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�AN IMPORTANT ASPECT of improving the trustworthi-

ness level of semiconductor devices, semiconductor-

based systems, and the semiconductor supply chain

is enhancing physical security. We want semiconduc-

tor devices to be resistant not only to computational

attacks but also to physical attacks. Gassend et al.

described the use of silicon-based physical random

functions,1,2 also called physical unclonable functions

(PUFs), to generate signatures based on device man-

ufacturing variations that are difficult to control or re-

produce. Given a fixed challenge as input, a PUF

outputs a response that is unique to the manufactur-

ing instance of the PUF circuit. These responses are

similar, but not necessarily bit exact, when regener-

ated on a given device using a given challenge, and

are expected to deviate more in Hamming distance

from a reference response to the extent that environ-

mental parameters (e.g., temperature and voltage)

vary between provisioning and regeneration. This de-

viation occurs because circuit delays do not vary uni-

formly with temperature and voltage.

PUFs have two broad classes of applications.1,3-5 In

certain classes of authentication applications, the sil-

icon device is authenticated if the regenerated re-

sponse is close enough in Hamming distance to the

provisioned response. To prevent replay attacks, chal-

lenges are never repeated. This means the PUF must

be resistant to software model-building

attacks (e.g., learning attacks like

those Lim described6) to be secure.

Otherwise, an adversary can create a

software model or clone of a particu-

lar PUF.

If, instead of Hamming-based au-

thentication as we’ve described, the

PUF is to serve as a secret-key genera-

tor, only a fixed number of secret bits need to be gen-

erated from the PUF. These bits can serve as

symmetric key bits or as a random seed to generate

a public-private key pair in a secure processor.3 How-

ever, in order for the PUF outputs to be usable in

cryptographic applications, the noisy bits must be

error corrected, with the aid of helper bits; these

helper bits are commonly referred to as a syndrome.

The greater the environmental variation a PUF is sub-

ject to, the greater the possible difference (noise) be-

tween a provisioned PUF response and a regenerated

response.

Software model-building attacks are not a concern

when a fixed number of independent secret bits are

generated from the PUF. These bits, if noise-free,

need not be exposed (for example, these bits may

be one-way hashed prior to being exposed; in this

case, model building of the PUF requires inverting

the one-way hash), and therefore an adversary can-

not construct a model of the PUF.

In perhaps the earliest reference to error correc-

tion in silicon PUFs, Gassend cited the use of 2D

Hamming codes for error correction.1 (For more in-

formation on PUFs and error correction, see the

‘‘Related Work’’ sidebar.) Suh et al. had a more realis-

tic view of noisy properties of PUFs and suggested the

use of Bose-Chaudhuri-Hochquenghen (BCH) code,
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used in many security, protection, and digital rights management applications.
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correction codes. The authors propose a new syndrome coding scheme that

limits the amount of leaked information by the PUF error-correcting codes.
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specifically BCH (255, 63, t ¼ 30) code for error cor-

rection,3 where the PUF generates 255 bits, but be-

cause 192 syndrome bits are exposed in public

storage, the actual key size is no more than 63 bits.

This code can be used to correct 30 errors out of

255 bits but is expensive to implement. Maximum

error rates for PUFs across environmental variations

reflecting variations from real-life deployments can

be as high as 25%, making straightforward use of

BCH impractical��the codeword sizes required

would be too large for practical realizations. For

these high error rates, error reduction techniques

must be applied prior to error correction. For exam-

ple, PUF bits that are less likely to be noisy can be

selected, and/or repetition coding can be used.

Error reduction requires additional helper or syn-

drome bits to be publicly stored. These bits could

leak information. For example, by using these syn-

drome bits, the adversary might obtain bias informa-

tion that can be used to reduce the search space

required to obtain the secret key. Information leakage

via syndrome coding has not received much atten-

tion in practical PUF-based key generation systems.

Accordingly, in this article, which focuses on the

use of a PUF and error correction techniques to gen-

erate cryptographic keys, we propose a new syn-

drome coding scheme called index-based syndrome

coding. IBS differs from conventional syndrome cod-

ing methods, such as the code-offset construction

using linear codes,7 in two main respects. First, by

its very nature it leaks less information than conven-

tional methods or other variants that use bitwise

XOR masking. The key idea is to generate pointers

to values in a PUF output sequence so that the syn-

drome bits no longer need to be a direct linear math-

ematical function of PUF output bits and parity bits.

Under the assumption that PUF outputs are indepen-

dent and identically distributed (IID), IBS can be

shown to be what is known as information-theoretically

secure (i.e., security can be derived entirely from infor-

mation theory) from the standpoint that IBS does not

contribute to additional min-entropy loss. In applying

National Institute for Science and Technology (NIST)

statistical tests for randomness, experimental results of

a Xilinx FPGA-based implementation show that IBS

has a high pass rate that is consistent with pass rates

of NIST-recommended reference random bits, validat-

ing the IID assumption.

The second way in which IBS differs from con-

ventional syndrome coding is that IBS coding,

when used with certain classes of PUFs (specifically,

those with real-valued outputs), has a coding gain

associated with the soft-decision encoding and

decoding native to IBS. Soft-decision coding yields

a higher coding gain than its hard-decision counter-

part because the coder takes advantage of the con-

fidence information of the bits presented at its input

to make better coding decisions. Experimental

results with a Xilinx FPGA-based implementation

show that IBS reduces error-correcting code (ECC)

complexity by approximately 16� to 64�, given cer-

tain design assumptions, while preserving the ability

to correct errors across varied environmental condi-

tions. A Xilinx Virtex-5 implementation showed no

error correction failures when provisioned at 25�C

and 1.0 V, and regenerated at �55�C and 1.1 V.

Based on the number of tests run, the error rate is

bounded well below 1 ppm (parts per million).

We ran other conditions from �55�C to 125�C, at

1.0 V � 10% as well, showing consistent results

pointing to an error rate below 1 ppm.

Index-based syndrome coding
Consider a noisy pseudorandom source (one in

which, for a given seed, the bitstream generated is

predictable). Here, ‘‘noisy’’ means that the predict-

able bit stream could have some bit corruptions

when regenerated. Examples of noisy pseudorandom

sources include PUFs and biometric sources.

PUF with real-valued output

Now consider a noisy pseudorandom source with

real-valued outputs. Each output value, rather than

being a single bit (of 1 or 0), is instead real valued

in the sense that the output value contains both polar-

ity information (1 or 0) as well as confidence informa-

tion (strength or confidence level of 1 or 0). One way

to represent a real-valued output is to have each out-

put value in 2s-complement representation. A þ sign

bit (10b0) represents a 1-bit PUF output, and a� sign

bit (10b1) represents a 0-bit PUF output. The strength

(or confidence level) of the 1 or 0 PUF output is rep-

resented by the remaining non-most-significant bits.

