
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-053 November 22, 2010

Scalable directoryless shared memory
coherence using execution migration
Mieszko Lis, Keun Sup Shim, Myong Hyon Cho,
Omer Khan, and Srinivas Devadas

Scalable directoryless shared memory coherence
using execution migration

Mieszko Lis Keun Sup Shim Myong Hyon Cho Omer Khan Srinivas Devadas

Abstract—We introduce the concept of deadlock-free
migration-based coherent shared memory to the NUCA
family of architectures. Migration-based architectures
move threads among cores to guarantee sequential se-
mantics in large multicores. Using a execution migration
(EM) architecture, we achieve performance comparable
to directory-based architectures without using directories:
avoiding automatic data replication significantly reduces
cache miss rates, while a fast network-level thread mi-
gration scheme takes advantage of shared data locality to
reduce remote cache accesses that limit traditional NUCA
performance.

EM area and energy consumption are very competitive,
and, on the average, it outperforms a directory-based
MOESI baseline by 6.8% and a traditional S-NUCA design
by 9.2%. We argue that with EM scaling performance has
much lower cost and design complexity than in directory-
based coherence and traditional NUCA architectures: by
merely scaling network bandwidth from 128 to 256 (512)
bit flits, the performance of our architecture improves
by an additional 8% (12%), while the baselines show
negligible improvement.

I. BACKGROUND

Current trends in microprocessor design clearly indicate
an era of multicores for the 2010s. As transistor density
continues to grow geometrically, processor manufacturers
are already able to place a hundred cores on a chip (e.g.,
Tilera Tile-Gx 100), with massive multicore chips on the
horizon; many industry pundits are predicting 1000 or
more cores by the middle of this decade [1]. Will the
current architectures and their memory subsystems scale
to hundreds of cores, and will these systems be easy to
program?

The main barrier to scaling current memory architec-
tures is the off-chip memory bandwidth wall [1], [2]: off-
chip bandwidth grows with package pin density, which
scales much more slowly than on-die transistor density [3].
Today’s multicores integrate very large shared last-level
caches on chip to reduce the number of off-chip memory
accesses [4]; interconnects used with such shared caches,
however, do not scale beyond relatively few cores, and the
power requirements of large caches (which grow quadrati-
cally with size) exclude their use in chips on a 1000-core

scale—for example, the Tilera Tile-Gx 100 does not have
a large shared cache.

For massive-scale multicores, then, we are left with rel-
atively small per-core caches. Since a programming model
that relies exclusively on software-level message passing
among cores is inconvenient and so has limited applica-
bility, programming complexity considerations demand that
the per-core caches must present a unified addressing space
with coherence among caches managed automatically at the
hardware level.

On scales where bus-based mechanisms fail, the tradi-
tional solution to this dilemma is directory-based cache
coherence: a logically central directory coordinates sharing
among the per-core caches, and each core cache must
negotiate shared (read-only) or exclusive (read/write) ac-
cess to each line via a complex coherence protocol. In
addition to protocol complexity and the associated design
and verification costs, directory-based coherence suffers
from three other problems: (a) directory sizes must equal
a significant portion of the combined size of the per-
core caches, as otherwise directory evictions will limit
performance [5]; (b) automatic replication of shared data
significantly decreases the effective total on-chip cache size
because, as the core counts grow, a lot of cache space is
taken by replicas and fewer lines in total can be cached,
which in turn leads to sharply increased off-chip access
rates; and (c) frequent writes to shared data can result in
repeated cache invalidations and the attendant long delays
due to the coherence protocol.

Two of these shortcomings have been addressed by S-
NUCA [6] and its variants. These architectures unify the
per-core caches into one large shared cache, in their pure
form keeping only one copy of a given cache line on chip
and thus steeply reducing off-chip access rates compared
to directory-based coherence. In addition, because only one
copy is ever present on chip, cache coherence is trivially
ensured and a coherence protocol is not needed. This comes
at a price, however, as accessing data cached on a remote
core requires a potentially expensive two-message round-
trip: where a coherence protocol would take advantage of
spatial and temporal locality by making a copy of the block
containing the data in the local cache, S-NUCA must repeat
the round-trip for every access to ensure sequential memory

2

semantics. Various NUCA and hybrid proposals have there-
fore leveraged data migration and replication techniques
previously explored in the NUMA context (e.g., [7]) to
move private data to its owner core and replicate read-
only shared data among the sharers at OS level [8], [2],
[9] or aided by hardware [10], [11], [12], but while these
schemes improve performance on some kinds of data, they
still do not take full advantage of spatio-temporal locality
and require either coherence protocols or repeated remote
accesses to access read/write shared data.

To address this limitation and take advantage of available
data locality in a memory organization where there is only
one copy of data, we propose to allow computation threads
to migrate from one core to another at a fine-grained
instruction level. When several consecutive accesses are
made to data assigned to a given core, migrating the
execution context allows the thread to make a sequence of
local accesses on the destination core rather than pay the
performance penalty of the corresponding remote accesses.
While computation migration, originally considered in the
context of distributed multiprocessor architectures [13], has
recently re-emerged at the single-chip multicores level,
e.g., [14], [15], [16], for power management and fault-
tolerance, we are unique in using migrations to provide
memory coherence. We also propose a hybrid architecture
that includes support for SNUCA-style remote access.

Specifically, in this paper we:

1) introduce the idea of using instruction-level execu-
tion migration (EM) to ensure memory coherence
and sequential consistency in directoryless multicore
systems with per-core caches;

2) present a provably deadlock-free hardware-level mi-
gration algorithm to move threads among the avail-
able cores with unprecedented efficiency;

3) combine execution migration (EM) with NUCA-style
remote memory accesses (RA) to create a directo-
ryless shared-memory multicore architecture which
takes advantage of data locality.

II. MIGRATION-BASED MEMORY COHERENCE

The essence of traditional distributed cache management
in multicores is bringing data to the locus of the com-
putation that is to be performed on it: when a memory
instruction refers to an address that is not locally cached, the
instruction stalls while either the cache coherence protocol
brings the data to the local cache and ensures that the
address can be safely shared or exclusively owned (in
directory protocols) or a remote access is sent and a reply
received (in S-NUCA).

Migration-based coherence brings the computation to
the data: when a memory instruction requests an address

not cached by the current core, the execution context
(architecture state and TLB entries) moves to the core that is
home for that data. As in traditional NUCA architectures,
each address in the system is assigned to a unique core
where it may be cached: the physical address space in the
system is partitioned among the cores, and each core is
responsible for caching its region.

Because each address can be accessed in at most one
location, many operations that are complex in a system
based on a cache coherence protocol become very simple:
sequential consistency and memory coherence, for example,
are ensured by default. (For sequential consistency to be
violated, multiple threads must observe multiple writes in
different order, which is only possible if they disagree
about the value of some variable, for example, when their
caches are out of sync. If data is never replicated, this
situation never arises). Atomic locks work trivially, with
multiple accesses sequentialized on the core where the lock
address is located, and no longer ping-pong among core
local caches as in cache coherence.

In what follows, we first discuss architectures based
purely on remote accesses and purely on migration, and
then combine them to leverage the strengths of both.

A. Basic remote-access-only (RA) architecture

In the remote-access (RA) architecture, equivalent to
traditional S-NUCA, all non-local memory accesses cause
a request to be transmitted over the interconnect network,
the access to be performed in the remote core, and the data
(for loads) or acknowledgement (for writes) be sent back
to the requesting core: when a core C executes a memory
access for address A, it must

1) compute the home core H for A (e.g., by masking the
appropriate bits);

2) if H = C (a core hit),

a) forward the request for A to the cache hierarchy
(possibly resulting in a DRAM access);

3) if H 6= C (a core miss),

a) send a remote access request for address A to
core H,

b) when the request arrives at H, forward it to H’s
cache hierarchy (possibly resulting in a DRAM
access),

c) when the cache access completes, send a re-
sponse back to C,

d) once the response arrives at C, continue execu-
tion.

