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Abstract —There has been a growing interest in exploiting contextual information in addition to local features to detect and
localize multiple object categories in an image. A context model can rule out some unlikely combinations or locations of objects
and guide detectors to produce a semantically coherent interpretation of a scene. However, the performance benefit of context
models has been limited because most of the previous methods were tested on datasets with only a few object categories, in
which most images contain one or two object categories. In this paper, we introduce a new dataset with images that contain
many instances of different object categories, and propose an efficient model that captures the contextual information among
more than a hundred object categories using a tree structure. Our model incorporates global image features, dependencies
between object categories, and outputs of local detectors into one probabilistic framework. We demonstrate that our context
model improves object recognition performance and provides a coherent interpretation of a scene, which enables a reliable
image querying system by multiple object categories. In addition, our model can be applied to scene understanding tasks that
local detectors alone cannot solve, such as detecting objects out of context or querying for the most typical and the least typical

scenes in a dataset.

Index Terms —Object recognition, scene analysis, Markov random fields, structural models, image databases

1 INTRODUCTION

In this work, we use a probabilistic model to cap-
ture contextual information of a scene and apply it
to object recognition and scene understanding prob-
lems. Standard single-object detectors [4], [7] focus
on locally identifying a particular object category. In
order to detect multiple object categories in an image,
we need to run a separate detector for each object
category at every spatial location and scale. Since each
detector works independently from others, the out-
come of these detectors may be semantically incorrect.
In order to improve the accuracy of object recognition,
we can exploit contextual information such as global
features of an image (e.g., it is a street scene) and
dependencies among object categories (e.g., a road
and cars co-occur often) in addition to local features.
An example is illustrated in Fig. 1b in which detector
outputs for 107 object categories are shown. With so
many categories, many false alarms appear on the
image, providing an incoherent scene interpretation.
The six most confident detections for the detector
outputs, shown in Fig. 1c, are a mixture of indoor
and outdoor objects, while the outcome of our context
model, shown in Fig. 1d, puts a lower probability for
indoor objects like a desk and a floor.

Even if we have perfect local detectors that correctly
identify all object instances in an image, some tasks
in scene understanding require an explicit context
model, and cannot be solved with local detectors
alone. One example is detecting unexpected objects
that are out of their normal context, which requires

modeling expected scene configurations. Fig. 1d-e
show an image in which an object is out of context.
These scenes attract a human’s attention since they
don’t occur often in daily settings. Understanding
how objects relate to each other is important to answer
queries such as find some funny pictures or which objects
most typically co-occur with a car?.

Object dependencies in a typical scene can be repre-
sented parsimoniously in a hierarchy. For example, it
is important to model that outdoor objects (e.g., sky,
mountain) and indoor objects (e.g., desk, bed) typi-
cally do not co-occur in a scene. However, rather than
encoding this negative relationship for all possible
pairs of outdoor and indoor objects, it is more efficient
to use a tree model in which all outdoor objects are in
one subtree, all indoor objects are in another subtree,
and the two trees are connected by an edge with a
strong negative weight. Similarly, in order to capture
the contextual information that kitchen-related objects
such as sink, refrigerator, and microwave co-occur
often, all kitchen-related objects can be placed in one
subtree with strong positive edge weights.

Motivated by such inherent structure among object
categories, we model object co-occurrences and spatial
relationships using a tree-structured graphical model.
We show that even though we do not explicitly im-
pose a hierarchical structure in our learning proce-
dure, a tree structure learned from a set of fully la-
beled images organizes objects in a natural hierarchy.
Enforcing tree-structured dependencies among objects
allows us to learn our model for more than a hundred
object categories and apply it to images efficiently.



We combine this prior model of object relationships
with local detector outputs and global image features
to detect and localize all instances of multiple object
categories in an image.

An important application of object recognition is
image interpretation such as querying for images
that contain certain object categories. We demonstrate
that our context model performs significantly better
in querying images with multiple object categories
than using only local detectors. We also present the
performance of our context model on detecting ob-
jects/images out of context.

Contextual information is most beneficial when
many different object categories are present simul-
taneously in an image. Current studies that incor-
porate contextual information for object recognition
have been evaluated on the standard datasets such as
PASCAL 07 [6]. However, those datasets were origi-
nally designed to evaluate single-object detectors, and
most of the images have no co-occurring instances.
We introduce a new dataset SUN 09, with more
than 200 object categories in a wide range of scene
categories. Each image contains instances of multiple
object categories with a wide range of difficulties
due to variations in shape, sizes, and frequencies. As
shown in Sections 2 and 6, SUN 09 contains richer
contextual information and is more suitable to train
and evaluate context models than PASCAL 07.

1.1 Related Work

A simple form of contextual information is a co-
occurrence frequency of a pair of objects. Rabinovich
et al. [21] use local detectors to first assign an object
label to each image segment, and then adjusts these
labels using a conditional random field (CRF). This
approach is extended in [9] and [10] to encode spatial
relationships between a pair of objects. In [9], spatial
relationships are quantized to four prototypical rela-
tionships - above, below, inside and around, whereas
in [10], a non-parametric map of spatial priors are
learned for each pair of objects. Torralba et al. [25]
combine boosting and CRFs to first detect easy objects
(e.g., a monitor) and pass the contextual information
to detect other more difficult objects (e.g., a keyboard).
Tu [27] uses both image patches and their probability
maps estimated from classifiers to learn a contextual
model, and iteratively refines the classification results
by propagating the contextual information. Desai et
al. [5] combine individual classifiers by using spatial
interactions between object detections in a discrimi-
native manner.