Another representation of real-valued output is to

show the PUF output bit in its native form (0 for a

PUF output 0, 1 for a PUF output 1), and have a

unary number of 1s representing output strength.

Examples of PUFs with real-valued outputs include

PUFs producing outputs resulting from oscillator com-

parisons with possibly selectable paths through each
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oscillator ring (see Figure 1 for an example of PUF

using an oscillator/arbiter hybrid approach).

Alternative approaches include synthesizing real-

valued outputs from a PUF that outputs single-bit val-

ues. An example would be to take multiple readings

of single-bit PUF output to obtain confidence informa-

tion for that output value. The use of IBS with a real-

valued PUF (RV-PUF) allows IBS to minimize informa-

tion leak while increasing coding gain. If an RV-PUF is

not used, information leak is still minimized, but cod-

ing gain benefits might be more limited.

Soft decision IBS encoder

Now consider a soft-decision encoder as Figure 2

shows. For each secret bit B, the encoder takes RV-

PUF outputs Ri, 0 <¼ i <¼ q� 1 and represents B

as an s-bit index (pointer) P, which points to an Ri.

Each Ri is a w-bit value that contains both polarity

and confidence information��for example, a w-bit 2s

complement number. R0, . . . , Rq�1 forms a response

segment R. So each response segment R consists

of q Ri values, and each Ri value is w-bits wide.

An index P that is s-bits wide points to one of these

Ri values in the response segment to represent B.

For discussion purposes, each B bit is enmapped

using nonoverlapping sets of R0, . . . , Rq�1. Output of

the IBS enmapper P(B)(.) depends on RV-PUF out-

puts R0, . . . , Rq�1, as well as on B. The enmapper

applies one of a family of functions, P(B)(.)��which

is indexed by the value B being encoded��to the

sequence of device-specific values. For example, a

1-bit input for B has two functions, P(0)(.) and

P(1)(.). Each function takes as input the sequence

of pseudorandom values, R ¼ (R0, . . . , Rq�1), and

provides an s-bit index as an output��for instance,

where q <¼ 2s.

One example of an index-based enmapping func-

tion is based on the indices of the extreme values in

the sequence:

PðBÞðR0, . . . , Rq�1Þ
¼ arg mini Ri if B ¼ 0

¼ arg maxi Ri if B ¼ 1

�
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Related Work

Several recent papers have cited the use of error

correction with physical unclonable functions to generate

cryptographic keys.1-5

Physical unclonable functions (PUFs)

Physical one-way functions were implemented using

microstructures and coherent radiation, and an authenti-

cation application has been described.1 Gassend et al.

coined the term physical unclonable function and

showed how PUFs could be implemented in silicon

and used for authentication and cryptographic applica-

tions.2 Many other silicon realizations of PUFs have

been proposed.6-9 It has been shown that some pro-

posed PUFs can be modeled or reverse-engineered,9

precluding their use in unlimited authentication applica-

tions. However, the focus of our work is on generating

a fixed number of independent bits from a PUF, which

are kept secret, and therefore these modeling attacks

are not relevant. The security of the error correction

scheme that ensures reliability of these bits is the impor-

tant consideration and focus of our work.

Efficient and robust error correction

Bosch et al. suggested using two-stage coding to

reduce error correction complexity through heavy

use of repetition coding and conventional syndrome

generation using XOR masking.4 However, this work

didn’t directly address the case in which a PUF has

DC bias and how that affects information leakage

through repeat XOR masking of the same bit across

multiple PUF output bits, nor do the error correction

calculations directly account for voltage effects. In

contrast, our work includes characterizing information

leakage through repetition coding, ways to mitigate

that via indexing, subjecting the syndrome through

NIST tests and other correlation tests, and establishing

a formal proof to show why index-based syndrome

(IBS) does not contribute to additional min-entropy

leakage. Additional contributions of our work include

an IBS-only codec without the complexity of a conven-

tional decoder; characterization across voltage varia-

tion and wider temperature variation; and empirical

results showing no error correction failures across a

wide range of temperature and voltage conditions,

with an IBS-ECC (BCH (63, 30, t ¼ 6)) configura-

tion (IBS used in addition to Bose-Chaudhuri-

Hochquenghen code BCH (63, 30, t ¼ 6)) empirically

producing error-free results.

Maes et al. also described soft-decision decoding

with respect to PUFs using conventional soft-decision

50 IEEE Design & Test of Computers



As an example of IBS encoding, let q ¼ 8, B ¼ 1,

R0, . . . , Rq�1 ¼�3,�10, 25, 80,�94,�3, 8,�2. In this ex-

ample, P ¼ 3 (pointing to 80), if the max/min criteria

as we’ve described is used for PB(.).

B is generated in a manner such that it is indepen-

dent of R0, . . . , Rq�1. For example, B can be derived

from

� the same distribution that generates R0, . . . , Rq�1,

with each response values IID. For example, B ¼ 1

if Rj >¼ 0, else B ¼ 0, with Rj generated independ-

ently from R0, . . . , Rq�1 (e.g., j ¼�1, or another

value where j 6¼ 0, . . ., q�1).

� a random number generator (RNG).

� any source independent of the source generating

R0, . . . , Rq�1.

We conducted some use cases using the PUF to

generate k output values. The polarity bits of these

values are used (and magnitudes ignored) to form a

k-bit secret. This k-bit secret is then fed into a

conventional ECC encoder to produce n� k bits of

parity, where n is the ECC block size.

In one use case, the n� k parity bits serve as the

B bits, and additional PUF output bits (treated as

real values) along with these B bits are fed into an

IBS encoder to generate the indices to represent

these n� k parity bits. In a second case, the k bits

serve as the B bits, and conventional ECC is not

used. Again, additional PUF output bits (treated as

real values) along with these B bits are fed into an

IBS encoder to generate the indices to represent

k bits from the PUF. In a third use case, both the

k bits and n� k bits serve as B, and additional PUF

output bits (treated as real values) along with B are

fed into an IBS encoder to generate the indices to rep-

resent the entire n bits, of which the first k bits are

from the PUF and the last n�k bits are from the parity

encoder. [The second and third use cases are

described later in ‘‘IBS standalone (IBS-S)’’ and ‘‘IBS

with additional ECC (IBS-ECC).’’] The point is that B

can be any value, as long as it is independent of

decoders.5 Contributions of the work described in the

main text include performing soft-decision decoding

without explicit use (and added complexity) of a conven-

tional soft-decision decoder, and characterizing results

across voltage variation and a wider temperature

variation.

