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"While the solid appears in itself dead, moved only from without, the liquid

and volatile make the impression of independent mobility and vitality..."

-quoted by Ved Mehta, The Stolen Light

Nur ein nar messt wasser.

[Only a fool measures water.]

-Old Yiddish Saying
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Abstract

Rotating baroclinic and barotropic boundary currents flowing around a cor-

ner in the laboratory were studied in order to discover the circumstances under which

eddies were produced at the corner. Such flows are reminiscent of oceanic coastal

flows around capes. When the baroclinic currents, which consisted of surface flows

bounded by a density front, encountered a sharp corner, immediately downstream

of the corner an anticyclone grew in the surface layer for an angle of greater than

40 degrees. Varying the initial condition of the flow or the depth of the lower layer

did not noticeably affect the gyre's properties except for its growth speed, which was

greater when the lower layer was shallower. The barotropic currents were pumped

along a sloping bottom, and also formed anticyclonic gyres which quickly attained

an approximately steady state. For a given topography, the size of the gyre was

proportional to the inertial radius u/f. Volume flux calculations based on the sur-

face velocity revealed vertical shear which increased with gyre size. Hydraulic models

were also applied to flow around gently curving topography to determine the critical

separation curvature as a function of upstream parameters.

Thesis Advisor: Dr. J. A. Whitehead
Title: Senior Scientist, Woods Hole Oceanographic Institution
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Chapter 1.

Introduction

1.1. Coasts, Currents, Capes, Channels, and Gyres

A dominant feature of the world's oceans is the ubiquity of eddies. Though

the forcing of the general circulation is dominated by the basin-scale patterns of wind

stress and surface heating and cooling, much of the energy of ocean currents resides

in mesoscale structures, which have a spatial scale on the order of the local internal

radius of deformation, and sub-mesoscale features. Since mesoscale eddies in the

ocean are thought to be largely a consequence of baroclinic and barotropic instability

of larger scale mean currents, much work on eddy generation has concentrated on the

instability of geometrically simple currents, such as zonal or circular flows. However,

it is also interesting to contemplate the dynamics of other mechanisms which may

produce eddies. Laboratory and computer experiments as well as oceanic observations

have shown that coastal currents that flow around a convex corner, such as a cape,

are capable of generating eddies. In this thesis, we attempt to shed some light on the

dynamics governing such eddy generation.

The Mediterranean Outflow is a prime example of a current flowing along

a lateral boundary with a convex bend in it (see Figure 1.1.1). This current is a

buoyancy-driven flow from the salty, warm Mediterranean to the relatively fresh

and cold Atlantic (Ambar, Howe and Abdullah, 1976; Ambar and Howe, 1979a,b;

Grundlingh, 1981; Howe, 1982; Madelain, 1970; Thorpe, 1976; Zenk, 1970, 1975,

1980). While the character of the dense plume is dominated by mixing and friction

as it descends from the sill at Gibraltar along the continental shelf, by the time it

reaches Cape Saint Vincent at the western end of the Gulf of Cadiz (Figure 1.1.1),

it has attained a stable depth range marked by salinity and temperature maxima



Figure 1.1.1: Flow of Mediterranean Outflow in Gulf of Cadis (Zenk, 1975, Figure 1).



centered at 1200 m and 800 m (Figure 1.1.2). As the Mediterranean water emerges

from the Strait of Gibraltar, it rests completely on the sloping bottom, but by the

time it reaches Cape Saint Vincent, the Outflow is bounded both above and below by

Atlantic water, with the continental slope acting as a wall rather than a floor. Aver-

age current speeds of 20-35 cm/s have been measured in the Mediterranean Outflow

in the Gulf of Cadiz, with a current width on the order of 20 km for the flow filament

closest to the shore and 60 km wide if we include other westward-flowing filaments

(Figure 1.1.1).

Related to the Mediterranean Outflow are meddies, which are anticycloni-

cally circulating subsurface lenses of water with water properties of the Outflow (Armi

and Zenk, 1984; Kase and Zenk, 1987; Richardson et al., 1988). A typical meddy has

a radius on the order of 50 km, maximum azimuthal current speeds of 20-25 cm/s,

and vertical property distributions as shown in Figure 1.1.3. While the maxima in

property anomalies and rotation speed are clearly deep in the thermocline (as in the

Mediterranean Outflow, at about 1200 m), there is evidence that meddies do have a

significant surface vorticity (Kase and Zenk, 1987).

The best studied meddies have all been observed on the order of 1000 km

west of Cape Saint Vincent even though the meddy water characteristics are indicative

of an origin near Cape Saint Vincent. Swallow (1969) reports a cyclone observed in

the Gulf of Cadiz. His hydrography also showed a weak lens of salty water reminiscent

of a meddy, but drifters placed in it showed no anticyclonic rotation. Sanford (1988,

personal communication) reports an anticyclone observed forming off Cape Saint

Vincent, but its 30 cm/s velocity maximum was only about 5 km from the center.

Armi and Zenk (1984) estimate that it would take 20 days for the main branch and

10 days for the entire current to form a meddy. Richardson et al. (1988) estimate

that 8 to 12 meddies are formed a year, implying that meddy formation must be

happening at least a third of the time.



stations

Figure 1.1.2: Cross-shore profile of Mediterranean Outflow along line extending south from about
30 km south of Cape Saint Vincent (Ambar and Howe, 1979a, Figure 5). (a) Temperature, (b) salin-
ity.
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D'Asaro (1988) has hypothesized that meddies are generated by the Mediter-

ranean Outflow at Cape Saint Vincent. He considered this an example of eddy genera-

tion by a boundary current encountering a corner. Another example is the generation

of Beaufort Sea sub-mesoscale vortices by a surface coastal current flowing past Point

Barrow on the northern coast of Alaska (Figure 1.1.4). There is better direct evidence

of anticyclonic eddy formation at Point Barrow than there is at Cape Saint Vincent.

For instance, in the summer of 1971 an occupied ice floe was carried along the coast

by the current and after passing Point Barrow executed two anticyclonic loops with

approximate radius of 5 km (about a Rossby radius) and approximate period of one

day (Figure 1.1.5). Satellite infrared photography during the summer also shows sim-

ilarly scaled cyclonic and anticyclonic features. In D'Asaro's conception, friction at

the inshore edge of the coastal current generates a layer of negative vorticity, as in

non-rotating flows, which is the source for the large negative relative vorticity of the

anticyclonic eddies. Meddies have smaller negative relative vorticities, with rotation

periods at the velocity maximum on the order of a week rather than a day.

There are other theories for the generation of meddies, such as McWilliams'

(1985) proposal that they are formed by geostrophic adjustment as the plume descends

from the Strait of Gibraltar. The most compelling of these explanations of meddy

generation is the work of Kase and Zenk (1987) and Kase, Beckmann, and Hinricksen

(1989). Their models suggest that meddies are broken off from the Mediterranean

Outflow by stronger currents above the thermocline in the Atlantic off the coast of

Portugal.

A situation which is similar to that of a coastal current flowing around a

corner is that of the outflow from a strait which can form a gyre at the mouth of

the strait. Such anticyclones have been observed in the Alboran Sea in the western

Mediterranean (see Figure 1.1.6 and Lanoix, 1974) and in the outflow of the Tsugaru

Sea in Japan (Conlon 1982; Kawasaki and Sugimoto, 1984). The Alboran gyre is fed



Figure 1.1.4: (a) Location and (b) topography of Barrow canyon and Point Barrow, suspected

generation site of Beaufort Sea eddies (D'Asaro, 1988, Figure 1). Contours deeper than 1000 m are

not shown.

Figure 1.1.5: Track of ice flow showing anticyclonic motion past Point Barrow, August 6-9, 1971,

with heavy dots six hours apart (D'Asaro, 1988, Figure 4).



Figure 1.1.6: The Alboran gyre as seen in dynamic height map of western Mediterranean Sea

(Donde Va Group, 1984).
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by the surface current which flows into the Mediterranean from the Strait of Gibraltar

and detaches from a bend in the North African coast. The Tsugaru outflow is also a

surface current, which has a seasonal change from a mode that remains attached to

the coast and one that forms a gyre. Bormans (1988) reviews the literature on gyres

produced by such flows. Numerical models of the Alboran gyre (Loth and Crepon,

1984; Preller, 1985; Werner et al., 1988) reproduced the gyre but did not isolate its

cause.

The generation of eddies by a current flowing around a corner has been

observed in several laboratory experiments in rotating systems.

Whitehead and Miller (1979) conducted a series of experiments in a rotating

channel that opened at either end into a wider basin. The bends in the wall consisted

of segments of circles. Initially a dam or gate was placed across the center of the

channel, separating salty, dense water on one side from fresh, light water on the other

(Figure 1.1.7). When the gate was removed, geostrophic adjustment created a current

in each layer moving in opposite directions. The Rossby radius of deformation was

varied from run to run, and the radius p of the circular bends in the walls took one of

two values for each run. For a Rossby radius R small compared to the channel width

We, the currents had a width of about R and were concentrated close to the right

hand wall looking downstream. For R < We, the current was unstable, producing a

series of vortices of both signs, and for R > WC, the current veered right to stay near

the wall as it emerged from the channel. For R > p the current outside the channel

formed an anticyclone between the current and the wall near the channel opening.

This eddy grew with time, but stayed attached to the wall. Figure 1.1.8 summarizes

results.

Bormans and Garrett (1989) conducted similar experiments in which the

fresh current flowed into water which had an ambient surface fresh layer. The relative

depths of the two fresh layers controlled the Rossby number of the flow. For flows in
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Figure 1.1.7: Laboratory apparatus for experiments in which channel opened into wider basin and
flow was initiated by geostrophic adjustment (Whitehead and Miller, 1979, Figure 3).

Figure 1.1.8: Representative flow regimes, channel flow into wider basin (Whitehead and Miller,

1979, Figure 4). Photos show surface currents flowing into dark region of tank, with each column a
different time sequence. From left to right, shows increasing Rossby radius runs: violently unstable
flow, moderate instability, coastal trapped current, and single gyre downstream of corner.
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which p > We, a gyre was formed when u/fp > 1 for velocity scale u and Coriolis

parameter f. Whitehead and Miller's results were compatible with this relation, since

in their flow R was approximately u/f. For p < We, the distinction between different

regimes is not clear. Kawasaki and Sugimoto (1984, 1988) also conducted similar

experiments, except they pumped the fresh water into a channel whose mouth had

a sharp corner rather than a rounded one. They also controlled the Rossby number

of the flow, and found that for Rossby number greater than about .5 a gyre was

formed as in the other studies, but no gyre was formed for low Rossby number flows.

Primitive equation models of lock-exchange flow from a strait (flow out of the strait

at the surface and into the strait at depth) developed an anticyclone for a Rossby

number of about .6 (Wang, 1987) but produced a bulge with no apparent anticyclonic

rotation for a Rossby number of about .2 (Chao and Boicourt, 1986).

The only study of a rotating coastal current flowing around a corner is that of

Stern and Whitehead (1990), who used a pump to create a turbulent barotropic flow

next to a straight wall with a sharp corner. The current tended to stay attached to

the wall downstream of the bend for small total bend angle and for flows for which the

distance of the velocity maxima to the wall were small compared to the current width.

For higher corner angles, it separated from the corner in a very different manner from

the baroclinic flows emerging from channels. Instead of the current flowing around a

single anticyclonic gyre and re-attaching to the wall further downstream, it broke into

dipoles which propagated away from the coast and did not re-attach (Figure 1.1.9).

In all of the laboratory experiments and in almost all of the numerical studies of strait

outflows described above, the flow was baroclinic (or reduced gravity), indicating that

the stratification is a decisive factor in determining the nature of the flow separation

at the corner, probably due to the stability characteristics of the flows. However,

Loth and Crepon (1984) ran a barotropic model which also produced a single gyre.



I/

Figure 1.1.9: Top view of dyed barotropic jet which flows along wall and separates at corner of

angle 500. Photographs are 1 min apart, starting at top left and ending at bottom right. The nozzle

is 35 cm from the corner (Stern and Whitehead, 1990, Figure 18).
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Boyer and Davies (1982), Boyer and Kmetz (1983) and Boyer and Tao (1987)

observed the generation of eddies by uniform flow past obstacles in rotating systems.

In the first two of these studies, homogeneous fluid flowing past a right circular

cylinder produced eddies on the downstream side of the obstacle. In the third, linearly

stratified salt water flowed past a wall with a protruding triangular "cape" with

linearly sloping sidewalls. This also produced a gyre on the downstream side of the

obstacle. Signell and Geyer (1991) performed numerical simulations of high Rossby

number, barotropic flow past a headland with similar results.

1.2. Flow Separation in a Rotating and Non-rotating
World

Since the late nineteenth century, fluid dynamicists concerned with the lift

generated by an air foil, the drag on a moving automobile, the interaction of wind

with buildings, or flow through a widening pipe, have studied eddies generated by the

separation of a current from the solid object in question (Prandtl, 1957; Batchelor,

1967; Schlichting, 1979). In all those cases, the flow can be thought of as consist-

ing of an inviscid, irrotational flow in most of the fluid domain, with a thin layer of

frictionally-dominated vorticity connecting the irrotational flow to the no-slip con-

dition that must be enforced at the solid boundary. There exists a comprehensive

body of information about how the presence of the viscous boundary layer produces

separation in such non-rotating flows. However, when rotation must be considered, as

in geophysical applications, several new elements are added which have the potential

to radically change the nature of how a current separates from a boundary.

In addition to the ubiquity of eddies, oceans are also distinguished by the

presence of numerous boundary currents. In contrast to non-rotating flows, in which

boundary layers are marked by a decrease in flow speeds relative to the rest of the fluid,



ocean currents near a boundary are frequently much stronger than flows in the rest of

the neighborhood. In rotating systems, veering induced by the Coriolis force tends to

push currents up against a lateral boundary in a number of ways. There are alongshore

currents due to coastal upwelling, coastal downwelling, buoyancy sources, and larger

scale western boundary currents which can be pushed by the wind or by thermohaline

forcing. Any pressure gradient directed perpendicularly to the coast ("cross-shore")

will induce a flow parallel to the coast ("alongshore") so that forcing that would induce

jets directed away from a boundary in a non-rotating system creates a boundary

current when the system is rotating. A more subtle consequence of rotation is that

there are wave modes for a wide range of frequencies and wavelengths that propagate

along coasts but not into the interior of basins. This is important because the direction

that a signal may travel determines where a current will be established when there

is some localized disturbance in a density or sea surface height field. Kelvin waves

propagate along a coast with the boundary to the right in the northern hemisphere

(to the left in the southern hemisphere) if we face in the direction of propagation,

so a buoyancy current will propagate in this direction. A similar phenomenon may

occur in homogeneous fluid over a sloping bottom, in which case topographic Rossby

waves propagate along isobaths.

In non-rotating flows viscosity is ultimately the only source for vorticity in

the fluid, and in practice the viscous boundary layers near solid boundaries are the

main sources of water parcels that have vorticity. In a rotating system, all water

has ambient vorticity due to the rotation itself. In geophysical flows, the vertical

component of the background, or "planetary" vorticity (the Coriolis parameter f)

can be converted to relative vorticity by vertical stretching and compressing of water

parcels as well as changes in the latitude of the water parcel. In this study we only look

at flows for which the horizontal scale is small enough to ignore latitude variations.



In the limit of relative vorticity C small compared to f and friction also

small, there are two consequences which combine to constrain homogeneous density

flows to approximately follow isobaths. Such flow can not support vertical shears

in horizontal velocity, so that we can define a potential vorticity q = (f + C)/h to

characterize an entire column of water from water surface to floor, where h is the

height of this column. Potential vorticity is conserved, so that if a column of water

moves across an isobath, h changes, then ( must change by a corresponding amount

in order to keep q constant. If we have ( << f, however, large changes in h can not

be compensated, thus not allowing the water parcel to change its thickness by much.

Since isobaths near coasts inevitably tend to parallel the coastline, this provides an

additional impetus on fluids with little or no stratification to have strong flows parallel

to the coast.

Finally, rotation has a more subtle effect which is due to the presence of the

Ekman layer at the base of the fluid. This effect, discovered by Merkine and Solan

(1979), will be described at the end of the next section.

These differences between rotating and non-rotating flows can have a number

of consequences. In non-rotating two-dimensional flows, for which the most complete

work on current separation and eddy generation has been conducted, the viscous

boundary layer is the only source for small scale structure in the fluid. Irrotational

flow is determined entirely by the boundary conditions, which consist of the shape

of the solid boundaries of the domain as well as the distributions of sources and

sinks of fluid at the borders of the domain. Such irrotational flow can not support

an interior streamfunction maximum (which would produce closed streamlines inside

the current) or a geographically localized current. In three dimensional non-rotating

flows, a richer vocabulary of motion is allowed, but there is still no special tendency

to form flows that stay near lateral boundaries, so that there is nothing to inhibit

the separation of a flow from such a boundary. For these reasons the story of eddy



formation at solid boundaries in non-rotating fluids is essentially the story of viscous

boundary layer separation. The special features of the rotating fluids described above,

namely the ability of rotating fluids to convert vorticity associated with the system's

rotation to relative vorticity, as well as the prevalence of isolated boundary currents,

presents us with the possibility that the dynamics governing the separation of currents

at boundaries in rotating fluids is quite different from the dynamics of flow separation

in non-rotating fluids.

1.3. Previous Theoretical Studies

Classical theory of two dimensional flow separation begins with the scaling

argument that allows us to study a subset of the equations of motion which applies to

a thin layer near the wall. Restricting ourselves to steady state flows, and following

Batchelor (1967), we assume that everywhere except near the wall, friction is a small

effect which can be ignored. In the event of separation, this assumption breaks down,

but it is a useful device for discovering when separation must occur. One calculates

the solution to the corresponding inviscid problem, which is mathematically more

tractable, and then finds a boundary layer solution near the wall in order to satisfy

the boundary condition of no flow tangent to the wall at the wall. If to lowest order

in the along-wall momentum equation the downstream advection of momentum and

cross stream diffusion of momentum are of the same order, then the width scale

for the boundary layer is given by 6 = V/UL = 1/V/Re, where U and L are the

speed and alongstream length scales, v is the viscosity, 6 is the boundary layer width

scale divided by L, and Re = UL/v is the Reynolds number and must be large if

S is to be small. A consequence of this scaling is that in the boundary layer the

pressure is approximately independent of the cross-wall coordinate, so that near the

wall the pressure is given by the pressure calculated for inviscid flow just outside the

boundary layer. Separation can occur when the pressure gradient along the wall is



pushing in the opposite direction of the flow. While this pressure gradient may be just

enough to retard the inviscid flow just outside the boundary layer, inside the boundary

layer, friction has slowed the flow enough so that the adverse pressure gradient can

actually reverse the direction of flow, thus producing a gyre "downstream" of the

separation point and forcing fluid from "upstream" to leave the wall. The inviscid

flow around a corner accelerates upstream of a corner and decelerates downstream,

and it is this deceleration that produces the adverse pressure gradient and hence

separation. Similarity solutions for simple cases show that not all adverse pressure

gradients produce separation, but the inviscid deceleration must be very small if the

boundary layer is to stay attached.

Several authors have discussed rotating separation processes which are dif-

ferent from boundary layer separation in non-rotating fluids. We now review the main

features of these studies.

Kubokawa (1991) used a reduced gravity, quasigeostrophic contour dynamics

numerical model to simulate flow out of a sea strait into a basin. The outflow consisted

of two regions of uniform potential vorticity, with negative quasigeostrophic potential

vorticity in the right side of the current (looking downstream) and zero potential

vorticity in the left region (see Figure 1.3.1). Contour dynamics is an inherently

inviscid formulation of the equations of motion, so there was no friction. Depending

on the parameters of the outflow, the flow in the basin took one of three basic states.

In all three states, water parcels in the flow eventually veered to the right (the rotation

of the system was counterclockwise) as they left the channel mouth and flowed along

the edge of the basin to infinity. In one state, the veering was immediate. In another,

fluid tended to accumulate just outside the mouth of the channel, forming a bulge

of introduced fluid that grew with time, though the component of velocity parallel

to the coast was always directed away from the mouth of the channel. Finally, there



was a state in which some of the fluid in the bulge formed an anticyclonic gyre which

grew with time.

Kubokawa explained the existence of the bulge and gyre with reference to the

volume flux in each region of potential vorticity and to the propagation of waves along

the coastal current formed outside the strait. Inside the strait, the current is bounded

by the two walls of the strait. Outside, the zero potential vorticity flow is unbounded

on the offshore side. Some values of volume flux that are possible in the strait are

greater than any possible volume flux far downstream with the boundary conditions

described above. This causes fluid to pile up in a bulge. Reverse flow occurs in the

bulge when waves on the potential vorticity front travel upstream, which happens

for sufficiently large (negative) vorticity. In this problem, the necessity of a coastal

current forming from the strait outflow, the cross-stream interface slope, and the

resulting formulation of the volume flux expressions and vorticity-front waves are all

unique to rotating systems.

While Kubokawa's model produces flows which are similar to those seen in

the lab by Kawasaki and Sugimoto (1984, 1988), Bormans and Garrett (1989) and

Whitehead and Miller (1979), and his explanation of his contour dynamics results

is quite compelling, the model is unable to account for several important features of

eddy generation. Since the volume flux condition is based on an asymmetry between

upstream flow, which is confined to a channel, and downstream flow, which spreads

out over a semi-infinite domain, the explanation is dependent on the existence of the

channel upstream of the corner. If the upstream flow is bounded by a free streamline

or a density front, as it is in the experiments performed in this thesis, Kubokawa's

explanation does not apply. However, the importance of the direction of wave prop-

agation in this theory may carry over to coastal flows, if some other disturbance,

perhaps in the initial condition of the flow, plays the role that the volume flux asym-

metry plays in the channel outflow case. If such a flow is bounded by a density front,



the waves that must be examined are frontal waves such as those analyzed by Kill-

worth and Stern (1982); Killworth, Paldor and Stern (1984); Kubokawa and Hanawa

(1984); and Kubokawa (1986, 1988). Kubokawa's condition also does not take into

account local conditions at the corner, such as radius of curvature (taken to be zero

in Kubokawa's model) or total corner angle (90* in his model).

Stern and Whitehead (1990) used contour dynamics to explain the results

of their experiments with barotropic coastal currents that separate at a sharp corner.

The coastal current consisted of two piecewise regions of non-zero vorticity, with low

vorticity on the inshore side of the current and high vorticity on the offshore side (see

Figure 1.3.2). In this case the rotation of the current is dynamically irrelevant except

insofar as the Taylor-Proudman theorem serves to two-dimensionalize the flow. If we

think of the current as being composed of the union of many vortex patches, then

when the leading edge, or "nose" of the current encounters the corner with a large

enough angle, the corner distorts the velocity field associated with each vortex patch

so that the the resultant velocity field carries the leading edge of the current away

from the wall.

An elegant way of looking at rotating coastal flows is through a class of

models which we may call hydraulic theory (Gill, 1977). In such a theory, an invis-

cid, steady flow is considered in the limit in which alongstream variations are long

compared to the width of the current. Such a scaling allows us to ignore alongstream

derivatives in the equations of motion, so that the cross-stream structure of the cur-

rent at any point is governed by a set of ordinary differential equations which only

depend parametrically on the downstream coordinate through some quantity such as

local topography or coastline curvature. The effect of coastline curvature was studied

by Roed (1980) and Ou and de Ruijter (1986) for uniform potential vorticity, reduced

gravity flows, and by Hughes (1989) for barotropic currents, with continuous poten-

tial vorticity variations, flowing over isobaths that were parallel to the coast. These



p P0+AP

Figure 1.3.1: Configuration for inviscid, quasigeostrophic strait outflow model which produces
anticyclones at the corner (Kubokawa, 1991, Figure 2).

Figure 1.3.2: Initial condition of barotropic jet flowing along a wall towards a sharp corner (Stern
and Whitehead, 1990, Figure 5).



currents can be said to separate from the coast when for a given coastal curvature,

there is no unidirectional current flowing in a specified direction along the coast that

has the appropriate potential vorticity and other conserved quantities prescribed up-

stream of the region of curved coastline. The reduced gravity currents were found to

separate from the coast at a region of positive curvature (a cape) in the sense that the

depth of the density interface bounding the flow must become negative if the curva-

ture is greater than a critical value. However, the value of the critical curvature was

only found for a single point in parameter space. The barotropic currents separated

by undergoing a flow reversal near the coast when the curvature was great enough.

The reduced gravity hydraulic models above are candidate explanations of

the separation of baroclinic currents rounding a corner in the dam-break experiments

described above. However, the lack of quantitative predictions makes the theory

difficult to test. The barotropic theory is somewhat cumbersome to test because

it is formulated in such a way that the velocity profile of the current is not made

explicit. No laboratory experiments in which steady currents flow around a corner

over a sloping bottom have been reported. The hydraulic models also do not tell

what kind of separation occurs. In particular, a hydraulic model can not tell whether

a gyre is formed when separation occurs or whether the flow simply leaves the coast

at some point. Whitehead and Miller (1979) reported that a current impinging on a

wall bifurcated at the wall and speculated that a similar effect was causing the corner

anticyclone in their experiments; when water that had separated from the wall at the

corner returned to the wall, some was forced to flow back towards the corner from

the stagnation point. Whitehead (1985) attributes this reverse flow to a consequence

of the conservation of momentum.

Cherniawsky and LeBlond (1986) calculated the reduced gravity flow around

a sharp corner as an expansion in Rossby number for currents which decayed mono-

tonically to zero speed from the coast. They found that due to upwelling similar to



that found by Roed (1980), the current always separated from the coast upstream

of the corner and re-attached downstream, but for moderately small Rossby number

(.5 and less), the region was very small compared to either the Rossby radius or the

width scale of the current. This indicates that hydraulic models, though formally

invalid for small radius of curvature, may still describe phenomena, such as upwelling

separation, which actually occur when neglected alongstream derivatives are included.