Contextual information may be obtained from
coarser, global features as well. Torralba [26] demon-
strates that a global image feature called a “gist”
can predict the presence or absence of objects and
their locations without running an object detector.
This is extended in [18] to combine patch-based local

(e) Input image

(f) Most unexpected object

Fig. 1. Detecting objects in and out of context. a) Input
image. b) Output of 107 class detectors. ¢) Six most
confident detections using the detector scores. d) Six
most confident detections using our context model. e)
Input image. f) Most unexpected object in the image.

features and the gist feature. Heitz and Koller [12]
combine a sliding window method and unsupervised
image region clustering to leverage “stuff” such as the
sea, the sky, or a road to improve object detection.
A cascaded classification model in [13] links scene
categorization, multi-class image segmentation, object
detection, and 3D reconstruction.

Hierarchical models can be used to incorporate both
local and global image features. He et al. [11] use
multiscale conditional random fields to combine local
classifiers with regional and global features. Sudderth
et al. [24] model the hierarchy of scenes, objects and
parts using hierarchical Dirichlet processes, which en-
courage scenes to share objects, objects to share parts,
and parts to share features. Parikh and Chen [19]
learn a hierarchy of objects in an unsupervised man-
ner, under the assumption that each object appears
exactly once in all images. Hierarchical models are
also common within grammar models for scenes [16],
[20], which have been shown to be very flexible to
represent complex relationships. Bayesian hierarchical



models also provide a powerful mechanism to build
generative scene models [17].

In this work, we use a tree-structure graphical
model to capture dependencies among object cate-
gories. A fully-connected model as in [21] is computa-
tionally expensive for modeling relationships among
many object categories and may overfit with limited
number of samples. In the scene-object hierarchical
model [18], objects are assumed to be independent
conditioned on the scene type, which may not capture
direct dependencies among objects. A tree-structured
model provides a richer representation of object de-
pendencies while maintaining a number of connec-
tions (i.e., parameters) that grows linearly with the
number of object categories.

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce the new SUN 09 dataset in more
detail and compare its statistics with PASCAL 07. In
Section 3, we describe our context model that incorpo-
rates global image features, object dependencies, and
local detector outputs in one probabilistic framework.
We use tree-structured dependencies among objects,
a framework that admits efficient learning and infer-
ence algorithms, described in Sections 4 and 5. We
evaluate object recognition and scene understanding
performances of our context model in Section 6, and
conclude the paper in Section 7.

2 THE SUN 09 DATASET

We introduce a new dataset (SUN 09) suitable for
leveraging contextual information. The dataset con-
tains 12,000 annotated images covering a large num-
ber of scene categories (indoor and outdoors) with
more than 200 object categories and 152,000 anno-
tated object instances. The images were collected from
multiple sources (Google, Flickr, Altavista, LabelMe),
and any close-up of an object or images with white
backgrounds were removed to keep only images cor-
responding to scenes in the collection. The annotation
procedure was carried out by a single annotator over
one year using LabelMe [23]. The labeled images were
carefully verified for consistency and synonymous
labels were consolidated. The resulting annotations
have a higher quality than that by LabelMe or Ama-
zon Mechanical Turk. Therefore, this dataset can be
used both for training and performance evaluation.
Fig. 2 shows statistics of out dataset and compares
them with PASCAL 07 [6]. The PASCAL dataset pro-
vides an excellent framework for evaluating object
detection algorithms. However, this dataset, as shown
in Fig. 2, is not suitable to test context-based object
recognition algorithms. The PASCAL dataset contains
20 object classes, but more than 50% of the images
contain only a single object class. MSRC [28] pro-
vides more co-occurring objects but it only contains
23 object classes. The cascaded classification models
(DS1) dataset [13] is designed for evaluating scene
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Fig. 2. Comparison of PASCAL 07 and SUN 09. a)
Histogram of number of object categories present in
each image. b) Distribution of training and test samples
per each object category. c) 4 examples of PASCAL im-
ages. A typical PASCAL image contains two instances
of a single object category, and objects occupy 20%
of the image. d) 4 examples of SUN images. A typical
SUN image has 7 object categories (with around 14
total annotated object instances) and occupy a wide
range of sizes (average 5%).

understanding methods, but it has only 14 object
classes in outdoor scenes.

Contextual information is most useful when many
object categories are present simultaneously in an im-
age, with some object instances that are easy to detect
(i.e. large objects) and some instances that are hard
to detect (i.e. small objects). The average PASCAL
bounding box occupies 20% of the image. On the
other hand, in our dataset, the average object size is
5% of the image size, and a typical image contains
7 different object categories. Fig. 2c-d show typical
images from each dataset.

3 TREE-BASED CONTEXT MODEL

In Section 3.1, we describe a prior model that cap-
tures co-occurrence statistics and spatial relationships
among objects, and in Section 3.2, we explain how
global image features and local detector outputs can
be integrated as measurements.

3.1 Prior Model

Each object category in our prior model is associated
with a binary variable, representing whether the ob-
ject is present or not in the image, and a Gaussian
variable, representing its location.



3.1.1 Co-occurrences Prior

A simple yet effective contextual information is the
co-occurrence of object pairs. We encode the co-
occurrence statistics using a binary tree model. Each
node b; in a tree represents whether the corresponding
object 7 is present or not in an image. The joint proba-
bility of all binary variables are factored according to
the tree structure:

p(b) = p(broot) Hp(bi|bpa(i)) 1)

where pa(i) is the parent of node i. Throughout the
paper, we use a subscript i to denote a variable (or
a vector) corresponding to object ¢, and an alphabet
without a subscript denotes a collection of all corre-
sponding variables: b = {b;}. A parent-child pair may
have either a positive relationship (e.g., a floor and a
wall co-occur often) or a negative relationship (e.g., a
floor seldom appears with the sky).

