Term" and "2nd Term" are the terms from Equation 4.16.

lead to near-zero likelihoods, causing the logarithm to blow up. This is a common

problem in estimating low probability events using MC methods, as demonstrated

by Example 4.2.1. In any case, the infinite values should not be of any trouble on

a practical level, because they merely reflect the fact that at all those designs, very

good inferences can be obtained.

Example 4.2.1. Monte Carlo Estimation of Low Probability Event
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Figure 4-2: Expected utilities of the ID nonlinear experimental design ex-
ample using o- = 10-4, 102, and 100.

A biased coin has a probability p = 0.05 of yielding heads. An MC estimator

p = - E ith flip = heads (4.19)
i= 1

is used, where Eith flip = heads is the indicator function for the ith flip being heads. The

estimator as a function of n is shown in Figure 4-3(a). P remains zero (and ln P = -oo)

for the first 40 flips, and only becomes non-zero after the first head occurs after a large

sample size is used, and then slowly converge towards 0.05 (analogous to the second

and third sampling techniques, which result in infinite expected utility values).



On the other hand, if the samples used are such that the first flip happens to be

head, then P > 0 (or Inp > -oo) for all n, and the estimate still converges to 0.05 as n

increases (analogous to the first sampling technique, which guaranteed finite expected

utility values). This is shown in Figure 4-3(b). l
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Figure 4-3: P as a function n for Example 4.2.1. Figure (a) is where the first
flip is tail, while Figure (b) is when the first flip is happens to be
head.

The third analysis tests a design-dependent noise level, o, = dl + 10-'. The ex-

pected utility is shown in Figure 4-4. As expected, the first term from Equation 4.16

is no longer d-independent. The expected utility is quite flat, since although a large

magnitude d makes g large, it also brings a large noise level as well. In more com-

plicated models and noises, the tradeoffs would not be very easy to determine only

from analyzing the equations; however, the numerical framework would still be able

to capture the relationships with ease.

4.3 Results and Issues

The nonlinear optimal experimental design framework is applied to the combustion

problem with its underlying inference goal. First, only the initial temperature is

allowed to vary in the design space To E [900,1050]. The MC sampling size is chosen
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Figure 4-4: Expected utilities of the ID nonlinear experimental design ex-
ample using a design-dependent noise level of = |d|+ 10-8 .

to be nout = nin = 1001 (recall that only the first sampling technique is used). Second,

the design space is extended to two dimensions, now including the equivalence ratio

# E [0.5, 1.2] as well. The same number of MC samples is used. The expected utilities

are plotted on a 1001-node discretization in each dimension, shown in Figure 4-5 for

both cases.

The optimal design appears to be at a low initial temperature and low equivalence

ratio. One possible explanation for choosing a low temperature design is that the

ignition time scales are much larger at low temperatures (because reactions occur

more slowly at low temperatures), but the assumed error model decreases at a fast

rate (recall assumed affine error model in Equation 3.4) such that the error variance

becomes very small compared to the characteristic time values. However, this may be

only one of the numerous factors that dictate the highly nonlinear relationship between

the design condition and the expected utility, which is difficult to assess using only

physical insights.

The computational resources required for these two tasks are enormous. The ID

design case requires hours to run when parallelized on about 50 3GHz CPUs; the 2D

design case requires days to complete under the same parallelization. Considering this
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is only a relatively simple 19-reaction mechanism, substantial speed-ups are needed

in order for the framework to be practical. One possible solution is to use model

reduction to find a computationally cheaper surrogate for the Cantera output g (6, d)

in Equation 3.2. This is explored in the next chapter.
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Chapter 5

Polynomial Chaos

At the end of the previous chapter, the nonlinear optimal experimental design frame-

work is applied to the combustion problem, in an attempt to determine the optimal

design conditions whose results allow one to best infer the uncertain kinetic param-

eters. However, the Monte Carlo nature of the estimate of the objective function

renders the computation unbearably expensive. If this framework were to have any

applicability in more complicated real world experiments, it must be made orders

of magnitude faster. One way to alleviate this problem is to perform model reduc-

tion. The model reduction method selected in this thesis is polynomial chaos (PC), a

particular spectral expansion of random variables.

This chapter is outlined as follows. Section 5.1 provides some background infor-

mation on model reduction methods and the development of PC, while Section 5.2

provides the mathematical formulation of PC. The non-intrusive spectral projection

(NISP) method for computing the expansion coefficients is presented in Section 5.3,

which motivates the need of high dimensional numerical integration, discussed in Sec-

tion 5.4. Upon the appropriate selection of the integration method, a slight modifica-

tion is made as it is incorporated into the NISP framework in Section 5.5. Finally, an

algorithm is proposed in Section 5.6 to detect dimension anisotropy of the polynomial

equivalent of the integrand, making the PC computation more efficient.



5.1 Background

5.1.1 Model Reduction

There are several ways to perform model reduction for a chemical system, some of

which are discussed below.

" A less detailed chemical mechanism may be adopted, but it often has very limited

regimes of applicability (e.g., only suitable for a particular range of T). In

addition to its inability to capture detailed intermediate reactions (discussed in

Chapter 2), it also does not take into account the uncertainty in those parameters

which are eliminated as a result of the mechanism simplification.

" Adaptive chemistry (e.g., [81]) is an application of multiple levels of chemical

mechanisms in reacting flows. The mechanisms are constructed a priori and

stored, and the flow regime is divided into finite volumes, each of which will

then adopt a suitable level of mechanism according to some adaptation scheme.

As a result, the overall computation is made more efficient. The drawback of this

method lies within its arbitrariness in forming the different levels of mechanisms

and the adaptation scheme. Moreover, this method is not directly applicable to

the zero-dimensional combustion problem considered in this thesis.

" Computational singular perturbation (CSP) (e.g., [49]) categorizes all the reac-

tions into fast and slow groups, where the fast ones are solved as steady-state

problems while the slow ones as time-dependent (ODE) ones. This effectively

reduces the stiffness of the problem. In the inference framework, the reactions

relevant to the uncertain kinetic parameters must be in the ODE set, for else

any change to the kinetic parameters would have no effect if the relevant re-

actions are assumed to have reached equilibrium. CSP can be quite expensive

if refinement is used to categorize the reactions. A priori knowledge may be

incorporated, but this would be difficult to implement as the timescale of some

reactions can change substantially with the kinetic parameters. Tabulating such



prior information can quickly become infeasible especially if the dimension of

the parameter space is large.

* Proper orthogonal decomposition (POD) (e.g., [14]) is similar to a low-rank ap-

proximation in singular value decomposition (SVD). The main drawback of POD

is that it often eliminates the concentrations of minor species, which are almost

always the driving forces of the reactions. One can enforce the important species

to be always included, but that requires prior knowledge and can cause the POD

to yield less computational savings. The difficulty is further compounded by the

fact that the uncertain parameters are variables, and thus the number of snap-

shots required can grow exponentially with the parameter space dimension. For

these reasons, POD is rarely found in chemistry applications.

The above model reduction methods are not used due to the shortcomings discussed.

Instead, this thesis shall use a reduction method that is based on the spectral expan-

sion of random variables, namely, the PC expansions. The main difference between

PC and the other model reduction methods is that, while PC focuses on capturing

the functional relationships between the uncertain input parameters and the model

outputs by taking advantage of any regularity in these functions, the other reduction

methods attempt to reduce the size and complexity of the model itself.

5.1.2 Polynomial Chaos

The idea of PC was first developed by Wiener [100]. Motivated by physical problems

in statistical mechanics, he developed the homogeneous chaos expansion (also known

as the Hermite chaos expansion), which uses Hermite polynomials in the random space

as the trial basis. Since then, considerable research has taken place in the theoretical

development of PC. For example, the PC formulation has been generalized to the

Askey family of orthogonal polynomials basis (also known as the generalized polyno-

mial chaos, or gPC) [104], and even to multiwavelet basis [51]; various techniques to

perform arithmetics between PC expansions have also been developed [20]; and the



use of PC to accelerate solving Bayesian inference problems has been extensive and

successful [57-59].

One of the main attractions of PC is its ability to capture the potentially compli-

cated probabilistic features of random variables (thus suitable for uncertainty quantifi-

cation) while being computationally cheap to evaluation. It thus has received consid-

erable attention in quantifying uncertainty in a wide range of engineering applications,

such as Computational Fluid Dynamics (CFD) [40], reacting flow [76], geometric un-

certainty in fluid flow [97], and heat conduction [105]. An introductory review can

be found in [69], a comprehensive summary of the numerical techniques and imple-

mentation is presented in [102], and a thorough discussion on spectral methods for

uncertainty quantification in general is provided in [50].

5.2 Formulation

Let (Q, Y, P) be a probability space, where Q is the sample space, F is the --field,

and P is the probability measure. Then any (scalar) random variable 6 : Q - R,

6 E L2 (Q, P) (i.e., 0 having finite variance) can be expressed as the following expansion

0(w) = aoFo
00

+ ai 1 F1(iI((w))
i 1 =1

00 21

i1=1 i2=1

+ i~ E22-1 liiI3 i LY , 200 21 22

il=1 i2=1 i3=1

+---, (5.1)

where L E Q is an element of the sample space, (i are i.i.d. M1(0,1), Fi are known as

the Polynomial Chaos of order i, and a2 are the expansion coefficients. This expansion

is known as the polynomial chaos expansion, and is convergent in the mean-square



sense [12].