However, no gyre appeared in Cherniawsky and LeBlond's flow, thus warning us to

be cautious in concluding that a current which is predicted to separate actually pro-

duces an eddy. Cherniawsky and LeBlond neglected time-dependence and friction

and produced a solution that is only formally true for small Rossby number, so that

any of these idealizations may account for the difference between their model and the

experiments and ocean observations described above.

If horizontal (but not vertical) friction is included in a flow model, the scaling

of the boundary layer is the same in the rotating and non-rotating cases. This is

because the Coriolis term in the alongshore component of the momentum equation is

proportional to the cross-shore velocity component v, but v is small within the viscous

boundary layer due to the condition that no fluid flows through the wall, which must

approximately apply to the inviscid flow outside the boundary layer. Modelling the

results of Boyer and Kmetz's (1983) experiments on uniform flow past a cylinder,

Merkine and Solan (1979) showed that rotation can affect separation of a frictional

boundary layer when the effect of the bottom Ekman layer is included. The Ekman

flux caused by friction between the floor and the water column is not constrained

to have a zero component into side walls. Therefore fluid in the Ekman layer that

is flowing towards [away from] a wall must flow down [up] in a "Stewartson layer"

close to the wall in order to satisfy continuity. This Stewartson layer, superimposed

on the lateral viscous boundary layer, adds another term to the vertically integrated

momentum equation near the wall. This term tends to inhibit separation at the wall.



In summary, there are a variety of candidate mechanisms, both viscous and

inviscid, steady state and time-dependent, with which to account for gyre formation

at a corner, but the actual cause of gyres at a corner is not understood. Werner et

al. (1988) used a reduced gravity model to try to isolate the dynamics of Alboran

Sea gyre. They found that a gyre was only formed when the advection terms in the

equations of motion were included and when a no-slip (as opposed to free-slip) bound-

ary condition was imposed. The latter finding differs from the results of Loth and

Crepon's (1984) quasigeostrophic model and Speich and Crepon's (1992) primitive

equation model, which produced an anticyclone in the Alboran Sea with a free-slip

boundary condition. There are also inconsistencies among three different models as

to the importance of relative vorticity of the strait outflow; Loth and Crepon needed

it to be positive to get a gyre, Preller's (1986) reduced gravity model produced a

stronger eddy when the relative vorticity was positive, and Werner et al. found that

vorticity had little effect on the flow. In all these studies, the strait was only about

4 gridpoints wide, thus limiting resolution.

1.4. Plan of the Thesis

In this thesis, gyre formation at a coastline bend is investigated with lab-

oratory experiments and theory. We start by exploring some earlier results on the

hydraulic theory of flows around curved coastlines. The main results of the thesis

are obtained in the chapters on laboratory results that follow. Experiments are per-

formed to answer some questions regarding eddy formation at a corner by a density

current. Further experiments explore a regime of eddy formation in a barotropic fluid

which has not been investigated before. While oceanographic examples of flow around

capes have various continuous stratifications, there are enough simple questions to be

asked about barotropic, reduced gravity, and two-layer currents that we will restrict

ourselves to these cases.



In Chapter 2, the hydraulic model of Roed (1980) and Ou and de Ruijter

(1986), and a similar model for barotropic currents, are solved for a range of points in

the parameter space controlling the flow. The purpose of obtaining the quantitative

relationship between the upstream parameters of the flow and the predicted minimum

radius of curvature needed for separation is to allow us to compare the predicted

radius of curvature with the actual radius of curvature needed for separation in the

experiments of Bormans and Garrett (1989).

Chapter 3 describes results from baroclinic experiments that are similar to

those of Miller and Whitehead (1979), Kawasaki and Sugimoto (1984, 1988), and

Bormans and Garrett (1989). Whereas those experiments involved density currents

flowing around corners at the mouth of a channel, in my experiments the left wall of

the channel is removed so that the flow is a coastal current upstream of the corner

as well as downstream. While earlier experiments found a critical radius of curvature

of the corner for which a gyre was produced, these experiments find a critical corner

angle for gyre creation. The experiments also explore how different lower layer depths

and different initial conditions affect eddy generation. These experiments obtain

quantitative data about the current upstream and downstream of corner.

In the barotropic experiments described in Chapter 4, flows of various strengths

are pumped over a sloping bottom and around a corner to see if the separation im-

plied by Hughes (1989) actually occurs. In fact eddies are produced by some of these

flows for a variety of related topographies, and their characteristics are studied.

Summaries and conclusions are presented in Chapter 5.



Chapter 2.

Hydraulic Models of Separation From
Curved Coastlines

2.1. Introduction

The separation of a coastal current from a curved boundary in a rotating

system has been studied but the dynamics has not been explained. Whitehead and

Miller (1979) and Bormans and Garrett (1989) performed laboratory experiments in

which a current was created by a dam-break and flowed through a channel into a

wider basin, where it either stayed attached to the wall outside the mouth of the

channel or separated from the wall to form a growing anticyclonic eddy just outside

the channel. The corner was rounded, with a radius of curvature which could be

varied relative to both the width and the Rossby radius of the current. Bormans and

Garrett's experiments suggest that separation occurs when the radius of curvature

is less than the inertial radius of the current, u/f for current speed u and Coriolis

parameter f. The dependence on the rotation parameter raises the possibility that

dynamics unique to a rotating system are involved in the separation of the current.

Roed (1980) and Ou and de Ruijter (1986) gave one possible mechanism for

this gyre formation. They studied inviscid, steady state, uniform potential vorticity

two-layer flows in which the bottom layer was infinitely deep and hence motionless.

Assuming that alongstream variations had a length scale that was long compared

to the width of the current allowed them to neglect derivatives with respect to the

alongstream coordinate in the equations of motion, so that the partial differential

equations became ordinary differential equations with respect to the cross stream

coordinate. The only ways in which the curvature of the boundary entered into the

equations of motion in this approximation were in a centrifugal term in the force



balance and a curvature term in the potential vorticity equation.

Roed examined a density front (Figure 2.1.1a) along which the current flowed

with the wall to its right looking downstream (his and our discussion are confined to

systems with counterclockwise rotation), while Ou and de Ruijter studied a current

bounded by a wall on its left and a free streamline on its right (Figure 2.1.1c). In both

cases, increasing the curvature of the wall, as one traveled downstream from a region

of zero curvature, decreased the layer thickness at the wall. At some critical radius

of curvature, the thickness became zero. This implies that if a rounded corner has a

greater curvature than the critical one, the solution has the physically meaningless

property of negative layer thickness at the wall, and it is impossible to have a steady

state flow with the current attached to the wall at the bend.

Though these two papers demonstrated that such a behavior exists, they

did not show how great a curvature a given upstream flow needs in order to actually

separate. In this chapter, I non-dimensionlize the equations somewhat differently

than Rsed did, and solve for the critical radius of curvature as a function of the

two non-dimensional upstream parameters which control the form of the boundary

current. This allows us to compare the different flow cases (front and free stream-

line) illustrated in Figure 2.1.1. A thorough examination of parameter space will

investigate the possibility that the current may separate due to a flow reversal rather

than a surfacing of the interface. Finally the separation criteria derived here can be

compared with the experimental results mentioned above. Ultimately, we would like

to see if inviscid, centrifugal upwelling can account for flow separation from a wall in

real laboratory and natural systems.

In order to gain a more complete understanding of the influence of cur-

vature in the simplified equations of motion, the long wave approximation is also

applied to barotropic flows, both with a flat bottom and a sloping bottom. In such

systems the momentum equation becomes unnecessary, and the dynamics is governed
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by the potential vorticity equation alone. For this reason rotation vanishes from the

formulation for the flat bottom case, which should display the same dynamics as a

two-dimensional, inviscid, non-rotating flow, though rotation reappears in the sloping

bottom case through the influence of bottom topography on potential vorticity. In

these systems, centrifugal upwelling cannot occur because there is no density interface

to upwell. However, it is possible that the current speed at the coast will reverse for a

great enough curvature. As in the reduced gravity case (flow above an infinite lower

layer), this flow reversal implies that separation of the current from the coast must

occur for sufficiently great curvature.

Hughes (1989) showed that a flow reversal does occur for a system with to-

pography that deepens exponentially with distance from a coast and with a potential

vorticity distribution profile that is an exponential function of the streamfunction.

In this chapter, we look at linear topographic slopes and flow profiles that consist

of one or two regions of uniform potential vorticity. This formulation is mathemat-

ically more simple than that of Hughes, and permits analytical solutions for both

upstream (straight coastline) and downstream (curved coastline) velocity profiles.

Hughes' continuously varying potential vorticity is perhaps more realistic, but the

equations must be numerically integrated to find the flow profile both upstream and

downstream (Hughes, 1989). The simplicity of flows with piecewise uniform potential

vorticity should also make it easier to compare the flat bottom, sloping bottom, and

reduced gravity systems with each other.

In this chapter, we will first derive the system of equations to be solved for

all of the cases described above, as well as the appropriate form of the equations

and boundary conditions for each case. Separate sections will deal first with the

barotropic flat bottom case, then barotropic sloping bottom case, and finally reduced

gravity flows. Though the barotropic sections precede the baroclinic section, the main

emphasis of the chapter is on the baroclinic work, because it is the most relevent to real



fluid flows. There are several problematical aspects of the barotropic work which will

be discussed below. Most importantly, after I performed the barotropic calculations,

analysis of my homogeneous-density laboratory data (see Chapter 4) showed that

processes involving vertical shear (which are not included in these shallow water

models) were important to the flow separation in homogeneous systems. However,

the barotropic results are included here because they do display some interesting

nuances of hydraulic theory.

2.2. The System of Equations to be Solved

Following Roed (1980), we start with the cross-shore component of the mo-

mentum equation, and the conservation of potential vorticity, both in curvilinear

coordinates.

+ vv - - + fu =-g'hy, (2.2.1a)
1 +y/p p~y

VW U
-U, +-" + f = qh, (2.2.1b)

1+19 ~p+y

where (u, v) are the alongshore and cross-shore components of velocity, (x, y) are

coordinates parallel to and perpendicular to the shore, h is the layer thickness, p is

the local radius of curvature of the shore (and the coordinate system), f is the Coriolis

parameter, g' is the reduced gravitational acceleration, and q is the potential vorticity.

The smaller p is, the larger the curvature, so that for a straight wall, p = oo, and for

a sharp corner, p = 0. The wall is at y = 0, and for convex curvature p is positive.

For the case in which the wall is on the right of the current looking downstream, we

have u > 0, and when the wall is on the left, u < 0. Now let us non-dimensionalize

the equations with (u, v) scaled by (U, V), h scaled by D, and (x, y) scaled by (p, W).

The non-dimensional continuity equation, which is



-- ) (hu)x + -- ([1 + (W/p)y] hv), = 0, (2.2.2)

implies that U/p = V/W. Using this fact, the non-dimensional version of the mo-

mentum and potential vorticity equations above become

-- 62U + VVoY - 6 U2 + U = - hy (2.2.3a)
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-+ 6f + u, -1+6 J ) (1 - gh/f) , (2.2.3b)
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where 6 = W/p. If we assume that the Rossby number U/fW is 0(1) and we neglect

62 terms but keep 6 terms, then the dimensional equations can be approximated by

fu - 1h= -g'h, (2.2.4a)
pu P+ y 9V

uY + = f - h. (2.2.4b)
p + y

These equations are essentially the equations of motion for axisymmetric circular

motion. As stated above, these equations, which were also derived by Rsed (1980),

are much easier to solve than the full equations of motion because they consist of

coupled ordinary differential equations in y rather than partial differential equations

in (x, y). Alongshore variations in the flow enter parametrically through p(x). For

a barotropic system, h(y) is determined by the topography, which is known, so only

the potential vorticity equation is necessary to determine the velocity profile.

The barotropic system is governed by a single first order differential equation,

so one boundary condition must be imposed in order to solve for the motion. Since

we are only considering coastal currents, we take the fluid to be motionless far away

from the wall. Integration of the vorticity equation (2.2.4b) over a vanishingly small

interval in y shows that u must be continuous, so that u = 0 on the outer edge of

the jet, y = w. The reduced gravity case is equivalent to a second order differential



equation, so two constants of motion are necessary. For the case of a density front, h

goes to zero at y = w. In this case the wall must be on the right (u > 0). For the

free streamline case, the assumption of no motion outside the region of anomalous

potential vorticity again tells us that u(w) = 0 as in the barotropic case. Now there

is an additional constraint that h must also be continuous in order to have finite u,

so h(w) = ho, where ho is the thickness of the stagnant water outside the current.

For the front case, we fix ho, the layer thickness at the wall, thus supplying a second

boundary condition for the equations.

In order to relate the flow structure at various p to the upstream (p = oo)

flow we need other properties of the flow that are conserved along streamlines. For a

given p, we must find the current width w(p) in order to know the flow field. For the

barotropic flow, it is sufficient to use the volume flux within each region of uniform

potential vorticity, b
Q= u(y)h(y)dy, (2.2.5)

where a(p) and b(p) are the minimum and maximum values of y with the given

vorticity. For the reduced gravity case, more information is needed, so we utilize the

Bernoulli function, which to the same order of approximation as equations (2.2.4a,b)

can be written
1

B = g'h+ -u2 . (2.2.6)
2

At the end of this section we will review the conditions on B necessary to close the

problem.

The most convenient scaling for the equations is somewhat different for each

of the two barotropic problems and the reduced gravity problem. In the flat bottom

barotropic case, velocity can be scaled by some velocity U in the upstream profile,

and all lengths can be scaled by the upstream current width W. Therefore u/U is

a function of position (y/W, p1W). If the potential vorticity is uniform, there is no



other parameter governing the system. If there are two regions of uniform potential

vorticity in the jet, then two parameters are added: the upstream ratio of widths

of the two regions, W1 /W (W1 is width of region closest to the wall), and another

parameter which can be expressed in a variety of ways, including the ratio of the two

potential vorticities as well as uo/U, which is the ratio of the velocity at the wall to

velocity at y = W1. With this scaling, the non-dimensional vorticity equation is

U AU
u + - - (2.2.7)

p+y AW' 227

where AU is the non-dimensional change in upstream velocity across a region of

uniform vorticity and AW is the non-dimensional width of the region.

When the topography consists of a linear slope with zero fluid depth at

the wall, lengths are scaled as before but speed is scaled by Wf. For such a flow

with potential vorticity q and bottom slope s, the parameters are a = qWs/f for

each vorticity, and, if there is more than one vorticity region W1 /W. Thus there

is one non-dimensional parameter for uniform q and three parameters if there are

two values of q. Specifying the two dimensionless potential vorticities and W1 /W is

equivalent to specifying W1 /W and the upstream values of u(y = 0) and u(y = W1).

If velocity in the sloping bottom problem is scaled with U = u(Wi) as in the flat

bottom case, rotation still appears in the potential vorticity equation in the form

of a Rossby number, U/fW. In contrast, in the flat bottom case f only appears

inside the expression f - qD, so that "planetary" vorticity is merely a part of relative

vorticity in that case. Using different velocity scales as I have done does not affect

any quantities besides the magnitude of the velocities. The non-dimensional vorticity

equation for this case is
U

UY + = 1 - ay. (2.2.8)

In the reduced gravity problem, h is non-dimensionalized by a scale thickness

ho, lengths are scaled by the Rossby radius VF7/f, and speed is scaled by the long



gravity wave speed VF. For the density front, ho is the upstream layer thickness

at the wall, and for the free streamline case, ho is the upstream thickness at the

outer edge of the current. The two non-dimensional parameters governing the system

are then the upstream non-dimensional width Wf /v/g1o and the non-dimensional

potential vorticity,

6= q (2.2.9)
f /ho'

Switching to non-dimensional variables, the equations of motion become

U 2
u - = -hy (2.2.10a)

U
Uy + =- 1 - Sh, (2.2.10b)

p + Y

and B is non-dimensionalized by g'ho, so that

12
B2 . (2.2.11)

At p = oo, the boundary conditions are simply

h(O) = 1, h(W) = 0 (front), (2.2.12a)

h(W) = 1, u(W) = 0 (free streamline), (2.2.12b)

The Bernoulli function B at the streamline adjacent to the coast can be computed

upstream, and provides an additional constraint from which to calculate w(p) for

finite p. The condition that the front has h(0) = 1 upstream does not hold for finite

p, but since the offshore edge of the current is a streamline, the Bernoulli function

there can be used instead. To summarize, for flow bounded by a density front we

have

12
at y=O0, h +-gu = Bo, (2.2.13a)

aty=w, h=0 and -u = B1, (2.2.13b)
2



and for the free streamline case

12
at y = 0, h+ -u2 = Bo, (2.2.14a)

2

aty=w, h=1 andu=O, (2.2.14b)

where B0 = B(O) and B1 = B(w).

2.3. Barotropic Flows Over a Flat Bottom

In this section, we will calculate the flow profile for a region of uniform

vorticity, and then calculate the flow for a current consisting of two regions of uniform

vorticity. All calculations will be performed in the non-dimensional units introduced

in the previous section.

Uniform Potential Vorticity

When the coast is straight (p = oo), equation (2.2.7), the condition that

u(W) = 0 and the use of the velocity at the coast as the velocity scale constrain the

upstream velocity profile to be simply

u(y) = 1 -y. (2.3.1)

Then the volume flux Q (see equation (2.2.5)) is equal to 1/2, and AU/AW = 1 (see

equation (2.2.7)).

We can solve (2.2.7) by solving the homogeneous version, which is separable,

and then using the method of variation of parameters to solve the inhomogeneous

problem. Invoking the outer boundary condition, we find that

U = .1 '(W2_ 2)+ p( - y)l .(2.3.2)
P + 2



Since we always have y < w, the current never reverses, so there is never any

separation. For completeness, let us find w, which we do by integrating the volume

flux (equation (2.2.5)) from y = 0 to y = w and setting the quantity equal to its

upstream value:
12 1 plo4 W 1 1
-p2 + -(p + )2 _ln _ (2.3.3)
4 2 p 2 2

which can be rewritten using w' = w/p:

1 + (1 + w'2 ) [21n(1 + w') - 1] = 2/p 2 . (2.3.4)

The variation of w with p can be displayed by calculating p as a function of w'

in equation (2.3.4) and plotting w = w'p against p. The current width decreases

monotonically as p decreases from oo. Changes in w are small unless the radius of

curvature becomes small compared to the upstream current width, in which case the

long wave approximation has already broken down. For all p, u(y) is a monotonic

function with a maximum at y = 0, where u = w(1 + }w/p), and u(y = 0) increases

as the radius of curvature decreases.

The qualitative features of these results can be explained by examining equa-

tion (2.2.7). As the boundary curvature increases, the centrifugal term u/(p + y)

increases from zero, forcing the shear term Ou/y to decrease. Since for this flow,

Ou/Oy < 0, uly | must increase. Meanwhile the volume flux must remain con-

stant. If the shear is approximated with u(0)/w, and the flux by Q = u(0)w, then

u(0)/w = u(0)2 /Q = Q/W 2, so that as curvature increases the shear, the current be-

comes faster and narrower. This analysis has an implicit assumption that the shear is

about the same for all y, which happens to be true for all p for which w was calculated.

Two Regions of Uniform Potential Vorticity

The constraint of uniform potential vorticity limits the range of currents

which can be modelled. More important, it is conceivable that it limits the range of



behavior which our ideal current displays. By looking at a current which is divided

into two regions of uniform potential vorticity, we obtain a crude model of currents

which have cross stream vorticity gradients, while we retain the mathematical appa-

ratus of the last section, which allows us to treat the problem analytically except for

actually finding the roots of the equations for width.

Let 0 < y < wi be the "inner" region of constant vorticity, and w1 < y < w

be the "outer" region. Far upstream, (p = oo), we set wi = W1, w = 1, u(0) = uo,

u(Wi) = 1, and u(1) = 0 (W and uo are given), so that

u=ui = 1 1 Y + Uo, y < W - 1 (2.3.5a)

1 --y
U=U 2 = 1 _w 1 , W1 <y<1. (2.3.5b)

We can then solve equation (2.2.7) for u1 and u2, as in the uniform vorticity case, using

the appropriate expressions for potential vorticity in each region and the requirements

that u2 (w) = 0 and ul(wi) = u 2(wi). We obtain

Ui = y [1Y2 + py - w1(w, + 2p)]
p + y W1 2

+1 (w - wi)(w + wi + 2p) (2.3.6a)
2 1 - W1

1 1 r12 ,1
U2 = 1WP(w - Y) + (w2 _ 2) . (2.3.6b)

1 - W1 p + y 2

Is there a flow reversal at the wall? The condition that ui(0) < 0 can be written

.(1+ >) W (1+ - . (2.3.7)
W1 2 p 2 p)

Equation (2.3.7) is the analogue of the shear argument for currents of uniform po-

tential vorticity, but here flow reversal is dependent on two width parameters rather

than one. We cannot tell whether or not this condition is satisfied until we find wi(p)



and w(p), but since w, < w, the condition can be satisfied only if w1 increases faster

than w as p decreases from oo.

In order to find w, and w, we must use the conservation of volume flux.

Integrating (2.3.5a) and (2.3.5b), we find that

Qi = (1 - uo)(wi + 2p)

+1 [(w - wi)( + w + 2p) 1- + In , (2.3.8a)
2 1 - W1 W1 I p

Q2 = 12 (p + w)2 In - -(w - wi)(w + wi + 2p) , (2.3.8b)1 - W1 Ip + Wi 2

and we integrate (2.3.4a) and (2.3.4b) to get Q, = }WI(1 + uo) and Q2 = (1 - W1 ).

Equations (2.3.8a) and (2.3.8b) constitute a transcendental system for wi and w in

terms of the parameters W1, uo, and p, but the dimension of the system can be reduced

because (2.3.8a) is a quadratic in w, so that we can find an analytical expression for

w(wi; W1, uo, p). This expression can then be inserted into (2.3.8b), leaving a single

transcendental equation Q2(W1; W1,uo, p) - Q2(WI,uo, p = oo) = 0 which can be

easily solved numerically.

The currents studied by Hughes (1989) displayed conjugate states, in which

two currents with the same potential vorticity distribution (as a function of stream

function) and the same volume flux could have different velocity profiles. One state

was relatively narrow and fast and consisted of flow that was supercritical with respect

to the lowest mode waves on the potential vorticity gradient (that is, the wave speed

was not great enough to allow the wave to propagate upstream against the tendency

of the current to advect the wave downstream) while the wide and slow state was

subcritical (the wave could propagate upstream). The narrower of the two profiles

would become even more narrow as the curvature increased, while the wider of the

two currents would grow wider with curvature until a flow reversal developed. The

currents studied here also exhibit conjugate states. For an upstream current defined
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Figure 2.3.1: Difference between upstream and downstream transport Q2 as a function of inner

width wi for p = oo, 10, and 1, for barotropic, flat bottom current consisting of two regions of

uniform potential vorticity. For all curves, W1 = .5 and uo = 0.
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by equations (2.3.5a,b), with inner width W and outer width of 1, there is a conjugate

current with the same inner and outer vorticities and the same Q, and Q2. This

current has inner and outer widths w1 and w given by w1 = (1 + uo)/(l - uo) and

w = 1 +2uoW1/(1 -uo), and is a wider current. However, for all parameter values, the

speed at the wall is ui(0) = -uo, while u(wi) = 1. Therefore the wide conjugate state

has an upstream flow reversal for uo > 0, and is excluded from consideration because

we are only interested in flows which are unidirectional when p = oo. Figure 2.3.1

shows AQ 2 = Q2(w1, p) - Q2(p = oo) for p = oo, 10, and 1 when W = .5 and

no = .5. Solutions to the equations of motion occur at the two values of w, for which

AQ2 = 0. As in Hughes (1989), the narrow current gets more narrow as curvature

increases. When uo = 0, the minimum in AQ 2(w1) is tangent to the wi axis, so that

as we travel from a region of no curvature to one of finite curvature, the flow can

either narrow or it can widen. Widths (wi, w) as a function of radius of curvature p

for several upstream inner widths W are shown in Figure 2.3.2.

As shown in Figure 2.3.3, the narrowing mode of the current merely increases

its speed as the curvature increases, while the widening mode develops a flow reversal

at the wall. The equations of motion in this approximation do not tell us which mode

an actual current would pick. For uo # 0, there are two states upstream rather than

one (see Figure 2.3.1), and solving equations (2.3.8a,b) for a wide range of points in

(W1 ,uo) space shows that the narrow state always narrows as curvature increases,

with u(0) increasing and no separation occurring.

2.4. Barotropic Flows Over a Sloping Bottom

We can find an exact solution of the differential equations which govern the

flow of a coastal current for the case in which fluid depth increases exponentially

with distance from the coast. This was the topography used by Hughes (1989) with



numerical solutions of a more complicated potential vorticity distribution. However,

there is no analytical expression for the volume flux integrals with such topography,

so that we restrict ourselves to the simpler case of a linearly sloping bottom, as

introduced in section 2.

Uniform Potential Vorticity

Equation (2.2.8), the non-dimensional vorticity equation for topography

given by h(y) = sy, can be solved using the same technique with which we inte-

grated equation (2.2.7) in section 3. For uniform potential vorticity, the resulting

solution is

U a(w3 -- y) -- 1-ap)(w - Y) - (w-y) , (2.4.1)
p+y 3 2

while the upstream velocity profile is

U = 1O - y2) - (1 - y) (2.4.2)

The upstream velocity profile is a parabola, with u(1) = 0, u(0) = }a - 1,

and the local extremum in u given by urn = (1 - a) 2/2a at y = 1/a. The potential

vorticity parameter a = qWs/f (where q, W, and f are dimensional quantities) can

be thought of as the ratio of the depth of the fluid at the outer edge of the current to

the depth of a motionless fluid with the same potential vorticity. When the bottom

is flat, there is no difference between flows with the coast on the right or on the left,

but this symmetry is broken by the sloping bottom. For flow with the coast on the

right looking downstream, we have u > 0, which occurs for a > 2, and for flow with

the coast on the left, a < 0. Finally, we can complete the connection between the

potential vorticity parameter a and the shape of the velocity profile by noting that

as a decreases from either positive or negative infinity, um/u(0) increases from one

to infinity. Since umn is essentially the Rossby number of the system, the minimum



possible Rossby number for this current is 1/4 for the coast on the right and 2 for

the coast on the left.