Information leakage

The work we describe in this article is among the first

to explicitly construct syndrome that leaks no information

(specifically, syndrome that does not contribute to addi-

tional min-entropy loss) from an information-theoretic

viewpoint. This work complements the work done by

Dodis.10 In particular, when IBS is used as a replace-

ment for the code-offset method using XOR masking, it

can be shown formally that the syndrome does not

leak additional min-entropy. This result, for example,

can be used to derive m0 in a secure sketch (see

Dodis’ work for definition of m0 and secure sketch).
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the additional PUF outputs generated that serve as

R0, . . . , Rq�1. In fact, B can be derived from an RNG

or any other source completely independently of

the PUF generating R0, . . . , Rq�1, if an application

can benefit from such an arrangement.

Soft-decision IBS decoder

Now consider the soft-decision IBS decoder shown

in Figure 3. The RV-PUF regenerates the device-specific

values as R0 ¼ (R00, . . . , R0q�1). The values are not

exactly equal, but it is expected that the values Ri

and R0i are at least approximately equal. As a result,

the ordering by value is approximately the same,

but not necessarily identical, as used in the encoder.
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Processing logic,
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Figure 1. Real-valued physical unclonable function (RV-PUF) using an oscillator and arbiter hybrid

approach.

P (B)(.)

Real-valued physical
unclonable function

(RV-PUF)

wR0, …, Rq–1

B
1

P
s

Figure 2. Soft-decision index-based syndrome

encoder, where each PUF output response value

is w-bits wide, and each index (pointer) value is

s-bits wide.

B (P)(.)

RV-PUF

wRʹ0, …, Rʹq–1

P
1

Bʹ
s

Figure 3. Soft-decision index-based syndrome

decoder.
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The IBS decoder includes an IBS demapper BP(.),

which accepts the index value P and outputs an esti-

mate B0, which in normal operation is expected to

regenerate the original value B. This regeneration is

done by first applying a function B(P)(.) to the se-

quence of values, R0 ¼ (R00, . . . , R0q�1), to produce

a reconstruction of the value B.

One example of the demapping function BP(.) that

is compatible with the maximum and minimum

encoding function is as follows:

B0 ¼ BðPÞðR00, . . . , R0q�1Þ ¼ sign of ðR0pÞ

and

sign of ðR0pÞ
¼ 0 if R0p< 0

¼ 1 if R0p � 0

(

In some examples, the decoding function is

BðPÞ ðR00, . . . , R0q�1Þ ¼ PrðB ¼ 1j P, R00, . . . , R0q�1Þ

based on a probabilistic model of the encoding

process, thereby generating a soft-bit regeneration of

the original data.

Continuing with the example from the soft-decision

IBS encoder, let q ¼ 8, P ¼ 3, R00, . . . , R0q�1 ¼�4,�11,

77, 84,�92,�8, 2,�1. In this example, B0 ¼ sign of

(84) ¼ þ ¼ 1, which equals the original encoded

B of 1.

Note that these encoding and decoding functions

can be understood to be compatible on the basis of

the observation that in encoding, the device-specific

maximum value is almost always the most positive

(and in some rare cases, if all values are negative,

the least negative), and therefore, that value’s regener-

ation is expected to at least remain positive, even if

it’s not the maximum of the regenerated sequence.

Similarly, the minimum value in encoding is expected

to remain negative when it is regenerated. If further

error correction is required, a conventional error

correction codec can be instantiated with the IBS

enmapper and demapper. In other applications,

errors might be ignored, and comparisons based on

a Hamming threshold could be used.

Two IBS configurations

We evaluate two IBS configurations here: IBS in a

standalone mode (IBS-S), without other forms of

error correction, and IBS with additional error correc-

tion (IBS-ECC).

IBS standalone (IBS-S). In this use case, the IBS

enmapper/demapper is used without other forms of

error correction. Secret bits are broken into B0, . . . ,

Bk�1 where k is the total length of secret bits, each

of which is encoded respectively using P0, . . . , Pk�1,

by finding the max or min value [assuming max/

min criteria is used for P(B)(.)] in each of the k rows

of Ri values, as shown in Figure 4. If the PUF does

not output confidence information (e.g., RV-PUF is

Syndrome encoder

B0, …, Bk–1 IBS
enmapper
P (B)(.)

Rowʹk–1 = Rʹ((k–1) × q + 0), …, Rʹ((k–1) × q  + q – 1)

Syndrome decoder

IBS
demapper
B (P)(.)

s

s

1

1

w

w

P0, …, Pk–1

Rowʹ1 = Rʹ(1 × q + 0), …, Rʹ(1 × q  + q – 1)

Rowʹ0 = Rʹ(0 × q + 0), …, Rʹ(0 × q  + q – 1)

P0, …, Pk–1

Bʹ0, …, Bʹk–1

Row0 = R(0 × q + 0), …, R(0 × q  + q – 1)

Row1 = R(1 × q + 0), …, R(1 × q  + q – 1)

Rowk–1 = R((k–1) × q + 0), …, R((k–1) × q  + q – 1)

•
•
•

•
•
•

Figure 4. IBS-S (index-based syndrome-standalone) configuration.
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not used), a random selection among matching bits in

the row of Ri values is then made, and if none of the

bits match, a random selection among all the (non-

matching) bits in the row is made. In a simple

decoder example, P0, . . . , Pk�1 is used to reconstruct

B00, . . . , B0k�1 by using each index P to select the ap-

propriate Ri in each row, and analyzing its sign bit.

As we will explain, IBS in standalone configura-

tion (without additional error correction mecha-

nisms), has error correction and error reduction

capabilities that might be sufficient for certain

classes of applications.

As an example, assume q¼ 8, k¼ 2, use of max/min

criteria, and a simple decoder that looks at the sign

bit of a PUF output value being pointed to by P to

extract B0. Suppose that at the encoder input we have

B0, B1 ¼ 1, 0

Row0 ¼ R0, . . . , R7

¼�3,�10, 25, 80,�94,�3, 8,�2

Row1 ¼ R8, . . . , R15

¼12, 8,�21,�3,�9,�30, 85, 34

The output of the encoder will be as follows:

P0 ¼ 3 ðlooks up max value of 80Þ
P1 ¼ 5 ðlooks up min value of�30Þ

Now, suppose that at the decoder input we have

P0, P1 ¼ 3, 5

Row00 ¼ R00, . . . , R07
¼ �4,�11, 77, 84,�92,�8, 2,�1

Row01 ¼ R08, . . . , R015

¼ 16, 12,�25,�1,

�13,�24, 81, 45

The output of the decoder will

be

B00 ¼ signð84Þ ¼ þ ¼ 1

B01 ¼ signð�24Þ ¼ � ¼ 0

thus recovering B0, B1 ¼ 1, 0.

