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Abstract

Many current and future applications of biological engineering hinge on our ability
to measure, understand, and manipulate metabolism. Many diseases for which we
seek cures are metabolic in nature. Small-molecule biomanufacturing almost always
involves metabolic engineering. Biofuels, a current topic of great interest, is essentially
a metabolic problem. Even bioprocesses that involve complex products, such as
enzyme or antibody manufacturing, still rely on a healthy and optimal metabolism
and can benefit from a greater understanding therein.

A cell's metabolic flux distribution has been proposed to be one of the most

solid and meaningful indicators and descriptors of metabolism. Metabolic fluxes
represent integrative information and are a function of gene expression, translation,
posttranslational modifications, and protein-metabolite interactions. Metabolic flux
analysis (MFA) is a powerful method for determining these flux distribution through a
cellular reaction network. However, MFA has experimental limitations (most notably,
a requirement for isotopic steady state) that restrict the scope of biological contexts
in which it can be applied.

Nonstationary metabolic flux analysis (NMFA) has recently emerged as a com-
bined computational and experimental method that improves upon MFA with the
capacity to estimate fluxes even during periods of isotopic transience in metabolism,
allowing flux analysis to be applied in a broader range of experimental settings. In
this thesis, we have developed and applied robust and efficient NMFA tools and tech-
niques and applied them to understand various cellular physiologies.

We built a software package (MetranCL) that combines the elementary metabo-
lite unit (EMU) framework, a new network decomposition strategy termed block
decoupling, and a customized differential equation solver. MetranCL performs flux
estimations as much as 5000 times faster than the previous state-of-the-art NMFA
methods, opening entirely new types of biological systems to the possibility of flux
analysis.

We applied MetranCL to a simulated large network representing E. coli metabolism
and were able to successfully estimate reaction fluxes and metabolite concentrations



and their 95% confidence intervals. We investigated a number of different experi-
mental arrangements of measurement time points, and found that in general, mea-
surements earlier in isotopic transience were more sensitive to network parameters
and yielded more precise confidence intervals. We also observed that the addition of
concentration measurements significantly increased estimate quality.

We next used NMFA to compute fluxes from actual experimental measurements
taken from brown adipocytes. We designed an appropriate network and successfully
fitted simulated measurements to actual measurements (taken at 2, 4, and 6 hours
after introducing tracer). A flux distribution was obtained that indicated a high level
of pyruvate cycling, a low flux through the TCA cycle, and high lactate production.

We developed computational and experimental tools to assist with the design of
flux analysis experiments. We built a simulator that calculates the effect of different
tracers on flux estimate precision and used it to study a range of different glucose and
glutamine tracers in carcinoma metabolism. Of all the stand-alone tracers we tested,
we found that [1,2- 13C2 ]glucose estimated flux distributions with the greatest preci-
sion. We built upon this work by constructing an evolutionary algorithm to generate
optimal tracer mixtures for different organisms and their respective metabolisms. We
applied this algorithm to the same cancer network and found optimal tracer mixtures
for the system. We ran experiments with an optimized tracer mixture and compared
it to results from typical tracers and saw significant improvements in flux precision.

Finally, we applied these methods and tools to evaluate and understand the flux
distribution and metabolism of a lipid-overproducing strain of the yeast Yarrowia
lipolytica. Since NMFA of this organism required metabolite extracts taken at very
precise and proximate time points, we built a rapid sampling apparatus to draw
and quench samples of Yarrowia cell culture with a one-second time step. After
conducting NMFA under different environmental conditions and at different stages of
growth, we found that lipid synthesis fluxes increased when aeration of the cell culture
was increased, and observed several corresponding changes in the intracellular flux
distribution explaining the overall change in metabolism that occurs with this shift
in environmental conditions. In particular, we found that Yarrowia primarily powers
lipid production by regulating flux through the pentose phosphate pathway.

Thesis Supervisor: Gregory Stephanopoulos
Title: W. H. Dow Professor of Chemical Engineering
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Chapter 1

Introduction to Metabolic Flux

Analysis

1.1 Assaying Cell Metabolism

Our ability to genetically mold and manipulate cellular systems has grown dramati-

cally in the past few decades. Many different techniques have been developed, includ-

ing targeted gene knockouts [5, 6], overexpressions [4], transcription factor engineer-

ing [8, 9], RNAi [54], foreign gene insertion [36], and protein engineering [153, 163].

General strategies such as rational design [15] and directed evolution [100] have also

played important roles. But as we create new cellular genotypes in pursuit of vari-

ous goals, it is essential that we are able to accurately measure and understand the

corresponding new phenotypes. In a wide range of applications, the most important

of these phenotypic aspects is metabolism, the set of chemical reactions that occur

within a living organism [135]. Metabolism is in many ways a cumulative, culminat-

ing signal of the many upstream bioprocesses (genetic, transcriptional, translational,

and kinetic) leading toward it [145].

Many current and future applications of cellular engineering hinge on metabolism.

Many diseases for which we seek cures are metabolic in nature [58, 85]. Small-molecule

biomanufacturing almost always relies on metabolic engineering [7]. Biofuels, a cur-

rent topic of great interest, is a metabolic problem [86, 137]. Even bioprocesses that



involve biologically complex products, such as enzyme or antibody manufacturing,

still rely on a healthy and optimal metabolism and can benefit from a greater under-

standing there [14, 59]. A thorough knowledge of metabolism will aid on both "sides"

of the process to adapt and alter cellular function. Understanding metabolism be-

fore intervention reveals how and where to implement change, and understanding

metabolism afterwards allows us to see if and to what degree we have succeeded.

Though important, measuring metabolism is difficult. And measuring metabolism

without perturbing it in the process is especially difficult. Various strategies have

been created over the years, each with strengths and weaknesses. Measuring enzyme

kinetics is difficult to carry out in vivo and on a global scale across many different

enzymes. Studies into transcriptional profiling continue to show that, while useful,

mRNA abundance simply does not equal protein function [49]. Proteomics methods

could potentially bypass this concern and yield direct measurements of intracellular

enzymes, but concentrations sensitivities are currently limiting, and cost per anal-

ysis is still relatively high [13, 45]. Metabolomics, the measurement of intracellular

metabolite pool sizes, takes a broad snapshot of metabolism at a given moment; how-

ever, metabolite pool sizes are often both difficult to measure accurately and also are

not always directly linked to biological insight [51, 52, 53].

Metabolic flux distributions have been proposed to be one of the most solid

and meaningful indicators and descriptors of cellular metabolism [136]. Metabolic

fluxes represent integrative information and are a function of gene expression, trans-

lation, posttranslational protein modifications, and protein-metabolite interactions

[104]. Elucidation of fluxes within a cell is a difficult task. Extracellular analysis

of metabolic byproducts and rates allows us to gauge some cellular fluxes; unfortu-

nately, the vast majority of metabolic happenings are still left hidden and unknown

within the cell. Flux balance analysis allows for estimation of an entire metabolic

network of fluxes simultaneously; however, it usually must rely on assumptions in

order to solve underdetermined systems of equations [123, 146, 149]. In the late

1990s, a novel, powerful method emerged that combined measurement and modeling

to estimate intracellular flux distributions. This method was termed metabolic flux



analysis.

1.2 Metabolic Flux Analysis via Isotopic Labeling

Metabolic flux analysis (MFA) is a relatively new method that uses measurements

of isotopic labeling to measure intracellular fluxes for the reactions in a metabolic

network. Figure 1-1 explains the structure of a flux analysis experiment. First, a

tracer study is conducted in which substrate labeled with stable isotopes (usually 13C)

is introduced to the cells of interest while they are in a metabolic steady state. The

labeled atoms spread throughout the intracellular metabolites in patterns which are

sensitive to the relative fluxes of the various network reactions. Metabolic byproducts

are extracted from the culture and labeling measurements are obtained.

Second, we construct a mathematical model of the metabolism. The model re-

quires for each reaction (1) a flux value and (2) the atom transitions that occur from

reactant to product. With this information, the same labeling patterns measured in

the actual experiment can now be simulated in silico. This measurement simulation

is known as the "forward problem" of metabolic flux analysis.

To estimate fluxes, we repeatedly solve the forward problem, adjusting the flux

distribution at each iteration in order to minimize the lack of fit observed between

the experimental and simulated labeling measurements. This strategy of using mea-

surements to get to fluxes is known as the "inverse problem", and the set of fluxes

that successfully minimizes this lack of fit represents the solution to that problem.

1.3 Brief History of Metabolic Flux Analysis

The origins of MFA can be traced to early studies that used rudimentary equations

to calculate a handful of key fluxes from 13C NMR [93] and GC/MS measurements

[77]. Network modeling and a general mathematical approach were later introduced

when fluxes generated a stoichiometric analysis were shown to correctly simulate 1H

NMR data [166]. Although most early flux analysis relied upon NMR measurements,
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Figure 1-1: Diagram of the structure of a typical MFA experiment. First, an ex-
periment is conducted in which isotopic tracer is introduced to cells and labeling
of metabolic byproducts is measured (usually by MS or NMR). A model of cellu-
lar reactions and the atom transitions comprising those reactions can be constructed
and used to simulate the labeling of those same byproducts measured experimentally.
This is the forward problem. By repeatedly solving the forward problem, each time
varying the model's flux distribution, we can eventually minimize the lack of fit be-
tween measurement and simulation, arriving at a set of estimated intracellular and
extracellular fluxes. This iterative procedure that extracts fluxes from measurements
is the inverse problem.



the majority of experiments gradually transitioned over to GC/MS [34, 37, 38, 63]

and eventually LC/MS [80, 106, 148].

In the late 1990s, the simulation of labeling measurements was incorporated into

parameter-fitting optimization schemes to estimate fluxes from NMR data [94, 128].

An important advancement occured when Wiechert et al showed that the nonlinear

system of equations representing isotopic labeling fractions could be decomposed into

a cascaded system of linear equations [99, 157]. Antoniewicz et al introduced a major

breakthrough with the elementary metabolite unit (EMU) framework, an even more

efficient and elegant method for decomposing the simulation problem into minimally

sized systems of equations [11].

MFA was first applied extensively to microbial systems. Flux analysis has been

used to great effect in showing the impact of genetic manipulations on metabolism.

For instance, the rerouting of E. coli's carbon through PEP carboxylase and malic

enzyme in response to a pyruvate kinase has been demonstrated by metabolic flux

analysis of [U- 13 C6]glucose experiments [47]. Analogous experiments were also later

conducted for phosphoglucose isomerase and glucose-6-dehydrogenase knockouts in

E. coli [74].

MFA has also been used to study and improve microbial substrate utilization

for industrial production; examples include the growth of A. nidulans on glucose

versus xylose and lysine production of C. glutamicum using glucose versus fructose

[39, 79]. Other studies have focused on E. coli production of compounds such as

1,3-propanediol or amorphadiene [12, 139].

Metabolic flux analysis has also been used to study relatively unknown metabolic

phenomena. MFA has produced information and understanding in relatively un-

known pathways in well-known organisms (such as the glucose oxidation cycle of

E. coli) and it also has served as a useful probe of metabolism in novel organisms

such as Shewanella oneidensis, Geobacter metallireducens, Desulfovibrio vulgaris, and

Actinobacillus succinogenes [97, 120, 140, 141]. Flux analysis is an ideal tool for these

investigations since genetic understanding is lacking but reaction network information

can be inferred from similar organisms.



Metabolic flux analysis has been increasingly applied to plant and mammalian cell

metabolism. Studies of C. roseus roots and soybeans have estimated flux values for

reactions occurring in multiple-compartment networks [3, 133]. Industrial CHO cells

have been analyzed in perfusion culture [65]. Several medical applications have been

found as well; studies of breast cancer cells have suggested potential pathway targets

for cancer therapy [57], while flux profiling of mammalian cells infected by HCMV

have suggested potential targets for antiviral therapy [102].

1.4 Nonstationary Metabolic Flux Analysis

It is clear that metabolic flux analysis has found a broad array of applications, and

its deployment has become more sophisticated over time. However, there are still

many biological instances in which standard MFA is too limited to be useful. All

of the previously mentioned MFA experiments rest upon two major assumptions.

First, the system under study must be in a metabolic steady state (i.e., fluxes and

metabolite concentrations are constant with respect to time). Second, the system

must be allowed to come to an isotopic steady state after the initial introduction of

labeled substrate (i.e., all intracellular metabolite labeling patterns are constant with

respect to time). These requirements constrain experiments and sometimes limit the

scope and usefulness of metabolic flux analysis.

Nonstationary metabolic flux analysis (NMFA), the topic of this thesis, is similar

to MFA with the provision that metabolite labeling can be sampled and measured

during the transient period before the system comes to an isotopic steady state. This

gives researchers more freedom and flexibility in experimental design. NMFA offers

significant advantages as compared to MFA:

1. NMFA experiments are much less costly (in terms of both time and money)

since one does not need to wait for isotopic steady state to be established [106].

2. NMFA is particularly suited for systems that cannot be held at a metabolic

steady state indefinitely (e.g., primary cells or animal studies) because experi-



mental durations are greatly reduced.

3. In some cases, NMFA identifies metabolic fluxes with greater precision because

some isotopically transient measurements have greater sensitivities to fluxes

[107].

4. In some cases, NMFA measurement data can be used to estimate metabolite

concentrations in addition to fluxes.

5. 13C NMFA can successfully estimate fluxes in systems that rely solely on single-

carbon substrates (e.g., photoautotrophs and methylotrophs) whereas at iso-

topic steady state, metabolites are uniformly labeled and no new information

is generated by a 13C tracer [131].

However, NMFA also introduces several complexities both in computation and in

experimentation. (For example, differential equations must be solved and samples

must be taken rapidly within the duration of isotopic transience.) The resolution of

these challenges and the successful implementation of NMFA is the goal of this thesis.

1.5 Thesis Outline

This thesis covers several aspects of NMFA, starting with the general theory and al-

gorithms behind nonstationary simulation and estimation (Chapter 2). We move on

and report some initial applications of NMFA (Chapters 3 and 4) after which we dis-

cuss topics in NMFA experimental design (Chapters 5, 6, and 7). We conclude with a

rigorous NMFA experiment leading to biological insight in an important experimental

system (Chapter 8).

e NMFA theory and computation (Chapter 2): We applied elementary

metabolite unit (EMU) theory to nonstationary flux analysis, dramatically re-

ducing computational difficulty. We also introduced block decoupling, a new

method that systematically and comprehensively divides EMU systems of equa-

tions into smaller subproblems to further reduce computational difficulty. These



improvements led to a 5000-fold reduction in simulation times, enabling an en-

tirely new and more complicated set of problems to be analyzed with NMFA.

We capped our theoretical work by developing a software package (MetranCL)

that uses these new methods for measurement simulation and flux estimation.

" NMFA of a simulated large E. coli network (Chapter 3): We con-

structed a large, biologically realistic network representing E. coli metabolism.

This network's size would normally render NMFA infeasible, but using our

new EMU-based methods, the problem was tractable. We simulated a series

of nonstationary and stationary GC/MS measurements for the network that

was then used to estimate parameters and their associated confidence intervals.

We found that fluxes could be successfully estimated using only nonstationary

labeling data and external flux measurements. The addition of concentration

measurements increased the precision of most parameters.

" NMFA of brown adipocytes (Chapter 4): We also applied EMU-based

NMFA to experimental nonstationary measurements taken from brown adipocytes

and successfully estimated fluxes and some metabolite concentrations. Adipocyte

metabolism provides an important window into many metabolic diseases, espe-

cially those that are related to obesity, such as diabetes. By using NMFA

instead of traditional MFA, the experiment required only 6 hours instead of 50

(the time necessary for most metabolite labeling to reach 99% of isotopic steady

state). In our results, we observed a large pyruvate recycle flux, a small TCA

cycle flux, and a large lactate flux.

" Rapid sampling (Chapter 5): Organisms with highly active metabolisms

have short periods of isotopic transience. To accurately measure metabolite

labeling in this period, rapid sampling must be employed. We developed a

vacuum-powered rapid sampler capable of taking samples on a time scale of

seconds. We built the sampler so that it would be compatible with a variety

of bioreactors and flasks, while maintaining a low threshold of construction by

keeping the apparatus as inexpensive and as simple as possible. We showed that



the rapid sampler measurements could generate isotopically consistent measure-

ments (of a mixture of glucose isotopomers) and isotopically dynamic measure-

ments (of intracellular pyruvate in Yarrowia lipolytica).

9 Isotopic tracer evaluation for metabolic flux analysis (Chapter 6):

Tracer selection is an important and easily adjustable parameter in NMFA ex-

periments. As such, tracer choice is a prime candidate for manipulation in

experimental design. Using our NMFA software, we computationally evalu-

ated specifically labeled 13C glucose and glutamine tracers for their ability to

precisely and accurately estimate fluxes in the central carbon metabolism of

carcinoma cells. These methods enabled us to identify the optimal tracer for

analyzing individual fluxes, specific pathways, and central carbon metabolism

as a whole. These results provide valuable, quantitative information on the

performance of 13C-labeled substrates and can aid in the design of more infor-

mative MFA experiments in mammalian cell culture. In particular, we found

that [U- 13C 6 glutamine was the best tracer for ascertaining TCA cycle fluxes

while [1,2- 13C2]glucose was the ideal tracer for glycolysis, the pentose phosphate

pathway, and the overall network.

e Optimization of isotopic tracer mixtures for metabolic flux analysis

(Chapter 7): Tracers need not be used in isolation in flux analysis; they can

be combined in different proportions to improve estimate precision. To our

knowledge, no systematic approach exists for searching the space of tracer mix-

tures for experimental design. To that end, we created a strategy that finds

an optimal mixture of tracers for a given metabolic network and a given set of

potential tracers. We use a genetic algorithm to search the space of possible

tracer mixtures, and select for and recombine those mixtures that maximize the

precision with which the flux distribution is estimated. We applied this algo-

rithm to carcinoma metabolism and found two optimal tracer mixtures. We

then experimentally applied one of these tracer mixtures to a culture of carci-

noma cells and saw a corresponding improvement in flux precision, validating



our genetic algorithm and tracer evaluation strategy.

" NMFA of Yarrowia lipolytica (Chapter 8): Y. lipolytica is an oleaginous

(lipid-producing) yeast with great promise in biofuels applications. We studied

a lipid-overproducing strain using nonstationary flux analysis. We measured

extracellular fluxes and conducted NMFA under different experimental condi-

tions using a combination of rapid and manual sampling. We obtained flux

distributions during the late growth phase and the stationary phase in bioreac-

tor conditions and in conditions with high aeration and oxygenation in order to

better understand the effect of oxygen availability on Y. lipolytica's production

of fatty acids. We determined that lipid production increases with greater aer-

ation, and that the cells manage the energy burden of the high production by

increasing flux through the pentose phosphate pathway.

" Recommendations for Future Research (Chapter 9): Dynamic metabolic

flux analysis is the next step in the progression of flux analysis and deserves

study in future research. The ability to measure fluxes in metabolically unstable

systems. MetranCL also can use further development to make it more accessible

and more powerful. Some of these specific areas of improvement include the

creation of a graphical user interface and improved parallelization. Network

sensitivity analysis is a third direction that could yield valuable fruit as we seek

to better measure fluxes.



Chapter 2

NMFA Theory and Computation

2.1 Introduction

MFA and NMFA are concerned with solving an "inverse problem" in which fluxes

(and in the case of NMFA, concentrations) are estimated from metabolite labeling

distributions by means of an iterative least-squares fitting procedure. At each itera-

tion, a "forward problem" must be solved in which metabolite labeling distributions

are simulated for a given metabolic network and a given set of parameter estimates.

The mismatch between the simulated and experimental measurements is assessed and

the parameter estimates are updated to achieve an improving fit.

In the context of MFA, the forward problem can be represented by systems of

linear algebraic equations. NMFA, on the other hand, requires the solution of systems

of ordinary differential equations, a significantly more difficult task. This additional

complexity means that the algorithms for NMFA must be carefully designed so that

the computational expense for large metabolic networks does not become prohibitive.

Currently, state-of-the-art algorithms (using cumomer fractions as state variables)

require more than an hour to simulate isotopic labeling of a realistic network model

[107, 157].

In this chapter, we propose a new approach based upon the Elementary Metabolite

Unit (EMU) framework [11] that efficiently and robustly handles the inverse problem

of NMFA by solving the forward problem thousands of times faster than currently



available methods. Because of these improvements in the NMFA model, we are able

to show for the first time that fluxes and concentrations can be estimated from non-

stationary data for realistically sized metabolic networks in short amounts of time.

2.2 EMU Network Decomposition

The nonstationary treatment presented here is built using the mass isotopomer dis-

tributions (MIDs) of elementary metabolite units (EMUs) as state variables [11]. An

EMU is defined as a distinct subset of a metabolite's atoms. EMUs can exist in a va-

riety of mass states depending on their isotopic compositions. An EMU in its lowest

mass state is referred to as M+O, while an EMU that contains one additional atomic

mass unit (e.g., due to the presence of a 13 C atom in place of a 1 2C atom) is referred

to as M+1, with higher mass states described accordingly. An MID is a vector that

contains the fractional abundance of each mass state of an EMU.

The goal of an NMFA simulation is the calculation of metabolite labeling patterns

that are measurable by mass spectroscopy; i.e., the MIDs of a certain subset of EMUs

in the system. While the total number of all possible EMUs in a network is equal to

the number of isotopomers or cumomers, in most cases only a small fraction of EMUs

is required to simulate measurable MIDs.

EMUs of metabolites in a common reaction network can be assembled into an

analogous EMU network composed of EMU reactions where the MIDs of upstream

EMUs affect the MIDs of downstream EMUs. Often, EMU networks can be decou-

pled into separate and smaller subnetworks. Decoupling of EMU reactions based on

(1) EMU size and (2) network connectivity has been discussed previously [11]. (EMU

size is defined as the number of atoms comprising a particular EMU.) Because MIDs

of EMUs depend only upon MIDs of equally sized or smaller EMUs, the EMU network

can be partitioned into size-based networks, each containing equally sized EMUs and

depending on inputs only from smaller-sized EMUs. If smaller, completely indepen-

dent EMU subnetworks can be identified within these size-based networks, further

decoupling can occur. Computational costs can therefore be decreased in two ways:



first, the total size of the system can be reduced, and second, the system can be

divided into smaller subsystems that cumulatively can be solved more quickly.

2.3 Block Decoupling

We propose a systematic and comprehensive method of EMU reaction network de-

coupling in which metabolite units are grouped into blocks. A block is defined as a

set of EMUs whose MIDs are mutually dependent within the context of the EMU

reaction network. Thus, by definition all EMUs within a particular block (1) are

of the same size, (2) mutually approach an isotopic steady state, and (3) must be

solved for simultaneously and not sequentially. Blocks can be arranged such that

each is a self-contained subproblem depending only upon the outputs of previously

solved blocks. This lets us work with smaller and more tractable matrices, greatly

increasing computational efficiency.

To arrange EMUs into blocks, we first regard the EMU reaction network as a

directed graph in which nodes represent EMUs and edges represent EMU reactions.

An N-by-N adjacency matrix is then constructed for the directed graph, where N is

the total number of EMUs. In short, a nonzero entry a(i, j) of the adjacency matrix

indicates the dependence of the ith EMU's MID on the jth EMU's MID. We then

perform a Dulmage-Mendelsohn decomposition on the adjacency matrix, returning an

upper block triangular matrix from which the diagonal blocks are extracted [44, 114].

2.4 Simple Network

A simple metabolic network appears in Figure 2-1A as an example. Figure 2-1B

delineates the atom transitions for the network. Hypothetical metabolite C is assumed

to be measurable by GC/MS. After EMU decomposition, the nonstationary system

can be described in terms of 16 EMUs. This represents a 44% reduction in state

variables from the 29 cumomer fractions required to simulate the system with the

cumomer method. After decoupling based on EMU size and connectivity, these 16



state variables can be separated into four smaller subproblems (see Figure 2-2A).

By applying Dulmage-Mendelsohn decomposition and block decoupling to the

simple network, we can achieve even further system reduction. Figure 2-3 shows this

decomposition and the resulting blocks in matrix form. Block decoupling improves

upon previous methods, enabling the 16 essential EMUs to be divided among eight

subproblems instead of four (see Figure 2-2B). Table 2.1 provides a detailed compar-

ison of the model reductions achieved by cumomer and EMU decompositions both

with and without block decoupling.

2.5 Simulation of Metabolite Labeling

Decomposition of a network into blocks of EMUs generates a cascaded system of

ordinary differential equations, where level n of the cascade represents the network

of EMUs within the nth block. Each system has the following form:

dX
dt

The rows of the state matrix Xn correspond to MIDs of EMUs within the nth

block. The input matrix Yn is analogous but with rows that are MIDs of EMUs that

are previously calculated inputs to the nth block. The concentration matrix Cn is

a diagonal matrix whose elements are concentrations corresponding to EMUs in Xn.

Finally, the system matrices An and Bn describe the network as follows:

An(ij) = -sum of fluxes consuming ith EMU in Xn i =j (2.2)
flux to ith EMU in Xn from jth EMU in Xn i*j

Bn(i, j) = flux to ith EMU in Xn from jth EMU in Yn (2.3)

Fully written matrices An, Bn, Xn, Yn, and Cn for all eight blocks of the simple

example problem (described in Figures 2-1 and 2-2) are listed in Appendix A.

The least-squares fitting algorithm employed to solve the inverse problem requires
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Figure 2-1: (A) A simple example network used to illustrate EMU network decom-
position. The network fluxes are assumed to be constant since the system is at a
metabolic steady state. Extracellular metabolites A, G, H, and J are assumed to be
at a fixed state of isotopic labeling to which intracellular metabolites B, C, D, E, and
F adapt over time. (B) Atom transitions for the simple example network.



Model Cumomer EMU EMU

Decoupling method Size Size/connectivity Blocks

(Size) # of vars (1) 12 (1) 9 (1) 3,3,2,1
(2) 11 (2) 4 (2) 3,1
(3) 5 (3) 2 (3) 2
(4) 1 (4) 1 (4) 1

Total variables 29 16 16

Table 2.1: A comparison of modeling approaches to simulate the dynamic labeling of
a simple example network. EMU network decomposition followed by block decoupling
minimizes the number of state variables both in the overall system and within any one
subproblem. The subproblems are listed by EMU size (or in the case of cumomers,
by weight). The EMU sizes (or cumomer weights) are indicated within parentheses
and the number of variables within each subproblem follow. For instance, the entry
"(2) 3,1" indicates that there are two subproblems involving EMUs of size 2. One
subproblem contains three variables and the other only one.
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Figure 2-3: Dulmage-Mendelsohn decomposition of an adjacency matrix representing
the EMU reaction network for the simple example network described in Figure 2-1.
A non-zero entry (denoted by a black circle) at the ith row and jth column of the
matrix represents the dependence of the ith EMU's MID on the jth EMU's MID.
The upper triangular matrix resulting from the Dulmage-Mendelsohn decomposition
can be separated into blocks as indicated by bold lines. Blocks can be solved in a
sequential order, beginning at the lower right-hand corner and working upwards.



repeated calculation of first order derivatives, i.e., sensitivities of simulated measure-

ments with respect to fluxes and concentrations. To this end, implicit differentiation

of Equation (2.1) yields

d aXn 1 &x a(C; 1 -An) __ Yn a(C, 1  ) -B()
- = -An- - Xn + Cn -Bn - +- Yn (2.4)

dt 8p *p Op 9p ap

where p is a vector of metabolic fluxes and concentrations.

2.6 Customized Differential Equation Solver

We integrate the system with a customized ordinary differential equation solver that

discretizes Equations (2.1) and (2.4) by applying a first-order hold equivalent with

adaptive step size control [115]. This method is A-stable, simple to code, and enables

large time steps by making use of partial analytical solutions to the system equations.

EMU labeling states and sensitivities are described by Equations (2.1) and (2.4)

and can be simplified as shown below:

dX~
X Fn -X, + Gn (2.5)

dt

d 9X, 8Xn- = Fn - + Hn (2.6)
dt 89p ap

by making use of the following substitutions:

Fn = C;; An (2.7)

Gn = C-n1 -Bn -Yn (2.8)

H = -Xn + (2.9)
OP aP



The functions G, and H, potentially comprise convolutions of MIDs belonging

to EMUs of previously solved blocks (a result of EMU condensation reactions) and as

such Equations (2.5) and (2.6) lack analytical solutions. Partial analytical solutions,

however, can be written:

Xn(ti) = eFnAt. Xn(to) + f eF-(At-T) G n( r + to) -dr (2.10)

X - eFn.At. &Xn + f eFn-(At-) Hn(T + to) dr (2.11)
P ti aP to 0

where the initial state of the system at time to is assumed to be known and At is

defined as ti - to. Again, the integrals in Equations (2.10) and (2.11) lack analytical

solutions. Instead, we evaluate at discrete points by applying a non-causal first-order-

hold equivalent with adaptive step size control to numerically integrate and solve the

problem [115]. This discretized approximation can be expressed as follows:

(Xn)k+1 = n - (Xn)k + Fn - (Gn)k + n- [(G)k+1 - (Gn)k] (2.12)

(Xn ) 1 - +n -(Hn)k + n- [(Hn)k+1 - (Hn)k] (2.13)
aP k+1 aP k

where the transition matrices J n, In, and Qn are functions of fluxes, concentrations,

and the time step magnitude according to the following relationship:

bn rn On Fn -At I -At 0

0 I I1 exp 0 0 I (2.14)

0 0 I 0 0 0

where the exponential function refers to the matrix exponential [62]. At each time

point, Yns and Xns are calculated in ascending order until the EMUs representing

all desired measurements are obtained.



2.7 Flux and Concentration Estimation

Fluxes and concentrations are estimated by minimizing the difference between mea-

sured and simulated data according to the following equation [10, 107]:

minb = [m(u, c,t) - m( t)]T - E- [m(u, c) - ni]
u,C

s.t. N-u>!0, c>0 (2.15)

where 4D is the objective function to be minimized, u is a vector of free fluxes, c is

a vector of metabolite concentrations, t is time, m(u, c, t) is a vector of simulated

measurements, ni(t) is a vector of observed measurements, Em is the measurement

covariance matrix, and N is the nullspace of the stoichiometric matrix. We have im-

plemented a reduced gradient method to handle the linear constraints of this problem

within a Levenberg-Marquardt nonlinear least-squares solver [60, 90].

Calculation of parameter standard errors requires the inverse Hessian of <D, which

becomes ill-conditioned when some parameters are poorly identifiable. Because the

Hessian is obtained by numerically integrating the measurement sensitivities in Equa-

tion (2.4), it is contaminated by numberical errors in the nonstationary case. Upon

matrix inversion, even small errors can greatly distort standard error estimates, ren-

dering them nearly meaningless. As such, we compute nonlinear flux confidence inter-

vals (using parameter continuation around the optimal solutions) instead of relying

upon local standard errors [10]. These confidence intervals, though more compu-

tationally expensive to obtain than local standard errors, yield a significantly more

reliable and realistic description of the true parameter identity.

2.8 MetranCL Software

These algorithms were incorporated into a software package written in Matlab and

named MetranCL (an abbreviation for "Command Line Metabolic Tracer Analysis").

Users can create network models, simulate labeling data, estimate flux and concentra-



tion data, generate parameter confidence intervals, and visualize results using different

tools within MetranCL. Operational details can be found in Appendix B.

To compare the performance of our approach to prior methods, we reconstructed

the simplified E. coli model described by N6h consisting of 28 free fluxes and 16

metabolite pools [107]. Application of the EMU-based algorithm to this system using

MetranCL leads to a 5000-fold reduction in the computational time required for sim-

ulation of the forward problem (from 83 minutes on an AMD Opteron 2000+ down to

one second on a 2.0 GHz T2500 dual core processor). Whereas computational time for

parameter estimation via cumomers was conjectured to be 24-48 hours, we estimated

fluxes and concentrations in less than one minute, beginning from a randomized set

of initial parameters.

2.9 Discussion

The application of the EMU framework to NMFA results in dramatic improvements

in network decomposition and parameter estimation. These advances make entirely

new realm of problems in nonstationary flux analysis feasible. For instance, previous

analysis of systems with complicated reaction networks, multiple isotopic tracers, or

large molecules were impractical targets for NMFA. By shifting to an EMU framework,

these kinds of problems are now tractable. The EMU framework also makes possible

the calculation of accurate confidence intervals for parameters estimated by NMFA,

a computationally intensive exercise that otherwise would be infeasible.



Chapter 3

NMFA of a Large Simulated

E. coli Network

3.1 Measurement Timing and Estimation Quality

We are interested in the effect of measurement timing (during the isotopically non-

stationary period of a flux analysis experiment) on flux estimation quality. Label-

ing measurements at the early time points of isotopic transience have been shown

to be more sensitive to (and hence better estimators of) certain fluxes [107], while

late measurements' lack of sensitivity to metabolite concentrations means that less

parameters must be included in the optimimzation, resulting in generally narrower

confidence intervals overall. Because of these two conflicting principles and because

of the nonlinearity and complexity of most metabolic networks, it is a nontrivial task

to find a general set of measurement time points that optimizes flux estimation qual-

ity (by minimizing confidence intervals) for any given tracer experiment. We used

a simulated metabolic network to explore the relationship between measurements

and estimation quality for a single experiment and from our results extracted some

potential underlying points.



3.2 Experimental Design

Because of the increased efficiency of EMU-based NMFA, we were able to apply our

method to a larger and more realistic E. coli network. Specifically, we modeled the

central metabolism of a strain capable of producing high levels of 1,3-propanediol

(PDO) using a network that includes 35 free fluxes and 46 metabolite pools [12]. A

complete list of reactions and atom transitions is available in Tables 3.1 and 3.2. The

size of this problem can be reduced by over 90% via EMU decomposition (relative to

isotopomer or cumomer decomposition) and can be further parsed into 47 subprob-

lems with block decoupling (compared to only 14 with decoupling by size and network

connectivity). Block decoupling led to a 27% decrease in computational time relative

to decoupling based only upon size and connectivity. Table 3.3 provides a detailed

comparison of the model reductions achieved by cumomer and EMU decompositions

both with and without block decoupling. Further details can be found in Tables A.1

through A.3 of Appendix A, where we list all EMUs participating in the decomposed

network, and break them into their respective decoupled blocks.

To investigate the relationship between sampling times and parameter identifiabil-

ity, we generated a series of simulated data sets. We drew flux values from a previously

published stationary MFA experiment involving the aforementioned PDO-producing

strain [12] and metabolite concentration values from various literature sources on both

E. coli and S. cerevisiae [27, 63]. Five different sets of measurements were simulated:

1. Stationary experiment: Measurements were conducted at a time sufficiently

large such that all metabolite labeling was assumed constant. Thirty repli-

cate sets of measurements were made such that the total number of labeling

measurements in all experiments was equal.

2. Long nonstationary experiment: One set of measurements was taken every

second for 15 seconds following the introduction of tracer. For the next 75

seconds, measurements were taken every 5 seconds, giving a total of 30 sets of

measurements. By the end of this period, all measured metabolite fragments

were within 99% of isotopic steady state.