The upstream volume flux (equation (2.2.5)) is given by Q = 1(a/4 - 1/3),

where Q has been non-dimensionalized by fsW3 . A given upstream volume flux can

be attained by only one current with a given potential vorticity and a positive width,

though there is a negative width solution that is physically meaningless (the flat

bottom uniform potential vorticity case also has a second, negative width solution).

For finite p, inserting equation (2.4.1) into equation (2.2.5) yields

1 4 1 (4ap_)W 1 1 2 (1 +1
Q = aw+ ap w+ p (ap - 3) w 2 +ap W

(2.4.3)

+ p [-2aw3 - 3(ap - 1)w2 +6pw + 3p2 + ap3] In P+W

I solved the above equation, using the known upstream value of Q, for a set equal

to 2, 2.25, 2.5,..., 5, for p ranging from 104 to 1. In this range, W showed only a

very weak dependence on p. In every instance w decreased as p decreased, but stayed

above .9. As the width of the current decreases, the velocity must increase in order

to maintain the same volume flux, and for all values of a tested, speed at the wall

increases. The behavior of the system was similar for a equal to 0, -1 and -2, values

for which the current has the wall on the left rather than on the right.

Two Regions of Uniform Potential Vorticity

As in section 3, we now look at currents consisting of two regions of uniform

potential vorticity, (ai, a 2). The upstream velocity profile is

U1 [a 2 + (al - a 2 )W12 - ajy2] - (1 - y), (2.4.4a)

U2 = ga 2 (1 - Y2)-(1- y) (2.4.4b)



and for finite p,

Ui = [a2(W - Wi) + ai(w - y ) - (1 - a2P)(w2 - W2)

1 , (2.4.5a)

-2 = -a2(w _ Y3) _ _(1 - a2p)(W2 _ 2) p(W - y). (2.4.5b)
p+y 3 2

It is convenient to relate ai and a 2 to parameters which are easier to visualize, such

as the upstream velocity at various values of y. If the upstream speeds at the coast

and at y = W1 are (uo, um), then

ai = Uro - UM + W1), (2.4.6a)

2Umn 2
a2 = + . (2.4.6b)1-W 2  1+ W

If the current has the wall on the right (u > 0) then a 2 > 0 and if in addition ur is

larger than uo by a wide enough margin, ai < 0. If the wall is on the left, the sign of

a 2 is not obvious, but a 1 will be positive if um is sufficiently larger than uo.

Upstream, the volume flux is

= 2 + +81 - a2)W (2.4.7a)

Q2 = W 4 Ca2 - 2 + 3 W1 - a2W1 - + a2. (2.4.7b)

Whichever side the coast is on, there are two states with the same potential vorticity

and volume flux in each region. The additional state, which is the wider of the two,

always has the water near the coast flowing in the opposite direction of the flow near

y = W1, so that only the narrower state is of interest. The expressions for downstream



volume flux are somewhat complicated:

Q1 = A (P - pin p )+ p (P 2 + p22n p )

+-(1- a1p) P3 - p ln -+ -ai 4 + p4  (2.4.9a)
2 p 3a 4+Pn p

Q2 = (a 2 W 3 -[1-a 2 p]w2 ) _ AP i-Pin
(3 2 p + W1

+p (AP 2 +p2nP -1 -- 1 ap) (AP 3- pIn

1 (AD i4i ___

pW1 2 p+ W1

1 pp-- a 2  P4 + p4 In , (2.4.9b)

where

A 2 a 2W 2 - - pw + (a -a 2 ) (3 + W p\ , (2.4.10)

and

N-1 n N-n N-1 n N-n _ N-n

PN = (-1)nP W1 and APN E ( 1)n p ' 'w1 ). (2.4.11)
n=O N-n n0 N-n

Neither equations (2.4.8a) nor (2.4.8b) can be solved for either wi or w, so the two

equations must be solved together numerically for the widths. This was done for

values of (W 1 ,uo,un) on a rectangular grid in parameter space: W1 = .25, .5, and

.75, and uO and un were set equal to .5, 1, ..., 5 and -.5, -1, ..., -5. For all these values,

as the curvature increased, the current grew narrower and the speed at the coast

increased. This is consistent with the results of Hughes (1989) and those described

above, in that the narrower of the two conjugate states does not separate from the

coast. The behavior of the piecewise uniform potential vorticity current differs from

the currents studied by Hughes by not having a wide, uni-directionally flowing mode

along a straight coast.



2.5. Reduced Gravity Currents

Upstream Flow

For p = oo, we drop the centrifugal terms in equations (2.2.10a,b) and they

become the linear, constant coefficient equations

u = -hy (2.5.1a)

UY = 1 - 6h, (2.5.1b)

the general solution of which is

h = + A1 sinh yV + A 2 cosh yV- (2.5.2a)

u = -V/6(A 1 coshyv6+ A2 sinh yv/) . (2.5.2b)

This solution is valid for 6 # 0. We will only look at currents for which 8 > 0.

For the free streamline case, inserting (2.5.2) into the boundary conditions

yields the solution

h = 1 + (6-1) cosh v'-(W - (2.5.3a)

8-1
u = sinh V6(W - y). (2.5.3b)

Since sinh is a monotonic function, the velocity varies monotonically from zero at the

edge of the current to a maximum absolute value at the wall. If 6 > 1 then u(0) > 0

and the wall is on the right of the current, and if 8 < 1, u(O) < 0 and the wall is on

the left. The thickness also varies monotonically, with the interface sloping upwards

approaching the wall for u < 0 and sloping downwards approaching the wall for u > 0.

For one region in the 8 < 1 half of the (W, 8) parameter plane, the layer thickness at



the wall is negative and hence there is no physically meaningful flow possible. This

situation is somewhat akin to the case of separation due to curvature, which also

has the density interface surfacing. Substituting equation (2.5.3a) into the inequality

h(0) < 0, we find that the invalid region is given by

W > - cosh-4 (2.5.4)
vs (6-1 -1

For the upstream free streamline case, contours of h(0), and u(0) in the (W, 6) plane

are given in Figures 2.5.1 and 2.5.2.

For the front case, the boundary conditions yield the solution

1 1 (6 - 1) sinh V/-(W - y) - sinh y V8h = - s+hV (2.5.5a)
6 6 sinh WV6

_ 1 (6 - 1) cosh v5(W - y)+ cosh yv(
sin ='s. (2.5.5b)vs sinh WV8-

The flow at the outer edge of the front is positive for any 6, so we only look at the

case in which the flow is positive everywhere. u(0) is negative in the region of the

(W, 6) plane in which h(O) is negative in the free streamline case, so in both cases, the

same region in parameter space is excluded from our consideration. In other respects,

the dependence of the upstream flow on the parameters is quite different in the two

cases. Contour plots of u(0) and u(W) are shown in Figures 2.5.3a and 2.5.3b.

It is also possible to have a local extremum in u(y) in the case of a front.

Inserting equations (2.5.1b) and (2.5.5) into the condition u,(y.) = 0, we obtain

coth yVs = coth WV + ( 1 ) 1 . (2.5.6)
\S-1/ sinh Wvf6i

For this extremum to be within the bounds of the current, we must have 0 < ye < W,

or coth WV/- < cothyev6 < oo. This is satisfied for 6 > 1. Inserting (2.5.6) into

the expression for u.., we can show that for any (W, 6) with an extremum in u(y),
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Figure 2.5.1: Contours of layer thickness at the wall h(0) at p = oo as function of upstream width

W and potential vorticity 6 for the free streamline case.
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Figure 2.5.2: Contours of velocity at the wall u(O) at p = oo

potential vorticity for the free streamline case.

as function of upstream width and
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Figure 2.5.3: Contours of velocity at p = oo as function of upstream width and potential vorticity

for the density front case. (a) Velocity at the wall. (b) Velocity at the outer edge of current.

Parameter values below dashed line in (b) do not have valid upstream flow.
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uw > 0, so the extremum is always a local minimum. As with the other case, h(y) is

always monotonic.

For the free streamline case, the Bernoulli function at the wall is

Bo = 1 - 2 8+ 2(1 + [6 - 1] cosh WV) 2 . (2.5.7)

For the front, the Bernoulli function at the wall is

1 ([1 - s} cosh W - 1)
Bo = 1 + , (2.5.8)

28 sinha WV6-

and at the outer edge of the current is

1 (cosh WV + 6 - 1)2B1 = 2- sn 2 Wv" (2.5.9)
26 sinha WV6'

Contours of B(0) for the free streamline case are plotted in Figure 2.5.4. Contours

for B(0) and B(W) for the front case have the same shape as contours for u(O) and

u(W), since h(0) = 1 and h(W) = 0 for all (W,6).

Downstream Flow and Separation

For finite p, equations (2.2.4) were integrated using a fourth order Runge

Kutta method with uniform step size (Press et al., 1986). (I also attempted to find an

analytical approximation to the solution using a Taylor expansion, but the complexity

of the resulting expression and the slowness of convergence made this approach less

attractive than a simple numerical solution). For both cases of the flow, there are

two boundary conditions at the outer edge of the current and one at the wall. For

this reason, the equations were transformed to a new coordinate t = w - y, so that

dh _____

- = U- t (2.5.10a)di p + W - t

du u
- = -1+ + 6h, (2.5.10b)

p+w-t
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Figure 2.5.4: Contours of Bernoulli function at the wall at p = oo as function of upstream width

and potential vorticity for the free streamline case. The part of parameter space below the dashed

line is not physically meaningful.



and they were integrated from t = 0 with the "initial conditions" from the equa-

tions (2.2.13) or (2.2.14). Rather than solving given a certain value of p, the equations

were solved given r = p + w, since w was not known before the equation was solved.

For every step in t, the quantity h + }u 2 _ BO was tested for a zero crossing. When

this happened, the current value of t was taken to be w, and p = r - w was found.

This algorithm stops the integration prematurely if B = Bo for some 0 < t < w. It

can be proved that this does not happen for the free streamline case unless h(0) < 0

at p = oo. I was not able to prove that it does not happen for the front case, but I

examined B(t) at a number of points in the (W, 6) plane, and it had only one zero

crossing in all of them.

For a given (W, 6), when I decreased r, p and h(0) decreased also. For

a small enough r, h would become negative in the course of the integration, but

h + }u 2 - Bo would never change sign, so that there was no solution consistent with

the wall boundary condition, even allowing for a negative layer thickness. In order to

get a lower bound on r and p for separation, I ended the integration in this case when

(h + }u2 - Bo) 2 reached a local minimum, which always occurred if h(t) < 0. This

allowed me to define w and p as above. I took this value of p to be a lower bound for

pc, while the smallest value of p with h(0) > 0 was the upper bound for pc. To refine

estimates pc for a certain (W, 6), a computer routine kept bifurcating the interval

between a lower and upper bound for r until the interval between the corresponding

upper and lower p was below a certain distance. This process was repeated on a grid

in the (W, 6) plane with W between .25 and 4.00 (grid spacing = .25) and S between

.1 and 1.9 (grid spacing = .2). The step in t was W/104 , and the threshold for the

final interval in p was .0005.

The resulting function pe(W, 6) is wildly different for the two cases. For the

free streamline case (see Figure 2.5.5), as upstream width increases, the current is

more likely to separate (critical radius of curvature increases). As potential vorticity



goes to 1 from either side (the interface slope goes to zero), the current becomes

less likely to separate. For the front, the critical radius of curvature is almost inde-

pendent of the potential vorticity, and it decreases as upstream width increases (see

Figure 2.5.6). For W < 1 we have pc very roughly equal to .7/W.

For the free streamline flow, the separation radius of curvature goes to in-

finity as the upstream layer thickness at the wall goes to zero. This makes intuitive

sense, since the interface depth has to make a relatively small excursion in order to

induce separation. In fact, comparison of Figures 2.5.1 and 2.5.5 shows that contours

of upstream depth at the wall look very similar to contours of critical radius of curva-

ture. In Figure 2.5.7, pc is plotted against the cross stream change in interface depth

at p = oo, jh(y = 0) - ll. This plot shows that most of the variation in p with the

upstream parameters can be explained in terms of the upstream height. The relation

is especially striking for the 6 > 1 case, in which a greater Ih - 1| makes the current

easier to separate. even though the interface must travel further to come up to the

surface at the wall. A similar relation holds for pc plotted against upstream velocity

at the wall (Figure 2.5.8). If we average the velocity over the width of the current

upstream, we obtain E = (h(0) - 1)/W for the free streamline case and U = 1/W

for the front case. Thus the free streamline critical radius of curvature is roughly

proportional to the volume flux, and the front critical radius of curvature, at least

for small upstream width, is roughly proportional to average velocity. Care must

be taken in reviewing these results because equations (2.2.10a,b) upon which these

results are based are derived with the assumption that w/p is small. The value of this

parameter is contoured in Figure 2.5.9, which shows that for the free streamline case,

the approximation is only valid for both W and 6 large or for the upstream depth at

the wall small, while for the front case, it is only valid for small W (at W = .25, w/p

is around .3 for all 6).
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Figure 2.5.6: Critical radius of curvature for separation as a function of upstream width for various

values of potential vorticity for the front case.
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Cross-stream current profiles for straight wall and for critical curvature are

shown for selected depth profiles in Figure 2.5.10. Though the depth profiles were

forced to undergo great changes by the coastal curvature, the velocity did not change

much. The current can either narrow or widen as the wall reaches its maximum

curvature. Figure 2.5.11 shows w/W for p = Pc for the two cases.

Roed found the separation radius of curvature for a single value of potential

vorticity and wall Bernoulli function. I converted his nondimensional units into mine

to confirm that our results are consistent. Roed used a dimensionless potential vor-

ticity equivalent height h. = 2/6 and a dimensionless Bernoulli function parameter

H,. = 2Bo, and found a non-dimensional separation radius of curvature p, which is

related to my separation radius Pc by p, = v8Spe/2. For h = 4.0 and H,. = 2.4 we

have 6 = .5 and Bo = 1.2, which gives W = 1.039 (also W = 5.122, but that is a

physically invalid solution). Rsed found that p. = .23, corresponding to Pc = .65,

while I found that pC = .66 for a front. Thus they agree reasonably well (if we know

p, to within i.005, then we only know Pc to within ±.01). Ou and de Ruijter only

solved for a separation radius of curvature given a non-zero velocity at the outside

edge of the current, so his results are not directly comparable with mine.

Bormans and Garrett (1989) offered a simple rule, which is consistent with

laboratory data, for deciding when a current in a two-layer system forms a gyre at

a curved coast. If the (dimensional) inertial radius u/f (u is some characteristic

velocity) is smaller than the radius of curvature of the corner, p, the current will stay

attached, while if it is larger the current will separate. This criterion is equivalent

to the scaling argument that the curvature term in the approximation to the cross-

stream momentum equation (equation (2.2.4a)) is the same size as the geostrophic

term. Physically, this corresponds to a centrifugal force at the corner that is strong

enough to counteract the Coriolis force in order to pull the density interface up to

the surface. This scaling argument only applies to flows with the wall on the right



(a)

(c)

0.8

0.6

0.4

0.2

20 Deft Profiles - Free Stream

15I (W,deka)=(3.5,1.7)

10-

5-

-- - - - - -

0 0.5 1 1.5

(b)

(d)

30 Velocky Profiles - Free Stream

-,, (W,dea)=(3.5,l.7)

10-

0

Y

3WVeock Profiles - Free Streamn

-0.51

-1.5 
0 0.5 1 1.5

(e)

0.

0.
A 0

0.

(g) I

0.8

0.6

0.4

Depth Profiles - Front ( f )

10

(h) Velocity Profiles - Front

0 0.5 1 1.5 0 0.5 1 1.5

y Y

Figure 2.5.10: Depth and velocity profile for selected flows, at critical radius of curvature

(solid curve) and zero curvature (dashed curve). Free streamline flows are shown in: (a) depth,
(W, 6) = (3.5,1.7), (b) speed, (W,6) = (3.5, 1.7), (c) depth, (W,6) = (2,.7), (d) speed,
(W,6) = (2,.7). Density front flows are shown in: (e) depth, (W,6) = (.25,1.7), (f) speed,
(W, 6) = (.25, 1.7), (g) depth, (W, 6) = (.25,.3), (h) speed, (W, ) = (.25,.3).

66

Deh Profiles - Free Stream

(W,delta)=(2,.7)
-' (WAelta)=(2,.7)

g .\ (Welta)=(.25,1.7)

6-

4

2-

Velocity Pro - Front

- (W,delta)=(.25,1.7)

Dept Profiles - Front_

(Wdelta)=(.25,.3) 4--.

3 (Wdekta(.25,3)

2-

n

I



(width)/(upsuram width) at srsea on - fre stuam
(a)

P

(b)

a6

U

0.

(width)/(upstream width) at separation - front

0.5 1 1.5 2 2.5 3 3.5 4

upsueam width W
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of the current, since when the wall is on the left, the interface is rising towards the

wall anyway, so that a small perturbation in the force balance may be sufficient to

carry the interface the rest of the way up to the surface. In the non-dimensional

formulation of this chapter, the criterion becomes u/p < u/pc = 1. Bormans and

Garrett did not specify the location in the flow of the velocity which they used to

scale the flow. Strictly speaking, the scaling argument above applies to the velocity at

the point of separation, but the separation criterion would be most useful if it could

be applied to the flow upstream of the corner in order to predict the behavior of the

current at the corner. This still leaves several possible choices for the appropriate

u. Contours of u/pe for two such choices are shown in Figures 2.5.12 and 2.5.13. In

Figure 2.5.12, u is taken to be the upstream value of u(O), while in Figure 2.5.13 it

is U, the cross stream average of u upstream defined above. For the front, letting

u = V gives u/pc P:: 1, and letting u = u(O) gives a u/pc which ranges from about 2

down to 0 near the region where there is a flow reversal near the wall at p = oo. Free

streamline flows show large variations in u/pc everywhere in parameter space.

2.6. Conclusions

Barotropic and baroclinic coastal currents were modelled with an inviscid,

hydraulic approximation in which alongstream variations in the flow quantities only

appear parametrically. Given a simple flow upstream, where the coast was straight,

the flow was computed downstream where the coast curved with radius of curvature

p in order to see if and under what circumstances the current would be forced to

separate from the coast, either due to a flow reversal in the barotropic cases or a

surfacing of the density interface in the reduced gravity cases.

The barotropic flows investigated in this study never underwent separation.

This is in contrast to the behavior of the barotropic currents studied by Hughes (1989).



In Hughes' currents, potential vorticity decreased exponentially with streamfunction,

and fluid depth increased exponentially with distance from the wall. The flows in

this study had piecewise uniform potential vorticity and fluid depths that were either

uniform or proportional to distance from the coast. The discrepancy between Hughes'

results and mine probably stems from the fact that he only found flow reversal for the

wider of the two possible states which exist for a given potential vorticity and volume

flux, while the wide state of the currents studied here was removed from consideration

because it always had a flow reversal even for zero curvature.

Several differences between Hughes' model and mine could account for the

difference between his upstream wide states (subcritical with respect to vorticity wave

propagation) and mine: my depth profile went to zero at the wall while his did not,

my bottom slope was uniform while his increased as one travelled offshore, and I had

a piecewise uniform potential vorticity distribution while his was smoothly-varying.

In order to isolate which factor was most important for the qualitative difference in

the flow direction of the wide state, I calculated the p = oo cross-stream profiles

of currents which had piecewise uniform potential vorticity, uniform bottom slope,

and finite depth at the wall. This system has another nondimensional parameter in

addition to the parameters for the barotropic systems studied in Sections 3 and 4:

-1 = ho/sW, the ratio of depth at the wall to depth at the outer edge of the current

(in Section 3, -y = oo, and in Section 4, -y = 0). Arbitarily restricting ourselves to

the -y = 1 case, we find that for some (but not all) values of potential vorticity when

the current is flowing with the wall on the left (as in Hughes' case), both the wide

and narrow states are unidirectional. This shows that the assumptions of piecewise

uniform potential vorticity and linear bottom slope do not by themselves preclude

the flow reversal found by Hughes. The actual behavior of these -y / 0 flows in places

where the coastline is curved was not explored because by the time these results were

obtained, full analysis of the barotropic data had indicated that the shallow water



equations, upon which the analysis in this chapter is based, break down when a gyre

is formed.

Rsed (1980) and Ou and de Ruijter (1986) showed that uniform potential

vorticity, reduced gravity currents separated from a curved coast when the density

interface surfaced at the coast. They did not record separation due to flow reversal

for the case of convex curvature studied here, though Roed did show flow reversal in

a bay. The survey of parameter space undertaken in this chapter confirmed that the

upwelling of the interface is the only mode of separation available for this system.

The qualitative difference in the separation characteristics of barotropic flows with

different potential vorticity and depth profiles raises the question of whether giving a

reduced gravity flow non-uniform vorticity could cause it to separate from a cape by

developing a flow reversal as in some of the barotropic flows.

The reduced gravity systems studied by Rsed (1980) and Ou and de Ruijter

(1986) are governed by the non-dimensional potential vorticity and non-dimensional

upstream (zero curvature) width, and by the form of the outer boundary condition.

Over a range these parameters, I found the critical radius of curvature for which

the thickness of the layer at the wall goes to zero. A coastline with a sharper curve

than this critical curvature will not support a steady boundary current with the given

upstream parameters, and presumably some kind of separation will occur at the coast.

The dependence of the critical curvature on the parameters is very different

for the h = 0 outer boundary condition (front case) and the u = 0 outer boundary

condition (free streamline case). For the front, the dimensionless critical radius of

curvature for the front is roughly proportional to 11W, which is the average upstream

velocity U, in the range of relatively small W for which the long wave approximation

applies. For the free streamline case, the critical radius depends most strongly on

the volume flux UW: it is proportional to the flux for positive velocities, and is a



more complicated function that monotonically increases with volume flux for negative

velocities.

These results yield ambiguous agreement with experimental results, which

show that the dimensional pc ought to be the inertial radius u/f (Bormans and

Garrett, 1989). If we base the radius of curvature on the upstream velocity at the

wall, the latter relation does not hold for either case solved here, though it is correct to

within about a factor of two for a front with 6 > 1 (which has monotonic u(y)). If we

use the average upstream velocity, Bormans and Garrett's relation does approximately

hold for the case of the front, because the dimensional version of the expression for

critical radius of curvature calculated in this chapter is pc = .7-u/f. For the free

streamline case, the corresponding expression is (U/f)(W/R), where R is the Rossby

radius 9/IKj/f based on the current depth at the free streamline. Bormans and

Garrett's data included upper layer currents which flowed into either unstratified

ambient water (the density front case) or two-layer stratification (free streamline

case), and their value of pc remained independent of WIR despite variations in WIR

by a factor of 7.

The great difference between the results for density front and free streamline

flows, even when both have the coast to the right of the current, show that the form

of the outer boundary condition is important in determining the conditions under

which the current will separate at a curved section of coast. In the experiments of

Whitehead and Miller (1979) and Bormans and Garrett (1989), the width of the flow

was controlled by the channel width (relative to the Rossby radius of the system),

which implies a different boundary condition for the upstream flow then either the

free streamline or the density front case. Unfortunately, in the laboratory it is much

more difficult to control the (non-dimensional) width and potential vorticity of a true

coastal current like those studied in this chapter in order to probe parameter space.



Chapter 3.

Eddies Generated by a Density Front
Current at a Sharp Corner in a Rotating

Tank

3.1. Introduction

Previous studies have examined eddy generation by density currents which

emerge from a counterclockwise rotating channel, turn to the right, and flow along the

wall outside the channel. In some circumstances, the current overshoots the corner

and re-attaches to the wall to the right of the channel, generating an anticyclone in

between. Presumably, the formation of a gyre is not dependent on the existence of the

channel's left wall, so that if we remove it, leaving a coastal current both upstream and

downstream of the corner, the same processes would still form a gyre. Therefore the

first purpose of the experiments described in this chapter was to confirm that this was

indeed the case. This was shown to be true (see below), so that we can assume that

studies of flows leaving a channel and studies of boundary currents flowing around

corners are interchangeable. In this spirit, the experiments described in this chapter

are designed to continue the investigation of baroclinic currents which produce a gyre

at a corner.

Bormans and Garrett (1989) showed that a current characterized by a speed

u traveling around a curved coast with a radius of curvature p in a rotating system

with Coriolis parameter f produces an anticyclone at the corner if u/fp > 1. We

will look at a similar geometrical parameter for a system which in all cases has a

sharp corner (p = 0). In such a system, the angle between the walls upstream and

downstream of the corner plays a role that is analogous to the radius of curvature in

Bormans and Garrett's system. Together, radius of curvature and corner angle control



the magnitude of the perturbation from straight, parallel flow which a current must

undergo to follow a bend in a coastline. A bend in some real stretch of coast bordering

the Earth's ocean, such as Cape Saint Vincent on the Iberian Peninsula, would be

characterized by both the angle between the coast upstream and downstream of the

corner and by the radius of curvature. The experiments in which radius of curvature

was varied and these new experiments, in which corner angle is varied, represent two

simple limits which can be used to gain insight into the more general case.

In the new experiments, fresh water was made to flow into relatively dense

salty water, where the intrusion flowed along a vertical wall and around a corner. The

angle of the corner was varied from run to run. The flow was produced by a dam-

break between the homogeneous salty water and a region with a fresh layer floating

on top of a salty one, as in Bormans and Garrett. In these runs, the corner was sharp

to about .1 cm, compared to a current width on the order of 10 cm.

