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Abstract

This thesis addresses the problem of detecting objects in images of complex scenes. Strong patterns

exist in the types and spatial arrangements of objects that occur in scenes, and we seek to ex-

ploit these patterns to improve detection performance. We introduce a novel formalism-weighted
geometric grammars (WGGs)-for flexibly representing and recognizing combinations of objects
and their spatial relationships in scenes. We adapt the structured perceptron algorithm to parame-
ter learning in WGG models, and develop a set of original clustering-based algorithms for structure

learning. We then demonstrate empirically that WGG models, with parameters and structure learned
automatically from data, can outperform a standard object detector. This thesis also contributes three
new fully-labeled datasets, in two domains, to the scene understanding community.
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Chapter 1

Introduction

In this thesis, we address the problem of detecting and localizing objects in images of complex
scenes. We seek to exploit the fact that scenes do not consist of random assortments of unrelated
objects. Rather, there are rich patterns in the types of objects that occur together, and their spatial ar-
rangements with respect to one another. To capture these patterns, we introduce weighted geometric
grammars to flexibly represent and recognize combinations of objects in scenes.

1.1 The Problem of Object Detection

Object detection is an extraordinarily challenging problem. Despite over fifty years of research,
current object detection systems do not remotely approach the level of human ability.

A number of factors contribute to making the problem so difficult. Objects appear from a huge
number of viewpoints and rotations. They display wide changes in scale, both intrinsic to the object
itself and due to the object's distance from the viewer or camera. Some objects are articulated, such
that their parts move with respect to one another, while other objects are not even rigid at all. Some
object classes have members that vary widely in shape, appearance, and material properties; this
can be especially true when the object class is defined only by functional constraints and custom
(see Figure 1-1). Objects are often occluded, both by their own parts and by other objects. And they
rarely appear alone; they are usually surrounded by background clutter and distractions. Finally,
illumination and lighting can change an object's appearance drastically under different conditions.

Researchers in computer vision work on a variety of tasks related to object recognition, so it
is important to clarify our problem setting. Given a static image of a scene, we are interested in
identifying the class labels and locations of the objects in the image. Imagine a robot putting dishes
away after a meal. We might hope to provide useful sensory information to the robot such that it
can determine the set of objects laid on the table in front of it, and know where to reach in order to
grasp each one.

We focus on class-level, rather than instance-level, identification. Put another way, we are
asking "Is this a coffee mug?" as opposed to "Is this my favorite coffee mug?" Object classes
provide a useful level of abstraction in scene understanding, because they can serve as a proxy for
object function. The robot likely does not need to know which coffee cup it is considering, only that
it is a cup at all, in order to put it away in the correct location. In general, knowledge of an object's
class label can help predict its role in the world.

We assume complex and cluttered images, with many objects. Thus, we are not classifying
the entire image ("Is this a picture of a motorbike or a teacup?"). Many researchers focus on such
problems, which are highly relevant when performing image search on the internet or organizing



Figure 1-1: Chimneys, like many other object classes, vary widely in shape and appearance.
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Figure 1-2: An example of the desired output of our system. We are not seeking to explain every
pixel of an image with a class label, but rather identify what objects are present, and their locations.

huge image databases. However, for a robot looking to understand the visual world, classifying
images of isolated objects in uncluttered images is not as helpful.

On the other hand, we are not seeking a segmentation of the image-to explain each and every
pixel with a class label. Going further, we are not developing a single unified model to capture
every element of an image, from its scene category and objects to curves, shadows, and edges.
Again considering our robot, it does not need to know the class identity of each pixel; it simply
needs to know what objects are present, and their locations. Figure 1-2 shows an example of the

ideal result of our desired system.
We aim to improve the ability of existing local object detectors (that consider only the image

pixels belonging to the object itself) to find salient objects. In fact, a goal of this work is to build on
state-of-the-art object detectors, such that we could substitute in new detectors as the field improves.
We view our work as complementary with research on local-image-based object detectors, in which
much recent progress has been made.