3

To avoid interconnect deadlock,1 the system must ensure
that all remote requests must always eventually be served;
specifically, the following sequence, involving execution
core C, home core H, and memory controller M, must
always eventually make progress:

1) remote access request C→ H,
2) possible cache → DRAM request H→M,
3) possible DRAM → cache response M→ H, and
4) remote access reply H→C.
Since each step can only block and occupy resources

(e.g., buffers) until the following steps complete, network
messages induced by each later step must not be blocked
at the network level by messages from a previous step
belonging to another remote access. First, because steps 2
and 3 are optional, avoiding livelock requires traffic to be
split into two independent virtual networks: one carrying
messages for steps 1 and 4, and one for steps 2 and 3.
Next, within each such subnetwork, the reply must have
higher priority than the request. Finally, network messages
between any two nodes within each subnetwork must be
delivered in the order in which they were sent. With these
rules, responses are always consumed and never blocked
by requests, and the protocol always eventually makes
progress.

B. Basic execution-migration-only (EM) architecture

In the execution-migration-only variant (EM), all non-
local memory accesses cause the executing thread to be
migrated to the core where the relevant memory address
resides and executed there.

What happens if the target core is already running
another thread? One option is to allow each single-issue
core to round-robin execute several threads, which requires
duplicate architectural state (register file, TLB); another
is to evict the executing thread and migrate it elsewhere
before allowing the new thread to enter the core. Our design
features two execution contexts at each core: one for the
core’s native thread (i.e., the thread originally assigned
there and holding its private data), and one for a guest
thread. When an incoming guest migration encounters a
thread running in the guest slot, this thread is evicted to its
native core.

Thus, when a core C running thread T executes a
memory access for address A, it must

1) compute the home core H for A (e.g., by masking the
appropriate bits);

1In the deadlock discussion, we assume that events not involving
the interconnect network, such as cache and memory controller inter-
nals, always eventually complete, and that the interconnect network
routing algorithm itself is deadlock-free or can always eventually
recover from deadlock.

2) if H = C (a core hit),

a) forward the request for A to the cache hierarchy
(possibly resulting in a DRAM access);

3) if H 6= C (a core miss),

a) interrupt the execution of the thread on C (as
for a precise exception),

b) migrate the microarchitectural state to H via the
on-chip interconnect:

i) if H is the native core for T , place it in in
the native context slot;

ii) otherwise:

A) if the guest slot on H contains another
thread T ′, evict T ′ and migrate it to its
native core N ′

B) move T into the guest slot for H;

c) resume execution of T on H, requesting A from
its cache hierarchy (and potentially accessing
DRAM).

Deadlock avoidance requires that the following sequence
always eventually completes:

1) migration of T from C→ H,
2) possible eviction of T ′ from H→ N ′,
3) possible cache → DRAM request H→M, and
4) possible DRAM → cache response M→ H.

As with the remote-access-only variant from Sec-
tion II-A, cache ↔ memory controller traffic (steps 3
and 4) travels on one virtual network with replies prioritized
over requests, and migration messages travel on another.
Because DRAM→ cache responses arrive at the requesting
core, a thread with an outstanding DRAM request cannot be
evicted until the DRAM response arrives; because this will
always eventually happen, however, the eviction will even-
tually be able to proceed. Eviction migrations will always
complete if (a) each thread T ′ has a unique native core
N ′ which will always accept an eviction migration,2 and
(b) eviction migration traffic is prioritized over migrations
caused by core misses. Since core-miss migrations can only
be blocked by evictions, they will also always eventually
complete, and the migration protocol is free of deadlock.
Finally, to avoid migration livelock, it suffices to require
each thread to complete at least one CPU instruction before
being evicted from a core.

Because combining two execution contexts in one single-
issue core may result in round-robin execution of the two
threads, when two threads are active on the core they both
experience a serialization effect: each thread is executing

2In an alternate solution, where T ′ can be migrated to a non-native
core such as T ’s previous location, a domino effect of evictions can
result in more and more back-and-forth messages across the network
and, eventually, deadlock.

4

Access memory & Migrate anotherccess e o y &
continue execution

Migrate # threads

thread back to
its native core

yes

yes

Memory Address

thread to
home core

threads
exceeded?

A &

Migrate
yes

D i i
y

access
in core A

cacheable
in core A?

Access memory &
continue execution

Send remote

no
no

Decision
Procedure

request to
home core

Access memoryRemote op

Return data (read)Return data (read)
or ack (write) to

the requesting core A
Continue execution

Core originating Core where address
b h d

Network
memory access can be cached

Fig. 1. In the hybrid EM/RA architecture, memory accesses to addresses not assigned to the local core cause the execution context to be
migrated to the core, or may result in a remote data access.

only 50% of the time. Although this seems like a relatively
high overhead, observe that most of the time threads access
private data and are executing on their native cores, so in
reality the serialization penalty is not a first-order effect.

C. Hybrid architecture (EM/RA)

In the hybrid migration/remote-access architecture
(EM/RA), each core-miss memory access may either per-
form the access via a remote access as in Section II-A or
migrate the current execution thread as in Section II-B. The
hybrid architecture is illustrated in Figure 1.

For each access to memory cached on a remote core, a
decision algorithm determines whether the access should
migrate to the target core or execute a remote access.
Because this decision must be taken on every access,
it must be implementable as efficient hardware. In this
paper, therefore, we consider and evaluate a simple heuristic
scheme: the DISTANCE scheme. If the migration destination
is the native core, the distance scheme always migrates;
otherwise, it evaluates the hop distance to the home core.
It migrates execution if the distance exceeds some threshold
d else it makes a round-trip remote cache access.

In order to avoid deadlock in the interconnect, migrations
must not be blocked by remote accesses and vice versa;
therefore, a total of three virtual subnetworks (one for
remote accesses, one for migrations, and one for memory
traffic) are required. At the protocol level, evictions must
now also wait for any outstanding remote accesses to com-
plete in addition to waiting for DRAM→ cache responses.

D. Migration framework

The novel architectural component we introduce here
is fast, hardware-level migration of execution contexts
between two cores via the on-chip interconnect network.

Since the core miss cost is dominated by the remote
access cost and the migration cost, it is critical that the mi-
grations be as efficient as possible. Therefore, unlike other
thread-migration approaches (such as Thread Motion [17],
which uses special cache entries to store thread contexts and
leverages the existing cache coherence protocol to migrate
threads), our architecture migrates threads directly over
the interconnect network to achieve the shortest possible
migration latencies.

Per-migration bandwidth requirements, although larger
than those required by cache-coherent and remote-access-
only designs, are not prohibitive by on-chip standards:
in a 32-bit x86 processor, the relevant architectural state
amounts, including TLB, to about 1.5Kbits [17].

Figure 2 shows the differences needed to support efficient
execution migration in a single-threaded five-stage CPU
core. When both context slots (native and guest) are filled,
execution round-robins between them to ensure that all
threads can make progress. Register files now require
wide read and write ports, as the migration logic must
be able to unload all registers onto the network or load
all registers from the network in relatively few cycles;
to enable this, extra muxing logic connects the register
files directly with the on-chip network router. The greater
the available network bandwidth, the faster the migration.
As with traditional S-NUCA architectures, the memory
subsystem itself is connected to the on-chip network router
to allow for accesses to the off-chip memory controller as
well as for reads and writes to a remote cache (not shown
in the figure).

E. Data placement

The assignment of addresses to cores affects the perfor-
mance of EM/RA in three ways: (a) because context migra-

5

tions pause thread execution and therefore longer migration
distances will slow down performance; (b) because remote
accesses also pause execution and longer round trips will
also limit performance; and (c) indirectly by influencing
cache performance. On the one hand, spreading frequently
used addresses evenly among the cores ensures that more
addresses are cached in total, reducing cache miss rates
and, consequently, off-chip memory access frequency; on
the other hand, keeping addresses accessed by the same
thread in the same core cache reduces migration rate and
network traffic.

As in standard S-NUCA architectures, the operating
system controls memory-to-core mapping via the existing
virtual memory mechanism: when a virtual address is first
mapped to a physical page, the OS chooses where the
relevant page should be cached by mapping the virtual
page to a physical address range assigned to a specific core.
Since the OS knows which thread causes a page fault, more
sophisticated heuristics are possible: for example, in a first-
touch-style scheme, the OS can map the page to the thread’s
native core, taking advantage of data access locality to
reduce the migration rate while keeping the threads spread
among cores.

In EM/RA architectures, data placement is key, as it
determines the frequency and distance of remote accesses
and migrations. Although placement has been studied ex-
tensively in the context of NUMA architectures (e.g., [7])
as well as more recently in NUCA context (e.g., [2]), we
wish to concentrate here on the potential of the EM/RA
architecture and implement none of them directly. Instead,
we combine a first-touch data placement policy [18], which
maps each page to the first core to access it, with judicious
profiling-based source-level modifications to our bench-
mark suite (see Section III-C) to provide placement and
replication on par or better than that of available automatic

methods.