Equation 5.1 is equivalent to the form

00

0 (W) = : O;i(1 2, - - - (5.2)

IiI=O

where i =(ii, i 2 , -- ), Vij C N, is an infinite-dimensional multi-index, ii +i 2 +-

is the L1 norm, O; are the expansions coefficients, and

00

Wi((1, (2 )= i, ( j) (5.3)
j=1

The basis functions <ib are orthogonal polynomials of order i3 in the independent

variable (j, with respect to the PDF of (y (i.e., p (ij)). More specifically,

E g [4p$n] =J n p(() $~n () P (() d = m,nE ($ 2 ] , (5.4)

where 7 is the support of p (i). The form in Equation 5.2 is often preferred to Equa-

tion 5.1 as it facilitates the manipulation of PC expansions. For computational pur-

poses, the infinite sum and infinite dimension must be truncated to some finite order

po and stochastic dimension no, leading to

PO

0 (W) ~ : Bi'i((1, 62, - --, (n,) (5.5)

n.

'Pi (1, nj) = i #i((g). (5.6)
j=1

The total number of terms in the expansion is thus

n8 + pO (n. + po)!
ncs!PO! (5.7)

The choice of po is often influenced by the expected smoothness of the random variable,



and the choice of n, is dependent on the expected degrees of freedom (DOFs) to capture

the stochasticity of the system. For example, in a Bayesian inference context, n, is

typically equal to no. However, there are special cases - a X2 -distribution can be easily

represented by multiple independent Gaussian distributions, and a stochastic process

may be represented by a finite number of modes after discretizing and performing the

Karhunen-Loeve (KL) expansion. Finally, the choice of po and n, are also constrained

by the computational resource available, as npec grows very fast when these parameters

are increased.

For the original Hermite chaos expansion, (j are i.i.d. NJ(0,1), and @', ( j) are

Hermite polynomials in (j. Xiu and Karniadakis [104] made generalizations such

that 'i/ ((j) can be any orthogonal polynomials from the Askey family (collectively

known as gPC). The PDF of (j would then also be changed correspondingly in order

to maintain the orthogonality property in Equation 5.4. Some examples are shown

in Table 5.1, reproduced from [104). The choices are typically made such that the

PDFs of the known random variables can be conveniently expressed. For example,

in Section 3.2, uniform prior is used for A1 in the combustion problem, then (1 ~

U (-1, 1) and 0, ((1) of Legendre polynomials would be a good choice, as only an

affine transformation on (1 is required to capture the PDF of A1 exactly. It is also

possible to use, for example, an expansion of 1 ~ A (0, 1) to capture the uniform

prior, but the (finite expansion) representation would never be exact, and a high

order would be required to achieve reasonably low errors.

The methods to compute the PC expansion coefficients are broadly divided into

two groups - intrusive and non-intrusive.

In the intrusive approach, the PC expansions of both the known and unknown

random variables are directly substituted into the governing equations. This results

in a larger system than the deterministic problem, with the unknowns being the PC

coefficients of the unknown random variables. The advantage of this approach is

that the new system, although larger and different from the deterministic case, needs

only to be solved once. However, because the system is modified, the solver of the



Continuous Gaussian Hermite-chaos (-oo, oo)
Gamma Laguerre-chaos [0, oo)

Beta Jacobi-chaos [a, b]
Uniform Legendre-chaos [a, b]

Discrete Poisson Charlier-chaos {0, 1, 2, }
Binomial Krawtchouk-chaos {0, 1,... , N}

Negative binomial Meixner-chaos {0, 1, 2,... }
Hypergeometric Hahn-chaos {0, 1,... , N}

Table 5.1: The Wiener-Askey polynomial chaos and their underlying random
variables [104].

deterministic system is no longer suitable, and needs to be modified as well. This task

can be difficult in complicated systems, and even impossible if, for example, the source

code for the deterministic case cannot be accessed. Another issue is how to express

the manipulation of PC expansions in a single expansion. For example, multiplying

two expansions require the computation of a third-order tensor

Cimn= Eg [4i)71mnbn] , (5.8)

often done a priori and stored. However, more complicated operations cannot be easily

handled, and other techniques, such as Taylor expansions, integration approaches, and

sampling approaches, must to be used [20].

The non-intrusive approach involves computing the expansion coefficients by di-

rectly projecting the unknown random variable onto the basis functions. The main

advantage of this method is that the solver for the deterministic case can be reused,

and treated as a black box, not requiring any modifications. The main disadvantage

is that the deterministic problem needs to be solved many times.

For the combustion problem in this thesis, the non-intrusive spectral projection

(NISP), which is a type of non-intrusive methods, is chosen (detailed formulation is

shown in Section 5.3). Its selection is mainly due to the flexibility it offers in choosing

the observables in the combustion problem context. For example, consider the ignition

Wiener-Askey chaos SupportRandom Variables



delay rign, which is a post-processing quantity that is not directly in the governing

equations. If an intrusive approach were adopted, then new equations need to be

invented and appended to the governing equations in order to compute rlgn from

the state variables. Consequently, PC expansions need to be constructed for each of

the states at each time integration point - the result is often an intractably large

system, with much more information than simply regn. PC expansions for the state

variables at different time discretizations are not only computationally expensive to

construct, they are also almost certainly poor approximations, because most of the

state variables would be multi-modal. To illustrate this, consider T (t*) as a function

of the kinetic parameters. For certain (regions of) combinations of the parameters, the

system would have ignited by the time t* (and T (t*) would be close to the equilibrium

temperature), while for others, the system would not have ignited by the time t* (and

T (t*) would be close to the initial temperature). Intermediate temperatures are very

unlikely to be obtained due to the extremely small timescale of the ignition. As a

result, a bifurcation exists in T (t*) as a function of the kinetic parameters, and it

would be very difficult to capture using a polynomial basis.

5.3 Non-Intrusive Spectral Projection (NISP) for

the Combustion Problem

In this section, the application of NISP to the combustion experimental design problem

is discussed in detail. The known random variables are the input parameters, namely,

S= (A1, Es). As discussed in Section 3.2, a uniform prior has been assigned, with

the support described in Table 3.1. Therefore, the Legendre Chaos is a convenient

choice according to Table 5.1, with (1, 2 i.i.d. U (-1, 1). More specifically, the PC

expansions for these parameters are simply

01 = 0.0591 (5.9)

02 = 1.3598 x 10' + 1.3598 x 107 2. (5.10)



The goal now is to construct the PC expansions for the unknown parameters,

which are the observables from the model output (not the measured data y), namely,

g (0, d) =(n Tig, ln r0 , ln TH, InTHo2 , In TH2 o2 , y , yOr , XH,r, XHO2,r, XH2o2,). As

discussed at the end of Section 2.4, In of the characteristic time observables will be used

in the PC expansions. Before this is done, the dependence on the design conditions d

needs to be addressed.

If d is restricted to some finite set of possible design conditions, then it would

be trivial to construct the PC expansions simply under those different realizations.

However, the approach taken does not assume this constraint - instead, d is assumed

to be a continuous variable. One possible method to accommodate this is to lay out a

grid in the design space D, construct a PC expansion at each of the grid points, and

perform interpolation of the coefficients for off-grid design conditions. This method

can become very computationally expensive, since numerous PC expansions need to

be constructed; in fact, storage of the expansion coefficients can become intractable

as the number of grid points increases exponentially with the stochastic dimension.

The approaches in the previous paragraph involve constructing numerous PC ex-

pansions in only 2 variables (since dim (0) = 2). Alternatively, one can treat d as

(deterministic) "random variables" as well, thus effectively increasing the stochastic

dimension, but now only need to solve for one single PC representation. Denoting

(3 = To and (4 = #, the new stochastic dimension is n, = 4. For the sake of demon-

stration, uniform "priors" are assigned to d within the regions where the experiments

are physically available. In particular, the support for the design space is shown in

Table 5.2, where the bounds are arbitrarily, but reasonably chosen. An interesting

question is what does this "prior" really mean? It is not truly a prior in the inference

sense, because the design variables are not uncertain parameters. However, they may

be interpreted as weight functions in emphasizing where in the design space the PC

expansion should be made more accurate. For example, if one suspects more exper-

iments need to be conducted in a particular small region of the design space, then a

Gaussian "prior" may be used that is centered around that region. The resulting PC



expansion will then have a smaller error in that region since the minimization of the

L2 error is weighed according to the Gaussian "prior". Using the Legendre Chaos, the

"PC expansions" for the design variables are simply

di = 975 + 75 3  (5.11)

d2 = 0.85 + 0.35(4. (5.12)

Note that one would never sample 3 and (4, because there is no associated randomness

in d. When a particular d is desired, the corresponding 3 and (4 are simply computed

by inverting Equations 5.11 and 5.12. One may interpret these equations simply as a

"renaming" of the deterministic di and d2 to 3 and (4, respectively.

Parameter Lower Bound Upper Bound

TO 900 1050
# 0.5 1.2

Table 5.2: "Prior" support of the design variables To and 4. Uniform prior
is assigned.

Now the PC expansions of the unknown variables can finally be constructed. Per-

forming a standard Galerkin projection of the random variables onto the desired basis

functions and taking advantage of the orthogonality property, the coefficients are sim-

ply

gm = E1['~ - - - ny, (5.13)

where gm,i is the PC expansion with multi-index i for the mth observable from the

model (Cantera) output. The denominators can be further simplified to

n.

IF? ) p( )d I2 ( ) p( j)<j,(5.14)

where the second equality is due to the independence of (j's and Equation 5.6. Typi-

cally analytical formulas are available for this expression. For example, for Legendre



Chaos,

((j) p ((j) d 3 = 2i2+ 1 (5.15)

The numerator, on the other hand, almost always has no analytic form, and must

be computed via numerical integration techniques - this is the heart of the NISP

computation. Due to both the often high stochastic dimension, as well as the expensive

evaluation of the forward model g, an efficient method of high dimension numerical

integration is essential. The next section is dedicated to explore the options available

in this topic.