We also conducted one run in which the current was made to flow with the

wall on the left of the current looking downstream, instead of on the right. This

also produced a gyre, which is qualitatively described below. Different methods of

generating the flow, such as using a pump instead of a dam-break, were also used,

with similar results. In addition, some runs were conducted with a sloping side-wall,

since real oceanic boundaries are never vertical, and with water with an ambient

stratification into which a current was forced.

It is possible that the eddies generated at a corner are formed because there

is no steady-state solution to the equations of motion which allow a flow to remain

attached to the coast at the corner, or because such an attached flow is unstable

at the corner. In dam break experiments such as the ones described above, the

flow was initiated upstream of the corner and propagated as a tongue of fluid that

approached the corner. Since the eddy appears as soon as the nose reaches the corner,

the experiments leave open the possibility that the initial interaction of t1e nose with



the corner is responsible for producing the eddy. It would be desirable to know if

eddy generation can be explained by exploring the dynamics of a steady current, or

if the nose is responsible for the eddy. To do this, I conducted experiments in which

the fresh water was initially confined to a region adjacent to the coast both upstream

and downstream of the corner. Thus the leading edge of the current was initiated

downstream of the corner, and the existence of an eddy in these runs would prove

that the interaction of the leading edge with the corner is not a crucial factor in

determining whether an eddy is formed.

In most of the runs, the intrusion had a maximum thickness that was small

compared to the depth of the ambient water so that motions in the salty layer would

be sluggish compared to the fresh water. In some runs, the thickness of the two layers

was of the same order, so that the contribution of the lower layer flows to the motions

in the upper layer could be emphasized. Unless otherwise noted, the discussion below

will not include these runs.

The velocity field was traced by surface drifters, which were interpolated

to create grids of velocity, from which depth, potential vorticity, and volume flux of

the fresh water flow were mapped. This data gives us a more detailed picture of the

currents which are being studied, and profiles upstream of the corner can be used as

a measure of the reproducibility of conditions upstream of the corner. If there is a

critical corner angle for eddy formation, it is likely that flow around a corner with

a subcritical angle (no gyre produced) will exhibit a quantitative dependence on the

corner angle. As the critical angle is approached from below, the flow profile could

show signs of incipient gyre formation. Therefore the details of the flow pattern in

gyreless runs were examined to give further insight into the processes at work when

a gyre is produced.



3.2. Apparatus and Procedure

General Description

Most of the experiments were conducted in June and July 1990, in the

2.13 m diameter rotating tank at the Coastal Research Laboratory at WHOI. Initial

experiments with a 900 corner angle were conducted in November 1989. The tank was

divided by walls into two regions, areas Al and A2 (see Figure 3.2.1). Both regions

were filled with salty water, the tank was made to rotate, and fresh water was slowly

fed into region Al to form a surface layer there. A gap in a wall separating Al and A2

was sealed with a watertight dam (the "short dam"), which was removed to initiate

a surface flow of fresh water into A2 and a weaker bottom flow of salt water into Al.

The fresh water intrusion traveled along "the first wall," around a corner, down "the

second wall," and then around the rim of the tank. The gap was 12.5 cm, 20 cm, or

5 cm wide in the initial runs with a 90* corner angle, and 9.3 cm wide in the rest of

the runs. The different gap widths were originally used to see if any aspect of the

flow could be controlled by the gap width, but this parameter had little effect on the

flow.

For the "long dam" runs, the gap was left open and a removable Plexiglass

wall was suspended parallel to the first and second walls, extending from the gap to the

rim. This extended the region Al, which initially contained a fresh surface layer, into

a channel along the first and second walls (see Figure 3.2.2). When the suspended wall

was removed, the fresh water in the channel adjusted (as in a geostrophic adjustment

process) to form a current along the first and second walls, while more fresh water

was pulled through the gap to continue feeding the current. Figure 3.2.3 shows

corner angles which were used for all three variations of the experiment: deep lower

layer/short dam, deep lower layer/long dam, shallow lower layer/short dam.
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Figure 3.2.1: Experimental apparatus, dam-break flow, short dam. (a) Top view of tank. (b) Side

view of tank.
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Figure 3.2.2: Experimental apparatus, dam-break flow, long dam. (a) Top view of tank. (b)

Perspective view of long dam.
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In the run with the wall on the left of the flow, the initial stratifications of

area Al and A2 were reversed: Al was filled with homogeneous salt water, while a

cap of fresh water was added to the surface of A2. Even though the stratification was

different, when the dam was removed, the velocity signal propagated as a nonlinear

Kelvin wave along the first wall towards the corner. However, the direction of the

actual current was reversed, since the fresh water was pulled by gravity from region

A2 to region Al. Corresponding to the direction of flow, the density interface must

rise rather than sink as the wall is approached from offshore. The run was conducted

with a corner angle of 900.

Flow Visualization

The flow field was visualized by white paper and cardboard disks strewn on

the surface during the run. Most of the pellets were .64 cm in diameter, but some

were .32 cm wide. The initial 90* runs were recorded from above by a co-rotating

color video camera, and the other runs were recorded from above by a co-rotating

512 x 512 pixel black-and-white COD camera whose signal was fed via sliprings to a

VHS format video cassette recorder. A monitor was connected to the VCR so I could

watch the experiment from the co-rotating frame in real time. The video data for the

velocity field was transferred to computer with the "ExpertVision" motion analysis

system, a commercially available package which digitized the position of the centroid

of each surface drifter in a number of video frames in a given time interval. Each

velocity vector at a given time was computed from the difference between a drifter

position one frame before and one frame after the time, with the vector locations

given by the average of these two positions.

In the initial 90* experiments, the fresh water was dyed red and the salty

water was not dyed. In the rest of the runs, the fresh water was dyed almost black so

that it would be clearly identifiable, and the salty water was made a light blue so that



it was dark enough to contrast with the white pellets and light enough to contrast

with the darker fresh water.

Density and Rossby Radius

All runs had rotation periods of approximately 15 s. The temperatures of

the fresh water and the salty water were within .5* C of each other before the fresh

water was fed into the tank and even closer by the time the run was conducted. For

all runs, the water temperature was between 19.50 and 21.5*. The fresh water layer

was given an initial thickness of 4 cm, which was small enough to maintain a large

ratio of bottom layer thickness to top layer thickness in the tank, and large enough for

the surface and bottom Ekman layers of the freshwater intrusion to be thin compared

to the mean depth of the intrusion. A small aspect ratio (fresh layer depth divided

by current width) was desired to give the hydrostatic approximation some validity,

so the current width was made as large as possible. Given the size of the tank, it was

convenient to make the density current width, which is on the order of one Rossby

radius, about 10 cm. In order to obtain an internal Rossby radius of 10 cm with a

fresh layer 4 cm deep, the salty layer needed to have a density of 1.0163 g/cma. The

actual densities were between 1.0160 and 1.0180 g/cm3 . The corresponding gravity

long wave speed was 8-9 cm/s in most of the runs (all parameter values are shown in

Tables 3.2.1 and 3.2.2). In the initial 90* runs, the density difference was somewhat

weaker, giving a Rossby radius of only about 8.4 cm and a long wave speed of 7.1 cm/s.

For all experiments, a density sample was drawn from the surface of the fresh

layer before the run, and from the surface of the fresh water flowing near the inter-

section of the second wall and the rim of the tank after a few minutes of flow. During

one run (shallow lower layer, 450 corner angle run), flow samples were extracted by

syringe at several depths in the fresh current instead of just at the surface (see Fig-

ure 3.2.4b). Similarly, samples from several depths in the fresh layer were extracted



Table 3.2.1. Parameter Chart, Dam Break Experiments

run 0 | h1 h2 | period I P2. P2b I P1 P1b I gap

Short Dam, Deep Lower Layer
32.0
32.0
32.0
31.6
31.8
32.8
32.0
31.7
31.6
31.9
00.4

14.54
14.92
15.39
14.87
14.81
14.85
15.26
15.15
14.96
14.97
00.26

al
a2
a3
h3
h5
h6
h1l1
h12
h13
avg
rms

h1
h2
h4
h8
h1O

h7
h9

Short
4.7
4.4

1.0110"
1.0110a
1.0111
1.0172
1.0163
1.0170
1.0163
1.0159
1.0173
1. 0 1 6 7b

0.0006 b

n.m.
n.m.
n.m.
1.0172
1.0172
1.0182
1.0167
1.0167
1.0173
1.0172 b
0.0005b

4.5
4.0
4.0
4.3
4.4
4.5
4.0
4.1
4.3
4.2
0.2

4.0a
4.0
4.6
4.5
4.3

Dam, Shallow
14.85 1.0165
15.06 1.0155

n.m.
n.m.
n.m.
.9988
.9986
.9988
.9979
.9986
n.m.
.9985,
.0004 b

n.m.
.9985
.9985
.9982
.9977

Lower Layer
n.m. .9985
n.m. .9987

O is corner angle, h1 and A2 are upper and lower layer depths in reservoir region of tank
before flow begins, "period" is rotation period of tank, P2a and P2b are measurements
of lower layer density near top of layer and near bottom of layer, P1, and Pib are
measurements of upper layer density measured near end of second wall during run
and inside reservoir before run, and "gap" is width of gate for the short dam runs
and width of long dam channel just outside gap for long dam runs (for which the
gate width is 9.3 cm for all runs). All units cgs. Depth measurements are accurate
to about .5 cm and density measurements are accurate to about .0002 g/cma.
a Estimate.
b Statistics from experiment h only.
n.m. Not measured.

90*

900

90*

300

150

450

350

400

90*

900

300

150

450

30*

Long Dam
32.0a 14.89
32.0 15.17
31.7 14.79
31.3 14.97
31.8 14.92

Deep Lower Layer
1.0163 1.0166
1.0169 1.0170
1.0160 1.0170
1.0174 1.0175
1.0166 1.0166

450 3.0

30* 3.2

.9980a

.9980a

.9981

.9988

.9983

.9984

.9978

.9987

.9984

.9984 b

.0004 b

.9980

.9984
n.m.
.9982
.9974

.9981

.9982

12.5
20.0
5.0
9.3
9.3
9.3
9.3
9.3
9.3

10.
10.
10.
4.
4.

9.3
9.3



Table 3.2.2. Derived Parameters, Dam Break Experiments

run 0 | 6 fi| g' c RD

Short Dam, Deep
.14i.02
.13±.02
.13±.02
.14±.02
.14±.02
.14±.02
.13i.02
.13i.02
.14i.02

.14
.005

.864

.842

.817

.845

.849
.846
.823
.829
.840
.839
.014

90 0

90*

90*

30*

150

450

350

40*

900

900

30*

150

450

30*

Short Dam,
450 .64i.08
30* .731.09

Lower
12.7
12.7
12.7
18.0
17.3
17.8
18.0
17.0
18.5

17.8a
.5a

Lower
17.9
18.0
17.2
18.8
18.5

Layer
7.6±.5
7.1±.4
7.1±.4
8.8±.5
8.7±.5
8.4i.5
8.5t.5
8.3±.5
8.9i.5

8.6a
.2a

Layer
8.5±.5
8.5±.5
8.9±.5
9.2±.6
8.9±.5

Shallow Lower Layer
.846 17.6 7.3±.4
.834 16.5 7.21.4

0 is corner angle, 6 = hi/h 2 is ratio of upper layer to lower layer depth, f is Coriolis

parameter, g' = gAp/p, (where g is acceleration due to gravity (980 cm 3/s), c = 'gF
is the upper layer gravity wave speed, and RD = c/f is the upper layer Rossby radius.

p is the upper layer density measured during the run, and Ap is the difference between
the upper layer density during the run and the lower layer density before the run; in
runs al, a2, a3, hl and h13, the upper layer water density was not measured during
the run so the measurement before the run was used. For all runs, the estimated
error in g' was .3 cm 3/s, and the error in f was at most .006 s-'. All units cgs.
a Statistics from experiment h only.

al
a2
a3
h3
h5
h6
h1l
h12
h13
avg
rms

hi
h2
h4
h8
h1O

Long Dam, Dee
.12±.02 .844
.12i.02 .828
.15i.02 .850
.14i.02 .839
.14i.02 .842

8.7±.5
8.4±.5
8.7±.5
10.4±.6
10.3±.6
9.9±.6
10.3i.6
10.1i.6
10.6i.6

10.3a
.2"

10.0i.6
10.2±.6
10.5t.6
11.0i.7
10.6i.6

8.6±.5
8.7t.5

9 1
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Figure 3.2.4: Density profiles as a function of depth. (a) Long dam, deep lower layer, 30* angle;
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wall during run. Dashed line shows sharpest pycnocline compatable with data.



before the flow began in the long dam, 30* corner angle run (see Figure 3.2.4a). The

reservoir profile shows a pycnocline primarily between 4 cm and 5 cm depth, while

the outflow profile had a pycnocline primarily between the surface and 3 cm depth.

The density profiles give an upper bound on the amount of mixing that took place

in the reservoir and in the fresh outflow. The dashed curves in Figure 3.2.4 show the

sharpest pycnoclines compatible with the data.

Though efforts were made to make the salty layer homogeneous, the density

of a sample drawn from the bottom few centimeters was typically .0002 to .0010 g/cc

greater than the surface density of the layer before spin-up. At worst this is about

6% of the density difference between the fresh layer and the salty layer, and is also

spread out over a depth range that is about thirty times greater.

For more detailed notes on the apparatus, see Appendix 1.

3.3. Qualitative Behavior and Eddy Growth Rates

Short Dam, Deep Lower Layer

The short dam, deep lower layer experiments established that a baroclinic

coastal current could generate an anticyclonic gyre at a corner like the gyre produced

by baroclinic outflow from a channel. The angle of the corner was varied in order to

find a critical angle for gyre formation and to discover if any other features of the

flow were dependent on the corner angle.

In all three runs with a ninety degree corner angle, a narrow density current

intruded into the salty water along the first wall, overshot the break in the wall

by several centimeters, returned and traveled along the second wall. Within a few

seconds (as soon as pellets could be strewn over the area), an anticyclone was observed

next to the second wall at the corner. Pellets coming from upstream were captured



by the vortex and typically traveled around it a few times before continuing along

the second wall. The anticyclone grew in size and propagated away from the corner,

moving diagonally from both walls (Figure 3.3.1). As the eddy moved away from the

corner there was evidence of a new anticyclone forming at the corner. The current

weakened slowly as the reserve of fresh water ran down, but the flow was fairly strong

for at least six minutes. This was about the time the nose of the current took to

circumnavigate the perimeter of the active region of the tank.

In the runs with gate widths Wg of 12.5 cm and 20 cm, and possibly in the

W, = 5 cm run as well, a weak cyclone was observed to accompany the anticyclone

as it propagated away from the corner (visibility was dependent on the spacing of

surface pellets). The cyclone was in the salty layer and was presumably the lower-layer

counterpart to the upper layer anticyclone, but was weaker due to the relatively large

depth of this layer. The lower layer flow must form a boundary current against the wall

underneath the surface current, even though the lower layer current flows with the wall

on its left (looking downstream), because the Kelvin wave that initially establishes the

current travels with the wall on its right as it propagates away from the gap connecting

regions Al and A2. The lower layer cyclone provides a likely mechanism for the eddy

to drift away from the coast, because the cyclone and anticyclone pair form a heton,

which will tend to drift in the observed direction due to mutual advection of the

vortices by the velocity fields associated with each other's vorticity anomalies. In the

Wg = 20 cm run, a cyclone with a diameter of at most 29 cm also emerged from the

current considerably upstream of the corner, as if generated by an instability. There

was some sign of a similar cyclone in the W = 5 cm run; this may have been less

visible due to undersampling of the flow field with surface drifters.

In each run, the dye formed two regions. Adjacent to the walls was the

deeply dyed inner region, which included the fastest currents, while the outer region

was lightly dyed and had much smaller velocities. This outer region appeared to be
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only on the order of a millimeter deep. Once the nose passed the corner, there was

no sign of any surfacing of the density interface, as indicated by lightening of the dye,

near the corner. In most of the runs, the dye was so dark that the interface needed

to almost surface in order to become perceptibly lighter, but in the runs with a short

dam and 90* corner angle and in some of the runs in which the current was forced by

pumping rather than a dam-break, the dye was light enough so that any decrease in

the thickness of the dye should have been apparent. In all the runs, the current width,

as measured near the middle of the first wall, was about the same when delimited by

high current speeds and by dark dye: about 10 cm. The nose propagated along the

first wall at an average speed of about 4 cm/s for the first run and about 6 cm/s for

the other two.

Runs with corner angles of 15*, 30*, 350, and 40* did not separate at the

corner. The current travelled around the corner and continued along the second wall

and along the rim of the tank (see Figure 3.3.2). The 35* and 400 runs produced a

stagnation region at the intersection of the second wall and the rim of the tank. This

region developed reverse flow along the second wall - essentially an anticyclone at

the downstream end of the second wall. The upstream edge of the anticyclone grew

towards the corner over time, while the gyre widened. This is evidence that there

were quantitative changes in the flow along the second wall due to the corner, but it

is likely that no eddy would have developed had the second wall been much longer.

A 45* angle did produce a gyre at the corner (Figure 3.3.3). This grew more slowly

than the 90* runs. Though no experiments were performed with a corner angle greater

than 900, a wall protruding from the rim of the tank downstream of the second wall

provided a 180* angle around which the current flowed. The eddy generated here was

qualitatively the same as the one at the 90* corner (see Figure 3.3.2).
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Long Dam, Deep Lower Layer

The long dam experiments were the runs in which fresh water was initially

contained along the whole length of the first and second walls so that the nose of the

current would not interact with the corner. The purpose of this experiment was to

see if the interaction of the nose with the corner was a necessary condition for eddy

formation.

For a ninety degree corner angle, the long dam run behaved qualitatively

the same as the short dam runs described above. Just downstream of the corner, an

anticyclone formed, grew, and drifted away from the walls. Once it was away from the

walls, another anticyclone formed. This too drifted away from the walls, and a third

anticyclone formed, though by this time the current had circumnavigated the tank

and was feeding itself at the upstream end of the first wall. The flow along the first

wall was somewhat different than flow in the short dam runs. When the Plexiglass

wall was removed, geostrophic adjustment caused the fresh water to immediately

spread out from the channel width of 10 cm to a width of about 20 cm. This was seen

not only in the dye pattern, but in the velocity field as traced by the paper pellets.

Fresh water leaving the reservoir through the 9 cm wide gap tended to veer away to

the left from the first wall, perhaps forming a cyclone along the first wall.

The 300 and 45* runs were repeated with the long dam forming a channel

only 4 cm wide. When the dam was removed, geostrophic adjustment only spread

the flow to a width of about 10 cm. Thus water leaving region Al did not need to

veer to the left, and flow along the first wall was parallel to the wall. The flows were

the same as in the 30* and 45* short dam runs: no corner eddy at 30*, eddy at 45*.

As in the 350 and 400 runs with the short dam, the run with no corner eddy had a

disturbance at the end of the second wall which grew into a large anticyclone.



Short Dam, Shallow Lower Layer

Runs with 30* and 45* angles were also repeated for a short dam and shallow

lower layer. As in the other runs, a gyre formed at 450 but not at 30*. The gyre

tended to drift downstream along the second wall. The streamlines along the second

wall in the 30 degree run developed a single-crested wave which grew over 20 cm

wider than the steady-state current and propagated downstream from about 40 cm

downstream of the corner (Figure 3.3.4). When it reached the end of the wall, an

anticyclone was visible between the wall and the crest.

In all the dam-break experiments that are described here, there was no

unstable mode which produced a street of eddies either upstream or downstream of

the corner. This is in contrast to the observations of Whitehead and Miller (1979),

who reported strong instability in the channel when the width of the current was much

smaller than the channel width. This may be because their arrangement was more

favorable to baroclinic instability than mine, since their layer depths were equal while

my top layer was relatively shallow. However, in the shallow lower layer runs, this

asymmetry is not so strong. Another factor that may have destabilized Whitehead

and Miller's flows was the large aspect ratio, which was about one in their unstable

flows and less than 1/2 in my experiments. Flows with a high aspect ratio are

susceptible to instability due to nonhydrostatic modes (Whitehead, 1990, personal

communication).

Flow With Wall to Left

The run in which the wall was on the left side of the current (looking in

the flow direction) produced a coastal current on the order of a Rossby radius wide,

and this generated an eddy just downstream of the right angle corner. As in the

other experiments, the flow separated from the wall at the corner, flowed around a
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gyre which grew with time, and re-attached to the wall downstream of the corner.

Due to the opposite direction of flow relative to the wall, the gyre in this case was

cyclonic rather than anticyclonic. An interesting difference between this run and the

rest of the experiments was the behavior of the density interface just downstream of

the corner. The dye looked noticeably lighter there than in the rest of the fresh layer,

indicating that the interface was surfacing. This is reminiscent of the mechanism

proposed by Rsed (1980), which was applied to the case of a current with the wall

on the left by Ou and de Ruijter (1986). However, it is most likely that the interface

surfacing in the lab was a simple consequence of the cyclonic flow in the surface eddy,

which causes the interface to rise as a consequence of geostrophy.

Pumped Flow, Sloping Bottom, Topography

Runs in which fresh water was pumped into ambient salty water produced

an eddy for a sufficiently large corner angle as in the dam-break experiments. A

90* corner angle produced a similar eddy when the wall was sloped rather than verti-

cal. The chief difference between the pumped-flow eddies and the dam-break eddies

is that the former do not drift away from the coast. The pumped-flow gyre probably

does not drift away because it is not accompanied by a lower layer cyclone, since the

cyclones observed in the dam-break experiments were a consequence of lower layer

flow around the corner. Therefore no heton-like structure was formed to allow the

eddies to drift away from the coast.

In some runs, the original water in the tank consisted of a salty layer capped

by a fresh layer. More fresh water was pumped into the top layer. The resulting flows

were complicated by cyclonic eddies produced on the outer edge of the current. Some

of the introduced fluid propagated away from the walls in the form of eddy dipoles,

but some water rounded the corner and formed an anticyclonic gyre.



Eddy Evolution and Motion

The evolution of the gyre, including its growth rate, is a key physical param-

eter defining the eddy. Propagation of the eddy away from the coast is an issue that is

somewhat tangential to this study, but is interesting because it provides a mechanism

for eddies generated near coasts to be found in the ocean's interior. Therefore, some

simple measurements of the eddy evolution and motion were made.

The gyre completely separated from the coastal current and propagated

away from the coast in the 90* corner angle runs in both the long dam and short

dam case. When the corner angle was only 45*, however, the gyre did not drift away.

Therefore there may be two critical angles which describe the current's interaction

with a corner. The first critical value marks how large an angle must be in order to

generate an eddy, and the second value marks a minimum angle for which the eddy

can leave the coast. The eddy drift critical angle may be a function of the upper and

lower layer depth ratio.

The separation of the anticyclone from the coast in the short dam experi-

ments with a 900 corner angle was most clearly observed in the run with a gap width

of 12.5 cm. There was a clear break in the dye field between the eddy and the coastal

current, and subsequently all pellets in the coastal current flowed along the wall with-

out being captured by the eddy (see Figure 3.3.1). According to dye measurements,

this eddy was 36 to 40 cm in diameter, or about four times the width of the coastal

current. The anticylones in other runs were of a similar size. From 60 to 210 s after

the gate was removed, the eddy's leading edge, as traced by the dark dye, moved

away from the corner at .22-.37 cm/s, and it followed a linear path from the corner

that made a 31* angle with the direction parallel to first wall. After this period the

drift slowed to only .04 cm/s, perhaps due to interaction with the perimeter of the

tank.



The anticyclone that formed at the corner was seen to be accompanied by

a weak cyclone in most of the 90* runs and in the 450 runs with shallow lower layer

and with the long dam. It probably also existed in the 45* run with a short dam and

a deep lower layer, but was not seen due to gaps in coverage by surface drifters.

The eddy growth speeds for the 450 runs were estimated from the digitized

trajectories of surface drifters. Several parameters, including the width and length of

the region of closed streamlines marking the anticyclone, characterize the size of the

eddy, but a particularly clear measure of eddy size in this data set is the excursion

of streamlines from their upstream distance from the coast as they travel around the

anticyclone downstream of the corner. Particle trajectories which began upstream

of the corner and continued downstream of the corner were selected. Upstream of

the corner, the distance of each trajectory from the first wall was measured, and

downstream of the corner, the distance of the trajectory from the second wall was

measured. Particle paths upstream of the corner were approximately parallel to the

first wall. The streamline excursion was defined to be the difference between the

average distance of a trajectory from the first wall and the maximum distance of the

trajectory from the second wall. The distance from the corner, along the second wall,

of this maximum was used as a measure of the length of the gyre (it is actually about

half the length of the full gyre). These measures of gyre width and length are shown

as a function of time in Figure 3.3.5. The time at which such a measurement occurs is

actually spread over several seconds, but the measurement was assigned to the time

at which the particle was furthest from the second wall. This is the most reasonable

time choice because the maximum excursion is the most time-dependent parameter

of the flow.

Gyre growth was calculated for the short dam/deep lower layer run, the long

dam/deep lower layer run, and the short dam/shallow lower layer run. In all three,

the gyre width and length grew linearly with time. Therefore the parameter that
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characterizes the growth is not an exponential growth rate (which would have units

of 1/s), but a growth speed (cm/s). In the short dam/shallow lower layer run, the

gyre slowly drifted away from the corner along the wall, and this drift was included

in the length growth speed. There was a possibility that different streamlines would

undergo different excursions downstream of the corner, for instance if a water parcel

slowed down and spread out as it passed around the gyre. In Figure 3.3.5, different

symbols were used for streamlines with distances from the first wall of less than the

median value of all trajectories in the data set and for those further than the median.

These show that there was no trend in excursion distance with upstream streamline

position. For each run, a least squares fit to a straight line was performed for all the

length and width data. The estimated variance in the measurements, based on the

sum of squares of differences between the data and the linear fit, was 3 cm for the

width and 3 to 5 cm for the length. This is larger than the estimated uncertainty

in the measurements, which should be less than .5 cm/s (see next section), but this

large variance does not invalidate the least squares fit. It merely shows that the

approximately laminar flow of these experiments is perturbed by turbulence which

produces the observed jitter in the particle trajectories.