3.1.2 Spatial Prior

Spatial location representation  Objects often ap-
pear at specific relative positions to one another. For
example, a computer screen typically appears above
a keyboard and a mouse. We capture such spatial
relationships by adding location variables to the tree
model. Instead of using the segmentation of an ob-
ject, we use a bounding box, which is the minimum
enclosing box for all the points in the segmentation, to
represent the location of an object instance. Let ¢, ¢,
be the horizontal and vertical coordinates of the center
of the bounding box, and ¢,, ¢, be the width and
height of the box. We assume that the image height is
normalized to one, and that ¢, = 0, ¢, = 0 is the center
of the image. The expected distance between centers
of objects depends on the size of the objects - if a
keyboard and a mouse are small, the distance between
the centers should be small as well. Constellation
model [8] achieves scale invariance by transforming
the position information to a scale invariant space.
Hoiem et al. [15] relate scale changes to an explicit 3D
information. We take the approach in [15] and apply
the following coordinate transformations to represent
object locations in the 3D-world coordinates:

4y Z, f

L, = Kth, L, = eth, L.= éhHZ 2
where f is the distance from observer to the image
plane, which we set to 1, and L, is the distance
between the observer and the object. H; is the physical
height of an object i, which could be inferred from
the annotated data using the algorithm in [14], but
instead, we manually encode real object sizes (e.g.,
person = 1.7m, car = 1.5m). We assume that all objects
have fixed aspect ratios.

Prior on spatial locations  The horizontal relative
locations of objects vary considerably from one image
to another due to different viewpoints, and it has been
shown that horizontal locations generally have weak
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Fig. 3. Graphical model representations for parts of
our context model. All nodes are observed during
training, and only the shaded nodes are observed
during testing. (Left) Prior model relating object pres-
ence variables b;'s and location variables L;’s. (Right)
Measurement model for object i. The gist descriptor
g represents global image features, and local detector
provides candidate window locations W, and scores
s;k- The binary variable ¢;;, indicates whether the win-
dow is a correct detection or not.

contextual information [26]. Thus, we ignore L, and
only consider L, and L. to capture vertical location
and scale relationships. We assume that L,’s and L.’s
are independent, i.e., the vertical location of an object
is independent from its distances from the image
plane. While we model L,’s as jointly Gaussian, we
model L,’s using log-normal distributions since they
are always positive and are more heavily distributed
around small values. We redefine a location variable
for object category i as L; = (Ly,log L,) and assume
that L;’s are jointly Gaussian. If there are multiple in-
stances of object category ¢ in an image, L; represents
the median location of all instances.

We assume that when conditioned on the presence
variable b, the dependency structure of the L;’s has
the same tree structure as the binary tree:

p(L|b) = p(Lr00t|br00t) Hp(L7.|Lpa(L)7 b'L7 bp(],(l))? (3)

where each edge potential p(L;|Lyq), bi; bpagiy) en-
codes the distribution of a child location conditioned
on its parent location and the presence/absence of
both child and parent objects.

Fig. 3 shows the graphical model relating the pres-
ence variables b;’s and the location variables L;’s.
Combining (1) and (3), the joint distribution of all
binary and Gaussian variables can be represented as
follows:

p(b7 L) :p(b)p(le) = p(broot)p(Lroot) (4)
X Hp(bi |bpaiy )P(Lil Lpagiys bis bpa(i))-

3.2 Measurement Model
3.2.1 Incorporating Global Image Features

The gist descriptor [26] is a low-dimensional repre-
sentation of an image, capturing coarse texture and
spatial layout of a scene. We introduce the gist as a
measurement for each presence variable b; to incorpo-
rate global image features into our model. This allows



the context model to implicitly infer a scene category,
which is particularly helpful in predicting whether
indoor objects or outdoor objects should be present
in the image.

3.2.2 Integrating Local Detector Outputs

In order to detect and localize object instances in
an image, we first apply off-the-shelf single-object
detectors and obtain a set of candidate windows for
each object category. Let ¢ denote an object category
and £ index candidate windows generated by baseline
detectors. Each detector output provides a score s;j
and a bounding box, to which we apply the coordi-
nate transformation in (2) to get the location variable
Wi = (Ly,log L,). We assign a binary variable c;j
to each window to represent whether it is a correct
detection (¢;z = 1) or a false positive (¢;; = 0).
Fig. 3 shows the measurement model for object 4
to integrate gist and baseline detector outputs into
our prior model, where we used plate notations to
represent K; different candidate windows.

If a candidate window is a correct detection of
object i (c;r, = 1), then its location W;;, is a Gaussian
vector with mean L;, the location of object i, and
if the window is a false positive (¢;; = 0), Wy is
independent from L; and has a uniform distribution.

4 LEARNING
4.1 Learning Object Dependency Structure

We learn the dependency structure among objects
from a set of fully labeled images. The Chow-Liu
algorithm [3] is a simple and efficient way to learn
a tree model that maximizes the likelihood of the
data: the algorithm first computes empirical mutual
information of all pairs of variables using their sample
values. Then, it finds the maximum weight spanning
tree with edge weights equal to the mutual informa-
tion between the variables connected by the edge. We
learn the tree structure using the samples of b;’s in a
set of labeled images. Even with more than 100 objects
and thousands of training images, a tree model can be
learned in a few seconds in MATLAB.

Fig. 6 shows a tree structure learned from the SUN
09 dataset. Note that we do not impose that the
learned tree have a hierarchical structure. However,
by choosing a root node for the learned tree, such
hierarchical structure is recovered. For this example,
we have selected sky to be the root of the tree, and
wee see that even though the Chow-Liu algorithm
is simply selecting strong pairwise dependencies, our
tree organizes objects in a natural hierarchy. For exam-
ple, a subtree rooted at building  has many objects
that appear in street scenes, and the subtree rooted
at sink contains objects that commonly appear in
a kitchen. Thus, many non-leaf nodes act as if they
are representing coarser scale meta-objects or scene
categories. In other words, the learned tree structure

captures the inherent hierarchy among objects and
scenes, resulting in significant improvements in object
recognition and scene understanding tasks as demon-
strated in Section 6.