5.4 Numerical Integration in High Dimension

5.4.1 Overview

Many problems in the field of engineering involve integrating complicated functions,

which is often difficult or even impossible to perform analytically. Consequently, nu-

merical integration has become an indispensable tool, used in such diverse applications

from making money on Wall Street [70] to computing the surface area of molecules [22].

In particular, the need for numerical integration, especially in potentially high dimen-

sions, stems from computing the PC coefficients via the NISP method discussed in the

previous section. Furthermore, the dimension of an NISP integral is typically equal

to the number of parameters no in the model (with an additional nd design variables

for an experimental design problem). For example, if all the kinetic parameters from

the H2-0 2 mechanism in Table 2.1 are random variables, then the dimension of the

NISP integrals would be 3 x 19 = 57 (plus nd = 2 if experimental design is desired).

Numerical integration becomes increasingly challenging as the integral's dimension

grows. The infamous "curse of dimensionality" refers to the fact that all quadrature

rules have some dependence on the number of dimensions, leading to rapid increases

in the number of required function evaluations with dimension.



There are many numerical integration methods available, and they can be broadly

divided into two categories - sampling methods and quadrature methods. Sampling

methods are stochastic methods that involve averaging of the integrand evaluations at

a set of random points. Quadrature methods are deterministic methods that involve

forming the products between the integrand evaluation and a corresponding weight at

a set of predetermined quadrature points, and finally summing them. More specifi-

cally, the following five numerical integration options are described in the subsequent

sections.

1. Monte Carlo (MC)

2. Quasi-Monte Carlo (QMC)

3. Tensor product quadrature (TPQ)

4. Sparse quadrature (SQ)

5. Dimension-adaptive sparse quadrature (DASQ)

In this section, the more traditional notation for integration is used (i.e., not that

from the NISP problem). The integration problem involves computing an approxima-

tion to the integral

I f (x) w (x) dx, (5.16)

where f is the integrand function, w is some weight function, x is a d-dimensional

independent variable, and X is the domain of integration.

In all implementations from this study, the Kahan algorithm [43] is used for all

summations. This method keeps a running compensation value, which helps signifi-

cantly reduce numerical errors when summing a sequence (especially a long sequence)

of finite-precision floating point numbers compared to the naive running sum.



5.4.2 Monte Carlo (MC)

MC integration involves the generation of sample points using pseudo-random num-

bers. Its general form is

I .V f(x(7)) (5.17)

where V is the hyper-volume of X, and the n sample points, x('), are sampled ac-

cording to w (x) (in this case, the weight function must be a proper PDF). Sampling

technique is itself a major topic, especially if w (x) is a complicated PDF. Methods

such as important sampling [78], MCMC [31], and Latin hypercube [60] have been

used extensively to improve both the flexibility and efficiency of sampling. In many

cases, however, it is much simpler to group the troublesome w (x) term with f (x), and

factor out a constant weight function with value equal to 1/V - this corresponds to

sampling x() from a uniform distribution. When sampling is implemented on a com-

puter, the samples are generated through pseudo-random number generators. These

samples are not truly random because they are computed from some deterministic

algorithm. MC can be potentially improved by replacing the pseudo-random numbers

with quasi-random numbers (see Section 5.4.3).

The convergence rate of MC is

e = 0 (n , (5.18)

where e is some error measure of the integral estimate. The main advantages of MC

are that its convergence rate is independent of dimensionality; it does not assume any

integrand smoothness, thus is good for integrating discontinuous functions; and it can

work for arbitrary shapes of X, for example, by rejecting the sample points outside

X. The main disadvantages are that the N/fi convergence rate is very slow; and it

does not take advantage of any integrand smoothness, which contributes to its slow

convergence.



Thorough discussions on various topics related to MC can be found in [78].

5.4.3 Quasi-Monte Carlo (QMC)

The QMC method is proposed by Morokoff and Caflisch [63]. It approximates the

integral the same way as MC, shown in Equation 5.17, except that it uses low discrep-

ancy (i.e., more uniformly distributed) sequences, known as quasi-random numbers,

to generate the samples. In this thesis, only the Sobol' sequence [86] is used in QMC

computations. Results from [63] suggest that QMC is in general superior to MC,

but the advantages may be slight depending on the number of dimensions and the

properties of the integrand.

The convergence rate of QMC is

e = 0 (n 1 (log n)d) . (5.19)

The main advantages of QMC are that its convergence rate is faster than that of

MC (but is now dependent on the number of dimensions); and similar to MC, it

does not assume any integrand smoothness and that X can be arbitrarily shaped.

The main disadvantages are that the quasi-random numbers are typically not readily

available on computers, and must be implemented separately (this problem is further

complicated by the fact that sequences for different dimensions are different, and

must be generated separately); and similar to MC, it does not take advantage of any

integrand smoothness, contributing to its slow convergence.

5.4.4 Tensor Product Quadrature (TPQ)

This section provides a motivation for sparse quadrature. A naive construction of a

quadrature rule in multiple dimensions is to simply apply a tensor product on the ID



quadrature rules

n

I(Qi 0 Qi) 0 -- Qn )f = f(xi), (5.20)

where Q$') is the nj-point ID quadrature rule in the jth dimension, and n = ]j nj

is the total number of quadrature points. Unfortunately, this number increases expo-

nentially with the number of dimensions for some fixed accuracy

e =0 (ni) , (5.21)

where r is the highest order of bounded derivative of the integrand. For example, a

measly 5-point rule in ID translates to around 10 million points in 10 dimensions.

The main advantage of TPQ is that it has an intuitive and trivial extension from

available ID quadrature rules. The main (and fatal) disadvantage is that the expo-

nential growth of n renders this method infeasible for integration of more than around

4 dimensions. This motivates the need of sparse quadrature, discussed in the next

section.

5.4.5 Sparse Quadrature (SQ)

Details of the SQ performance and analysis can be found in, for example, [7, 29],

while [11] provides some intuitive explanations with its 2D examples. The SQ con-

struction is described below.

Smolyak Rule

The SQ is formed using the Smolyak rule [85], a general method that builds a sparse

multi-dimensional quadrature (or grid) based on some ID quadrature rule. Let

rn

Qff wif (xi) (5.22)
i= 1



be the lth level (with ni quadrature points) ID quadrature rule. Theoretically, the

level can be arbitrarily defined without compromising the validity of the Smolyak

construction. For example, ni = 1 gives a very fine resolution in n as 1 is increased,

whereas a more carefully chosen definition could take advantage of the nestedness of

the quadrature rule (if it is nested) and thus reducing the overall computational cost.

The latter greatly out-benefits the former if the goal is to simply obtain an accurate

integral estimate, but there exist applications that value the former quality more (e.g.,

see Section 5.6).

Here are some examples of typical level definitions. For Clenshaw-Curtis (CC)

quadrature, the level is related to the number of points by the formulas

n = 21-1 + 1, 1 > 2 (5.23)

n = 1, (5.24)

and for Gauss-Patterson (GP) quadrature (also known as Kronrod-Patterson) [71], by

the formulas

n, = 2' - 1, l > 2 (5.25)

ni = 1. (5.26)

Non-nested quadrature rules, such as the Gaussian-Legendre (GL) quadrature, may

be used in the Smolyak construction as well, but they do not have a natural definition

of level.

The difference formulas are defined by

Akf = (Ql) - Q(1)f, Q ()f = 0, (5.27)

which are the "difference" of ID quadrature rules between two consecutive levels. The

"subtraction" is carried out by subtracting the weights at the quadrature points of

the lower level. Example 5.4.1 provides a simple illustration.
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Figure 5-1: Illustration of the index sets of a 2D level 3 SQ rule. The dots
are the approximate positions of quadrature points.

Example 5.4.1. Subtraction of Two Quadrature Rules

Suppose Q(1) is a 1-point rule with x1 = 0.0 and wi = 2.0, and Q(1) is a 2-point

rule with x1 = -1.0, x 2 = 1.0, and wi = W2 = 1.0, then A2 = Q) - Q(l) would

have abscissas x1 = -1.0, x2 = 0.0, x3 = 1.0 with weights wi = 1.0, w2 = -2.0, and

W3 =1.0. Note the negative sign on w2-

Then, for k c Nd, the sparse quadrature is defined to be

Qf = (Ak, 0 ... 02) Akd)f, (5.28)
|k| L+d-1

where Iki = k1 ... +kd. Typically, the user would select some desired overall level L

for the sparse quadrature. The resulting index sets (the k's) included in the summation

thus form a simplex. An illustration of the index sets of a 2D level 3 SQ rule is shown

in Figure 5-1.

X



Selection of 1D Quadrature Rule

In theory, any arbitrary ID quadrature rule can be used for the Smolyak construction.

However, CC rule is especially appealing because its nestedness induces computational

saving in addition to the sparseness provided by the Smolyak construction. One might

argue that GL quadrature (which is not nested) is optimal in the sense that the highest

order of polynomial it can integrate exactly is higher than that of any other rules.

However, Trefethen recently showed that

"the Clenshaw-Curtis and Gauss formulas have essentially the same accu-

racy unless f is analytic in a sizable neighborhood of the interval of the

integration - in which case both methods converge so fast that the differ-

ence hardly matters" [95].

Additionally, the ability to integrate polynomials exactly does not necessarily reflect

the rule's general integration capability (c.f., Newton-Cotes). Another advantage of

CC is its ease of construction. The ID CC abscissas are simply

zi = cos (+) (5.29)
(n)

and the weights can be computed via FFT [27, 28], which only requires 0 (n log n) in

time and induces very little numerical roundoff. Nestedness and ease of construction

render CC an especially popular choice.