IBS with additional ECC (IBS-

ECC). If additional error cor-

rection is required, IBS can be

instantiated with one (or

more) stages of other ECC (see

Figure 5 for an example). A

total of n � q PUF outputs are

generated, to derive n indices.

Note that the configuration in Figure 5 results in a

soft-decision syndrome encoder/decoder system,

even if we use a conventional hard-decision ECC

encoder/decoder. IBS therefore produces coding

gain associated with soft-decision decoders without

explicit use (and added complexity) of conven-

tional soft-decision ECC, as Maes et al. proposed.8

As an example, let us assume q ¼ 8, k ¼ 4, n ¼ 7,

the use of max/min criteria, and a simple decoder

that looks at the sign bit of the PUF output value

being pointed to by P to extract B0. The BCH (7, 4,

t ¼ 1) ECC used has the following generator matrix:

G ¼

1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

2
664

3
775

Suppose that at the ECC encoder input we have

B0, B1, B2, B3 ¼ 1, 0, 0, 0

At the ECC encoder output, we then have

1, 0, 0, 0, 1, 0, 1

This result is input to the IBS enmapper, along with

Row0 ¼ R0, . . . , R7

¼ �3,�10, 25, 80,�94,�3, 8,�2

Row1 ¼ R8, . . . , R15

¼ 12, 8, 0,�2,�1,�3, 85, 34

. . .

Verifying Physical Trustworthiness of ICs and Systems

s

Syndrome encoder

P n indices B   k values

Ri  n × q values

IBS
enmapper
P (B)(.)

ECC
encoder

Syndrome decoder

P n indicesBʹ   k values
s

Rʹi   n × q values
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Figure 5. IBS-ECC (index-based syndrome error-correcting code) configuration.
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Row6 ¼ R48, . . . , R55

¼ 3, 5, 8,�15,�31, 45,�15, 102

The output of the IBS enmapper will be

P0 ¼ 3 ðlooks up max value of 80Þ
P1 ¼ 5 ðlooks up min value of�3Þ
. . .

P6 ¼ 7 ðlooks up max value of 102Þ

Now, suppose that at the IBS demapper input we

have the following:

P0; P1, . . . , P6 ¼ 3, 5, . . . ; 7

Row00 ¼ R00, . . . , R07
¼ �4,�11, 77, 84,�92,�8, 2,�1

Row01 ¼ R08, . . . , R015 ¼ 16, 12, 1,� 1, 2, 3, 81, 45

. . .

Row06 ¼ R048, . . . , R055

¼ �1, 1, 2,�12,�38, 43,�13, 99

The output of the IBS demapper will be (note the

intentional bit error for B01):

B00 ¼ signð84Þ ¼ þ ¼ 1

B01 ¼ signð3Þ ¼ þ ¼ 1

. . .

B06 ¼ signð99Þ ¼ þ ¼ 1

The output of the ECC decoder will be (as a result of

error correction):

1, 0, 0, 0

thus recovering B0, B1, B2, B3 ¼ 1, 0, 0, 0.

Design implementation

We implemented a design using IBS to derive se-

cure and robust keys from PUFs in Xilinx Virtex-4

LX25/LX60 and Xilinx Virtex-5 LX50 FPGAs. The de-

sign consisted of three major components. First was

a programmable IBS enmapper/demapper supporting

0th-order to 5th-order indices and built-in repetition-

coder supporting 1�, 3�, and 5� repetition coding.

The second component was a programmable BCH

(63) encoder/decoder supporting BCH codes from

t ¼ 1 to t ¼ 6. The third component was a physical

unclonable function circuit (Figure 1) with 64 chal-

lenge bits.

Also included in the design were various debug

facilities, including the ability to obtain raw oscillator

frequencies. We used these to collect error statistics at

various points in the processing pipeline, and to pro-

vide a direct user-chosen stimulus in various parts of

the processing pipeline and to observe downstream

behavior. The design complexity was dominated by

the BCH (63) ECC decoding core, which had on

the order of 400 registers plus supporting combinato-

rial logic. In one fully programmable and fully instru-

mented version of the design, the combined PUF-

based key generator consisting of all three major

components and debug facilities used approximately

1,000 slices in a Xilinx-5 LX50 device, or roughly 14%

of the slice count.

This design has a large error correction margin. A

design that does not require as large an error correc-

tion margin, and having fewer debug facilities and

less programmability, will be smaller.

Security analysis
Here, we first show the shortcomings of conven-

tional syndrome generation methods. Then we dem-

onstrate how index-based syndrome is superior

using information theoretic arguments. The theoretic

results are then affirmed by empirical test results

using a FPGA implementation and NIST statistical

tests for randomness.

Conventional methods using XOR masking

Consider conventional syndrome generation meth-

ods, which typically perform logical bitwise XOR of

parity information with PUF outputs. Assume the

PUF generates n bits of information. The first k bits

are fed into a conventional ECC encoder to produce

n�k bits of parity. Syndrome bits are then formed by

performing a bitwise XOR operation of the n�k parity

bits output by the ECC encoder with the last n�k bits

from the n PUF bits. If a PUF systematic bias exists, in-

formation is leaked via the syndrome. This is espe-

cially true if repetition code is used. Published

experimental systematic bias values include 46.15%

for a ring oscillator PUF, 23% for an early version of

an arbiter PUF,6 49.97% for an SRAM-based PUF,9

and approximately 10% for a flip-flop PUF.8 The per-

centage represents bias toward 1. The ideal bias

value is 50%, meaning 1s and 0s are statistically

equally likely.

The simplest example of repetition code is a bi-

nary repetition (3, 1, 3) code. It repeats each bit

three times, so that a 0 is encoded onto the vector
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(000) and a 1 onto the vector (111), using a genera-

tor matrix:

G ¼ 1 1 1½ �

To produce a syndrome using XOR masking, a

syndrome encoder performs logical bitwise XOR of

these three bits with three PUF output bits.