4.2 Learning Model Parameters

We use the ground-truth labels of training images to
learn parameters for the prior model. p(b;|by,(;)) can
be learned simply by counting the co-occurrences of
parent-child object pairs. For each parent-child object
pair, we use three different Gaussian distributions
for p(Li|Lpai), bi, bpa(s)): When both child and parent
objects are present (b; = 1,b,,(;) = 1), the location
of the child object L; depends on its parent location
Lya(i)- When the object is present but its parent object
is not (b; = 1,b,4(;) = 0), then L; is independent of
Lyai)- When an object is not present (b; = 0), we
assume that L; is independent from all other object
locations and that its mean is equal to the average
location object i across all images.

In the measurement model, p(g|b;) can be trained
using the gist descriptors computed from each train-
ing image. Since the gist is a vector, to avoid overfit-
ting, we use logistic regression to fit p(b;|g) for each
object category [18], from which we estimate p(g|b;)
indirectly using p(g|b;) = p(bi|g)p(g)/p(b;).

In order to learn the rest of the parameters in
the measurement model, we run local detectors for
each object category in the training images. The local
detector scores are sorted so that s;;, is the k-th highest
score for category i, and p(cix|six) is trained using
logistic regression, from which we can compute the
likelihoods p(siklcik) = p(ciklsik)p(six)/p(cik). The
probability of correct detection p(c;x|b;) is trained
using the ground-truth labels and correct detections
in the training set.

5 USING THE MODEL: ALTERNATING IN-

FERENCE ON TREES

Given the gist g, candidate window locations W =
{Wi} and their scores s = {s;}, we infer the presence
of objects b = {b;}, correct detections ¢ = {¢;;}, and
the expected locations of all objects L = {L;}, by
solving the following optimization problem:

be,L = argmax p(b, ¢, L|g, W, s) (5)
b,c,L

Exact inference is complicated since there are both
binary and Gaussian variables in the model, so we
leverage the tree structures embedded in the model
for efficient inference. Specifically, conditioned on b
and ¢, the location variables L forms a Gaussian tree.
On the other hand, conditioned on L, the presence
variables b and the correct detection variables ¢ to-
gether form a binary tree. For each of these trees, there
exist efficient inference algorithms [1]. Therefore, we
infer b,c and L in an alternating manner.
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Fig. 4. a) Object dependency structure learned from
PASCAL 07. Red edges correspond to negative cor-
relations between categories. The thickness of each
edge represents the strength of the link. b) 3D sam-
ples generated from the context model. The ellipsoids
represents one standard deviation from the means.

In our first iteration, we ignore the location infor-
mation W, and sample! b and ¢ conditioned only on
the gist g and the candidate windows scores s: b, é ~
p(b, c|s, g). Conditioned on these samples, we infer the
expected locations of objects L, = argmax, p(L|b, ¢, W)
using belief propagation on the resulting Gaussian
tree. Then conditioned on the estimates of locations L,
we re-sample b and ¢ conditioned also on the window
locations: b,¢é ~ p(b,cls, g, L, W), which is equivalent
to sampling from a binary tree with node and edge
potentials modified by the likelihoods p(L, Wb, ¢). In
this step, we encourage pairs of objects or windows in
likely spatial arrangements to be present in the image.

We iterate between sampling on the binary tree
and inference on the Gaussian tree, and select sam-
ples with the highest likelihood. We use 4 different
starting samples of b;'s each with 3 iterations in our
experiments. Our inference procedure is efficient even
for models with hundreds of objects categories and
thousands of candidate windows. For the SUN 09
dataset, it takes about 0.5 second in MATLAB to
produce estimates from one image.

6 RESULTS
6.1 Recognition Performance on PASCAL 07

Context learned from the training set We train the
context model for PASCAL 07 using 2,501 images in
the training set. Fig. 4a shows the dependency struc-
ture of 20 object categories learned from the training
set, and Fig. 4b shows a few samples generated from
the prior model. Since a majority of training images

1. We can also compute the MAP estimates of these binary vari-
ables efficiently, but starting from the MAP estimates and iterating
between the binary and Gaussian trees typically leads to a local
maximum that is close to the initial MAP estimates.
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Fig. 5. Image annotation results for PASCAL 07 and
SUN 09. a-b) Percentage of images in which the top N
most confident detections are all correct. The numbers
on top of the bars indicate the number of images
that contain at least N ground-truth object instances.
c-d) Percentage of images in which the top N most
confident object presence predictions are all correct.
The numbers on top of the bars indicate the number
of images that contain at least N different ground-truth
object categories.

contain a single object category, the context model
favors to have one or few objects in each image, so
there is limited co-occurrence or spatial contextual
information that can be exploited.

Object recognition performance  Fig. 5a shows
the performance in object localization (i.e., detecting
the correct bounding box). We look at the N most
confident detections in each image and check whether
they are all correct. The numbers on top of the bars
indicate the number of images that contain at least N
ground-truth object instances. We use the discrimina-
tive part-based models described in [7] as the baseline
local detectors. In order to normalize scores across
different categories, we use a logistic regression to
compute the probability of correct detection based on
the detector score. For our tree-based context model,
we compute the probability of correct detection given
gist and detector outputs (i.e. p(c;x = 1|s, g, W)) using
the efficient inference algorithm described in Sec-
tion 5. We also show the performance of the context
rescoring method introduced in [7], which we denote
here as SVM-Context. They train an SVM for each
object category to incorporate contextual information.
For each candidate window, a feature vector consists
of the score and location of the window, and the
maximum scores of all other object categories in the



image. Thus, for M object categories, it requires M
different SVMs with an (M+5)-dimensional feature
vector for each candidate window.