Glycolysis
vi G6P (abcdef) ++ F6P (abcdef)

V2 F6P (abcdef) - FBP (abcdef)

V3 FBP (abcdef) ++ DHAP (cba) + GAP (def)
V4 DHAP (abc) ++ GAP (abc)

V5 GAP (abc) ++ 3PG (abc)

V6 3PG (abc) +4 PEP (abc)

V7 PEP (abc) -+ Pyr (abc)

Pentose Phosphate Pathway

V8 G6P (abcdef) -+ 6PG (abcdef)

V9 6PG (abcdef) -+ Ru5P (bcdef) + CO 2 (a)

v1o Ru5P (abcde) X5P (abcde)
Vi Ru5P (abcde) +4 R5P (abcde)

V12 X5P (abcde) ++ GAP (cde) + EC2 (ab)

V13 F6P (abcdef) ++ E4P (cdef) + EC2 (ab)
V14 S7P (abcdefg) +4 R5P (cdefg) + EC2 (ab)

Vi5 F6P (abcdef) GAP (def) + EC3 (abc)

V16 S7P (abcdefg) E4P (defg) + EC 3 (abc)

Entner-Doudoroff Pathway
V17 6PG (abcdef) - KDPG (abcdef)

V18 KDPG (abcdef) - Pyr (abc) + GAP (def)

Citric Acid Cycle
Vig Pyr (abc) -4 AcCoA (bc) + CO 2 (a)

V20 OAA (abcd) + AcCoA (ef) -+ Cit (dcbfea)
V21 Cit (abcdef) ++ ICit (abcdef)

V22 ICit (abcdef) ++ AKG (abcde) + CO2 (f)
V23 AKG (abcde) SucCoA (bcde) + CO 2 (a)

V24 SucCoA (abcd) 1/2 Suc (abcd)+ 1/2 Suc (dcba)

V25 Suc (abcd) 1 1/2 Fum (abed) + 1/ 2 Fum (dcba)

V26 Fum (abcd) 1/2 Mal (abed) + 1/2 Mal (dcba)

V27 Mal (abed) ++ OAA (abcd)

Anaplerotic Reactions
V28 Mal (abed) -> Pyr (abc) + CO 2 (d)

V29 PEP (abc) + CO 2 (d) ++ OAA (abcd)

Acetic Acid Formation
V30 AcCoA (ab) Ac (ab)

PDO Biosynthesis
V31 DHAP (abc) Glyc3P (abc)
V32 Glyc3P (abc) -- Glyc (abc)

V33 Glyc (abc) -* HPA (abc)

V34 HPA (abc) -- PDO (abc)

One Carbon Metabolism
V35 MEETHF (a)
V36 MEETHF (a)

-- METHF (a)
-+ FTHF (a)

Table 3.1: A list of reactions and atom transitions within the E. coli network for gly-
colysis, the pentose phosphate pathway, the Entner-Doudoroff pathway, the citric acid
cycle, amphibolic reactions, acetic acid formation, PDO biosynthesis, and one-carbon
metabolism. Carbon atom transitions are indicated within parentheses. Irreversible
and reversible reactions are indicated by the symbols -+ and ++, respectively.



Transport
V37 Glucpre (abcdef) -* G6P (abcdef)

V38 Glucext (abcdef) -- G6P (abcdef)

V39 Citext (abcdef) -> Cit (abcdef)

V40 Glyc (abc) + Glycext (abc)

V41 PDO (abc) PDOext (abc)
V42 Ac (ab) Acext (ab)

V43 CO 2 (a) - CO2,ext (a)

Amino Acid Biosynthesis

V44 AKG (abcde) - Gu (abcde)
V45 Glu (abcde) - Gn (abcde)
v4 6  Glu (abcde) - Pro (abcde)
V47 Glu (abcde) + CO 2 (f) + Gln (ghijk) + Asp - Arg (abcdef) AKG (ghijk) + Fum (imno) ±

(imno) + AcCoA (pq) Ac (pq)
V48 OAA (abcd) + Glu (efghi) Asp (abcd) + AKG (efghi)
V49 Asp (abcd) - Asn (abcd)
V50 Pyr (abc) + Glu (defgh) - Ala (abc) + AKG (defgh)
v51 3PG (abc) + Glu (defgh) - Ser (abc) + AKG (defgh)
v5 2  Ser (abc) - Gly (ab) + MEETHF (c)
V53 Gly (ab) - 2 (a) MEETHF (b)
v54 Thr (abcd) - Gly (ab) + AcCoA (cd)
V55 Ser (abc) + AcCoA (de) - Cys (abc) + Ac (de)
V56 Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA - LL-DAP (abcdgfe) ± AKG (hijk) + Suc

(mnop) (mnop)
V57 LL-DAP (abcdefg) -+ Lys (abcdef) + C 2 ()
V58 Asp (abcd) - Thr (abcd)
v 59  Asp (abcd) + METHF (e) + Cys (fgh) + Suc- - Met (abcde) Pyr (fgh) + Suc (ijki)

CoA (ijkl)
V60 Pyr (abc) + Pyr (def) + Glu (ghijk) - Val (abcef) + C 2 (d) + AKG (ghijk)
V61 AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu - Leu (abdghe) ± CO 2 (C) + CO2 (f) + AK

(ijklm) (ijkim)
V62 Thr (abcd) + Pyr (efg) + Glu (hijkl) - le (abfcdg) + CO 2 (e) + AKO (hijki)
V63 PEP (abc) + PEP (def) + E4P (ghij) + Glu - Phe (abcefghij) + CO2 (d) ± AKG (kmno)

(klmno)
V64 PEP (abc) + PEP (def) + E4P (ghij) + Glu - Tyr (abcefghij) ± C 2 (d) + AKG (kimno)

(klmno)
V65 Ser (abc) + R5P (defgh) + PEP (ijk) + E4P - Trp (abcedkimnoj) + C 2 (i) + GAP (fgh) +

(imno) + PEP (pqr) + Gln (stuvw) Pyr (pqr) + Giu (stuvw)
V66 R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp His (edcbaf) + AKG (ghijk) ± Fum (imno)

(imno)

Biomass Formation
V67 0.488 Ala + 0.281 Arg + 0.229 Asn ± 0.229 Asp + 0.087 Cys + 0.250 Giu + 0.250 Gin + 0.582 Giy +

0.090 His + 0.276 le + 0.428 Leu + 0.326 Lys + 0.146 Met + 0.176 Phe + 0.210 Pro + 0.205 Ser + 0.241
Thr + 0.054 Trp + 0.131 Tyr + 0.402 Vai + 0.205 G6P + 0.071 F6P + 0.754 R5P + 0.129 GAP + 0.6 19
3PG + 0.051 PEP + 0.083 Pyr + 2.510 AcCoA + 0.087 AKG 0.340 OAA + 0.443 MEETHF

- A a 39.68 Biomass

Table 3.2: A list of reactions and atom transitions within the E. coli network for ex-
tracellular transport, amino acid biosynthesis, and biomass formation. Carbon atom
transitions are indicated within parentheses. Irreversible and reversible reactions are
indicated by the symbols -+ and +, respectively.



Model Cumomer EMU EMU

Decoupling method Size Size/connectivity Blocks

(Size) # of vars (1) 54 (1) 146 (1) 117,24,1x5
(2) 241 (2) 90 (2) 34,22,9,5x2,4,2,1x9
(3) 527 (3) 47 (3) 26,5x2,4,1x7
(4) 771 (4) 12,8,1x2 (4) 8,6,5,1x3
(5) 876 (5) 5,1x4 (5) 5,1x4
(6) 832 (6) 2 (6) 2
(7) 655 (7) none (7) none
(8) 404 (8) 1 (8) 1
(9) 183 (9) 1 (9) 1
(10) 57
(11) 11
(12) 1

Total variables 4612 318 318
Simulation time Not available 22 seconds 16 seconds

Table 3.3: A comparison of modeling approaches to simulate the dynamic labeling
of 33 GC/MS fragments in the large F. coli metabolic network. Subproblems are
specified as in Table 2.1. Multiple occurrences of a particular size of subproblem are
indicated with the multiplication symbol; that is, "5x2" indicates that two subprob-
lems of size 5 exist within the system. EMU network decomposition dramatically
reduces the number of state variables within the overall system. Block decoupling
further simplifies the system by minimizing the number of state variables within any
one subproblem, reducing computational time by an additional 27%.



3. Short nonstationary experiment: Two sets of replicate measurements were

taken every second for 15 seconds following the introduction of tracer to the cul-

ture (for a total of 30 sets of measurements). All measured metabolite fragments

remained isotopically transient during this regime.

4. Long nonstationary experiment with concentrations: The labeling mea-

surements of the long nonstationary experiment were combined with concen-

tration measurements. Concentrations were assumed to be available for all

metabolites whose labeling was measured.

5. Short nonstationary experiment with concentrations: The labeling mea-

surements of the short nonstationary experiment were combined with concen-

tration measurements. Concentrations were assumed to be available for all

metabolites whose labeling was measured.

The timelines of these five experiments and their corresponding labeling measure-

ments are illustrated in Figure 3-1. Tables 3.4 and 3.5 list the available measurements,

which include 33 mass spectroscopy fragments and seven external fluxes. Standard

errors of 5% for external fluxes, 0.3-1 mol% for GC/MS MIDs, and 10% for concen-

trations were assumed and introduced randomly and normally.

3.3 Flux and Concentration Estimates

Fluxes and concentrations were estimated for each experiment. One forward nonsta-

tionary simulation of metabolite labeling required 16 seconds of computational time.

Parameter estimation, beginning with a randomly distributed guess of concentrations

and fluxes, ran in under 15 minutes. Nonlinear confidence intervals were also calcu-

lated for each estimated parameter. The results have been grouped as net fluxes,

exchange fluxes, and metabolite concentrations and displayed in Figures 3-2, 3-3 and

3-4. Results are also listed in Tables 3.6, 3.7 and 3.8. The wide majority of parameter

values were recovered within their respective 95% confidence intervals; those values



long nonstationary experiment

short nonstationary experiment stationary experiment

0 15 30 45 60
Time (s)

75 90

Figure 3-1: Measurement time points for the simulated experiments involving the
large E. coli model. Time points are indicated by gray vertical lines. M+O labeling
profiles for three representative measured metabolite fragments are overlaid to convey
the time scale of the isotopic transience of the system.



Metabolite Flux
Gluc Glucext -+ G6P
Cit Cit - Citext
CO 2  CO 2 - CO2,ext
Glyc Glycext - Glyc
Ac Ac -+ ACext
PDO PDO -> PDOext
Biomass Various metabolites -* Biomass

Table 3.4: External fluxes measured in the simulated study of the large E. coli net-
work. We assumed that all fluxes measured in the previous E. coli study [12] would
be available.



Table 3.5: Metabolite MIDs measured by GC/MS in the simulated study of the large
E. coli network. We assumed that all proteinogenic amino acid MIDs measured in
the previous E. coli study [12] would be available in free intracellular form, as well
as several organic acid fragments we observed experimentally in typical metabolite
extracts. MTBSTFA is the derivatizing agent.

Metabolite
AKG
Ala
Ala
Asp
Asp
Asp
Asp
Cit
Glu
Glu
Gly
Gly
Ile
Ile
Leu
Mal
Met
Met
Met
Phe
Phe
Phe
Phe
Pyr
Ser
Ser
Ser
Ser
Suc
Thr
Thr
Tyr
Val
Val

Mass
346
232
260
302
376
390
418
459
330
432
218
246
200
274
274
419
218
292
320
234
302
308
336
174
288
302
362
390
289
376
404
302
260
288

Carbons
12345

23
123
12
12

234
1234

123456
2345
12345

2
12

23456
23456
23456
1234
2345
2345
12345

23456789
12

23456789
123456789

123
23
12
23
123

1234
234

1234
12

2345
12345

Formula
C14H2sO5NSi2
CioH 26 ONSi2
CnjH 26O2NSi2

C14H320 2NSi2

C16H3sO3NSi 3
C17H40O3NSi3
C1 H40O4NSi3
C20 H39 06Si3

C16H360 2NSi 2
C19H420 4NSi3
C9H240NSi 2

CioH 240 2NSi 2
Cn H26NSi

C13H32ONSi 2
C13H32 0NSi 2
C18H390 5Si3
CioH 24NSiS

C12H3oNOSi 2S
C13H30NO 2Si2S

C14H24NSi
C14H320 2NSi 2

C16H3 0ONSi 2
C17H30O2NSi 2
C6H120 3NSi
C14H34NOSi 2

C14H320 2 NSi2

C16H40 02 NSi3
C17H40 03 NSi3
C12H250 4Si 2

C17H420 2NSi3
C18H420 3NSi3
C14H320 2NSi2

C12H30ONSi 2
C13H30O2NSi 2



that were not recovered still fell reasonably near their estimated intervals. Exchange

fluxes were scaled according to:

[o,1] Vxch (3.1)
xch Vxch + Vref

where Vxch is the unscaled exchange flux, Vref is the reference flux (in this case, glucose

uptake), and v1o0 ] is the scaled exchange flux [156].xch

Net fluxes were estimated most accurately and precisely. Most estimated net flux

values fell within 10% of the actual values and possessed confidence intervals ranging

between ±5 and ±20%. While the stationary measurements generated estimates sig-

nificantly closer to actual values, confidence intervals across all five experiments were

comparable in width.

Exchange flux estimation was considerably more difficult. Out of the 24 total ex-

change fluxes, 10 were unidentifiable (or nearly unidentifiable). Even when confidence

intervals were obtained, they tended to be extremely broad. For the majority of these

intervals, only an upper or a lower bound could be found. Overall, none of the five

experiments could clearly claim significantly more precise confidence intervals. On a

parameter-by-parameter basis, however, precision varied greatly between the different

experiments.

Both upper and lower bounds were successfully found for 14 metabolite concen-

trations. Upper bounds were identified for the remaining concentrations. Confidence

intervals ranged between ±5 and ±25% except for pyruvate (±75%). The long non-

stationary experiment consistenly produced narrower confidence intervals than the

short experiment. (Obviously, no metabolite concentrations could be obtained in the

stationary experiment.)

To simplify comparisons between the different experimental designs, the confi-

dence intervals of different parameters were averaged to create lumped precision scores

for each parameter type (net fluxes, exchange fluxes, and concentrations) within each

experiment (see Figure 3-5). The details behind precision scoring are explained in fur-

ther detail in Chapter 6. In short, larger scores correlate with greater precision, where
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- short nonstationary
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- short nonstat. & pools

95% C.I. Pyr - AcCoA + CO 2

actual -' '- estimated PEP Pyr

- AKG -> SucCoA + CO 2

6PG - Ru5P + CO2
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PEP + CO 2 -+ OAA_-----_-----

Mal -+Pyr + CO 2
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Asp + METHF + Cys + SucCoA -> Met + Pyr + Suc

Gly->CO2 +MEETHF

0 0.05 0.1 0.15

Net Flux (h-1)

Figure 3-2: A comparison of estimated independent net fluxes in the large E. coli
network using stationary measurements, long nonstationary measurements (with and
without concentrations), and short nonstationary measurements (with and without
concentrations). Actual flux values are indicated by black arrowheads. Accurate 95%
confidence intervals are indicated by horizontal error bars while hash marks within
these bars indicate estimated flux values. Values are in normalized units of h- 1 and
are scaled such that the Glucext -- G6P flux is 100 h- 1.



- stationary Fum <-> Mal
long nonstationary
short nonstationary

- long nonstat. & pools -
- short nonstat. & pools

95% C.I. :l-OAA _ __j~DA ++K GAP A +C

actual -' '- estimated Cit ++ AKG + CO2

Suc <-+ Furm

G6P <- F6P Cit <- ICit

S7P -> R5P + EC

F6P -> GAP + EC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PEP + CO <-OAA
22 F6P++->E4P +EC2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Ser <- Gly + MEETHF -

Gly -CO +MEETHF
2

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
Exchange Flux

Figure 3-3: A comparison of estimated exchange fluxes in the large E. coli net-
work using stationary measurements, long nonstationary measurements (with and
without concentrations), and short nonstationary measurements (with and without
concentrations). Actual flux values are indicated by black arrowheads. Accurate 95%
confidence intervals are indicated by horizontal error bars while hash marks within
these bars indicated estimated flux values. Values are dimensionless and are scaled
according to Equation 3.1. Unidentifiable and nearly unidentifiable fluxes were omit-
ted.
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95% C.I. - Tyr ""*
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Figure 3-4: A comparison of estimated metabolite concentrations in the large E. coli
network using long nonstationary measurements and short nonstationary measure-
ments, both with and without concentration measurements. Actual concentration
values are indicated by black arrowheads. Accurate 95% confidence intervals are in-
dicated by horizontal error bars while hash marks within these bars indicate estimated
concentration values. Values are dimensionless and are scaled such that the GluceXt
-+ G6P flux is 100 h- 1. Concentrations with lower bounds of zero were omitted.
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Net Flux
FBP - DHAP...
PEP -+ Pyr

6PG -+ Ru5P...
Pyr -+ AcCoA...
AKG -+ SucCoA...
Mal -+ Pyr...
PEP... -+ OAA
Glyc -+ HPA
Gly -+ C02...
Asp... -+ Met...
Glucext -+ G6P

0
92.1
52.3
41.5
52.6
48.6
2.8
5.3
140
0.0
0.1
100

S
90.8 96.4 99.7
47.4 51.7 55.9
36.7 40.4 44.7
47.8 52.3 56.6
44.0 48.5 52.8

2.3 2.8 3.4
4.6 5.2 5.9

138 149 160
0.00.1 0.1
0.1 0.1 0.1

97.8 103 109

LNS
88.6 94.4 100
45.3 48.8 52.4
37.2 45.0 52.0
45.4 48.9 52.6
41.8 45.1 48.7

1.6 2.1 2.8
3.9 4.5 5.3

139 150 161
0.0 0.0 0.1
0.1 0.1 0.1

98.5 104 109

SNS
88.7 91.8 96.8
46.6 50.3 54.1
36.7 42.9 49.6
46.4 50.2 53.5
42.9 46.4 50.0

1.2 1.8 2.5
3.4 4.2 5.0

133 143 154
0.0 0.0 0.1
0.1 0.1 0.1

95.1 100 106

LNS w/ C
89.4 94.9 100
47.6 50.1 53.0
38.0 46.2 51.8
47.7 50.3 53.2
43.8 46.3 49.1

1.7 2.2 2.8
4.2 4.7 5.4

139 150 160
0.0 0.1 0.1
0.1 0.1 0.1

99.7 105 110

SNS w/ C
87.5 92.7 98.2
48.6 51.5 54.4
35.1 41.5 45.9
48.2 51.3 54.4
44.1 47.5 50.4

1.4 2.1 2.7
3.8 4.5 5.2

132 143 151
0.0 0.0 0.1
0.1 0.1 0.1

95.5 101 106

Table 3.6: A comparison of original (0) and estimated independent net fluxes in the
large E. coli network using stationary measurements (S), long nonstationary measure-
ments (LNS), short nonstationary measurements (SNS), long nonstationary measure-
ments with concentrations (LNS w/ C), and short nonstationary measurements with
concentrations (SNS w/ C). The estimated value is underlined and placed in between
the lower and upper bounds of the 95% confidence interval for each parameter of each
experiment. Values are in units of h- 1 and are scaled such that the Glucext - G6P
flux is 100 h- 1.



Exchange Flux 0 S LNS SNS LNS w/ C SNS w/ C
G6P ++ F6P 18.6 0 0.0 27.5 0 61.0 182 24.0 96.6 438 0 65.1 96.5 0 50.1 125
FBP ++ DHAP... 222 0218 oo 0256 oo 0 357 oo 0 509 oo 0 778 oo
DHAP ++ GAP 297 289 330 383 257 294 345 233 269 313 263 301 346 234 274 310
GAP ++ 3PG 2E4 552 1E7 oo 200 634 oo 534 1E6 oo 244 751 oo 657 8E4 oo
3PG + PEP 1E3 497 8E3 oo 254 2E3 oo 287 2E3 oo 286 2E3 oo 253 629 4E3
Ru5P + X5P 91.8 6.7 112 oo 0 5.8 oo 0 0.0 oo 0 0.0 oo 069.1 oo
Ru5P ++ R5P 3E4 0 3E4 oo 0 3E4 oo 0 3E4 oo 0 4E3 oo 0 8E3 oo
X5P ++ GAP... 31.4 6.839.4 oo 00.0 oo 00.0 oo 0 14.2 oo 0 0.0 oo
F6P ++ E4P... 5.5 1.7 6.3 10.4 0 7.7 13.2 6.5 13.2 21.9 0 7.4 10.1 5.2 9.9 17.4

S7P + R5P... 0.0 0 0.0 oo 00.0 oo 00.0 o 0.0 10.3 00.05.2
F6P ++ GAP... 3E3 0 2E5 oo 244 2E5 oo 141 307 oo 321 1E5 oo 182 1E3 oo
S7P + E4P... 2E4 0 2E4 oo 0 2E4 oo 0 2E4 oo 0 4E4 oo 0 5E4 oo

Cit + ICit 304 104 250 oo 90.7 128 oo 108 210 oo 100 137 306 120 239 oo
ICit ++ AKG... 447 104 409 oo 309 3E5 oo 142 944 oo 329 3E5 oo 153 791 oo
SucCoA ++ Suc 1.7 0 1.8 cc 0 29.7 oo 0 69.7 oo 0 23.2 oo 0 11.0 cc
SuC ++ Fum 310 144 277 1E3 110 193 481 103 180 390 115 200 491 109 185 421
Fum ++ Mal 2E5 376 2E3 oo 274 809 oo 392 1E5 oo 288 791 oo 414 2E4 oo
Mal ++ OAA 223 175 234 495 183 299 888 163 202 254 196 315 953 169 208 383
PEP... ++ OAA 7.3 6.0 7.4 8.5 6.4 7.4 8.5 7.1 8.2 9.5 6.6 7.5 8.6 6.9 8.2 9.4
AcCoA + Ac 1E3 0 1E3 oo O 1E3 oo 0 1E3 oo 0 310 oo 0 2E3 oo
DHAP + Glyc3P 112 0 85.4 oo 0 21.5 oo 0 0.0 cc 0 118 oo 0 48.3
Ser ++ Gly... 0.9 0.8 0.8 0.9 0.8 0.9 0.9 0.8 0.8 0.9 0.8 0.9 0.9 0.8 0.9 0.9
Gly ++ C02... 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Glycext... <+ Glyc... 97.2 0 91.4 cc 0 94.3 oo 0 80.0 oo 0 203 oo 0 27.6 oo

Table 3.7: A comparison of original (0) and estimated independent exchange fluxes
in the large E. coli network using stationary measurements (S), long nonstationary
measurements (LNS), short nonstationary measurements (SNS), long nonstationary
measurements with concentrations (LNS w/ C), and short nonstationary measure-
ments with concentrations (SNS w/ C). The estimated value is underlined and placed
in between the lower and upper bounds of the 95% confidence interval for each pa-
rameter of each experiment. Values are in units of h- 1 and are scaled such that the
Glucext -+ G6P flux is 100 h- 1.



Pool
AKG
Ac
AcCoA
Ala
Arg
Asn
Asp
C02
Cit
Cys
DHAP
E4P
EC2
EC3
F6P
FBP
FTHF
Fum
G6P
GAP
Gln
Glu
Gly
Glyc
Glyc3P
HPA
His
ICit
Ile
KDPG
LL-DAP
Leu
Lys
MEETHF
METHF
Mal
Met
OAA
PDO
PEP
3PG
6PG
Phe
Pro
Pyr
R5P
Ru5P
S7P
Ser
Suc
SucCoA
Thr
Trp
Tyr
Val
X5P

0
9.1E-5
1.1E-5
1.9E-4
2.3E-3
1.9E-3
1.2E-3
1.5E-3
1.1E-5
2.9E-3
1.1E-4
1.1E-4
6.3E-5
1.1 E-4
1.1E-4
3.9E-4
1.8E-4
1.1E-5
5.8E-5
2.2E-3
1.4E-4
5.9E-3
1.5E-2
1.1E-4
1.1E-4
1.1E-5
1.1E-5
1.5E-3
2.9E-3
2.4E-4
1.1E-5
1.1E-5
1.4E-3
9.5E-4
1.1E-5
1.1E-5
3.OE-4
1.1E-4
1.1E-5
1.1E-3
1.7E-3
1.4E-3
5.2E-6
1.3E-4
3.3E-4
1.7E-3
2.6E-4
7.2E-5
1.8E-4
3.4E-4
5.9E-5
1.1E-5
4.5E-4
1.1E-4
2.8E-4
8.3E-4
8.9E-5

LNS
0 6.7E-6 5.5E-3
0 9.7E-6 2.6E-3
0 1.2E-3 2.6E-3

2.OE-3 2.2E-3 2.3E-3
0 1.9E-3 oo
0 1.2E-3 oo

1.3E-3 1.4E-3 1.5E-3
0 7.8E-3 2.3E-2
0 3.4E-4 2.5E-3
0 2.7E-4 2.5E-2

0 1.2E-5
0 1.9E-6 1.1E-3
0 5.4E-4 3.9E-3
0 2.5E-5 4.6E-3
0 1.1E-5 4.4E-3
0 5.8E-6 5.7E-3

0 1.1E-5 oo
0 2.OE-6 1.1E-3
0 4.9E-3 7.1E-3
0 1.2E-5 9.OE-3

1.3E-3 3.8E-3 8.OE-3
1.3E-2 1.4E-2 1.5E-2
8.1E-5 1.1E-4 1.4E-4

0 1.1E-4 oo
o 6.9E-6 oo
0 1.1E-5 oo
0 1.5E-3 oo

0 4.3E-3 5.4E-3
2.OE-4 2.2E-4 2.4E-4

0 1.7E-6 4.4E-4
0 4.OE-5 oo

1.3E-3 1.4E-3 1.5E-3
0 9.5E-4 oo

1.5E-5 9.OE-5 1.4E-4
0 8.7E-7 8.5E-6
0 1.1E-6 1.2E-3

9.7E-5 1.1E-4 1.1E-4
0 7.3E-4 1.4E-3

0 1.1E-3 oo
0 1.1E-5 8.5E-3
0 1.6E-5 9.7E-3
0 8.7E-4 2.9E-3

1.2E-4 1.3E-4 1.3E-4
0 3.3E-4 oo

9.7E-4 1.9E-3 2.9E-3
0 1.2E-6 2.8E-3
0 8.8E-6 2.4E-3
0 1.9E-6 9.1E-4

2.6E-4 3.OE-4 3.4E-4
0 1.2E-6 8.OE-4
0 1.2E-6 8.OE-4

4.1E-4 4.4E-4 4.8E-4
0 1.1E-4 oo

2.4E-4 2.7E-4 2.9E-4
7.2E-4 7.8E-4 8.4E-4

0 3.3E-5 3.1E-3

SNS
0 8.4E-6 5.OE-3
0 1.3E-5 1.5E-3
0 1.8E-4 1.5E-3

2.OE-3 2.1E-3 2.3E-3
0 1.9E-3 oo
0 1.2E-3 oo

1.3E-3 1.4E-3 1.5E-3
0 2.1E-5 1.1E-2
0 3.OE-3 5.4E-3

0 1.1E-6 oo
o 8.3E-6 8.2E-3
0 2.1E-4 9.5E-4
0 4.8E-6 2.9E-3
0 3.3E-6 3.OE-3
0 4.8E-6 3.9E-3
0 5.6E-6 3.8E-3

0 1.1E-5 oo
0 2.1E-6 6.5E-4
0 2.8E-3 5.3E-3
0 2.5E-5 6.5E-3
4.4E-4 3.6E-3 oo

1.3E-2 1.4E-2 1.5E-2
9.6E-5 1.2E-4 1.4E-4

0 1.1E-4 oo
0 8.4E-6 oo
0 1.1E-5 oo
0 1.5E-3 oo

2.6E-7 2.6E-3 6.OE-3
2.1E-4 2.2E-4 2.4E-4

0 2.OE-5 2.OE-4
0 1.3E-5 oo

1.3E-3 1.3E-3 1.5E-3
0 9.5E-4 oo

3.8E-5 9.5E-5 1.5E-4
0 2.6E-6 7.9E-6
0 2.2E-6 7.3E-4

9.5E-5 1.OE-4 1.1E-4
0 3.OE-6 7.3E-4

0 1.1E-3 oo
0 1.9E-3 6.4E-3
0 2.1E-5 6.5E-3
0 1.8E-4 2.OE-3

1.2E-4 1.2E-4 1.3E-4
0 3.3E-4 oo

2.OE-3 2.6E-3 3.3E-3
0 7.7E-5 1.5E-3
0 4.OE-5 1.7E-3
0 2.9E-6 9.6E-4

2.7E-4 3.1E-4 3.5E-4
0 2.5E-4 7.1E-4
0 2.5E-6 6.8E-4

4.OE-4 4.3E-4 4.6E-4
0 1.1E-4 oo

2.4E-4 2.6E-4 2.8E-4
7.2E-4 7.8E-4 8.4E-4

0 1.9E-4 2.7E-3

Table 3.8: A comparison of original (0) and estimated metabolite concentrations
using the same measurement sets listed in Tables 3.6 and 3.7, excepting the stationary
set. The estimated value is underlined and placed in between the lower and upper
bounds of the 95% confidence interval for each parameter of each experiment. Values
are dimensionless and are scaled such that the Glucext -- G6P flux is 100 h- 1.

LNS w/ C
9.3E-5 1.1E-4 1.3E-4

0 1.2E-6 2.OE-3
0 8.8E-4 2.1E-3

2.2E-3 2.3E-3 oo 2.4E-3
0 1.9E-3 oo
0 1.2E-3 oo

1.4E-3 1.4E-3 1.5E-3
0 3.4E-3 1.1E-2

2.5E-3 3.OE-3 3.6E-3
0 1.8E-4 8.7E-3
0 4.1E-5 1.2E-2
0 1.7E-6 9.8E-4
0 8.7E-4 3.7E-3
0 3.5E-4 5.OE-3
0 5.7E-5 4.4E-3
0 1.4E-5 5.3E-3

0 1.1E-5 oo
0 3.9E-6 1.OE-3
0 3.9E-3 6.8E-3
0 5.7E-5 8.2E-3

1.5E-3 4.2E-3 8.5E-3
1.4E-2 1.5E-2 1.5E-2
9.2E-5 1.1E-4 1.2E-4

0 1.1E-4 oo
0 1.9E-6 oo
0 1.1E-5 oo
0 1.5E-3 oo

8.7E-4 1.8E-3 2.8E-3
2.2E-4 2.3E-4 2.4E-4

0 3.8E-5 4.OE-4
0 1.1E-5 oo

1.3E-3 1.4E-3 1.5E-3
0 9.5E-4 oo

0 6.8E-5 1.3E-4
0 2.5E-6 8.8E-6

2.OE-4 2.6E-4 3.2E-4
1.1E-4 1.1E-4 1.1E-4

0 5.5E-4 1.2E-3
0 1.1E-3 oo

0 6.1E-4 7.4E-3
0 1.2E-4 7.6E-3
0 1.2E-3 2.4E-3

1.2E-4 1.3E-4 1.4E-4
0 3.3E-4 oo

1.4E-3 1.7E-3 2.OE-3
0 1.1E-6 2.6E-3
0 1.OE-6 2.1E-3
0 1.7E-6 8.9E-4

2.9E-4 3.2E-4 3.5E-4
5.5E-5 6.6E-5 7.8E-5

0 1.1E-6 7.5E-4
4.3E-4 4.6E-4 4.8E-4

0 1.1E-4 oo
2.6E-4 2.7E-4 2.9E-4
7.7E-4 8.1E-4 8.5E-4

0 1.9E-5 3.4E-3

SNS w/ C
9.3E-5 1.1E-4 1.3E-4

0 4.4E-4 1.5E-3
0 1.1E-4

2.1E-3 2.2E-3 2.3E-3
0 1.9E-3 oo
0 1.2E-3 oo

1.4E-3 1.5E-3 1.5E-3
0 4.6E-6 1.1E-2

2.6E-3 3.2E-3 3.7E-3
0 5.1E-6 oo

0 6.2E-5 8.1E-3
0 2.2E-4 8.1E-4
0 1.4E-5 3.4E-3
0 8.7E-5 3.3E-3
0 3.3E-5 2.8E-3
0 2.2E-5 4.OE-3

0 1.1E-5 oo
0 3.6E-6 3.9E-4
0 1.2E-3 4.7E-3
0 3.3E-5 6.6E-3
2.2E-4 3.8E-3 oo

1.4E-2 1.5E-2 1.5E-2
10.OE-5 1.1E-4 1.3E-4

0 1.1E-4 oo
0 3.1E-6 oo
0 1.1E-5 oo
0 1.5E-3 oo

2.4E-3 3.3E-3 oo
2.2E-4 2.3E-4 2.4E-4

0 3.7E-5 2.2E-4
0 1.9E-5 oo

1.3E-3 1.4E-3 1.5E-3
0 9.5E-4 oo

3.2E-5 8.5E-5 1.5E-4
0 3.6E-6 9.8E-6

2.OE-4 2.6E-4 3.2E-4
1.0E-4 1.1E-4 1.1E-4

0 3.7E-6 4.3E-4
0 1.1E-3 oo
0 5.1E-3 oo

0 4.2E-5 6.7E-3
0 2.5E-6 2.OE-3

1.2E-4 1.3E-4 1.3E-4
0 3.3E-4 oo

1.5E-3 1.8E-3 2.1E-3
0 2.5E-4 1.8E-3
0 1.7E-5 1.7E-3
0 5.8E-5 1.2E-3

3.1E-4 3.3E-4 3.6E-4
5.5E-5 6.6E-5 7.8E-5

0 3.8E-6 3.8E-4
4.2E-4 4.4E-4 4.6E-4

0 1.1E-4 oo
2.5E-4 2.7E-4 2.8E-4
7.7E-4 8.1E-4 8.5E-4

0 5.4E-5 1.9E-3



a score of one indicates absolute precision (or confidence intervals of zero) over all

parameters, and a score of zero indicates absolute unidentifiability for all parameters

under consideration.

To simplify comparisons even further, we studied confidence intervals for the

three major pathways of central carbon metabolism (glycolysis, the pentose phos-

phate pathway, and the TCA cycle) resulting from the five different experimental

designs. Experiments were qualitatively ranked according to their effectiveness in

flux estimation for each pathway. These rankings are shown in Table 3.9.

3.4 Discussion

The most striking finding arising from our experiment-by-experiment comparisons is

the significant advantage created by the addition of concentrations to the measure-

ment set. We see that concentration measurements increase precision across each

parameter class (Figure 3-5) as well as each central pathway (Table 3.9). Concen-

tration data has a dramatic effect on estimation because they reduce the increased

indetermination introduced by the shift from MFA to NMFA. The parameter space of

NMFA consists of fluxes and concentrations and is therefore usually larger than the

typical flux-only MFA parameter space by orders of magnitude. By providing con-

centration measurements, we can effectively reduce this space while still maintaining

the advantages of nonstationary analysis (e.g., increased sensitivity of labeling mea-

surements at early time points).

Even when concentrations are not available, we still find that metabolic param-

eters can be successfully estimated in the large E. coli model. We were able to

estimate all net fluxes, most exchange fluxes, and some metabolite concentrations

with only external flux measurements and nonstationary labeling measurements. In

these experiments, we see that measurements clustered earlier in isotopic transience

tend to deliver more precision than those in late transience. Since this advantage

disappears upon including concentration data, it follows that these early time points

help resolve the competing effects of concentration and flux upon labeling. However,
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Figure 3-5: Mean precision scores for net fluxes, exchange fluxes, and metabolite
concentrations for the five different E. coli experimental designs. A score of one indi-
cates absolute precision over all considered parameters while a score of zero correlates
to absolute unidentifiability. In general, parameters exhibit a slight improvement in
precision when relying on nonstationary labeling measurements as compared to only
stationary measurements and a more substantial improvement when concentrations
are also included as measurements. The equations behind precision scoring can be
found in Chapter 6. For this calculation, parameters a and # were set to 1 and 0.1,
respectively.



Glycolysis PP Pathway TCA Cycle
MFA
Long NMFA
Short NMFA
Long NMFA w/ pools
Short NMFA w/ pools

Table 3.9: A simple, qualitative comparison of flux results using stationary measure-
ments, long nonstationary measurements, short nonstationary measurements, long
nonstationary measurements with concentrations, and short nonstationary measure-
ments with concentrations. A ranking of five stars indicates the best performance,
and one star the worst.



the simulated data do indicate that there are some limitations when relying upon

measurements at extremely short time scales. Confidence intervals produced from

the short nonstationary experiments were the least likely to recapture the original

parameter values. Across the five experiments, only six of the original flux values fell

outside of their respective 95% confidence intervals and all of these intervals were gen-

erated from the two short nonstationary experiments. Intervals from the stationary

and long nonstationary experiments successfully recovered all actual flux values.

Overall, our analysis of the E. coli network demonstrates that the potential im-

provements of nonstationary flux analysis (without concentration measurements) over

stationary flux analyis were modest at best; in general, the nonlinear confidence in-

tervals of almost all parameters estimated in both the short and long nonstationary

experiments (without concentration measurements) were comparable to those of the

stationary experiment. This indicates that the gains due to additional sensitivity in

the nonstationary measurements are most likely offset by the increased number of to-

tal parameters that need to be estimated by NMFA. However, previous research has

indicated that more flux information may be available when drawing measurements

from the nonstationary regime of a labeling experiment (instead of during the later,

isotopically stationary stage), leading to more precise confidence intervals [107]. The

reasons behind this observed discrepancy are two-fold. First, our rigorous and accu-

rate determination of nonlinear confidence intervals revealed that the linearized stan-

dard errors employed in previous studies are unreliable and often much smaller than

the true parameter uncertainty. Second, the total number of measurements were not

standardized across all conditions in these previously published studies. Confidence

intervals for the stationary case relied upon only one set of measurements whereas

the nonstationary cases with multiple time points comprised multiple sets. To en-

sure a fair comparison, we used replicate measurements so that the total quantity of

measurements was equal in every simulated experiment.