Other nested quadrature rules can be used as well. For example, GP [71] has a

systematic extension from two initial levels of arbitrary quadrature rule. However,

the extension method [72], although carefully engineered to take advantage of the

special structures of the problem, is vulnerable to round-off errors. An attempted

implementation in double precision breaks down for higher than 3 levels. The failure

is mainly due to two reasons: first is that it involves solving the roots of polynomials

of degree that is roughly half the number of quadrature points (i.e., very high degree),

and the second is that the computations of higher order extensions are dependent on

the lower levels, so roundoff accumulates across all levels of extensions. The solution to



this problem is to use high-precision arithmetic, and then tabulate the accurate results.

This is exactly what Patterson has done, and nonetheless, the highest available level

for GP found in the literature is 8 (i.e., 255 quadrature points).

Performance

To get an idea of how much saving SQ is providing, Table 5.3 shows, for example,

that the level 3 CC SQ in 10 dimensions has 58,828 fewer nodes than a TPQ that can

integrate exactly all the polynomial orders that the SQ can. While SQ does not hold

advantage over TPQ in 2D, the saving becomes substantial for higher dimensions.

These results are identical to those in [103]. As an example, Figure 5-2 shows a 2D

sparse grid constructed using the level 5 CC rule, and the corresponding tensor product

grid constructed using the same ID quadrature rule.

d 1 SQn TPQrn
1 1 1
2 5 4

2 3 13 9
4 29 16
5 65 25
1 1 1

10 2 21 1024
3 221 59049
4 1581 1048576
1 1 1

20 2 41 1048576
3 841 ~3.5 x 109

1 1 1
50 2 101 1.1 x 1016

3 5101 7.2 x 1023

Table 5.3: Examples of number-of-abscissas comparison between SQ and
TPQ, using CC rule.

The fewer quadrature points in SQ is traded off in accuracy. For example, in 2D, if

a SQ can integrate at most 2nd order polynomials (i.e., up to x2 , xy and y2 ) exactly, it

cannot integrate the mixed terms (i.e., x2 y, xy 2 , and x2y 2 ) exactly. However, a tensor
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(a) Sparse quadrature (b) Tensor product quadrature

Figure 5-2: 2D sparse grid constructed using the level 5 CC rule, and the
corresponding tensor product grid constructed using the same
ID quadrature rule.

product quadrature can, by simply separate the mixed term integral into product

of the two. This property is illustrated in Figure 5-3; the shaded terms are those

that can be integrated exactly by the corresponding quadrature rule. Note that in

higher dimensions, the pattern for SQ and its relationship to that of TPQ are not as

simple [7].

3 2 2 3 3 3

x4 X3 2 2 ya y4 4 3 3 y4

(a) Sparse quadrature (b) Tensor product quadrature

Figure 5-3: Polynomial exactness of a 2D SQ and of its corresponding TPQ.

The convergence rate for SQ is

e = 0 (r (log -)(d1 )(r+l) . (5.30)



The main advantages of SQ are that it has a much weaker dependence on d than the

TPQ, and it takes advantage of integrand smoothness. The main disadvantages are

that it is less accurate than the TPQ, and it has small flexibility in choosing n (but

better than TPQ in that respect) since n's resolution is dictated by the definition

of level of the quadrature rule (for example, in 100D, level 3 CC rule has 20,201

points, but level 4 jumps to 1,353,801 points, and any intermediate numbers cannot

be selected).

5.4.6 Dimension-Adaptive Sparse Quadrature (DASQ)

Original Algorithm

The DASQ was introduced by Gerstner and Griebel [30], and is a natural extension

to the Smolyak rule. In Equation 5.28, instead of fixed summation over index sets

Ik| I L + d - 1, the summation proceeds by choosing the index sets adaptively based

on some error indicator. The algorithm is shown in Algorithm 2, reproduced from [30].

The idea is to divide all the indices into two sets: an old set, and an active set. A

member of the active set is able to generate new candidates by increase its index,

i, in any dimension by 1 (e.g., i + ep, Vp < d, where ep is the unit vector in the

pth dimension). However, the candidate can only be accepted if all its backward

neighbours (i.e., i + e, - eq, Vp, q < d) are in the old set - the so-called admissibility

condition, which ensures the validity of the telescope sum expansion of the general

sparse quadrature formulas using the difference formulas Ak. Finally, each index set

has an error indicator, which is proportional to its corresponding summand value

in Equation 5.28. Intuitively, if this term is contributing little to the overall integral

estimate, then integral error due to this term would be small. The process iterates until

the sum of error indicators for the active set members falls below some user-specified

tolerance. More details, including proposed data structures for this algorithm, can be

found in [30]. One drawback of DASQ is that parallelization can only be implemented

within each index set, which is not as efficient as the parallelization in any of the other



integration methods discussed so far, due to the adaptive nature of DASQ.

Algorithm 2: Dimension-adaptive sparse quadrature algorithm [30].

0 0;
A = i};
o = Aif;

r/ = hi;
while r > TOL do

select i from A with the largest hi;
A =A \ {1};
0 0 U {i};

7 = - hi;

for p = 1 to d do
j = i + ep;
if j-eq C Oforallq =1,- , dthen

A= Au {j};
s = Ajf;

V V + s;

7 7 + hj;
end

end
end
Symbols:
0 - old index set;
A - active index set;
Aif - integral increment P A'f;
hi - local error indicator;
r7 - global error estimate EiA hi;
e, - pth unit vector;
TOL - error tolerance;
o computed integral value KEisA i

Reuse Nested Quadrature Function Evaluations

The original DASQ algorithm proposed by Gerstner and Griebel [30] does not address

how nested quadrature points can be reused as adaptation proceeds. Unlike in SQ,

where one can combine repeated quadrature points after the Smolyak construction,

this cannot be done for DASQ due to the adaptive nature. This section proposes an



algorithm to solve this problem. For demonstration purposes, the CC rule is used

here. Other nested rules may be used as well, but the algorithm needs to be modified

according to their abscissa structures.

This algorithm takes advantage of the special structure of the CC abscissas, whose

formula is Equation 5.29. When increasing the level 1 by 1 (for I > 2), n is (almost)

doubled. In particular, every other abscissa in the new level would also be in the

previous level

cos i) cos ()- (5.31)
(n (2n)'

where i = 0,1, 2,... , n and j = 0,2,4,-- , 2n. It is easy to see that the quadrature

coordinates are monotonic with respect to the index i (or j). Hence, there will always

be 1 new point between 2 old points when the level is increased by 1 (for 1 > 2).

Before presenting the algorithm, some terminology is first defined.

Definition 5.4.1. Position p - the set of ordinalities (in ascending order of the

physical coordinate value, counting from 1) of the quadrature point of interest in each

dimension, with respect to a particular index set k. For example, for the 2D index set

k = (2, 2) (the center square in Figure 5-1), the quadrature points and their positions

are listed in Table 5.4. More specifically, (x, y) - (1.0, 0.0) is the 3rd point in x, and

2nd point in y, thus has position p = (3, 2).

Definition 5.4.2. Position of a new function evaluation pne - the ordinality

of the new function value with respect to an index set k. The ordering is done in

sequence of dimensions (i.e., sort by x first, then y). For example, in the 2D index

set k = (2, 1) (the square to the right of the bottom-left square in Figure 5-1), the

function evaluation at (x, y) = (-1.0, 0.0) is the first new function value in that index

set, therefore has pne, = 1, and at (x, y) = (1.0, 0.0) is the second new function value

in that index set, therefore has puew = 2. (x, y) = (0.0, 0.0) is not a few function

evaluation since it has already been computed in index set (1,1). l



(x, y) Position p
(-1.0,-1.0) (1,1)
(-1.0,0.0) (1,2)
(-1.0,1.0) (1,3)
(0.0,-1.0) (2,1)
(0.0,0.0) (2,2)
(0.0,1.0) (2,3)

(1.0,-1.0) (3,1)
(1.0,0.0) (3,2)
(1.0,1.0) (3,3)

Table 5.4: Physical coordinates and positions of quadrature points in the 2D
index set (2,2).

Definition 5.4.3. Backtrace - an adjective describing properties or values related

to the index set that is traced back by one step from the original index set. Some ex-

ample usages include "backtrace path", "backtrace index set", "backtrace dimension"

(the dimension in which the backtrace is performed), etc. E

The algorithm is presented in detail below and summarized in Algorithm 3. The

starting point is when the function value of a particular quadrature point is requested

during the computation of the tensor product of the Akg's at a particular index set.

1. Determine whether this quadrature point is a new point by checking its position

in this index set k. In 1D, the potential new quadrature points may occur

according to the rule presented in Table 5.5. In multiple dimensions, the new

quadrature points take place at the intersection (or tensor product) of these ID

potential locations.

Index Set Value (ks) Positions pi of New Points
1 1
2 1,3

>2 Even positions

Table 5.5: Positions pi, i = 1, - , d of new points in ID.

For example, consider the 2D index set (2,4). For the first index value ki = 2,

potential new points are at positions 1 and 3 in that dimension. For the second



index value k2 = 4, potential new points are at positions 2, 4, 6, and 8 in that

dimension. Therefore, the positions which require new function evaluations are

(1,2), (1,4), (1,6), (1,8), (3,2), (3,4), (3,6), and (3,8).

(a) If it is a new point, go ahead and evaluate it, store it, and continue onto

the next quadrature point.

(b) If it is not a new point, go to Step 2 to retrieve the previously-computed

value.

2. Determine which dimension i* to trace back by 1. Note that there can be multiple

possible backtrace paths (e.g., (x, y) = (0, 0) can be traced back via any path).

This algorithm would find a possible path by searching in the ascending order

of the dimensions.

For any dimension of the index set, if the index value is 1, backtracing cannot

take place in this dimension. If the index value is 2, backtracing can only occur

if the quadrature point has position 2 in this dimension. If the index value > 2,

backtracing in this dimension is possible only if the quadrature point has an

odd-number position in this dimension.