Fig. 5b shows the performances of different meth-
ods in presence predication (i.e., is the object present
in the scene?). We compute the probability of each
object category being present in the image, and check
whether the top N object categories are all correct.
Predicting which objects are present in an image is
crucial in understanding its content (e.g., whether
it is an indoor or outdoor scene) and can be ap-
plied to query images by objects as shown in Section
6.3.1. The numbers on top of the bars indicate the
number of images that contain at least N different
ground-truth object categories. Note that the number
of images drops significantly as N gets larger since
most images in PASCAL contain only one or two
object categories. The most confident detection for
each object category is used for the baseline detector,
and p(b; = 1|s, g, W) is used for the tree-based context
model. For SVM-context, we extended the approach in
[7] by training an SVM for predicting presence of each
object category using the maximum scores of all other
object categories as feature vectors (which performed
much better than simply selecting the most confident
detection using the SVMs trained for localization).

Table 1 provides the average precision-recall (APR)?
for object localization. Note that the best achievable
performance of any context model is limited by the
baseline detectors since context models are only used
to enhance the scores of the bounding boxes pro-
posed by the baseline detectors. We compare the
performance of the tree-based context model with
other state-of-the-art methods that also incorporates
contextual information [5], [7]. All context models
perform better than the baseline detectors, but the
performance differences of these methods are rela-
tively small. As discussed in Section 2, the PASCAL 07
dataset contains very little contextual information and
the performance benefit of incorporating contextual
information is small for most of the object categories.
We show in the next section that when many object
categories with a wide range of difficulties are present
simultaneously in an image, contextual information
is crucial in object recognition, and that our tree-
based context model does improve the performance
significantly in the new dataset SUN 09.

6.2 Recognition Performance on SUN 09

We divide the SUN 09 dataset into the training and the
test set so that each set has the same number of images

2. Precision = 100 x Number of correct detections / Number of
detections estimated as correct; Recall = 100 - Number of correct
detections / Number of ground-truth object instances; Average
precision-recall can be computed by taking the average of precisions
values with varying thresholds (and thus varying recall values).
The APR ranges from 0 to 100, and a higher APR indicates better
performance.

Category |Baseling Gist CcT)r'::xt Ci\r:t“:xt BaselineSContext|B°uml
aeroplane | 28.12|31.30 | 32.05| 30.46 | 27.80 28.80 || 50.88
bicycle 51.52 (50.79 | 50.56 | 51.93 | 5590 56.20 || 58.76
bird 1.93 | 0.75 0.89 5.14 1.40 3.20 || 27.45
boat 13.85 | 15.06 | 14.90 15.02 | 14.60 14.20| 28.14
bottle 23.44 | 2558 | 25.28 | 24.05| 25.70 29.40 || 40.51
bus 38.87 (35.83 | 36.98 | 39.40( 38.10 38.70 47.89
car 47.01 | 46.74 | 46.74 | 46.86| 47.00 48.70 | 65.95
cat 14.73 1 16.72 | 18.93 1717 | 15.10 12.40 | 48.60
chair 16.01 | 17.91 | 18.12 16.90 | 16.30 16.00 || 49.08
cow 18.24 | 18.07 | 18.22 18.60 | 16.70 17.70 | 36.89
diningtable| 21.01 [ 23.18 | 22.93 [ 20.91 | 22.80 24.00 || 30.58
dog 10.73 | 11.26 | 12.43 1160 | 11.10 11.70( 46.22
horse 43.22 (4532 | 47.29  46.51 | 43.80 45.00 | 69.54
motorbike | 40.27 | 40.99 | 41.87 | 42.39| 37.30 39.40 [ 59.69
person 35.46 | 34.77 | 3546 | 36.34 | 3520 35.50 | 58.92
pottedplant| 14.90 | 16.55 | 15.67 16.11 14.00 15.20 | 43.75
sheep 19.37 | 21.77 | 21.81 18.74 | 16.90 16.10( 35.13
sofa 20.56 [ 19.43 | 2040 23.40| 19.30 20.10 | 42.67
train 37.74 |1 3743 | 3880 | 4153 31.90 34.20 61.35
tvmonitor | 37.00 | 34.27 | 35.75 37.85| 37.30 35.40 || 54.87
AVERAGE| 26.70 |27.19| 27.75| 28.05| 26.41 27.10| 47.84
TABLE 1

Average precision-recall for localization. Baseline)
baseline detector without contextual information [7];
Gist) baseline and gist [22]; TreeContext) our context
model; SVM-Context [7]) Context rescoring method
from [7]; [5]) results from [5] (the baseline in [5] is the
same as our baseline, but performances slightly
differ); Bound) Maximal APR that can be achieved by
any context model given the baseline detectors.

per scene category. The training set has 4,367 images
and the test set has 4,317 images. In order to have
enough training samples for the baseline detectors [7],
we annotated an additional set of 26,000 images using
Amazon Mechanical Turk. This set consists of images
with a single annotated object, and it was used only
for training the baseline detectors and not for learning
the context model.

The SUN 09 dataset contains over 200 object cat-
egories, but the baseline detectors for some objects
have poor quality even with additional set of anno-
tations. Since the context model takes baseline de-
tector outputs as measurements and computes the
probability of correct detection for each candidate
window, it cannot detect an object instance if there
is no candidate window produced by the baseline
detector. Thus, we remove object categories for which
the baseline detector failed to produce at least 4
correct candidate windows in the entire training set,
and use the remaining 107 object categories. These
categories span from regions (e.g., road, sky, building)
to well defined objects (e.g., car, sofa, refrigerator,
sink, bowl, bed) and highly deformable objects (e.g.,
river, towel, curtain). The distribution of objects in the
test set follows a power law (the number of instances
for object k is roughly 1/k) as shown in Fig. 2.

Context learned from the training set  Fig. 6
shows the dependency structure relating the 107 ob-
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Fig. 6. Object dependency structure learned from SUN 09. Red edges denote negative correlation between
categories. The thickness of each edge represents the strength of the link.