When comparing stationary and nonstationary flux estimates across pathways,

an interesting trend appears. MFA significantly outperforms NMFA (without con-

centration measurements) in estimating pentose phosphate pathway fluxes and also



performs better than or equal to NMFA in glycolysis estimation. However, within

the TCA cycle we see the opposite: NMFA-estimated fluxes possess greater precision

than their MFA counterparts. When we study the network locations of our measured

intracellular metabolites in the context of these results, we find that stationary flux

analysis gives superior estimates to nonstationary analysis in areas of the network

dense with measurements and inferior estimates where measurements are sparse. In

the TCA cycle, we measured citrate, succinate, a-ketoglutarate, and malate, while

in glycolysis and the pentose phosphate combined we measured only pyruvate (which

actually falls on the very border of glycolysis). Presumably, the strength of NMFA

(greater measurement sensitivities) is made most manifest in measurement-rich net-

work regions, leading to a greater local flux quality, while the weakness of NMFA (a

large parameter space) dominates estimation precision in measurement-poor regions.

Taken together, these observations show that nonstationary flux analysis can be a

beneficial tool for flux estimation. In many cases, NMFA will outperform stationary

analyses. However, NMFA is not necessarily superior to MFA. The results of these

simulated E. coli experiments demonstrate that there is no single, overarching exper-

imental design that will guarantee an optimal estimation. In fact, the significantly

varying individual flux confidence intervals from experiment to experiment (as seen

in Figures 3-2 and 3-3) teach us that simulation can and should be a valuable tool

in choosing parameters such as measurement time points. This holds true especially

when targeting specific pathways or fluxes of a metabolic network.
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Chapter 4

NMFA of Brown Adipocytes

4.1 Introduction

The many complexities of mammalian cells (various organelles, posttranslational pro-

cessing, required rich medium components, etc.) make them considerably more dif-

ficult to model, measure, and analyze. However, these complexities are oftentimes

the very things that make these organisms interesting and powerful. In particular,

mammalian cells serve as mirrors to our own human cellular metabolism and function.

Brown adipocytes (brown fat cells) are mammalian cells that grow together to

form brown fat, a thermogenic tissue that is most obvious in rodents and infant hu-

mans [30]. Recently, it has also been shown that even adults have substantial amounts

of brown adipose tissue [129]. Adipose metabolism in general is of interest because

obesity is a major risk factor for many common diseases, including type 2 diabetes,

cardiovascular disease, stroke, hypertension, and many cancers [25]. Brown adipose

metabolism in specific is of interest because brown adipocytes have been shown to

confer anti-obesity properties, including slower weight gain, higher insulin sensitivity,

lower levels of serum-free fatty acids, and protection from diabetes [31, 121]. Brown

fat cells produce these effects because of their unique cellular and metabolic capa-

bilities. Besides synthesizing and storing triglycerides, they host very high numbers

of mitochondria which are used to generate large amounts of heat via mitochondrial

electon transport and fuel oxidation [81].



Developing tools for measuring brown cell fluxes will increase our understanding

of the metabolism behind obesity and potentially give us insight into strategies for

fighting obesity-related disorders [89, 162]. Here, we have used isotopically nonsta-

tionary metabolic flux analysis to study brown adipocytes and gain a basic knowledge

of their intracellular flux distribution.

4.2 Methods and Materials

Brown adipocytes were cultured as described by Yoo et al. [161]. After cells were

mature and at a metabolic steady state, the growth medium was replaced with assay

medium containing [U- 13C]glucose and unlabeled glutamine. At 2, 4, and 6 hours,

cells were quenched and intracellular metabolites were extracted, derivatized, and

analyzed with GC/MS. The metabolite fragments that were subsequently measured

are listed in Table 4.1. Standard errors of at most 1.5 mol% were assumed for all

GC/MS measurements. The adipocyte metabolic network is shown in Figure 4-1. A

detailed list of atom transitions for each reaction can be found in Table 4.2.

4.3 Flux Estimation

Over the three time points we collected 249 mass isotopomer abundances while the

model attempted to fit 12 free fluxes and 14 metabolite concentrations. Hence, the

system possessed 249 -12-14 = 223 redundant measurements and the expected lower

and upper bounds of the 95% confidence region were 183 and 266, assuming that the

minimized sum of squared residuals in Equation 2.15 follows a X2 distribution. A

nonstationary flux estimation was conducted to fit the model to these measurements.

The resulting minimized sum of squared residuals was 251, indicating that the fit was

statistically acceptable. The estimated labeling profiles are shown together with the

measurements in Figure 4-2. Net and exchange flux estimates are presented in Figure

4-3. These parameters' estimated numerical values along with their accurate 95%

confidence intervals are listed in Table 4.3. Exchange fluxes are calculated according



Mass Carbons Formula
Ala 232 23 CioH 26ONSi 2
Ala 260 123 CuH 26 O2NSi2
Asp 316 234 C15H34 0 2 NSi2

Asp 418 1234 C18H40O4 NSi3
Cit 459 123456 C2 0H39 0 6Si 3

Glu 330 2345 C16H36O2 NSi 2

Glu 432 12345 C19 H42 0 4NSi3
Lac 233 23 C10H2502Si 2

Lac 261 123 CnjH 25 O3 Si 2

Mal 419 1234 C18H3 9 0 5Si3
Palm 270 1-16 C17H3 4 0 2

Pyr 174 123 C6 H12 O3 NSi

Table 4.1: Intracellular metabolite fragment MIDs measured in the brown adipocyte
study. Metabolite extracts were treated with MBSTFA to form TBDMS-derivatized
molecules that were then analyzed by GC/MS.

Metabolite



GlUCext Lacext

Pyr -Lac

Ala
AcCoAmit

OAA 0Cit

Asp
Mal ICitI

AcCoAcyI
Suc 4... AKG

Palm Glu------- 4--- ,
Palmext Glnext

Figure 4-1: A simplified model of brown adipocyte metabolism. (Atom transitions
can be found in Table 4.2.) Pentose phosphate activity was assumed negligible, and
glycolysis reactions were lumped into a single Glucext -* Pyr reaction. Species present
in multiple compartments were assumed to be in rapid exchange across the membrane
and all reactions were assumed to occur only in one compartment, allowing us to
ignore compartmentalization in the network. Acetyl-CoA was the lone exception;
since it does not cross the mitochondrial membrane but is present both in the cytosol
and mitochondria, it must be represented in the model by two distinct metabolite
states.



Glycolysis and Lactate Reactions
Vi GlUCext (abcdef) -+ Pyr (cba) + Pyr (def)

v2 Pyr (abc) - Lac (abc)

v3 Lac (abc) - Lacext (abc)
v4 Pyr (abc) + AcCoAmit (bc) + CO 2 (a)

Anaplerotic Reactions
v5 Pyr (abc) + CO 2 (d) -+ OAA (abcd)
v6 Mal (abed) -+ Pyr (abc) + CO 2 (d)

Tricarboxylic Acid Cycle
V7 AcCoAmit (ab) + OAA (cdef) - Cit (fedbac)

v8  Cit (abcdef) + ICit (abcdef)
v9  ICit (abcdef) ++ AKG (abcde) + CO 2 (f)
vio AKG (abcde) 1/2 Suc (bede) + 1/2 Suc (edcb) +

CO2 (a)
vn Suc (abed) -+ 1/2 Fum (abcd) + 1/2 Fum (dcba)

v12 Fum (abed) 1/2 Mal (abcd) + 1/2 Mal (deba)

v13 Mal (abed) ++ OAA (abed)

Palmitate Synthesis
V14 Cit (abedef) -+ AcCoAcyt (ed) + OAA (feba)

v15 8 AcCoAcyt (ab) -- Palm (abababababababab)
v16 Palm (abababababababab) -- Palmext (abababababababab)

Amino Acid Reactions
v 17 Pyr (abc)
V18 OAA (abed)
vi9 AKG (abede)

Ala (abc)
Asp (abed)
Glu (abede)

Table 4.2: A complete list of reactions and atom transitions for the brown adipocyte
model. Simplified versions of glycolysis, anaplerosis, the citric acid cycle, fatty acid
metabolism, and amino acid metabolism were considered. Carbon atom transitions
are indicated within parentheses. Irreversible and reversible reactions are indicated
by the symbols -- and ++, respectively.



to Equation 3.1, where Vref is the glucose uptake flux.

4.4 Discussion

Both the adipocyte experiment and the simulated E. coli experiments of the previous

chapter confirm that NMFA can yield important information regarding metabolite

concentrations even when those concentrations are not directly measured. Admit-

tedly, most metabolite concentrations in the estimation are unidentifiable. The rea-

son is twofold. First, the time intervals between measurements are too large for these

pools to influence observable changes in labeling; that is, these pools appear to be at

a pseudo-steady state relative to the sampling time scale. Second, because labeling is

measured in only a subset of metabolites, there is considerable ambiguity with regard

to the concentrations of unmeasured metabolites. At the very least, upper bounds

can be determined for all concentrations. We were able estimate both upper and lower

bounds for metabolites that (1) were at high enough concentrations to influence the

labeling dynamics on a time scale similar to the sampling time scale and (2) were the

targets of labeling measurements or were "sandwiched" between other metabolites

where labeling measurements available. In the E. coli experiment, the concentrations

of almost all metabolites whose labeling was measured could be estimated with a

95% confidence interval on the order of +10% of the estimated value. The adipocyte

experiment generated three concentration estimates with nonzero lower bounds. How-

ever, these confidence intervals were much less informative (between +25 and ±55%

of the estimated value), most likely because labeling was measured at only three

widely spaced time points as opposed to 15 closely spaced time points in the short

nonstationary E. coli case.

Several factors frame the brown adipocyte system as an ideal subject for nonsta-

tionary analysis. Studying the estimated parameters in the system, we find that the

measured metabolites do not reach a stationary labeling state (99% of the steady-

state value) until between 35 and 55 hours, except for palmitate, which requires 250

hours due to its slow turnover in these cells. In such a case, the utility of nonsta-
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-+ Pyr flux is 100 h-1. Exchange flux values are dimensionless and have been scaled
according to Equation 3.1.



Table 4.3: Estimated net fluxes (-+), exchange fluxes (++), and concentrations (pool)
and their respective 95% confidence intervals for brown adipocyte metabolism. Con-
centrations are dimensionless and net fluxes have units of h- 1; both have been scaled
such that the 1/2 Glucext -+ Pyr flux is 100 h- 1. Exchange fluxes are dimensionless
and scaled according to Equation 3.1.

Parameter
Pyr - AcCoAmit
Suc -+ Mal
Mal - OAA

AcCoAcyt -* 1/8 Palm

Pyr ++ Lac

Pyr ++ Ala

Cit +> ICit
Glu ++ AKG
ICit ++ AKG
Fum ++ Mal
Mal ++ OAA
Mal ++ Asp
AcCoAcyt pool
AcCoAmit pool
AKG pool
Ala pool
Asp pool
Cit pool
Glu pool
ICit pool
Lac pool
Mal pool
OAA pool
Palm pool
Pyr pool
Suc pool

Value
17.0
54.0
-73.1
8.6e-3
0.25
0.00
1.00
1.00
0.23
0.53
1.00
0.07

1.0e-5
126.4
3.6e-4
2.2e-3
4.0e-5
2.2e-4
3.6e-4
2.1e-4
178.4
8.le-4
6.7e-4
6.3e-2
2.8e-3
208.1

Interval
[14.3, 22.1]
[45.6, 60.4]

[-92.4, -55.8]
[0, 11.9]
[0, 0.49]
[0, 0.46]
[0.18, 1]
[0.77, 1]
[0.18, 1]

[0.45, 0.60]
[0.80, 1]

[0, 1]
[0, 6.1]

[82.1, 189.9]
[0, 23.7]
[0, 75.0]
[0, 40.0]
[0, 13.0]
[0, 23.7]
[0, 13.0]

[112.9, 225.6]
[0, 40.0]
[0, 40.0]
[0, 90.3]
[0, 64.3]

[111.6, 323.8]



tionary flux analysis becomes quite apparent. Flux estimates can be obtained in only

a fraction of the experimental time, leading to large cost and time savings. More-

ove, even if money and time were not limiting factors, it is highly unlikely that the

adipocytes could be kept metabolically or phenotypically stable for such lengthy du-

rations, making NMFA not just a convenient tool in this situation, but an essential

one.



Chapter 5

Rapid Sampling

5.1 Introduction

Metabolic flux analysis requires isotopic labeling measurements (usually by mass spec-

trometry) of cellular products. The metabolic products that are targeted for measure-

ment greatly affect the overall design of the flux analysis experiment [32]. The earliest

experiments relied upon measurements of proteinogenic amino acids [34, 38]. Because

proteinogenic amino acids are in high abundance and because they are relatively sta-

ble, no special precautions must be taken when sampling the culture. However, the

disadvantage to this method is that considerable amounts of time must pass before

the protein pool receives a measureable amount of isotopic label [158]. This requires

significant amounts of labeled substrate (which can be expensive) and also requires

that the cells be held at metabolic steady state for long durations (which can be

difficult).

A more recent experimental advance is to sample not from protein but from intra-

cellular metabolite pools [87, 95, 143, 148]. This requires much less tracer and allows

for shorter experimental durations. It also allows for a more topologically compre-

hensive set of measurements covering the entire metabolism. Instead of only amino

acids, which exist on the periphery of central carbon metabolism, metabolites can be

sampled from within the TCA cycle, the pentose phosphate pathway, and glycolysis.

This improved coverage can result in more precise flux estimates.



However, these advantages come at a price. Intracellular pools are very small [46]

and very labile [55, 124]. It is likely that traditional sampling and sample processing

will subject cells to different conditions (e.g., reduced oxygen levels, decreased sub-

strate concentrations, temperature shifts, etc.). These conditions can induce changes

in cell metabolism which in turn will confound labeling patterns and prevent the

determination of true flux values [40]. If isotopic labeling measurements are to be

representative of the metabolic state of the culture, great care must be taken at each

step in the sampling process:

1. Sampling: The sampling step must be conducted as quickly as possible, and

must perturb the cell's environment as little as possible. The window in which

samples must be drawn depends on the metabolic activity of the organism under

study. For instance, E. coli pools can turn over in less than one second, and as

such, sampling must be conducted at sub-second time scales in order to preserve

measurement accuracy [106].

2. Quenching: A quenching step must be applied immediately after sampling

that effectively and quickly halts all cellular metabolism, usually by inactivating

enzymes. Various methods have been employed in the past to this end. Extreme

heat can be applied to denature enzymes [127, 159]. Low temperatures can also

be used to halt kinetics [151, 152]. Quenching must be conducted carefully so

as not to permeabilize the cell membrane and allow intracellular metabolites to

leak out of cells (reducing signal strength of the eventual measurement) or, even

worse, to allow differently labeled extracellular metabolites to leak into cells,

altering the to-be-measured labeling patterns [64].

3. Extraction: After quenching, the supernatant and with it all extracellular

metabolites must be discarded, cell walls and membranes must be thoroughly

broken down, and intracellular metabolites must be extracted from the biomass.

Different solvents and schemes can be employed to target different categories of

metabolites [56, 64, 91, 152].



For organisms with active metabolisms, these steps must be conducted quickly

and efficiently. (Short sampling durations are also necessary when working with more

delicate organisms, such as gram-positive bacteria and mammalian cells, to prevent

metabolite leakage.) In many cases, manual sampling is not an option and mechanical

systems that integrate sampling and quenching must be utilized. (Subsequently, these

systems will be simply referred to as "rapid sampling" systems.) Many rapid sampling

systems have been devoloped over the past two decades for intracellular metabolite

measurement. Some rely on vacuum to power the sampling [73, 84, 142]. Some utilize

impressive mechanical systems [29, 125, 127]. Most are able to able to sample with a

time step between one and two seconds, and some of the systems are even able to go

down to a step as low as 250 ms [125].

5.2 Rapid Sampling Apparatus

We designed and built a rapid sampler to study yeast metabolism. Our aim was to

create a sampler that could operate with a time step between one and two seconds.

Just as importantly, the sampler needed to be a "low threshold" device; i.e., it had to

be relatively inexpensive and straightforward to construct and operate. Also impor-

tant was that the sampler not require a customized bioreactor; in fact, it should be

adaptable to a wide range of reactors and even flasks. Finally, the sampler cannot just

sample. It also must quench rapidly, while not hindering the upcoming extraction

process.

A schematic of the rapid sampling apparatus is shown in Figure 5-1. Each sample

requires an individual sampling tube, shown in detail in Figure 5-2. The tube holds

a 60% (v/v) methanol/water solution held at -20oC in a cold bath of ethanol and

dry ice. Each tube is capped and airtight but has three exiting lines. The first leads

to a manifold which in turn leads to a vacuum pump. Through this, the vacuum

is established that will eventually power the sampling. The second line leads to a

second manifold which in turn leads to a nitrogen line. At the tube, this nitrogen line

feeds into a needle which is submerged in the quenching fluid. This line sparges gas



during the quenching process so that the culture is rapidly mixed and does not freeze

upon sampling. The third line collects sample from the culture and is opened and

closed by a computer-controlled solenoid valve. The valve's default setting is closed,

and only opens during sampling. The free end of the sampling line is placed into the

culture before sampling begins.

The timing of each valve was controlled by computer. A custom program was

written in LabVIEW that allowed the timing and duration of each valve opening to

be specified by the user. The graphical user interface and the block diagram for the

LabVIEW program are shown in Figures 5-3 and 5-4. The minimum time step for the

sampler was two seconds. The limiting factor was the time necessary for the vacuum

to be reestablished after gaining pressure during a sampling.

5.3 Validation of Rapid Sampler

We tested the rapid sampling apparatus in a bioreactor environment to verify its

operation. A 75/25% mixture of [1- 13C] and [U- 13C6]glucose was pulsed into a reactor

(previously containing only naturally labeled glucose) at time t = 0, immediately after

which sampling commenced. Rapid sampling occurred in an approximately geometric

sequence, at 2, 4, 8, 30, 60, 120, and 240 seconds. Manual samples were taken at

later time points (11, 16, 31, 60, 90, 120, 180, and 240 minutes) for comparison.

Extracellular glucose labeling was measured by subjecting supernatant from each

sample to aldonitrile pentapropionate derivatization [12]. 10 iL of combined cell cul-

ture and quenching solution was added to 300 1 L of cold acetone, vortexed for 10

seconds, and centrifuged for 5 minutes at 18,000 g to remove proteins. The super-

natant was removed and evaporated to dryness under air flow at 600C, after which 50

piL of 2% (w/v) hydroxylamine hydrochloride in pyridine was added (Sigma-Aldrich).

The mixture was heated for 60 minutes at 900C, combined with 100 iL propionic

anhydride (Sigma-Aldrich), heated for 30 minutes at 600C, and evaporated to dry-

ness again. Finally, the extract was combined with 200 piL of ethyl acetate (Sigma-

Aldrich), vortexed, and centrifuged for 10 minutes at 18,000 g to remove any solids.



sampling line

vacuum line

-. sparging line

-.....valve

sampling tube

cold bath

Figure 5-1: Layout of the rapid sampling apparatus. The tubes sit in a cold bath of
ethanol and dry ice held at -20C. Each sampling tube has a vacuum line, sparging
line, and a valve-controlled sampling line. Sparging lines lead to a common manifold
that is connected to an air or nitrogen source. Vacuum lines lead to a different
manifold that is connected first to a trap and second to a vacuum source. Sampling
lines are fed into the cell culture. The valves are wired to a connector black controlled
by a LabVIEW program on a computer.



sparging line
sampling line

vacuum line

sparging needle
quenching fluid

sampling tube

Figure 5-2: Schematic of a single sampling tube. Each tube is capped with a rubber
stopper so that it is airtight, except for a vacuum line, a sparging line, and a valve-
controlled sampling line that all pass through the stopper. Within the tube, the

sparging line connects to a needle submerged in the quenching solution, while the
vacuum and sampling lines rest above the solution (and are positioned high enough
to remain so even after the addition of sample). The quenching solution consists of

20 mL of 60% (v/v) methanol/water.



Figure 5-3: LabVIEW graphical user interface for the rapid sampling apparatus. The
"Start" button is pushed at time t = 0, activating the timer and the sampling sequence.
The current time t (in seconds) is shown in the "Elapsed Time" field. Sampling times
(also in seconds) are listed in the "Start Times" column; each field corresponds to a
different valve. The duration of time that each valve remains open to collect sample is
listed in the "Durations" column; we found 0.75 seconds to be an appropriate value,
but this will obviously depend on the length of the sampling tubes and the power of
the vacuum. Finally, when a valve is currently open, its corresponding indicator in
the "Valves" column will flash.



Figure 5-4: A schematic of the LabVIEW block diagram that controls the rapid
sampler's valve array. The upper group of functions initates and controls the timing,
while the lower group of functions activates the valves one-by-one when the current
time matches the user-specified sampling times.
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GC/MS analysis was performed useing an Agilent 6890 GC equipped with a 30 m

DB-35MS capillary column connected to an Agilent 5975B MS operating under elec-

tron (EI) ionization at 70 eV. One 1 L of sample was injected in splitless mode at

2500C, using helium as the carrier gas at a flow rate of 0.88 mL min-1 . The GC oven

temperature was held at 800C for 1 minute, increased to 2800 C at 200C min-1 , and

held for 4 minutes. The interface temperature was held at 3000C. Glucose labeling

was determined from the ion fragment at 370 m/z, corresponding to carbon atoms

C1 through C5 of glucose with chemical formula C17H2408 N [12].

We corrected our mass isotopomer distributions for natural isotope enrichments

[50] and calculated fractional abundances of naturally labeled, [1- 13C], and [U- 1 3C6]glucose

by respectively comparing the resulting (corrected) M+0 and M+1 peaks and the

sum of the M+4 and M+5 peaks. These isotopomer fractions over time are shown in

Figure 5-5. The measurements are extremely consistent, both within the rapid and

manual sampling subsets and overall. This indicates first that the mixing time of the

reactor is on a much smaller time scale than the sampling and second that the rapid

sampling method is not interfering with labeling measurements. Both of these results

are important in verifying that the sampler can be used in flux analysis experiments.

Next we used the rapid sampler to capture intracellular isotopic transience in

Yarrowia lipolytica. As above, a 75/25% bolus of [1- 13 C] and [U- 13 C6]glucose was in-

troduced into a cell culture at time t = 0 after which rapid sampling was employed in

a geometric fashion. Metabolites were extracted, TBDMS-derivatized, and measured

using gas chromatography/mass spectrometry as described in Chapter 6. The frac-

tional abundances of M+0, M+1, and M+2 for one particular metabolite, pyruvate,

are shown in Figure 5-6.

Because pyruvate is located at the end of glycolysis but before the citric acid

cycle, it reaches isotopic steady state very quickly when employing a glucose tracer,

presumably because glycolytic fluxes are large while glycolytic metabolite concentra-

tions are small. In addition, the network is linear and direct (if the pentose phosphate

flux is negligible). All of these factors make isotopic transience difficult to detect in

glycolytic intermediates. However, as Figure 5-6 shows, the rapid sampler is able to
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Figure 5-5: Isotopic labeling of extracellular glucose measured using the rapid sam-
pling apparatus. At time t = 0, a 75/25% bolus of [1-1 3C] and [U- 13 C6]glucose was

introduced into a bioreactor containing only naturally labeled glucose, after which 7
rapid samples and 8 manual samples were drawn. Extracellular glucose labeling was
measured for each sample and used to determine glucose's isotopomer fractions in the
supernatant over time. These fractions are plotted here. Circles represent different

measurements, while lines represent each isotopomer fraction's mean value over all

samples.



detect sudden changes in this pathway. These measurements can then be utilized

in flux analysis to gain greater confidence in our glycolytic flux and concentration

estimations.

5.4 Discussion

We successfully constructed a rapid samping device that met our initial criteria. It

is also an affordable, easy-to-construct piece of equipment. The entire sampler costs

less than $2000 to construct (and much of that amount goes towards the LabVIEW

software, which many labs and businesses already possess). A complete list of ma-

terials and more details on the construction and layout of the rapid sampler can be

found in Appendix C. The apparatus also performs as originally designed, and can

take multiple samples in less than 10 seconds, qualifying it for use in nonstationary

flux applications for most organisms.
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Figure 5-6: Isotopic labeling of intracellular pyruvate as measured by the rapid sam-
pling apparatus. At time t = 0, a 75/25% bolus of [1-1 3 C] and [U-13 C6 glucose was
introduced into a bioreactor containing only naturally labeled glucose, after which

7 rapid samples were drawn. Intracellular pyruvate labeling was measured for each
sample (and eventually used in an overall flux analysis). Vertical lines represent error

bars for each measurement, where the height of each bar is equal to ± two standard
errors.



Chapter 6

Isotopic Tracer Evaluation for

Metabolic Flux Analysis

6.1 Introduction

Flux estimation can be a powerful tool for comparing and understanding metabolism

and cellular phenotype. However, without accompanying ideas of precision for each

estimated parameter value, flux analysis is relatively meaningless. For almost any

practical analysis, parameter estimates will have wildly varying levels of confidence,

and we can only assign biological meaning to those with reasonable precision.

We have been careful to report confidence intervals alongside parameter estimates

throughout all results in this thesis. Unfortunately, this is not always standard prac-

tice, though it should be for the aforementioned reason. As we have explained pre-

viously in Chapter 2, calculating linear parameter standard errors using the inverse

Hessian of the objective function yields poor results in most nonstationary analyses,

so we compute confidence intervals via parameter continuation around the optimal

solution [10]. These accurate confidence intervals allow us to correctly determine

which flux values are relevant. Non-interlapping confidence intervals also indicate

fluxes that are statistically significantly different when comparing two flux distribu-

tions [101, 102].

The choice of tracer plays a major role in the eventual confidence interval cal-



culations since the tracer dictates the mass isotopomer distribution (MID) of each

metabolite for a given set of fluxes. The sensitivity of the MIDs, in turn, to changes

in the pathway fluxes ultimately determines the confidence of flux estimates, which

are as important as the flux values themselves [10]. Stationary MFA is conducted

when the labeled substrate is at isotopic steady state and does not utilize pool size

or transient data; as such this technique is especially reliant upon the specific tracer

used. Depending on the particular bioreaction network, nonstationary MFA may be

preferable and can also benefit from a informed choice of tracer [107, 108]. The is-

sue of tracer choice is more complex in mammalian cell systems that utilize multiple

carbon sources (e.g., glucose and glutamine) and are grown in complex media. To

probe specific pathways, researchers have applied a wide array of isotopically labeled

substrates, including glucose, glutamine, or atypical substrates such as propionate

or succinate [28, 160, 161]. For example, [1,2- 13C2]glucose is commonly employed

for analysis of the pentose phosphate pathway (PPP) [23], whereas [3_13C]glucose

or [3- 1 4C]glucose provide information on pyruvate oxidation [72, 102]. Many tracers

effectively label metabolites in the tricarboxylic acid (TCA) cycle, but the presence

of anaplerotic reactions and glutamine incorporation (through glutaminolysis or re-

ductive carboxylation) make it difficult to identify the optimal tracer for measuring

all net and exchange fluxes within the network.

As we discussed in Chapter 4, the usefulness of flux analysis in mammalian systems

is increasingly apparent and as such research in that area in growing [78, 103, 122].

And as our usage of flux analysis increases in mammalian cell applications, it becomes

more important that we are able to design experiments to maximize meaningful infor-

mation gain. Researchers have recently described methods to optimize measurement

sets for flux determination [32, 117]; however, as discussed above, the choice of tracer

is an equally important parameter. Because the tracer strongly influences flux es-

timation quality and can usually be chosen from a wide array of available isotopic

substrates, judicious tracer selection is a major component of this experimental de-

sign process. As a result, a systematic analysis of available 13C-labeled tracers and

associated confidence intervals (i.e., sensitivities) for each estimated flux is warranted.



Optimization of tracer choice will enable researchers to more precisely measure spe-

cific fluxes in high-throughput applications that aim to screen the metabolic effects

of drugs in cells [22, 130].

Some initial investigation has occurred in this area. Sriram and colleagues have

conducted a Monte Carlo-based analysis of experimental precisions (using standard

deviations) when using different combinations of [U- 13 C6]glucose, [1- 13C]glucose, and

naturally labeled glucose in a mammalian network [134]. Similar studies have been

performed in microbial systems, which typically consume a single carbon source [107].

However, a detailed investigation of confidence intervals generated from different,

unique tracers in a two-substrate network has never been completed.

Here we have experimentally determined the flux network in a carcinoma cell line

and used these data to calculate the confidence intervals for each flux when using

different 13C-labeled glucose and glutamine tracers. An elementary metabolite unit

(EMU)-based method was used to rapidly estimate flux profiles and confidence in-

tervals from simulated measurements in stationary MFA experiments [11, 164]. We

were able to quantitatively validate the effectiveness of specific 13C tracers in a can-

cer cell network and identify the best choice for analysis of individual reactions and

pathways. A scoring algorithm was employed to determine the optimal tracer for the

overall model and for subnetworks representing glycolysis, the PPP, and the tricar-

boxylic acid (TCA) cycle. These results may significantly improve the efficiency of

MFA experiments in high-throughput applications and clinical samples where biolog-

ical material is limited [24].

6.2 Cell Culture and Metabolite Extraction

The A549 lung carcinoma cell line was obtained from ATCC and maintained in high-

glucose DMEM supplemented with 4 mM glutamine, 10% FBS, and 100 U mL-1

penicillin/streptomycin (Invitrogen). For labeling experiments, semi-confluent cells

in a 10-cm dish were cultured in glucose-free DMEM (Sigma) with the above sup-

plements and a 25 mM 1:1 mixture of [U- 13C6]glucose and [1- 13C]glucose (Cambridge



Isotope Laboratories) for 6 hours to achieve isotopic steady state. Spent medium was

collected and analyzed for glucose, lactate, and glutamine consumption on a YSI 7100

system (YSI Life Sciences). Cells were quenched with 1 mL ice cold methanol, an

equal volume of water was added, and cells were collected with a cell scraper. Four

volumes of chloroform were added, and the cells were vortexed and held on ice for 30

minutes for deproteinization. After addition of 2 mL water, samples were centrifuged

at 3000 g for 20 minutes at 4oC. The aqueous phase was collected in a new tube and

evaporated under airflow at room temperature.

6.3 Derivatization and GC/MS Measurements

Dried polar metabolites were dissolved in 60 pL of 2% methoxyamine hydrochloride

in pyridine (Pierce), sonicated for 30 minutes, and held at 370C for 2 hours. After

dissolution and reaction, 90 pL MBTSTFA + 1% TBDMCS (Pierce) was added and

samples were incubated at 550C for 60 minutes. Gas chromatography/mass spectrom-

etry (GC/MS) analysis was performed using an Agilent 6890 GC equipped with a 30

m DB-35MS capillary column connected to an Agilent 5975B MS operating under

electron impact (EI) ionization at 70 eV. One 1 L of sample was injected in splitless

mode at 2700C, using helium as the carrier gas at a flow rate of 1 mL min-1 . The GC

oven temperature was held at 1000C for 3 min and increased to 3000C at 3.5oC min-1

for a total run time of approximately 60 min. The MS source and quadrupole were

held at 2300C and 150 0C, respectively, and the detector was operated in selected ion

monitoring (SIM) mode. MIDs were obtained for each measured metabolite and in-

corporated with extracellular flux measurements for flux determination. The identity

and values of these measured fragments and fluxes are listed in Tables 6.1 and 6.2.

6.4 Flux Estimation

Intracellular fluxes were estimated for a model reaction network by minimizing the

lack of fit between actual and simulated flux and GC/MS measurements. The network



Reaction Flux Standard deviation
Glucext - G6P 45 4.5

Lac -+ Lacext 75 7.5
Glnext -* Gln 10 1.0
Amino acid -+ Biomass 1 0.1

Table 6.1: Extracellular flux measurements for experimental metabolic flux analysis of

the A549 carcinoma cell. Extracellular glucose, lactate, and glutamine concentrations
were measured by YSI at the start and end of the experiment, and using these results
fluxes were calculated. The biomass flux was calculated using the population's growth
rate. Standard deviations were estimated to be 10% of the respective flux value.
Fluxes and standard deviations are in units of nmol min-1 mg- 1.



Formula
C 14 H28 0 5 NSi 2
Ci 0 H26 ONSi2
C11 H26 O2NSi 2
C 14 H32 O2NSi 2
C 18 H40 O4NSi 3
C20 H39 0 6 Si 3
C19H43 0 3N2 Si3
C16 H36 O2NSi 2
C17 H36 O3NSi 2
C19H42 0 4NSi 3
C10 H25 02Si2
C11H2503Si 2
C 14 H39 0 5 Si 3
C6 H12 O3 NSi
C8 H25 0 4 Si2

Mo

0.309
0.297
0.289
0.571
0.563
0.692
0.608
0.536
0.641
0.544
0.619
0.598
0.552
0.624
0.357

M1
0.214
0.212
0.212
0.186
0.188
0.179
0.190
0.220
0.204
0.227
0.205
0.207
0.223
0.233
0.211

M2

0.054
0.377
0.074
0.191
0.074
0.097
0.127
0.140
0.113
0.137
0.127
0.132
0.149
0.107
0.243

M3

0.371
0.079
0.332
0.037
0.137
0.019
0.036
0.063
0.026
0.060
0.035
0.040
0.049
0.025
0.105

M4
0.035
0.031
0.065
0.013
0.027
0.009
0.017
0.023
0.008
0.020
0.012
0.017
0.019
0.006
0.053

M 5
0.017
0.004
0.029
0.002
0.011
0.002
0.007
0.008
0.003
0.006
0.002
0.005
0.006
0.001
0.021

M 6  Stdev
0.010

0.001 0.005
0.005
0.005

0.002 0.005
0.003 0.005
0.004 0.005
0.004 0.005
0.002 0.005
0.002 0.005
0.001 0.003
0.001 0.003
0.002 0.005
0.001 0.005
0.007 0.010

Table 6.2: Intracellular mass isotopomer measurements for experimental metabolic
flux analysis of the A549 carcinoma cell. Organic and amino acids were TBDMS-
derivatized and their relative labeling was measured with GC/MS.

Met
AKG
Ala
Ala
Asp
Asp
Cit
Gln
Glu
Glu
Glu
Lac
Lac
Mal
Pyr
Sue

Carbons
12345
23
123
12
1234
123456
12345
2345
12345
12345
23
123
1234
123
1234



contained simplified versions of glycolysis, the PPP, anaplerotic reactions, the TCA

cycle, and amino acid biosynthesis. Table 6.3 lists all network reactions and atom

transitions. We additionally calculated 95% confidence intervals for each flux using

parameter continuation [10]. All flux simulation, estimation, and continuation in this

study was conducted using Metran, a flux analysis tool built upon an EMU framework

[11, 161, 164]. Some fluxes were virtually unidentifiable and approximate values were

obtained from the literature [92, 102].

The following assumptions regarding the network and metabolism were made to

obtain a successful fit:

1. Proliferating A549 cells were at metabolic steady state, and labeled tracers

([U- 13 C6 ] and [1_13C]glucose) achieved isotopic steady state within the 6 hours

of application. This assumption was supported by unpublished observations in

our laboratory and various results in the literature [71, 102], which have demon-

strated that glucose tracers achieve isotopic steady state within glycolysis, the

pentose phosphate pathway, and the TCA cycle within 4 hours.

2. All CO 2 reincorporated into the system is unlabeled.

3. Succinate and fumarate are symmetric molecules and retain no particular ori-

entation.

4. With the exception of Acetyl-CoA, a single pool for each metabolite was present

in the model. Any metabolites present in multiple compartments were assumed

to be at isotopic equilibrium.

5. Isotope enrichment in succinate was much less than that of adjacent TCA cycle

metabolites. As such, we included a dilution flux of unlabeled succinate to the

measured pool, mimicking channeling or isolated compartmentalization of this

metabolite [33]. The dilution flux was isolated from the network and did not

act as a source of unlabeled material to the TCA cycle.