III. METHODS

A. Architectural simulation

We use Pin [19] and Graphite [20] to model the proposed
execution migration (EM), remote-access (RA) and hybrid
(EM/RA) architectures as well as the cache-coherent (CC)
baseline. Pin enables runtime binary instrumentation of par-
allel programs, including the SPLASH-2 [21] benchmarks
we use here; Graphite implements a tile-based multicore,
memory subsystem, and network, modeling performance
and ensuring functional correctness.

The default settings used for the various system configu-
ration parameters are summarized in Table I; any deviations
are noted when results are reported. In experiments com-
paring EM/RA architectures against CC, the parameters for
both were identical, except for (a) the memory directories
which are not needed for EM/RA and were set to sizes rec-
ommended by Graphite on basis of the total cache capacity
in the simulated system, and (b) the 2-way multithreaded
cores which are not needed for cache-coherent baseline.

To exclude differences resulting from relative scheduling
of Graphite threads, data were collected using a homoge-
neous cluster of machines.

B. On-chip interconnect model

Experiments were performed using Graphite’s model
of an electrical mesh network with XY routing with
128-bit flits. Since modern network-on-chip routers are
pipelined [22], and 2- or even 1-cycle per hop router
latencies [23] have been demonstrated, we model a 2-cycle
per hop router delay; we also account for the appropriate
pipeline latencies associated with loading and unloading a
packet onto the network. In addition to the fixed per-hop

!"#$%& '"$()"& *+"$,#"& -".(/0&
1/2#"&
34$5&

6"7!28"9&

6"7!28":&

);<=9&

);<=:&

2;<=9&

2;<=:&

>?9&

>?:&

<9&@A& <9&'A&

-".(/0&B,3C0C#".&

;%/"4)&
B$%"),8"/&

(a) The architecture of a 2-way single-issue slot multi-
threaded core for EM2

!"#$%&"'

()*'

()*'

()*'

()*'

()*'

()*'

()*'

()*'

!"#$% !+,-".' !+,-".' !"#$%

()*'

()*'

()*'

()*'

!"#$%&"'

()*'

()*'

()*'

()*'

Core A Core B Interconnection Network

(b) Microarchitecture for a single context transfer in EM2

Fig. 2. (a) A single-issue five-stage pipeline with efficient context migration; differences from a single-threaded pipeline are shaded. (b)
For a context transfer, the register file of the originating core is unloaded onto the router, transmitted across the network and finally loaded
onto the home core’s register file via the router.

6

Parameter Settings

Cores 256 in-order, 5-stage pipeline, single issue cores
2-way fine-grain multithreading

L1 instruction/L1 data/L2 cache per core 32/16/64KB, 4/2/4-way set associative
Electrical network 2D Mesh, XY routing, 2 cycles per hop (+ contention), 128b flits

1.5 Kbits execution context size (similar to [17])

Context load/unload latency:
⌈

pkt size
flit size

⌉
= 12 cycles

Context pipeline insertion latency = 3 cycles
Data Placement scheme FIRST-TOUCH, 4KB page size
Coherence protocol Directory-based MOESI, Full-map distributed directories = 8

Entries per directory = 32768, 16-way set associative
Memory 30GB/s bandwidth, 75ns latency

TABLE I
SYSTEM CONFIGURATIONS USED

latency, contention delays are modeled using a probabilistic
model similar to the one proposed in [24].

C. Application benchmarks

Our experiments used a set of SPLASH-2 benchmarks:
FFT, LU CONTIGUOUS, OCEAN CONTIGUOUS, RADIX,
RAYTRACE, and WATER-N2. For the benchmarks for which
versions optimized for cache coherence exist (LU and
OCEAN [25], [21]), we chose the versions that were most
optimized for directory-based cache coherence.

Application benchmarks tend not to perform well in RA
architectures with simple striped data placements [2], and
sophisticated data placement and replication algorithms like
R-NUCA [2] are required for fair comparisons. Rather
than picking one of the many automated schemes in the
literature, we first profiled and manually modified each
benchmark to detect shared data structures that caused
many non-local memory accesses; then, we manually mod-
ified the frequently accessed shared data to replicate them
permanently (for read-only data) or temporarily (for read-
write data) among the relevant application threads. Since
automated replication and placement methods cannot take
advantage of such application-specific techniques as tem-
porarily replicating read-write data, our scheme is in some
sense superior to all available automatic methods. Our
optimizations were limited to rearranging, and replicating
the main data structures to take full advantage of the
first-touch page allocation scheme. Our optimizations were
strictly source-level, and did not alter the algorithm used.
Together with a first-touch page placement policy imple-
mented in our architectural simulator, our modifications
serve as a reference placement/replication scheme. As such,
the changes did not affect the operation of the cache

coherence protocol, and the performance differences were
negligible: on average, our EM/RA-optimized version was
about 2% faster than the cache-coherence-optimized variant
when run on the cache-coherent baseline.

Each application was run to completion using the recom-
mended input set for the number of cores used. For each
simulation run, we tracked the total application completion
time, the parallel work completion time, the percentage
of memory accesses causing cache hierarchy misses, and
the percentage of memory accesses causing migrations.
While the total application completion time (wall clock
time from application start to finish) and parallel work
completion time (wall clock time from the time the second
thread is spawned until the time all threads re-join into
one) show the same general trends, we focused on the
parallel work completion time as a more accurate metric
of average performance in a realistic multicore system with
many applications.

D. Directory-based cache coherence baseline selection

In order to choose a directory-based coherence (CC)
baseline for comparison, we considered the textbook pro-
tocol with Modified/Shared/Invalid (MSI) states as well
as two alternatives: on the one hand, data replication can
be completely abandoned by only allowing modified or
invalid states (MI); on the other hand, in the presence of
data replication, off-chip access rates can be lowered via
protocol extensions such as an owned and exclusive states
(MOESI) combined with cache-to-cache transfers whenever
possible.

To evaluate the impact of these variations, we compared
the performance for various SPLASH-2 benchmarks under
MSI, MI, and MOESI (using parameters from Table I). As

7

0	

0.5	

1	

1.5	

2	

2.5	

fft
	

lu_
co
nt
	

oc
ea
n_
co
nt
	

rad
ix	

ray
tra
ce
	

wa
te
r-‐n
²	

AV
G	 Pa

ra
lle
l	 c
om

pl
e+

on
	 +
m
e	

re
la
+
ve
	 to

	 M
O
ES
I	 b

as
ed

	 C
C	 MI	 MSI	

(a) parallel completion time under different CC protocols,
normalized to MOESI

0.0%	
1.0%	
2.0%	
3.0%	
4.0%	
5.0%	
6.0%	
7.0%	
8.0%	
9.0%	
10.0%	

16	 32	 64	 128	

Ca
ch
e	
hi
er
ar
ch
y	
m
is
s	
ra
te
	

Per-‐core	 L2	 cache	 (KB)	

CC	 EM	

(b) cache miss rates under CC and NUCA at various cache
sizes

Fig. 3. (a) Although parallel completion time for different coherence protocols varies somewhat across the benchmarks (notably, the high
directory eviction rate in FFT leads to rampant invalidations in MSI and MOESI and favors MI), generally MOESI was the most efficient
protocol and MI performed worst. (b) Cache hierarchy miss rates at various cache sizes show that, by eschewing replication, the EM/RA
architecture achieves cache miss rates much lower than the CC baseline at all cache sizes. (Settings from Table I).

shown in Figure 3a, MI exhibits by far the worst memory
latency: although it may at first blush seem that MI removes
sharing and should thus improve cache utilization much like
EM/RA, in actuality eschewing the S state only spreads the
sharing—and the cache pollution which leads to capacity
misses—over time when compared with MSI and MOESI.
At the same time, MI gives up the benefits of read-only
sharing and suffers many more cache evictions: its cache
miss rates were 2.3× greater than under MSI. The more
complex MOESI protocol, meanwhile, stands to benefit
from using cache-to-cache transfers more extensively to
avoid writing back modified data to off-chip RAM, and
take advantage of exclusive cache line ownership to speed
up writes. Our analysis shows that, while cache-to-cache
transfers result in many fewer DRAM accesses, they instead
induce significantly more coherence traffic (even shared
reads now take 4 messages); in addition, they come at a
cost of significantly increased protocol, implementation and
validation complexity. Nevertheless, since our simulations
indicate (Figure 3a) that MOESI is the best-performing
coherence protocol out of the three, we use it as a baseline
for comparison in the remainder of this paper.3

Finally, while we kept the number of memory controllers
fixed at 8 for all architectures, for the cache-coherence
baseline we also examined several ways of distributing
the directory among the cores via Graphite simulations:
central, one per memory controller, and fully distributed.
On the one hand, the central directory version caused the
highest queueing delays and most network congestion, and,
while it would require the smallest total directory size,
a single directory would still be so large that its power

3We use MSI in our analytical model (Section IV-A, Appendix)
for simplicity.

demands would put a significant strain on the 256-core
chip.4 On the other end of the spectrum, a fully distributed
directory would spread congestion among the 256 cores, but
each directory would have to be much larger to allow for
imbalances in accesses to cache lines in each directory, and
DRAM accesses would incur additional network latencies
to contact the relatively few memory controllers. Finally, we
considered the case of 8 directories (one for each of the 8
memory controllers), which removed the need for network
messages to access DRAM and performed as well as the
best-case fully distributed variant. Since the 8-directory
configuration offered best performance and a good tradeoff
between directory size and contention, we used this design
in our evaluation.