Consider the case in which the PUF has a bias of

51%, meaning that out of 100 PUF output bits, an aver-

age of 51 bits are 1s. If a syndrome encoder performs

logical bitwise XOR of a secret bit with a single bit of

PUF output, and the result is 0, there is a 51% chance

that the secret bit is 1 and a 49% chance that the se-

cret bit is 0, and vice versa if the result is 1. Now if

a syndrome encoder performs logical bitwise XOR

of that same secret bit with a single bit of a PUF out-

put, and generates additional syndrome bits by per-

forming logical bitwise XOR of the same secret bit

with an additional 99 PUF output bits, then if the se-

cret bit is 1, the mask would statistically have 49 1s

and 51 0s. Alternatively, if the secret bit is 0, the

mask would statistically have 51 1s and 49 0s. Clearly,

with repetition coding, in which the repetition

encoder repeats the secret bit, bitwise XOR masking

of the repeated bits with PUF output bits reveals an ad-

ditive increase in information the longer the repetition

code. In a binary repetition (33, 1, 33) code, where a

secret bit is repeated 33 times, the resulting 33-bit syn-

drome produced using bitwise XOR with 33 PUF out-

put bits would statistically leak information every

time if, out of 33 bits produced by the PUF, 17 bits

are 1s and 16 bits are 0s (51.52% bias) or vice versa.

In general, if a binary repetition (r, 1, r) code is

used, a PUF bias of more than [ceiling(r/2)]/r or a

PUF bias of less than [floor(r/2)]/r would cause the

syndrome (XOR mask) to leak a secret bit each

time, statistically speaking. Bits leaked can be calcu-

lated as follows, as a function of PUF bias and the rep-

etition code used:

bits leaked per secret bit ¼
abs ðPUF bias� 0:5Þ=absf½ceilingðr=2Þ�=r � 0:5g

where abs is the absolute value operator:

For example, if a PUF has a bias of 0.51 (or a bias of

0.49), a binary repetition (9, 1, 9) code would leak

1 bit out of 5.6 bits encoded. In other words, more

than 1/6 of the information would be leaked though

the syndrome.

IBS approach, theoretical result

Looking again at the IBS enmapper, we want to

know whether P leaks any information about B. P is

assumed to be public information, and B is a secret

bit (which, along with other secret B bits, is used to

derive keys or seeds to generate keys).

R0, . . . , Rq�1 is assumed to be private information

(for example, a biometric reading, or outputs of a sil-

icon PUF inside a chip). We assume that although the

reading itself is not known to the adversary, he or she

has possible access to other readings from other bio-

metric hosts or other devices (his or her fingerprints

and those of his or her cohorts, for instance, or

reverse-engineered PUF devices obtained from, say,

eBay). Accordingly, systematic (population) statistics

(such as systematic DC bias), but not the statistical

properties of a particular individual biometric reading

or PUF silicon device, can be inferred.

Based on prior research, PUFs have interchip or

interclass variations in that cross correlation of out-

puts from different PUFs are quite different, but possi-

bly with some systematic bias. Therefore, PUF output

response bits are often modeled as an IID normal dis-

tribution with mean m and standard deviation �. Use

of an IID normal distribution to model PUF responses

based on empirical data can be found for the arbiter-

based PUF6 and for the SRAM PUF.10 It is assumed, for

the purpose of proof, that each of the n � q Ri values

generated is independent of one another. For exam-

ple, each Ri could be derived from disjoint oscillator

pairs, with no oscillator reuse in deriving different Ri

values. We also assume that each chip provisions

only one secret key or secret seed, and provisioning

is disabled once the secret has been provisioned. Al-

ternately, the chip can be built with a fixed challenge

to generate only one or a few secrets.

Now, consider the case in which IBS is used. It can

be proved mathematically, under certain assumptions,

that there is no reduction in min-entropy, even if a pro-

gressive application of an otherwise leaky code such

as repetition code is used. Similar arguments can be

made when IBS coding is applied with other forms

of error correction. In this sense, IBS is superior in se-

curity compared to conventional XOR masking.

According to results in the ‘‘Mathematical Model

for IBS Enmapper and Proofs’’ sidebar, revealing

index P does not lead to a reduction in min-entropy

in B. This was proven without any assumptions about

the distribution for PUF outputs, except that it is IID,

meaning that even if there is a DC bias (or for that

Verifying Physical Trustworthiness of ICs and Systems
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matter, any higher-order bias), the proof still holds

true. Furthermore, no assumption about B is made

except that it is independent from R0, . . ., Rq�1, imply-

ing that B values can be correlated with one another

(as is the case when repetition code or other forms of

conventional error correction are used), and the

proof still holds true.

IBS approach, empirical data

Experimental results derived from a Xilinx Virtex-4

implementation affirm the formal mathematical

results. We used NIST statistical tests for randomness

to analyze the randomness of syndrome encoder out-

puts (P) given certain sequences of input bits (B).

Three-bit indices were used. For each input sequence,

we analyzed 100 million syndrome bits (from 100/3 ¼
34 million indices). These syndrome bits were formed

by serializing concatenated 3-bit syndrome indices.

Four test sequences, each containing 34 million bits,

were injected into the B input of an IBS encoder.

Specifically, the 0th-order DC sequences of all 0s

and all 1s, and the 1st-order AC sequences of alternat-

ing 1010s and 0101s were used for B. For each

sequence, 34 million indices (P values) were gener-

ated. Each P chose either the maximum value from

the PUF output values if B was 1, or the minimum

value from the PUF output if B was 0. In all, 367 mil-

lion PUF output bits (33 � 8 million) were generated

for each test sequence, all from the same starting

64-bit challenge seed. So, each bit B was encoded

as a 3-bit index P, choosing the best of nonoverlapping

8 PUF output values.

We performed the analysis explained here before

we had completely built the IBS hardware in the

FPGAs, as a part of the design derivation and refining

process. So, a large part of the design was emulated in

software but using PUF information derived across

four Xilinx Virtex-4 LX25 FPGAs. Each FPGA was

used to derive a single RV-PUF, corresponding to

Figure 1. Success rates for each of the 15 NIST tests

across the four LX25 chips were comparable with

the success rates derived from a NIST-recommended

set of random numbers as input (see Table 1).

Results showed that syndrome bits are tested to be

random, and thus it is difficult to infer input bits B

from indices P. More specifically, take note of the

results of the 0th-order (DC) sequences:

� an input sequence of B consisting of all 0s produces

random syndrome bits, implying Pr(P | B¼ 0)¼ 1/8.

� an input sequence of B consisting of all 1s produces

random syndrome bits, implying Pr(P | B¼ 1)¼ 1/8.

Furthermore,

PrðPÞ ¼
PrðP jB ¼ 0Þ � PrðB ¼ 0Þ þ PrðP jB ¼ 1Þ� PrðB¼1Þ
¼1=8�ðPrðB ¼ 0Þ þ PrðB ¼ 1ÞÞ¼1=8

Therefore,

PrðP jBÞ ¼ PrðPÞ

showing from empirical results that indices P and

input bits B are statistically independent.