3. Update to the backtrace index set k* (simply decrease ki- by 1).

4. Find the memory storage location of k*. This is done by finding the index set

within the backward neighbours of k that matches k*. This location is needed

to access the new function evaluations with respect to k*.

5. Find the corresponding position p* of the quadrature point with respect to k*.

Modification only needs to be done on pi.

If k* = 1 then p* = 1. If k* >=2, then p* = (pi - 1)/2+ 1.

6. Determine whether this quadrature point is a new quadrature point in k*. The

same algorithm as Step 1 is used, except that k* replaces k.



(a) If it is a new point, retrieve it. Go to Step 7.

(b) If it is not a new point, let k = k*, p = p* and go to Step 2.

7. Determine pne, in k*. Compute the values

ad = 1

ai = nn,
fn=i+1

for i < d,

where nn is the number of new function evaluations for the nth dimension,

obtained according to the rules presented in Table 5.5. Finally,

pnew = 2 aj.
i= 2

8. Extract the function value.

Algorithm 3: Algorithm summary for reusing nested quadrature function
values in DASQ.

Check whether current quadrature point is a new point in k;
if is a new point in k then
| evaluate it, store it, and continue onto the next quadrature point;

end
* Determine backtrace dimension i*;
Update backtrace index set k*;
Find the memory storage location of k*, needed to access the stored function
value;
Compute p* with respect to k*;
Check whether the quadrature point is a new quadrature point in k*;
if is not a new point in k* then
I k=k*, p = p*, go to*;

end
Determine pnew in k*;
Extract the function value;

One potential issue of this algorithm is that the recursive backtracing may become

(5.32)

(5.33)

(5.34)



expensive when levels are high such that its cost surpasses that of an actual function

evaluation. However, if the function is cheaper to evaluate than backtracing, then

the overall DASQ time is likely to be small anyways and the less efficient backtracing

method does not matter. Another potential issue is that the storage of all function

evaluations can become very demanding. Some compromise can be made such as to

stop further storage after certain memory limit has been reached, or to discard some

storage from lower levels.

5.4.7 Numerical Results

Three numerical examples are considered to validate and compare the performance

between the numerical integration algorithms discussed thus far. The first is an

anisotropic 2D integral devised to illustrate the index set adaptation from the DASQ

algorithm, the second is a 20D integral (smooth version) adopted from [63), and the

last is a 1OOD extension to the first 2D example.

2D Integral

Consider the 2D integral

I j(x2 + e") dx dy, (5.35)

whose exact solution is

I = 2 - (e - e-1) . (5.36)
3

The y dimension is much more difficult to integrate than the x dimension due to

the exponential. Therefore, for DASQ, higher levels of final index sets are expected

to favour the y dimension. The index sets and relative Li error (normalized by the

true integral value) convergence are shown in Figure 5-4. The index distribution is

indeed as expected, anisotropic favouring the y variable. In the error convergence



plot, discrete points are used for SQ, because the intermediate number of function

evaluations cannot be achieved due to the level definitions and simplex-like region

of index sets. The error convergence suggests that DASQ is competitive with SQ,

while both quadrature methods are substantially superior to MC and QMC in this

low-dimensional problem.

+ Old Set
8 x Active Se
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(a) Final DASQ index sets (b) Relative L1 error

Figure 5-4: Final DASQ index sets and relative Li error of the 2D integral
using various numerical integration schemes.

20D Integral

Consider the following integration problem adopted from [63]

20

I 2= F"(x) dx,
[0,1] n=0

where

(5.38)

(5.37)
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and -y E (0, 1) is a free parameter. Note that there is a typo in [63], where the first

product in Equation 5.38 is incorrectly printed as a summation. The exact solution is

I-= - [1 - (1 -y) exp(y)]. (5.39)

The relative L1 error for y = 0.5 is shown in Figure 5-5. A number of observations

can be made. The QMC method is better than MC, although its integral estimate

has large oscillations. On average, QMC is competitive to SQ, and can be better

depending on where the estimate is in the oscillation cycle. DASQ is better than all

other methods, indicating that adaptation is indeed contributing. The error indicator

for DASQ appears to be approximating the true error, but it is not guaranteed to be

always a lower or higher estimate. The non-monotonic convergence of the dimension-

adaptive case implies that in some cases, refinement can actually lead to a worse

estimate. This suggests that the error indicator can be further improved.

10 1

100 102 104 106
No. Function Evaluations

Figure 5-5: Relative L1 error of the 20D integral using various numerical
integration schemes.



100D Integral

A 100D integral is constructed by extending Equation 5.35

. 50 100

I = + e dx, (5.40)
iJ[,]1 j=1 k=51

whose exact solution is

I = 299 50 + 50 (e-e 1.59 x 1032. (5.41)

The errors are plotted in Figure 5-6. The comparisons between MC, QMC, and SQ are

similar to the previous example, with MC and QMC gaining ground on the quadra-

ture algorithms due to the higher dimension. However, a very interesting behaviour

is observed for the DASQ algorithm: it first converges slowly, even slower than SQ

while reaching a plateau, and then takes a sudden plunge. The plateau is caused by

the fact that the algorithm is exploring the dimensions that have already resolved the

xi's exactly, but would not know it has resolved them until the local error indicators

at one level higher are computed (which would be zero). Consequently, there are addi-

tional computations without any improvements in the actual error, a so-called "lag";

however, the error indicator still improves during the plateau. The sharp drop-off is

due to the algorithm finally exploring the "correct" exk dimensions, thus drastically

improving the accuracy. The fact that the error indicator is a more conservative es-

timate in this case is important, for if it were less conservative (i.e., underestimate of

the error), it could lead to premature termination of DASQ while the true error is still

very large.

5.4.8 Conclusions

The sampling methods (MC and QMC) are only competitive to the quadrature meth-

ods (SQ and DASQ) when the integral dimension is very high (e.g., > 100), or if the

integrand is expected to be non-smooth (discontinuous examples are not presented
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Figure 5-6: Relative L1 error of the 100D integral using various numerical
integration schemes.

here). If a sampling method is used, QMC holds an advantage over MC. If a quadra-

ture method is used, DASQ has demonstrated advantage over SQ when the integrand

is expected to be anisotropic.

For the rest of the thesis, only DASQ is used wherever numerical integration is

required.

5.5 Implementation of DASQ in NISP

Armed with the selected numerical integration tool, DASQ, the PC expansion coef-

ficients of the output variables in Equation 5.13 can now be computed. There are a

total of npe (see Equation 5.7) PC coefficients for each output variable, for a total

of ny output variables, yielding a total of ncoef = nPCny integrations. For the ease

of notation, let gm,i, m = 1, - - - , ny, Vi be re-indexed by gr, r = 1, -- - , neoef. It would

be very inefficient to compute the g,'s from scratch independently, since some overlap

in quadrature points may exist between the various integral computations. In other



words, values of g (0 (() , d (a)) evaluation, which is the most expensive part of the

computation, may be reused for different g, computations.

To take advantage of this computational saving, the DASQ algorithm is altered to

integrate all g,'s simultaneously. The idea is to simply dictate all the integrations via

a single adaptation route, while using a "total effect" local error indicator hi that is

reflective of all the local error indicators (h,, Vr) from the integrals. For example,

some reasonable choices are to take the maximum or L2norm over all the hr,i's over all

r. The new algorithm, while retaining the same notations as Algorithm 2, is presented

in Algorithm 4.

5.6 Detection of Polynomial Dimension Anisotropy

Using DASQ

5.6.1 Motivation

The current method to truncate the infinite PC expansion to a finite expansion is

through Equation 5.5, which retains all polynomial terms that have an overall order

(i.e., Li norm of order in all dimensions) less or equal to some constant po. This, how-

ever, may be very inefficient, as the random variable's dependence in some dimensions

might be of lower order than others, exhibiting a polynomial dimension anisotropy.

This motivates the need to estimate the polynomial equivalence of the random variable

at some fixed error tolerance, and detect such anisotropy. The method proposed to

perform this task uses DASQ. At this writing of this thesis, this algorithm has been

developed and tested, but it is not yet incorporated into the combustion problem, and

no results of the combustion problem using this algorithm is currently available.

The choice of quadrature rule is important in formulating the detection rule, be-

cause the goal now is no longer just to accurately integrate a function, but also to

detect its polynomial equivalence. The CC rule is a good candidate. In general, an

n point CC rule can integrate an n - 1 degree polynomial exactly. However, as often



Algorithm 4: Dimension-adaptive sparse quadrature algorithm applied to
non-intrusive spectral projection.

i = (1,'-.-. , 1);
O 0;
A= {i};
for r = 1 to ncef do

Vr Aifr;
Compute hr,i;

end
1 = hi. For example, hi = maxr h,,;
while r > TOL do

select i from A with the largest ji;

0 = 0 U {i};
77 = - hi;

for p = 1 to d do
j = + ep;
if j - eq e O for all q = 1, ,dthen

A = A U {j};
for r - 1 to n.cef do

Sr = Ajfr;

Vr Vr + Sr;
Compute hr,j;

end
Compute hj;
S= 77 + hj;

end
end

end

neglected to state in literature, the rule gains an extra degree of accuracy if n is odd

- that is, an n point rule can integrate an n degree polynomial exactly if n is odd.

This is a subtle but important property in constructing the detection rule later on.

Consequently, every addition of 1 quadrature point leads to at most 2 extra degree of

polynomial accuracy, depending on whether or not the number of points is odd. This

relationship is shown in Table 5.6(a).