The slope of the line fitting the data for each of the three runs is shown in

the first column of Table 3.3.1. Since different runs have somewhat different values

of reduced gravity and upper layer depth, it is more appropriate to compare the non-

dimensional growth speed, which is scaled by the upper layer gravity wave speed, c =

NgTE, where h is upper layer depth and g' is reduced gravity. Since this expression for

gravity wave speed is strictly true only for an infinitely deep lower layer, an even better

scale factor may be the two-layer wave speed, c2 = g'hh2/(h + h2 ) = g'h/(1 + 6),

where h2 is the lower layer depth and 6 = h/h2 . Both expressions are tabulated in

Table 3.3.1. When scaled with either of these two quantities, the growth speeds for

both width and half length are about the same for the two runs with a deep lower

layer, and considerably faster for the shallow lower layer run. The shallow lower layer
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Table 3.3.1. Eddy Growth Speeds for 45* Runs

run speed C speed/c 6 speed/c 2

Width
short/deep .152i.005 8.4i.5 .018i.001 .14±.02 .019i.001
long/deep .187&.006 9.2±.6 .020i.001 .14i.02 .021i.001
short/shallow .233±.029 7.3±.4 .032±.004 .64.i08 .041i.005

Half Length
short/deep .095±.007 8.4±.5 .011±.001 .14±.02 .012±.001
long/deep .078i.007 9.2±.6 .008.±001 .14±.02 .009i.001
short/shallow .270±.046 7.3±.4 .037±.007 .64±.08 .047±.009

"Speed" is the raw growth speed of the width or half length of the eddy, c is the

gravity wave speed for the upper layer, S is the ratio of upper layer to lower layer

thicknesses, and c2 is the gravity wave speed for the two layer system. All units cgs.

run width grows about 60% faster than the other runs when scaled by the reduced

gravity wave speed and grows twice as fast as the others when scaled by the two-layer

wave speed. The shallow lower layer run half length grows by an even greater factor

of about four or five times faster for scaling by reduced gravity or two-layer wave

speed. All growth speeds are a factor of about 20 to 70 smaller than the maximum

particle speeds in the current.

3.4. Interpolation of Fresh Water Velocity Fields

I estimated velocity profiles across the current at several positions upstream

and downstream of the corner. From this data, I calculated rough estimates of cross-

stream profiles of upper layer depth and potential vorticity, as well as estimates of

volume flux and entrainment.
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The raw surface velocity field from float tracks or streaks is highly irregular

in space and time. In order to compute cross-shore profiles of velocity, a linear

smoothing and interpolation scheme was used. The velocity field along each wall

was interpolated to a regular grid by taking a weighted average of all nearby velocity

vectors, with closer vectors having greater weight:

( exp(-(6, /L.) 2 - (6,/L,)2 )(u, v1)

(u,U) E ~ exp(-(6,/L , )2 - (8,/L,)2 )

where (uj,ov) are the data velocity vectors (downstream and cross stream compo-

nents), (u,v) is an interpolated velocity, 6, and 6, are the distances between the

grid position and the jth data position (alongshore and cross-shore components), and

L. and L, are length scales of the weighting function. The summations are over j.

The error in the velocity measurements depends on the windage on the

drifters, the fact that the drifters are solid and are lighter than the surrounding fluid,

and surface tension effects on the drifters (especially interactions between the drifter

and either another drifter or a wall). Previous laboratory experience indicates that

the rms variation from all these errors is not much less than .1 cm/s and probably not

greater than about .4 cm/s. In a series of spin-up experiments in a smaller circular

tank, velocities derived from surface pellet trajectories showed departures from the

expected velocity field with an rms average on the order of .1 cm/s. We assume

that the velocities of the surface drifters represent the depth-independent velocity

of a layer of homogeneous density, but in reality there are small vertical variations

in density due to temperature gradients and large variations from interfacial mixing,

while the surface velocity includes the wind-induced Ekman velocity which is confined

to the top millimeter of the surface. The wind-induced velocity is small compared

to the speed of the density current. The velocity at the top of a shear layer can be

thought of as the maximum velocity in a region of vertical shear, or as a scale velocity

for an idealized homogeneous layer that would display similar behavior to the actual

pycnocline.

103



In addition to the errors in the layer velocity as measured by the pellet veloc-

ity, there are also errors associated with interpolating from the pellets to grid points.

If all the velocity measurements used to calculate velocity at some grid point made

up a set of independent measurements of the same quantity, a simple propagation of

errors formula could be applied to find the error of the grid point velocity. In reality,

spatial variations in the velocity field cause the expectation value of the error at the

grid point to be smaller for pellet positions that are closer to the grid point location.

In Appendix 2, I describe a crude method for using a measure of how many data

points are close to a grid point to determine the error at the grid point.

Short/Deep Velocities

Velocities were interpolated to rectangular grids that were parallel to the first

and second walls. Velocity data was binned into consecutive thirty second intervals to

make six to eight maps for each run along each wall. The alongshore and cross-shore

weighting length scales (L., L,) were (4 cm, 1 cm). The alongshore scale was on the

order of the distance traversed by a pellet in the time interval used to measure its

velocity, while the cross-shore scale was on the order of a pellet diameter.

I attempted to determine whether the current speed should be scaled by

the reduced gravity wave speed for the upper layer, c = ? or the two-layer wave

speed c2 = g'h/(1 + 6), based on upper layer thickness h and ratio between upper

and lower layer thicknesses 6. The maximum alongshore speed was recorded for each

cross-shore profile along the first wall in the short dam runs for corner angles of

15* to 45*. Selected values scaled by both the upper layer wave speed and the two-

layer wave speed are displayed in Table 3.4.1. The non-dimensional maximum speed

of the current is on the order of .5 to .8 of the gravity wave speed, depending on

the time and position of the maximum speed. The ratio of the non-dimensionalized

speeds for the deep lower layer run and the shallow lower layer run should be unity
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Table 3.4.1. Cross-Stream Maximum Speeds

Cross-Stream Maximum Speed Scaled
by Upper Layer Gravity Wave Speed

deep shallow
t\x -45 -5 -45 -5
t1 .77 .68 .67 .50
t2 .67 .52 .62 .44

Cross-Stream Maximum Speed Scaled
by Two Layer Gravity Wave Speed

deep shallow
t\x -45 -5 -45 -5
ti
t2

.82 .'
.71 .5

3

5
.87
.81

.65

.56

Values based on maximum alongstream speed at profiles at -45 cm and -5 cm up-
stream of corner. Deep run data is averaged from short dam runs with 15*, 30 *, 350,
400 (deep lower layer), and 450 corner angle. Shallow run data is averaged from short
dam runs with 30* and 45* corner angle (shallow lower layer). tl is period 31 to 60
sec after flow began and t2 is period 181 to 210 sec after flow began.

if the correct scale factor is used. This ratio was calculated for the maximum speeds

measured at profiles at 5, 15, 25, 35, and 45 cm upstream of the corner at six different

30 sec intervals. Due to noise in the measurements, there was quite a bit of variation

in this ratio. For speeds scaled by the upper layer wave speed, the ratio ranged from

.8 to 1.7, with an average of 1.1 and a sample standard deviation of .1. Using the

two-layer wave speed, the ratio ranged from .7 to 1.4, with an average of .9 and

a standard deviation of .1. Since both scales yield a ratio just about a standard

deviation away from unity, it is impossible to say which, if either, quantity provides

the correct velocity scale. Both are possible based on the observations.
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The reproducibility of the upstream flow in the short dam, deep lower layer

runs is indicated in Figure 3.4.1, which shows the average and standard deviation

velocities along the first wall in two time intervals. A similar plot (Figure 3.4.2) is

shown for velocities along the second wall for the short dam, deep lower layer runs

which did not produce eddies at the corner. An ideal current of uniform potential vor-

ticity that is bounded by a surface front would have velocity increasing monotonically

with distance from the coast; the laboratory currents are slower on the outer edge

due to mixing. Taking the average over the whole flow field of the ratio of velocity

standard deviation to velocity average for each point in the flow field, we obtain a

measure of the reproducibility of the flow. Both upstream and downstream of the

corner, the average value of this ratio is around .2 to .3 for data taken during various

time intervals after flow began. The ratio is about 10-20% smaller upstream of the

corner than downstream. This figure is somewhat misleading, however, because the

run-to-run variations upstream of the corner are heavily weighted by large fractional

variations at the outer edge of the current, where the velocity is small so the noise is

relatively large. Therefore it is fruitful to look more closely at disaggregated subsets

of the data.

Downstream of the corner, there is a tendency for the flow to be slower near

the wall for larger corner angles. To get a clearer measure of this variation, I plotted

maximum speed and speed at the wall as a function of corner angle for various cross-

shore sections. As Figure 3.4.3 shows, the cross-shore maxima of flow speed parallel

to the second wall were always around 5 cm/s and had no strong trend with angle.

Five centimeters downstream of the corner, the velocity near the wall is almost as

great and relatively independent of angle. Further downstream (15, 25, 35 and 45 cm)

the wall speed is fairly flat in the first minute after the flow reached the corner, but

a clear trend is visible in most of the plots of wall velocity versus angle for the next

two minutes.
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Figure 3.4.1: Interpolated velocity fields upstream of corner for runs with short dam and deep
lower layer. Vectors show velocity averaged over the runs (150, 300, 350, 400, and 450 corner
angle), and rectangles at heads of vectors show standard deviations. (a) 31-60 sec after flow began.
(b) 121-150 sec.
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Figure 3.4.2: Interpolated velocity fields downstream of the corner for runs with short dam and

deep lower layer. Vectors show velocity averaged over runs in which no eddy formed (150, 30*, 350,
and 400 corner angle) and rectangles show standard deviations. (a) 61-90 see after flow began.

(b) 151-180 sec.
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Figure 3.4.3: Maximum speed (dashed line) and speed near the wall (solid line) as a function of
corner angle for sections downstream of the corner in short dam, deep lower layer runs in which no
eddy formed (150, 30*, 350, and 400 corner angle). Speeds are taken from interpolated velocity

maps in time interval 91-150 sec after flow began. Error bars denote estimated errors except in (f),
where they denote standard deviations. (a) 5 cm downstream of corner, (b) 15 cm, (c) 25 cm, (d)
35 cm, (e) 45 cm, (f) average of 5 to 45 cm.
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These results are intriguing, because the trend is probably linked to the gyre

formation process. For a large enough angle, the speed actually becomes negative at

the wall and an anticyclone forms. Decreasing wall speeds for increasing angles of less

than this critical angle may be a sign of the system moving towards eddy formation

as the angle increases. It is also an interesting asymmetry between the flow upstream

and downstream of the angle. Similar plots for velocity along the upstream wall

(Figure 3.4.4) show relatively flat curves, though with large components of noise.

Top Layer Depth

A naive estimate of the depth of the fresh-salt interface upstream of the cor-

ner was made from the velocity measurements. This calculation assumed geostrophy,

no mixing, uniform density within each of two layers, and no motion in the lower

layer. The depth is obtained by integrating the geostrophic relation for the velocity

component parallel to the wall:

fu =-g' d
dy

using the boundary condition that h = 0 at y = 15 cm (the wall is at y = 0). Using

the same assumptions, the volume flux as a function of the layer thickness at the wall

is Q = (g'1/f)H 2 .

The dam break produced a counterflow underneath the fresh layer current.

Since the interface slope is proportional to the vertical difference in velocities, and

since the lower layer has flow in the reverse direction to the upper, ignoring the lower

layer flow would cause us to underestimate the depth of the interface. In all the deep

lower layer runs, this lower layer flow should only be about one eighth the upper layer

flow, since that is the ratio of the two depths.

For the dam break runs, contours of depth near the wall as a function of

position along the first wall (horizontal coordinate) and time (vertical coordinate) are
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Figure 3.4.4: Maximum speed (dotted line) and speed near the wall (solid line) as a function of

corner angle for sections upstream of the corner in short dam, deep lower layer runs in which no

eddy formed (150, 300, 350, and 40" corner angle). Speeds are taken from interpolated velocity

maps in time interval 61-120 sec after flow began. Error bars denote estimated errors except in

(d), where they denote standard deviations. (a) 25 cm upstream of corner, (b) 15 cm, (c) 5 cm, (d)

average of 25 to 5 cm from corner.
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shown in Figure 3.4.5. The data is fairly noisy, but it tends to confirm the expectation

that depth increased downstream due to mixing and decreased with time as the system

ran down. Mixing increased the calculated interface depth and volume flux in two

ways. There was an actual increase in volume flux as entrained water was added to

the flow, while there was an apparent increase in volume flux because the nominal

value of g' overestimated its actual value downstream, where it decreased. From

45 cm upstream of the corner to 25 cm upstream of the corner, transport increased

10-190% in various runs, with most increases in the 60-100% range. From 25 cm to

5 cm upstream of the corner, transport increased by 0-20%. Thus near the gap from

which the fresh water flowed, volume fluxes into the top layer due to entrainment were

substantial compared to the transport of the current, though within a few current

widths of the corner the entrainment is small.

3.5. Summary and Discussion

A series of experiments were performed in which currents were generated by

a dam-break between a homogeneous salty region of the rotating tank and a region

capped with a fresh surface layer. The current flowed along a pair of straight walls

which were joined at a convex corner, the angle of which was varied from run to

run in order to find a critical angle, if one existed, for gyre formation. In the first

runs, the lower layer depth was initially eight times greater than the upper layer

thickness, and the fresh intrusion began when a short dam upstream of the corner

was removed. In these short dam, deep lower layer ("short/deep") runs, no gyre was

formed at the corner for a corner angle of 40* or less. At 45*, an anticyclonic gyre

grew while staying near the corner. At 90*, an anticyclone formed immediately and

tended to drift away from the wall into the interior of the basin. When this happened,

a second and sometimes a third gyre grew from the corner to take the place of its

predecessor. In all cases in which a gyre was formed, the current flowed around the
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Figure 3.4.5: Contours of depth near the wall as a function of distance along the first wall

(horizontal axis) and time (vertical axis), for short/deep runs. Sections are 45, 35, 25, 15 and 5 cm

upstream of corner. Time intervals are 6-30 sec, 31-60 sec, etc., after flow began. (a) 150 angle,

measured 2 cm from wall. (b) 30*, 3 cm. (c) 350, 2 cm. (d) 400, 2 cm. (e) 450, 2 cm. (f)

900 (12.5 cm gap), various distances close to the wall. (g) 900 (20 cm gap), 2 cm.
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gyre, re-attached to the wall downstream of the corner, flowed along the wall to where

the wall intersected the rim of the tank, and continued around the rim.

The velocity profile of the current upstream of the corner was roughly the

same from run to run, showing no trend with corner angle. Downstream of the

corner, the velocity profile showed interesting changes as the critical angle for eddy

formation was approached from below. There was little change with corner angle in

the cross-shore maximum in the speed of the current, but the velocity near the wall

decreased as the corner angle increased. This is a hint that eddy formation should be

conceptualized as the limit in which the speed at the wall is not only lowered but is

actually reversed.

Experiments with a relatively shallow lower layer showed eddy generation

characteristics that were similar to the deep lower layer runs. The critical angle for

gyre formation was between 300 and 45*, which is consistent with the results of the

"deep" runs. However, the eddy in the "shallow" run grew significantly faster then

the "deep" run gyres, and tended to propagate away from the corner along the wall.

The shallow lower layer run for which no gyre appeared at the corner also produced

a solitary disturbance in the streamlines several current widths downstream of the

corner. This wave propagated downstream while growing into an anticyclone similar

to the corner eddies.

"Long dam" experiments, in which the leading edge or nose of the current

was initiated downstream of the corner so that the two did not interact, demonstrated

the same behavior as the short dam experiments. When the corner angle was 30*,

no gyre was formed; when the angle was 45* a gyre grew downstream of the corner;

at a 90* angle a gyre grew and drifted away from the wall. Before the long dam

experiments were conducted, there was evidence both for and against the hypothesis

that the gyres were not caused by dynamics specific to the nose of the current. The

claim that the interaction of the nose with the corner is not a key factor in producing
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the anticyclones was supported by the fact that a second eddy formed when the first

eddy drifted away in the 90* run. However, it was possible that the eddies would

not have formed if the current had not already been deformed by the first eddy.

On the other hand, it was obvious in the 90* angle runs, at least, that the current

initially overshot the corner, turned sharply around, and immediately bifurcated into

a gyre and a boundary current along the second wall, so that the nose appeared to

be responsible for the initiation of the first gyre. The long dam experiments showed

that the nose is not crucial to the genesis of a corner eddy. This is in contrast to

separation of a barotropic current from a wall, which Stern and Whitehead (1990)

modeled with a time-dependent model of the nose of the current.

If the baroclinic eddy were generated by the leading edge of the current as

in the barotropic case, the dynamics of anticyclone genesis would be complicated by

the short alongshore length scale at the nose of the current, where the current is per-

pendicular to the isobars. Perhaps more importantly, a mechanism that will produce

eddies from either a steady current or an intrusion will have wider oceanographic

application than one that needs specialized initial conditions. It is possible that the

initiation of the current in both the long and short dam runs is somehow responsible

for forming or not forming anticyclones. However, since the behavior of the flow looks

so similar for such different initial conditions, it is likely that time-independent fea-

tures are more important, and we should be able to explain gyre formation in terms of

whether non-separating, steady flow around the corner is possible for various angles.

What is the essential dynamics of the eddy generation? One possible cause

is that as water rounds a corner, the centrifugal force due to the curvature of stream-

lines makes the water unable to conserve volume flux, potential vorticity, and energy

while remaining attached to the wall, and so separation ensues. This phenomenon

was reproduced in Chapter 2 with a simple model which was only applicable to gently

curving coastlines. This hydraulic model produced a separation due to upwelling of
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the density interface which was consistent with some of Bormans and Garrett's (1989)

experimental results for a curved corner but not consistent with others. As described

in Chapter 1, some numerical models (Chao and Boicourt, 1986 and Kubokawa, 1991)

and laboratory experiments (Kawasaki and Sugimoto, 1984) have indicated that gyre

formation at a sharp right angle corner may be inhibited by the upstream properties

of the flow, such as the Rossby number or the potential vorticity distribution. My

experiments show that even a current which has an upstream flow profile that could

potentially form an eddy, and which satisfies Bormans and Garrett's curvature crite-

rion, will depend on a further geometrical parameter for eddy generation, namely the

angle of the corner. These results point out the limits of hydraulic theory, though they

leave open the possibility that if we were to solve the short wave (and mathematically

more difficult) analogue of the hydraulic approximation, separation would occur at

a sharp corner for large enough angle and Rossby number. The experiments showed

that the flow near the wall downstream of the corner decreased as the separation angle

was approached from below. This is strong evidence that the most important effect of

the corner is to slow down the flow rather than pull up the interface. This effect could

result because frictionally-induced cross-stream variations in the potential vorticity of

the current produces different behavior than that exhibited by the uniform vorticity

currents in Chapter 2, or because the viscous boundary layer widens downstream of

the corner.

If the eddy generation is caused by viscous boundary layer separation, we

might expect the effect of varying either coastline radius of curvature (for a given

large corner angle) or corner angle (for a given infinitesimal radius of curvature) to be

quite similar. Increasing the perturbation in the coastline shape in either case would

increase the alongstream velocity gradients close to the wall, which would increase

the adverse pressure gradient downstream of the corner and make the current more

prone to separate. Nonrotating flow tends to separate from sharp corners even if

the angle is moderately small (as in the 30* runs in the laboratory experiments),
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but the Ekman friction effect described by Merkine and Solan (1979) could inhibit

separation. If a steady state, inviscid process were responsible for the separation,

the curvature and angle could influence the flow in different ways. One possibility is

that the curvature determines whether there is separation, while the angle determines

whether the current reattaches to the wall in such a way that all the water flows away

from the corner (no gyre formed) or some water returns (gyre formed). Whitehead

(1985) argued that any steady current impinging on a wall must bifurcate at the

wall, but his discussion was based on the assumption of parallel flow towards the

wall at infinity. Any current reattaching to the wall in the lab would not satisfy this

assumption. The fact that not even a small degree of separation is visible when the

corner angle approaches the critical (separation) value from below makes this picture

of the behavior at the corner less attractive.

Another possibility is that the corner eddy is a soliton-like instability which

is being stimulated in the inviscid time-dependent equations of motion by fluid round-

ing the corner. Similarly, while the long-dam experiments showed that very different

initial conditions can produce the same behavior, it is possible that almost any initial

condition, by virtue of not being an exact steady-state solution to the equations of

motion, would produce a growing disturbance even if there exists a time-independent

state which does not separate at the corner. Kubokawa (1991) explained the genera-

tion of eddies from a current flowing out of a channel in terms of a quasigeostrophic

model in which waves on a potential vorticity front were responsible for the anticy-

clone, but in his model the eddy formation was dependent on the asymmetry between

the upstream condition (flow confined to a channel) and the downstream condition

(no outer wall). In order for a disturbance to be trapped at the corner in the coastal

flows studied in this thesis, the wave speed would have to be negative (propagation

opposite to the flow direction), or at least very small, downstream of the corner as

well as positive upstream of the corner.
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The possible importance of a wave-like cause is hinted at by other waves

seen along the second wall. In the run with a shallow lower layer and a 30* corner

angle, the solitary instability that propagated downstream away from the corner

developed an anticyclone similar to the corner eddies. The corner eddy that grew

in the 45* shallow lower layer run also slowly drifted downstream. In contrast, the

corner eddies for the deep lower layer runs do not drift downstream. However, the

wave behavior is different for different layer-thickness ratios, but the eddy behavior

at the corner is qualitatively similar.

The fact that the shallow lower layer run eddy width has a higher non-

dimensional growth speed than the deep lower layer run eddies is another indication

that the thickness of the lower layer can cause quantitative changes in the eddy

behavior. If the growth speed is scaled by the upper layer reduced gravity wave

speed, the shallow run eddy grows about fifty percent faster than the deep run eddy.

The shallow eddy growth is twice as fast as the deep run growth if the two-layer wave

speed is used instead. This is evidence that something like a locally trapped baroclinic

instability may play a role in the creation of the eddy. The role of baroclinicity in the

dynamics of a coastal front is poorly understood. Therefore, let us pause to review

baroclinic instability in a classical quasigeostrophic, two-layer flow in a channel.

Baroclinically unstable modes typically disappear in a two-layer system

when one of the layer thicknesses becomes very great compared to the other. As

the depth ratio S = hi/h 2 goes to zero, the growth rate decreases to zero. The insta-

bility becomes weaker because coupling between potential vorticity anomalies in the

thin layer and motion in the thick layer become weaker as the difference between the

thicknesses increase. Mathematically, this is illustrated in the relatively simple case

of a system with no horizontal shear. Pedlosky (1982) calculates the imaginary part

of the linear wave speed, which is proportional to the instability growth rate and can
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be written

Ci = -s6+r
' 2 '6+ +1'

where U, is the difference between the basic state speeds in the two layers and i =

Kv/T/f, where K 2 = k2 + 12 is the square of the wavenumber. Fixing all other

quantities, as h2 increases, 8 decreases to zero, and c; decreases until it becomes zero,

at which point the wave becomes stable. Other factors, such as Ekman friction, can

ensure that as 6 goes to zero, there are no unstable waves. The factor of U, in the

expression for ci provides another path through which 6 can affect the growth of the

wave, because the adjustment process which produces the upper layer flow will cause

the lower layer flow to be larger (thus making U, larger) when 6 increases to one.

A more relevant model than two-layer quasigeostrophic flow is the two-layer

frontal instability theory of Kubokawa (1988), in which the lower layer is assumed

to be deep compared to the upper layer, which has a jet of zero potential vorticity.

Unlike a quasigeostrophic flow, a frontal system does not need to have the potential

vorticity gradient change sign in order for an instability to develop. In Kubokawa's

system, the instability is caused by the coupling of a frontal wave with a Rossby wave

on the potential vorticity gradient in the lower layer. In this model, both growth rates

and cross-jet speeds are scaled by a factor of 63/2. This is too strong a dependence

on 6 to fit the results of the experiments, but quantitative agreement should not be

expected, since the experiments differ from the theory in having a shallow lower layer,

non-zero potential vorticity in the jet, and an eddy whose perturbation on the flow

is not small compared to the basic state flow. More importantly, Kubokawa's system

has a motionless lower layer. In the laboratory, the lower layer velocity is not known.

If there were no friction the potential vorticity in the lower layer would be uniform,

but friction may impose a potential vorticity gradient on the flow.

While the difference in growth rates implies that baroclinicity causes the

eddy to grow faster, it does not prove that an active lower layer is essential to eddy
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formation. The model of Werner et al. (1988), for instance, does not have an active

lower layer, but it does produce a gyre. The active lower layer probably is necessary

for drift of the eddy away from the corner, because it is likely that the drift is caused by

heton-like coupling between the upper layer anticyclone and the lower layer cyclone.
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Appendices to Chapter 3

3.A. Technical Notes on Apparatus

The Long Dam

The long dam was held in place by a metal frame placed across the top

of the tank (Figure 3.2.2b). The tank was spanned by a two meter "angle" piece,

which has an "L" shaped cross section. A second "angle" was screwed to the center

of the first, and could be adjusted to lie parallel to the second wall. A thin sheet of

Plexiglass, 30.3 cm wide, was screwed into the first piece of metal and clamped to the

second so that it hung into the water, reaching to a depth of about 18 cm. Tension

from the frame bent the Plexiglass into the appropriate angle near the corner. The

Plexiglass was readjusted on the frame for each corner angle so that the region of

curvature of the Plexiglass wall extended up to 5 to 15 cm upstream and downstream

of the corner, and so that tension did not pull the Plexiglass too close to the corner

itself. Because different lengths of wall were needed parallel to the second wall for

different corner angles, a second piece of Plexiglass was taped over the first in order to

extend the removable wall all the way to the rim. A thick (about one cm) Plexiglass

rectangle with a vertical slit cut in it was taped to the tank perimeter near the second

wall, so that the removable wall fitted snugly in the slit. Silicone grease was rubbed

on the slit to stop fresh water from leaking out of the channel. The wall was removed

by two or three people picking up the ends of the metal frame.