From the empirical results, we could also gain a

level of confidence in the belief that the PUF output

bits can be treated as IID. If they were not, it’s highly

unlikely that the syndrome produced (e.g., by apply-

ing B consisting of all 0s) would be random unless

somehow the silicon-based PUF could arrive at a

strange distribution to make that the case. The empir-

ical results therefore affirm the assumption (held by,

for example, Lim6 and Maes10) that the PUF output

can be treated as IID.

Custom-constructed correlation tests analyzing

syndrome encoder input B versus output P confirm

results from the standardized NIST randomness tests.

More than 95% of the correlation results were within

two standard errors of the ideal uncorrelated value,

and the few outliers that were present did not stray

far from two standard errors away from the ideal.

Coding gain associated with IBS
Here we present empirical results in applying

index-based syndrome coding to PUFs in devices rep-

resenting two process geometries. Specifically, 90-nm

Xilinx Virtex-4 and 65-nm Xilinx Virtex-5 devices were

used. The results show that coding gain associated

with IBS is significant. This has the effect of reducing

total error correcting code logic complexity, and

increases stability of regenerated PUF-derived secret

bits across varied environmental conditions.

Results on Xilinx Virtex-4

Figure 6 shows the coding gain associated with

using 3-bit indices and 3� repetition coding. The

PUF was provisioned under a nominal temperature

of 20�C but under voltage variations of 1.2 V � 10%.

The left plot shows the error curve, black represent-

ing regeneration under nominal voltage and tem-

perature (20�C, 1.2 V), and other curves showing

regeneration under the four corners (voltage and
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Mathematical Model for IBS Enmapper and Proofs

We can define several random variables to mathemat-

ically represent elementary operations of the IBS enmap-

per. The mathematical properties for random variables

are as follows.

For secret bit B (underlining denotes a random

variable):

B ” {0, 1} is generated such that it is independent of

R0, . . ., Rq�1.

Note: The case where B takes on the sign of (or is

otherwise derived from and therefore not independent

from) one of R0, . . ., Rq�1 values (e.g., one pointed to

by P ) can also be proved to be information theoretically

secure. For brevity, we do not include this case.

For response segment (R):

R ” {signed integer}q consists of q signed integers R i,

0 <¼ i < q, where R i is independent and identically

distributed (IID).

For pointer (P):

P ” f0; 1 . . . q � 1g;

If B ¼ 1; P ¼ index of f1 ðR0 ¼ r0; . . . ; Rq�1 ¼ rq�1Þ
If B ¼ 0; P ¼ index of f0 ðR0 ¼ r0; . . . ; Rq�1 ¼ rq�1Þ

f1(.), f0(.) are functions that output one of the following

values: r0, . . . , rq�1.

f1, f0 are such that f1(.) 6¼ f0(.), except in the trivial case

when r0 ¼ r1 ¼ . . . ¼ rq�1.

f1, f0 are such that

f1ðR0 ¼ r0; . . . ; Rq�1 ¼ rq�1Þ ¼ f1ðr0; . . . ; rq�1Þ
¼ f1ðrpð0Þ; . . . ; rpðq�1ÞÞ
¼ f1ðR0 ¼ rpð0Þ; . . . ; Rq�1

¼ rpðq�1ÞÞ; and similarly

f0ðR0 ¼ r0; . . . ; Rq�1 ¼ rq�1Þ ¼ f0ðr0; . . . ; rq�1Þ
¼ f0ðrpð0Þ; . . . ; rpðq�1ÞÞ
¼ f0ðR0 ¼ rpð0Þ; . . . ; Rq�1

¼ rpðq�1ÞÞ;

where p is an index permutation function.

Examples of f1 and f0 include

max and min functions;

2nd-most max and 2nd-most min functions;

max deviation from mean and min deviation from

mean; and

max deviation from 0 and min deviation from 0.

For ‘‘index of’’ operator, if multiple indices produce the

same f1 result, a random index among those indices

is chosen; likewise, for f0.

Now, consider an adversary who has possession of a

certain pointer P. The claim, stated simply, is that P leaks

no information about B. That is, H(B) ¼ H(B | P), where H

is a Shannon entropy measure. However, to be conser-

vative and to allow results to be more readily adapted

to the research by Dodis et al. in constructing secure

sketches and fuzzy extractors,1 we also express our

results using min-entropy:

H1ð:Þ � �log2ðPrmaxð:ÞÞ

(where � means definition), since we want to account for

a worst-case ‘‘guessing’’ probability.

We also define average min-entropy per the work of

Dodis et al.1 as

~H1ðX jY Þ � �log2ðEy Y½2�H
ðX jY ¼ yÞ
1 �Þ

Theorem 1: P and B are independent, assuming the

PUF has IID outputs and B is independent of R ¼ R i,

0 <¼ i < q.

Proof: To prove that B and P are independent, it is

equivalent to proving that the probability of P ¼ p re-

mains the same regardless of the value of B:

PrðP ¼ p jB ¼ bÞ ¼ PrðP ¼ p jB ¼ b0Þ; ðAÞ

since Equation A implies that B and P are independent.

PrðP ¼ pÞ ¼
X
all b

PrðP ¼ p;B ¼ bÞ

¼
X
all b

PrðP ¼ p jB ¼ bÞ PrðB ¼ bÞ

¼ PrðP ¼ p jB ¼ b0Þ
X
all b

PrðB ¼ bÞ

ðusing Equation AÞ
¼ Pr ðP ¼ p jB ¼ b0Þ

We first note that

PrðP ¼ p jB ¼ bÞ ¼
X
all r

PrðP ¼ p; R ¼ r jB ¼ bÞ

¼
X
all r

Prðp ¼ f ðb; rÞ; R ¼ r jB ¼ bÞ
ðBÞ

Here, f unifies f1 and f0 into a single function, with an ad-

ditional input b to direct f to select either f1 or f0.
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As stated in Theorem 1, B is independent of R; there-

fore, Equation B becomesX
all r

Prðp ¼ f ðb; rÞ; R ¼ r jB ¼ bÞ

¼
X
all r

Prðp ¼ f ðb; rÞ; R ¼ rÞ

¼
X

r s:t: p¼f ðb; rÞ
PrðR ¼ rÞ

¼
X

r0 ; ...; rq�1 s:t: p¼f ðb; r0; ...; rq�1Þ
PrðR ¼ r0; . . . ; rq�1Þ

ðexpressing r explicitly as q valuesÞ ðCÞ

We have now transformed the problem into proving that

Equation C is independent of b.

Now, let’s create a permutation function p, where the

indexed entries for f1 and f0 are swapped. For example, if

f1 ¼ max and f0 ¼ min, the max and min entries are

swapped. If there are multiple max entries, for example,

a random one is chosen to be swapped; this is true also

if there are multiple min entries. In the unlikely event that

all values in r0, . . ., rq�1 are equal, a random swap is

performed.