6. Alanine labeling was significantly diluted relative to pyruvate and lactate. The

cause of this discrepancy was assumed to be exchange with unlabeled amino



Glycolysis
vi Glucext (abcdef) - G6P (abcdef)

v 2  G6P (abcdef) F6P (abcdef)
v3  F6P (abcdef) -+ DHAP (cba) + GAP (def)
v4  DHAP (abc) ++ GAP (abc)
v 5  GAP (abc) ++ 3PG (abc)

v 6  3PG (abc) -* Pyr (abc)
v7  Pyr (abc) + Lac (abc)
v8  Lac (abc) -+ Lacext (abc)

Pentose Phosphate Pathway
v9  G6P (abcdef) -+ P5P (bcdef) + CO 2 (a)
vio P5P (abcde) + P5P (fghij) ++ S7P (abfghij) + GAP (cde)
vn S7P (abcdefg) + GAP (hij) + F6P (abchij) + E4P (defg)
v 12  P5P (abcde) + E4P (fghi) ++ F6P (abfghi) + GAP (cde)

Tricarboxylic Acid Cycle/Anaplerosis
v 13  Pyr (abc) -+ AcCoAmit (bc) + CO 2 (a)
v1 4  OAA (abcd) + AcCoAmit (ef) -+ Cit (dcbfea)
v15  AKG (abcde) + CO 2 (f) + Cit (abcdef)
v1 6  AKG (abcde) -- Suc (bcde) + CO 2 (a)
V17  Suc (abcd) 1/2 Fum (abcd) + 1/2 Fum (dcba)
V18 Fum (abcd) 1/2 Mal (abcd) + 1/2 Mal (deba)
vig OAA (abcd) ++ Mal (abcd)
v2 0  Pyr (abc) + CO 2 (d) -+ OAA (abcd)
v2 1  Mal (abcd) + Pyr (abc) + CO 2 (d)

Amino Acid Metabolism
V2 2  Glnext (abcde) -- Gln (abcde)
v2 3  Gln (abcde) -- Glu (abcde)
v2 4  Glu (abcde) ++ AKG (abcde)
V2 5  Pyr (abc) + Glu (defgh) -+ Ala (abc) + AKG (defgh)

v2 6  OAA (abcd) + Glu (efghi) -+ Asp (abcd) + AKG (efghi)
v2 7  3PG (abc) + Glu (defgh) -+ Ser (abc) + AKG (defgh)
v2 8  Ser (abc) - Gly (ab) + MEETHF (c)

Biomass Formation
v2 9  P5P (abcde)
v30  DHAP (abc)
v31  Cit (abcdef)
v32  AcCoAcyt (ab)
v3 3  0.18 Asp + 0.23 Glu + 0.17 Ser + 0.11

Gly + 0.15 Ala + 0.16 Gln

NTP (abcde)
G3P (abc)
AcCoAcyt (ed) + OAA (fcba)
FA (ab)
Biomass

Table 6.3: A complete list of reactions and atom transitions for the A549 carcinoma
model used in both the experimental and simulated flux analysis studies. Carbon
atom transitions are indicated within parentheses. Irreversible and reversible reac-
tions are indicated by the symbols -+ and -- , respectively.



acids released from protein. A dilution flux was included to account for the

observed isotopic dilution.

7. Oxidative sources of unlabeled carbon to the TCA cycle (e.g., amino acids and

fatty acids) were assumed to be negligible.

8. Biomass flux measurements were included in the model fit with standard errors

of 10%; these fluxes included the synthesis of nucleotides, GLP (for phospholipid

production), and proteins (from selected amino acids). Values were estimated

based upon known values of cellular composition (weight percent) [2] and an

observed doubling time of 20 hours. Amino acid fluxes to biomass that were

present in the model were scaled according to the observed amino acid ratio

of mammalian cell biomass [110]. No measurement was included for fatty acid

synthesis (citrate lyase) and this flux was freely fitted within the model. The

fitted value for this flux fell within the expected range for biomass synthesis.

6.5 Tracer Evaluation

The effects of 18 13C-labeled tracers (11 glucose and 7 glutamine) on flux estimation

precision were evaluated (see Table 6.4). Tracers were chosen if commercially available

or if previously cited in literature. The effectiveness of each tracer was gauged as

follows:

1. A defined set of extracellular flux measurements (Table 6.1) and GC/MS mea-

surements (Table 6.5) was simulated for a given tracer.

2. Standard errors of 5% for external flux measurements and 0.1-1 mol% for

GC/MS MIDs were introduced randomly and normally.

3. Flux values and 95% confidence intervals were determined for each reaction.

The usefulness of a tracer was assumed to be directly linked to the precision

with which it was able to estimate fluxes of interest; i.e., tracers producing narrower

confidence intervals have greater value.



Tracer

[1- 13C]glucose
[1,2- 13 C2]glucose
[1,6-13 C2]glucose
[2_13C]glucose
[3-13C]glucose

[3,413 C 2]glucose
[4-13C]glucose

[4,5-13 C2]glucose
[5-13C] glucose
[6-13C]glucose

[U- 13 C6]glucose
[1_13C]glutamine
[1,2- 13C2 ]glutamine
[3- 13C]glutamine
[3,4-13 C2]glutamine

[4-13C]glutamine
[5_13C]glutamine

[U- 13C5]glutamine

Abbreviation
[1]Gluc
[1,2]Gluc
[1,6]Gluc
[2] Gluc
[3] Gluc
[3,4] Gluc
[4] Gluc
[4,5]Gluc
[5] Gluc
[6] Gluc
[U]Gluc
[1]Gln
[1,2]Gln
[3]Gln
[3,4]Gln
[4]Gln
[5]Gln
[U]Gln

Table 6.4: Glucose and glutamine tracers chosen for evaluation and their correspond-
ing abbreviations used throughout Chapters 6 and 7. All commercially available
glucose and glutamine tracers were chosen for analysis.



Metabolite Carbons
3PG 123
AKG 12345
Ala 23
Ala 123
Asp 12
Asp 12
Asp 234
Asp 1234
Cit 123456
Gln 12345
GLP 123
Glu 2345
Glu 12345
Glu 12345
Gly 2
Gly 12
Lac 23
Lac 123
Mal 1234
P5P 12345
Pyr 123
Ser 12
Ser 23
Ser 123
Suc 1234

Table 6.5: Intracellular mass isotopomer measurements for simulated metabolic flux
analysis of the A549 carcinoma cell. These simulated measurements are similar to
the actual experimental measurements listed in Table 6.2, but we assumed a few
additional measurements would be available, namely, 3PG, GLP, and P5P (via TMS-
derivatization) and glycine (via TBDMS-derivatization).



6.6 Precision Scoring

To more easily compare estimate precision on a group basis, we created a precision

scoring metric. Similar optimality criteria have been used previously for experimental

design [107, 108]; however, these earlier methods have been based on the parameter

covariance matrix, which assumes linearity and does not always truly capture the

nonlinear, constrained systems studied in flux analysis. This precision scoring metric

relies on the more robust and accurate nonlinear confidence intervals obtained via

parameter continuation [10]. First, a normalized range is calculated for each flux

using the formula

. ui vil v
ri=min -, +a max( -a (6.1)

|vH )vil |mx yvi)

where vi, 1j, ui, and ri are the estimated flux, lower bound, upper bound, and normal-

ized range for the ith flux, and a is a cut-off parameter that prevents one excessively

distant bound from overly influencing the scoring. The individual ranges are next

converted into scores using a negative exponential function and summed into a final

overall score via the expression:

S= wiexp (6.2)

where wi is a weighting parameter for the ith flux, # is a range-scaling parameter, and

S is the overall precision score. We empirically found that values of 1 and 3 for a and #
result in a good dynamic range of scores. If each wi can be simply zero or one (serving

to either exclude or include fluxes in the overall score), each flux's precision score will

range between zero (unidentifiable) and one (perfectly identifiable). The overall score

will then range between zero and the number of fluxes under consideration.

Because the upper and lower bounds of any given confidence interval are sensitive

to the random error introduced into the simulated measurements, the corresponding

precision scores will also vary for simulated experiments with different random errors.

To account for this, we conducted six simulated experiments for every tracer of interest



and generated a distribution of precision scores, allowing us to report a mean precision

score and a precision score standard deviation.

6.7 Experimental Flux Analysis

The metabolic phenotype of a cell is a key component of its overall behavior, and

evidence suggests that metabolism plays an important role in maintaining the tumor

phenotype [41]. Metabolic analysis of cancer cells has again become an active area

of research, and technological improvements have expanded our ability to investigate

metabolism using stable isotopically labeled substrates. In this study we used the

A549 cancer cell line as a model system for evaluating isotopic tracers in mammalian

cells. This line is often used in molecular and metabolic studies of cancer and exhibits

aerobic glycolysis, commonly known as the Warburg effect [35, 67]. To obtain baseline

values for our metabolic network we estimated fluxes of semi-confluent cells using an

equimolar mixture of [U- 13 C6]glucose and [1- 13C]glucose, a combination of tracers

commonly used in the literature [107, 134]. The actual proportion of each tracer and

naturally labeled glucose from serum was obtained from GC/MS measurements of

extracellular glucose. Extracellular fluxes and MIDs of intracellular metabolites were

used to estimate the flux distribution (see Tables 6.1 and 6.2 for all measurement

data). The system possessed 101 redundant measurements and the expected upper

bound of the 95% confidence region is 130, assuming that the minimized sum of

squared residuals (SSR) followed a X2 distribution. Flux estimation resulted in a

minimized SSR of 52, indicating that the fit was statistically acceptable. Estimated

values and 95% confidence intervals for each independent flux are listed in Table 6.6.

The overall metabolic network is depicted in Figure 6-1. Several exchange fluxes were

difficult to precisely determine; in these cases, values were culled from literature.

As expected, the cancer cells displayed a high glycolytic flux and excreted most

of the carbon as lactate. Approximately 15% of the glucose flux was diverted to the

pentose phosphate shunt. However, these estimations did not include explicit mea-

surements of pentose phosphate intermediates; as such, exchange fluxes within this



Glycolysis Flux Interval
Glucext -+ G6P 38.6 [34.7, 43.2]
G6P -+ F6P 32.4 [29.7, 35.1]
G6P ++ F6P 0.0 [0.0, Inf]
F6P -- DHAP + GAP 36.5 [32.6, 40.7]
DHAP -- GAP 35.5 [31.6, 39.7]
DHAP ++ GAP 0.0 [0.0, 258.7]
GAP -+ 3PG 74.0 [65.7, 82.8]
GAP + 3PG 0.0 [0.0, Inf]
3PG -+ Pyr 73.1 [64.8, 81.9
Pyr -- Lac 73.6 [65.8, 83.3]
Pyr 4-+ Lac 13,420 [0.0, Inf]
Lac -+ Lacext 73.6 [65.8, 83.3]

Pentose phosphate pathway Flux Interval
G6P -- P5P + CO2  6.2 [5.4, 7.4]
2 P5P -- S7P + GAP 2.0 [1.8, 2.4]
2 P5P ++ S7P + GAP 19,290 [0.0, Inf]
S7P + GAP -- F6P + E4P 2.0 [1.8, 2.4]
S7P + GAP + F6P + E4P 0.0 [0.0, 0.4]
P5P + E4P -+ F6P + GAP 2.0 [1.8, 2.4]
P5P + E4P + F6P + GAP 0.0 [0.0, 0.6]

TCA cycle/anaplerosis Flux Interval
Pyr -+ AcCoAmit + CO 2  8.6 [5.5, 11.0]
OAA + AcCoAmit - Cit 8.6 [5.5, 11.0]
AKG + CO 2 -- Cit (abcdef) 2.0 [0.2, 3.6]
AKG + CO 2 + Cit (abcdef) 5.7 [4.6, 7.1]
AKG - Sue + CO 2  8.2 [6.6, 10.7]
Suc -+ Fum 8.2 [6.6, 10.7]
Suc ++ Fum 0.2 [0.0, Inf]
Fum -+ Mal 8.2 [6.6, 10.7]
Fum + Mal 23.8 [5.2, Inf]
OAA -+ Mal 1.4 [0.8, 2.9]
OAA *+ Mal 106,200 [35.9, Inf]
Pyr + CO 2 -+ OAA 0.0 [0.0, 1.7]
Mal -+ Pyr + CO 2  9.6 [8.5, 10.7]
Mal ++ Pyr + CO 2  1.3 [0.9, 1.6]

Amino acid metabolism Flux Interval
Glnext - Gln 11.5 [10.4, 12.6]
Gln -+ Glu 11.0 [9.9, 12.1]
Glu -- AKG 8.2 [7.0, 9.3]
Glu ++ AKG 81.3 [35.9, 480.3]
Pyr + Glu -+ Ala + AKG 0.5 [0.4, 0.6]
OAA + Glu -- Asp + AKG 0.6 [0.5, 0.7]
3PG + Glu -+ Ser + AKG 0.9 [0.8, 1.1]
Ser -+ Gly + MEETHF 0.4 [0.3, 0.4]

Biomass formation Flux Interval
P5P -- NTP 0.1 [0.1, 0.1]
DHAP -- G3P 1.0 [0.8, 1.2]
Cit -, AcCoAcyt + OAA 10.7 [5.3, 14.5]
AcCoAcyt -- FA 10.7 [5.3, 14.5]
Amino acids -> Biomass 3.3 [2.7, 4.0]

Table 6.6: Experimentally determined net (-+) and exchange (<+) fluxes and 95% flux
confidence intervals for the A549 carcinoma cell.
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Figure 6-1: Experimentally determined fluxes representing central carbon metabolism
in A549 carcinoma cells. Extracellular fluxes and MIDs were measured and incorpo-
rated into the network shown (see Tables 6.1 and 6.2). An acceptable fit was obtained
with a sum of squared residuals (SSR) of 52, well under the upper bound of the 95%
confidence region for a x2 distribution. Net fluxes are listed first for each reaction
and exchange fluxes are within parentheses. Units for all fluxes are nmol min- 1 mg
protein-1 . Italicized numbers represent flux values that were taken from the literature
since they were unidentifiable for our particular experiment.
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pathway were unidentifiable (Table 6.6). TCA cycle fluxes were relatively low and

largely driven by glutamine consumption. Interestingly, we observed a net flux to-

ward citrate for the isocitrate dehydrogenase (IDH) reaction, indicating that this cell

line undergoes reductive carboxylation of o-ketoglutarate (Figure 6-1). Finally, we

estimated a significant flux from malate to pyruvate (malic enzyme) and a negligible

flux through pyruvate carboxylase (pyruvate to oxaloacetate). Malic enzyme flux,

which regenerates NADPH, can be assumed to compensate for the excessive NADPH

requirements of fatty acid synthesis and any lost in the reductive carboxylation path-

way [42]. Our results successfully described the metabolic phenotype of cancer cells

and serve as a benchmark for our tracer analysis below.

6.8 Confidence Intervals by Tracer

We next calculated confidence intervals for every combination of tracer and flux.

Results for selected fluxes are shown in Figure 6-2, and the complete set of confidence

intervals over all fluxes is available in Figures 6-3 and 6-4.

Because the lower glycolytic fluxes consist primarily of stoichiometrically deter-

mined net fluxes and completely unidentifiable exchange fluxes, tracers of any kind

offer no benefit in flux estimation and show little variation in confidence interval pre-

cision in this region of the network. Tracers do generate results of more diverse quality

in upper glycolysis (see Figures 6-2A and B for examples). Here, glutamine tracers

are completely ineffective, since there is no set of reactions by which any glutamine

atom can travel to this portion of the network. Uniformly labeled glucose also gives

nominal precision; because there are no other carbon sources feeding into glycolysis,

all metabolites here are fully labeled by this tracer at isotopic steady state regardless

of the flux distribution.

Glucose tracers labeled at some combination of the 4th, 5th, and 6th carbons

give results of limited quality, primarily because these labeled atoms are trapped in

a cycle. If Mi is the ith atom of metabolite M, the atomic transitions show that

glucosei (where 4 i 6) will distribute 1 3C to only G6Pj, F6Pj, P5Pj 1 , S7Pj+,
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Figure 6-2: Simulated confidence intervals for selected fluxes of A549 carcinoma cell
metabolism when using specific isotopic tracers. Horizontal dashed lines indicated ac-
tual fluxes. Upper and lower bounds of the 95% confidence interval are illustrated for
each simulated tracer. The standard error of both upper and lower bounds is repre-
sented by the boxes at the top and bottom of each interval. (A) Glucose-6-phosphate
isomerase and (B) triose-phosphate isomerase fluxes demonstrate the effectiveness of
glucose tracers in estimated glycolytic fluxes. (C) Pyruvate dehydrogenase flux is
most precisely estimated by most glutamine tracers and some glucose tracers. (D-F)
Net and exchange fluxes within the pentose phosphate pathway are best determined
with glucose tracers labeled at the 1st, 2nd, or 3rd carbon, with [1,2]Gluc perform-
ing the best. (G and H) Net fluxes and (I-L) exchange fluxes in the TCA cycle are
characterized well using [U]Gluc, [1,2]Gln, [3,4]Gln or [U]Gln.
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Figure 6-4: Simulated confidence intervals for fluxes #25-47 of the A549 carcinoma
cell network when using various tracers.
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E4Pi- 2, GAPi- 3, and DHAPi- 3 before permanently exiting glycolysis and the PPP

(see highlighted atom transitions for [4]Glue in Figure 6-5B). This uniformity means

that the key GC/MS fragment behind glycolysis flux estimation (GLP) will only be

labeled at a single carbon, reducing the potential measurement diversity, which in turn

reduces the sensitivity to fluxes. The 1st carbon of glucose feeds into a comparable

positional carbon cycle, leading to [3- 13C]GLP and similarly decreased sensitivity.

Tracers labeled at the 2nd or 3rd carbons ([1,2]Gluc, [2]Gluc, and [3]Gluc), however,

capitalize on the atomic transitions of the subnetwork and distribute significant label

to each carbon in GLP, producing the greatest sensitivity and most precise confidence

intervals in glycolysis (see highlighted atom transitions for [2]Gluc in Figure 6-5A).

The estimation quality of the PPP closely reflects that of upper glycolysis. Instead

of GLP, P5P is now the major contributing measurement. [U]Gluc and all glutamine

tracers are again completely noninformative (for the same reasons as before). [4], [4,5],

[5], and [6]Gluc are ineffective because label is once more restricted to a small subset of

positions in the network. Because [1]Gluc loses its label to CO 2 in the oxidative PPP,

P5P is predominantly unlabeled and demonstrates little sensitivity. Glucose labeled

at the 2nd and 3rd positions are again the tracers that most confidently estimate

fluxes. These behaviors are fairly consistent through all individual net and exchange

fluxes of the PPP. Specific examples are shown in Figures 6-2D (transketolase net),

E (transketolase exchange), and F (transaldolase exchange).

Glutamine tracers, on the other hand, generally provided better estimations of

the pyruvate dehydrogenase flux, located at the junction between glycolysis and the

TCA cycle (Figure 6-2C). Because both the 3rd and 4th carbons in glucose mostly

transition to the 1st carbon of pyruvate and exit the system as CO 2 at this step,

[3]Gluc, [3,4]Gluc, and [4]Gluc could not precisely resolve the PDH flux, despite their

common use and effectiveness in previous experiments [72, 102]. This discrepancy

arises because these previous studies measured labeling in CO 2 while our analysis

assumes no such measurement. Importantly, one cannot exchange measurement sets

of MFA experiments and necessarily expect similar results or patterns when evaluating

tracers.
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Figure 6-5: Atom transition networks and positional fractional labeling for selected
glucose and glutamine tracers in A549 carcinoma cells. Fractional labeling is indicated
by a color map, where dark red indicates all atoms at that position are 13C and dark
blue that all atoms are 12C. No natural labeling was assumed in the creation of
these maps. Atom transitions are indicated for all positions where fractional 13C
labeling exceeds 10%. (A) [2]Gluc effectively characterizes glycolytic and PPP fluxes
because DHAP (and by extension GLP) is labeled in multiple positions by different
combinations of fluxes, leading to greater measurement sensitivity. (B) [4]Gluc poorly
identifies fluxes in glycolysis and the PPP because its sole labeled carbon is caught in
a cycle and can only reach the 1st carbon of DHAP. (C and D) [3,4]Gln and [4]Gln
are both able to label a majority of the carbon atoms in the TCA cycle; however, the
two labeled atoms in the former lead to larger, clearer measurements and therefore
more precise fluxes.
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While 13 C glutamine and uniformly labeled glucose tracers offered minimal infor-

mation for glycolysis and the PPP, they demonstrated considerable utility in estimat-

ing TCA cycle and anaplerotic fluxes. Net fluxes within the TCA cycle (succinate

to fumarate and oxaloacetate to fumarate) were best characterized when using glu-

tamine tracers with two or more carbons, specifically [1,2]Gln, [3,4]Gln, and [U]Gln

(Figures 6-2G and H). Because the glutamine flux into the TCA cycle is significantly

smaller than the incoming glucose flux, multiply labeled glutamine tracers are pre-

sumably more useful because they introduce greater amounts label that are less easily

diluted (see Figures 6-5C and D to compare atom transitions for [3,4]Gln and [4]Gln).

The effectiveness of these tracers was further highlighted by the improved confidence

intervals obtained for exchange fluxes in the TCA cycle and malic enzyme reactions

(Figures 6-21 through L). Exchange between succinate, fumarate, and oxaloacetate

are key reactions within oxidative metabolism that also affect cofactor levels and

pyruvate cycling; therefore, precise estimation of these reactions are of paramount

importance for cancer research [42, 67].

To better describe the quality of data and simulations obtained from specific

tracers, we calculated precision scores for each tracer, covering both subnetworks and

central carbon metabolism in its entirety. Independent fluxes included in the scoring

for each subnetwork are described in Figure 6-6. All glucose tracers except [U]Gluc

scored well for glycolysis, with [1,2]Gluc, [2]Gluc, and [3]Gluc performing significantly

better than most (Figure 6-7A). These three tracers provided the best scores (i.e.,

the most precise estimates) for the PPP as well (Figure 6-7B). The highest scoring

glucose tracer for TCA cycle analysis was [U]Gluc (Figure 6-7C). Three glutamine

tracers also generated similarly high scores and precise estimates within the TCA

cycle subnetwork; in particular, those tracers labeled at two or more positions scored

best ([1,2]Gln, [3,4]Gln, and [U]Gln). Finally, the best overall tracer for analyzing the

entire cancer cell flux network was [1,2]Gluc, followed by other glucose tracers labeled

at the 2nd or 3rd carbons (Figure 6-7D). Although these tracers did not generate the

best results for the TCA cycle, their unique ability to consistently characterize fluxes

throughout the entire network resulted in superior scores compared to other tracers.
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Figure 6-6: The subnetworks used to calculate precision scores for different sections
of the A549 carcinoma network. The independent fluxes of the subnetworks used in
the analysis are listed.
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Figure 6-7: Results obtained from our precision scoring algorithm identifying the
optimal tracer for the analysis of subnetworks and central carbon metabolism in A549
carcinoma cells. The precision scores resulting from simulated experiments involving
only natural labeling have been subtracted from each displayed tracer score to aid
in visual differentiation and comparison. (A) Glycolysis and (B) pentose phosphate
subnetworks are best described by [1,2]Gluc, [2]Gluc, and [3]Gluc. (C) TCA cycle
scores were highest for [U]Gluc and several glutamine tracers labeled at two or more
carbons. (D) The most precise tracer for the analysis of the entire network was
[1,2]Gluc.
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6.9 Nonstationary Confidence Intervals

Recently, several groups have demonstrated nonstationary MFA using transient la-

beling measurements [106, 126, 131, 164, 165]. To observe the impact of tracer choice

on the precision of nonstationary flux experiments, we simulated measurements from

selected isotopic tracers at three time points (5, 10, and 15 min) and estimated

fluxes and confidence intervals throughout the network. Confidence intervals derived

from selected tracers are listed in Figure 6-8, and associated precision scores are

presented in Figure 6-9. Relative precision from one tracer to the next was fairly

consistent through almost all fluxes, and the most effective tracers for stationary

MFA are also the most effictive in transient labeling experiments. One exception

was the performance of [U]Gluc for estimating glycolytic fluxes. Uniformly labeled

glucose generated significantly better results in our nonstationary analysis compared

to our previous steady state simulations; however, tracers such as [1,2]Gluc contin-

ued to outperform this more commonly used substrate. Because the stationary and

nonstationary measurements produced comparable confidence intervals, steady-state

flux analysis may be the most cost- and time-effective method in mammalian cell

cultures, since the transient experiments essentially require parallel experiments for

each time point analyzed.

6.10 Discussion

To better demonstrate the impact of tracer selection upon flux estimation quality, we

have quantitatively and comparatively described the precision of uniquely labeled 13C

glucose and glutamine tracers for flux determination in a mammalian cell tumor line.

This area of research is particularly timely as the metabolic phenotype of tumors has

reemerged as an important area of study and potential clinical target [83]. Fueled by

advanced computational software and technologies, researchers can now characterize

cellular metabolism in unprecedented detail. To better demonstrate the utility of iso-

topic tracers for cancer research, we have quantitatively and comparatively described
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the precision of uniquely labeled 13C glucose and glutamine tracers for flux determina-

tion in mammalian cells. An EMU-based algorithm enabled the high-throughput flux

estimations and confidence interval calculations required for this description. Table

6.7 summarizes the optimal tracers to use for estimating each flux, specific subnet-

works, and central carbon metabolism as a whole. [1,2]Gluc provided the highest

level of precision for the overall network, glycolysis, and the PPP, while [U]Gluc and

multiply labeled glutamine tracers were most informative for the TCA cycle. Specific

instances of their use are present in the literature [23, 102, 161]; however, we hope

the demonstrable improvements of precision described here help to propagate the use

of more effective tracer molecules in future MFA experiments.

The tracer evaluation process and accompanying results in this study provide a

general procedure for the experimental design of isotopic tracer studies. However, it

should be noted that specific cell types exhibit particular flux profiles, which in turn

will affect the results generated by simulated tracer studies such as those presented

here. As such, our findings are network dependent and therefore most relevant to

the study of tumor cells. Furthermore, the precision of our flux estimations are de-

pendent upon the metabolites measured. As mass spectrometry and other related

technologies continue to improve, researchers will obtain richer data sets to incorpo-

rate into the estimation process [92, 102]. Nevertheless, our results should be valid for

most mammalian systems given the conserved nature of atom transitions in central

carbon metabolism. In cells with significantly different networks and/or flux distribu-

tions (e.g., gluconeogenic hepatocytes) these specific tracer simulations may not apply

[160]. However, our methodology will still prove useful in optimizing experimental

design, especially in complex systems where the best tracer cannot be determined a

priori. These results can serve as a guide to more effectively design experiments that

use flux analysis to study cellular metabolism and physiology.
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Glycolysis Best tracer(s)
Glucext -+ G6P [1,2] and [2]Gluc

G6P - F6P [1,2]Gluc

G6P + F6P [3] and [3,4]Gluc
F6P - DHAP + GAP [1,2] and [2]Gluc
DHAP -* GAP [1,2]Gluc

DHAP ++ GAP [1,2]Gluc
GAP -+ 3PG [1,2] and [2]Gluc

GAP ++ 3PG None
3PG -> Pyr [1,2]Gluc
Pyr - Lac [1,21 and [2]Gluc

Pyr ++ Lac None
Lac - Lacext [1,2] and [2]Gluc

Pentose phosphate pathway Best tracer(s)
G6P -- P5P + CO 2  [1,2]Gluc
2 P5P - S7P + GAP [1,2] and [3]Gluc
2 P5P ++ S7P + GAP [1,2]Gluc
S7P + GAP -+ F6P + E4P [1,2] and [3]Gluc
S7P + GAP F6P + E4P [1,2]Gluc
P5P + E4P -- F6P + GAP [1,2] and [3]Gluc
P5P + E4P ++ F6P + GAP [1,2] and [3]Gluc

TCA cycle/anaplerosis Best tracer(s)
Pyr -+ AcCoAmit + CO 2  [U]Gln
OAA + AcCoAmit - Cit [U]Gln
AKG + CO 2 -4 Cit (abcdef) [U], [1,2] and [3,4]Gln
AKG + CO 2 ++ Cit (abcdef) [U]Gln
AKG -- Suc + CO 2  [U] and [3,4]Gln
Suc -+ Fum [U] and [3,4]Gln

Suc Fum [U] and [1,2]Gln
Fum -- Mal [U] and [3,4]Gln

Fum Mal [U]Gln
OAA -+ Mal [U]Gln
OAA Mal [U]Gln
Pyr + CO 2 -- OAA [U]Gln
Mal -4 Pyr + CO 2  [U] and [3,4]Gln
Mal ++ Pyr + CO2  [U]Gln

Amino acid metabolism Best tracer(s)
Glnext -- Gln

Gln Glu
Glu AKG
Glu ++ AKG

[3], [U] and [3,4]Gln
[3], [U] and [3,4]Gln
[3], [U] and [3,4]Gln
[U]Gln

Table 6.7: Optimal tracers for net (-+) and exchange (-+) fluxes of the A549 carcinoma
cell.
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Chapter 7

A Genetic Algorithm for Tracer

Optimization

7.1 Introduction

Interest in trustworthy, reliable flux analysis in mammalian cells continues to increase,

both for the identification of disease mechanisms [12, 28, 102], and for the study of

metabolic defects that have been implicated in cancer, mental disorders, diabetes,

and related syndromes [1, 19, 35, 132]. 13 C metabolic flux analysis (MFA) enables

researchers to quantify intracellular fluxes in vivo via the combined use of stable

isotopic tracers, analytical methods such as NMR and mass spectrometry, and com-

putational tools [68, 122]. While glucose tracers are effectively used to label single

substrate microbial cultures and highly oxidative cells or tissues, many mammalian

systems are highly compartmentalized and grow on complex media, metabolizing vari-

ous substrates. For example, tumor cells divert most glucose carbon to lactate and use

amino acids (e.g. glutamine) or fatty acids to contribute carbon to the tricarboxylic

acid (TCA) cycle [41, 48], and hepatocytes undergoing gluconeogenesis utilize lac-

tate, alanine, amino acids, and glycerol to produce glucose through various pathways

[116, 160]. As a result, individual tracers are often only effective for characterizing

individual pathways such as the TCA cycle or pentose phosphate pathway.

We discussed previously (in Chapter 6) how confidence interval calculations can
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be used to select an optimal, individual tracer for a given metabolic network and

flux distribution. To maximize the information obtained from a given experiment,

an alternative approach is to apply multiple tracers simultaneously. This ability is

particularly advantageous in situations where sample size is limited, as in the testing

of clinical materials [24, 69]. However, the exact combination of tracers must be chosen

with care, as information may be lost if different tracers generate the same labeling

pattern or mass isotopomer distribution (MID). This problem cannot be addressed

experimentally given the high cost of uniquely labeled tracers and the large search

space of potential mixtures. Also, both flux estimation and sensitivity analysis must

be performed to ensure that the experimental significance of each flux is maintained.

Here we employed a genetic algorithm to generate mixtures of uniquely labeled 13C

glucose and glutamine. At each generation of the evolution an elementary metabolite

unit (EMU)-based flux analysis method was used to perform flux estimation and

calculation of confidence intervals. Tracer combinations were selected to advance via

tournament selection. By coupling our tracer evaluation algorithm to an evolutionary

algorithm we identified optimal tracer mixtures that provide the most statistically

significant flux values in a non-small cell lung carcinoma cell line. To gauge the

robustness of one tracer set ([1,2- 13C2]glucose + [U- 13C5]glutamine) we conducted

simulated experiments in which the flux values were perturbed significantly from

that of the original network. Finally, we validated the optimized tracer combination

experimentally in tumor cells, demonstrating improvements over two other commonly

used tracer sets.

7.2 Genetic Algorithm

We employed a genetic algorithm to search the space of possible tracer mixtures

[88, 155]. (The algorithm was implemented in Matlab and the code can be found in

Appendix D.) In order to apply our evolutionary approach, we need to define (1) a

phenotypic search space, (2) a method of encoding and decoding these phenotypes to

and from chromosomes, and (3) a measure of each phenotype's fitness.
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We define phenotype as a vector of tracer composition fractions,

C = (fi,1,I fi,2, ... -, f1,N1, - -. - f i f i -. - -, i - -. - , M,1, fM,2, - - - , fM,Nm) -7.1

where c is the tracer composition vector and fij is the jth isotopomer fraction of ith

substrate. There are M total substrates and each substrate has Ni total isotopomers.

Phenotypes can be converted into chromosomes using the expression

h = E 2 b(k-1) [2 - ck (7.2)
k

where Ck are the elements of the tracer composition vector, b is the number of desired

chromosome bits per tracer fraction, and h is in the decimal form of the chromosome.

(To apply crossover and mutation events, h is converted to its binary representation

to form a bit string.) Chromosomes can be decoded back to tracer fractions as follows,

h mod 2 bk - h mod 2 b(k-1) h mod 2 b1 - h mod 2 b(1-1)
ck = 2 b(k-1) I Z 2 b(l-1)

where Sk is the set of indices of all fractions in c representing the same substrate

as Ck so that the denominator of Equation 7.3 will renormalize isotopomer fractions

in the event that their overall sum was altered during crossover and mutation. Fit-

ness is expressed by a tracer mixture's precision score, which is inversely related to

the magnitude of the parameter confidence intervals calculated from simulated MFA

experiments [98].

Figure 7-1 describes the evolutionary process. First, a set of chromosomes are

randomly generated. We designated 8 bits per isotopomer, allowing a resolution

within less than 0.5% for each fraction. In creating the initial population, the on/off

probability for each bit can be adjusted to control the initial average number of tracers

participating in any given mixture. For all of the initial populations used in this study,

an initial population of size 500 and an on/off probability of 10% was found to give

realistic and practical results.
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Figure 7-1: Tracer optimization by means of a genetic algorithm. The central
flowchart illustrates the algorithms steps. A simple example is also provided where
three isotopic forms of the tracer (naturally labeled, 1st-carbon labeled, and uniformly
labeled) are considered. First, a random set of chromosomes is decoded to produce
an initial population of tracer mixtures (A,B). Our selection criterion, the precision
score, is generated for each mixture from confidence intervals calculated via simulated
flux analysis experiments (C). Tracer mixtures are chosen for the next evolutionary
round by tournament selection (D). The mixtures are encoded back to chromosomes
(E), after which mutation and crossover events are applied to the selected to generate
a new population (F). These new chromosomes are decoded into tracer mixtures and
can participate in a new round of evolution if desired (G).
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The initial chromosomes are next decoded using Equation 7.3 to give tracer com-

position vectors. Simulated flux analysis experiments are then conducted for each

vector, producing parameter confidence intervals from which precision scores can be

calculated. Tournament selection is then applied to choose successful phenotypes for

recombination while still retaining some diversity [61]. The surviving phenotypes are

then encoded back to chromosomes and are modified by two-point crossover and point

mutation events to form a new population (which can serve as a starting point for

another iteration of the evolutionary process). For each of the evolutionary rounds in

this study, a tournament size of four was used to select 25% of the current population

for survival. The survivors were then mated using two-point crossover to create a

completely new population equal in size to the previos population.

7.3 Cell Culture and Metabolite Extraction

The A549 lung carcinoma cell line (ATCC) was maintained in high-glucose DMEM

supplemented with 4 mM glutamine, 10% FBS, and 100 U mL- 1 penicillin/streptomycin

(Invitrogen). Prior to labeling, cells were maintained in custom DMEM lacking amino

acids, glucose, and pyruvate (Hyclone) supplemented with 25 mM glucose, 4 mM

glutamine, IX MEM essential amino acids (Invitrogen), 10% FBS, and antibiotics

for one passage. For flux experiments semi-confluent cells were cultured with [1,2-

1 3C2]glucose + [U- 1 3C5]glutamine, a 1:1 mixture of [U- 13C6]glucose and [1- 13C]glucose,

or [U- 13C5]glutamine alone (Cambridge Isotope Laboratories) for 24 hours to achieve

isotopic steady state. Spent medium was collected and analyzed for glucose, lactate,

glutamine, and glutamate on a YSI 7100 system (YSI Life Sciences). Extracellular

fluxes were calculated from these measurements and cell counts on parallel plates.