Two Different Long Dams

In the first three long dam runs, the gap end of the removable Plexiglass

wall was fitted to a greased slit in the permanent Plexiglass wall, about 1 cm from
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the gap. The channel width ranged from about 10 cm near the ends and the corner

up to 14 cm about 20 cm downstream of the corner. The last two long dam runs had

a channel width of only about 4 cm. In these, the removable wall extended into the

middle of the gap between Al and A2. To close the gap outside of the removable

wall, a piece of thin Plexiglass was taped to the removable wall and stuck with grease

into the metal bracket behind the permanent Plexiglass wall.

Walls

The first and second walls were made of aluminum, 43 cm tall and less than

1 mm wide. They were taped to the bottom of the tank in the "back," on the Al

side of the walls. The walls were carefully taped to each other on both sides at the

corner. This arrangement allowed the corner to make a sharp angle which could be

changed from run to run without re-taping the two walls to each other. The second

wall needed to be a different length for different corner angles in order to reach the

rim of the tank, so it consisted of two metal pieces taped tightly together. A "zeroth"i

wall, also of aluminum, was taped at the beginning of the first wall (see Figure 3.2.1).

One further wall was needed to separate Al from A2 (see Figure 3.2.1). This was

made out of 7/16 inch thick (1.1 cm) Plexiglass (45 cm tall).

Once the fresh water flow is started by the dam release, it eventually makes

its way around the rim of the tank and along the Plexiglass wall, until it intercepts

its own tail at the beginning of the first wall. Though data collected after this point

is not necessarily useless, interpreting it is somewhat complicated. Therefore I taped

another wall, consisting of two pieces of metal taped together, to the Plexiglass wall

near the rim (see Figure 3.2.1a). For a current traveling at 4 cm/s, the 68.5 cm of

extra wall causes the current to traverse an extra 137 cm in about 34 sec. Since

it only takes a few minutes to traverse the whole perimeter, this is a useful gain in

duration of the experiment.
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Watertight Seals

The short dam was held in place by metal brackets on either side of the gap.

Silicone grease along the edge of the dam prevented fresh water from seeping through.

The brackets were originally glued or taped in place in various runs. The dam only

reached down to a depth of 20-25 cm for the deep lower layer experiments, so that

no horizontal pressure gradients could develop between region Al and A2 in the salty

water. Similarly, water could seep underneath the walls in several places. Since

the tank floor sloped up within a couple of centimeters of the rim, the permanent

Plexiglass wall and the second wall did not reach all the way to the rim. Small pieces

of Plexiglass were taped to the walls and rim in order to prevent fresh water from

leaking out of Al.

In runs with a shallow lower layer, extra Plexiglass pieces were taped at

appropriate depths between the rim of the tank and both the second wall and the

permanent Plexiglass wall in order to prevent relatively low-lying fresh water escap-

ing region Al. For reasons which are still unclear, the seal between the permanent

Plexiglass wall and the rim of the tank leaked fresh water. There was also a pulsation

in region Al near the leak. A patch of blue (salty) water would appear by the rim at

the same phase in just about every revolution of the tank. It is possible that this was

mixing the two layers enough to allow water to escape underneath the seal between

the rim and the wall. Fresh water also seemed to be leaking under the dam. At times

there was significant motion near the first wall due to the outflow, but the layer was

extremely thin (probably as little as .1 cm), and was probably dynamically irrelevant

once the dam was removed.
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Fresh Layer

A twenty-gallon (approximately 80-liter) plastic pail was placed on a milk

crate behind the first and second walls. This was filled with tap water to be siphoned

to the surface of region Al to form the fresh layer. The water filtered through foam

rubber glued to a styrofoam frame floating on the surface. The foam rubber forced

the fresh water to have a low flow rate, so that mixing with the ambient salt water

was minimized.

It was difficult to directly measure the thickness of the opaque fresh layer

even before the current was made to flow, so I estimated it from geometrical consid-

erations. From the areas of regions Al and A2, the thickness of the fresh layer could

be calculated from the rise in the water surface when the fresh water was initially fed

into the tank: if H1 is the fresh layer depth, dH is the change in total depth, and

A1 and A2 are the areas of the two regions, A1 1 = (A1 + A2)dH.

Unwanted Motion

In all the runs there was some difficulty with motion in the fresh layer before

the dam was removed. The first five experiments had fairly slow motions (perhaps

.2 cm/s) after waiting one to two hours between inserting the water and conducting

the run. For run 6, I waited over five hours to let flow settle down, and it actually

seemed somewhat worse. I suspected that the initial cyclonic flow was due to the flow

of fresh water as it filled the reservoir, but the anticyclonic flow later observed could

have been caused by windage on the rotating tank. However, a glass plate placed over

the main reservoir in some runs seemed to have little if any effect on the flow. A 6.5

cm diameter cylinder was fixed to the end of the zeroth wall (Figure 3.2.1a) in order

to replace the sharp edge with a rounded contour; this did not seem to discourage

the anticyclonic gyre from forming in the main reservoir.
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A final suspect is anticyclonic flow in the bottom layer. Covering the surface

with fresh water squashes water columns in the lower layer, so water in that layer

must acquire negative relative vorticity to conserve potential vorticity. However, for

H = 32 cm, f = .84 /s, and kinematic viscosity v = .01 cm 2 /s, the Ekman

spindown time H/v/vif is only about 6 minutes. In most of the experiments I waited

over an hour after filling the top layer, to no avail.

Average speeds in the fresh water gyres in each run ranged from .2 to .4 cm/s,

with standard deviations of .03 to .25 cm/s in each gyre, and the gyres' major and

minor axes were in the 10 to 50 cm range. The average relative vorticity associated

with the speed and size of drifter paths around the gyres - i.e., the vorticity the

gyre would have if it were in solid body rotation - is on the order of 47r/T = 4u/D,

where T = one gyre rotation period, u = average speed, and D = average diameter.

For the fresh water gyres, this vorticity ranged from .02 to .08 /sec, or up to one-

tenth of the Coriolis parameter (most of the vorticity estimates were in the range

.03-.05 /sec). This would have introduced a small modification to the assumption

that the potential vorticity of the fresh outflow was f/H. The speeds of surface

pellets in the salty layer in the minute preceding the beginning of the flow had an

average of about .1 cm/s and a standard deviation of .05 to .1 cm/s in each run of

experiment H.

3.B. Estimation of Interpolation Errors

The errors in velocity calculated at points on a rectangular grid are due

to errors in the original irregularly distributed velocity measurements and to errors

caused by the interpolation process. A statistical simulation of the data was used to

estimate the error at grid points.
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In general, the error that is generated in interpolating is a function of the

position of all the data points relative to the grid point and to the spatial variations of

the field that is being measured. Rather than explicitly estimate the complexities of

the error variations, for each velocity field I found an empirical relationship between

the expected error and D, the denominator in the interpolation formula in Section 4.

D is the sum of weights of all the data used in interpolating to a given grid point, and

is large when there are many velocity measurements close to the grid point. Thus D

is a rough index of how close actual data is to any grid point, and there should be

a tendency for the interpolation error to decrease when the data is closer to the grid

point. D is also a useful index because it must be calculated for each grid point even

if no estimate is made.

For each run, the upstream interpolated velocity field for one time interval

was selected as representative for the run. I pretended that this was a true (errorless)

velocity map. Ten realizations of simulated "data" were created from the velocity

map by randomly eliminating about half the data points and adding Gaussian noise

to the rest. Each "data" field was remapped (using the interpolation formula) on to

a grid, and difference fields were made by subtracting each of the remapped fields

from the original mapped field. These differences represented the "errors" between

the original "true" map and the maps based on the noisy "data" fields. I made

scatter plots of the absolute values of the errors against D. As expected, the range of

errors decreased as D increased. Looking at the u and v velocity error components

separately, I binned the data into intervals in D and took the velocity error which was

greater than two thirds of the errors in that D interval to be the characteristic error

E of the interval. Thus for any map done for the same run, this relation between the

error and D was used to estimate errors for each interpolated velocity. In practice

this estimate of E(D) did not include high enough D's (corresponding to several

velocity measurements very close to two grid points), so a curve of the form EoVI

was appended to the empirical E(D).
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Chapter 4.

Barotropic Sloping Bottom Flows
Around a Corner in a Rotating Tank

4.1. Introduction

What happens when a barotropic current flowing along a sloping bottom

encounters a convex corner? Can the current continue along the coast with no qual-

itative change, does a gyre form, or can a more radical separation of the current

from the coastline occur? These questions were addressed in a series of laboratory

experiments.

Flows of Rossby number of O(.1) to 0(1) were produced by pumping water

along a sloping surface in a rotating tank at different flow rates. The bathymetry

shallowed towards the coast, and the flow was oriented with the shore to the right

looking downstream. Preliminary experiments were conducted with a sharp corner

and water depth that went to zero at the coast. As described in Section 3, these

experiments showed that an anticyclonic gyre can form downstream of the corner.

Later runs examined how coastal water depth, radius of curvature of the corner, and

Ekman number influence formation of a gyre. Velocity fields were obtained from

videotapes of surface drifter motions.

The conservation of potential vorticity for a homogeneous, hydrostatic fluid

demands that an inviscid fluid must flow along isobaths in the low Rossby number

limit, because changes in the thickness h of a fluid parcel must be accompanied by

proportional changes in the absolute vorticity f + C (C = v, - u,,). Water circulating

in a gyre must undergo significant changes in thickness as it changes its distance

from the coast, implying that the current must have large relative vorticity (Rossby
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number not small) or significant friction or both when a gyre is produced. When

the Rossby number is no longer small, however, the Taylor-Proudman theorem no

longer holds, so that vertical shears are permitted in the water column and water

near the surface no longer needs to follow isobaths. In the transition from a low

Rossby number regime to a regime of Rossby number of order unity, it is not clear

beforehand whether horizontal shears (C) or vertical shears will be more important

in allowing the flow to cross isobaths.

The existence of vanishing layer depth at the shore in the initial experiments

complicated the dynamics because the Ekman layer thickness was not small compared

to the depth of the water in part of the current. It was even possible that the gyres

in the preliminary experiments were caused by frictional processes near the coast

that only occur in a regime in which the depth goes to zero at the wall. Therefore

I conducted experiments with finite depth at the coast in order to accomplish two

goals. The first was to confirm that gyre formation occurred even when the depth

did not vanish at the wall. The second was to see how gyre formation was affected by

the relative change in the lower layer depth across the width of the current. Based on

the reasoning above, I expected that a system with a smaller relative depth change

(H./(H. - H.), where H. is depth at the coast and H, is depth at the outer edge

of the current) would produce a gyre more readily.

The Ekman number of the flow was varied in order to get a crude measure

of the importance of bottom friction to the formation of a gyre. The Ekman number

is defined by E = v/f H', where v is viscosity, f is the Coriolis parameter, and H is a

depth scale, and was varied by changing the rotation rate. Viscosity may play a role

in two aspects of the problem. As discussed in the introduction, it is possible that

the formation of the gyre is due to the separation of a viscous boundary layer at the

shore. For a non-rotating system, this behavior is governed by the Reynolds number

Re, though the behavior becomes independent of Re for large Re. However, Merkine
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and Solan (1979) showed that for flow past a cylinder in a rotating system, Ekman

friction inhibits separation through its influence on the Stewartson layer. While they

kept E fixed for their calculations of separation, it is plausible that in their theory

E would affect the condition for eddy generation. Unfortunately, while a dependence

of eddy formation on E would imply that friction is important, the absence of such

a dependence does not prove that vertical friction is irrelevant. Nevertheless, it is

interesting to see if some Ekman number effect does emerge in the experiments.

Varying Ekman number by changing f also allows us to better understand the effect

of relative depth change described in the above paragraph. Varying H. changes both

the relative depth change and the Ekman number, so understanding the influence of

the Ekman number will allow us to isolate the effect of relative depth change.

Another interesting aspect of the Ekman number relates to the size of the

gyre. A key difference between the baroclinic anticyclones described in Chapter 3 and

these barotropic anticyclones is that the baroclinic gyres slowly grow until they are

stopped by the walls of the tank, whereas the barotropic gyres reach an equilibrium

size within a few rotation periods. It is possible that the increased vertical friction due

to proximity to the bottom of the tank limits the growth of the gyre in the barotropic

case. If this is true, than the eddy size should vary with Ekman number.

Finally, since Hughes (1989) and I (see Chapter 2) have calculated the break-

down of inviscid flow along a curved coastline of sufficiently large radius of curvature,

it is interesting to see how such a system behaves in the laboratory. This is the rea-

son for performing experiments with a rounded corner in addition to the sharp corner

experiments. Independent of inviscid theory, the dependence of gyre formation on

the details of the local bathymetry of the corner is interesting in its own right and is

important if the laboratory experiments are to be applied to the real ocean.
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4.2. Experimental Apparatus and Procedure

I did several preliminary runs with the same geometry. The two meter tank

was filled with fresh water, and fresh water was pumped from a reservoir into the tank

along an inclined wall/floor with a slope (= dz/dx) of unity. The floor was taped to

a second sloping floor to make a ninety degree angle-that is, the isobaths all made

a right angle turn (see Figures 4.2.1 through 4.2.3). This angle was sharp to within

1-2 mm. The far end of the second floor was joined to the perimeter of the tank at

a right angle. Flow rates were measured by a flow meter through which the injected

water ran on its way from the reservoir. The flow was visualized in the same way as

the baroclinic experiments, with the intruding water dyed a dark blue and quarter

inch (.64 cm diameter) white paper pellets strewn on the surface. Both the floor

of the tank and the sloping bottom were painted white and the ambient fluid was

dyed light blue to contrast with both the dark intruding flow and the white pellets.

The runs were all imaged from above by a co-rotating CCD camera and recorded on

VHS format videotape. Pellet paths were digitized by an image analysis system, and

pseudo-Eulerian velocity fields were calculated from the paths as in Chapter 3.

In the first run, the intruding water was pumped through the surface of

the ambient water via a box with a permeable (foam) bottom. This was to allow a

relatively laminar current to flow from water percolating into the tank from above.

For all pumping rates, this arrangement produced a wide, sluggish current with a

Rossby number considerably smaller than one, so for all the subsequent runs, the

current was driven by a jet emerging from a tube taped to the first floor. The tube

was fixed so that the jet was approximately parallel to an isobath as it emerged

from the tube. Contours of constant fluid thickness are actually more dynamically

relevent than isobaths. This thickness is affected by the centrifugal sloping of the

water surface. Since the length scale of this surface slope is large compared to the
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Figure 4.2.1: Apparatus as viewed from above, showing arrangement for preliminary and main

experiments. For preliminary experiments, sloping bottom region was 17 cm wide; for main experi-

ments, it was 20 cm wide.
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second wall

Figure 4.2.2: Perspective view of topography, main experiments. Note that perspective is from

upstream of source looking down along the first wall.
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/ I \ N'

first wall

(b) Isobaths

first wall

Figure 4.2.3: (a) Apparatus as viewed from above, sharp corner main experiments.

as viewed from above, rounded corner main experiments.

(b) Apparatus
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width of the current, especially in the center of the tank where the region of interest

lay, this is a small effect that merely transforms the isobaths from straight lines to

slightly curved contours.

For each run, the fluid in the tank was spun up to a state of (counterclock-

wise) solid body rotation, and the experiment began when the pump was turned on.

Typically there was an initial burst of water at high flow rate which was followed

by vacillating fluxes as I adjusted the flow rate by tightening a clamp on the tube

leading from the reservoir. Once the flow rate settled on a predetermined value, the

flow continued at the same rate (to within about ten percent) for several minutes.

The flow rate was then changed to a new value, several more minutes of observations

were taken, and the process was repeated for several different flow rates.

In the preliminary experiments, the flow rate was varied from 6.7 to 133 cma/s

with a rotation period of 15 sec (Table 4.2.1). The high flow rate runs (33 to

133 cm3/s) were repeated with the tube fixed further from the shore (horizontal

distance of 5.7 cm from the coast to the center of the tube at the beginning of the run

as opposed to 2.6 cm) in an attempt to see if changes in the upstream current profile

affected the gyre and the low flow rate runs (6.7 to 27 cma/s) were repeated with a

64 sec rotation period. The distance from the tube to the shore increased during the

course of each run as water from the reservoir raised the water level in the tank.

The rest of the barotropic experiments were conducted a year later, using

a similar geometry. In these experiments, water level in the tank was kept constant

by pumping water in a closed circuit from a sink at the end of the second floor to

a source at the beginning of the first floor (Figure 4.2.1). The bottom had a slope

of .5 (making an angle of 26.6* with the horizontal), instead of 1 (450), and verti-

cal sidewalls were fixed to the shoreward edge of the sloping bottom (Figure 4.2.2).

Table 4.2.2 summarizes the parameters of these experiments.
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Table 4.2.1. Preliminary Experiments Parameter Synopsis

run f Flow Rate

.83

.83

.83

.83

.83

.83

.83

.84

.84

.84

.84

.84

.84

.84

.20

.20

.20

67
133

17-33

33
67

133
25

33
67

133
<33

7
o13
27

Di Df Duration Eddy

- - 306

- - 229

- - n.m.

2.6
2.9
3.4
4.0

5.7
5.9
6.2
7.1

2.6
2.6
2.7

2.9
3.0
3.2

2.9
3.4
4.0
4.1

5.9
6.2
7.1
7.1

2.6
2.7
2.9

3.0
3.2
3.3

240
240a
120"

>240

150
210
180

n.m.

53
240
180

240a
240a

>360

f is the Coriolis parameter, Di and Df are initial and final distances of center of
source tube from coast as the water level rises in the course of each run, "duration"
refers to length of time a given flow was maintained, and "eddy" tells whether a gyre
was seen or not. f is in s-, flow rate in cm 3/s, Di and Df in cm, and duration in
sec.

a Measurement approximate (good to about 5 sec). All other duration measurements
accurate to within about 1 sec.

n.m. Not measured.

* Not enough pellets to tell if there is a gyre.
** Some sign of very narrow (<2 cm) gyre.
*** Initially gyre present, but this is remnant from previous flow rate and soon
disappears, leaving some signs of return flow near the wall.

134

N
N
N

Y
Y
Y
Y

Y
Y
Y
*

N

Y

Y
Y
Y



Table 4.2.2. Parameter Summary For Main Runs

Sharp Corner Experiments Rounded Corner Experiments

Run H. T f Run p T f
1 0 15 .838 Tube Source
2 0 30 .419 3 0 15 .838
3 0 60 .209 4 0 .30 .419
4 1.5 15 .838 5 0 60 .209
5 1.5 30 .419 6 2.5 15 .838
6 1.5 60 .209 7 2.5 30 .419
7 4 15 .838 8 2.5 60 .209
8 4 30 .419 Diffuse Source

9 4 60 .209 11 0 15 .838
10 4 7.5 1.676 12 0 30 .419

11 8 15 .838 13 0 60 .209
12 8 30 .419 14 4 15 .838
13 8 60 .209 15 4 30 .419

"Run" is original number for run; some runs excluded from analysis; H,, is depth of

water at corner, T is rotation period of tank, f = 4ir/T is Coriolis parameter; p is

radius of curvature of shore. All units cgs.

For the sharp corner experiments, the first and second floors were taped

together as in the preliminary experiments (Figure 4.2.3a). Sharp corner experiments

were performed for depths at the coast of 0 to 8 cm. For each value of H., the tank

was rotated at periods of 15, 30 and 60 sec (as well as 7.5 sec for H. = 4 cm), and the

current was pumped at flow rates of 5 to 30 cm 3/s. The source and sink tubes each had

an inner diameter of 1.27 cm (outer diameter 1.9 cm), with the center of the mouth

of the source tube 5.2 cm from the first wall and the center of the sink tube mouth

5.0 cm from the second wall. For the rounded corner experiments (Figure 4.2.3b), the

sharp corner was replaced by a thin, pie-shaped piece of Plexiglas, which was taped

to the first and second floors so that tension forced it into the approximate shape of

a cone.

135



All the rounded corner runs had H = 0. In these experiments, the corner

is characterized by the radius of curvature of the coast which can be easily varied

by adjusting the water level in the tank. Experiments were conducted with the

same source/sink arrangement as the sharp corner experiments, with a radius of

curvature of 0 and 4 cm. In order to resolve flow features better, the rounded corner

experiments were also performed with a wider current, which was produced by a

diffusing source that was 2.8 cm tall and extended from 4 cm to 14 cm from the

coast. These experiments were conducted with corner radii of curvature of 0 and

4 cm. In these wide current experiments a single piece of mylar, which was paper

thin and less rigid than the Plexiglas, covered the cone and forty centimeters of

straight bathymetry to either side of the cone. This improved the approximation to

a cone and covered over discontinuities of O(1 mm) in depth where the Plexiglas was

joined to the rest of the sloping bottom.

It is important to note that there are several factors which define the sharp-

ness of the corner. One is the size of the region over which the isobaths turn from

being parallel to the coast upstream of the corner to being parallel to the coast down-

stream. It is this parameter that is changed from the sharp corner experiments to the

rounded corner ones. In the sharp corner runs, the isobaths change direction within a

distance of about 1 mm. In the rounded corner runs, the isobaths turn in a pie-shaped

region, so that the distance an isobath takes to turn increases leaving the coast. Thus

in an experiment in which the rounded corner has zero coastal radius of curvature p,

the zero depth isobath turns in a space on the order of 1 mm, like the sharp corner

topography, but other isobaths turn with an arc length proportional to the distance

of the isobath from the coast. Therefore, even the p = 0 case of the rounded corner

topography has a more rounded corner than the sharp corner topography.

Adding a localized sink to the apparatus, instead of letting the depth increase

with time, is potentially a major change in the dynamics of the experiment because
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the downstream condition on the flow is changed. However, for zero depth at the

coast, the system exhibited the same behavior with and without the sink. This is

probably because the current in the no-sink case is inhibited from leaving the slope

region of the tank until it reaches the perimeter of the tank, effectively creating a

sink-like boundary condition at the end of the second floor. The case of finite depth

at the coast is more strongly affected by the presence of a sink downstream. In the

flat-bottomed experiments of Stern and Whitehead (1990), which we can consider

to be the limit of a sloping bottom experiment for which H./(H, - H.) goes to

infinity, the current globally separated from the coast at a 900 corner, i.e., there was

no reconnection further downstream. In those experiments there was no sink. There

must be a critical value of the relative depth change at which the flow pattern switches

from the anticyclone regime to the global separation regime. Clearly the constraint of

removal of fluid at the downstream end of the second wall will affect this transition.

However, here we are examining the role of the depth ratio in the anticyclone regime,

not the transition from one regime to another. If the presence of a sink inhibits global

separation, that is an advantage in isolating the dynamics of this particular regime.

In order to get a cleaner signal in digitizing positions of the white surface

pellets, the walls and sloping bottom were painted black. This was especially impor-

tant for improving flow visualization at the inshore and offshore edges of the current.

No dye was used, so that all data from these runs derives from pellet paths. For

the sharp corner experiments, the video pictures had a wide field of view and large

(.64 cm diameter) pellets were used, while for the wide current rounded corner ex-

periments, a smaller field of view allowed smaller (.32 cm diameter) pellets to be

resolved. To reduce windage on the pellets, a co-rotating transparent plastic sheet

was placed about thirty centimeters above the rim of the tank during the wide current

rounded corner experiments. The sheet was about the same diameter as the tank,

and the space between the sheet and the tank rim was partially covered, with gaps

left through which I could throw pellets into the tank during the experiments.
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4.3. Qualitative Observations

For flows in which the current volume flux was above a critical value, an

anticyclone formed just downstream of the corner. After a brief adjustment time at

the beginning of the flow, the gyre persisted in an approximately steady state. The

size of the gyre increased with increasing flow rate. The behavior of the current at

the corner for a strongly sloping bottom is similar to the behavior of a baroclinic

front (see Chapter 3). Both generate a strong anticyclonic gyre just downstream of

the corner. This is in contrast to barotropic currents over a flat bottom (Stern and

Whitehead, 1990). which break into both cyclones and anticyclones of approximately

equal strength and completely separate from the coast at the corner. Barotropic

flows are apparently stabilized by the sloping bottom, perhaps due to the influence

of topography on the form of the potential vorticity. A jet with velocity going to

zero on the inner and outer edge, and with continuous shear, must have the cross-jet

gradient of relative vorticity change sign. For a flat-bottom flow, this is equivalent to

the cross-jet potential vorticity gradient changing sign, which is a necessary condition

for instability. For a jet flowing over a sloping bottom, the potential vorticity gradient

does not necessarily change sign if the relative vorticity does. For a current with the

coast to the right looking downstream, the relative vorticity gradient is positive on the

inshore edge and negative on the offshore edge, while the potential vorticity gradient

due to the factor of 1/H (H is thickness of the layer) is negative throughout the

current. For small Rossby number and large relative layer thickness, the topography

component dominates the relative vorticity term. Velocity measurements from the

sloping bottom jets seemed to indicate reversing potential vorticity gradients near the

coast in some, but not all, of the runs, but the magnitude of the measurement error in

this region was large. The sloping bottom may have a more subtle stabilizing influence

when this factor is combined with friction or nonlinearities in linearly unstable waves.
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In the first of the preliminary runs, the dyed current driven by water perco-

lating through foam rubber at the surface was about 20 cm wide at the initial flow

rate of 67 cm3/s and widened to about 30 cm at the higher flow rate. The dye went

around the corner with the flow following isobaths. Initially there was a narrow layer

(1 cm or less) of reverse flow next to the shore just downstream of the corner. This

reverse flow decreased with time until invisible. Increasing the flow rate increased the

width of the current along the first wall more than it increased the speed, so that a

higher flow rate did not lead to a higher Rossby number.