Therefore,

p¼ f ðb; r0; . . . ; rq�1Þ¼ f ðb0; rpð0Þ; . . . ; rpðq�1ÞÞ; ðDÞ

where the substitution of b by b0 corresponds to the

permutation p.

Now let t be the inverse of permutation p (to reverse

the index swap).

Recall that Equation B ¼ Equation C. Adding results

from Equation D, we get

PrðP ¼ p jB ¼ bÞ
¼

X
r0 ; ...; rq�1 s:t: p¼f ðb; r0; ...; rq�1Þ

PrðR ¼ r0; . . . ; rq�1Þ

¼
X

r0 ; ...; rq�1 s:t: p¼f ðb0; rpð0Þ; ...; rpðq�1ÞÞ
PrðR ¼ r0; . . . ; rq�1Þ

¼
X

r0 ; ...; rq�1 s:t: p¼f ðb0; r0; ...; rðq�1ÞÞ
PrðR ¼ rtð0Þ; . . . ; rtðq�1ÞÞ

¼
X

r0 ; ...; rq�1 s:t: p¼f ðb0; r0; ...; rðq�1ÞÞ
PrðR ¼ r0; . . . ; rq�1Þ

ðsince individual response ri are IIDÞ
¼ PrðP ¼ p jB ¼ b0Þ

thus proving Equation A and the independence of P and

B. Note that the result also holds for B representing a

code word, and P representing the sequence of helper

information (indices) for each code word bit. In this

case, R represents all the PUF output bits necessary to

generate all the indices, and p and t represent f1/f0
swaps corresponding to each code word bit.

Theorem 1 implies the following:

First, additional knowledge of index P does not leak

additional information about B (that is, H(B | P) ¼ H(B)).

This is true even when the adversary is given the knowl-

edge of statistical distribution for PUF output R and input

bit B. It’s also true when B values are correlated with one

another (e.g., as k and parity values in the context of tra-

ditional error correction). Finally, this is true even if the

PUF output distribution is not perfectly normal (or not nor-

mal at all), as long as IID still holds.

Second, given a population of PUFs, and an adversary

who has broken those PUFs and gathered systematic (pop-

ulation) information, additional information of P ¼ p on a

new PUF does not aid the adversary, from an information-

theoretic standpoint, in recovering B on that new PUF.

Third, P does not induce min-entropy loss on B:

~H1ðB jPÞ ¼ H1ðBÞ

Proof:

H1ðB jP ¼ pÞ � �log2ðPrmaxðB jP ¼ pÞÞ
¼ �log2ðmaxfPrðB ¼ 1 jP ¼ pÞ;

PrðB ¼ 0 jP ¼ pÞgÞ
¼ �log2ðmaxfPrðB ¼ 1Þ; PrðB ¼ 0ÞgÞ
¼ H1ðBÞ ðdue to Theorem 1Þ ðEÞ

Now, consider how much information about B in terms

of min-entropy is revealed when P is revealed, when P is

taken all possible values of p. We use average min-

entropy measure as defined by Dodis et al.:1

~H1ðX jY Þ � �log2ðEy Y ½2�H
ðX jY ¼ yÞ
1 �Þ

In our example, X ¼ B; Y ¼ P ; and y ¼ p. Now, we com-

pute the expected value over P :

2�H1ðB jP¼0Þ ¼ 2�H1ðBÞ since P is independent of B, as

shown in Equation E.

The same would apply for all other values of P , (e.g.,

P ¼ 1, P ¼ 2, . . . , P ¼ q� 1).

Therefore,

~H1ðB jPÞ ¼ �log2ðEp P ½2�H1ðB jP¼pÞ�Þ
¼ �log2ð½q � 2�H1ðBÞ�=qÞ
¼ �log2ð½2�H1ðBÞ�Þ ¼ H1ðBÞ

Reference
1. Y. Dodis, L. Reyzin, and A. Smith, ‘‘Fuzzy Extractors: How to

Generate Strong Keys from Biometrics and Other Noisy Data,’’

Proc. Eurocrypt 2004, LNCS 3027, Springer, 2004, pp. 523-540.
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Table 1. National Institute for Science and Technology (NIST) statistical tests for randomness: success ratio for PUF

syndrome indices.

Statistical test

NIST input

parameters

Success

ratio (%)*

(Chip A)

Success

ratio (%)

(Chip B)

Success

ratio (%)

(Chip C)

Success

ratio (%)

(Chip D)

Reference random

bits from George

Marsaglia’s

Random Number

CDROM** (%)

Frequency �� 98 100 98 99 98

97 97 99 97

99 98 98 97

98 98 97 99

BlockFrequency 128 99 98 100 98 97

99 100 100 100

98 100 100 100

98 96 99 100

CumulativeSums �� 98�99 99�100 98�99 97�99 98�99

97�98 97�98 99�99 97�97

98�98 98�98 99�99 98�99

97�98 99�99 98�99 99�99

Runs �� 98 100 99 98 100

97 98 98 99

98 99 100 88

98 99 100 97

LongestRun �� 100 100 97 96 97

99 100 99 100

99 97 100 100

98 100 98 98

Rank �� 100 97 96 99 100

99 99 100 100

99 99 98 99

99 100 98 100

FFT �� 100 100 100 100 100

100 99 100 100

100 100 100 100

100 100 100 100

NonOverlappingTemplate 9 95�100 94�100 95�100 95�100 95�100

97�100 97�100 97�100 95�100

97�100 97�100 97�100 97�100

97�100 97�100 95�100 97�100

OverlappingTemplate 9 98 99 98 99 97

99 98 99 98

99 98 98 100

100 100 100 99

(Continued)
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temperature extremes). It’s possible to infer from

the data that for a block size of 63, application of

IBS with simple 3� repetition coding reduces the

errors to correct from 23 bits (35.9%) to 6 bits

(9.4%) for provisioning at 1.2 V � 10%, 20�C,

generation at four corners. Over 2 million autocor-

relation runs were used to compile the right

curve, indicating that the probability of seven or

more bit errors is less than 0.5 ppm. This means

that a BCH (63, 30, t ¼ 6) corrects errors across

Table 1. (Continued)

Statistical test

NIST input

parameters

Success

ratio (%)*

(Chip A)

Success

ratio (%)

(Chip B)

Success

ratio (%)

(Chip C)

Success

ratio (%)

(Chip D)

Reference random

bits from George

Marsaglia’s

Random Number

CDROM** (%)