All Images

Grass

Desk

Sea

Most common scenes

Fig. 7. The most typical scenes and the least typical scenes in the SUN 09 test set estimated using the context
model. The first row shows scenes selected from all images, and the remaining rows show scenes that contain
grass, desk, and sea, respectively. Only the outlined objects are used to evaluate the likelihood score (e.g., an
iceberg is ignored since it is not among the 107 object categories recognized by the model).

jects. A notable difference from the tree learned from learned tree structure, we can see that some objects
PASCAL 07 (Fig. 4) is that the proportion of positive take the role of dividing the tree according to the
correlations is larger. In the tree learned from PASCAL  scene category as described in Section 4. For instance,
07, 10 out of 19 edges, and 4 out of the top 10 strongest floor separates indoor and outdoor objects.

edges have negative relationships. In contrast, 25 out

of 106 edges and 7 out of 53 (= 13%) strongest edges Given an image and ground-truth object labels, we
in the SUN 09 tree model have negative relationships. ~can quantify how the labels fit well into our context
In PASCAL 07, most objects are related by repulsion model by computing the log-likelihood of the given
because most images contain only few categories. labels and their bounding box locations. Fig. 7 shows
In SUN 09, there are many more opportunities to images in the test set with the highest log-likelihood

learn positive correlations between objects. From the (most typical scenes) and the lowest log-likelihood
(most unusual scenes). Only objects that are outlined
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Fig. 9. Examples of scenes showing the six most confident detections with and without context. The figure shows

successful examples of using context as well as failures.

are included in the 107 object categories, and all
other objects are ignored. The three most common
scenes among the entire test set consists only of floors
and walls. The least common scenes have unlikely
combinations of labels (e.g., the first image has a label
"platform”, which appears in train platform scenes
in many of the training images, the second image
has a floor, the sea, the sky, and a table all in the
same scene, and the last image shows a scene inside
a closet). Fig. 7 also shows the most and least common

scenes that include grass, desk, and sea, respectively.
Images with the high likelihood have common object
configurations and locations, while images with the
low likelihood score have uncommon objects (head-
stones) or unlikely combinations (sea and table; car
and floor).

Object recognition performance Fig. 5(c-d) show
localization and presence prediction results on SUN
09. We see bigger improvements from incorporat-
ing contextual information for both localization and
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presence prediction. Note that the tree-based context
model improves the presence prediction results signif-
icantly: as shown in Fig. 5d, among the 3,757 images
that contain at least three different object categories,
the three most confident objects are all correct in 38%
of images (and only 15% without context).

Fig. 8 show the improvement in average precision-
recall (APR) for each object category sorted by the
APR improvement over the baseline. Due to the large
number of objects in our database, there are many
objects that benefit in different degrees from con-
text. Six objects with the largest improvement with
TreeContext for object localization are floor (+11.88
over the baseline), refrigerator (+11.58), bed (+8.46),
seats(+7.34), monitor (+6.57), and road (+6.55). In lo-
calization, the performance of TreeContext and SVM-
Context are comparable - the APR averaged over
all object categories is 7.06 for the baseline, 8.34 for
SVM-Context, and 8.37 for TreeContext. In presence
prediction, our tree-based context model (mean APR
25.7) performs better than both the baseline (mean
APR 17.9) and SVM-Context (mean APR 23.8).

Fig. 9 shows example images with object localiza-
tion results. For each image, only the six most confi-
dent detections are shown. Note that the tree-based
context model generally enforces stronger contextual
coherency than SVM-Context, which may result in im-
provement (e.g., removing truck in a kitchen scene)
or may lead to incorrect detections (e.g., hallucinating
car because of a strong detection of road in the first
image).

6.3 Scene Understanding Performance on SUN 09

The SUN 09 dataset contains a wide range of scene
categories and is suitable for evaluating scene under-
standing performances. In this section, we show the
results of applying our context model for querying
images that are most likely to contain certain object
categories, and detecting objects in unusual settings.
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6.3.1 Querying Images with Multiple Object Cate-
gories

A reliable object recognition system enables querying
images using objects (e.g., Search images with a sofa
and a table), rather than relying on captions to guess
the content of an image. Our context model performs
significantly better than the baseline detectors in pre-
dicting whether an object is present or not as shown
in Fig. 5 and Fig. 8. Moreover, since the tree-based
context model use the detector outputs of all objects
as well as the gist descriptor to implicitly infer the
scene, it is more reliable in predicting the presence of
multiple object categories as well.

Fig. 10 shows precision-recall curves for image
query results using different combinations of object
categories. We approximated the joint probability of
all objects in the set simultaneously present in the
image as the product of each object present in the
image,®> and classified a query result as correct only
when the image contains all objects in the query set.
The tree-based context model shows a clear advantage
over the baseline detectors, and in four of the five
query sets, performs better than SVM-Context as well.
Fig. 11 show examples of top queries using different
methods. Note that even when the query result of
TreeContext is incorrect, the content of the image
strongly resembles that of a correct query result. For
example, the sixth and the seventh retrieved images
for {microwave, refrigerator} using TreeContext are
incorrect since they do not contain microwaves, but
they are both kitchen scenes, which are semantically
much closer to the correctly retrieved images than the
results obtained using the baseline detectors or SVM-
Context.

6.3.2 Detecting Objects out of Context

Fig. 12 shows some images with one or more objects
in an unusual setting such as a wrong scale, position,
or scene. We have a collection of 26 such images
with one or more objects that are out of their normal
context. Even if we have perfect local detectors (i.e.,
ground-truth labels), we still need to use contextual
information of a scene to detect images or objects that
are unusual. In this section, we use a variation of
our tree-based context model to detect objects out of
context from each image.