Cells were quenched with 400 11L of -20 C methanol, an equal volume of water was

added, and cells were collected via scraping. Two volumes of chloroform were added,

and the cells were vortexed at 40C for 30 minutes. Samples were centrifuged at

10,000 g for 10 minutes, and the aqueous phase was collected in a new tube for

evaporation under airflow.
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7.4 Derivatization and GC/MS Measurements

Dried polar metabolites were dissolved in 50 iL of 2% methoxyamine hydrochloride

in pyridine (Pierce) and held at 370C for 2 hours. After reaction the solution was

split equally to two tubes and 45 pL of either MBTSTFA + 1% TBDMCS or MSTFA

+ 1% TMCS (Pierce) was added. Samples were incubated for 60 minutes at 550C or

37oC, respectively. Gas chromatography/mass spectrometry (GC/MS) analysis was

performed using an Agilent 6890 GC equipped with a 30m DB-35MS capillary column

connected to an Agilent 5975B MS operating under electron impact (EI) ionization

at 70 eV. One iL of sample was injected in splitless mode at 2700C, using helium

as the carrier gas at a flow rate of 1 mL min-1 . The GC oven temperature was

held at 1000C for 3 min and increased to 3000C at 3.5oC min-1 for a total run time of

approximately 60 min. The MS source and quadrupole were held at 2300C and 1500C,

respectively. The detector was operated in scanning mode for TBDMS derivatizations

and in selected ion monitoring (SIM) mode for metabolites reacted with TMS. MIDs

were obtained for each measured metabolite and incorporated with extracellular flux

measurements for flux determination. The identity and values of these measured

fragments and fluxes are listed in Table 6.5. (Note that these measurements are the

same as those assumed for the simulated carcinoma metabolism in Chapter 6.)

7.5 Tracer Optimization

We applied our tracer optimization algorithm to the A549 carcinoma metabolism

previously studied in Chapter 6. The major features of this flux network are a high

glycolytic flux (from gluxose) that is almost completed excreted as lactate and a

TCA cycle flux that is driven primarily by the extracellular glutamine uptake flux.

See Figure 6-1 for the network and Table 6.3 for the atom transitions.

When considering potential components for our tracer mixtures, we returned to

the same list of tracers that were evaluated independently in Chapter 6 (see Table

6.4). To this list we also added the naturally labeled versions of glucose and glutamine
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to bring the total number of potential participants to 20. A set of 500 randomized

tracer mixtures was created as an initial population and subjected to ten rounds

of evolution (Figure 7-2). The mean precision score of the population progressed

from 11.3 to 13.9 and the maximum score from 13.3 to 14.3. Hierarchical clustering

revealed two primary motifs in the final selected population of tracer mixtures (Figure

7-3). One group of mixtures chiefly used [1,2]Gluc as the glucose tracer, while the

other group used a combination of [3]Gluc and [3,4]Gluc. All selected mixtures relied

almost exclusively upon [U]Gln as the glutamine tracer.

We simplified these two selected motifs into one mixture of 100% [1,2]Gluc and

100% [U]Gln and another 50% [3]Gluc, 50% [3,4]Gluc, and 100% [U]Gln. (With

regards to precision score, these simplifed versions perform comparably to the original

selected tracers.) Although we originally only calculated one lumped precision score

for each tracer mixture, we can now break that down into individual precision scores

for each flux. To demonstrate the strengths and weaknesses of the selected tracers, we

also calculated flux-by-flux precision scores for three traditional stand-alone isotopic

tracers ([1]Gluc, [U]Gluc, and [U]Gln) as well as one traditional and simple tracer

mixture (a 1:1 mixture of [1]Gluc and [U]Gluc). A heat map of precision-score ratios

for each pairing of selected tracer mixture and traditional tracer for each flux is shown

in Figure 7-4. Confidence intervals for the tracer mixtures and traditional tracers are

also shown for a selected set of fluxes in Figure 7-5.

7.6 Precision Score Sensitivity

One potential stumbling block to the reliability of precision scoring is the sensitivity of

scores with respect to the originally assumed flux distribution. If confidence intervals

and precision scores vary widely with only small changes in fluxes, then our new

method of tracer evaluation and optimization would have little use since the originally

assumed flux distribution will most frequently only be an approximation. To probe

this issue, we simulated precision scores for [1,2]Gluc/[U]Gln for a large number of

flux distributions varied randomly around the original to see how quickly the precision
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Figure 7-2: Selected tracer mixtures after rounds 1,4,7, and 10 of tracer optimization
are shown in subfigures (A), (B), (C), and (D), respectively. The left subplot of each
subfigure shows the general (dark blue) and selected (cyan) tracer mixture populations
distributed by precision score. The right subplot shows the tracer fractions of each
mixture (sorted with highest scoring mixtures at the top), where columns correspond
to tracer fractions and rows to tracer mixtures. A dark red slice corresponds to a tracer
fraction of 100%, while dark blue corresponds to zero. By the final round of evolution,
we see that the distribution of precision scores shift upwards by about two units and
the initial randomly distributed set of tracer mixtures has been narrowed down to
two different tracer mixtures: [1,2]Gluc/[U]Gln and [3]Gluc/[3,4]Gluc/[U]Gln.
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Figure 7-3: Hierarchical cluster tree of high-scoring tracer mixtures. The 100 highest-
scoring tracer mixtures (over all rounds of evolution) were taken and clustered by
composition fraction. The length of each tree on the left axes represents the distance

(or dissimilarity) between the two tracer mixtures (or groups of tracer mixtures) being
connected. The major tracers in each mixture are listed in the vertical direction.
The bar lengths on the right axes represent the frequency of each cluster among the
selected 100. The tree reveals that there are two general high-scoring mixtures: those
using [1,2]Gluc and those using [3] and [3,4]Gluc. All mixtures predominantly utilize
[U]Gln as a glutamine tracer.
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Precision Score
Fluxes [1,2]G/[U]N [3]/[3,4]G/[U]N
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Figure 7-4: A heat map comparing flux-by-flux precision scores for traditional
tracers ([1]Gluc, [1]/[U]Gluc, [U]Gluc, and [U]Gln) and evolved tracer mixtures
([1,2]Gluc/[U]Gln and [3]/[3,4]Gluc/[U]Gln). Green indicates a superior precision
score for the evolved tracer and red indicates a superior score for the traditional
tracer mixture.
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Figure 7-5: Simulated confidence intervals for selected fluxes when using common
13C tracers compared to the high-scoring [1,2]Gluc/[U]Gln and [3]/[3,4]Gluc/[U]Gln
tracer mixtures. Whereas glucose- and glutamine-only tracers perform poorly in
different portions of the network, the tracer mixtures perform consistently well across
all of central carbon metabolism, including glycolysis (A)-(D), the pentose phosphate
pathway (E)-(H), and the TCA cycle (I)-(P).
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score would change. For the sake of comparison, we also varied the tracer composition

in a separate set of simulations to determine the sensitivity of the precision score with

respect to tracer composition. The results are shown in Figure 7-6. The precision

score sensitivity to the flux distribution is much less than the sensitivity to tracer

composition, so we can have confidence in our selected tracer mixtures even if we

are not absolutely certain of the actual metabolic flux distribution upon which the

optimization was based.

7.7 Analysis of Tracer Behavior

The evolved tracer mixtures matched or outperformed all of the standard tracers

throughout central carbon metabolism in almost every way. The precision score heat

map (Figure 7-4) quickly highlights the pentose phosphate pathway as the major area

of improvement. The optimized tracers also strongly outperformed [1]Gluc/[U]Gluc

and [1]Gluc tracers in the TCA cycle and the [U]Gluc and [U]Gln tracers in glycolysis.

To investigate our results further, we can return to actual confidence intervals and

compare fluxes tracer-by-tracer in Figure 7-5.

1. For most glycolytic fluxes, the evolved mixtures demonstrated more precise

confidence intervals than all standard tracers (Figures 7-5A, C and D). In a few

instances, the evolved mixtures led to confidence intervals comparable to those

of [1]/[U]Gluc but still better than the rest (Figure 7-5B).

2. For most fluxes of the pentose phosphate pathway, the evolved mixtures again

had more precise confidence intervals (Figures 7-5E, G and H). In a few cases,

[1]/[U]Gluc performed similarly well (Figure 7-5F).

3. For the majority of TCA cycle fluxes, the two evolved mixtures together with

the [U]Gln tracer produce the narrowest confidence intervals (Figures 7-51, K,

L, N and 0). For some fluxes, the evolved mixtures outperform all standard

tracers (Figures 7-5J, M and P).
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Figure 7-6: The sensitivity of precision score with respect to (A) tracer composition
and (B) flux distribution. Solid lines indicate the average precision score for a partic-
ular sum of squared residuals while shading indicates one standard deviation above
and below the average. In both subfigures, the initial tracer is a mixture of 100%
[1,2]Gluc and 100% [U]Gln and and the initial flux distribution is the carcinoma dis-
tribution used in the tracer optimization. In subfigure (A), the flux distribution is
held constant and the tracer composition is varied from a sum of squared residuals of
0 (original tracer) up to 4 (completely different tracers). In subfigure (B), the tracer
composition is held constant and the flux distribution is varied from a sum of squared
residuals of 0 (original tracer) up to 1000 (a simultaneous 15% change for all inde-
pendent fluxes). On these scales, the precision score is much more sensitive to tracer,
meaning that a high-scoring tracer will serve well even if the actual flux distribution
does not match the hypothetical distribution used in the genetic algorithm.
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The high precision score of our selected [1,2]Gluc/[U]Gln mixture is to be expected,

since [1,2]Gluc performed well in glycolysis and the PPP and [U]Gln performed well

in the TCA cycle, both for reasons previously noted in Chapter 6 (Figure 6-7). The

appearance of the [3]Gluc/[3,4]Gluc/[U]Gln mixture as an optimal tracer is more

surprising, and highlights the power of our evolutionary approach to find good tracers

that could not easily have been chosen by intuition. To shed light on the reasons

behind this mixture's efficacy, we can compare the precision of this optimal tracer

with three of its close relatives: [3]Gluc, [3,4]Gluc/[U]Gln, and [4]Gluc/[U]Gln. A

flux-by-flux precision score heat map of the selected tracer mixture versus these three

similar mixtures is shown in Figure 7-7. (TCA cycle fluxes are not shown since

precision scores there were very similar due to the common [U]Gln tracer.)

We first notice that [4]Gluc/[U]Gln scores lowest in the group, primarily because

of poor precision in the pentose phosphate pathway and secondarily in upper glycol-

ysis. As previously discussed (and shown in Figure 6-5B), the fourth atom of glucose

is trapped in a cycle and fails to spread other positions, regardless of the flux distri-

bution. When glucose is labeled both at the third and fourth positions, we see that

pentose phosphate precision improves; the third labeled carbon, not limited to a futile

cycle, is able to spread through the PPP atoms and as a result exhibits more sensitiv-

ity to fluxes there. The solitary [3]Gluc tracer represents an additional improvement

as the cycle of atoms that was previously fully labeled (and hence insensitive) is now

able to show gradations in labeling as the third glucose atom spreads through the

network.

Moving from [3]Gluc to our optimized glucose tracer of [3]Gluc/[3,4]Gluc repre-

sents the final step in the progression. The difference in precision is simple. The

precision of the S7P + GAP ++ E4P + F6P exchange flux increases greatly when we

partially label the fourth glucose atom. This increase is most likely due to the atom

transition E4P 2 ++ F6P 4 within this reaction, which brings label out of the pentose

phosphate pathway into glycolysis which then directly leads to the GLP measurement.

As one final demonstration of the mechanics behind the improved precision of

the evolved tracers, positional atom labeling is shown for these selected mixtures in
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Figure 7-7: A heat map comparing flux-by-flux precision scores for the optimized
[3]Gluc/[3,4]Gluc/[U]Gln tracer mixture to scores for the simpler [3]Gluc/[U]Gln,
[3,4]Gluc/[U]Gln, and [4]Gluc/[U]Gln tracer mixtures. Green indicates a superior
precision score for the evolved tracer and red indicates a superior score for the tradi-
tional tracer mixture.
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Figure 7-8. Both of these mixtures distribute label generously among multiple atoms

of measured compounds, endowing their labeling pattern with high sensitivity to its

flux distribution.

7.8 Experimental Validation

To validate these simulated and admittedly hypothetical results of our genetic al-

gorithm, we conducted actual isotopic metabolic flux analyses on the original A549

carcinoma cell line with one of our optimized tracer mixtures ([1,2]Gluc/[U]Gln), one

average tracer mixtures ([1]Gluc/[U]Gluc), and one poor tracer ([U]Gln). We com-

pared the resulting experimental precision scores to the previously simulated precision

scores for each of the same tracers (Figure 7-9).

We see that, most importantly, the general trend holds steady. In both simula-

tion and experiment, [1,2]Gluc/[U]Gln scores best, followed by [1]Gluc/[U]Gluc, with

[U]Gln scoring worst, validating our tracer optimization study. There are two major

differences in the two sets of scores; however, both can be accounted for.

First, overall, the experimental scores were lower. This is because the measure-

ment standard error used for the simulations was optimistically too low. In actuality,

the standard error was higher across the board, leading to increased confidence in-

tervals and decreased precision scores. Since this was a general effect, this did not

decrease the efficacy of the original optimization since all trends remain the same.

The second discrepancy is that the improvement in precision the [1,2]Gluc/[U]Gln

mixture offers over the [1]Gluc/[U]Gluc mixture is lessened when we move from sim-

ulation to experiment. This can be traced to the assumptions we originally made

regarding the P5P measurement. This measurement turned out to be less reliable

than expected and as a result was assigned a higher-than-average standard error.

Since much of the optimized mixture's advantage arises from gains made in pentose

phosphate pathway precision, and since many of the confidence intervals in this path-

way depend heavily on the P5P measurement, the optimized tracer's overall precision

score suffered somewhat relative to the other scores.
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Figure 7-8: Atom transition networks and positional fractional labeling for evolved
tracer mixtures of glucose and glutamine. Fractional labeling is indicated by a color
map, where dark red indicates all atoms at that position are 13C and dark blue that
all atoms 12C. No natural labeling was assumed in the creation of these maps. Atom
transitions are indicated for all positions where fractional 13 C labeling exceeds 10%.
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Figure 7-9: Simulated and experimental precision scores for experiments on
A549 carcinoma metabolism utilizing three different tracers: [1,2]Gluc/[U]Gln,
[1]Gluc/[U]Gluc, and [U]Gln. Experimental precision scores follow the same trend
predicted in theory, validating our method.
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7.9 Discussion

We have created a genetic algorithm that can search through a large, unpredictable

space of tracer combinations to find prominently performing mixtures for high-precision

metabolic flux analysis. We applied this algorithm to tumor metabolism and discov-

ered two optimal tracer mixtures, [1,2]Gluc/[U]Gln and [3]Gluc/[3,4]Gluc/[U]Gln.

These tracers lead to flux estimates of superior quality in both glycolysis and the

TCA cycle, where most typical, single-substrate glucose and glutamine tracers only

target the former or the latter, respectively. These evolved mixtures also offer es-

pecial improvement in pentose phosphate pathway analysis. We have confirmed our

theoretical results by experimenting with selected tracer mixtures and demonstrating

that they do indeed generate more precise flux confidence intervals.

These methods greatly strengthen experimental design capabilities for metabolic

flux analysis. In particular, with this method of tracer selection we can customize

tracers for targeted flux studies. Although much of current MFA research is directed

at measuring metabolism on large scales, some of the most powerful and meaningful

applications occur when we focus on specific pathways, and even specific reactions.

Our genetic algorithm for tracer optimization is a powerful tool in these kinds of

targeted studies.

Our evolutionary selection proved its usefulness when it highlighted a tracer con-

taining [3]Gluc and [3,4]Gluc as an important tracer in cancer metabolism. Even

though we had extensive experience with this particular network and flux distribu-

tion, this optimal tracer mixture was unexpected and nonintuitive and would have

most likely remained undiscovered in a less systematic search. By studying these

newly discovered tracers we can gain a deeper understanding of the complex network

of atom transitions in metabolism that will aid us in further experimental design.
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Chapter 8

NMFA of Yarrowia lipolytica

8.1 Introduction

Petroleum-based fuels have generated concerns due to rising prices, environmental

damages, and supply instabilities. As a result, interest has grown in alternative

energy sources, and in particular, liquid biofuels [137]. However, many issues still

wait to be addressed before biofuels can substantially cut into petroleum consumption.

Most of today's biofuels are produced from food crops (corn and soybeans), but it is

unlikely that we can significantly increase production of such crops without negatively

impacting food supplies [70]. To produce biofuels in bulk, we need to begin with a

non-food based feedstock, such as corn stover, switch grass, or some other sort of

cellulosic biomaterial [20].

Ethanol is by far the largest biofuel currently produced in the United States.

Unfortunately, ethanol has many serious drawbacks as a biofuel compared to its main

competitor, biodiesel. Ethanol requires significant amounts of energy for separation

and purification since it is miscible with water, and overall yields only 25% more

energy than that consumed in its production, while biodiesel produces 93% more

[70]. Biodiesel also generates less pollution [113].

One promising solution that we are currently studying is lipid production by the

oleaginous yeast, Yarrowia lipolytica. This organism has great potential as a biofu-

els producer. It is able to consume a wide variety of substrates, including sugars,
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n-alkenes, 1-alkenes, acetate, and alcohols [17, 75, 82, 109, 144]. Y. lipolytica is able

to produce a variety of metabolic byproducts in large quantities, including citrate,

isocitrate, a-ketoglutarate, and most promisingly, triglycerides [76, 96, 111, 112].

Triglycerides formed intracellularly by Yarriowia's metabolism can be harvested and

transformed into biodiesel via base-catalyzed transesterfication, a well-established

method for commercial-scale production (Figure 8-1) [147]. If Yarrowia can be engi-

neered to both consume cellulosic carbon sources and produce sufficient amounts of

lipids, it could be a powerful catalyst for biofuels production.

Our efforts have been focused on understanding and increasing lipid production

in Y. lipolytica, using both genetic and environmental means. We worked with a new

strain and analyzed it for lipid production under different bioreactor conditions. In

particular, we varied aeration rates to see if increased oxygen availability allowed for

greater lipid production. We measured incoming and outgoing extracellular fluxes

and observed how carbon utilization changed both over time and at different levels of

aeration. We conducted NMFA experiments at different growth phases and studied

the results in an attempt to understand how lipid production might be optimized.

We saw that by tripling our aeration, fatty acid yields increased by as much as

60%. These increases were accomplished by rerouting carbon through the pentose

phosphate pathway.

8.2 Bioreactor Materials and Methods

Yarrowia was grown in medium containing of 3.4 g L- 1 YNB (MP Biomedicals), 20 g

L- 1 glucose (Mallinckrodt), and 3 g L- 1 ammonium sulfate (Mallinckrodt). Cultures

were grown in shake flasks at 300C to an optical density of greater than 4 and then were

used to inoculate 1.3-L batch reactors (New Brunswick Scientific) with an initially

targeted optical density of 0.5. The initial reactor working volume was 900 mL

(before inoculation). Glucose boluses were given to reactors when necessary to keep

concentrations above 1 g L- 1. Bioreactors were controlled at a pH of 5.5 and a

temperature of 280 C. One set of bioreactors was held to a sparging rate of 2.5 L
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Figure 8-1: The transesterification of a triglyceride, where R1, R2, and R3 are alkyl
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min- 1 of air with a maximum agitation rate of 600 rpm, while another set was held

to a sparging rate of 7.5 L min-1 and an agitation rate of 1000 rpm.

Samples were taken approximately once per doubling time (about every three

hours). Glucose and ammonia were measured on a YSI 7100 system (YSI Life Sci-

ences). Optical density was measured at 600 nm on an Ultraspec 2100 pro spectropho-

tometer (Amersham Biosciences). Dry cell weights were calculated using a previously

determined correlation (0.37 g L- 1 OD- 1). Extracellular citrate was measured in a

high-performance liquid chromatography (HPLC) system with a Waters 2690 sepa-

rations module connected to a Waters 410 refractive index detector (Waters). The

samples were separated on a BioRad Aminex HPX-87H ion exclusion column for or-

ganic acid analysis with 14 mM sulfuric acid as the mobile phase at a flow rate of

0.7 mL min-1 with an organic acid column. The percentage of CO 2 in the offgas was

measured with an Agilent 300A Micro GC (Agilent). The offgas flow rate was also

monitored and recorded.

8.3 Fatty Acid Quantification

To measure intracellular lipid amounts (primarily palmitate, stearate, and oleate), we

first subjected a defined amount of biomass to 30 minutes of vortexing in a mixture

of 5 mL chloroform, 2.5 mL methanol, and 2 mL of water to lyse cells and extract

lipids [56, 152]. The resulting mixture was centrifuged at 2000 g for 10 minutes.

The chloroform layer was removed, dried, and treated with with Methyl-8 reagent

(Agilent) at 600C for 60 minutes to transesterify fatty acids.

Gas chromatography/mass spectrometry (GC/MS) analysis for fatty acid identi-

fication and quantification was performed using an Agilent 6890 GC equipped with a

30m DB-35MS capillary column connected to an Agilent 5975B MS operating under

electron impact (EI) ionization at 70 eV. One p1L of sample was injected in a 9:1 split

mode at 2800C, using helium as the carrier gas at a flow rate of 1 mL min-1 . The

GC oven temperature was held at 1000C for 5 min and ramped to 1750C (rate: 150C

min-1 , hold: 1 min), 2050C (rate: 3oC min-1 , hold: 5 min), 2150C (rate: 50C min-1 ,
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hold: 4 min), 2200C (rate: 2.50C min-1 , no hold), 2550 (rate: 50C min-1 , no hold),

and finally 2900C (rate: 150C min-1 , no hold) for a total run time of approximately

44 min. The MS source and quadrupole were held at 2800C and 1500C, respectively,

and the detector was operated in scan mode.

Palmitate, oleate, and stearate peaks were identified at retention times of 17.3,

21.7, and 22.0 minutes, respectively. Ion ranges of 270-274, 264-268, and 284-288 were

respectively integrated for each of the three fatty acids and compared with similar

peaks in a defined standard (Sigma-Aldrich) to arrive at intracellular concentration

measurements.

8.4 NMFA Materials and Methods

NMFA experiments were conducted at three different growth phases under low aer-

ation and twice under high aeration (see Figure 8.1). For each experiment, 10 mL

of 450 g L- 1 [1- 13C]glucose and 150 g L- 1 [U- 13 C6]glucose (Cambridge Isotope Lab-

oratories) were added to the reactor culture after which sampling was conducted in

a geometric sequence. One manual sample was taken before labeling. Eight samples

were collected using the rapid sampling apparatus at 2, 4, 8, 15, 30, 60, 120, and 240

seconds after labeling, and seven additional samples were collected manually at 8, 15,

30, 60, 120, 180, and 240 minutes (Figure 8-2). Some sampling irregularities occurred

from experiment to experiment (e.g., small timing differences and occasional missed

samples), but since each flux analysis was self-contained, this did not significantly

affect the overall results and our ability to compare different experiments. Table 8.2

lists the intracellular organic and amino acid fragments whose labeling was measured

via GC/MS and used as inputs for NMFA.

Samples were immediately quenched in a 60% (v/v) methanol solution held at

-250C in an ethanol cold bath. Quenched samples were quickly centrifuged (at 2000 g

and -100C for 10 min), decanted, and rinsed with cold pure methanol. A mixture

of 5, 2.5, and 2 mL of cold chloroform, methanol, and water (respectively) was next

added to the cell pellet, and the mixture was vortexed for 30 minutes to lyse cells
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Experiment Li L2 HI H2
Aeration (L min-1 ) 250 250 750 750
Growth Phase Late Linear Stationary Late Linear Stationary
Start Time (h) 21.58 38.07 22.63 29.68
End Time (h) 25.58 41.98 25.65 33.68
Samples 13 12 12 13

Table 8.1: A list of the bioreactor-based NMFA experiments we conducted on
Yarrowia lipolytica. Nonstationary flux analysis was conducted during the late linear
and stationary growth phases in both experiments under low (Li and L2) and high
(HI and H2) aeration.
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75% [1-13C] glucose
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Figure 8-2: Typical bioreactor sampling times for NMFA experiments of Y. lipolytica.
We attempted to pattern sampling geometrically and thus capture both fast and slow
labeling dynamics of the system. Rapid samples were collected at 2, 4, 8, 15, 30,
120, and 240 seconds. Manual samples were collected at 8, 15, 30, 60, 120, 180, and
240 minutes. Acceptable variations in sampling times occurred from experiment to
experiment due to differences in timing and occasionally missed samples.
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Metabolite
AKG
Ala
Ala
Asp
Asp
Asp
Asp
Cit
Gln
Glu
Glu
Gly
Gly
Ile
Ile
Leu
Mal
Pyr
Ser
Ser
Ser
Ser
Suc
Thr
Thr
Val
Val

Mass
346
232
260
302
376
390
418
459
431
330
432
218
246
200
274
274
419
174
288
302
362
390
289
376
404
260
288

Carbons
12345

23
123
12
12

234
1234

123456
12345
2345
12345

2
12

23456
23456
23456
1234
123
23
12
23

123
1234
234

1234
2345

12345

Formula
C14H2sO5 NSi2
CioH 26ONSi 2
CnjH 26O2NSi2
C14H320 2NSi2
C16H3sO3NSi 3
C17H40O3NSi3
C1 H40O4NSi3
C20H390 6 Si 3

C19H43 0 3N2Si 3
C16H36O2NSi 2
CigH 420 4NSi3
C9H240NSi 2

C10H240 2NSi2
CnjH 26NSi

C13H32ONSi 2
C13H32ONSi 2
Ci 8H390 5 Si3
C6H120 3NSi
C14H34NOSi 2
C14H320 2NSi2

C16 H40 O2NSi 3
C17H40O3 NSi3
C12H2 O4Si2

C17H420 2NSi 3
C1 H42O3NSi 3
C12H30ONSi 2
C13H30O2NSi 2

Table 8.2: Free organic and amino acid fragment MIDs measured in the Y. lipolytica
study. Intracellular metabolites were derivatized to form TBDMS functional groups
and then were fragmented and measured by GC/MS.
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and extract intracellular metabolites.

The vortexed mixtures were centrifuged again at the same settings. The upper

aqueous layer was removed and set aside. Cold methanol (2 mL) and water (2 mL)

were added to the remaining chloroform layer, and the new mixture was vortexed for

30 seconds and centrifuged a third time at the same settings. The new upper aqueous

layer was removed and pooled with the previous. This combined methanol/water

extraction solution was dried under air.

Dried polar metabolites were dissolved in 60 pL of 2% methoxyamine hydrochlo-

ride in pyridine (Pierce), sonicated for 30 minutes, and held at 370C for 2 hours. After

dissolution and reaction, 90 p1L MBTSTFA + 1% TBDMCS (Pierce) was added and

samples were incubated at 550C for 60 minutes. Gas chromatography/mass spec-

trometry (GC/MS) analysis was performed using an Agilent 6890 GC equipped with

a 30m DB-35MS capillary column connected to an Agilent 5975B MS operating under

electron impact (EI) ionization at 70 eV. One iL of sample was injected in a 9:1 split

mode at 2700C, using helium as the carrier gas at a flow rate of 1 mL min -1. The

GC oven temperature was held at 100C for 3 min and increased to 3000C at 3.5oC

min-1 for a total run time of approximately 60 min. The MS source and quadrupole

were held at 2300C and 150C, respectively, and the detector was operated in scan

mode.

Extracellular analysis was conducted from each rapid and manual sampling time

point to measure glucose MIDs via aldonitrile pentapropionate derivatization and

GC/MS as explained in Chapter 5. MIDs were corrected for natural abundances

and used to calculate the fractional abundances of [1- 13C] and [U- 13C6]glucose in the

media over the course of each NMFA experiment.

8.5 Extracellular Flux Fitting

The measurement of extracellular fluxes is very important to the overall flux estima-

tion, since flux measurements serve as stoichiometric anchors for the remainder of the

analysis. Because fluxes are derivatives of extracellular concentration measurements,

145



small errors in the primary data can lead to large amounts of noise in calculated

fluxes, dramatically changing the final estimated flux distribution. In order to utilize

the full set of our extracellular parameters in a systematic way to obtain flux mea-

surements at the times of our NMFA experiments, we first observed distinct phases

of growth over the course of the experiment and second applied a simple parameter

fitting scheme to give each measurment equal weight in the final results.

Cell growth is exponential over the first 17 hours of the experiment, as expected.

However, instead of quickly leveling out to a stationary phase, the system enters a

prolonged "linear" phase where biomass and metabolic byproducts are formed at a

linear rate. After about 30 hours, the system then enters a stationary phase where

cell growth ends but carbon dioxide and citrate production continue. We assumed

that for exponential growth,

b (t) = bexp,o -exp (kb,exp - t) (8.1)

x (t) = k,exp -bexp,O [exp (kb,exp -t) - 1]

where b and x are the biomass and byproduct concentrations in time, bexp,O is the

initial biomass concentration, kb,exp and kx,exp are parameters to be estimated in the

fitting process, and t is time. During the linear and stationary phases, we modeled

the system with the following, simple equations:

b (t) = biin,o + kin - t (82)

x (t) = Xiin,o + kx,iin - t

where biin,o and Xiin,o are the initial biomass and byproduct concentrations (in the

linear phase of interest) and kb,in and kxiin are parameters to be estimated.

"Effective concentrations" are numerically calculated for carbon dioxide for Equa-

tions 8.1 and 8.2 according to the expression below:

CCO 2 (t) = j f F (T) -fco2 (T) - [I + min 0, dT (8.3)
V (t ) oV (T) )

where CCO 2 is the effective concentration of carbon dioxide, p is the density of carbon

dioxide, V is the culture volume, F is the bioreactor's offgas flow rate, fco2 is the
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mass fraction of carbon dioxide in the offgas, and t is time.

Both the low- and high-aeration experiments underwent separate fitting proce-

dures with the assumption that different metabolic behavior might be occurring un-

der the different environmental conditions. Both fits were overdetermined, so a least

squares regression was performed, giving us the constants shown in Table 8.3. How-

ever, because there were very few degrees of freedom in both fits (i.e., the fits were

only slightly overdetermined), our estimated measurements closely matched the ac-

tual concentrations (see Figures 8-3 and 8-4). This allowed us to obtain smooth

profiles and consistent extracellular flux calculations without deviating far from our

measurements. The extracellular fluxes arising from this fitting process are shown in

Table 8.4.

8.6 Carbon Balances

We measured all major carbon-containing species entering and exiting the bioreactors

and then compared the overall molar carbon flux into and out of the system to

determine if the inputs and outputs were correctly balanced. Glucose is the main

input to the system and carbon dioxide, citrate, biomass lipids, and residual biomass

the outputs. To convert biomass to carbon-moles, we assumed that the elemental

composition of Yarrowia was similar to previously reported values for Saccharomyces

cerevisiae (CH 1.940 0.52No. 25Po.025) [138]. Carbon balances for both the low-aeration

and high-aeration runs are shown in Figures 8-5A and B, respectively. A comparison

of the balances yields some interesting observations:

1. The measured amounts of carbon entering and exiting the system show very

good agreement. This strong correlation validates our extracellular measure-

ment methods.

2. Citrate production is slightly up until the stationary phase under both aeration

conditions, when it becomes the major metabolic product.
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kexponential

Low High
kiinear

Low High
kstationary

Low High
Residual biomass 0.2867 0.2551 0.6179 0.2875 0.0000 0.0677
Glucose 1.9792 2.7468 2.1881 1.9250 1.4553 1.6824
Carbon dioxide 0.9949 1.9355 1.1771 1.2876 0.6811 0.6790
Citrate 0.0000 0.0000 0.1644 0.1785 1.0487 0.8221
Palmitate 0.0451 0.1565 0.1641 0.2166 0.0000 0.0000
Stearate 0.0810 0.3861 0.2482 0.3597 0.0226 0.0232
Oleate 0.0558 0.0000 0.0021 0.0420 0.0105 0.0071

Table 8.3: Fitted rate constants for metabolic byproducts of Y. lipolytica over expo-
nential, linear, and stationary phases calculated using Equation 8.1 and 8.2. Residual
biomass constants in the exponential phase have units h- 1 and byproducts in the ex-
ponential phase have units (g product) (g residual biomass)- 1 . All constants in the
linear and stationary phases have units of (g product) L-1 h- 1.
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Figure 8-3: Fitted parameters for metabolic byproducts under low-aeration condi-
tions. Biomass, citrate, glucose, carbon dioxide, and lipid measurements were used
to model exponential, linear, and stationary growth phases according to Equations
8.1 and 8.2. Carbon dioxide values shown here are in the form of "effective concentra-
tions", calculated from offgas flow rates, offgas CO 2 concentrations, and cell culture
volume changes.
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Figure 8-4: Fitted parameters for metabolic byproducts under high-aeration condi-
tions. Biomass, citrate, glucose, carbon dioxide, and lipid measurements were used to
model exponential, linear, and stationary growth phases according to Equations 8.1
and 8.2. Carbon dioxide values shown here are in the form of "effective concentra-
tions", calculated from offgas flow rates, offgas CO 2 concentrations, and cell culture
volume changes.
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Vexponential

Low High
Vlinear

Low High
Vstationary

Low High
Residual biomass 1.00 1.00 21.67 9.27 0.00 2.84
Glucose 4.22 9.34 12.84 12.39 8.23 8.47
Carbon dioxide 2.09 4.58 24.90 25.05 15.15 17.16
Citrate 0.00 0.00 0.80 0.80 5.35 4.76
Palmitate 0.02 0.06 0.60 0.72 0.00 0.00
Stearate 0.03 0.14 0.81 1.08 0.08 0.09
Oleate 0.02 0.00 0.01 0.13 0.04 0.03

Table 8.4: Extracellular fluxes for metabolic byproducts of Y. lipolytica over exponen-
tial, linear, and stationary phases. Fluxes in the exponential phase have units (mmol
product) (mmol residual biomass)- 1 h- 1 and fluxes in the linear and stationary phases
have units (mmol product) L- 1 h- 1.
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3. High aeration appears to induce higher aerobic activity, as the fraction of carbon

outputed in the form of CO 2 increases from 34 to 41% when aeration is increased.

4. Approximately the same amount of biomass is produced under both aeration

conditions and over all growth phases. However, a significantly larger fraction

of biomass is devoted to intracellular lipids (presumably in the form of triacyl-

glycerides) under high-aeration conditions.

We can further investigate the last point mentioned above by calculating lipid

yields (grams per gram glucose) over time for each level of bioreactor aeration. In

Figure 8-6, both instantaneous and cumulative yields are plotted with respect to

time. We used our fitted extracellular fluxes in these calculations, which is why three

the three growth phases are distinctly and smoothly represented. Lipid yields are

significantly higher under high aeration in both the exponential phase (0.09 versus

0.20 g g-1) and linear phase (0.19 versus 0.32 g g- 1). Under high aeration, lipid yields

approach but never exceed the maximum stoichiometric yield of 0.38 g g- 1.

8.7 Flux Estimation

A network of central metabolism was created to model Yarrowia lipolytica. The

complete set of reactions and atom transitions can be found in Tables 8.5 and 8.6.

Reactions representing glycolysis, the pentose phosphate pathway, the citric acid

cycle, amino acid biosynthesis, anaplerosis, the transhydrogenase cycle, one-carbon

metabolism, and extracellular transport were all included. Several metabolites were

assumed to be present in both the cytosol and the mitochondria (namely, malate,

oxaloacetate, and acetyl-CoA). Other metabolites known to be present in both com-

partments (e.g., pyruvate) were assumed to have rapid exchange rates and therefore

were lumped and treated as one. The proteinogenic amino acid composition of Sac-

charomyces cerevisiae was used to set the stoichiometry of amino acids in the biomass

formation reaction [138]. The stoichiometric ratio of all other metabolites going to

biomass is patterned after reactions in a previous study of E. coli [12]. We assumed

152



(A) Low Aeration

Citrate
Carbon dioxide

Non-fat biomass

Fatty acids
1 --- Glucose

5 10 15 20 25 30 35
Time (h)

(B) High Aeration

Citrate
Carbon dioxide
Non-fat biomass
Fatty acids

- - Glucose

0 -- ~-

0 5 10 15 20 25 30 35
Time (h)

Figure 8-5: Carbon balances for Yarrowia lipolytica bioreactors under (A) low aeration
and (B) high aeration. The carbon-containing input was glucose, represented by the
dashed line, while the major carbon-containing products were intracellular fatty acids,
other biomass, carbon dioxide, and citrate. The cumulative molar carbon consumed
or produced as any of these substrates or products, respectively, is represented by the
area of the "slice" corresponding to the particular substance.
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Figure 8-6: Instantaneous and cumulative yields for lipids on glucose by Yarrowia
lipolytica in bioreactors under low- and high-aeration conditions. Yields are calculated
using the fitted fluxes in Table 8.3.
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that NADPH production and consumption were balanced since NADPH is critical

to lipid production and since it only has a limited number of sources and sinks in

metabolism [26]. The pentose phosphate pathway and the transhydrogenase cycle

were the major NADPH sources while lipid and amino acid synthesis were the major

sinks. NADPH is not able to transverse membranes was modeled solely in the cytosol.