E. Remote-access NUCA baseline selection

To compare against an RA architecture baseline, we con-
sidered two approaches: the traditional S-NUCA approach
where the L1 and L2 caches are shared (that is, a local
L1 or L2 may cache only a subset of the address space),
and a hybrid NUCA/coherence approach where private L1
caches are maintained via a coherence protocol. Although
the hybrid variant offers some relief from remote accesses
to frequently used locations, the L1 caches must keep very
large full-map directories (significantly larger than total
cache on the core [2]!): if the directories are too small,
the L1’s will suffer frequent invalidations due to directory
evictions and the combined performance will revert towards
a remote-access-only design. Based on these considerations
we chose to compare our hybrid architecture to a fully
shared L1/L2 remote-access-only baseline.

4power demands scale quadratically with SRAM size

8

Component # Total area
(mm2)

Read energy
(nJ/instance)

Write energy
(nJ/instance)

Details

Register file 256 2.48 0.005 0.002 4-Rd, 4-Wr ports; 64x24 bits
Router 256 7.54 0.011 0.004 5-Rd, 5-Wr ports; 128x20 bits
Directory cache 8 9.06 1.12 1.23 1MB cache (16-way assoc)
L2 Cache 256 26.65 0.086 0.074 64KB (4-way assoc)
L1 Data Cache 256 6.44 0.034 0.017 16KB cache (2-way assoc)
Off-chip DRAM 8 N/A 6.333 6.322 1GB RAM

TABLE II
AREA AND ENERGY ESTIMATES

F. Cache size selection

We ran our SPLASH-2 simulations with a range of
cache sizes under both an execution-migration design and
the cache-coherent baseline. While adding cache capacity
improves cache utilization and therefore performance for
both architectures, cache miss rates are much lower for
the migration-based approach and, with much smaller on-
chip caches, EM/RA achieves significantly better results
(Figure 3). When caches are very large, on the other hand,
they tend to fit most of the working set of our SPLASH-
2 benchmarks and both designs almost never miss the
cache. This is, however, not a realistic scenario in a system
concurrently running many applications: we empirically
observed that as the input data set size increases, larger and
larger caches are required for the cache-coherent baseline
to keep up with the migration-based design. To avoid bias
either way, we chose realistic 64KB L2 data caches as
our default configuration because it offers a reasonable
performance tradeoff and, at the same time, results in a
massive 28Mbytes of on-chip total cache (not including
directories for CC).

G. Instruction cache

Since the thread context transferred in an EM architecture
does not contain instruction cache entries, we reasoned that
the target core might not contain the relevant instruction
cache lines and a thread might incur an instruction cache
miss immediately upon migration. To evaluate the potential
impact of this phenomenon, we compared L1 instruction
cache miss rates for EM and the cache-coherent baseline
in simulations of our SPLASH-2 multithreaded benchmarks.

Results indicated an average instruction cache miss rate
of 0.19% in the RA design as compared to 0.27% in the
CC baseline. The slight improvement seen in RA is due
to the fact non-memory instructions are always executed
on the core where the last memory access was executed
(since only another memory reference can cause a migration

elsewhere), and so non-memory instructions that follow
references to shared data are cached only on the core where
the shared data resides.

H. Area and energy estimation

For area and energy, we assume 32nm process technol-
ogy and use CACTI [26] to estimate the area requirements
of the on-chip caches and interconnect routers. To estimate
the area overhead of extra hardware context in the 2-
way multithreaded core for EM, we used Synopsys Design
Compiler [27] to synthesize the extra logic and register-
based storage. We also use CACTI to estimate the dynamic
energy consumption of the caches, routers, register files,
and DRAM. The area and dynamic energy numbers used
in this paper are summarized in Table II. We implemented
several energy counters (for example the number of DRAM
reads and writes) in our simulation framework to estimate
the total energy consumption of running SPLASH-2 bench-
marks for both CC and EM. Note that DRAM only models
the energy consumption of the RAM and the I/O pads and
pins will only add to the energy cost of going off-chip.

IV. RESULTS AND ANALYSIS

Intuitively, replacing off-chip memory traffic due to
(hopefully infrequent) cache misses with possibly much
more frequent on-chip thread migration traffic or remote
accesses may not seem like an improvement. To gain some
intuition for where migration-based architectures can win
on performance, we first consider the average memory
latency (AML), a metric that dominates program execution
times with today’s fast cores and relatively slow memories.
Under an EM/RA architecture, AML has three components:
cache access (for cache hits and misses), off-chip memory
access (for cache misses), and context migration or remote
access cost (for core misses):

AML = cost$access + rate$miss× cost$miss

+ ratecoremiss× costremoteaccess/context xfer

9

% of non-memory instructions 70%
% of memory instructions accessing shared data 10%
% of memory instructions accessing private data 20%
% of read-only data in shared data {25%, 75%, 95%, 100%}
Load:store ratio 2:1
Private data per thread 16 KB
Total shared data 1 MB
Degree of sharing {1, 2, 4, 8, 32, 64, 128, 256}
Number of instructions per thread 100,000

TABLE III
SYNTHETIC BENCHMARK SETTINGS

While cost$access mostly depends on the cache technol-
ogy itself, EM/RA architectures improve performance by
optimizing the other variables: in the remainder of this
section, we show how our architecture improves rate$miss

when compared to a CC baseline, discuss several ways to
keep ratecoremiss low, and argue that today’s interconnect
technologies keep costcontext xfer sufficiently low to ensure
good performance.

A. Memory access costs analysis

To understand memory access latency tradeoffs under
cache coherence (CC) and our designs based on execution
migration (EM), we broke down memory accesses into
fundamental components (such as DRAM access itself or
coherence traffic) and created an analytical model to esti-
mate average memory access latency (see the Appendix).
We then measured parameters like cache and core miss
rates by running the OCEAN CONTIGUOUS benchmark in
our simulator under both an MSI coherence protocol and
a migration architecture (we chose OCEAN CONTIGUOUS

because it had the high core miss rate, which avoids pro-
EM bias). Applying these to the measured parameters (see
Appendix A) shows that, on the average, EM memory ac-
cesses in the OCEAN CONTIGUOUS benchmark take 1.5×
less time.

Although the memory latency model does not account
for some effects (for EM, the possibility of 2:1 serialization
when both contexts on a given core are filled, and for CC,
invalidations due to directory evictions or the extra delays
associated with sending invalidations to many core caches
and waiting for their responses), it gives a flavor for how
EM might scale as the number of cores grows. Centralized
effects like off-chip memory contention and network con-
gestion around directories, which limit performance in CC,
will only increase as the ratio of core count to off-chip
memory bandwidth increases. Performance-limiting costs
under EM, on the other hand, are either decentralized (core

migrations are distributed across the chip) or much smaller
(contention for off-chip memory is much lower because
cache miss rates are small compared to CC), and will scale
more gracefully.