We first consider a simpler problem of classifying
out-of-context objects when the ground-truth object
labels and their segmentations are available. Fig. 13
shows a modified version of our original prior model

3. If the objects in the query set are neighbors in the tree (e.g.,
bookcase and books) we can compute the joint probability without
much additional computation for our context model, but for three
or more objects that are far apart in the tree, computing the joint
probability can be computationally expensive even for a tree model.
For simplicity, we approximate the joint probability as products of
marginal probabilities for both the context model and the baseline
detectors.
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Fig. 10. Precision-recall curves for querying images with a set of object categories.
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Fig. 11. Examples of top 7 images retrieved by the baseline detectors [7], context rescoring method with SVMs
[7], and our tree-based context model. Correctly retrieved images (images in which all the objects in the query
set are present) and shown in blue boxes, and incorrect images are shown in red boxes.



Fig. 12. Six examples of objects out of context (un-
usual pose, scale, co-occurrence, or position). The
highlighted segments show the objects selected by
our context model as the most unexpected object in
each image (using ground-truth labels). In the first four
images, out-of-context objects are correctly identified,
and in the last two images, other objects are selected.

Fig. 13. A modified context model with new binary
variables h;'s to detect objects out of context. If h3 = 0,
then (bs, L3) become independent from (b1, Ly ).

(see Fig. 3) for object dependencies in which we added
a set of binary variables h;’s to indicate whether to
use the object dependency or not for object i. For
example, p(bs, L3|b1, L1,hg = 1) is defined to have
the same probability as in the original context model,
but p(bs, L3|b1,L1,hs = 0) is equal to the marginal
probability p(bs, L3) regardless of the values of b; and
Ly, thus removing the dependencies between objects
1 and 3.

Conditioned on the ground-truth labels (b and L),
the context variables h;’s are independent from each
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other. In addition, from the tree structure, h; only
depends on b;, L;, bya(i), and Ly,,;), where pa(i) is the
parent of . Thus,

p(hz|b7 L) = p(hz|b'u bpa(i)a L;, Lpa(i))
p(bia Li|bpa(i)7 Lpa(i)7 hl)p(hl)

= (6)
Zh; p(b“ Li|bpa(i)7 Lpa(i)a h;)p(h‘;)
and if we assume that p(h;) = 0.5 for all 4,
1
p(h; =0|b, L) = (7)
( | ) 1+ C(bia bpa(i)a L;, Lpa(i))
where

C(b”n bpa(i)a L;, Lpa(i))
_ P(bilbpaiy, hi = 1)p(Li|Lpag; bis bpagiy, hi = 1)
P(bilbpaciy, hi = 0)p(Li| Lpasy, bis bpa(iy, hi = 0)
8)

is the context score of object i. The context score mea-
sures the likelihood of the labels under the context
model relative to an independent model in which all
object categories are independent of each other. We
can classify an object with the lowest context score
(i.e., highest p(h; = 0]b,L)) as the most unexpected
object in the image.

Fig. 14a shows the number of images in the 26-
image collection in which at least one out-of-context
object was included in the N most unexpected objects
estimated by the context score (i.e., N objects with
the lowest context score). In 19 out of 26 images,
an object with the lowest context score is the correct
out-of-context object, which is clearly better than a
random guess (assigning random context scores to
the objects present in the image). The highlighted
segments in Fig. 12 show objects with the lowest
context score, which are correct for the first four
images, and incorrect for the two bottom images. For
the bottom left image, the location of the car is not
normal, but since the bounding boxes of the car and
the road are relatively close to each other, the relative
location is not penalized enough in the context score.
In the bottom right image, the sand and the sea are
out of context, but since quite a few images in the
training set have buildings on the beach or cars next
to the sea, the unusual combination of objects in the
image is not detected by the context model.

Using local detector outputs to detect objects out of
context is a much more challenging task. Objects that
are not in their normal settings generally have dif-
ferent appearances or viewpoints from typical train-
ing examples, making local detectors perform poorly.
Even if a local detector confidently detects an out-of-
context object and the context score of the object is
low, it is not clear whether the object is present but
out of context, or the object is not present and the
local detector is incorrect.

Given the set of measurements in an image (gist
g, local detector scores s, and bounding boxes W),
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we would like to estimate the probability of object i
favoring to be independent from its parent object:

p(hz = 0‘97 W7 S)

- ¥

bibpa(i)

bi,bpa i)
X p(bzv bpa(i)7 Lia Lpa(i) ‘gv Wa S)dLidea(i) .

p(hz =0, b, bpa(i)a L;, Lpa(i) |ga W, S)szdea

p(hz = O‘bi; bpa(i)a L;, Lpa(i))

In order to simplify the integral, we approximate
the joint probability p(bs, bpa (i), Li, Lpa(iy|g, W, s) by as-
suming that ¢ and pa(i) are independent and approxi-
mating the Gaussian distribution p(L;|b; = 1,9, W3, s;)
as a delta function at the mean L;. Then,

1
phi =0lg,W,s) = Y —
bibpai) 1+ C(bu bpa(i)7 L;, Lpa(i))

X p(bl|g7 Wia Siy )p(bpa(i) ‘ga Wpa(z)7 Spa(i)) (9)

where the context score C(b;,bpa(i), Li; Lpa(iy) is de-
fined in (8). In other words, we estimate the label and
the location of each object assuming that all objects
are independent of each other, and then compute the
context score to see whether the resulting configura-
tion fits well with the context model. Note that with
the ground-truth labels, we can treat p(b;|g, Wi, s;,)
and p(bpa(iy|9, Wpa(i)» Spa(i)) as delta functions and the
above equation reduces to (7).

Fig. 14b shows the result of using local detector out-
puts to classify objects out of context in each image.
Since we do not know the actual objects present in the
image, the set of candidates for out-of-context objects
is much larger than using the ground-truth labels, so
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a random guess is incorrect most of the time. In 10
out of 26 images, at least one out-of-context object is
correctly identified when we consider 2 objects with
the lowest weighted context score in (9).

7 DISCUSSION

We develop an efficient framework to exploit con-
textual information in object recognition and scene
understanding problems by modeling object depen-
dencies, global image features, and local detector out-
puts using a tree-based graphical model. Our context
model enables a parsimonious modeling of object
dependencies, and can easily scale to capture the
dependencies of over 100 object categories.