Transient GC/MS measurements were successfully taken; Tables E.1 through E.8

in Appendix E list every mass isotopomer measurement for every time point of each

experiment. Fits were successfully obtained for each NMFA experiment. Table 8.7

shows that each estimation was highly overdetermined, and the resulting sum of

squared residuals fell well within the expected lower and upper bounds. Simulated

measurement profiles resulting from the final estimated flux distribution are plot-

ted over measurements in Figures E-1 through E-4 in Appendix E. The simulated

values almost all completely fall within the standard error of the experimental mea-

surements. Studying the measurement profiles more closely, we see that the system

behave dynamically as expected. The metabolites farthest upstream (pyruvate and

alanine), increase in labeling the most quickly, while the metabolites downstream in

the TCA cycle display slower labeling behavior. Some peripheral metabolites, such as

leucine, isoleucine, and threonine, never label completely even though they come to a

steady state, suggesting that their pools are being diluted either during metabolism

via proteinogenic amino acid degradation or during measurement via sequestered

"cold" pools. As a result, a handful of dilution fluxes of both kinds were inserted into

the model to account for these effects.

Fluxes were successfully estimated for each NMFA experiment. Flux distributions

for each experiment are presented in Figure 8-7. (Values shown have been normalized

to glucose input fluxes of 100 for each experiment.) A comprehensive list of flux

values and confidence intervals for the entire network can be found in Appendix E in

Tables E.9 through E.12. Confidence intervals were excellent for almost all estimated

fluxes; in most cases the 95% intervals for net fluxes were between ±5% and ±10% of

the flux value.
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Upper Glycolysis
v1 Glucext (abcdef) ++ G6P (abcdef)
v2  G6P (abcdef) + F6P (abcdef)
v3  F6P (abcdef) - DHAP (cba) + GAP (def)
V4 DHAP (abc) ++ GAP (abc)

v 5  DHAP (abc) - Glyc (abc)

Lower Glycolysis

v 6  GAP (abc) ++ 3PG (abc)

v7  3PG (abc) PEP (abc)
v 8  PEP (abc) - Pyr (abc)
vg Pyr (abc) -+ AcCoA (bc) + CO 2 (a)

Pentose Phosphate Pathway
vio G6P (abcdef) - P5P (bedef) + CO 2 (a) + 2 NADPH
vn P5P (abcde) + P5P (fghij) + S7P (abfghij) + GAP (cde)
v1 2  S7P (abcdefg) + GAP (hij) + F6P (abchij) + E4P (defg)
v13  P5P (abcde) + E4P (fghi) + F6P (abfghi) + GAP (cde)

Citric Acid Cycle
v14  AcCoAmit (ab) + OAAmit (cdef) Cit (fedbac)
v15  Cit (abedef) AKG (abede) + C0 2 (f)
v1 6  AKG (abede) Sue (bede) + CO2 (a)
V17  Suc (abed) 1/2 Fum (abed) + 1/2 Fum (deba)
v18  Fum (abed) + 1/2 Malmit (abed) + 1/2 Malmit (deba)
vj 9  Malmit (abed) OAAit (abcd)

Transhydrogenase Cycle
V20  Pyr (abc) + CO2 (d) + A (abed)
V21  OAA (abed) bMal (abCd)
V2 2  Mal (abed) Pyr (abe) + CO2 (d) + NADPH
v23  Mal (abcd) ++ MaAmit (abed)
v 24  OAA (abed) ++ PEP (abc) + CO 2 (d)

One-Carbon Metabolism
v 25 MEETHF (a)
V26 MEETHF (a)

- METHF (a)

- FTHF (a)

Table 8.5: A list of reactions and atom transitions within the Y. lipolytica network
for glycolysis, the pentose phosphate pathway, the citric acid cycle, and others. Car-
bon atom transitions are indicated within parentheses. Irreversible and reversible
reactions are indicated by the symbols -+ and ++, respectively.
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Glu (abede)
Gln (abcde)
Pro (abcde)
Arg (abedef) + AKG (ghijk) + Fum
(imno)
Asp (abed) + AKG (efghi)
Asn (abed)

Amino Acid Biosynthesis
v2 7  AKG (abcde) + NADPH
v28  Glu (abcde)
V29 Glu (abcde) + 2 NADPH
v30  Glu (abcde) + CO 2 (f) + Gln (ghijk) +

Asp (lmno) + NADPH
V31 OAA (abcd) + Glu (efghi)

V32 Asp (abed)
V33 Pyr (abc) + Glu (defgh)
V34 3PG (abc) + Glu (defgh)

v3 5  Ser (abc)
V36 Gly (ab)
v37  Thr (abcd)
v3 8  Ser (abc) + 4 NADPH
v3 9  Asp (abcd) + Pyr (efg) + Glu (hijkl) +

2 NADPH
v40 Asp (abcd) + 2 NADPH
v41 Asp (abcd) + METHF (e) + Cys (fgh)

+ 2 NADPH
V42 Pyr (abc) + Pyr (def) + Glu (ghijk) +

NADPH
V43 AcCoAmit (ab) + Pyr (cde) + Pyr (fgh)

+ Glu (ijklm) + NADPH
v4 4  Thr (abed) + Pyr (efg) + Glu (hijkl)
V45 PEP (abc) + PEP (def) + E4P (ghij)

+ Glu (klmno) + NADPH
v4 6 PEP (abc) + PEP (def) + E4P (ghij)

+ Glu (klmno) + NADPH
v4 7  Ser (abe) + P5P (defgh) + PEP (ijk) +

E4P (imno) + PEP (pqr) + Gln (stuvw)
+ NADPH

v4 8  P5P (abcde) + FTHF (f) + Gln (ghijk)
+ Asp (imno)

AKG (hijkl)

Thr (abcd)
Met (abede) + Pyr (fgh)

Val (abeef) + CO2 (d) + AKG (ghijk)

Leu (abdghe) + CO 2 (C)
AKG (ijklm)
Ile (abfedg) + CO 2 (e) +
Phe (abcefghij) + CO 2
(klmno)

-+ Tyr (abcefghij) + CO2

+ CO 2 (f) +

AKG (hijkl)
(d) + AKG

(d) + AKG
(klmno)
Trp (abcedklmnoj) + CO 2 (i) + GAP
(fgh) + Pyr (pqr) + Glu (stuvw)

His (edcbaf) + AKG (ghijk) + Fum

(imno)

Product Formation

V49 CO 2 (a)
v50  Cit (abcdef)
v51  Glyc (abc)
V5 2  Cit (abcdef)
V53 Glyc + 24 AcCoA
V54 Glyc + 27 AcCoA

C0 2,ext (a)
Citext (abcdef)
Glycext (abc)
AcCoA (ed) + OAA (feba)
C16tag (ab)
C18tag (ab)

v55  0.607 Ala + 0.723 Arg + 0.819 Asp + 0.819 Asn + 0.116 Cys + 0.865 Glu + 0.865 Gln +
0.723 Gly + 1.174 His + 0.671 Ile + 1.020 Leu + 0.400 Lys + 0.607 Met + 0.516 Phe +
0.555 Pro + 0.671 Ser + 0.181 Thr + 0.516 Trp + 0.839 Tyr + 0.219 Val + 0.591 G6P +
0.205 F6P + 2.175 P5P + 0.372 GAP + 1.786 3PG + 0.147 PEP + 0.239 Pyr + 0.251
AKG + 0.981 OAA + 1.278 MEETHF -+ 100 Biomass

Table 8.6: A list of reactions and atom transitions within the Y. lipolytica network
for amino acid biosynthesis and product formation. Carbon atom transitions are
indicated within parentheses. Irreversible and reversible reactions are indicated by
the symbols -* and *-, respectively.
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Ala (abc) + AKG (defgh)
Ser (abc) + AKG (defgh)
Gly (ab) + MEETHF (c)

CO 2 (a) + MEETHF (b)
Gly (ab) + AcCoAmit (ed)
Cys (abc)
Lys (abcdgf) + CO 2 (e) +



Experiment LI L2 HI H2
Aeration Low Low High High
Growth Linear Stationary Linear Stationary
SSE lower bound 1686 1582 1547 1475
SSE actual 1787 1690 1715 1486
SSE upper bound 1922 1810 1773 1696
Measurements 1872 1764 1728 1654
Free parameters 70 70 70 70
Degrees of freedom 1802 1694 1658 1584

Table 8.7: Fits for each of the five Yarrowia experiments. A statistically significant
fit was obtained for every set of conditions using the same model network.
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Figure 8-7: Flux distributions for Y. lipolytica during the late linear and stationary
growth phases and at low and high aeration rates. Values are normalized to a glucose
input flux of 100. Undetermined values are indicated with question marks. Net and
exchange fluxes are listed with and without parentheses, respectively. Complete sets
of estimated flux values, lower bounds, and upper bounds can be found in Appendix
E in Tables E.9 through E.12.
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8.8 Discussion

A review of the flux estimation reveals that we can place confidence in the results.

For almost all net fluxes, the 95% confidence intervals fell between ±5% and ±10% of

the flux values. Exchange fluxes, as usual, were more difficult to resolve. However,

we were able to calculate reasonable confidence intervals for some, including isoci-

trate dehydrogenase exchange (Cit ++ AKG), fumarate hydratase exchange (Fum ++

Mal), transketolase exchanges (2 P5P ++ S7P + GAP and P5P + E4P ++ F6P +

GAP), transaldolase exchange (S7P + GAP ++ F6P + E4P), and glycine hydrox-

ymethyltransferase exchange (Ser ++ Gly). These tightly defined net and exchange

fluxes were possible because of our experimental design. The large number of isotopic

measurements conducted over multiple time scales together with the comprehensive

measurement of extracellular carbon fluxes are the major reasons for the overall pre-

cision we observe in these fluxes. These narrow confidence intervals are especially

important in this comparative study so that differences in metabolic states are de-

tectable.

We can compare linear-phase (LI and H1) and stationary-phase (L2 and H2) fluxes

to identify key shifts in metabolism that occur as cells transition out of growth. We

observe generally higher net and exchange fluxes in the TCA cycle during stationary

phase, most likely because less material needs to be diverted out into amino acid

biosynthesis. We also see lower carbon dioxide production in the stationary phase,

which corresponds to a decreased reliance on the pentose phosphate pathway (which

in turn we will discussed in greater detail in the following paragraphs). Flux through

lower glycolysis and into the upper TCA cycle remains fairly consistent from the

linear to stationary growth phases. In fact, regardless of the cells' growth, citrate

seems to be a fairly important and central node in Y. lipolytica metabolism. During

times of high lipid production, carbon flows through citrate and is then converted to

acetyl-CoA (by cytosolic citric lyase) and from there enters fatty acid biosynthesis.

During times of low growth and low lipid production, large amounts of carbon are

still routed through citrate and then secreted extracellularly.
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The most striking difference between linear and stationary metabolism is the need

(or lack thereof) for the cofactor NADPH. Y. lipolytica cells in the linear growth phase

are producing large amounts of amino and fatty acids, both of which require NADPH.

Stationary cells, meanwhile, build insignificant amounts of these byproducts and use

much less NADPH. The metabolic demands of growing Y. lipolytica for NADPH are

manifested in the pentose phosphate pathway. Two molecules of NADPH are pro-

duced for every molecule of glucose-6-phosphate converted into ribulose. (The specific

enzymes responsible for NADPH production are glucose-6-phosphate 1-dehydrogenase

and 6-phosphogluconate dehydrogenase.) Metabolism in both the Li and H1 experi-

ments routed 42 and 43% of glucose entering the system into the pentose phosphate

pathway to generate this valuable NADPH. (The remaining glucose was sent to gly-

colysis.) However, in the L2 and H2 experiments, only 16 and 7% of glucose was

converted into ribulose. Pentose phosphate exchange rates were generally higher

during linear phase, also indicating an increased level of enzymatic activity in this

pathway during growth.

The transhydrogenase flux has been proposed as an important and primary source

of NADPH for fatty acid synthesis [118, 119]. Figure 8-8 diagrams this network in

the context of lipid biosynthesis. In this cycle, pyruvate is converted to oxaloacetate

and oxaloacetate to malate (by the enzymes oxaloacetate carboxylyase and malate

dehydrogenase, respectively). The former reaction consumes NADH. Finally, malic

enzyme catalyzes the reaction of malate to pyruvate, producing NADPH and com-

pleting the cycle. The transhydrogenase cycle was included our model network for

Y. lipolytica, but interestingly, was only marginally active across all scenarios. Further

inspection reveals that malic enzyme activity is not ubiquitous across all oleaginous

microorganisms and may be absent in some oleaginous yeasts [118].

Another flux analyis study of several species of yeast also validates our obser-

vations of high pentose phosphate pathway activity and low malic enzyme activity.

Blank et al has reported a relative pentose phosphate flux of 40% in Yarrowia lipolyt-

ica, and has found that a variety of yeasts, including S. exiguus, S. cerevisiae, K. ther-

motolerans, C. tropicalis, and P. angusta all rely primarily on the pentose phosphate
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Figure 8-8: The transhydrogenase cycle and other key pathways in lipid accumulation.
As part of the transhydrogenase cycle, cytosolic malic enzyme converts malate to
pyruvate, generating NADPH in the process that can be used in lipid biosynthesis.
This figure is adapted from Ratledge and Wynn 2002 [119].
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pathway for NADPH production (from 60% to as much as 90% depending on the

specific organism) [21]. They also note that the flux through malic enzyme as an

alternative for NADPH was found to be low in all yeasts investigated. These findings

coupled with the results of our flux analysis suggest that if NADPH is limiting lipid

synthesis, the currently dormant transhydrogenase cycle might prove to be a fruitful

target for metabolic engineering to increase lipid flux.

To understand the impact of increased aeration on Yarrowia metabolism, and es-

pecially on fatty acid synthesis, we can compare and contrast experiments Li and H1.

Since measured fluxes are treated not as fixed values but as measurements alongside

metabolite mass isotopomers, estimated fluxes are not guaranteed to perfectly reflect

the originally measured values. However, with respect to our lipid synthesis fluxes, we

see our original trend not only holds true but is actually accentuated with the consid-

eration of our isotopic labeling experiments. Instead of the originally calculated 40%

increase, we now observe a doubling in lipid production at greater aeration. Both

extracellular and isotopic data agree that high aeration confers a significant boost to

fatty acid synthesis.

Cells under high aeration did not demonstrate an increased need for NADPH

because of high fatty acid production. Amino acid synthesis in these conditions is

much reduced, freeing up NADPH and allowing it to be utilized elsewhere. For

this reason, we see that the pentose phosphate pathway fluxes in Li and HI remain

almost constant. It appears that cells in Li are growing in number (mass per cell

remains constant) while cells in Li are growing in size (cell count per volume remains

constant).

We also notice a relatively large glycerol output flux in the linear, low-aeration

experiment: 26% of incoming glucose exits the system as glycerol in low aeration,

but this drops 16% with high aeration. No sizeable amounts of extracellular glycerol

were measured, so it is most likely that this represents carbon exiting the network

as carbohydrate storage (e.g., trehalose or glycogen). Because the model lacks a free

G6P or F6P output flux, these exiting carbohydrates are assigned to glycerol output.

Y. lipolytica is a naturally dimorphic yeast forming yeast cells, pseudohyphae, and
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septate hyphae under different conditions [16]. Vega and Dominguez have compared

the compositions of yeast and hyphal cells and have shown that hyphal walls exhibit

a higher content of aminosugars [150]. Other studies have indicated that starvation

conditions induce hyphal growth of Y. lipolytica [66]. These findings suggest increas-

ing aeration could improve growth conditions (by reducing the fraction of hypoxic

cells in the culture) which in turn would lead to less hyphae and more yeast-like cells

and lower amounts of cell-wall carbohydrates.

We have observed that lipid production in a fed-batch bioreactor culture of Y. lipoly-

tica is highest during the late growth and early stationary phase. We have shown that

lipid production can be significantly increased by increasing aeration. Cell metabolism

was studied during different growth stages and aeration rates to better understand

the reasons behind this upshift in production. We saw that the pentose phosphate

pathway was very active at times of high amino acid and fatty acid production and

served as the primary source of NADPH for these anabolic activities. Meanwhile, the

transhydrogenase cycle was negligibly active and played only a minor role in cofactor

synthesis. Cells in a higly aerated environment diverted less resources to carbohydrate

and amino acid synthesis, indicating that (1) yeast-like cell morphology is dominant

in these conditions and (2) cells were growing in size (due to triacylglyceride accu-

mulation) instead of in number.
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Chapter 9

Recommendations for Future

Research

9.1 Dynamic Metabolic Flux Analysis

Current methods of flux analysis allow for flux estimation in systems where either

isotopic labeling or metabolism is at a non-steady state, but not both. In the former

case, NMFA is used to generate fluxes, as discussed in this thesis. In the latter case,

metabolism changes at a significantly slower rate than isotopic labeling, such that

max (V-1 -A -C) texp min R - dt (9.1)

R = (9.2)
0 C

where V is a diagonal matrix of network fluxes, A is an adjacency matrix in which

a nonzero entry a(i, j) indicates that the ith flux leads to the jth metabolite pool,

C is a diagonal matrix of metabolite concentrations, texp is the duration of the MFA

experiment, R is a diagonal matrix comprising fluxes and concentrations, and t is

time.

The left-hand term of Equation 9.1 represents the maximum of the cell's metabo-
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lite pools' residence times. This term serves as an approximate measure of the time

required for the network to arrive at an isotopic steady state. The right-hand term

represents the minimum time scale at which cellular metabolism (i.e., fluxes and

concentrations) change significantly. If a window can be found between these two

bounds, and if MFA can be feasibly conducted at a time scale within that window,

steady-state flux analysis will serve to accurately measure fluxes even at a metabolic

non-steady state. Such an assumption was successfully used previously in studies of

1,3-propanediol production by E. coli and hepatic lipoapoptosis [12, 105].

The conditions of Equation 9.1 do not hold true for many interesting, metabol-

ically dynamic systems, leaving them currently unacessible by flux analysis. For

instance, rapid cellular responses to sudden changes in environment (such as a sub-

strate bolus or a temperature shift) cannot be captured using current modeling tools.

New methods for metabolically dynamic flux analysis (DMFA) must be developed

and applied.

Some introductory work has been done regarding DMFA. Experimental GC/MS

data has been used to calculated fluxes in the linear threonine synthesis pathway [18].

A theoretical study of a metabolically dynamic small example network showed that

1 3C labeling data could lead to more precise parameter determination if the kinetic

rate laws of the different fluxes were already known [154]. However, beyond these

efforts, very little has been done in this area. If robust, systematic experimental and

computational means could be developed for the quantification of fluxes in a metabol-

ically non-steady network, the impact could be enormous. Methods not requiring a

prior knowledge of kinetic rate laws would be especially powerful.

9.2 MetranCL Development

MetranCL is a computational framework for MFA and NMFA simulation and esti-

mation and is discussed in Chapter 2 and Appendix B. MetranCL is a useful and

flexible research tool; however, there are many potential improvements that could be

added to create an even more powerful version of this software:
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" User accesibility: MetranCL currently runs in (and requires users to own)

Matlab. Users also must conduct all MetranCL operations within Matlab's

command-line environment. These requirements pose a relatively high barrier

and will diminish the adoption of this software package in the metabolic engi-

neering community and beyond. A simple, approachable, and intuitive graphical

user interface (GUI) needs to be developed. Care should be taken in the design

and implementation so that activities such as network creation and metabolite

definition remain straightforward and efficient. Additionally, MetranCL should

be built to function as a stand-alone program so that users are not forced to

purchase Matlab.

" Language: MetranCL is written completely in Matlab code. Software written

in the Matlab language are relatively simple to write and understand, especially

when they deal heavily with matrix mathematics (as is the case in flux anal-

ysis). Unfortunately, one of the primary disadvantages of coding in Matlab is

that such programs typically run much more slowly than lower-level languages.

Because flux estimation and confidence interval calculation can still behave as a

bottleneck in flux analysis, especially when working with large networks and/or

NMFA, rewriting the most computationally intensive portions of MetranCL in

a faster language (such as C++) could bring large benefits.

" Parallelization: The current implementation of MetranCL has some very basic

parallelization capabilities. Most notably, confidence interval calculations can

be parallelized parameter by parameter across different processors of a clus-

ter, since each calculation is independent of the others. However, the current

software requires a precisely configured cluster and the parallel calculations are

somewhat laborious to set up. A more polished implementation of paralleliza-

tion that is adaptable to a broader range of computing clusters would make

MetranCL a significantly more appealing and powerful product.
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9.3 Network Sensitivity Analysis

While significant efforts have been made to understand the sensitivity of flux esti-

mation to experimental and modeling design parameters such as measurements and

tracers [32, 98], researches have devoted less study and time to understanding the

effect of model reaction networks on fluxes. Network sensitivity can be difficult to

study due to the discrete nature of the problem. The extremely large sizes of true

metabolic networks also complicate analysis. For example, a genome-scale model of

S. cerevisiae has been constructed that contains 1149 reactions [43]. This large set of

potential reactions poses several problems as we construct networks to model isotopic

labeling:

e Since our measurement set is limited by practical concerns, if too many of

these reactions are included in the MFA network model, the system will be

underdetermined and precisionless (and therefore useless) flux estimates will be

obtained.

e If too few reactions are used, the system will be greatly overdetermined and a

fit will be impossible.

e If we mistakenly omit key reactions from the the model and replace them with

others that in actuality are insignificant in metabolism, we could create a net-

work within which a precise but inaccurate flux distribution can be estimated,

returning a "false positive".

Methods for analyzing networks in the context of specific flux estimations could

prove very helpful in combating some of these potential issues. Such tools might also

be able analyze an MFA experiment for a given reaction network and then search a

database of additional reactions and make suggestions of network changes that would

lead to a better fit of simulated and measured data.
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Appendix A

Block-Decoupled EMUs and

Matrices

A.1 State Matrices

The state matrix X,, is defined in Chapter 2 and represents elementary metabolite

unit labeling within the nth block of a decomposed network. Rows correspond to

different EMUs in the block, while columns correspond to different isotopic masses.

We list each of the eight X state matrices in Equations A.1 through A.8 for the simple

example network described in Figures 2-1 and 2-2. The notation D12,M+1 refers to

the mass isotopomer fraction M+1 for the EMU composed of atoms 1 and 2 of the

metabolite D.

B2,M+o

C2,M+o

Di,M+o

X2= [ EM+o

B2,M+1

C2,M+1

Di,M+1

(A.1)

(A.2)E1,M+1 ]
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B1,M+o B1,M+1

X3 C3,M+O C3,M+1 (A.3)

D2,M+o D2,M+1

X C1,M+o B1,M+1 (A.4)
F1,M+o C1,M+1

B12,M+o B12,M+1 B12,M+2

X= C23,M+O C23,M+1 C23,M+2 (A.5)

D12,M+o D12,M+1 D12,M+2

X6 = E12,M+0 E12,M+1 E12,M+2 (A.6)

X r C234,M+O C234,M+1 C234,M+2 C234,M+3 (A.7)
D123,M+o D123,M+1 D123,M+2 D123,M+3

X = C1234,M+0 C1234,M+1 C1234,M+2 C1234,M+3 C1234,M+4 (A.8)

The state matrix Y,, is defined in Chapter 2 and represents elementary metabolite

unit labeling of inputs to the nth block of a decomposed network. Rows correspond to

different EMUs in the block, while columns correspond to different isotopic masses.

We list each of the eight Y state matrices in Equations A.9 through A.16. The

notation B 2 E1,M+ 2 refers to the mass isotopomer fraction M+2 for the composite

EMU formed from the B2 and E1 EMUs. The composite MID is the convolution (or

Cauchy product) of the MIDs of the component EMUs.

Y1 [ A2,M+o A2,M+1 (A.9)

Y2= [ D1,M+o D1,M+1 (A.10)
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Y3 A,m+o A,M+1 (A.11)
Ei,M+o E1,m+1

Y4 = B1,M+o B1,m+1 (A. 12)

Y [ B2Ei,M+o B2Ei,M+l B2E1,M+2 (A.13)

Y6 D12,M+o D12,M+1 D12,M+2 (A.14)

I B2E1 2,M+o B2El 2,M+l B2E12,M+2 B2E12,M+3 (A.15)
B12J1,M+o B12J1,M+l B12 Jl,M+ 2 B12J1,M+3

8 D123F1,M+o D123F1,M+l D123F1,M+ 2 D123F1,M+ 3 D123F1,M+ 4  (A.16)
D123F1,M+o D123F1,M+l D123 F1,M+ 2 D12 3 F1,M+ 3 D123F1,M+4

A.2 System Matrices

The system matrix A, is mathematically defined in Equation 2.2. The elements of

this matrix are linear combinations of the fluxes within a particular block, and the

matrix as a whole describes the stoichiometric relationships between the elementary

metabolite units of that block. In Equations A.17 through A.24 below, we list each

of the eight A system matrices for the simple example network.

-V2 - V5f 0 V5b

A1  V2 -V3f V3b (A.17)

V5f V3f -V3b - V4 - V5b

A 2 = [ -v 2  (A.18)
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-V 2 - V5f

0

V5f

A4=

0

-V3f

V3f

-V3f

V3f

-V2 - V5f 0

0 -V3f

V5f V3f

A 3

A7=

A6 - -V2 ]

-V3f V3b

V3f -V3b - V4 -

A8 [ -V3f ]

(A.22)

(A.23)

(A.24)

V5b

The system matrix B, is defined in Equation 2.3. Like As, the elements are

linear combinations of fluxes; however, in this case, the matrix describes fluxes into

the block (instead of fluxes within the block). In Equations A.25 through A.32, we

list each of the eight B system matrices for the simple example network.

(A.25)

(A.26)B2 = [ V4 ]
172

V5b

V3b

-V3b - V4 - V5b

v3b

-V6

V5b

V3b

-V3b - V4 - V5b

(A.19)

(A.20)

(A.21)A5 =[



B3=
Vi 0

0 V2

0 0

B 5 =[

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

B6 = [ V4 ]

B7 =

B8 = I V2

01
V5f

V3b

The system matrix C, is explained in Chapter 2 in Equation 2.3. The diagonal

is composed of the metabolite concentrations that correspond to the EMUs in X".

In Equations A.33 through A.40, we list each of the eight C system matrices for the

simple example network. The notation cB refers to the concentration of metabolite

B.

C1 (A.33)

(A.34)C2= [ CE
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CB 0 0

C3 = 0 CC 0 (A.35)
0 0 CD

C4 =CC 0 (A.36)
0 CF

CB 0 0

C5 = 0 CC 0 (A.37)

0 0 CD

C6= CE (A.38)

C7 CC 0 (A.39)
0 CD

C = CC (A.40)

A.3 E. coli Block Decoupling

The large E. coli network described in Tables 3.1 and 3.2 can be greatly simplified via

EMU decomposition and block decoupling. We processed the network accordingly,

and found that the overall system of equations could be reduced by 94% and that

the largest single subsystem could be reduced by 85% (Figure 3.3. For the sake of

completeness and illustration of our method, we have included the decoupled blocks

of EMUs for the network in the following Tables A.1, A.2, and A.3.
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Block 1
AKG1 , AKG2, AKG 3, AKG4 , AKG5 , Aci, Ac2, AcCoA1, AcCoA2, Aspi,
Asp 2, Asp 3, Asp 4, C02 1, Citi, Cit 2 , Cit 3, Cit 4, Cit5 , Cit6 , Cys 1 , Cys 2,
Cys 3 , DHAP 1, DHAP 2, DHAP 3, E4P 2, E4P 3, E4P 4 , F6P 4 , F6P5 , F6P6 ,
FBP 1 , FBP 2, FBP 3 , FBP 4, FBP 5, FBP6 , Fum3 , Fum4 , G6P 4, G6P5 , G6P 6,
GAP 1 , GAP 2, GAP 3, Gln1 , Gln 2, Gln 3, Gln4 , Gln5, Glui, Glu 2 , Glu 3 , Glu 4 ,
Glu5 , Gly 1, Gly2 , Glyc3P 1 , Glyc3P 2, Glyc3P 3, ICiti, ICit 2 , ICit 3 , ICit 4 ,
ICit 5, ICit6 , KDPG4 , KDPGS, KDPG6, LL-DAP 7, MEETHF 1 , Mali, Mal 2 ,
Mal, Mal4 , OAA1 , OAA 2, OAA 3 , OAA 4, PEP1 , PEP 2, PEP3 , 3PG1 , 3PG2,
3PG3, 6PG 4 , 6PG5 , 6PG6 , Pyri, Pyr 2, Pyr3 , R5P 3 , R5P 4, R5P 5 , Ru5P 3,
Ru5P 4, Ru5P5 , S7P 5, S7P 6, S7P 7, Ser1 , Ser 2, Ser3, Suc 3 , Suc 4 , SucCoA1 ,
SucCoA 2, SucCoA 3 , SucCoA 4 , Thr1 , Thr2 , Thr 3, Thr 4, X5P 3 , X5P 4, X5P 5

Block 2
E4P 1 , EC21, EC22, EC31, EC32 , EC3 3, F6P1 , F6P 2,
F6P 3, G6P1 , G6P 2 , G6P 3 , PG62, PG63, R5P 1 , R5P 2,
Ru5P 1, Ru5P 2 , S7P 1 , S7P 2, S7P 3, S7P 4, X5P 1 , X5P 2

Block 3 Block 4 Block 5 Block 6 Block 7
KDPG1  KDPG 3  KDPG 3  METHF 1  6PG1

Block 8
AKG 45, Ac 12 , AcCoA 12, Asp12, Asp 34 , Cit 45 , DHAP 12, E4P 23 , F6P 45,
FBP 23 , FBP 45, Fum 34 , G6P 45 , GAP 12 , Gln 45 , Giu 45 , Glyc3P 12, ICit 45 ,
KDPG 45 , Mal 12 , Mal34 , OAA 12 , OAA 34, PEP 12, 3PG 12, 6PG 45, R5P 34 ,
Ru5P 34, S7P 56, SuC34, SucCoA 12, SucCoA 34 , Thr 34, X5P 34

Block 9
Asp 23 , DHAP 23, E4P 34, F6P56 , FBP 12, FBP56, Fum 23 , G6P,
GAP 23, Glyc3P 23, KDPG56, Ma 23 , OAA 23 , PEP 23 , 3PG 23 ,
6PG56, R5P 45 , Ru5P 45 , S7P 67 , Suc 2 3 , SucCoA 23 , X5P 45

Table A.1: Block decoupling in the large E. coli network for blocks 1 through 9. The
notation AKG45 refers to the EMU consisting of AKG atoms 4 and 5.
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Block 10
EC2 12, EC3 12, F6P 12 , G6P 12 , R5P 12, Ru5P 12, S7P 12, S7P 34 , X5P 12

Block 11
AKG 34, Cit 34, Gln 34, Glu 34, ICit 34

Block 13
EC323, F6P 23, G6P 23, S7P 23

Block 16
Ala 23

Block 17
Cys 23

Block 21
Phe12

Block 12
AKG 23, Cit 23, Gln 23, Glu 23 , ICit 23

Block 18
KDPG 23

Block 22
Thr1 2

Block 14
Gly12, Ser 12

Block 19
Pyr23

Block 23
Tyr1 2

Block 15
6PG23

Block 20
Ser 23

Block 24
Asp 12 3 , Asp 23 4 , DHAP 123, E4P 234 , F6P 456 , FBP 123 , FBP 456,
Fum 234 , G6P 456 , GAP 123 , Glyc3P 123, KDPG456 , Mali1 23,
Mal234 , OAA 123 , OAA 234 , PEP 123, 3PG 123, 6PG456 , R5P 345,
Ru5P 345, S7P567 , Suc 234, SucCoA 123, SucCoA 234 , X5P 345

Block 25
AKG 234, Cit 234, Gln 234 , Giu 234, ICit 234

Block 27
EC3 123 , F6P 123, G6P 123, S7P1 23

Block 26
AKG 345 , Cit 345 , Gln345 , Glu3 45,

Block 28
Ala 123

Block 29
Cys 123

Table A.2: Block decoupling in the large E. coli network for blocks 10 through 29.
The notation AKG 45 refers to the EMU consisting of AKG atoms 4 and 5.
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Block 30
KDPG 123

E4P 1234 , F6P 3456,

Block 31
6PG 123

Block 32
Pyr 123

Block 35
G6P 3456, 6PG3456 , R5P 2345,

Block 33
Ser 123

Block 34
Thr234

Ru5P 2345, S7P 4567, X5P 2345

Block 36
Asp1234, Fum1 234 , Mal1 234, OAA 1234, Suc1 234, SucCoA 1234

Block 37
AKG 2345, Cit 2345, Gin 2345 , Glu 2345, ICit 2345

Block 40
Val2345

Block 41
AKG 12345, Cit1 2345 , Gln 12345 , Glu1 2345 , ICit1 2345

Block 43 Block 44 Block 45
Leu 23456 Met1 2345 Vai1 2345

Block 46
Cit1 23456, ICit1 23456

Block 47
Phe23456 789

Block 48
Phe123456789

Table A.3: Block decoupling in the large E. coli network for blocks 30 through 48.
The notation AKG45 refers to the EMU consisting of AKG atoms 4 and 5.
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Block 38 Block 39
Met 2345 Thr1234

Block 42
Ile23456
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Appendix B

MetranCL Documentation

B.1 Introduction

MetranCL is a powerful computational tool for MFA and NMFA simulation, estima-

tion, and continuation. MetranCL requires Matlab (version 7.4.0 or newer) as well

as Matlab's statistics and optimization toolboxes. A directory tree of the necessary

files and folders is found in Figure B-1. This appendix first introduces each of the

user-defined classes introduced by MetranCL. We next introduce and explain selected

MetranCL functions. Finally, Matlab code is provided for creating an example net-

work.

B.2 Classes

at om represents an atom within a metabolite and contains the following fields:

" id (string) is the atom's identification tag. It should be unique from all other

atom ids for a particular metabolite, and is usually composed of numerical

characters.

" type (string) is the atom's element symbol (e.g., ' C', ' H', or ' ').

data represents a generic piece of data and contains the following fields:
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metranCL

mypath
startup

fluxtools

I
elmodescalc

mylsqlin

@fitdata

cellndx
char

fitdata
type

@option

cellndx
char

option

@pathway
@pathway

char
pathway

type

I I
dual @metabolite @m

I I
dx metabolite chs
r type ma
ual
e

core

I
sim

simss
x2y

driver

I
continuate paralize dbquery
estimate serve integrate
simulate wakenodes maxmz

mscorrect

i
idtools

|
blktran cont
fdjac ident
foh infindex

latex lof

bin2num
fit2mc
fit2mod
fit2table

array
brokenbar

fixaxes
heatmap

I I mslabeled mychar measr flx2net histnz
@flux @model msnatural nullr multistart free2par intsqrt

I I rescale nlsqcon mod2mat mybar
cellndx cellndx tile qpadd mod2stoich myerrorbar

char char @list qpdir net2flx mylabel
flux model qpdrop num2bin myplot

type type list @base qpinit obj2cell panel
type I qpscale sim2id plotchi2

base cpstep txt2atm plotconf
@simdata cellndx plotdata

I @data @experiment char plotfit
celindx I display @reaction @parameter plotid

simdata data experiment fieldnames Iplotms
type type type get cellndx cellndx plotxy

numel char char
set reaction parameter

@state @stoich @tracer setdiff type type @atom @msdata
I I I sort I I

cellndx char cellndx subsasgn atom celindx
state stoich tracer subsref cellndx msdata
type type type type type type

ap

Figure B-1: Directory tree of the files and folders comprising MetranCL. Folders are
written in bold font and files are written in normal font. All files are Matlab m-files

(ending with a .m suffix). Lines connecting folders to lower files or folders indicate
that the lower object is contained within the upper folder.
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e id (string) is the data item's identification tag.