B. Advantages over directory-based cache coherence

Since the main benefit of remote-access and migration
architectures over cache coherence protocols comes from
improving on-chip cache utilization by not replicating
writable shared data and minimizing cache capacity/conflict
misses, we next investigated the impact of data sharing in
cache-coherent architectures. With this in mind, we created
synthetic benchmarks that randomly access addresses with
varying degrees of read-only sharing and read-write sharing
(see Table III). The benchmarks vary along two axes: the
fraction of instructions that access read-only data, and the
degree of sharing of the shared data: for example, for
read-write shared data, degree d denotes that this data
can be read/written by up to d sharers or threads. We
then simulated the benchmarks using our cache-coherent
(MOESI) baseline (Table I), and measured parallel applica-
tion performance (which, unlike our memory latency model
above, includes effects not directly attributable to memory
accesses like serialization or cache/directory eviction costs).

Figure 4a shows that cache coherence performance wors-
ens rapidly as the degree of sharing increases. This is for
two reasons: one is that a write to shared data requires that
all other copies be invalidated (this explains the near-linear
growth in parallel completion time when most accesses
are writes), and the other is that even read-only sharing
causes one address to be stored in many core-local caches,
reducing the amount of cache left for other data (this is
responsible for the slower performance decay of the 100%
read-only benchmarks). These results neatly illustrate the
increasing challenge of data sharing with CC designs as the
number of cores grows: even in the unrealistic case where
all shared data is read-only, the higher cache miss rates of

10

0.E+00	

1.E+06	

2.E+06	

3.E+06	

4.E+06	

5.E+06	

6.E+06	

7.E+06	

8.E+06	

1	 2	 4	 8	 32	 64	 128	 256	

Pa
ra
lle
l	 c
om

pl
e+

on
	 +
m
e	
(c
yc
le
s)
	

Degree	 of	 sharing	

25%	 of	 shared	 data	 is	 read-‐only	

75%	 of	 shared	 data	 is	 read-‐only	

95%	 of	 shared	 data	 is	 read-‐only	

100%	 of	 shared	 data	 is	 read-‐only	

EM	

(a) CC performance drops as the degree of sharing grows

0	

2	

4	

6	

8	

10	

fft
	

lu_
co
nt
	

oc
ea
n_
co
nt
	

rad
ix	

ray
tra
ce
	

wa
te
r-‐n
²	

AV
G	

Ca
ch
e	
hi
er
ar
ch
y	
m
is
s	
ra
te
	

CC	
EM/RA	

(b) EM/RA markedly lowers miss rates

Fig. 4. (a) The performance of CC (under a MOESI protocol) degrades as the degree of sharing increases: for read-write sharing this
is due to cache evictions, and for read-only sharing to reduced core-local cache effectiveness when multiple copies of the same data are
cached. Under EM performance degrades much more slowly. (b) For our benchmarks, under our EM/RA designs the cache miss rates are
on the average 3.2× lower because storing each cache line in only one location eliminates many capacity and coherence-related evictions
and effectively increases the availability of cache lines.

cache coherence cause substantial performance degradation
for degrees of sharing greater than 32; when more and
more of the shared data is read-write, performance starts
dropping at lower and lower degrees of sharing. With an
EM architecture, on the other hand, each address—even
shared by multiple threads—is still assigned to only one
cache, leaving more total cache capacity for other data and
EM’s performance degrades much more slowly.

Because the additional capacity arises from not storing
addresses in many locations, cache miss rates naturally de-
pend on the memory access pattern of specific applications;
we therefore measured the differences in cache miss rates
for several benchmarks between our EM/RA designs and
the CC baseline. (Note that the cache miss rates are vir-
tually identical for all our EM/RA designs). The miss rate
differences in realistic benchmarks, shown in Figure 4b,
are attributable to two main causes. On the one extreme,
the FFT benchmark does not exhibit much sharing and the
high cache miss rate of 8% for MOESI is due mainly to
significant directory evictions; since in the EM/RA design
the caches are only subject to capacity misses, the cache
miss rate falls to under 2%. At the other end of the
spectrum, the OCEAN CONTIGUOUS benchmark does not
incur many directory evictions but exhibits significant read-
write sharing, which, in directory-based cache coherence
(CC), causes mass invalidations of cache lines actively used
by the application; at the same time, replication of the same
data in many per-core caches limits effective cache capacity.
This combination of capacity and coherence misses results
in a 5% miss rate under MOESI; the EM/RA architecture
eliminates the coherence misses and increases effective
cache capacity, and only incurs a 0.8% miss rate. The
remaining benchmarks fall in between these two extremes,
with a combination of directory evictions and read-write

sharing patterns.
Cache miss rates illustrate the core potential advantage

of EM/RA designs over CC: significantly lower off-chip
access rates given the same cache sizes. Although miss
rates in CC architectures can be reduced by increasing the
per-core caches, our simulation results (not shown here)
indicate that, overall, the CC design would need in excess
of 2× the L2 cache capacity to match the cache miss rates
of EM/RA.

C. Advantages over traditional directoryless NUCA (RA)

Although RA architectures eschew automatic sharing of
writable data and significantly lower cache miss rates, their
main weakness lies in not being able to take advantage
of shared data locality: even if many consecutive accesses
are made to data on the same remote core, sequential
consistency requires that each be an independent round-trip
access. To examine the extent of this problem, we measured
the run length for non-local memory access: the number of
consecutive accesses to memory cached in a non-local core
not interrupted by any other memory accesses.

Figure 5 shows this metric for two of our benchmarks.
Predictably, the number of remote accesses with run length
of one (a single access to a remote core followed by access
to another remote core or the local core) is high; more
significantly, however, a great portion of remote memory
accesses in both benchmarks shown exhibit significant core
locality and come in streaks of 40–50 accesses. Although
core locality is not this dramatic in all applications, these
examples show precisely where a migration-based archi-
tecture shines: the executing thread is migrated to a remote
core and 40–50 now effectively “local” memory accesses
are made before incurring the cost of another migration.

11

lu cont
3.00E+06

_

2.50E+06es
 gt
h

.50 06

es
se

 le
n

2.00E+06

ac
ce

ru
n

1.50E+06or
y

g
to

1 00E+06m
em ut
in
g

1.00E+06

of
 m

tr
ib
u

5.00E+05#
o

co
nt

0.00E+00

c

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

(a) LU CONTIGUOUS

ocean cont
2.50E+07

_

2 00E 07es
 gt
h

2.00E+07

es
se

 le
n

1.50E+07ac
ce

ru
n

or
y

g
to

1.00E+07

m
em ut
in
g

5 00E+06of
 m

tr
ib
u

5.00E+06#
o

co
nt

0.00E+00

c

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

(b) OCEAN CONTIGUOUS

Fig. 5. Non-local memory accesses in our RA baseline binned by the number of surrounding contiguous accesses to the same remote core.
Although, predictably, many remote operations access just one address before accessing another core, a surprisingly large number belong to
streaks of 40–50 accesses to the same remote core and indicate significant data locality.

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	

fft
	

lu_
co
nt
	

oc
ea
n_
co
nt
	

rad
ix	

ray
tra
ce
	

wa
te
r-‐n
²	

AV
G	

Co
re
	 m

is
se
s	
pe

r	
	

m
em

or
y	
ac
ce
ss
	

RA	
EM	

(a) per-benchmark core miss rates

0	

0.05	

0.1	

0.15	

RA
	

EM
	

EM
	 (d
ist
an
ce
=3
)	

EM
	 (d
ist
an
ce
=6
)	

EM
	 (d
ist
an
ce
=1
1)	

EM
	 (d
ist
an
ce
=1
6)	

Co
re
	 m

is
se
s	
pe

r	
	

m
em

or
y	
ac
ce
ss
	

remote-‐accesses	
migra<ons	

(b) core miss rates handled by remote accesses (light)
and migrations (dark), averaged over all benchmarks

Fig. 6. The potential for improvement over the RA baseline. (a) When efficient core-to-core thread migrations are allowed, the number of
memory accesses requiring transition to another core (core misses) significantly decreases. (b) The fraction of core miss rates handled by
remote accesses and migrations in various migration/remote-access hybrids shows that the best-performing scheme, EM(distance=11), has
significant migration and remote access components.

To examine the real improvement potential offered by
extending RA with efficient execution migrations, we next
counted the core miss rates—the number of times a round-
trip remote-access or a migration to a remote core must be
made—for the RA baseline and our EM architecture.

Figure 6a shows core misses across a range of bench-
marks. As we’d expect from the discussion above (Sec-
tion IV-C), OCEAN CONTIGUOUS and LU CONTIGUOUS

show that migrations significantly lower core miss rates,
and most other benchmarks also improve. The outlier here
is FFT: most of the accesses it makes are to each thread’s
private data, and shared accesses are infrequent and brief.