The tree structure shown in Fig. 6 captures the
inherent hierarchy among object categories. For ex-
ample, most of the objects that commonly appear in a
kitchen are descendents of the node sink , and all the
vehicles are descendents of road . This suggests that a
more intuitive structure for object dependencies could
be a hierarchy including some meta-objects (such as
a desk area) or scenes (kitchen or street) as nodes at
coarser scales. Since it is not clear how many and what
kind of meta-object nodes and scene nodes should
be used, it is difficult to get training samples for
such nodes from a human annotator. Hence, we need
to discover those hidden nodes during our structure
learning procedure. Learning a model with hidden

(inodes is in general a challenging problem, but for a

certain class of tree models, there are efficient algo-
rithms to learn a tree structure with hidden nodes us-
ing the samples of observed nodes [2]. The algorithm
developed in [2] first learns a tree among the observed
variables using the Chow-Liu algorithm, and then
applies a local graph transformation to recover hid-
den nodes. Thus, our tree-based object dependency
presented in this paper can be regarded as the output
of the first stage of this learning procedure. Learning a
full hierarchical tree structure with hidden nodes may
discover important relationships among objects, meta-
objects, and scenes, which is an interesting direction
for further research.

The SUN 09 dataset presented in this paper has
richer contextual information than PASCAL 07, which
was originally designed for training and testing single
object detectors. We demonstrate that our context
model learned from SUN 09 significantly improves
the accuracy of object recognition and image query
results, and can even be applied to detect objects
out of context. The SUN 09 dataset and the MAT-
LAB implementation of our algorithm can be down-
loaded from http://people.csail. mit.edu/myungjin/
HContext.html. Our experiments provide compelling
evidence that rich datasets and modeling frameworks
that incorporate contextual information can be more
effective at a variety of computer vision tasks such
as object classification, object detection, and scene
understanding.



ACKNOWLEDGMENT

This research was partially funded by Shell Inter-
national Exploration and Production Inc., by Army
Research Office under award W911NF-06-1-0076, by
NSF Career Award (ISI 0747120), and by the Air Force
Oftice of Scientific Research under Award No.FA9550-
06-1-0324. Any opinions, findings, and conclusions or
recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect
the views of the Air Force.

REFERENCES
[1]
[2]

C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

M. J. Choi, V. Y. E. Tan, A. Anandkumar, and A. S. Willsky,
“Consistent and efficient reconstruction of latent tree models,”
preprint.

C. K. Chow and C. N. Liu, “Approximating discrete probabil-
ity distributions with dependence trees,” IEEE Transactions on
Information Theory, 1968.

N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in CVPR, 2005.

C. Desai, D. Ramanan, and C. Fowlkes, “Discriminative mod-
els for multi-class object layout,” in ICCV, 2009.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results,” http://www.pascal-
network.org/challenges/VOC/voc2007 /workshop /index.html.
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based
models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, no. 9, pp. 1627-1645, 2010.

R. Fergus, P. Perona, and A. Zisserman, “Object class recogni-
tion by unsupervised scale-invariant learning,” in CVPR, 2003.
C. Galleguillos, A. Rabinovich, and S. Belongie, “Object cate-
gorization using co-occurrence, location and appearance,” in
CVPR, 2008.

S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller,
“Multi-class segmentation with relative location prior,” Inter-
national Journal of Computer Vision, vol. 80, pp. 300-316, 2007.
X. He, R. S. Zemel, and M. A. Carreira-Perpinfidn, “Multiscale
conditional random fields for image labeling,” in CVPR, 2004.
G. Heitz and D. Koller, “Learning spatial context: Using stuff
to find things,” in ECCV, 2008.

G. Heitz, S. Gould, A. Saxena, and D. Koller, “Cascaded
classification models: Combining models for holistic scene
understanding,” in NIPS, 2008.

D. Hoiem, A. Efros, and M. Hebert, “Automatic photo pop-
up,” in SIGGRAPH, 2005.

, “Putting objects in perspective,” in CVPR, 2006.

Y. Jin and S. Geman, “Context and hierarchy in a probabilistic
image model,” in CVPR, 2006.

L.-J. Li, R. Socher, and L. Fei-Fei, “Towards total scene un-
derstanding:classification, annotation and segmentation in an
automatic framework,” in CVPR, 2009.

K. P. Murphy, A. Torralba, and W. T. Freeman, “Using the
forest to see the trees: a graphical model relating features,
objects and scenes,” in NIPS, 2003.

D. Parikh and T. Chen, “Hierarchical semantics of objects
(hSOs),” in ICCV, 2007.

J. Porway, K. Wang, B. Yao, and S. C. Zhu, “A hierarchical
and contextual model for aerial image understanding,” CVPR,
2008.

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and
S. Belongie, “Objects in context,” in CVPR, 2007.

B. C. Russell, A. Torralba, C. Liu, R. Fergus, and W. T. Freeman,
“Object recognition by scene alignment,” in NIPS, 2007.

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“LabelMe: a database and web-based tool for image annota-
tion,” International Journal of Computer Vision, vol. 77, pp. 157-
173, 2008.

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

14

[24] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky,
“Learning hierarchical models of scenes, objects, and parts,”
in ICCV, 2005.

A. Torralba, K. P. Murphy, and W. T. Freeman, “Contextual
models for object detection using boosted random fields,” in
NIPS, 2005.

A. Torralba, “Contextual priming for object detection,” Inter-
national Journal of Computer Vision, vol. 53, pp. 169-191, 2003.
Z. Tu, “Auto-context and its application to high-level vision
tasks,” in CVPR, 2008.

J. Winn, A. Criminisi, and T. Minka, “Object categorization by
learned universal visual dictionary,” in ICCV, 2005.

[25]

[26]
[27]

(28]