" on (logical) is true of f alse if the data is to be used or ignored, respectively.

" val (double) is the data value.

" std (double) is the standard error of the data.

experiment represents the design and measurements of a flux analysis experi-

ment and contains the following fields:

" id (string) is the experiment's identification tag.

" on (logical) is true of f alse if the experiment is to be used or ignored,

respectively.

" tracer (tracer) is a description of the tracer(s) used in the experiment.

* data-f lx (data) is the set of all measured fluxes in the experiment.

* data-cxn (data) is the set of all measured metabolite concentrations in the

experiment.

" data-ms (msdata) is the set of all mass spectrometry measurements in the ex-

periment.

" notes (string) is a list of notes or reminders concerning the experiment.

f itdata holds the results for flux and concentration estimation and continuation

and contains the following fields:

* alf (double) is the a-level of the continuation. The confidence level is equal

to one minus the a-level.

* dof (double) is the degrees of freedom in the experiment (the number of mea-

surements minus the number of parameters).
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" Echi2 (double) is a two-element array containing the lower and upper bounds

of the expected sum of squared residuals.

" chi2 (double) is the estimation's sum of squared residuals.

" par (parameter) contains estimated values and confidence intervals for fluxes

and concentrations.

" res (residual) contains residual values for each measurement used in the es-

timation.

f luX represents a unidirectional flux within a reaction in a metabolic network and

contains the following fields:

" id (string) is the flux's identification tag.

" rxn (string) is the identification tag of the reaction to which the flux belongs.

" dir (string) is ' f ' or 'b' if the flux is in the forwards or backwards directions,

respectively.

" sub (stoich) describes the identity and stoichiometry of the flux's substrates.

" prod (stoich) describes the identity and stoichiometry of the flux's products.

" f ix (logical) is true of false if the flux is fixed or free, respectively.

" lb (double) is the user-defined lower bound of the flux.

" ub (double) is the user-defined upper bound of the flux.

" val (double) is the user-defined value of the flux.

liSt represents a simple tag and value pair and contains the following fields:

" id (string) is the identification tag of the list item.

* it (any) is the value of the list item.
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map maps information from one set of coordinates to a new set. It is usually used

with atoms and contains the following fields:

" id (string) is the identification tags for the original coordinates.

" tr (string) is the identification tags for the new coordinates.

met abolite represents a metabolite within the reaction network and contains

the following fields:

" id (string) is the metabolite's identification tag.

" atoms (atom) is an array containing the metabolite's atoms.

" sym (list) is a list item of all symmetric atoms within the metabolite. The list

item's value is a map that maps each symmetric atom to its twin.

" eqv (list) is a list of all equivalent atoms within the metabolite. Each list

item's value is a space-delimited string of atom identification tags within an

equivalent group.

model holds all of the information necessary for a flux analyis experiment (i.e., the

model network, the experimental set-up, and all measurement data) and contains the

following fields:

" options (option) is a group of user-defined settings that govern flux analysis

computation.

" mets (metabolite) defines all metabolites participating in the metabolic net-

work.

" states (state) defines all metabolite states in the metabolic network.

* rates (reaction) defines all of the reactions in the metabolic network.

" expts (experiment) holds all measurement information (concentrations, fluxes,

and/or labeling).
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e notes (string) is a list of notes or reminders concerning the model.

msdat a identifies and quantifies a particular mass spectrometry measurement and

contains the following fields:

" id (string) is the measurement's identification tag.

" on (logical) is true of false if the measurement is to be used or ignored,

respectively.

" state (string) is the identification tag of the metabolite state from which the

measured fragment originates.

" atoms (string) is a space-delimited string of identification tags for atoms both

within the metabolite fragment and defined in the model's reaction network

(i.e., potentially labeled atoms).

" more (string) is the chemical formula for atoms within the metabolite fragment

but not defined in the model's reaction network (i.e., unlabeled atoms). Note

that atoms added by derivatization methods should be included in this formula.

" norm (logical) is the mass spectrometry measurement normalization factor.

" time (double) is the measurement time. For multiple time points, this is a

vector.

" val (double) is the measurement value. For multiple time points, this is a

matrix whose rows correspond to masses and columns to times.

* std (double) is the standard error of the measurement. For multiple time

points, this is a matrix whose rows correspond to masses and columns to times.

opt ion holds a list of user-defined settings that govern flux simulation, estimation,

and continuation and contains the following fields:
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" hpc-on (logical) is true if parallelization is to be implemented on a cluster

for flux estimation or continuation.

* int-maxstep (double) is the maximum integration stepsize.

e int-timeout (double) is the maximum time (in seconds) that will be spent on

a single forward simulation during a flux estimation.

" int-reltol (double) is the relative tolerance used to control numerical error

when simulating nonstationary labeling measurements.

" int-senstol (double) is the relative tolerance used to control numerical error

when simulating the sensitivities of nonstationary labeling measurements.

" int-tspan (double) is a vector of time points to be simulated. It is only

applicable in the nonstationary case. If the vector has only two elements and

the first is zero, then the simulated points will be chosen automatically to give

a smooth profile reflecting the stiffness of the system. If the vector has three

or more elements, then measurements will only be simulated for those specified

time points.2

e int-ms-norm (logical) is true if mass spectrometry data is to be normalized.

* int-path-type (string) is 'em' for elementary modes and 'ep' for extreme

pathways when conducting pathway analysis.

* sim-na (logical) is true if natural abundances are to be included in the sim-

ulation.

* sim-sens (logical) is true if measurement sensitivities are to be simulated.

* sim-ss (logical) is true if only stationary measurements are to be simulated.

In this case, time points specified within the measurement data and the remain-

der of the options are ignored.

* sim-tunit (string) is the units for any measurement time points (e.g., 'h').
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" f it-nudge (double) is set to a value between 0 and 1 to randomly nudge the

initial guess in a flux estimation.

" f it-omit (double) is a vector of time points to omit from the experimental

data.

* f it-renorm (logical) is true if mass spectrometry measurements are to be fit

to the normalization factor (specified in the measurement data).

" f it-reltol (double) is the relative tolerance used in the flux estimation.

" f it-tau (double) sets the A parameter in the Levenberg-Marquardt optimiza-

tion scheme used in flux estimation.

" cont-alpha (double) is the a-level used for parameter continuation.

" cont-steps (double) is the desired number of steps in each parameter contin-

uation.

" cont-reltol (double) is the allowable predictor error in the x2 value during

parameter continuation.

parameter holds data for a specific flux or concentration parameter generated

during estimation and continuation and contains the following fields:

" id (string) is the parameter's identification tag.

" free (logical) is true or false if the parameter is free or fixed, respectively.

* type (string) is ' flux' or ' pool' if the parameter represents a metabolic flux

or metabolite concentration, respectively.

" val (double) is the parameter's estimated value.

" std (double) is the parameter's standard error calculated from the inverse of

the Hessian.
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" lb (double) is the lower bound of the parameter's confidence interval calculated

from continuation.

" ub (double) is the upper bound of the parameter's confidence interval calculated

from continuation.

" cor (double) is the fit's correlation vector for the parameter relative to all other

parameters in the system.

* cov (double) is the fit's covariance vector for the parameter relative to all other

parameters in the system.

" cont (logical) is true if confidence intervals are to be calculated for this

parameter.

" chi2s (double) is a vector of sums of squared residuals calculated during pa-

rameter continuation.

" vals (double) is a vector of parameter values calculated during continuation.

* unit (string) is the parameter value's unit of measurement.

pathway is an elementary mode or extreme pathway resulting from metabolic

network analysis and contains the following fields:

" id (string) is the identification tag of the mode/pathway.

* f lx (logical) is a vector corresponding to network reactions in which true

indicates that a reaction is included in the mode/pathway.

" sub (stoich) describes the identity and stoichiometry of the substrates of the

mode/pathway.

" prod (stoich) describes the identity and stoichiometry of the products of the

mode/pathway.
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reaction represents a chemical reaction within a metabolic network and contains

the following fields:

" id (string) is the reaction's identification tag.

" on (logical) is true or false if the reaction is to be used or ignored.

Sf lx (flux) contains the flux and chemical properties of the reaction. A re-

versible reaction will have an array of two fluxes (forward and backward) while

an irreversible reaction will have just one (forward).

* path (string) is the pathway to which the reaction belongs.

" unit (string) is the reaction flux's unit of measurement.

residual holds a parameter's residual and associated information resulting from

a flux estimation and contains the following fields:

" expt (string) is the identification tag of the experiment to which the residual

belongs.

" type (string) is 'flux', 'pool', or 'ims' for flux, concentration, or mass

spectrometry measurements, respectively.

* id (string) is the identification tag of the measurement from which the residual

is calculated.

" peak (string) is the relative mass of the measurement from which the residual

is calculated (e.g., 'M+O ' or ' M+1'), in the case of mass spectrometry measure-

ments.

" time (double) is the time of the measurement from which the residual is cal-

culated.

e val (double) is the value of the residual.
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" std (double) is the standard error of the measurement from which the residual

is calculated.

" cont (double) is a vector with the relative contributions of all the flux and

concentration parameters to the residual.

simdata holds simulation information for a labeling measurement and contains

the following fields:

" expt (string) is the identification tag of the experiment of the simulated mea-

surement.

" id (string) is the identification tag of the simulated measurement.

e time (double) is the measurement time point.

" val (double) is the value of the simulated measurement.

" sens (double) is the simulated sensitivity matrix.

* tunit (string) is the unit of the measurement time point.

state represents a metabolite state within the reaction network. While the

metabolite class describes the properties of a general chemical compound, the state

class describes the properties of a specific manifestation of that metabolite in a certain

cellular compartment. It contains the following fields:

" id (string) is the metabolite state's identification tag.

* val (double) is the value of the metabolite state's concentration.

" lb (double) is the user-defined lower bound of the metabolite state.

* ub (double) is the user-defined upper bound of the metabolite state.

" met (string) is the identification tag of the metabolite in the metabolite state.
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" phase (string) is the identification tag of the phase (i.e., compartment) to

which the metabolite state belongs.

" f ix (logical) is true or f alse if the metabolite state's concentration is fixed

or free, respectively.

" type (string) is ' src', 'snk ', or 'int ' if the metabolite state is a source,

sink, or internal, respectively.

" bal (logical) should be set to f alse if the metabolite state appears to be

balanced in the network (i.e., it has both inputs and outputs) but is actually

not balanced. One common example is CO 2.

" unit (string) is the unit of measurement for the concentration of the metabo-

lite state.

St oi ch is a stoichiometric component of a reaction and contains the following

fields:

" id (string) is the identification tag of metabolite state participating in the

reaction.

" val (double) is the stoichiometric value of the metabolite state in the reaction.

" map (map) is an atomic transition map for the metabolite state in the reaction.

tracer represents an isotopic tracer used in a labeling experiment and contains

the following fields:

" id (string) is the tracer's identification tag.

* state (string) is the tracer's metabolite state.

" atoms (list) describes which atoms in the tracer are labeled, where the list

item's identification tag is a space-delimited string of atom identification tags,

and the list item's value is a two-element vector in which the first element is
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the fractional impurity of the tracer and the second element is the fractional

purity.

o frac (double) is the fraction of the metabolite state in the isotopic form de-

scribed by the tracer.

B.3 Initialization Functions

reaction Construction of reaction class.

" rxn = reaction(s) creates a reaction object rxn from s. s can be a string,

reaction object, cell array of strings, struct, or empty. If s is a string or cell array,

each row or cell should contain a reaction of the form 'a A + b B + . . . ->

c C + d D + . . . ' A double-sided arrow ('<->') can be used to designate

a reversible reaction. Any term in the equation can be followed by a pair

of matched parentheses containing the atom mapping for that term. If s is

numeric, the reaction counter is reset to s.

" rxn = reaction(s,p1,v1, ... ) uses the list of (pl,vl) property name and

value pairs to set the corresponding property values of rxn.

" rxn = reaction creates a default reaction object.

msdata Construction of msdata class.

" msd = msdata(s) creates a msdata object msd from s. s can be a string, cell

array of strings, msdata object, struct, or empty. If s is a string or cell array,

each row or cell should be of the form ' A: B @ C1 C2 C3' where A is the name

of the measurement, B is the measured metabolite state and C1, C2, C3 are the

atoms of B that are contained in the fragment.

" msd = msdata(s,p1,v, . . .) uses the list of (pl,vl) property name and value

pairs to set the corresponding property values of msd.
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e msd = msdata creates a default msdata object.

tracer Construction of tracer class.

" tr = tracer(s) creates a tracer object tr from s. s can be a string, cell array

of strings, tracer object, struct, or empty. If s is a string or cell array, each

row or cell should be of the form ' A: B @ C1 C2, C3 C4' where A is the tracer

name, B is the identification tag of the metabolite state, and C1 C2, C3 C4

specifies groups of atoms that have the same labeling.

" tr = tracer(s,pl,vl) uses the list of (pi,v1) property name and value pairs

to set the corresponding property values of tr.

" tr = tracer creates a default tracer object.

experiment Construction of experiment class.

" xpt = experiment (tr) creates an experiment object xpt from the tracer object

tr. If tr is already an experiment object, tr is returned in xpt. If tr is empty,

an empty experiment is returned.

" xpt = experiment (tr, p1, vi, . . . ) uses the list of (pl,v1) property name and

value pairs to set the corresponding property values of xpt.

" xpt = experiment creates a default experiment object.

model Construction of model class

* mod = model (s) creates a model object mod from a reaction object or struct s.

If s is already a model object, its metabolites and metabolite states are checked

for consistency. If s is empty, an empty model is returned.

* mod = model(s,pl,vl) uses the list of (pl,vl) property name and value pairs

to set the corresponding property values of mod.

* mod = model creates a default model object.
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B.4 Driver Functions

s imul ate Model simulation.

" sim = simulate(mod) simulates labeling measurements in the model object

mod and returns the results in the simdata object sim.

" [sim,par] = simulate(mod) also returns the parameter structure par.

estimate Parameter estimation.

* fit = estimate (mod) estimates free parameters in the model object mod and

returns the results in the fitdata object f it.

* [fit,par,mnt] = estimate(mod) also returns the parameter structure par

and the measurement structure mnt.

" f it = estimate (mod,n) performs n estimations using a multistart method and

returns the best result.

cont inuate Continuation analysis of parameters near fitted estimates.

* f it = cont inuate (f it ,mod) performs continuation starting from the optimal

parameter estimates in the fitdata object fit and returns the updated fitdata

object.

" [f it, bestf it] = cont inuate (f it, mod) also returns the best fit encountered

during the continuation.

B.5 Utility Functions

startup Set preferences and update path.
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* startup sets figure, axes, line, and text object defaults. The function also

initializes the random number generator to a random state and updates the

path to include those directories specified by the mypath function. startup

should be called at the beginning of every new MetranCL session.

mod2st oich Computation of feasible fluxes.

" flx = mod2stoich(mod) computes the nearest feasible solution (in the least-

squares sense) to the flux distribution specified in the model object mod and

returns the result in the vector fix.

* [flx,par] = mod2stoich(mod) also returns the parameter structure par for

the network.

f it2mod Update model with optimal parameter estimates.

* mod = fit2mod(modO,f it) replaces the flux and pool size parameters in the

model object modO with the optimal values contained in the fitdata object f it

and returns an updated model mod.

integrate Integrate GC/MS raw data.

e integrate(dir,lib) searches raw GC/MS data found in the directory dir for

the metabolite peaks specified in the library structure lib and then integrates

and determines mass isotopomer distributions. All results are stored in dir in

the files data.csv.

B.6 Modeling E. coli Metabolism

We have included an example script written for Matlab that will generate the large

model of E. coli metabolism that we used in Chapter 3. The script inputs flux, concen-

tration, and MS measurements into the model, estimates fluxes and concentrations,

and lastly calculates 95% confidence intervals for each parameter.
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r = reaction({

X Glycolysis
'G6P (abcdef) <-> F6P (abcdef)'

'F6P (abcdef) -> FBP (abcdef)'

'FBP (abcdef) <-> DHAP (cba) + GAP (def)'

'DHAP (abc) <-> GAP (abc)'

'GAP (abc) <-> PG3 (abc)'

'PG3 (abc) <-> PEP (abc)'

'PEP (abc) -> Pyr (abc)'

X Pentose phosphate pathway
'G6P (abcdef) -> PG6 (abcdef)'

'PG6 (abcdef) -> Ru5P (bcdef) + C02 (a)'

'Ru5P (abcde) <-> X5P (abcde)'

'Ru5P (abcde) <-> R5P (abcde)'

'X5P (abcde) <-> GAP (cde) + EC2 (ab)'

'F6P (abcdef) <-> E4P (cdef) + EC2 (ab)'

'S7P (abcdefg) <-> R5P (cdefg) + EC2 (ab)'

'F6P (abcdef) <-> GAP (def) + EC3 (abc)'

'S7P (abcdefg) <-> E4P (defg) + EC3 (abc)'

% Entner-Doudoroff pathway
'PG6 (abcdef) -> KDPG (abcdef)'

'KDPG (abcdef) -> Pyr (abc) + GAP (def)'

X TCA cycle
'Pyr (abc) -> AcCoA (bc) + C02 (a)'

'OAA (abcd) + AcCoA (ef) -> Cit (dcbfea)'

'Cit (abcdef) <-> ICit (abcdef)'

'ICit (abcdef) <-> AKG (abcde) + C02 (f)'

'AKG (abcde) -> SucCoA (bcde) + C02 (a)'

'SucCoA (abcd) <-> Suc (abcd)'

'Suc (abcd) <-> Fum (abcd)'

'Fum (abcd) <-> Mal (abcd)'

'Mal (abcd) <-> OAA (abcd)'

% Amphibolic reactions
'Mal (abcd) -> Pyr (abc) + C02 (d)'

'PEP (abc) + C02 (d) <-> OAA (abcd)'

% Acetic acid formation
'AcCoA (ab) <-> Ac (ab)'

X PDO biosynthesis
'DHAP (abc) <-> Glyc3P (abc)'

'Glyc3P (abc) -> Glyc (abc)'

'Glyc (abc) -> HPA (abc)'

'HPA (abc) -> PDO (abc)'

% Amino acid biosynthesis
'AKG (abcde) -> Glu (abcde)'

'Glu (abcde) -> Gln (abcde)'

'Glu (abcde) -> Pro (abcde)'
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['Glu (abcde) + C02 (f) + Gln (ghijk) + Asp (imno) + AcCoA (pq) -> Arg ',...

'(abcdef) + AKG (ghijk) + Fum (imno) + Ac (pq)']
'OAA (abcd) + Glu (efghi) -> Asp (abcd) + AKG (efghi)'
'Asp (abcd) -> Asn (abcd)'
'Pyr (abc) + Glu (defgh) -> Ala (abc) + AKG (defgh)'
'PG3 (abc) + Glu (defgh) -> Ser (abc) + AKG (defgh)'
'Ser (abc) <-> Gly (ab) + MEETHF (c)'
'Gly (ab) <-> C02 (a) + MEETHF (b)'

'Thr (abcd) -> Gly (ab) + AcCoA (cd)'

'Ser (abc) + AcCoA (de) -> Cys (abc) + Ac (de)'
['Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) -> LLDAP ',...

'(abcdgfe) + AKG (hijkl) + Suc (mnop)']
'LLDAP (abcdefg) -> Lys (abcdef) + C02 (g)'
'Asp (abcd) -> Thr (abcd)'
['Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) -> Met (abcde) +

'Pyr (fgh) + Suc (ijkl)']
'Pyr (abc) + Pyr (def) + Glu (ghijk) -> Val (abcef) + C02 (d) + AKG (ghijk)'
['AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) -> Leu (abdghe) +

'C02 (c) + C02 (f) + AKG (ijklm)']
'Thr (abcd) + Pyr (efg) + Glu (hijkl) -> Ile (abfcdg) + C02 (e) + AKG (hijkl)'
['PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) -> Phe (abcefghij) +

'C02 (d) + AKG (klmno)']
['PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) -> Tyr (abcefghij) +

'C02 (d) + AKG (klmno)']
['Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gln ',...

'(stuvw) -> Trp (abcedklmnoj) + C02 (i) + GAP (fgh) + Pyr (pqr) +
'Glu (stuvw)']

['R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) -> His (edcbaf) +
'AKG (ghijk) + Fum (lmno)']

% One carbon metabolism
'MEETHF (a) -> METHF (a)'

'MEETHF (a) -> FTHF (a)'

% Transport
'Gluc.pre (abcdef) -> G6P (abcdef)'
'Gluc.ext (abcdef) -> G6P (abcdef)'
'Cit.ext (abcdef) -> Cit (abcdef)'
'Glyc.ext (abc) + Force.ext <-> Glyc (abc) + Force'
'PDO (abc) -> PDO.ext (abc)'
'Ac (ab) -> Ac.ext (ab)'

'C02 (a) -> C02.ext (a)'

% Biomass formation
['0.488 Ala + 0.281 Arg + 0.229 Asn + 0.229 Asp + 0.087 Cys + 0.250 Glu +

0.250 Gln + 0.582 Gly + 0.090 His + 0.276 Ile + 0.428 Leu + 0.326 Lys +
0.146 Met + 0.176 Phe + 0.210 Pro + 0.205 Ser + 0.241 Thr + 0.054 Trp +
0.131 Tyr + 0.402 Val + 0.205 G6P + 0.071 F6P + 0.754 R5P + 0.129 GAP +
0.619 PG3 + 0.051 PEP + 0.083 Pyr + 2.510 AcCoA + 0.087 AKG + 0.340 OAA +
0.443 MEETHF -> 39.68 Biomass']

% Forcing flux
'Force -> Force.ext'
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t = tracer({
'[1-13C]Gluc: Gluc.ext 0 1'

'[U-13C]Gluc: Gluc.ext @ 1 2 3 4 5 6'

})
t.frac = [0.75,0.25];

t.atoms(1).it = [0.01;0.99];

t.atoms(2).it = [0.01;0.99];

x = experiment(t);

f = data('R61.f R68.f R64.f R66.f R67.f R62.f R65.f');
f.val = [92.6,2.0,129.2,177.5,0.9,0.3,0.3];
f.std = f.val*0.05;

x.data_flx = f;

c = data('AKG Ala Asp Cit Glu Gly Ile Leu Mal Met Phe Pyr Ser Suc Thr Tyr Val');
c.val = [0.8,21,14,37,138,1.0,2.2,13,2.8,1.0,1.2,16,3,0.5,4.2,3.6,7.7]*le-4;

c.std = f.val*0.15;
x.datacxn = c;

d = msdata({

'AKG346: AKG @
'Ala232: Ala @
'Ala260: Ala @
'Asp302: Asp @
'Asp376: Asp @
'Asp390: Asp @
'Asp418: Asp @
'Cit459: Cit @
'Glu330: Glu @
'Glu432: Glu @
'Gly218: Gly @
'Gly246: Gly @
'Ile200: Ile @

'Ile274: Ile @
'Leu274: Leu @
'Mal419: Mal @
'Met218: Met @
'Met292: Met @
'Met320: Met @
'Phe234: Phe @
'Phe302: Phe @
'Phe308: Phe @
'Phe336: Phe @
'Pyrl74: Pyr @
'Ser288: Ser @

'Ser302: Ser @
'Ser362: Ser @
'Ser390: Ser @
'Suc289: Suc @
'Thr376: Thr @
'Thr404: Thr @

2 3 4 5'
3'

2 3'
2'

2'

3 4'
2 3 4'
2 3 4 5 6'
3 4 5'
2 3 4 5'

2'

3 4 5
3 4 5
3 4 5
2 3 4'
3 4 5'
3 4 5'
2 3 4
3 4 5
2'

3 4 5
2 3 4
2 3'
3'

2'

3'

2 3'
2 3 4'
3 4'
2 3 4'

7 8 9'

6 7 8 9'
5 6 7 8 9'
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'Tyr302:

'Val260:
'Val288:

Tyr Q
Val 0
Val Q

d{'AKG346'}.more

d{'Ala232'}.more

d{'Ala260'}.more

d{'Asp302'}.more

d{'Asp376'}.more

d{'Asp390'}.more

d{'Asp4l8'}.more
d{'Cit459'}.more

d{'Glu330'}.more

d{'Glu432'}.more

d{'Gly218'}.more

d{'Gly246'}.more

d{'Ile200'}.more

d{'Ile274'}.more

d{'Leu274'}.more

d{'Mal419'}.more

d{'Met2l8'}.more

d{'Met292'}.more

d{'Met320'}.more

d{'Phe234'}.more

d{'Phe302'}.more

d{'Phe308'}.more

d{'Phe336'}.more

d{'Pyrl74'}.more

d{'Ser288'}.more

d{'Ser302'}.more

d{'Ser362'}.more

d{'Ser390'}.more

d{'Suc289'}.more
d{'Thr376'}.more

d{'Thr404'}.more

d{'Tyr3O2'}.more

d{'Val260'}.more

d{'Val288'}.more

d{'AKG346'}.val =

d{'Ala232'}.val =

d{'AKG346'}.std =

2'

3 4 5'
2 3 4 5'

= 'c9h28o5nisi2';

= 'c8h26onsi2';

= 'c8h26o2nsi2';

= 'c12h32o2nisi2';

= 'cl4h38o3nsi3';

= 'cl4h4Oo3nlsi3';

= 'cl4h4Oo4nlsi3';

= 'c14h39o6si3';

= 'c12h36o2nisi2';

= 'c14h42o4nisi3';

= 'c8h24onsi2';

= 'c8h24o2nsi2';

= 'c6h26nsi';

= 'c8h32onsi2';

= 'c8h32onsi2';

= 'c14h39o5si3';

= 'c6h24nsis';

= 'c8h30nosi2s';

= 'c8h30no2si2s';

= 'c6h24nsi';

= 'cl2h32o2nsi2';

= 'c8h30onsi2';

= 'c8h30o2nsi2';

= 'c3hl2o3nlsi';

= 'cl2h34onsi2';

= 'cl2h32o2nsi2';
= 'cl4h4Oo2nsi3';

= 'c14h4Oo3nlsi3';

= 'c8h25o4si2';

= 'c14h42o2nsi3';

= 'c14h42o3nsi3';

= 'cl2h32o2nsi2';

= 'c8h30onsi2';

= 'c8h30o2nsi2';

[[0.8605,0.8539,0.8417,0.8403,0.8116,0.7642];
[0.1026,0.1100,0.1191,0.1127,0.1267,0.1447];

[0.0369,0.0350,0.0353,0.0335,0.0345,0.0423];

[0.0000,0.0012,0.0039,0.0135,0.0273,0.0489];

[0.0000,0.0000,0.0000,0.0000,0.0000,0.0000]];

[[0.8605,0.8539,0.8417,0.8403,0.8116,0.7642];
[0.1026,0.1100,0.1191,0.1127,0.1267,0.1447];

[0.0369,0.0350,0.0353,0.0335,0.0345,0.0423];

[0.0000,0.0012,0.0039,0.0135,0.0273,0.0489];

[0.0000,0.0000,0.0000,0.0000,0.0000,0.0000]];

[[0.8605,0.8539,0.8417,0.8403,0.8116,0.7642];

[0.1026,0.1100,0.1191,0.1127,0.1267,0.1447];

[0.0369,0.0350,0.0353,0.0335,0.0345,0.0423];
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d{'Ala232'}.std =

[0.0000,0.0012,0.0039,0.0135,0.0273,0.0489];
[0.0000,0.0000,0.0000,0.0000,0.0000,0.0000]];
[[0.8605,0.8539,0.8417,0.8403,0.8116,0.7642];
[0.1026,0.1100,0.1191,0.1127,0.1267,0.1447];
[0.0369,0.0350,0.0353,0.0335,0.0345,0.0423];
[0.0000,0.0012,0.0039,0.0135,0.0273,0.0489];
[0.0000,0.0000,0.0000,0.0000,0.0000,0.0000]];

t = [0.00056;0.00111;0.00222;0.00417;0.00833;0.01667];

for i = 1:length(d)

d(i).time = t;
end

x.data_ms = d;
m = model(r,'expts',x);

% Define metabolite symmetries
m.mets{'Suc'}.sym = list('flip',map('1:4 2:3 3:2 4:1'))
m.mets{'Fum'}.sym = list('flip',map('1:4 2:3 3:2 4:1'))

m.options.fit-reinit = true;
m.options.sim-ss = false;
m.options.int-reltol = 0.001;

m.states{'Glyc.ext'}.bal = false;

199



200



Appendix C

Rapid Sampler Design and

Construction

The materials and equipment necessary to construct the rapid sampler (discussed in

Chapter 5) are listed in Table C.1. The vendors and part numbers for the particular

supplies we used are also listed. A basic diagram of the overall apparatus is shown

in Figure C-1. The sampler can be divided into five basic modules, as indicated in

Figure C-1: support, sampling, sparging, vacuum, and valve control:

" Support: The sampler is constructed on a mobile cart, so that it can be moved

with ease. This consideration is especially important in case there are multiple

reactors that might require sampling at different times. Mobility is also impor-

tant when space is at a premium. We situated our larger pieces of equipment

(the computer and the vacuum flask) on the lower shelf, while we built the

valves and quenching tubes on the upper shelf so that they would be closer to

our benchtop reactors (thereby minimizing sampling lines and corresponding

delays). Two ring stands were linked together by rods and clamps on the upper

shelf to hold the valves and manifolds above the quenching tubes.

" Sampling: Quenching tubes sat on a rack in a styrofoam cooler (lined with

plastic to prevent leakage) filled with ethanol. Before sampling, dry ice was

added to the cooler to bring the bath temperature down to -200C. The design
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Sample Tubes
50-mL centrifuge tubes VWR 21008-951
2-hole stoppers (size 6) VWR 59582-246
Rigid tubing 11/64" X 1/4" Cole-Parmer 95100-02
Straight connectors 4-6 mm Cole-Parmer 06288-10
Straight connectors 6-8 mm Cole-Parmer 06288-20
Sparging needles VWR BD405148

Valve Circuitry
Solenoid pinch valves ASCO Valves SCH284A00524VDC
Valve cable glands ASCO Valves 290416-OO1PG9
15A 13.8V power supply RadioShack 22-508
Barrier strips RadioShack 274-670
Spade and ring tongues RadioShack 64-407
1A 250V glass fuses RadioShack 278-1224
Inline fuse holders RadioShack 270-1281
Hookup wire (22AWG) RadioShack 278-1224

Valve Control
Desktop PC Dell Inspiron 570
LabVIEW software National Instruments 776671-35
Data aquisition card National Instruments 779083-01
Connector block National Instruments 778673-01
Shielded cable National Instruments 778621-01

Tubing and Connectivity
Manifolds with luer locks Cole-Parmer 30600-42
Barbed luer adapters Cole-Parmer 45504-80
Luer plugs Cole-Parmer 4504-56
Silicone tubing 1/8" X 3/16" Cole-Parmer 95802-04
Silicone tubing 3/16" X 5/16" Cole-Parmer 95802-09
Vacuum flask VWR KT953760-2002
1-hole stopper (size 9) VWR 59581-403
Vacuum tubing 1/4" X 1/2" VWR 62995-059

Support Frame
2-shelf lab cart
Support stands
Aluminum rods
Clamp holders
3-outlet extension cord

VWR
VWR
VWR
VWR
Office Depot

Table C.1: List of materials used in assembling the rapid sampling apparatus. The
vendor and part number for each piece of equipment is also supplied.
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ring stands, rods, clamps

connector cold bath
block ...F.-

power
L supply

desktop

PC monito to vacuum

cart

Figure C-1: Basic layout of the rapid sampling apparatus. Red indicates electrical
circuitry for valve control, blue indicates air lines for sparging and mixing, purple
indicates vacuum lines, and grey indicates the support framework for the sampler.
The cold bath sits on the upper shelf of the cart and inside it sit the sampling tubes.
A pair of ring stands are connected by rods and clamps (not shown) which hold the
solenoid pinch valves and the vacuum and sparging manifolds. The connector block
sits on the upper shelf and is wired to each valve. The computer rests on the lower
shelf and is wired to the connector block. The valves' power supply is also wired
to the connector block. The computer and power supply also must all be connected
to an electrical outlet (not shown). Finally, a vacuum flask connects the vacuum
manifold to the vacuum source, serving as a trap.
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of the quenching tubes is depicted in Figure 5-2. Approximately two inches of

rigid tubing was pushed through the each hole of a size 6 rubber stopper for

every quenching tube, so that an equal amount protrudes from either size. One

external line was then connected to a 4-6 mm straight connector (sampling line)

and the other to a 6-8 mm straight connector (vacuum line). Sampling lines

(one per quenching tube) were passed from the bioreactor through the pinch

valves and onto the tubes' straight connectors. It is important that the silicone

tubing used as sampling lines fit the requirements of the valves. Our particular

valves were designed for 1/8" X 3/16" tubing.

" Sparging: Needles were pushed through the rubber stoppers of each quenching

tube so they would be submerged in the quenching fluid. Outside of the tube,

each needle was connected to 3/16" X 5/16" silicone tubing that ran up to the

sparging manifold. The sparging manifold was then connected to a regulated

air or nitrogen supply.

* Vacuum: The remaining straight connectors emerging from the quenching

tubes were connected to 3/16" X 5/16" tubing that ran up to the vacuum manifold.

The manifold is then connected to the vacuum flask with the same tubing.

Finally, we used vacuum tubing to connect the flask to house vacuum.

" Valve control: Valves were wired to the connector block and the power supply

as explained in detail in Figure C-2. The connector block was hooked to the

National Instruments PCI card using the shielded cable. The desktop was

loaded with LabVIEW software as well as software specific to the PCI data

output card.

204



P0.1
PO.3
PO.5
P0.7
P1.0
P1.2
P1.4
P1.6
GND
P2.1
P2.3
P2.5
P2.7
P3.0
P3.2
P3.4
P3.6
GND

3
4

5
6
7
8
9
10
11
12
13-W
15
16
17
18

-II.

P0.0
PO.2
PO.4 fuse
P0.6
GND
P1.1
P1.3 valve

P1.5
P1.7
P2.0
P2.2
P2.4
P2.6
GND
P3.1
P3.3
P3.5
P3.7
COM

t current

power
supply

Figure C-2: The NI PCI-6517 from National Instruments can be wired to solenoid
valves and a power supply and can then be programmed from LabVIEW to control
these valves. An example connection is shown here. Two lines lead out from the
valve because it requires twice the current that one port is able to receive. A fuse is
included in the circuitry to prevent the valve and ports from being damaged by an
accidental high current.
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Appendix D

Tracer Optimization Code

D.1 Driver Function

evolve Evolve tracer mixtures with high-precision flux estimates.

function [pops,sels,dscs] = evolve(mod,tracers,varargin)

XEVOLVE Evolve tracer mixtures with high-precision flux estimates

% [POPS,SELS,DSCS] = EVOLVE(MOD,TRACERS) creates an initial population of

X mixtures of tracers from TRACERS and evaluates them in the model MOD,

% and then evolves that population to find new tracer mixtures that

% generate high-precision flux estimates.

X [POPS,SELS,DSCS] = EVOLVE(MOD,TRACERS,'PropertyName1',PropertyValue1,
% 'PropertyName2' , PropertyValue2,...) defines multiple properties of the

X EVOLVE function. Property names include:

HPC_ON
NEST
NEXP
FAST
INITPOP

NROUNDS
NPOP
TOURNEYSIZE
NTOURNEYS
PMUT
WEIGHT
RANDFREQ

If TRUE use parallel computing

The number of estimations for each tracer

The number of simulated experiments for each tracer

If TRUE use std deviations, if FALSE use conf intervals

Initial population of tracer mixtures

Number of rounds of selection

Number of tracer mixtures in initial population

The size of each selection tournament

The number of selection tournaments within each round

The mutation frequency

The weight assigned to each independent flux

The frequency of a bit being on for init random population

X Default property values
hpc.on = true;

nest = 6;

nexp = 6;
fast = false;
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initpop = [1;
nrounds = 10;

npop = 100;

tourneysize = 4;

ntourneys = 25;

pmut = 0.001;

weight = [];

randfreq = 0.1;

sparse = true;

X Assign user-defined property values
while ~isempty(varargin)

property = lower(varargin{1});
value = varargin{2};
eval([property,' = value;']);

varargin(1:2) =

end

X Create encoder object for available tracers list
enc = encoder(tracers);

X Create argument list to be passed into fitness object
params = {'hpc-on',hpcon,'nest',nest,'nexp',nexp,'fast',fast,...