The currents issuing from a horizontal tube were narrow (less than 10 cm)

and fast compared to the current fed from above. Increasing the flow rate increased

the Rossby number in these runs. Return flow was seen offshore of the jet, forming

a narrow, cyclonic, "L" shaped gyre parallel to the first and second walls. This was

probably due to turbulent entrainment at the source of the jet pulling ambient water

in the tank towards the source. At flow rates greater than 13 cm 3/s in the preliminary

15 sec rotation period experiments, an anticyclone was visible just downstream of the

corner. The size of the anticyclone did not change appreciably with time for a given

flow rate, but the higher the flow rate, the wider the anticyclone (Figure 4.3.1a shows

the same behavior in the main runs). Changing the flow rate did not introduce

any notable transient effects. When the flow rate changed, the gyre did not drift

or break up, it merely changed its size. For some flow rates, the gyre was so large

that it extended out beyond the edge of the sloping bathymetry region. This did

not introduce any qualitative changes in the behavior of the current unless the gyre

became so large that it interacted with the perimeter of the tank.

When the flow rate was 6.7 cm3/s, virtually all the intruding fluid formed a

narrow cyclonic recirculation gyre along the first wall, with very little motion along

the second wall. At 13 cm3/s, most of the flow continued past the corner, with no

gyre clearly visible (see Figure 4.3.1b for the same behavior in main experiments), but
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with signs of a very thin anticyclone along the second wall shown by pellets touching

the wall just downstream of the corner (not visible in figure).

The experiment with a 60 sec rotation period shows qualitatively similar

behavior to the 15 sec period runs, but for a given flow rate the 60 sec rotation period

gyre is larger than the 15 sec rotation period gyre. This pointed to the possibility

that the gyre characteristics are controlled by the Rossby number.

The presence or absence of a gyre downstream of the corner in the prelimi-

nary experiments is summarized in the last column of Table 4.2.1.

Also of note was the behavior of the dyed water when it reached the end of

the second wall, which intersected the rim of the tank in the preliminary experiments.

The water continued to flow along the perimeter of the tank for several current widths,

but eventually an eddy which propagated away from the perimeter formed at the

nose of the current, causing the current to separate from the outer rim of the tank.

A similar process occurs in the simpler case of a jet flowing along a straight vertical

wall in a rotating tank (see Stern and Whitehead, 1990).

The dye and the pellet trajectories provided two ways to visualize the flow.

Along the first wall, pellets from the undyed offshore region were clearly pulled into

the dyed region near the mouth of the tube. Pellets in the dyed current left the

dyed region but did not penetrate very deeply into the offshore region; instead they

recirculated in a narrow gyre. Another place where pellets were seen leaving the dyed

region was at the beginning of the second wall, where faster pellets would continue

in the same direction they were travelling along the first wall instead of turning the

corner. This was the most dramatic cross-dye flow, because pellets left the dyed region

at right angles. In both regions where pellets left the dyed region, some tendrils of

dye were seen, indicating the presence of turbulent mixing. The fact that in the

region of most dramatic pellet escape some pellets stayed within the dyed water mass
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Figure 4.3.1: Flow fields derived from paper pellets floating on surface, for two runs in main

experiments, sharp corner, depth at coast HI. = 0, rotation period T = 15 sec. Axes of figure show

distances in cm; small boxes mark tails of vectors; speeds are given by length of vector. in cm (on

scale of figure) divided by velocity scale factor v,. Velocity field includes all data taken at given

intervals for given duration. Solid lines denote coast, dotted lines mark deepest isobath of sloping

bottom. Upstream Rossby number Ro is defined in Section 4. (a) Q = 25 cm 3/s, v, = 2, every

1 sec, 60 sec interval, Ro = 1.52 ± .18. (b) Q = 10 cm 3/s, v, = 2, every 5 sec, 120 sec interval,

Ro = .27 ± .06.
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also points to turbulent mixing as a cause of the escape. However, it is possible that

the cross-dye flow of pellets is caused by differences between the flow patterns in the

surface Ekman layer and at depth.

The main experiments exhibited the same qualitative behavior as the pre-

liminary runs, despite differences such as the presence of a mass sink, non-zero depth

at the coast, and varied bathymetry at the corner (Figures 4.3.1, 4.3.2 and 4.3.3).

However, in runs with a larger coastal depth, there was a tendency for the flow to

be less steady, with cyclonic eddies appearing at the outer edge of the current. The

absence of a gyre in the low flow runs was also more ambiguous than in the original

experiments. These runs showed occasional signs of a barely resolvable layer of re-

verse flow when pellets which were stuck to the coast just downstream of the corner

sometimes moved back towards the corner. In the rounded corner runs with coastal

radius of curvature p = 4 cm, runs in which the streamlines separated but were not

displaced by very much from the coast had no gyre present between the separated

streamlines and the coast (Figure 4.3.3a).

4.4. Rossby Number and Gyre Size

Since the size of the gyre seemed to increase with current speed and with

rotation period (1/f), I plotted measures of gyre size as a function of Rossby number

Ro upstream of the corner.

Various measures of length and velocity scales may be used to define a

Rossby number. The width of the shear layer adjacent to the coast and the width

of the region of strong flow are both reasonable length scales, but in order to utilize

a relatively unambiguous measurement I took the width of the current to be the

distance from the coast to the point offshore where the flow reverses direction. This

width includes streamlines that are part of the recirculation gyre, and so will lead
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Figure 4.3.3: Flow fields, as in 4.3.1, for main experiments, rounded corner, coastal radius of

curvature p = 4 cm, rotation period T = 15 sec. Solid lines denote walls as in other flow field plots,
and dashed lines near walls show estimated position of coast. (a) Q = 30 cm3 /s, V, = .5, every

1 sec, 60 sec interval, Ro = .41 ± .06. (b) Q = 50 cm 3 /s, v, = .25, every 1 sec, 60 sec interval,
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to a lower value of Ro than the other measures of width. The current width defined

this way also varies along the length of the first wall. I measured the width 25 cm

upstream of the corner, where this width was near its minimum value. The velocity

scale was set by the maximum value of the alongshore component of velocity found

along the first wall within 25 cm of the corner.

Of several possible measures of gyre size, we will use the position of the gyre

center, which is a distinct point bounded by the smallest closed streamlines in the

gyre. The "gyre half width" is the distance from the coast to the gyre center, and the

"gyre half length" is the distance along the coast from the corner to the gyre center.

These distances (xe, ye) are divided by the upstream width of the current (defined in

the previous paragraph) to obtain the "scaled" half width and half length (x,, y.).

The measurement of Rossby number and gyre parameters was based on the

velocity field as traced by surface pellets. For the wide current experiments, motion

artifacts were removed from the path data (see Appendix). No further processing

was done to the velocity fields before parameters were estimated. Positions of flow

reversals were bracketed by the closest couple of velocity vectors pointing in opposite

directions.

The upstream width and velocity measurements, which were used in com-

puting upstream Rossby numbers, are plotted in Figure 4.4.1. These plots show that

over most of the range of speeds, the current width was approximately constant,

but for the wide current runs, the width increases significantly for speeds less than

1 cm/s. There is also some tendency for lower rotation rate currents to be wider.

The sharp corner experiments with different values of H,, had width ranges which

were similar though not identical to each other (6 to 9 cm for H. = 0 and 6 to 8 cm

for H. = 4 cm), as did the rounded corner experiments with different values of p (9

to 19 cm for p = 0 and 10 to 16 cm for p = 4 cm). I do not know what accounted

for the observed variations in widths. If we take the depth at the outer edge of the
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current to be the scale for the Ekman number, and we use a current width of 7 cm for

the narrow current experiments and 12 cm for the wide current experiments, then E

ranges from 10-3 to 4 x 10-3 for the narrow current experiments with H. = 0, from

2 x 10-4 to 10-3 for the H. = 4 cm experiments, and from 3 x 10-4 to 10~3 for the

wide current experiments.

In all plots, box size for each data point indicates estimated measurement

error. Error in width measurements arises from the uncertainty in actual particle

positions and from uncertainty in locating the exact position of flow reversal between

neighboring velocity measurements. Velocity errors come from uncertainty in particle

positions. For narrow current runs, I assumed the position errors to be a = .2 cm,

and for the wide current runs, I took a = .1 cm.

A clear picture emerges in the variation of gyre half width with Rossby

number (Figure 4.4.2). The sharp corner experiments spanned a Rossby number

range of approximately .2 to 4 and the rounded corner experiments spanned a Rossby

number range of approximately .1 to 1.4. For a given H. and p, the scaled width

was approximately proportional to Rossby number (x, = ARo), and the scaled length

increased approximately linearly with Rossby number, with even the thinnest gyres

having length on the order of a current width. With the exception of the slowest

rotation runs of the sharp corner experiment with H = 0, the rotation rate did

not seem to affect the relation between gyre width and Rossby number, implying

that the gyre size is not very sensitive to Ekman number. Since both x, and Ro

have a factor of upstream width in common, the gyre width is given by the relation

u/fze = 1/A = B. This implies that for any gyre, a sort of Rossby number derived

from the gyre size and upstream speed must be a constant which is independent of

the upstream flow parameters. This relation between the inertial radius u/f and the

gyre half width x, is similar to the criterion of Bormans and Garrett (1989) for the

generation of a gyre by a baroclinic current emerging from a channel with a rounded
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corner. In their observations, the critical length scale was given by the radius of

curvature p of the corner. In our barotropic case, the gyre half width is related to

the radius of curvature of the jet where it circumnavigates the gyre.

This gyre radius Rossby number, B, was calculated for different geometries,

and for different rotation periods. Assuming that a set of runs are all characterized

by the same value of B, then B can be estimated by taking a weighted average of the

measured values of B for all the runs,

Bil= * (4.4.1)

which is characterized by a measurement error of

1
=, (4.4.2)

where (B1, o;) are individual measurements and their errors as derived by propagating

the measurement errors in u and x (errors in f are negligible). Measurements in

which the the gyre extended beyond the region of sloping bottom were excluded,

since the absence of bottom slope could change the relation between gyre size and

current speed. Runs in which the gyre was very narrow (; 2.5 cm) and the error in

half width was the same order as the half width were also excluded.

Statistics for B can be found in Table 4.4.1. After measurements were

excluded as described above, there were only a few data points for each rotation

rate in each experiment (see column "N" in Table 4.4.1b). Out of the ten cases for

which statistics were compiled, in all but one the sample standard deviation of the

individual measurements was comparable to the average estimated measurement error

of the data points. Therefore the actual scatter in the data is roughly consistent with

the estimated errors. Figure 4.4.3 displays the dependence of B on rotation period for

the four combinations of geometrical parameters studied. There is no significant trend

with rotation period T in any of the cases except for the sharp corner experiment
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Table 4.4.1a. Gyre Radius Rossby Number for Different Geometries

Corner Param B og- N < ag > a
Preliminary Experiments (slope=1)

sharp H. = 0 1.40 .07 4 .16 .71
Narrow Currents

sharp H. = 0 2.06 .08 12 .63 .54
sharp H. = 4 1.26 .12 13 .72 .43
round p = 0 1.93 .08 4 .49 .38

Wide Currents
round p = 0 1.54 .07 9 .23 .31
round p = 4 1.74 .17 3 .58 .95

Gyre Radius Rossby Number for Different Geometries as a
Function of Rotation Period

Narrow Currents
T B ag N < a; > a
Sharp Corner, H,, = 0 cm (slope=1)

15
30
60

7.5
15
30
60

1.28 .07 3
2.86 .22 1
Sharp Corner,
1.66 .12 4
2.26 .14 5
2.86 .22 3
Sharp Corner,
1.11 .82 2
1.66 .26 5
1.29 .25 3
1.22 .10 3
Rounded Corn

30 1.93 .08 4

.14
.22

H. = 0 cm

.90

.45

.58
H. = 4 cm

1.2
.87
.50
.29

er, p = 0 cm
.49

.28

.55

.25
.47

.38

.51

.34

.12

.38

Wide Currents
T Bay N < a; > a

Rounded Corner, p = 0 cm
15 1.41 .08 4 .20 .23
30 1.78 .11 4 .24 .22
60 1.46 .28 1 .28 -

Rounded Corner, p = 4 cm
15 2.78 .93 1 .93 -

30 1.68 .17 2 .41 .60

T is the tank rotation period, W is the weighted average of the gyre Rossby number

u/fxe, aff is estimated error in B, N is the number of measurements, <a,> is the

average error of ai's, and a is sample standard deviation of individual measurements

of B. Measurements for which there was both a small x, ( ; 2.5 cm) and a large error

in x (on the order of xc) were excluded from statistics. Bottom slope = .5 unless

otherwise noted. All units in c.g.s.
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Figure 4.4.3: Gyre radius Rossby number (B = u/fze) as a function of tank rotation period, for

different geometrical parameters. The data and error bars come from Table 4.4.1b, columns 2 and 3.

(a) Sharp corner experiments, H,. = 0. (b) Sharp corner experiments, H,. = 4 cm. (c) Wide current

rounded corner experiments, p = 0. (d) Wide current rounded corner experiments, p = 4 cm.

154

ZL

(a) Sharp Comer, Hw=0 cm



with H = 0, for which the gyre radius Rossby number increased with T. This trend

also appeared in the preliminary experiments, which had the same geometry but had

a bottom slope of s = 1 instead of a = .5 and had no sink downstream of the corner,

though in that case only one run with a long rotation period was in the proper size

range to calculate B. Even though the distribution of B values in this case is wide

compared to the size of the estimated error bars, the fact that the trend does not

appear in any of the other cases casts doubt on whether it is a real physical effect.

If the trend were real, it would imply that larger Ekman numbers cause the gyre to

be smaller. In other words, the less friction, the wider circle the current must make

before it returns to the coast.

Ignoring possible Ekman number influence for now, we can examine the

data in the four geometrical cases without regard to rotation rate (see Table 4.4.1a).

Again, the sample standard deviation of B for each case is consistent with the average

error estimate of individual values of B. As depth at the coast decreases, and hence

the relative change in thickness of the current decreases, then B decreases, so that

the gyre gets larger. This confirms the hypothesis framed in the introduction to this

chapter: the smaller the relative change in depth across the current, the larger the

cross-shore excursion the current can make. Varying the coastal radius of curvature

had hardly any effect on the gyre size, but for u/f ; p no gyre formed even though

the streamline displacement increased with u/f. Comparing the results of the sharp

corner experiment with H., = 0 and the rounded corner experiment with p = 0 (for

which H. = 0 also) produces mixed results. For a narrow current produced by the

same tube as was used in the sharp corner runs, B for the rounded corner experiment

was only slightly less than for the sharp corner run, while the rounded corner run

with a wide current produced by a diffusing source had a significantly smaller B.

Thus larger eddies tend to form at the rounded corner for the wide current than at

either a sharp or rounded corner for the narrow current. Since the Ekman number

of a wider current is lower, this data adds to the intermittent evidence, described
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above, that friction inhibits the size of the gyre. Differences in the upstream velocity

profile may instead be responsible for the difference between the wide and narrow

jets. The vertical profile of velocity is unknown (see the following section), but the

scaled horizontal profiles of narrow and wide currents are not dramatically different

(see Figures 4.5.2 and 4.5.4).

4.5. Velocity, Transport, and Vorticity Profiles

Velocity measurements were interpolated to a regular grid in order to pro-

duce a sharper picture of the currents studied in these experiments. Velocity profiles

were compared from run to run as a measure of their reproducibility. The surface

velocity multiplied by the depth of the water (uH) was integrated across sections

to estimate volume flux through various sections. Since this flux should have a zero

divergence, it serves as a consistency check on the assumption that the whole water

column travels with a depth-independent velocity. If the assumption is true, surface

velocity measurements can also be used to map cross-stream profiles of the potential

vorticity q and alongstream variations in q.

I studied the flow fields most intensively in the wide current, rounded corner

runs with p = 0 and rotation period of 15 s, for which flow rate and Rossby number

increased from run "a" to run "e." Velocity profile sections 1 to 3 were perpendicular

to the first wall and located 20 cm, 10 cm, and 0 cm, respectively, upstream of the

corner. Sections 4 through 9, perpendicular to the second wall, were located 0 cm

to 50 cm downstream of the corner at 10 cm intervals. There were enough velocity

measurements, and the alongshore variations had a long enough length scale, that

a good estimate of the velocity profile could be obtained for each section by using

all measurements within 2.5 cm upstream and downstream of the section without

regard to the measurements' alongshore positions. Data was collected over the whole
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slope region, i. e. within 20 cm of the coast. Typically there were several velocity

measurements within most 1 cm sub-intervals of this range, with the greatest gaps

in coverage sometimes occurring within about 1 cm of the coast and in the region of

slow return flow offshore of the jet.

The profiles of alongshore and cross-shore components of velocity (u, v) were

estimated independently of each other using linear least squares fits to fourth to

seventh order polynomials in cross-shore distance y. No-slip and no flow through

the coast were built into the fits by setting the constant terms equal to zero. The

polynomials were an appropriate model of the data based on subjective criteria: the

polynomial estimates were always close to the average value of the nearest data points

and they usually seemed to follow the trend in the data well in each region of the fit.

High order polynomial fits are notorious for having extraneous wiggles between data

points, but the velocity fits rarely showed this phenomenon except in the reverse flow

region of some profiles in which there were large gaps in y between measurements.

Polynomials also give inappropriate results for extrapolation, so the fits were not

extended past the range of the data. For each u or v profile to be fit, the least

squares calculation was computed for polynomials of increasing order starting at

fourth order. The order of the polynomial was chosen on the basis of the change in

x 2, which is the average sum of squares of residuals. If x 2 of a polynomial of order M

was less than 1.01 times x 2 of the next polynomial, the Mth order polynomial was

chosen. In regions of sparse data, a few of the resulting fits showed oscillations which

I believed to be unphysical, and I re-did the least squares fit with a (generally lower

order) polynomial which had a smoother profile in the region in question. Velocity

measurements (u and v) and accompanying polynomial fits for selected profiles in two

runs are shown in Figure 4.5.1.
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An explicit analytical fit to a velocity profile is convenient because it is easy

to compute derivatives and integrals, such as the volume transport,

T = uHdy' (4.5.1)
0

(y is cross-shore coordinate) and the Ou/Oy term needed for potential vorticity, as well

as their estimated errors. The covariance matrix of the polynomial coefficients is given

by the standard error formula for a linear regression (Press et al., 1986). These error

terms are then propagated, taking care to retain both variance and covariance terms,

to estimate the errors in u, v, T and Ou/Oy, which are functions of the coefficients and

offshore distance. The error estimated in this way is based on the assumption that

the given polynomial is a valid model for the actual velocity profile. In reality the

polynomial consists of the first few terms of the Taylor series of the true profile. The

other terms of the Taylor series, which are neglected in using a polynomial, contribute

an extra error term which we can expect to be small when the polynomial provides a

good fit to the data based on the criteria listed above. To apply the formula to find

the covariance matrix, the "instrumental error" of the measurements must be known.

Rather than use the estimated measurement error, I used the observed variance of

the data,

2 1 N
S N - M - U(Y)] 2 , (4.5.2)

N =1

for N data points (yi, uj) fit by Mth order polynomial u(y). S2 includes both mea-

surement error and turbulence in the real flow field. For each run, a was about 10%

of the peak velocity, and was about the same for u as it was for v. Assuming the

average error in pellet positions is 1 mm for the wide current runs, a was two to three

times larger than the estimated measurement error. Estimated errors in the assumed

polynomial fit were typically several times smaller than s, except in regions of sparse

data. This is not surprising, because the expected error in an estimate based on
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several data points is typically less than the scatter in the data. In order to compare

velocity profiles for different flow rates, u in each run was scaled by the maximum

u in the first section of the run (20 cm upstream of the corner). As illustrated in

Figures 4.5.2a and 4.5.2b, the scaled velocity profiles upstream of the corner are al-

most identical from run to run. Figures 4.5.2e and 4.5.2f illustrate the generation

of reverse flow near the coast and the displacement of the velocity maximum for in-

creasing Rossby number. The profiles in Figure 4.5.2e are taken near the widest part

of the gyre, where the strongest current is approximately parallel to the coast. The

profile of this current is approximately the same, except for its displacement from the

coast, for all the current strengths (and associated gyre sizes) except the smallest.

The sections furthest downstream are roughly similar (Figures 4.5.2g,h) from run to

run. Figures 4.5.3ab,c show that the scaled upstream currents in the rounded corner,

p = 0 runs with 30 s rotation periods are similar to the 15 s rotation period runs.

Upstream currents for the sharp corner, H. = 0 experiments are narrower than the

flows shown in 4.5.2 and 4.5.3, but they have a profile shape that is roughly similar

to the wider flows, though the narrow flow measurements display greater variation

from run to run (see Figure 4.5.4).

Plots of alongshore transport profiles (Figure 4.5.5) imply that the slow

counterflow offshore of the coastal current carries almost as much volume flux back

towards the current source as the current carries. The low current speeds in the

offshore region are offset by the relatively great depth there. In most of the pro-

files, the peak value of transport was roughly constant from section to section for

most sections. However, there is a noticeable peak in section 5 (10 cm downstream

of the corner), which has an increasingly anomalous peak transport for increasing

Rossby number runs. This is better illustrated in Figure 4.5.6a, which shows that

the transport peak is roughly constant from section to section for each run, except

for section 5 in the high Rossby number runs. If continuity is to be obeyed by the

fluid, the anomalously high transport peak 10 cm downstream of the corner should
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Figure 4.5.2: Alongshore component of velocity scaled by maximum in first section profile for five
flow rate runs of rounded corner, p = 0, 15 sec rotation period experiment. In order of increasing
flow rate, the runs are represented by a solid line marked by plus signs, a dashed line, a dot-dash line,
a dotted line, and a plain solid line. The smaller-value curves show corresponding error estimates.

Plots (a) through (c) are profiles perpendicular to first wall and located 20, 10 and 0 cm, respectively,
upstream of the corner. Plots (d) through (h) show profiles perpendicular to second wall and located

0, 10, 20, 40 and 50 cm downstream of the corner.
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Figure 4.5.3: Same as 4.5.2, for rounded corner, p = 0, experiments with 30 sec rotation periods.

Only profiles adjacent to first wall are shown.
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Figure 4.5.4: Same as 4.5.2, for sharp corner, H,, = 0, experiments with 15 sec rotation periods.
Only profiles adjacent to first wall are shown.
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Figure 4.5.5: Profile in y of the integral of the alongshore volume transport between the coast

and y for experiments with rounded corner, p = 0, and 15 sec rotation period. Plots at left show
profiles upstream of corner, at right show profiles downstream (see text for exact locations). Figures

(a) through (d) represent five runs with increasing source flow rates.
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be associated with a cyclonic gyre offshore of the peak. As shown in Figure 4.3.2b,

there is no sign of such a cyclonic gyre. Also no significant peak in the cross-stream

maximum of the flow speed is apparent in a graph of the flow maximum from section

to section (Figure 4.5.6b).

These facts raised the possibility that volume transport as computed from

the surface velocity field is not conserved in the presence of a strong gyre. In order

to test this hypothesis, the continuity equation was explicitly tested in rectangular

cells downstream of the corner. The area integral of the continuity equation for our

system is

juHdy - j uHdy + jvHdx + j vHdx = S, (4.5.3)

where the integrals are around the sides of a rectangle and S is a source term. For

perfectly measured time- and depth-independent flow, we should have S = 0. In

reality, S is made non-zero by measurement error, turbulence, and vertical variations

in horizontal velocity. Both measurement error and turbulence were incorporated

into the error estimates, so that source or sink terms greater than the estimated error

indicate the presence of vertical shear.

The cells of integration were 5 cm by 5 cm. Integration over such a relatively

large cell sacrifices horizontal resolution but reduces the error relative to the signal.

The integrals in y were computed from differences in the alongshore transport T.

Integrals in x were evaluated using values of v linearly interpolated between cross-

shore sections. The results for a run with almost no sign of a gyre, for a run with a

moderately sized gyre, and for a run with a large gyre are shown in Figures 4.5.7 to

4.5.9. The diagrams show the fluxes through each side of the rectangular cell and the

net flux out of the cell. Accompanying each flux diagram is a similar figure showing

the estimated errors.
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Maximum in transport integral. (b) Maximum in speed.
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Figure 4.5.7: Volume flux out of rectangular cells for low flow run, rounded corner experiment

with p = 0 and 15 s rotation period. In this case, all displayed numbers are twice their actual value.

(a) Map of fluxes downstream of the corner, where the horizontal and vertical coordinates represent

alongshore and cross-shore distances, with the corner at (0,0). Dotted lines indicate boundaries

of integration cells. Numbers with arrow superimposed on the boundaries show the magnitude

(in cm3/s) and direction of volume transport. Each number in a box represents total flux out of

cell, so that positive values represent net flow out of box and negative values represent net flow into

box. (b) Error estimates associated with each quantity shown in (a).
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When no eddy is apparent (Figure 4.5.7), the only cell with a flux imbalance

much greater than the noise is the one adjacent to the corner. In the rest of the cells

within 10 cm of the coast, both the source term and the errors are about 10% of

the throughflow. In cells farthest from the coast, the flux terms are dominated by

noise. In Figure 4.5.8, the eddy is still too small to produce a reverse transport

in cells adjacent to the coast, but the large offshore fluxes near the corner and the

significant onshore fluxes a few cells downstream show a clear separation of the axis

of the stream from the coast and return to the coast downstream. Where v is large

and positive (offshore transport), there appears to be a source, and where v is large

and negative, there appears to be a sink. The same tendency, with even larger source

and sink terms, occurs in the run with a larger eddy (Figure 4.5.9). In both runs,

S is roughly proportional to the average of v over the onshore and offshore sides of

the cell. The constant of proportionality was calculated using a least squares fit to

the data from the high Rossby number run displayed in Figure 4.5.9. This constant

was found to be .48 ± .09, with the linear fit apparently a good model based on its

reduced chi-square of .6 (see Bevington, 1969).