Figure 6b shows how many overall core misses were
handled by remote accesses and migrations in several
EM/RA variants. In the EM/RA scheme that performed
best, namely, EM(distance=11), see Figure 7a, both migra-
tions and remote access play a significant role, validating
our intuition behind combining them into a hybrid archi-
tecture.

It is important to note that the cost of core misses is
very different under RA and under EM: in the first, each
core miss induces a round-trip remote access, while in the
second it causes a one-way migration (the return migration,
if any, is counted as another core miss). Adding efficient
migrations to an RA design therefore offers significant
performance potential, which we examine next.

D. Overall area, performance and energy

The EM/RA architectures do not require directories and
as can be seen from Table II are over 6 mm2 smaller than
the CC baseline.

Figure 7a shows the parallel completion time speedup
relative to the CC baseline for various EM/RA schemes: a
remote-access-only variant, a migrations-only variant, and
a range of hybrid schemes where the remote-access vs.
migration decision is based on on hop distance. Overall,
performance is very competitive with the cache coherent

12

0	

0.5	

1	

1.5	

2	

2.5	

3	

fft
	

lu_
co
nt
	

oc
ea
n_
co
nt
	

rad
ix	

ray
tra
ce
	

wa
te
r-‐n
²	

AV
G	

Pa
ra
lle
l	 c
om

pl
e+

on
	 +
m
e	
re
la
+
ve
	 to

	 C
C	

RA	

EM	

EM	 (distance=3)	

EM	 (distance=6)	

EM	 (distance=11)	

EM	 (distance=16)	

(a) parallel completion time vs. MOESI

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

fft
	

lu_
co
nt
	

oc
ea
n_
co
nt
	

rad
ix	

ray
tra
ce
	

wa
te
r-‐n
²	

AV
G	

En
er
gy
	 re

la
*
ve
	 to

	 C
C	

RA	

EM	 (distance=11)	

(b) dynamic energy vs. MOESI

Fig. 7. (a) The performance of EM/RA variants relative to CC. Although results vary significantly by benchmark, the best EM/RA scheme,
namely, EM(distance=11) outperforms CC by 6.8% on average. (b) Dynamic energy usage for the EM(distance=11) scheme is virtually
identical to CC, and the RA variant consumes the least amount of energy. The energy numbers do not include I/O pad and pin energy which
favors directory-based coherence.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

fft
	

lu_
co
nt
	

oc
ea
n_
co
nt
	

rad
ix	

ray
tra
ce
	

wa
te
r-‐n
²	

AV
G	 EM

	 (m
ig
ra
*
on

s-‐
on

ly
)	 p

er
fo
rm

an
ce
	

ga
in
s	
re
la
*
ve
	 to

	 1
28
	 b
it-‐
fli
t	 n

et
w
or
k	 256	 bit-‐flit	 network	 512	 bit-‐flit	 network	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

fft
	

lu_
co
nt
	

oc
ea
n_
co
nt
	

rad
ix	

ray
tra
ce
	

wa
te
r-‐n
²	

AV
G	 EM

	 (d
is
ta
nc
e=
11
)	 p

er
fo
rm

an
ce
	 g
ai
ns
	

re
la
7
ve
	 to

	 1
28
	 b
it-‐
fli
t	 n

et
w
or
k	

256	 bit-‐flit	 network	 512	 bit-‐flit	 network	

Fig. 8. EM (migrations only and distance=11) performance scales with network bandwidth. On the other hand, remote-access and directory-
based coherence are primarily sensitive to latency and their performance only scales by 1%-2% when network bandwidth is increased (not
shown in the figure).

baseline and the best EM/RA design EM(distance=11)
shows an average 6.8% improvement over the CC baseline.

The benefits are naturally application-dependent: as
might be expected from Figure 6a, the benchmarks
with the largest cache miss rate reductions (FFT and
OCEAN CONTIGUOUS) offer the most performance im-
provements. At the other extreme, the WATER benchmark
combines fairly low cache miss rates under CC with signifi-
cant read-only sharing, and is very well suited for directory-
based cache coherence; consequently, CC outperforms all
EM/RA variants by a significant margin.

The result also shows the benefits of a combined EM/RA
architecture: in some benchmarks (e.g., LU CONTIGUOUS,
OCEAN CONTIGUOUS, RADIX), a migration-only design
significantly outperforms remote accesses, while in others
(e.g., WATER-N2) the reverse is true. On average, the best
distance-based EM/RA hybrid performs better than either
EM or RA, and renders the EM/RA approach highly
competitive with directory-based MOESI cache coherence.

Since energy dissipated per unit performance will be a
critical factor in next-generation massive multicores, we
employed a power model (cf. Section III) to estimate the
dynamic power consumed by the various EM/RA variants
and CC. On the one hand, migrations incur significant
dynamic energy costs due to increased traffic in the on-
chip network and the additional register file per core; on the
other hand, dramatic reductions in off-chip accesses equate
to very significant reductions in DRAM access energy.

As illustrated in Figure 7b, energy consumption depends
on each application’s access patterns. For FFT, for example,
which incurs crippling rates of eviction invalidations, the
energy expended by the CC protocol messages and DRAM
references far outweighs the cost of energy used by re-
mote accesses and migrations. On the other extreme, the
fairly random patterns of memory accesses in RAYTRACE,
combined with a mostly private-data and read-only sharing
paradigm, allows CC to efficiently keep data in the core
caches and consume far less energy than EM/RA. The high

13

cost of off-chip DRAM accesses is particularly highlighted
in the WATER-N2 benchmark: although the trend in cache
miss rates between CC and EM/RA is similar for WATER-
N2 and RAYTRACE, the overall cache miss rate is markedly
higher in WATER-N2; combined with the associated protocol
costs, the resulting off-chip DRAM accesses make the CC
baseline consume more energy than the EM/RA architec-
ture.

We note that our energy numbers for directory-based
coherence are quite optimistic, since we did not include
energy consumed by I/O pads and pins; this will result in
higher energy for off-chip accesses which CC makes more
of.

E. Performance scaling potential for EM designs

Finally, we investigated the scaling potential of the
EM architecture. We reasoned that, while directory-based
cache coherence is limited by cache sizes and off-chip
DRAM bandwidth and RA performance is restricted by
interconnect latencies, EM can be improved by increas-
ing interconnect bandwidth: with higher on-chip network
bandwidth, the main effect is that messages carrying the
execution context consume fewer cycles, and a smaller
effect is that they experience less congestion.

As illustrated in Figure 8, increasing the network band-
width significantly improves performance of a migration-
only EM variant (as well as the best EM/RA hybrid with
distance=11), especially on migration-limited benchmarks
like RAYTRACE. Since scaling of network bandwidth is
easy—although buffers and crossbars must be made wider
so area increases linearly, the fundamental design of the
interconnect remains constant and the clock frequencies are
not appreciably affected. Moreover, since the same amount
of data must be transferred, dynamic power consumption
does not grow in tandem. Contrasted with the off-chip
memory bandwidth wall and quadratically growing power
requirements of large caches limiting cache-coherent ar-
chitecture performance on the one hand, and the difficulty
in reducing electrical network hop counts limiting remote-
access performance on the other hand, an EM or EM/RA
architecture offers a straightforward and attractive way to
significantly increase performance at sublinear impact on
cost and virtually no impact on verification.

V. RELATED WORK

Implicitly moving data to computation has been explored
in great depth with many years of research on cache co-
herence protocols, and has become textbook material [28].
Meanwhile, in the past decade, the non-uniform mem-
ory architecture (NUMA) paradigm has been extended to
single-die caches resulting in a non-uniform cache access

(NUCA) architecture [6], [29], and applied to single-chip
multicores [30], [31]. Data replication and migration, crit-
ical to the performance of NUCA designs, were originally
evaluated in the context of multiprocessor NUMA archi-
tectures (e.g., [7]), but the differences in both interconnect
delays and memory latencies make the general OS-level
approaches studied inappropriate for today’s fast on-chip
interconnects. More recent research has explored data dis-
tribution and migration among on-chip NUCA caches with
traditional and hybrid cache coherence schemes. An OS-
assisted software approach is proposed in [8] to control the
data placement on distributed caches by mapping virtual ad-
dresses to different cores at page granularity. When adding
affinity bits to TLB, pages can be remapped at runtime [2],
[8]. The CoG [9] page coloring scheme moves pages to
the “center of gravity” to improve data placement. The O2

scheduler [32], an OS-level scheme for memory allocation
and thread scheduling, improves memory performance in
distributed-memory multicores by keeping threads and the
data they use on the same core. These data placement op-
timizations are generally applicable to NUCA architectures
including migration-based variants. Rather than implement
specific allocation schemes, our evaluations combine a first-
touch data placement mechanism with manual application
optimizations to reach near-optimal placement and replica-
tion of shared read-only and read-write data on par or better
than that obtained with the automatic schemes.