The GL and GP rules are poor candidates because they are "too" accurate -

that is, their degree of polynomial exactness jumps several degrees when the number



n-Point Rule Max Degree Exactness
1 0,1
2 1
3 2,3
4 3
5 4,5

(a) Original C rule

n-Point Rule Max Degree Exactness
1 0
2 1
3 2,3
4 3
5 4,5

(b) Shifted CC rule

Table 5.6: Relationship between the number of quadrature points in a CC
rule and the maximum exact polynomial degrees.

of quadrature point is increased by one. This essentially decreases the resolution of

polynomial degree that can be detected. The Newton-Cotes (NC) rule has the same

resolution as the CC rule, but it is plagued by Runge phenomena at high orders if the

integrand is not polynomial. Composite NC cannot be used because it does not have

a guaranteed polynomial exactness.

Therefore, in this detection rule, only the CC rule is used.

5.6.2 Preliminary Observations

Some preliminary testings are performed, with the following notable observations.

" In order for the adaptive rule to proceed beyond the first index set (1, - - - , 1),

the integrand must have a non-zero value when evaluated at the origin (other-

wise the error indicator returns zero, and adaptation terminates). If this is the

case, a constant offset (say a) can be artificially introduced to the integrand.

The hypervolume of the integration domain multiplied by a can then be simply

subtracted out from the final estimate at the end to extract the true integral

estimate. Additionally, a should be carefully chosen, for example, to have a sim-

ilar order of magnitude as the integrand evaluations, in order to avoid numerical

errors.

* There are often situations where a higher resolution of polynomial exactness
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in Table 5.6(a) is desired. This can be achieved if the property of an n-point

rule being able to integrate an n degree polynomial exactly when n is odd, is

destroyed. One possible way to do this is to perturb some of the abscissas from

the CC rule, and recompute the weights. However, this is expensive to do, and

if not carefully done, can introduce undesirable behaviour such as the Runge

phenomenon, especially at high degrees.

Instead, higher resolution at a low degree shall be targeted. High-dimension

low-order representations are frequent in PC expansions, thus, the resolution

for the 0-1 degrees of polynomial is most important. These two degrees can be

easily distinguished by simply shifting the 1-point CC rule's abscissa by some

non-zero constant while remaining within the integration domain. One can very

easily visualize how this 1-point rule can no longer integrate an affine function

exactly. The higher order rules remain untouched, retaining the original 2-degree

resolution. The new relationship between the number of quadrature points and

the polynomial exactness is shown in Table 5.6(b). This new rule shall be referred

to as the shifted CC rule.

" For any symmetric quadrature rule, the 2-point rule for an odd function inte-

grand would yield wif (xi) + w2 f(x2) = w (f(xi) - f(xi)) = 0, since wi= W2 =

w and f(xi) = -f(x 2 ). Consequently, the quadrature rule in that dimension

would not advance beyond the 2-point rule. This is problematic because then

the polynomial equivalence of that odd function cannot be detected.

" The final index sets are only dictated by the highest equivalent polynomial orders

(e.g., x7 and x7 + X5 would yield identical results). This is expected since when

a certain rule that is able to integrate a particular polynomial degree exactly, it

can also integrate all the lower degrees exactly.

5.6.3 Detection Rule

The final detection rule for polynomial equivalence using DASQ is as follows.
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A shifted version of the CC rule incrementing one abscissa at a time is used

in the DASQ algorithm. Given the final index sets of some fixed tolerance,

only the old set is used to infer the equivalent polynomial degrees according

to the relationship from Table 5.6(b).

The shifted CC rule is described in the second bullet point in Section 5.6.2.

Here are some remarks regarding the detection rule.

" The active set reflects the phenomenon of lagging, which is due to the fact

that the error indicator can only detect when a polynomial has been integrated

exactly after reaching the rule that is one abscissa more than necessary (the

same phenomenon that caused the plateau in the 100D example in Section 5.4.7).

Thus, the active set can be safely ignored.

" If a polynomial is used as the integrand, DASQ would never terminate on an

even number of abscissas (e.g., both degrees 2 and 3 would terminate on the

3-point rule). However, this is not true for general non-polynomial integrands,

and thus rules for even number of abscissas still need to be established.

* After the highest order polynomials are detected, all the lower order terms also

need to be included because the adaptation is only driven by the highest degree

terms, and thus unable to detect lower order terms.

" Another, perhaps very expensive, method to increase resolution is to simply run

the algorithm twice - first with the original integrand, then second with the

original integrand multiplied by H _(xi + t), where t is some shifting constant

to disrupt odd functions. For example, if in the first run the terminating n is 3,

and in the second run is also 3, then the degree is 2; but if in the second run is

5, then the degree is 3. If this method is used, the shifted CC rule is no longer

necessary.

After some testing, this method is deemed too expensive. Additionally, this rule

is still not fail-proof for polynomial integrands, and can occasionally introduce

overestimates of polynomial degrees. Therefore, it is not used.
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5.6.4 Numerical Results

The following two test cases are used to validate the detection rule described in Sec-

tion 5.6.3.

Case 1 j [(1 + s) + (X3 + s) + (x4 + s) + (X8 + s) + (x1 + s) (x3 + s)

+ (x1 + s) (x8 + s) + (4 S)(X7 + s) + 1] dx (5.42)

Case 2 [(x1 + s) + (x3 + S)2 + (x4 + s) + (x8 + s)4 + (x1 + s)3 (x 3 + s)

+ (X1 + s)2 (x 8 + S)2 + (X4 + 3 (X7 (x S 5 + (X1 + s) (x3 + s)2 (X4 + 3

+ (x 4 + s)2 (x7 + s) (x 8 + F5 + 1] dx, (5.43)

where s = 0.123 is an arbitrary shifting constant. Since these cases are 1OD, the final

index sets are not presented.

For Case 1, the detected polynomial terms contain 1, x 1 , x 3 , x 4 , x 7 , x8, x 4 x7 , xlx 8 ,

x 1x 3 (and all lower order combinations), which cover all the terms in the integrand.

For Case 2, there are a total of 176 final polynomial terms, and they indeed cover all

the polynomial terms in the integrand.
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Chapter 6

Results

Combining and applying the tools introduced thus far to the combustion problem

described in Chapter 2, this chapter provides the main results of this thesis. In par-

ticular, the mechanics from Chapters 3, 4, and 5 are used in reverse order. First, PC

expansions to the observables of the combustion system are constructed. This is done

by using DASQ to compute the integrals in Equation 5.13. Second, the PC expan-

sions are used in the optimal nonlinear experimental design framework, to obtain the

optimal experimental conditions shown in. Equation 4.14, whose results allow the best

inference of the uncertain kinetic parameters. Third, the inference problem is solved

at a selected number of experimental conditions from the design space in order to vali-

date the experimental design results. Finally, a short discussion on the computational

savings from using PC expansion is presented.

6.1 PC Expansion Construction

The PC expansions for the 10 observables presented in Table 2.4 are constructed via

Equation 5.13. Note that as mentioned at the end of Section 2.4 and beginning of

Section 5.3, ln of the characteristic time observables are used in the PC expansions.

The numerator in that equation is computed using the modified DASQ algorithm

described in Section 5.5 (recall the denominators can be computed analytically). More
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specifically, a global order of po = 4 is chosen for all of the expansions, and DASQ is

stopped once a total of nquad = 1000 function evaluations has been exceeded. These

choices are not intuitive to reach, and they are a result of numerous trial-and-errors.

For example, one can initially start from a low po and low nquad for the DASQ, solve the

inference problem at a particular fixed experimental condition using the resultant PC

expansions, and compare the posterior to the exact posterior obtained from when the

original Cantera model is used. po and nquad can then be increased until the posteriors

appear to have a good match. Example comparisons between posteriors from a PC

expansion and the Cantera model can be observed from Figures 6-5 and 6-6 later in

this chapter.

A more rigorous analysis is performed by computing the relative L 2 error for dif-

ferent combinations of po and nquad:

fe Igm (0 (,d ( g (l)2 p () d(
em =, m = 1,- -- n(6.1)ern fa |grn (0 (),d () |2 p ( ) d Y

where gm and gP are the original Cantera model output and the PC expansion, re-

spectively, for the mth observable; and 0 and d as functions of ( are from Equa-

tions 5.9, 5.10 and 5.11, 5.12, respectively. The L2 error is a better indicator than

comparing the posteriors because it reflects the output variables directly as they are

ones being approximated by the PC expansions. However, this quantity is expensive to

compute, especially when the dimension of the parameter space is high, since it needs

additional numerical integration for Equation 6.1. The best indicator is perhaps the

final optimal design itself, since that is the ultimate solution of the design problem.

However, it would be impractically expensive to compute as it involves solving an

optimal experimental design problem for multiple po's and nquad's.

The integrals in the L2 error expression are computed using a level 15 CC SQ rule

(3,502,081 abscissas) - such a high accuracy integration rule is used in an attempt to

prevent additional integration errors in computing the L2 errors. Figures 6-1 and 6-2

show the log1o of the L2 error contours with respect to po and nquad. Note that nquad
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values are approximate, as DASQ is immediately terminated at the iteration after

passing nquad, which might not be exactly equal to nquaa.

When no is small, the errors actually increase as po is increased. The reason is

that those errors are dominated by aliasing (integration) error from the construction

of PC expansions, and additional higher order terms are essentially meaningless and

further contribute to the total errors. However, when a large enough no is used such

that the truncation error is dominating, the additional higher order terms indeed help

converge to the correct functions and decrease the errors. Ideally, an no for a particular

desirable po should be selected such that no significant advantages can be gained when

no is increased further. This occurs at the "corners" of these contour plots, but these

locations are difficult to pinpoint a priori. For a fixed, high enough no, the asymptotic

exponential convergence of PC expansions for smooth functions can be observed.

The errors for the In of the characteristic time observables are higher than those

for the peak value variables, except for the peak value of H20 2 . This is likely due to

that the ln of the characteristic time observables are less regular with respect to the

two particular uncertain kinetic parameters selected. The peak value of H20 2 may be

more difficult to capture, because it carries a double peak in its concentration during

the ignition.