The transport was calculated assuming that the velocity was independent

of depth, and that this homogeneous layer of uniform velocity increased in depth to

continue reaching to the bottom as the water flowed offshore. If the column of the

flowing water separated from the sloping floor as the column flowed offshore, however,

it would appear to be transporting more water as the bottom depth increased, even

though the actual transport could not change. When the column travelled back

towards the coast, its apparent transport would decrease. This is what was observed

in the experiment. Since the vertical profile of velocity was not measured in the

experiment, we can not tell if this is the actual explanation for the observations.

However, separation of the current from the bottom would be a simple explanation

for the observed changes in the quantity uH.
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The hypothesis that the current separates from the bottom is supported by

the fact reported above that, within experimental error, the divergence of uH is equal

to sV, where s = .5 is the bottom slope. A simple application of the product rule

shows that V-(uH) = u-VH+HV-u. Since H = sy, we have V-(uH) = sv+HV-u,

which together with our experimental result V- (uH) = sv implies that V - u = 0:

the surface flow is nondivergent. If we hypothesize that the horizontal velocity is

vertically uniform down to a depth h which may be less than or equal to the fluid

depth H, then continuity tells us that V -(uh) = 0. Applying the product rule to this

equation and using the nondivergence of u, we find that u -Vh = 0. This means that

the hypothesis that the current is confined to a layer of uniform flow extending down

from the surface is consistent with the depth of this layer being uniform along each

streamline, just as we might expect if the current were to separate from the bottom

as it flows offshore.

These experiments were conducted with the theory of rotating, homoge-

neous, depth-independent flow in mind, but the most interesting phenomena occur

in the limit where the Taylor-Proudman theorem and the hydrostatic approximation

break down. Since these are the constraints which allow us to eliminate vertical shear

in our fluid layers, let us examine these relations to see what bearing they have on

the laboratory experiments. The Taylor-Proudman theorem is associated with low

Rossby number flow, while the hydrostatic approximation is associated with flows of

low aspect ratio. If the corner gyres produced in the laboratory experiments are a

product of the moderately high Rossby number of the experiments, then it is plausi-

ble that they may exist in nature, where boundary currents sometimes have a fairly

high Rossby number. However, oceanic currents typically have an aspect ratio much

smaller than that produced in these experiments, so it is especially important to

isolate the role of each of these parameters.
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The hydrostatic approximation states that the pressure at any point is de-

pendent only on the weight of the fluid above. Following Pedlosky (1982), we can

derive it from the equations of motion, which for a homogeneous, steady-state fluid

are

uuM+vuy +WUz - f = -p" + VV2 u (4.5.4a)

uvW + vVo + wV. + fu = -py + VV2v (4.5.4b)

UW. + VWY + WW. = -P. + VV 2 W (4.5.4c)

ux+vy+wz = 0, (4.5.4d)

where (u, v, w) are the velocity components in (x, y, z) coordinates, f is the Coriolis

parameter, v is the viscosity, and p is the dynamic pressure (=0 at all depths for a

motionless fluid), divided by the density. The criterion for the hydrostatic approxi-

mation to apply appears when we non-dimensionalize the equations. The horizontal

length and speed scales are L and U and the vertical length and speed length scales

are H and W. The continuity equation implies WIH = UIL. There are two scales for

pressure, PH and Pv, which represent the size of pressure variations over the horizon-

tal and vertical length scale, respectively. Useful non-dimensional parameters are the

aspect ratio S = H/L, the Rossby number e = U/f L, and the vertical Ekman number

E = v/f H 2 . Now the non-dimensionalized momentum equations can be written

E(uu. + vu + wu.) - v = -(Pu/f UL)p + E(S2V2 + 82/8z 2)u (4.5.5a)

e(uv. + vv, + wv.) + u = -(PH/f UL)py + E(62V2 + 02 /0z 2)v (4.5.5b)

UWX + VWY + WW. =(UH/L)2Pz + (E/e)(62V2 + a 2 /0z 2)w, (4.5.5c)

where V2. is the horizontal component of the Laplacian operator. We use these equa-

tions to determine the relative sizes of vertical and horizontal variations in p. Assum-

ing that the pressure terms are 0(1) in both the horizontal and vertical momentum

equations, we obtain PV/PH = eS2. Therefore the horizontal pressure gradients can
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be assumed to be approximately constant with depth when e52, which we can call the

"hydrostatic parameter," is very small. When the hydrostatic parameter is small, it is

traditional to assume that in addition to the dynamic pressure gradient being depth-

independent, the horizontal velocity is also depth independent. For a flow in which

viscous effects are confined to thin boundary layers at the upper and lower and side

edges of the fluid, this is a reasonable assumption because there is nothing to force

the existence of a vertical shear. However, it is important to note that the hydrostatic

approximation does not force the velocity to be depth-independent. It does force the

sum of the advection terms and Coriolis term to be depth-independent. The only ex-

plicit constraints come from the vorticity equation, from which the Taylor-Proudman

theorem is derived.

Shallow water dynamics is completely determined by the evolution of the

vertical component of the vorticity, but now we need to examine the full vorticity

vector, which in dimensional terms is

oW= V x u = (w, - v.)c + (u. - w4)y + (v, - u)z. (4.5.6)

We obtain the non-dimensional vorticity equation by taking the curl of the non-

dimensional momentum equations. The x-component of the vorticity equation can

then be written

eU . V(5 2w, - v.) + E(62w, -v.)(v,+w.) + e(62 w, - uzv.) - U=
(4.5.7)

E(62V2 + O2/z 2)(g2W, _ ,),

with a similar term for the y-component.

When e and E are much smaller than 0(1) and 6 is not much greater than

0(1), the horizontal vorticity equations reduce to u. = 0: the Taylor-Proudman

theorem. Notice that the constraints on the aspect ratio necessary to make the

theorem valid are rather weak (5 must not be much greater than one). If we look at

the equation above in the limit in which S is small but e may not be small, all the
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terms which do not have a factor of vertical shear become negligible. In this limit

the equation states that the change in the vertical shear as we follow a water parcel

is proportional to the vertical shear. Physically, this means that in low aspect ratio

flow, a water parcel can not increase its vertical shear unless it already has some

vertical shear to begin with. This is in contrast to flow with 6 of order unity, in which

case tilting of vorticity tubes can generate vertical shear.

In the laboratory experiments, the depth of the fluid varied from zero at the

coast to sL at the edge of the current (y = L). A reasonable scale for 6 is S = s. For

water flowing around the gyre in the laboratory, both mechanisms of changing vertical

shear are present: the failure of the Taylor-Proudman theorem permits the existence

of vertical shear at the current source which can be amplified as the current flows

around the corner, and the relatively large aspect ratio (s = .5) permits twisting

of vortex tubes to generate shear. In oceanic flows, where 6 is presumably small,

the second mechanism is not available. However, all real flows possess a source of

u,, namely the shear layer at the bottom of the current. Just as separation from

a side wall may be caused by a flow reversal in the lateral viscous boundary layer,

so separation from the bottom may occur due to processes in the bottom viscous

boundary layer. In nonrotating two-dimensional theory the ease with which the

boundary layer could separate depends on the slope of the bottom and hence the

aspect ratio, but as mentioned in Chapter 1, even a quite mild adverse pressure

gradient, corresponding to a small aspect ratio, typically induces separation. It is

not clear how such two dimensional results carry over to three-dimensional rotating

flows, in which the Ekman spiral is bound to play some role in the boundary layer.

Even a relatively simple example of separation from a sloped bottom, such as flow in

a straight rotating channel that deepens in the alongstream direction, must be solved

in three dimensions, because the Coriolis force induces cross-stream velocities and

pressure gradients which vary in the along-stream direction.
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4.6. Discussion and Conclusions

A barotropic coastal current flowing over topography that slopes upward

to the coast can generate a single, steady state anticyclonic gyre just downstream

of a corner. The current flows around the gyre and re-attaches itself to the coast

downstream of the gyre. This basic picture is true for a wide range of topographies,

including those with zero coastal depth, finite coastal depth, a sharp corner, a rounded

corner, a sink downstream of the corner or no sink downstream.

The behavior of the sloping bottom current is different from the unstable

flow patterns of a jet over a flat bottom (Stern and Whitehead, 1990), which generates

eddies of both signs that allow the current to globally separate from the coast at the

corner, never to return. In my experiments, as the change in depth of the topography

across the current decreased relative to the depth of the current at the coast, eddies

appeared at the outer edge of the current, but global separation was not observed in

the parameter range I studied, probably because a mass sink downstream of the corner

imposed an additional constraint on the flow. The sloping bottom gyre looks similar

to anticyclones produced downstream of a corner by a baroclinic current (Whitehead

and Miller, 1979; Kawasaki and Sugimoto, 1984; Boyer and Tao, 1987; Bormans

and Garrett, 1989; and Chapter 3 of this thesis), but in the baroclinic case (except

for the case of Boyer and Tao) the gyres grew for as long as they were observed or

until they separated from the current or ran up against walls, while in the barotropic

flow the eddy attained a constant size within a few rotation periods. Stern and

Whitehead's experiments probably give such a different result from all the other

experiments because of instability in their upstream current.

I varied both Rossby and Ekman numbers of the flow upstream of the corner,

but the Ekman number had an ambiguous influence on gyre parameters, with no

clear trend except for the H. = 0, sharp corner topography, which produced a larger
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eddy for a given Rossby number when the Ekman number was smaller (less friction).

It would not be surprising if Ekman number had its most pronounced effect when

H., = 0, but it is hard to see why this effect would not be seen in the rounded corner

experiments. As expected, larger eddies were produced for the same Rossby number

when the relative change in depth across a current width was decreased, and smaller

eddies were produced as the radius of curvature of the coastline increased. However,

the comparison of sharp corner and rounded corner did not reveal any clear influence

of the corner sharpness on the gyre size.

For Rossby number on the order of .1, the gyre was either not present or too

thin to detect. For larger Rossby numbers, the half width of the gyre (as measured by

the distance from the coast to the center of the gyre) was approximately proportional

to Rossby number, while the half length of the gyre (alongshore distance from the

corner to the center of the gyre) was about as great as the current width for the

thinnest gyres and increased linearly with Rossby number. The relation between

Rossby number and gyre half width can be restated as u/f x, = B, where u is the

maximum current speed (measured just upstream of the corner), f is the Coriolis

parameter, x, is the gyre half width, and B is a constant which depends on the

relative change in depth of the fluid across the width of the current. This simple

relation is similar to the criterion for gyre formation by a baroclinic current flowing

around a wall with a radius of curvature Xe.

The existence of such a simple scale relation for gyre size is quite evocative,

because it directs our attention away from the critical condition for gyre formation

and to the properties of currents which have actually formed a gyre. In other chapters,

we have tended to look at the generation of an eddy as a consequence of the failure of

the current to be able to go around a corner without leaving the coast. The behavior

of the barotropic gyres over a sloping bottom invites us to view the lack of an eddy

as the limit of a small gyre. The general increase in gyre size with Rossby number
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should be caused by the relaxation of the inhibition on cross-isobath flow for high

Rossby number. However, the fact that the current flows in essentially an inertial

circle downstream of the corner is puzzling. A particle travelling on a rotating plane

would be pushed by the Coriolis force into an inertial circle, but fluid parcels do not

generally act like independent parcels. The inertial radius is the length scale over

which nonlinear terms in the momentum equation act, as described in Chapter 2,

but for currents in a barotropic flow should be completely described by the vorticity

and continuity equations, making the momentum equation irrelevent to predicting

the flow pattern.

In the laboratory, the production of a gyre was accompanied by alongstream

variations in the vertical profile of the horizontal velocity. Applying the continuity

equation to the surface velocity field gave results that were consistent with the depth

of the current remaining constant in places where the current flowed into deeper

water or returned to shallower water. Since I only measured the flow velocity at the

surface of the water, the actual vertical variations in velocity remain unknown. Gyres

were produced when the Rossby number was no longer small, so that the Taylor-

Proudman theorem no longer held and the vertical shear could not be assumed to

be confined to a thin bottom Ekman layer. Therefore models which do not include

vertical shear, such as the hydraulic models of Chapter 2, leave out a degree of freedom

which is important in the dynamics of the barotropic current separation observed in

the laboratory. Analysis of the vorticity evolution equations shows that vertical shear

must come from vertical shear in the current as it originates from the source, from the

bottom boundary layer, or, for flows of moderate aspect ratio as in these experiments,

from the tilting of vorticity filaments.

The separated currents were roughly steady and took a form which did not

seem to depend on the past history of the flow. For instance, raising or lowering the

flow rate to a certain value yielded the same result. Therefore steady state theory
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should account for the form of the flow and the u/f xc relation for the size of the gyre.

As in the baroclinic flows, the question of whether friction is responsible for the current

separation is left open by the experiments. Friction or mixing must be important in

maintaining the anticyclone, because the streamlines in the anticyclone are closed and

friction with the sloping bottom and wall would spin down the gyre unless vorticity

is transported across streamlines from the current originating upstream of the corner.

The gyre does not seem to be necessary for the separation of streamlines at the corner,

because in some flows (see Figure 4.3.3a) the current separated even though no gyre

formed. If the trend in Ekman number for gyre size in the case of one topography is

real, it points to a frictional influence, but the absence of the trend with the other

topographies makes the relation suspect. A frictional separation mechanism must

involve separation of the flow both from the coast and from the floor. Since the size

of the gyre is affected by the relative depth change H./(H. - H.), such a mechanism

must explain how such a separated current would feel the bottom.
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Appendix to Chapter 4

4.A. Jitter Removal

In the wide current runs, which had a higher spatial resolution than previous

runs, there were clear signs of camera jitter with amplitudes as high as 0(1 cm) in

"motionless" pellets that were fixed to the walls as reference marks. The reference

pellet at the corner (near the center of the tank) appeared to move in a circle, while

each of the pellets on the first and second walls far from the corner moved in an

ellipse with its major axis perpendicular to a radial line from the center of the tank

to pellet. This apparent motion could be decomposed into two elementary solid body

motions. In one, the whole field of view orbits in a small circle, with the orientation

of the field of view remaining fixed; in the other, the orientation of the field oscillates

around the center like a small amplitude torsion pendulum. Both motions had the

same period as the rotation of the tank. The orbital motion is caused by a small

dis-alignment between the tank's rotation axis and the camera's rotation axis. The

angular oscillation is more mysterious, but must be caused by either the camera or

the tank slowing down and speeding up by about 1% in the course of one rotation

period.

Denoting the actual position of a point in the tank by (x, y), its apparent

position due to orbital motion by (x,(t), y.(t)), and its apparent position due to both

orbital and twisting motions by (x'(t), y'(t)), we model the motion artifacts as

z, = x+d, (4.A.1a)

y, = y + d (4.A.1b)
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with d. = r cos(-wt+ 4) and d. = r sin(-wt+#), where w is the tank rotation period

and r is the centering discrepancy, and

z' = x. cos 6 - y, sin 6 (4.A.2a)

y' = x, sin 6 + y, Cos 6 , (4.A.2b)

where 6(t) is the angular displacement due to twisting motion. Since the angular

motion is of small amplitude (only about one degree), we can approximate the second

set of relations by

X' =x. - y6 (4.A.3a)

y'I =y, + x.. (4.A.3b)

We assume that 6 varies sinusoidally in time, so that

8=acoswt+bsinwt . (4.A.4)

Letting c = r cos 4 and d = r sin #, combining the expressions for (x,, y,) and (x', y'),

and neglecting terms which are products of the two kinds of motion, we get

= x + pI cos wt + p2 sin wt (4.A.5a)

y' =y + p3 cos wt + p4 sin wt, (4.A.5b)

where pi = c - ay, P2 = d - by, p3 = d + ax, p4 = -c + bx. Thus given a time series

of apparent positions of a point, least squares fits to the x and y coordinates yield

(x, y,pP 2 , pa, p 4), from which we can find the motion parameters (a, b, c, d). Once

these parameters are found for a particular point, they can be used to find the actual

position of other points (such as pellets moving with the flow) from the apparent

positions. We invert equations (A.5a,b) to get

o' - d. + 0(y' - d,)
= '- + (x'-4) (4.A.6a)

y= 1 +2(4.A.6b)
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This model accounted for much of the motion of the ostensibly fixed pellets at the

ends of the first and second walls. Typically, the standard deviation of the position

of such a point was reduced from around .2 cm and .5 cm in the radial and tangential

directions to .1 cm or less in both directions. The path of each "motionless" point

generally looked well-fit by a sinusoid, with no obvious patterns in the residuals. Given

the .15 cm radius of the tracer pellets and the .4 cm pixel width, the residuals can be

plausibly attributed to noise. For each run, the motion parameters were estimated

from either one or two fixed pellets, depending on how good the data from each pellet

was. In cases for which two pellets were used, the parameters obtained from the two

were within ten percent of each other, and the two sets of parameters were averaged

before inverting the positions of the floating pellets. Once the motion artifacts were

removed from the path data in this way, the velocity fields looked noticeably cleaner.

In particular, waves in the paths of slow-moving pellets offshore of the coastal current

disappeared after correction.
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Chapter 5.

Summary and Conclusions

Laboratory experiments showed that an anticyclonic gyre can be produced at a

corner by a current which flows along the coast both upstream and downstream of

the gyre. A surface density current will produce a growing anticyclonic gyre similar

to that observed by Whitehead and Miller (1979), Bormans and Garrett (1989) and

Kawasaki and Sugimoto (1984) for flow emerging from a channel. A barotropic current

over a sloping bottom generates a gyre which quickly attains a steady state. This

behavior is qualitatively different from the flow separation that a boundary current

undergoes at a sharp corner in a barotropic system with a flat bottom.

Since two-layer coastal currents and two-layer strait-basin flows produce

similar eddies, the dynamics governing the eddy generation is probably similar, so

that studies of either system extend our knowledge of the behavior of both kinds. To

the criteria for gyre production by Bormans and Garrett (1989) and Kawasaki and

Sugimoto (1984), we added another, that the corner angle must attain a minimum

value in order to form a gyre. Angles which did not produce an eddy nevertheless

displayed an asymmetry between the flow upstream and downstream of the corner; as

the critical angle was approached from below, the flow near the wall downstream of

the corner decreased, displaying a trend which culminates in reversed flow and gyre

formation at the critical angle. The experiments also showed that the characteristics

of the eddies are the same for very different initial conditions, indicating that it is

not necessary to understand the details of the initial interaction of the nose of the

current with the corner in order to explain gyre formation. The relative depths of the

upper and lower layer did not affect the qualitative eddy features or the approximate

critical angle for gyre formation, but a shallower lower layer produced a faster growth

rate when an eddy was generated at the corner and a solitary wave propagating away
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from the corner when no corner eddy was generated. This indicates that baroclinicity

affects the production of a gyre, but it does not prove that baroclinicity is essential

for gyre formation, especially in light of Werner et al.'s (1988) reduced gravity model

simulation of the Alboran Sea gyre. When the surface current was accompanied by a

countercurrent in the lower layer, a cyclonic eddy formed at the corner in the lower

layer. At a right angle corner, the two vortices propagated away from the coast,

probably due to heton-like coupling between them. When the corner angle was 450,

the gyres did not drift away. This indicates that there are two critical angles or radii

of curvature for the curved or sharp corner systems: one for eddy generation and one

for eddy shedding.

The angle criterion described above is of oceanographic interest because it

limits the coastal locations where we might expect corner eddies to appear. The

unimportance of the initial condition details shows that an oceanic coastal current

need not be impulsively started in order to have the potential to generate an eddy.

While the anticyclones generated in the laboratory experiments needed to couple

with cyclones caused by flow in the other layer in order to propagate away from the

coast, this very mechanism is not ruled out for the Mediterranean Outflow, which has

oppositely directed currents both above and below.

A barotropic pumped current flowing over a sloping bottom behaved very

differently than a similar current flowing over a flat bottom. The flat bottom current

was turbulent and for a sufficiently large corner angle globally separated from the

corner in a series of cyclones and anticyclones (Stern and Whitehead, 1990). The

sloping bottom current was relatively laminar and formed a single anticyclonic gyre

immediately downstream of the corner. In all runs, the corner was a right angle, but

various topographies were used, including a sharp corner, a rounded corner for two

radii of curvature, and various water depths at the coast. For each topography, the

width of the gyre was proportional to the Rossby number of the upstream flow for
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Rossby numbers of approximately .2 to 2. In other words, for a given topography the

radius of the gyre was proportional to the inertial radius u/f, with the proportion-

ality constant between .5 and 1 for different topographies. Analysis of the volume

flux based on the measured surface velocity showed that the assumption of depth-

independent horizontal velocity was not consistent with the continuity equation in

the gyre in places where the flow was directed across isobaths. This indication of

vertical shear became more pronounced as the Rossby number increased, relaxing

the constraint of the Taylor-Proudman theorem. The observations were consistent

with a current that did not change its depth as it flowed across isobaths. Thus the

fluid flowing around the gyre may have separated from and then re-attached to the

bottom.

An analysis of the horizontal component of the vorticity equation shows that

possible sources for the vertical shear include the twisting of vorticity filaments and

the shear that is initially confined to the bottom Ekman layer. In the limit of low

aspect ratio, the twisting mechanism no longer becomes a major source term. In

the laboratory, the aspect ratio was not very small (only about .5), and the vertical

shear of the fluid leaving the current source was not well known. It would be fruitful

to conduct a numerical experiment in which the aspect ratio was kept low and the

current contained no vertical shear at the source. If an eddy is produced in this limit,

it would be a sign that the bottom shear layer is indeed the source of vorticity which

allows the current to separate from the coast.

The barotropic experiments show that the shoaling towards the coast of a

sloping bottom will inhibit barotropic coastal flows in the ocean from completely

separating from a corner (in contrast to Stern and Whitehead's (1990) barotropic

currents), but that for such flows local separation and gyre formation are still possible,

as in the baroclinic case.
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The hydraulic model, which is only applicable to flow structures which have

an alongstream length scale that is greater than the cross stream length scale, was

used to test whether the experimental results of Bormans and Garrett (1989) are

consistent with the separation mechanism of Roed (1980), in which a coastal current

separates from a curved coast because the layer depth at the coast goes to zero. In

much of the parameter space which governs the flow, separation only occurred for

radii of curvature which were small compared to the local width of the current, thus

violating the condition of applicability of the approximation. Nevertheless, in the

valid range, for a density front the critical radius of curvature pc was approximately

equal to the inertial radius u/f, as observed by Bormans and Garrett, if we base the

inertial radius on the cross stream average of the upstream flow speed U. For the free

streamline case, pc is roughly proportional to (W/R)U/f (where W is the upstream

current width and R is the Rossby radius), rather than U/f. Bormans and Garrett's

experiments were based on a collection of flows which looked similar to both the free

streamline case and the front case, so there is only partial agreement between theory

and experiment.

Hydraulic theory was also applied to barotropic flows. Hughes (1989) showed

that for a certain relation between streamfunction and potential vorticity and a given

bottom slope, a current must separate from the coast if the radius of curvature of

the coast becomes small enough, because otherwise reverse flow develops near the

wall. This occurred for the wider of two modes with the same potential vorticity and

volume flux; the wider mode was subcritical with respect to potential vorticity waves

on the jet. I demonstrated that flows with uniform potential vorticity, which are

mathematically simpler than Hughes' case, could never separate from the coast for

either a flat bottom or a linear bottom slope, implying that a cross-stream potential

vorticity gradient is necessary for separation. However, flows with two regions of uni-

form potential vorticity, which are also mathematically more tractable than Hughes'

currents, also do not separate. This result is probably linked to the fact that only the
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narrower of the two conjugate solutions for a given volume flux and potential vortic-

ity is unidirectional for no wall curvature, so that the wide solution is automatically

discarded. It was found that a barotropic current of piecewise uniform potential vor-

ticity flowing with the wall on the left could display unidirectional conjugate solutions

if the depth had a linear slope but did not go to zero at the coast. These results show

that the details of the potential vorticity distribution and cross-shore topography can

make a qualitative difference in the separation characteristics of a current. Moreover,

the barotropic experiments described above cast doubt on the applicability of the

shallow water equations to flow separation, since substantial cross-isobath flow was

accompanied by vertical shear.

With the exception of the barotropic, flat-bottom flows of Stern and White-

head (1991), all the flows that separated from coastal topography that have been

reported in the literature (see Chapter 1) or in this thesis have been marked by a

single gyre that is steady or slowly evolving in time. Similar eddies are seen for

barotropic and baroclinic flow sweeping past obstacles, two-layer flow at the mouth

of a channel, and one- and two-layer coastal flows past corners. The difference in

behavior of the Stern and Whitehead case is probably due to the instability of the

barotropic coastal current they studied. In all the other cases, the similarity in be-

havior of currents with such different flow profiles is a hint that a common dynamical

factor is operating to produce the gyre in each case. The obvious factor that all the

cases have in common is the existence of an adverse pressure gradient in the viscous

boundary layer along the wall, and nothing in my experiments has disproven the pos-

sibility that viscous boundary layer separation is the source of eddy generation by a

coastal current at a corner. The fact that the inertial radius is a relevant quantity

both for baroclinic flow around a curved coast and for sloping bottom barotropic

flow around a corner indicates that rotation is of first order importance in the eddy

generation process. I attempted to produce a purely rotational, inviscid explanation

for separation of an upper-layer flow from a curved corner using hydraulic theory.
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While this theory did reproduce the importance of the inertial radius, the results

overall were mixed, as described in the discussions in Chapter 2 and Chapter 3. An

inviscid explanation based on the stability and wave propagation properties of coastal

currents may reproduce the behavior of the baroclinic currents. However, the most

promising avenues for exploring corner eddy generation in both the baroclinic and

barotropic cases studied here are those which look at steady-state flows in which the

effects of both friction and rotation are included.
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