Migrating computation to the locus of the data is not it-
self a novel idea. Hector Garcia-Molina in 1984 introduced
the idea of moving processing to data in memory bound
architectures [13]. In recent years migrating execution con-
text has re-emerged in the context of single-chip multicores.
Michaud shows the benefits of using execution migration
to improve the overall on-chip cache capacity and utilizes
this for migrating selective sequential programs to improve
performance [14]. Computation spreading [16] splits thread
code into segments and assigns cores responsible for dif-
ferent segments, and execution is migrated to improve code
locality. Kandemir presents a data migration algorithm to
address the data placement problem in the presence of non-
uniform memory accesses within a traditional cache coher-
ence protocol [15]. This work attempts to find an optimal
data placement for cache lines. A compile-time program
transformation based migration scheme is proposed in [33]
that attempts to improve remote data access. Migration is
used to move part of the current thread to the processor
where the data resides, thus making the thread portion local;
this scheme allows programmer to express when migration
is desired. Dataflow machines (e.g., [34])—and, to some
extent, out-of-order execution—are superficially similar as
they allow an activated instruction to be claimed by any
available execution unit, but cannot serve as a shared-

14

memory abstraction. The J-machine [35] ties processors
to on-chip memories, but relies on user-level messaging
and does not address the challenge of off-chip memory
bandwidth. Our proposed execution migration machine is
unique among the previous works because we completely
abandon data sharing and therefore do away with cache
coherence protocols; instead, we propose to rely solely
on remote accesses and execution migration to provide
coherence and consistency.

Most previous works on thread migration do not explic-
itly consider deadlock caused by migrations. In many cases,
those machines implicitly require a centralized migration
scheduler or the operating system to ensure that no exe-
cution context is blocked at the migrating destination. The
thread migration schemes that do consider deadlock pro-
vide deadlock recovery mechanisms instead of preventing
deadlock [36]. The migration protocol and architecture we
propose in this paper is deadlock-free at the protocol level
without any centralized scheduler or OS aid, and, as such,
enable fast, hardware-level thread migrations.

VI. CONCLUSION

In this paper, we have extended the family of directo-
ryless NUCA architectures by adding efficient, hardware-
level core-to-core thread migrations as a way to maintain
sequential consistency and memory coherence in a large
multicore with per-core caches. Taking advantage of lo-
cality in shared data accesses exhibited by many appli-
cations, migrations amortize the cost of remote accesses
that limit traditional NUCA performance. At the same time,
an execution migration design retains the cache utilization
benefits of a shared cache distributed among many cores,
and brings NUCA performance up to the level of directory-
based cache-coherent designs.

We have demonstrated that appropriately designed execu-
tion migration (EM) and remote cache access (RA) hybrid
designs do not cause deadlock. We have explored very
straightforward hybrid EM/RA architectures in this paper;
future work involves the development of better-performing
migration predictors. Perhaps most promisingly, we have
shown that the performance of EM designs is relatively
easy to improve with low area cost, little power overhead,
and virtually no verification cost, allowing chip designers
to easily select the best compromise for their application
space.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,” in
DAC, 2007.

[2] N. Hardavellas, M. Ferdman, B. Falsafi et al., “Reactive NUCA:
near-optimal block placement and replication in distributed
caches,” in ISCA, 2009.

[3] I. T. R. for Semiconductors, “Assembly and packaging,” 2007.
[4] S. Rusu, S. Tam, H. Muljono et al., “A 45nm 8-core enterprise

Xeon R© processor,” in A-SSCC, 2009.
[5] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and

traffic requirements for scalable directory-based cache coher-
ence schemes,” in International Conference on Parallel Pro-
cessing, 1990.

[6] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-
Uniform Cache Structure for Wire-Delay Dominated On-Chip
Caches,” in ASPLOS, 2002.

[7] B. Verghese, S. Devine, A. Gupta et al., “Operating system sup-
port for improving data locality on cc-numa compute servers,”
SIGPLAN Not., vol. 31, no. 9, pp. 279–289, 1996.

[8] S. Cho and L. Jin, “Managing distributed, shared L2 caches
through OS-Level page allocation,” in MICRO, 2006.

[9] M. Awasthi, K. Sudan, R. Balasubramonian et al., “Dynamic
hardware-assisted software-controlled page placement to man-
age capacity allocation and sharing within large caches,” in
HPCA, 2009.

[10] M. Zhang and K. Asanović, “Victim replication: maximizing
capacity while hiding wire delay in tiled chip multiprocessors,”
in ISCA, 2005.

[11] M. Chaudhuri, “PageNUCA: selected policies for page-grain lo-
cality management in large shared chip-multiprocessor caches,”
in HPCA, 2009.

[12] K. Sudan, N. Chatterjee, D. Nellans et al., “Micro-pages: in-
creasing DRAM efficiency with locality-aware data placement,”
SIGARCH Comput. Archit. News, vol. 38, pp. 219–230, 2010.

[13] H. Garcia-Molina, R. Lipton, and J. Valdes, “A massive memory
machine,” IEEE Trans. Comput., vol. C-33, pp. 391–399, 1984.

[14] P. Michaud, “Exploiting the cache capacity of a single-chip
multi-core processor with execution migration,” in HPCA, 2004.

[15] M. Kandemir, F. Li, M. Irwin et al., “A novel migration-based
NUCA design for chip multiprocessors,” in SC, 2008.

[16] K. Chakraborty, P. M. Wells, and G. S. Sohi, “Computation
spreading: employing hardware migration to specialize CMP
cores on-the-fly,” in ASPLOS, 2006.

[17] K. K. Rangan, G. Wei, and D. Brooks, “Thread motion: fine-
grained power management for multi-core systems,” in ISCA,
2009.

[18] M. Marchetti, L. Kontothanassis, R. Bianchini et al., “Using
simple page placement policies to reduce the cost of cache fills
in coherent shared-memory systems,” in IPPS, 1995.

[19] M. M. Bach, M. Charney, R. Cohn et al., “Analyzing parallel
programs with pin,” Computer, vol. 43, pp. 34–41, 2010.

[20] J. E. Miller, H. Kasture, G. Kurian et al., “Graphite: A dis-
tributed parallel simulator for multicores,” in HPCA, 2010.

[21] S. Woo, M. Ohara, E. Torrie et al., “The SPLASH-2 programs:
characterization and methodological considerations,” in ISCA,
1995.

[22] W. J. Dally and B. Towles, Principles and practices of inter-
connection networks. Morgan Kaufmann, 2003.

[23] A. Kumar, P. Kundu, A. P. Singh et al., “A 4.6tbits/s 3.6ghz
single-cycle noc router with a novel switch allocator,” in in
65nm CMOS, ICCD, 2007.

[24] T. Konstantakopulos, J. Eastep, J. Psota et al., “Energy scala-
bility of on-chip interconnection networks in multicore archi-
tectures,” MIT-CSAIL-TR-2008-066, 2008.

[25] S. C. Woo, J. P. Singh, and J. L. Hennessy, “The performance
advantages of integrating block data transfer in cache-coherent
multiprocessors,” SIGPLAN Not., vol. 29, pp. 219–229, 1994.

[26] S. Thoziyoor, J. H. Ahn, M. Monchiero et al., “A comprehensive
memory modeling tool and its application to the design and
analysis of future memory hierarchies,” in ISCA, 2008.

[27] www.synopsys.com, “Synopsys design compiler.”

15

[28] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, 4th ed. Morgan Kaufmann, September
2006.

[29] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Managing
wire delay in large chip-multiprocessor caches,” in ISCA, 2003.

[30] M. M. Beckmann and D. A. Wood., “Managing wire delay in
large chip-multiprocessor caches,” in MICRO, 2004.

[31] J. Huh, C. Kim, H. Shafi et al., “A NUCA substrate for flexible
CMP cache sharing,” in ICS, 2005.

[32] S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek, “Reinventing
scheduling for multicore systems,” in HotOS, 2009.