6.2 Optimal Experimental Design

The optimal experimental design problem stated in Equation 4.14 is solved with the

PC expansions replacing the original Cantera model, but with nir, = nut = 10001. The

expected utility contours for both cases are presented in Figure 6-3 using a 1001 x 1001

uniform grid, with the first subfigure reproduced from Figure 4-5(b) for comparison.

The contours from the PC expansions are overall quite similar to those from the

original model, and most importantly, they yield the same optimal experimental design

at (To*, 4*) = (900, 0.5). However, the PC expansions result is unable to capture the

finer details, and has introduced some additional features that do not exist. For
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1050950 1000
Temperature [K]

(a) Using original model (Cantera)

Figure 6-3:

Figure 6-4:

950 1000
Temperature [K]

(b) Using PC expansions

Expected utility contours of the combustion problem with 2 de-
sign variables To and #, using the original Cantera model (repro-
duced from Figure 4-5(b)), and using the PC expansions with
po = 4 and nquad = 1000.

1050950 1000
Temperature [K]

Expected utility contours of the combustion problem with 2 de-
sign variables To and #, using "the overkill" - PC expansions
with po = 12 and nquad = 25, 000. The four designs at points
A, B, C, and D are used for validating the experimental design
methodology by solving the inference problem, described in Sec-
tion 6.3.

example, the ridge near 950 K is not captured, while a local minimum at around

(To, #) = (910, 1.0) is introduced. These imply that perhaps higher po and nquad are
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needed to capture the finer details, and yield even better results, .

To test this hypothesis, a high accuracy PC expansion of po = 12 and nquad

25, 000 (dubbed "the overkill") is constructed. Its L2 errors are shown in Table 6.1.

It is used to solve the optimal experimental design problem, and its expected utility

contours are presented in Figure 6-4. This time, po and nquad are both high enough

to capture the ridge (although not perfectly) and eliminate the local minimum.

Observable logio of the L2 Error
ln Tgn -4.79
lnT0  -4.79
InTH -4.79

InTH2O2  -4.79
In rign -4.79

dh -7.30
dt
XO,r -10.1

XH,r -8.71
XHO2 ,7 -9.90

XH 2 0 2 ,r -4.81

Table 6.1: log1 o of the L2 errors of "the overkill"
po = 12 and nquad= 25, 000.

PC expansions with

6.3 Validation of the Experimental Design Results

Now that the expected utility results are available, how reliable are they in reflecting

the goodness of an experiment? This can be answered by solving the inference prob-

lems at a number of design points. In particular, designs at points A, B, C, and D are

selected. Their conditions are presented in Table 6.2, and are illustrated on the design

space in Figure 6-4. Since the expected utility is decreasing from designs A through

D, then intuitively, the posterior from the inference problem should reflect the most

confidence (since the prior is uniform) at A, less at B and C, and least at D.

At each design, one single datum is generated from gm (6, d) (not gP (6, d)) using

the recommended values of the kinetic parameters tabulated in Table A, and according

to the likelihood described in Section 3.2. Typically, the inference problems would be
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Design Point To #
A 900 0.5
B 950 0.7
C 1000 1.0
D 1050 1.2

Table 6.2: Design conditions at design points A, B, C, and D.

solved using MCMC as described in Section 3.3, especially if the dimension of the

parameter space is high. However, for better demonstration purposes, and since only

two uncertain parameters are targeted in the combustion study of this thesis, the

posteriors are constructed by computing the values on a uniform grid (101 x 101)

in the parameter space. The posteriors computed using "the overkill" are shown in

Figure 6-5, and for comparisons, the posteriors computed using the original Cantera

model (and with the same data from "the overkill" case) are shown in Figure 6-6.

With the exception of design A, these two sets of posteriors agree reasonably well,

implying that the PC expansions are not only suitable for experimental design, they

can also be used for solving the inference problems as well. Posterior for design A

is especially sensitive to the forward model approximation error, because it is such

an informative set of design conditions that the assumed measurement error is small

compared to the PC approximation error.

As expected, the kinetic parameters can be most confidently inferred (almost de-

terministically) from design A, less confidently in B and C, and least confidently in

D. This implies that the expected utility is indeed a good indicator for the goodness

of an experiment, and the experimental design methodology is functioning. One rea-

son why the posterior at design A is so close to being deterministic is because the

error width from the likelihood model is too small compared to the error due to the

approximation from the PC expansions. In the future, error models should not only

try to capture measurement noise, but also the inadequacy in modelling. Design A's

posterior is also clearly not centered around the recommended values, and this can

simply be explained by that, in additional to the PC approximation error, the datum
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Posterior of the inference problem at the four chosen designs to
validate the experiment design methodology, constructed using
"the overkill" - PC expansions with po = 12, nquad = 25, 000.

is randomly generated, and that only a finite number (one in this case) is available.

6.4 Computational Savings

The original Cantera model has a cost of about 0.2 second per evaluation on a 3GHz

CPU, whereas the po = 12, nquad = 25, 000 PC expansions are about 600 times faster,

while the po = 4, nquad = 1, 000 PC expansions are about 6000 times faster. However,
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Figure 6-6: Posterior of the inference problem at the four chosen designs to
validate the experiment design methodology, constructed using
the original Cantera model.

the PC expansions require an up-front investment for construction. This cost can

be reduced by using a lower order polynomial and fewer quadrature points, but the

tradeoff is accuracy. PC expansions are thus worth-while to invest given a sufficiently

large number of required samples. For example, the break-even point for the po = 12,

nquad = 25, 000 PC expansions is 25,038 forward evaluations. In this study, about 100

million samples are used to perform the final experimental design computations, which

translate to a saving of almost 8 months if a single CPU were used. An illustration is
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shown in Figure 6-7; the tremendous savings are evident.

2x 101
-Original Model -Original Model
.- OPC pg=12, n u -d 25000 _ PC p = 2 nquad=2 5

. _ PC p,=, nquad ' - PCp0=4 n d=1000
I 1.5 6-- P q 4n -1000a

0. 

1 Month

L ---------------- -------------

1 _ _Week___2 _4_ 6_ 8_ 10

0 2 4 6 8 10

xx 10

Number of Function Evaluations X 107 Number of Function Evaluations X 107

(a) Full view (b) Zoomed in

Figure 6-7: Approximate computational time required for the optimal exper-

imental design problem. Figure (b) is the zoomed-in (note the

different scale on the y axis) view.

115

- ------- --





Chapter 7

Conclusions and Future Work

7.1 Summary

Motivated by the need of better understanding of alternative fuels, parameter infer-

ence needs to be performed in order to reduce the uncertainty in chemical kinetic

parameters, which in turn improves the reliability of numerical models. In order to

do this, experiments must be done to obtain data. Moreover, experiments can be

designed to optimize the usefulness of their data, and this thesis has developed the

framework and tools necessary to perform this numerically.

Figure 7-1 provides a simple visual summary of the important aspects in this

thesis. Initially, an expensive model is used to design an optimal experiment such

that the resulting data are most informative for inferring uncertain parameters of

interest. Unfortunately, the computations become infeasible due to the large number

of samples required, and a cheaper surrogate model using polynomial chaos expansions

is constructed. The expansions are then substituted into the experimental design

framework to compute the optimal design. Data can then be obtained from performing

that experiment, and used to infer the parameter values. Similarly, when solving the

inference problems, the PC expansions can be used to replace the expensive forward

model and further accelerate the process.
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Full

Experimental Design_- Inference

Figure 7-1: Visual summary of important aspects in this thesis.

7.2 Conclusions

This thesis demonstrates that optimal experimental design for nonlinear models may

be performed quickly with the help of computationally cheaper PC expansions. The

framework developed is very general, and can be applied to many different models.

The combustion model considered, however, is especially difficult due to its high non-

linearity, and involves model observables that vary over many orders of magnitude.

According to author's knowledge, this is the first work with the application of sta-

tistical experimental design to a detailed chemical kinetic system, and the use of PC

expansions to detailed chemistry and experimental design.

7.3 Future Work

Stochastic optimization discussed in Section 4.2.3 has yet to be implemented in this

framework, and its presence is necessary in order for optimal experimental design to
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be practical for more than, say, three uncertain parameters. The proposed detection

method of polynomial dimension anisotropy using DASQ, described in Section 5.6, is

also ready for immediate implementation, and it would make both the construction

and evaluation of PC expansions even more efficient. The approximation PC expan-

sions can also be further improved by hp-adaptation, where the parameter space and

polynomial orders are adaptively refined based on some error indicator.

The error (or likelihood) models can be improved to better match reality. For

example, as pointed out near the end of Section 6.3, they should try to capture model

inadequacy in addition to just measurement error. Up until this point, the design

conditions are also assumed to be deterministic, in the sense that if a desired set of

conditions is chosen, then those conditions are achieved exactly. This is often not

realistic due to factors such as experimental setup. Uncertainty in design variables

themselves thus would make the framework even better.

Finally, the optimal experimental design methodology has a natural extension to

sequential experimental design. In particular, tools better suited for sequential data

or dynamically evolving systems, such as sequential Monte Carlo, should be explored

further.
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Appendix A

Recommended Kinetic Parameter

Values

Reaction No.
R1
R2
R3
R4
R5
R6
R7
R8
R9

RIO
R11
R12
R13
R14
R15
R16
R17
R18
R19

Elementary Reaction
H+ 0 2
0 + H2

H2 + OH
OH + OH

H2 + -M
0 + O + M
01+H+-l

H + OH + M
H + 0 2 + M

HO2 + H
H02 + H
HO2 + 0

HO2 + OH
HO2 + HO2

H20 2 + M
H2 0 2 + H
H2 0 2 + H
H202 + O

H2 0 2 + OH

O+0OH
H+OH
H20+1H
O + H2 0

H + H + Al
02 + M
OH+M
H20+M
H02 + MI
H2+02

OH + OH

02+ OH
H20+0 2

H20 2 +02
OH+OH+AM

H20+OH
HO2 + H2

OH+ HO2
H02+ H2 0

Table A. 1: 19-reaction hydrogen-oxygen mechanism. Reactions involving M are three-
body interactions, where A is a wild-card with different efficiencies corresponding to
different species. The recommended values of the kinetic parameters are shown in the
last three columns [106], and their units are those described in Chapter 2.