Universal �� 99 100 100 100 100

98 99 100 96

99 99 97 98

99 98 99 99

ApproximateEntropy 10 99 99 98 100 100

100 100 98 98

97 99 100 99

99 100 99 99

RandomExcursions �� 96�100 94�100 96�100 98�100 98�100

97�100 98�100 99�100 97�100

100�100 97�100 96�100 96�100

98�100 98�100 96�100 100�100

RandomExcusionVariant �� 96�100 97�100 98�100 98�100 93�100

98�100 96�100 97�100 97�100

97�100 95�100 96�100 95�100

95�100 94�100 95�100 96�100

Serial 16 99�99 97�100 98�100 98�99 98�100

98�99 97�97 98�99 98�99

98�100 97�98 100�100 98�100

99�100 98�100 98�99 98�98

LinearComplexity 500 100 100 97 98 100

99 98 100 100

98 97 96 99

99 99 99 100

Cumulative p-values 100 100 100 99 100

(752/752)

pass

(752/752)

pass

(752/752)

pass

(750/752)

pass

(188/188)

pass

Cumulative proportions 99 99 99 99 98

(748/752)

pass

(747/752)

pass

(749/752)

pass

(747/752)

pass

(184/188)

pass

*The first line is for the DC all 1s case; the second line is for the DC all 0s case; the third line is for the AC 1010s case; and the last line

is for the AC 0101s case.

**http://www.stat.fsu.edu/pub/diehard/
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these environmental conditions at an error rate less

than 0.5 ppm.

We performed the analysis described here before

we completely built the IBS hardware in FPGA as a

part of the design derivation and refining process;

consequently, much of the design was emulated in

software but using PUF information derived across

12 Xilinx Virtex-4 LX25 FPGAs, each with a single

PUF. An all-hardware design was then derived, after

this analysis, to confirm the results of data obtained

from partial software emulation. This (early) all-

hardware design contained an IBS enmapper/

demapper with fixed 3-bit indices and 3� repetition

coding, a BCH (63) decoder hardwired to t ¼ 6 bits

of error correction, and a PUF circuit.

This design was tested in extreme temperature

conditions and never failed over tens of millions of

error correction blocks. We performed more extreme

temperature and voltage stressing tests using an even

more mature hardware design on Virtex-5 FPGAs.

This scheme, by using IBS with simple 3� repeti-

tion coding and 3� majority decoding, reduces the

BCH complexity requirement. Instead of using a

BCH (255) code, for example (as Suh suggested3),

we used a BCH (63) code, which has a 16� reduction

in complexity. (BCH decoder complexity grows
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Figure 6. Coding gain of IBS. Number of errors before index-based syndrome decoding is 23 bits for a block size

of 63 (a), and after applying IBS, the number of bit errors is reduced to 6 (b). This results in a significant reduction

in total error correcting code logic complexity, and greatly improves the stability of PUF-derived secret bits across

wide environmental conditions.
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approximately with the square of the block size.)

However, as Suh’s research showed,3 the code does

not correct across as extreme temperature condi-

tions, and corrects across smaller voltage variations.

If a BCH (511) code is required to produce an equiv-

alent environmental robustness, there’s a 64� reduc-

tion in complexity using IBS with simple repetition

coding.

Results on Xilinx Virtex-5

IBS also reduces error correction requirements in

designs implemented for Virtex-5 FPGAs. The design

used was more mature than the one used with

Virtex-4. Specifically, the Virtex-5 version had a higher

degree of programmability and more sophisticated

debug and data-gathering facilities.

Table 2 shows representative results obtained from

one Virtex-5 device for a 63-bit block size. We per-

formed provisioning at 25�C, at a nominal core volt-

age of 1.0 V. When regeneration was done at the

fast corner (�55�C, 1.1 V), three bit errors occurred

at 4.8 ppm, and four bit errors were not observed

for more than 1.65 million blocks, indicating that

the probability of four bit errors was less than

0.6 ppm. An ECC to correct three bit errors out of

63, based on this data, has a block failure rate less

than or equal to 0.6 ppm. Alternatively, retry mecha-

nisms can be used, or errors can be forgiven, depend-

ing on the application. Regeneration at the slow

corner (125�C, 0.90 V) showed comparable results,

but only 47,160 sample blocks were taken, so our

results lacked resolution. We can safely say that if a

t ¼ 6 corrector is used, block error rates are likely

to be well below 1-ppm levels. Note that the result

of applying 3 � repetition coding with IBS is even

more dramatic, with a maximum of a 1-bit error in

the data set (see the two rightmost columns in

Table 2).

IBS HAS TWO major advantages. First, the technique

can be shown formally (and affirmed by NIST test

results) to be information-theoretically secure in that

the syndrome does not leak additional min-entropy

on the hidden secret bits. Second, the index-based

coding technique, by its very nature, is robust. Error

correction block failure rates can be easily driven

below 1 ppm, which was empirically demonstrated

in Xilinx Virtex-4 and Virtex-5 FPGAs. Future work

Table 2. IBS test results for Xilinx Virtex-5.

Bit errors

I(3)*

P(25ºC, 1.0 V)**

R(25ºC, 1.0 V)***

(Nominal)

I(3)

P(25ºC, 1.0 V)

R(�55ºC, 1.0 V)

I(3)

P(25ºC, 1.0 V)

R(�55ºC, 1.1 V)

(Fast, Fast)

I(3)

P(25ºC, 1.0 V)

R(125ºC, 0.9 V)

(Slow, Slow)

I(3R3)

P(25ºC, 1.0 V)

R(25ºC, 1.0 V)

(Nominal)

I(3R3)

P(25ºC, 1.0 V)

R(�55ºC, 1.0 V)

0 54.0% 59.5% 47.0% 55.5% 93.3% 94.8%

1 37.0% 23.9% 40.0% 35.6% 6.7% 5.2%

2 8.9% 16.6% 13.0% 5.3% <¼ 0.27 ppm <¼ 172 ppm

3 133 ppm <¼ 6.24 ppm 4.8 ppm 3.6%

4 <¼ 33.3 ppm <¼ 0.6 ppm <¼ 21.2 ppm

5

6

Total

samples

30,015 160,185 1,650,060 47,160 3,668,205 5,820

Block

failures

with BCH

(63,30, t=6)

None

(	 33.3 ppm)

None

(	 6.24 ppm)

None

(	 0.6 ppm)

None

(	 21.2 ppm)

None

(	 0.27 ppm)

None

(	 172 ppm)

*I(3)¼ 3-bit Index ; I(3R3) adds 3� Repetition Coding.

**P(.)¼ Provisioning conditions

***R(.)¼ Regeneration conditions
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includes characterizing the stability of PUF-derived se-

cret bits across a wider range of environmental para-

metrics, for example, to account for aging and

radiation effects, as well as adapting IBS to a wider

range of PUF and biometric sources. �
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