[33] W. C. Hsieh, P. Wang, and W. E. Weihl, “Computation mi-
gration: enhancing locality for distributed-memory parallel sys-
tems,” in PPOPP, 1993.

[34] G. M. Papadopoulos and D. E. Culler, “Monsoon: an explicit
token-store architecture,” in ISCA, 1990.

[35] M. D. Noakes, D. A. Wallach, and W. J. Dally, “The j-machine
multicomputer: An architectural evaluation,” in ISCA, 1993.

[36] S. Melvin, M. Nemirovsky, E. Musoll et al., “A massively
multithreaded packet processor,” in Workshop on Network Pro-
cessors, 2003.

16

APPENDIX

With a view of providing intuition for the real costs of cache coherence protocols, this appendix presents an analytical
model comparing the MSI protocol (CC below) with an execution migration-only NUCA variant (EM below). For clarity,
we analyze the relatively simple MSI protocol and show that, for the OCEAN CONTIGUOUS benchmark, it results in
memory accesses 1.5× slower than the migration-only architecture; naturally, a suitably more complicated form of the
same analysis applies to more complex protocols such as MOSI, but still shows them to be slower than even a basic,
migration-only design.

AMLCC = cost$access,CC + rate$miss,CC× cost$miss,CC (1)

cost$access = costL1 + rateL1miss× costL2 (2)

costrdI,wrI,rdS = costcore→dir + costdir lookup + costDRAM

+ costdir→core + cost$ insert
(3)

costwrS = costcore→dir + costdir lookup + costdir→core

+ cost$ invalidate + costcore→dir + costDRAM

+ costdir→core + cost$ insert

(4)

costrdM = costcore→dir + costdir lookup + costdir→core

+ cost$flush + costcore→dir + costDRAM

+ costdir→core + cost$ insert

(5)

costwrM = costcore→dir + costdir lookup + costdir→core

+ cost$flush + costcore→dir

+ costdir→core + cost$ insert

(6)

cost$miss,CC = raterdI,wrI,rdS× costrdI,wrI,rdS

+ ratewrS× costwrS + raterdM× costrdM

+ ratewrM× costwrM

(7)

costDRAM,CC = costDRAM latency + costDRAM serialization

+ costDRAM contention
(8)

costmessagexfer = cost→,CC +
⌈

pkt size
flit size

⌉
(9)

cost→,CC = #hops× costper-hop + costcongestion,CC (10)

(a) MSI cache coherence protocol

AMLEM = cost$access,EM + rate$miss,EM× cost$miss,EM

+ ratecoremiss,EM× costcontext xfer
(11)

cost$accessEM = costL1 + rateL1miss,EM× costL2 (12)

cost$miss,EM = costcore→mem + costDRAM + costmem→core (13)

costDRAM,EM = costDRAM latency + costDRAM serialization

+ costDRAM contention
(14)

costmessagexfer = cost→,EM +
⌈

pkt size
flit size

⌉
+ costPipeline insertion (15)

cost→,EM = #hops× costper-hop + costcongestion,EM (16)

(b) EM

Fig. 9. Average memory latency (AML) costs for our MSI cache coherence protocol and for EM. The significantly less complicated
description for EM suggests that EM is easier to reason about and implement. The description for a protocol such as MOSI or MOESI
would be significantly bigger than for MSI.

A. Interconnect traversal costs.

Both protocols incur the cost of on-chip interconnect transmissions to retrieve data from memory, migrate thread
contexts (in EM), and communicate among the caches (in CC). In the interconnect network model we assume a 16×16
mesh with two-cycle-per-hop 128-bit flit pipelined routers, an average distance of 12 hops with network congestion
overheads consistent with what we observed for OCEAN CONTIGUOUS, making the network transit cost

cost→,CC = 24+12 = 36, and

cost→,EM = 24+12 = 36.
(17)

Delivering a message adds a load/unload latency dependent on the packet size: for example, transmitting the 1.5Kbit
EM context requires

costcontext xfer = 36+
1536 bits
128 bits

+3 = 51. (18)

17

By the same token, in both CC and EM, transmitting a single-flit request takes 37 cycles (costcore→dir and costcore→mem)
and transferring a 64-byte cache line needs 40 cycles (costdir→core and costmem→core).

Parameter CC EM

costL1 2 cycles 2 cycles
costL2 (in addition to L1) 5 cycles 5 cycles
cost$ invalidate, cost$flush 7 cycles —
cache line size 64 bytes 64 bytes
average network distance 12 hops 12 hops
costper-hop 2 cycles 2 cycles
costcongestion 12 cycles 12 cycles
costDRAM latency 235 cycles 235 cycles
costDRAM serialization (1 cache line) 50 cycles 50 cycles
costdir lookup 10 cycles —
flit size 128 bits 128 bits
execution context (32-bit x86) — 1.5Kbit [17]

rateL1miss / rate$miss (both L1 and L2 miss) 5.8% / 4.8% 2.4% / 0.8%
ratecoremiss,EM — 21%
raterdI , raterdS, raterdM , ratewrI , ratewrS, ratewrM 31.5%, 21.4%, 12%, 22.4%, 12.6%, 0.1% —

TABLE IV
VARIOUS PARAMETER SETTINGS FOR THE ANALYTICAL COST MODEL FOR THE OCEAN CONTIGUOUS BENCHMARK

B. Off-chip DRAM access costs.

In addition to the DRAM latency itself, off-chip accesses may experience a queueing delay due to contention for
the DRAM itself; moreover, retrieving a 64-byte cache line must be serialized over many cycles (Equations 8 and 14).
Because there were dramatically fewer cache misses under EM, we observed relatively little DRAM queue contention
(11 cycle), whereas the higher off-chip access rate of CC resulted in significantly more contention on average (43 cycles):

costDRAM,EM = 235+50+11 = 299

costDRAM,CC = 235+50+43 = 331.
(19)

C. EM memory access latency.

Given the network and DRAM costs, it’s straightforward to compute the average memory latency (AML) for EM
which depends on the cache access cost and, for every cache miss, the cost of accessing off-chip RAM; under EM, we
must also add the cost of migrations caused by core misses (Equation 11).

The cache access cost is incurred for every memory request and depends on how many accesses hit the L1 cache: for
EM,

cost$accessEM = 2+2.4%×5 = 2.12. (20)

Each miss under EM contacts the memory controller, retrieves a cache line from DRAM, and sends it to the requesting
core:

cost$miss,EM = 37+299+40 = 376. (21)

Finally, then, we arrive at the average memory latency:

AMLEM = 2.12+0.8%×376+21%×51 = 15.8. (22)

D. Cache coherence memory access latency.

Since CC does not need to migrate execution contexts, memory latency depends on the cache access and miss costs
(Equation 1). Because fewer accesses hit the L1 cache, even the cache access cost itself is higher than under EM:

cost$access = 2+5.8%×5 = 2.29. (23)

18

The cost of a cache miss is much more complex, as it depends on the kind of access (read or write, respectively rd
and wr below) and whether the line is cached nowhere (I below) or cached at some other node in shared (S) or modified
(M) state:
• Non-invalidating requests (75.3% of L2 misses for OCEAN CONTIGUOUS)—loads and stores with no other sharers,

as well as loads when there are other read-only sharers—contact the directory and retrieve the cache line from
DRAM:

costrdI,wrI,rdS = 37+10+331+40+7 = 425. (24)

• Stores to data cached in read-only state elsewhere (12.6%) must invalidate the remote copy before retrieving the
data from DRAM: in the best case of only one remote sharer,

costwrS = 37+10+37+7+37+331+40+7 = 506. (25)

• Loads of data cached in modified state elsewhere (11.9%) must flush the modified remote cache line and write it
back to DRAM before sending the data to the requesting core via a cache-to-cache transfer:

costrdM = 37+10+37+7+40+310+40+7 = 488. (26)

• Stores to data cached in modified state elsewhere (0.1%) must also flush the cache line but avoids a write-back to
DRAM by sending the data to the requesting core via a cache-to-cache transfer:

costwrM = 37+10+37+7+40+40+7 = 178. (27)

Combining the cases with their respective observed rates (cf. Table IV), we arrive at the mean cost of a cache miss for
CC:

cost$miss,CC = (31.5%+22.4%+21.4%)×425+12.6%×506+11.9%×488+0.1%×178 = 442, (28)

and, finally, the average memory cost for CC:

AMLCC = 2.29+4.8%×442 = 23.5, (29)

over 1.5× greater than under EM.