1.915 x 101
5.080 x 101
2.160 x 105
1.230 x 101
4.577 x 1016
6.165 x 109

4.714 x 1012

2.240 x 1016
6.170 x 1013
6.630 x 1010
1.690 x 10"
1.810 x 1010
1.450 x 1013
3.020 x 109
1.202 x 1014

1.000 x 1010
4.820 x 1010
9.550 x 103
7.000 x 109

0.00
2.67
1.51
2.62

-1.40
-0.50
-1.00
-2.00
-1.42
0.00
0.00
0.00

-1.00
0.00
0.00
0.00
0.00
2.00
0.00

6.878 x 107
2.632 x 107
1.435X 107

-7.866 x 106
4.368 x 108
0.000 X100
0.000 x 100
0.OOO x 100
0.000 x 100
8.912x 106
3.657 x 106

-1.674x 106
0.000 X100

5.816 x 106
1.904 x 108

1.502x 107

3.326 x 107

1.661 x 107

5.983x 106
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Appendix B

Cantera Input File

The following is the Cantera (version 1.7.0) input file for the 19-reaction H2 0 2 mech-

anism. Note that the units for this file use the em-niol-s-cal-K system, instead of the

m -kmnol-s-J-K system used in this thesis.

units(length="cm", time="s", quantity="mol", actenergy="cal/mol")

ideal-gas(name = "h2mech",
elements = "H 0 N",

species = """H2 02 0 OH H20 H H02 H202 N2""",
reactions = "all"

)

# Species data

species(name ="H2",

atoms = " H:2 ",

thermo = (
NASA( [ 200.00, 1000.001,

-1.947815100E-05,

-9.179351730E+02,

NASA( [ 1000.00, 6000.00],

-1.464023350E-07,

-8.130655970E+02,

[ 2.344331120E+00, 7.980520750E-03,

2.015720940E-08, -7.376117610E-12,

6.830102380E-011 ),

[ 2.932865790E+00, 8.266079670E-04,
1.541003590E-11, -6.888044320E-16,

-1.024328870E+00] )
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# note = "TPIS78"

)

species(name = "02",
atoms = " 0:2 ",

thermo = (
NASA( [ 200.00, 1000.00], [ 3.782456360E+00, -2.996734150E-03,

9.847302000E-06, -9.681295080E-09, 3.243728360E-12,
-1.063943560E+03, 3.657675730E+00] ),

NASA( [ 1000.00, 6000.001, [ 3.660960830E+00, 6.563655230E-04,
-1.411494850E-07, 2.057976580E-11, -1.299132480E-15,
-1.215977250E+03, 3.415361840E+00] )

)
# note = "TPIS89"

)

species(name = "0",
atoms = " 0:1 ",

thermo = (
NASA( [ 200.00, 1000.00], [ 3.168267100E+00, -3.279318840E-03,

6.643063960E-06, -6.128066240E-09, 2.112659710E-12,
2.912225920E+04, 2.051933460E+00] ),

NASA( [ 1000.00, 6000.00], [ 2.543636970E+00, -2.731624860E-05,
-4.190295200E-09, 4.954818450E-12, -4.795536940E-16,
2.922601200E+04, 4.922294570E+00] )

)
# note = "L 1/90"

)

species(name = "OH",

atoms = " 0:1 H:1 ",

thermo = (
NASA( [ 200.00, 1000.001, [ 3.992015430E+00, -2.401317520E-03,

4.617938410E-06, -3.881133330E-09, 1.364114700E-12,
3.615080560E+03, -1.039254580E-01] ),

NASA( [ 1000.00, 6000.00], [ 2.838646070E+00, 1.107255860E-03,
-2.939149780E-07, 4.205242470E-11, -2.421690920E-15,

3.943958520E+03, 5.844526620E+00] )
)

#* note = "TPIS78"

)

species(name = "H20",
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atoms =

thermo =

NASA(

NASA(

H:2 0:1 ",

(
[ 200.00, 1000.00], [ 4.198640560E+00, -2.036434100E-03,

6.520402110E-06, -5.487970620E-09, 1.771978170E-12,

-3.029372670E+04, -8.490322080E-011 ),
[ 1000.00, 6000.00], [ 2.677037870E+00, 2.973183290E-03,

-7.737696900E-07, 9.443366890E-11, -4.269009590E-15,

-2.988589380E+04, 6.882555710E+00] )

)
# note = "L 8/89"

)

species(name = "H",

atoms = " H:1 ",

thermo = (
NASA( [ 200.00, 1000.00], [ 2.500000000E+00, 0.OOOOOOOOOE+00,

0.OOOOOOOOOE+00, 0.OOOOOOOOOE+00, 0.OOOOOOOOOE+00,

2.547365990E+04, -4.466828530E-01] ),
NASA( [ 1000.00, 6000.00], [ 2.500002860E+00, -5.653342140E-09,

3.632517230E-12, -9.199497200E-16, 7.952607460E-20,
2.547365890E+04, -4.466984940E-01] )

)
# note = "L 5/93"

)

species(name ="HO2",

atoms = " H:1 0:2 ",

thermo = (
NASA( [ 200.00, 1000.00], [ 4.301798010E+00, -4.749120510E-03,

2.115828910E-05, -2.427638940E-08, 9.292251240E-12,

2.948080400E+02, 3.716662450E+00] ),
NASA( [ 1000.00, 6000.00], [ 4.172287280E+00, 1.881176470E-03,

-3.462774080E-07, 1.946578530E-11, 1.762542940E-16,

6.181029640E+01, 2.957677460E+00] )
)

# note = "L 5/89"

)

species(name = "H202",

atoms = " H:2 0:2 ",

thermo = (
NASA( [ 200.00, 1000.00], [ 4.276112690E+00, -5.428224170E-04,

1.673357010E-05, -2.157708130E-08, 8.624543630E-12,
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-1.775429890E+04,

NASA( [ 1000.00, 6000.001,
-1.294794790E-06,

-1.805481210E+04,

)
# note = "L 2/93"

)

species(name ="N2",
atoms = " N:2

thermo = (
NASA( [ 200.00, 1000.00],

-5.029994370E-07,

-1.046976280E+03,
NASA( [ 1000.00, 6000.00],

-4.926316910E-07,

-9.239486450E+02,

3.435050740E+00] ),
[ 4.573335370E+00, 4.049840700E-03,
1.972817100E-10, -1.134028460E-14,
7.042784880E-01] )

[ 3.531005280E+00, -1.236609870E-04,
2.435306120E-09, -1.408812350E-12,

2.967474680E+00] ),
[ 2.952576260E+00, 1.396900570E-03,
7.860103670E-11, -4.607553210E-15,

5.871892520E+00] )

# note = "TPIS78"
)

# Reaction data

# Reaction 1

reaction( "H + 02 <=> 0 + OH", [1.91500E+14, 0, 16440])

# Reaction 2

reaction( "0 + H2 <=> H + OH", [5.08000E+04, 2.67, 6290])

# Reaction 3

reaction( "H2 + OH <=> H20 + H", [2.16000E+08, 1.51, 3430])

# Reaction 4

reaction( "OH + OH <=> 0 + H20", [1.23000E+04, 2.62, -18801)

# Reaction 5

threebody-reaction( "H2 + M <=> H + H + M",

efficiencies = " H2:2.5 H20:12 ")

[4.57700E+19, -1.4, 104400],

# Reaction 6

threebody-reaction( "0 + 0 + M <=> 02 + M", [6.16500E+15, -0.5, 0],
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efficiencies = " H2:2.5 H20:12 ")

# Reaction 7

threebody-reaction( "0 + H + M <=> OH + M", [4.71400E+18, -1, 0],

efficiencies = " H2:2.5 H20:12 ")

# Reaction 8

threebody-reaction( "H + OH + M <=> H20 + M", [2.24000E+22, -2, 0],

efficiencies = " H2:2.5 H20:6.3 ")

# Reaction 9

threebodyreaction( "H + 02 + M <=> H02 + M", [6.17000E+19, -1.42, 0],

efficiencies = " H2:2.5 H20:12 ")

# Reaction 10

reaction( "H02 + H <=> H2 + 02", [6.63000E+13, 0, 21301)

# Reaction 11

reaction( "H02 + H <=> OH + OH", [1.69000E+14, 0, 874])

# Reaction 12

reaction( "H02 + 0 <=> 02 + OH", [1.81000E+13, 0, -400])

# Reaction 13

reaction( "H02 + OH <=> H20 + 02", [1.45000E+16, -1, 0])

# Reaction 14

reaction( "H02 + H02 <=> H202 + 02", [3.02000E+12, 0, 13901)

# Reaction 15

threebody-reaction( "H202 + M <=> OH + OH + M",

[1.20200E+17, 0, 45500],
efficiencies = " H2:2.5 H20:12 ")

# Reaction 16

reaction( "1202 + H <=> H20 + OH",

# Reaction 17

reaction( "H202 + H <=> H02 + H2",

# Reaction 18

reaction( "H202 + 0 <=> OH + H02",

[1.OOOOOE+13, 0, 3590])

[4.82000E+13, 0, 7950])

[9.55000E+06, 2, 3970])
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# Reaction 19

reaction( "1202 + OH <=> H02 + H20", [7.OOOOOE+12, 0, 14301)
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