'weight',weight,'sparse',sparse};

X Create fitness object
fness = fitness(mod,enc,params{:});

X Initialize containers
pops = cell([1,nrounds+1]);
sels = cell([1,nrounds]);
dscs = cell([1,nrounds]);
time = zeros([1,nrounds]);

% If initial population not user-defined, create random population
len = size(encode(enc,tracers),2);
if isempty(initpop)

pop = logical(zeros([npop,len]));
for i = 1:npop

pop(i,:) = rand([1,len]) < randfreq;
end

else

pop = initpop;

end

X Loop over each round of selection
pops{1} = pop;

for i = 1:nrounds

tic;

[chsomes,sel,dsc] = tournament(pop,tourneysize,ntourneys,fness);
pop = mate(chsomes,npop);
pop = mutation(pop,pmut);
pops{i+1} = pop;

sels{i} = sel;
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dscs{i} = dsc;
time(i) = toc;

save evolve-temp

end

end

D.2 Evaluation Functions

evalf itness Method to calculate fitness of a given tracer mixture.

function score = evalfitness(obj,tracer,id)
X Method to calculate fitness of a given tracer mixture

if isstruct(obj)
obj.encoder = encoder(obj.encoder);

obj = fitness(obj);

end

sparse = obj.sparse;

i = 0;

j = 0;
nmax = 2*obj.nexp;

fit = fitdatao;

while i < obj.nexp && (i+j) < nmax
samplefit = tracerfit(obj,tracer);
if ~isempty(samplefit)

i = i+1;

fit(i) = samplefit;

else

j = j+1;
end

end

X Pare down the fitdata object
fit = struct('chi2',extract(fit,'chi2'),

'par',extract(fit,'par'));

% Pare down parameter objects within fitdata objects

for j = 1:length(fit)
p = fit(j).par;

fit(j).par = struct('id',p.id,
'lb',extract(p,'lb'),
'std',extract(p,'std'),

'ub',extract(p,'ub'), ...
'val',extract(p,'val'));

end

% Get fitness score
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[scoref,stdev_f,scores,stdev-s = fitscore(fit,obj.weight);
score.valfast = score-f;

score.stdfast = stdev_f;

score.valslow = score-s;
score.stdslow = stdev_s;
if ~sparse

score.fit = fit;

score.tracer = decode(obj.encoder,tracer);
end

score.chsome = tracer;
score.id = id;

end

function fit = tracerfit(obj,tracer)
X Helper function to calculate a fit for a tracer and model

% Decode tracer and get measurements
tracer = decode(obj.encoder,tracer);
mod = getmnts(obj,tracer);

% Set fitting options and estimate
fit = estimate(mod,obj.nest);

% A valid fit was not found; all confidence intervals are unknown
if fit.Echi2(end) < fit.chi2

fit = [];

% Fast calculation only needs std, otherwise get intervals
elseif ~obj.fast

fit.par.cont = obj.pars;
mod.options.fittau = le-16;
fail = true;
while fail && mod.options.fittau < 1

try
fit = continuate(fit,mod);

fail = false;

catch

mod.options.fittau = mod.options.fit-tau*1000;
end

end

end

end

function mod = getmnts(obj,tracer)

% Helper function to introduce normal error into measurements

% Simulate labeling and introduce normally distributed error
mod = obj.mod;

mod.expts.tracer = tracer;
sim = simulate(mod);
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X If nonstationary, don't include t=O as a measurement
nt = size(sim.time,1);
if nt > 1

for i = 1:length(sim.val)

mod.expts.data-ms(i).val = sim(i).val(:,2:end);
end

mod.expts.datams.time = sim.time(2:end,:)-repmat(sim.time(1,:),nt-1,1);
mod.options.fit-tau = le-6;

else
mod.expts.datams.val = sim.val;

mod.expts.data-ms.time = sim.time;

mod.options.fit-tau = le-16;

end

X Iterate over MS data, create standard error, give normal error
for i = 1:length(mod.expts.data-ms)

ms = mod.expts.data-ms(i);

mod.expts.data-ms(i).std = max(obj.msstd*ms.val,obj.msstdmin);
ms = mod.expts.data-ms(i);
mod.expts.data-ms(i).val = max(normrnd(ms.val,ms.std),O);

end

X Iterate over flux mnts, create standard error, give normal error

for i = 1:length(mod.expts.data-flx)
flx = mod.expts.data-flx(i);
mod.expts.data-flx(i).val = mod.rates.flx{flx.id{1}}.val;
flx = mod.expts.data-flx(i);
mod.expts.data-flx(i).std = max(obj.flxstd*flx.val,obj.flxstdmin);
flx = mod.expts.data-flx(i);
mod.expts.data-flx(i).val = max(normrnd(flx.val,flx.std),O);

end

end

fit score Helper function that scores confidence intervals.

function [score-f,stdev-f,score-s,stdev-s] = fitscore(fit,weight,stdev,alf)
X Helper function that scores confidence intervals

if ~isstruct(fit)
score-f = NaN;
stdevf = NaN;

scores = NaN;
stdevs = NaN;

return

end

oldfit = fit;

fit = struct('chi2',{},'par',{});
for i=1:length(oldfit)

if ~isempty([oldfit(i).par.ub])

fit(end+1) = oldfit(i);
end

211



end

if nargin < 3
stdev = 1;

end
if nargin < 4

alf = 3;

end

npars = length(fit(1).par);
if length(weight) < npars

temp = logical(zeros(1,npars));
temp(weight) = true;

weight = temp;

end

pars = logical(weight);

len = length(fit);

idx = repmat(pars,[1,len]);

weight = repmat(weight,[1,len]);
pars = [fit.par];

pars = pars(idx);
weight = weight(idx);

vabs = abs([pars.val]);
vals = [pars.val]./vabs;

stds = [pars.std]./vabs;

stds(stds > alf) = alf;

scores = exp(-2*stds/stdev^2);
scores(isnan(scores)) = 0;
scores = reshape(scores.*weight,[],length(fit));

scoref = mean(sum(scores,1));

stdevf = std(sum(scores,1));

lbs = [pars.lb]./vabs;
ubs = [pars.ub]./vabs;
lbs = min([lbs;vals]);
ubs = max([ubs;vals]);
lo = lbs < vals-alf;
hi = ubs > vals+alf;
lbs(lo) = vals(lo)-alf;
ubs(hi) = vals(hi)+alf;
rng = ubs-lbs;

scores = exp(-rng/stdev^2);
scores(isnan(scores)) = 0;
scores = reshape(scores.*weight,[],length(fit));

scores = mean(sum(scores,1));

stdevs = std(sum(scores,1));

end
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D.3 Selection Function

tournament Conducts tournament selection for a population.

function [chsomes,sels,dscs] = tournament(pop,trnysize,ntrnys,fness)
X Conducts tournament selection for a population

X Error if there are more tourney slots than participants
plen = size(pop,1);
nsamples = ntrnys*trnysize;
if nsamples > plen+trnysize

error('Population too small to accomodate number of tournaments');
end

% Get a randomized list of participants
[i,i] = sort(rand([1,plen]));
if nsamples > length(i)

j = sort(rand([1,plen]));
i = [i,j(1:mod(plen,nsamples))];

else
i = i(1:nsamples);

end

% Conduct all tournaments
if fness.hpc-on

pops = permute(pop(i,:),[3 2 1]);
ids = permute(num2str(i'),[3,2,1]);
scores = paralize('evalfitness',[],fness,pops,ids);
scores = permute(scores,[3,2,1]);

else
for j = 1:nsamples

scores(j) = evalfitness(fness,pop(i(j),:),num2str(i(j)));
end

end

% Retrieve scores for each tournament
if fness.fast

vals = [scores.valfast];
else

vals = [scores.valslow];

end

% Pull out best r6esult from each tournament
vals = reshape(vals,trnysize,ntrnys);
[i,i] = sort(vals,1);
imax = i(end,:);

idx = imax+(O:trnysize:nsamples-trnysize);
sels = scores(idx);
dscs = scores(setdiff(1:nsamples,idx));
chsomes = reshape([sels.chsome],[],ntrnys)';

end
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D.4 Recombination Functions

mate Mates chromosomes in a population.

function pop = mate(chsomes,nfinal)
% Mates chromosomes in a population

ncross = 2;

ninit = size(chsomes,1);

nadj = nfinal+rem(nfinal,2);
nrep = ceil(nadj/ninit);
[k,k] = sort(rand([ninit,nrep]));

k = k(1:nadj);

pop = logical(zeros([nadj,size(chsomes,2)]));
for i = 1:2:size(k,2)

chsomel = chsomes(k(i),:);
chsome2 = chsomes(k(i+1),:);
[x,y] = crossover(chsomel,chsome2,ncross);
pop(i,:) = X;
pop(i+1,:) = Y;

end

pop = pop(1:nfinal,:);
end

crossover Performs a random crossover for a chromosome pair.

function [x,y] = crossover(a,b,n)
% Performs a random crossover for a chromosome pair

% Validate inputs
if length(a) -= length(b)

error('Chromosomes must have equal length');
end

X Can't have more crossovers than length of chromosome
len = length(a);

n = min(n,len);

% Randomly select crossover points
[i,i] = sort(rand([1,len]));
pts = sort(i(1:n));

pts = unique([pts,len]);

[x,y] = deal(zeros(size(a)));
10 = 1;

for i = 1:length(pts)
x(iO:pts(i)) = a(iO:pts(i));
y(iO:pts(i)) = b(iO:pts(i));
tmp = X;
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x =y;

y = tmp;
iO = pts(i)+1;

end
end

mut at ion Performs random point mutations on a chromosome.

function x = mutation(a,p)
% Performs random point mutations on a chromosome

x = (rand(size(a)) > p) == a;

end

D.5 Fitness Class

This file should be stored in the folder metranCL/class/@f itness.

f itness Constructor method for fitness object.

function obj = fitness(s,varargin)
% Constructor method for fitness object

if isstruct(s) && isfield(s,'weight')
obj = class(s,'fitness');

else
mod = s;

enc = varargin{1};
varargin = varargin(2:end);

X Set parameters
obj.alf = 0.05;

obj.fast = true;

obj.nest = 3;

obj.nexp = 3;

obj.msstd = 0.01;
obj.msstdmin = 0.001;
obj.flxstd = 0.05;
obj.flxstdmin = 0.001;
obj.sparse = true;

% Initialize fields
mod.options.hpc-on = false;
mod.options.fitreltol = 0.01;
mod.options.fittau = 0.001;
mod.options.fitreinit = false;
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obj.hpcon = false;
obj.mod = mod;

obj.mat = mod2mat(mod);

obj.net = flx2net(mod.rates.flx.val',obj.mat);
obj.weight = [];
obj.encoder = enc;

if rem(length(varargin),2) -= 0

error('Property names and values must be in pairs');
end

props = reshape(varargin,2,[])';

% Parse through any property name/value pairs
for i = 1:size(props,1)

if ~isfield(obj,props{i,1})

error('Invalid property name');

else

obj.(props{i,1}) = props{i,2};
end

end

frees = [obj.mat.meta.free];

if isempty(obj.weight)

obj.weight = frees;
elseif length(obj.weight) < length(frees) % || any(~islogical(obj.weight))

temp = logical(zeros(size(frees)));
temp(obj.weight) = true;
obj.weight = temp;

end

obj.pars = logical(obj.weight);
dir = cell2mat(mod.rates.flx.dir);
dir = [dir(2:end)=='b',false];
obj.netpars = dir(obj.pars);

obj = class(obj,'fitness');

end

end

D.6 Encoder Class

These files should be stored in the folder metranCL/class/@encoder.

encoder Constructor method for encoder object.

function obj = encoder(s)
% Constructor method for encoder object

if isstruct(s) && isfield(s,'nbits')

obj = class(s,'encoder');
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else

tracers = s;

X Set constants
obj.nbits = 8;

% Store information for each potential tracer
tracers = tracersort(tracers);
obj.tracers = tracers;
obj.atoms = tracers.atoms.id;
obj.states = tracers.state;
len = length(tracers);

% Make sure that no fields were empty
if len -= length(obj.atoms) || len -= length(obj.states)

error('Tracers must have defined atom ids and states.');
end

% Make sure that no duplicate tracers were given
for i = 1:len

if sum(strcmp(obj.atoms{i},obj.atoms) & ...
strcmp(obj.states{i},obj.states)) > 1

error('Tracers must have unique atom ids and states.');
end

end

% Unique list of states for natural abundance
obj.natural = sort(unique(obj.states));

obj = class(obj,'encoder');
end

end

encode Method to encode a chromsome from a tracer mixture.

function chsome = encode(obj,tracer)
% Method to encode a chromosome from a multi-tracer. Tracers with natural
% abundance should be indicated with an atom id of 'na'.

% Initialize chromosome
chsome = logical(zeros([1,(length(obj.states)+length(obj.natural))*obj.nbits]));

X Can't normalize if natural abundance frac isn't included in tracer object
X Normalize tracer
X tracer = normalize(obj,tracer);

% Encode each tracer frac to chromosome
zs = zeros(1,length(obj.natural));
statefracs = zs;

for i = 1:length(tracer)
idx = strcmp(tracer(i).state,obj.states) & ...
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strcmp(tracer(i).atoms.id,obj.atoms);

if isempty(idx)

error('An input tracer was not pre-defined.');
end

stateidx = strmatch(obj.states{i},obj.natural);
statefracs(stateidx) = statefracs(stateidx)+tracer(i).frac;

gene = floor(tracer(i).frac*(2^obj.nbits-1));
gene = dec2bin(gene,obj.nbits) == '1';

idx = find(idx);

range = (idx-1)*obj.nbits+1:idx*obj.nbits;
chsome(range) = gene;

end

statenat = max([zs;1-statefracs]);
for i = 1:length(obj.natural)

gene = round(statenat(i)*(2^obj.nbits-1));
gene = dec2bin(gene,obj.nbits) == '1';

idx = length(tracer)+i;
range = (idx-1)*obj.nbits+1:idx*obj.nbits;

chsome(range) = gene;
end

chsome = normalize(obj,chsome);

end

decode Method to decode a tracer mixture from a chromosome.

function trcr = decode(obj,chsome)
% Method to decode a multi-tracer from a chromosome.

chsome = normalize(obj,chsome);
bins = reshape(chsome,obj.nbits,[])';
fracs = bins*2.^(obj.nbits-1:-1:0)'/(2^obj.nbits-1);
trcr = obj.tracers;
trcr.frac = fracs(1:length(trcr))';

end

normalize Method to renormalize individual fractions of a tracer mixture.

function chsome = normalize(obj,chsome)
% Method to renormalize individual fractions of a multi-tracer.

for i = 1:length(obj.natural)
state = obj.natural{i};
idx = [strmatch(state,obj.states)',length(obj.states)+i];
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bins = reshape(chsome,obj.nbits, [])';
bins = bins(idx,:);
if all(all(Tbins))

bins(end,:) = ~bins(end,:);

end

fracs = bins*2.^(obj.nbits-1:-1:O)';
fracs = fracs/sum(fracs)*(2^obj.nbits-1);
floored = floor(fracs);
[j,j] = sort(fracs-floored,'descend');
n = 2^obj.nbits-1-sum(floored);
floored(j(1:n)) = floored(j(1:n))+1;
for j = 1:length(idx)

gene = dec2bin(floored(j),obj.nbits) == '1';

range = (idx(j)-1)*obj.nbits+1:idx(j)*obj.nbits;

chsome(range) = gene;
end

end

end

D.7 Common Files

These files get m, subsasgn. m, and subsref .m should be stored in the folders

metranCL/class/@fitness and metranCL/class/@encoder. The file extract.m

should be stored in the folders metranCL/class/@f itdata and

metranCL/class/@parameter.

get Get base object properties.

function varargout = get(x,varargin)
% BASE/GET Get base object properties.

len = length(varargin);
varargout = cell(1,len);
for i = 1:len,

index.type =

index.subs = varargin{i};
varargout{i} = subsref(x,index);

end

end

subsasgn Define index assignment for base objects.

function x = subsasgn(x,index,val)
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XBASE/SUBSASGN Define index assignment for base objects.

X handle size increase
if strcmp(index(1).type,'()'),

len = max(index(1).subs{1});
if len > length(x), x(end+1:len) = feval(class(x)); end

end

X call subsasgn recursively
if length(index) > 1,

val = subsasgn(subsref(x,index(1)),index(2:end),val);
end

X call class-specific method
x = subsa(x,index(1),val);

X --- ------------------------------------------------------------
X Class-specific subscript assignment
function x = subsa(x,index,val)

switch index.type

case '0)',
x(index.subs{:}) = val;

case
if isempty(x), return, end

type = class(x);

x = struct(x);

if ischar(val),
val = cellstr(val);

elseif isnumeric(val) || islogical(val),

len = length(x);
if len > 1,

val = num2cell(val,1:ndims(val)-1);
else

val = {val};
end

elseif isobject(val) || isstruct(val),

val = obj2cell(val,x,index.subs);
end

if isfield(x,index.subs),

[x.(index.subs)] = deal(val{:});
else

error('Field ''%s'' does not exist.',index.subs);

end

x = feval(type,x);

case '{}',
i = cellndx(x,index.subs);
x(i) = val;

end
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subsref Define field name indexing for base objects.

function x = subsref(x,index)
%BASE/SUBSREF Define field name indexing for base objects.

% call class-specific subsref

x = subsr(x,index(1));

% call subsref recursively
if length(index) > 1,

x = subsref(x,index(2:end));
end

% Class-specific subscripted reference
function x = subsr(x,index)

switch index.type

case '(0',
x = x(index.subs{:});

case

cls = class(x);

if length(x) > 0,
t = x(;

else

t = feval(cls); X get default template
end

t = struct(t);

x = struct(x);

if ischar(t.(index.subs)),
x = {x.(index.subs)};

else
x = {x.(index.subs)};
nrows = cellfun('size',x,1);
if isempty(nrows) || all(nrows == max(nrows) nrows 0),

x = [x{:}];
end

end
case '{},

i = cellndx(x,index.subs);

x = x(i);

end

extraCt Extract fields from structures.

function t = extract(h,f)
% Extract fields from structures

t = {h.(f)};
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Appendix E

Flux Analysis Results for

Y. lipolytica

E.1 GC/MS Measurements

Four nonstationary metabolic flux experiments were conducted for Y. lipolytica as

discussed in Chapter 8. Experiments Li, L2, HI, and H2 respectively refer to NMFA

at low aeration and linear growth, low aeration and stationary growth, high aeration

and linear growth, and high aeration and stationary growth. A combination of rapid

and manual samples were taken in each case and assayed for intracellular isotopic

metabolite labeling. These measurements are comprehensively listed in Tables E.1

(LI part 1), E.2 (LI part 2), E.3 (L2 part 1), E.4 (L2 part 2), E.5 (HI part 1), E.6

(HI part 2), E.7 (H2 part 1), and E.8 (H2 part 2).

E.2 Measurement Fits

Simulations using a model reaction network produced measurements in silico that

were statistically comparable to those observed experimentally. These fits are shown

in Figures E-i (LI), E-2 (L2), E-3 (HI), and E-4 (H2). Figure 8.7 lists overall

statistical parameters pertaining to each fit.
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E.3 Flux Estimations

Fluxes were estimated for each reaction in the model reaction network described in

Tables 8.5 and 8.6. We also calculated 95% confidence intervals for each net and

exchange flux. The estimated values for each of these fluxes as well as the lower and

upper bounds of the confidence intervals are shown in Tables E.9, E.10, E.11, and

E.12.
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Experiment L1
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Figure E-1: Simulated isotopic labeling for experiment LI (low aeration, linear phase)

fitted to GC/MS measurements of organic and amino acid fragments.
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Experiment L2
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Figure E-2: Simulated isotopic labeling for experiment L2 (low aeration, stationary
phase) fitted to GC/MS measurements of organic and amino acid fragments.
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Experiment H1
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Figure E-3: Simulated isotopic labeling
phase) fitted to GC/MS measurements of

for experiment H1 (high aeration, linear
organic and amino acid fragments.
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Experiment H2
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Figure E-4: Simulated isotopic labeling for experiment H2 (high aeration, stationary
phase) fitted to GC/MS measurements of organic and amino acid fragments.
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Flux

Glucext - G6P

C02 CO2ext

Cit -+ Citext

Glyc -+ GlyCext

24 AcCoA -+ C16

27 AcCoA -> C18

Metabolites -+ Biomass

Li
97.43

100.00
101.80
192.29
200.68
205.93
0.00
0.00
1.32

44.27
49.45
50.92
0.78
0.85
1.11
1.29
1.33
1.57

159.87
162.47
169.98

L2
98.38

100.00
102.61
155.52
159.84
160.27
47.78
49.74
51.71
7.10

11.48
13.18
0.40
0.62
0.83
0.54
0.77
0.98

33.06
38.31
43.30

H1
97.32

100.00
102.94
203.41
208.27
210.42
0.48
1.24
1.63
21.09
27.75
37.47
1.27
1.53
1.70
2.57
2.85
3.06
67.07
73.04
75.95

H2
97.77

100.00
102.07
190.93
195.70
200.69
51.58
53.66
55.92
0.00
4.10
8.72
0.00
0.15
0.43
0.44
0.61
0.89
29.77
35.06
39.63

54.51 80.86 53.27 92.36
G6P -+ F6P 57.42 83.40 56.14 97.85

65.86 85.36 57.72 100.60
596.68 0.00 230.44 0.00

G6P < F6P 9878.76 0.00 666.93 0.00
Inf 60.41 76746.00 27285.19

77.18 91.00 80.38 94.96
F6P -- DHAP + GAP 79.64 93.01 82.60 97.95

84.48 95.14 85.62 99.99
24.07 76.91 47.59 90.38

DHAP -+ GAP 28.00 80.15 50.47 93.09
34.74 83.91 55.57 97.40

3200.39 0.00 624.18 0.00
DHAP + GAP 40027.14 0.00 40668.99 0.00

Inf 4.68 Inf 78.84
46.61 8.46 25.57 0.69

DHAP -+ Glyc 51.64 12.86 32.13 4.86
53.48 16.89 39.40 8.49
116.72 173.64 143.67 186.28

GAP -+ 3PG 117.62 177.70 145.80 190.85
123.19 182.24 150.38 196.38
0.00 0.00 0.00 0.00

GAP ++ 3PG 120.61 2144.36 259.87 0.53
Inf Inf Inf Inf

109.94 172.90 141.51 186.98
3PG -+ PEP 113.22 176.52 143.83 190.13

119.26 181.68 148.46 195.68
0.00 320.42 0.00 0.00

3PG + PEP 0.00 62614.56 112.10 0.00
Inf Inf Inf Inf

87.18 117.62 122.60 132.16
PEP -> Pyr 92.67 121.86 129.31 136.34

115.20 132.11 140.05 162.72

Table E.9: NMFA estimation results for Y. lipolytica at low aeration & linear growth,
low aeration & stationary growth, high aeration & linear growth, and high aeration
& stationary growth (LI, L2, Hi, H2). Values are normalized to a glucose input flux
of 100. The lower bound, the estimated value (bold), and upper bound are shown for
each flux and each experiment. Additional results appear in Tables E.10, E.11, and
E.12.
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Flux LI L2 Hi H2
84.19 117.15 125.58 127.33

Pyr AcCoAmit + C02 87.35 120.68 130.62 130.55
93.76 124.83 134.67 135.10
39.42 14.28 40.14 0.60

G6P - P5P 41.61 16.37 43.43 1.95
43.45 17.66 44.05 6.59
12.13 4.79 12.99 0.00

2 P5P -- S7P + GAP 12.79 5.20 13.99 0.42
13.40 5.65 14.64 1.99
0.00 0.70 0.00 26.02

2 P5P + S7P + GAP 0.00 2.48 0.00 30.88
2.14 3.12 3.36 32.77
12.13 4.59 13.56 0.00

S7P + GAP -+ F6P + E4P 12.79 5.20 13.99 0.42
13.40 5.63 14.07 1.95
30.48 0.00 1403.00 0.00

S7P + GAP ++ F6P + E4P 33.56 0.00 50364.68 0.00
38.14 1.09 Inf 3.10
8.05 3.82 11.55 -0.71

P5P + E4P -+ F6P + GAP 9.75 4.49 12.63 -0.24
10.37 4.91 12.85 1.31

112.39 49.56 62.29 88.45
P5P + E4P ++ F6P + GAP 128.75 53.94 71.22 97.50

144.21 64.29 76.41 110.59
93.87 119.43 128.87 129.19

AcCoAmit + OAAmit -+ Cit 95.04 122.22 134.09 132.67
101.59 124.32 138.09 137.25
35.70 34.76 16.90 55.36

Cit -+ AKG 38.70 37.00 19.18 59.10
41.05 37.84 20.63 61.44
0.00 0.00 0.00 0.00

Cit + AKG 0.00 0.00 0.00 0.00
4.05 1.48 0.37 9.41
30.43 32.98 16.26 53.95

AKG -+ Suc 33.40 35.75 16.80 57.96
35.65 37.75 20.11 60.89
30.43 32.98 16.26 53.95

Sue - Fum 33.40 35.75 16.80 57.96
35.65 37.75 20.11 60.89
0.00 34.25 1.70 23.48

Suc -+ Fum 1.81 41.74 3.55 35.86
3.65 45.15 6.74 47.56
33.55 34.15 15.57 54.33

Fum -* Malmit 36.49 36.48 18.18 58.62
38.77 39.27 21.75 61.27

200.52 2954.18 92.53 228.16
Fum ++ Malmit 334.25 333276.21 133.56 285.12

489.91 Inf 225.56 344.92
93.87 119.43 128.87 129.19

Malmit -+ OAAmit 95.04 122.22 134.09 132.67
101.59 124.32 138.09 137.25
0.00 0.00 0.00 0.00

Malmit ++ OAAmit 0.00 54.93 43.58 0.00
12.95 Inf Inf Inf

Table E.10: NMFA estimation results for Y. lipolytica at low aeration & linear growth,
low aeration & stationary growth, high aeration & linear growth, and high aeration
& stationary growth (LI, L2, Hi, H2). Values are normalized to a glucose input flux
of 100. The lower bound, the estimated value (bold), and upper bound are shown for
each flux and each experiment. Additional results appear in Tables E.9, E.11, and
E.12.
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Flux Li L2 HI H2
0.00 0.00 0.00 0.00

Pyr -- OAA 0.00 0.00 0.00 24.10
19.66 18.51 10.48 50.33
57.38 79.87 117.35 86.05

OAA -+ Mal 58.56 85.82 119.61 93.49
74.05 92.30 121.58 98.19

1534.31 169.66 333.41 1727.69
OAA < Mal 19054.26 202.93 5863.76 44923.97

Inf 236.87 Inf Inf
0.00 0.00 1.65 11.99

Mal -- Pyr 0.00 0.08 3.70 19.45
5.28 3.69 6.18 23.59
-4.77 34.41 0.55 20.64

PEP -+ OAA 14.23 53.17 11.69 52.42
20.58 55.72 14.53 55.51
0.00 38.06 0.00 0.00

PEP + OAA 4.41 50.21 0.00 0.00
5.95 63.06 1.19 7.87

55.11 30.37 106.09 14.76
Cit -- AcCoA + OAA 56.35 35.48 113.68 19.90

67.05 41.69 114.14 27.32
54.29 85.62 114.83 69.19

Mal -- Malmit 58.56 85.75 115.91 74.04
70.46 92.40 121.21 82.77

2530.03 1495.40 616.42 1927.79
Mal ++ Malmit 55657.14 143366.94 13039.48 36558.43

Inf Inf Inf Inf
0.97 0.20 0.41 0.18

MEETHF -+ METHF 0.99 0.23 0.44 0.21
1.03 0.24 0.47 0.24
1.84 0.39 0.79 0.36

MEETHF -+ FTHF 1.91 0.45 0.86 0.41
2.00 0.50 0.92 0.47
26.20 5.60 11.42 5.02

AKG -> Glu 26.84 6.46 12.41 5.90
28.26 7.19 13.33 6.71
5.22 1.08 2.28 0.96

Glu -+ Gln 5.33 1.26 2.39 1.15
5.55 1.32 2.55 1.29
0.87 0.18 0.37 0.16

Glu -- Pro 0.90 0.21 0.41 0.19
0.94 0.22 0.43 0.22
1.14 0.24 0.49 0.21

Glu -- Arg 1.17 0.28 0.53 0.25
1.23 0.31 0.56 0.28

10.20 2.11 4.62 2.22
OAA -- Asp 10.43 2.46 5.04 2.59

10.78 2.65 5.44 2.95
1.28 0.27 0.55 0.24

Asp -+ Asn 1.33 0.31 0.60 0.29
1.39 0.33 0.64 0.33
0.95 0.20 0.41 0.18

Pyr -- Ala 0.99 0.23 0.44 0.21
1.03 0.24 0.46 0.24

Table E. 11: NMFA estimation results for Y. lipolytica at low aeration & linear growth,
low aeration & stationary growth, high aeration & linear growth, and high aeration
& stationary growth (LI, L2, HI, H2). Values are normalized to a glucose input flux
of 100. The lower bound, the estimated value (bold), and upper bound are shown for
each flux and each experiment. Additional results appear in Tables E.9, E.10, and
E.12.
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Flux

3PG -* Ser

Ser -+ Gly

Ser + Gly

Gly -- MEETHF

Gly MEETFH

Thr - Gly

Ser -+ Cys

Asp + Pyr -- Lys

Asp -- Thr

Asp -+ Met

2 Pyr -- Val

AcCoAmit + 2 Pyr -, Leu

Thr + Pyr -- Ile

2 PEP + E4P -+ Phe

2 PEP + E4P -- Tyr

Ser + P5P + PEP + E4P -- Trp

P5P + FTHF -> His

Table E.12: NMFA estimation results for Y. lipolytica at low aeration & linear growth,
low aeration & stationary growth, high aeration & linear growth, and high aeration
& stationary growth (LI, L2, H1, H2). Values are normalized to a glucose input flux
of 100. The lower bound, the estimated value (bold), and upper bound are shown for
each flux and each experiment. Additional results appear in Tables E.9, E.10, and
E.ii.
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L1
1.29
1.50
1.53

-1.64
-1.60
-1.58
3.34
3.49
4.08
6.51
6.57
6.76
0.00
0.00
0.08
9.26
9.35
9.54
1.14
1.17
1.22
0.64
0.65
0.67
2.93
3.05
3.19
0.97
0.99
1.03
0.34
0.36
0.37
1.60
1.66
1.74
1.05
1.09
1.14
0.82
0.84
0.88
1.30
1.36
1.43
0.82
0.84
0.88
1.84
1.91
2.00

L2 HI
0.43 0.49
0.49 0.66
0.56 0.86
-0.28 -0.90
-0.24 -0.73
-0.18 -0.54
1.37 1.82
1.58 3.11
1.87 4.75
1.27 2.67
1.41 2.96
1.47 3.19
0.00 0.00
0.00 0.00
0.08 0.02
1.64 3.73
1.93 4.22
2.01 4.63
0.24 0.49
0.28 0.53
0.30 0.56
0.13 0.27
0.15 0.29
0.17 0.31
0.61 1.54
0.72 1.72
0.75 1.94
0.20 0.41
0.23 0.44
0.24 0.47
0.07 0.15
0.08 0.16
0.09 0.17
0.34 0.69
0.39 0.74
0.41 0.80
0.22 0.45
0.26 0.49
0.27 0.52
0.17 0.35
0.20 0.38
0.20 0.40
0.28 0.57
0.32 0.61
0.35 0.65
0.17 0.35
0.20 0.38
0.20 0.40
0.39 0.79
0.45 0.86
0.50 0.92

H2
0.08
0.10
0.20
-0.65
-0.57
-0.48
0.00
0.00
0.63
1.41
1.65
1.85
0.00
0.00
0.02
2.04
2.47
2.79
0.22
0.25
0.28
0.12
0.14
0.16
0.88
1.00
1.13
0.18
0.21
0.24
0.06
0.08
0.09
0.30
0.36
0.40
0.20
0.24
0.27
0.15
0.18
0.20
0.36
0.29
0.47
0.15
0.18
0.20
0.36
0.41
0.47



Appendix F

Abbreviations

3PG 3-phosphoglycerate

6PG 6-phosphoglycerate

AcCoA acetyl coenzyme A

AKG a-ketoglutarate

Ala alanine

Arg arginine

Asn asparagine

Asp aspartate

C16 16-carbon fatty acid

C18 18-carbon fatty acid

CHO chinese hamster ovary

CI confidence interval

Cit citrate

CO 2  carbon dioxide

Cys cysteine

cyt cytosolic

DHAP dihydroxyacetone phosphate

dil dilution

DMEM Dulbecco's modified Eagle's medium

E4P erythrose 4-phosphate
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EC 2  transketolase 2-carbon intermediate

EC 3  transaldolase 3-carbon intermediate

EMU elementary metabolite unit

exp exponential

ext extracellular

F6P fructose 6-phosphate

FA fatty acid

FBP fructose 1,6-bisphosphate

Frag metabolite fragment

FTHF formyltetrahydrofolate

Fum fumarate

G6P glucose 6-phosphate

GAP glyceraldehyde 3-phosphate

GC gas chromatography

Gln glutamine

GLP glycerol 3-phosphate

Glu glutamate

Gluc glucose

Gly glycine

Glyc glycerol

Glyc3P glycerol 3-phosphate

H1 linear phase high-aeration experiment

H2 stationary phase high-aeration experiment

HCMV human cytomegalovirus

His histidine

HPA 3-hydroxypropionaldehyde

HPLC high-performance liquid chromatography

ICit isocitrate

IDH isocitrate dehydrogenase

Ile isoleucine
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KDPG

Li

L2

Lac

lb

LC

Leu

lin

LL-DAP

LNS

LNS w/ C

Mal

MEETHF

Met

METHF

MetranCL

MFA

MID

mit

mRNA

MS

MSTFA

MTBSTFA

NADPH

NMFA

NMR

NTP

0

OAA

OD

2-keto-3-deoxy-6-phosphogluconate

linear phase low-aeration experiment

stationary phase low-aeration experiment

lactate

lower bound

liquid chromatography

leucine

linear

LL-diaminopimelate

long nonstationary experiment

long nonstationary experiment with concentrations

malate

methylenetetrahydrofolate

methionine

methyltetrahydrofolate

command line metabolic tracer analysis

metabolic flux analysis

mass isotopomer distribution

mitochondrial

messenger ribonucleic acid

mass spectroscopy

N-methyl-N-trifluoroacetamide

N-methyl-N- (tert-butyldimethyl-silyl)trifluoroacetimide

reduced nicotinamide adenine dinucleotide phosphate

isotopically nonstationary metabolic flux analysis

nuclear magnetic resonance

nucleotide phosphate

original value

oxaloacetate

optical density
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P5P

Palm

PCI

PDH

PDO

PEP

Phe

PPP

Pro

Pyr

R5P

ref

RNAi

Ru5P

S

S7P

Ser

SIM

SNS

SNS w/ C

SSR

stdev

Suc

SucCoA

tag

TBDMCS

TBDMS

TCA

Thr

TMCS

pentose 5-phosphate

palmitate

peripheral component interconnect

pyruvate dehydrogenase

1,3-propanediol

phosphoenolpyruvate

phenylalanine

pentose phosphate pathway

proline

pyruvate

ribose 5-phosphate

reference

ribonucleic acid interference

ribulose 5-phosphate

stationary experiment

seduheptulose 7-phosphate

serine

selected ion monitoring

short nonstationary experiment

short nonstationary experiment with concentrations

sum of squared residuals

standard deviation

succinate

succinyl coenzyme A

triacylglyceride

tert-butyldimethylchlorosilane

tert-butyldimethylsilyl

tricarboxylic acid

threonine

trimethylchlorosilane
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TMS trimethylsilyl

Trp tryptophan

Tyr tyrosine

U uniform

ub upper bound

Val valine

X5P xylulose 5-phosphate

xch exchange

xpt experiment

YNB yeast nitrogen base
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