1.2 The Promise of Context

Despite the factors that make object detection so difficult, opportunities exist for a detection system
that considers more than just the local pixels where an object might appear. In particular, images
from the same scene category (e.g., bedroom, kitchen, tabletop, street) have large amounts of struc-
ture. Patterns exist in the number and types of objects present in the scene. And they exist in the
absolute size and locations of objects in the image, and in their relative sizes and locations with re-
spect to one another. The main goal of this thesis is to exploit these contextual relationships among
objects in a scene, in order to improve detection results.

Significant research in cognitive psychology has attested to the crucial role of context in hu-
man recognition abilities. For example, people are faster to recognize objects placed in the correct

........ .... .. ....



Figure 1-3: These images from Torralba (2003) demonstrate the extent to which object recognition
is affected by context when the image quality is degraded. Humans would usually interpret the dark
blurred object in the left image as a car, while they would interpret the blurred object in the right
image as a pedestrian. However, both objects consist of identical pixels, simply rotated 90 degrees.

context (i.e., a semantically correct scene) than objects appearing in inconsistent or unexpected set-
tings (Palmer, 1975; Friedman, 1979). Contextual cues arise from more than just the general scene
context. As we have discussed, the geometric properties of the objects, including their absolute
locations and sizes, and the relationships among them, provides a major source of information. The
importance of these cues has been shown in human recognition; Biederman, Mezzanotte, and Ra-
binowitz (1982) showed humans recognize objects that violate expected relationships (e.g., support
relationships, position, and size) less accurately than those that do not. See Figure 1-3 for another
example of the effect of an object's context on its interpretation.

In general, context informs and guides the interpretation of objects, helping to rule out unlikely
labels or functions. However, it is not clear how to effectively incorporate contextual cues into
an object detection system. Two images from the same scene category may contain completely
different numbers and types of objects. Furthermore, the geometric relationships among objects
are flexible and multimodal. Thus, the pattern of objects in a scene cannot be easily modeled with
rigid graph structures and tight spatial relations, like those used for part-based models of objects.
And the properties of objects on opposite sides of the scene may be correlated. These long-range
dependencies mean that simple object adjacency is not always sufficient to determine which objects
should affect one another.

There may also be different levels of context in a scene. When we are looking to detect an
object, we may find some subsets of the other objects in the scene more informative than others. As
a simple example, the problem of finding a cup in an image becomes much easier if we have already
found a saucer. Cups and saucers tend to co-occur, and they also tend to "move together"-they
have lower variance spatial relationships with respect to one another than to rest of the scene. Thus,
we hypothesize that a model that can capture such a hierarchical notion of context, through the use
of composite classes, may further improve detection.

1.3 Our Approach

As we have argued, we need a flexible way to model many possible numbers and combinations of
objects in a scene, with complex, hierarchical spatial relationships.

A natural choice is to model each image and its objects as a tree, in which the root represents the
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Figure 1-4: Examples of possible scene tree structures for two images.

scene class of the image, the leaves represent the objects, and the internal nodes, if any, represent
groups of objects. We will refer to this representation as a scene tree. Tree-structured models are
appealing because they capture relationships among objects in a way that enables efficient inference.

The scene tree for each image has a different structure, reflecting the different objects present in
the image. We can also associate geometry and image-based information with the nodes of a scene
tree, thus representing the spatial arrangement and appearance of the objects in the image. Two
examples of scene tree structures are shown in Figure 1-4.

Grammars provide a natural way to model different tree structures. In particular, grammatical
models offer a compact representation of the many different scene trees associated with images, and
thus many combinations of objects and their spatial relationships.

Context-free grammars (CFGs), and their probabilistic brethren PCFGs, have been used exten-
sively in natural language processing (Allen, 1995; Jurafsky & Martin, 2000; Manning & Schutze,
2002). In PCFGs, the probabilities on rules represent a distribution over tree structures, thus assign-
ing likelihoods to different sets of symbols that may occur in the data. This matches our need to
model co-occurrence patterns among sets of objects. However, as we discuss in detail in Chapter 2,
traditional PCFGs are not a perfect fit for our needs, because the number of possible combinations
of objects that may appear in a scene is too large. We also need to incorporate spatial and scale
relationships among different components of the model, which PCFGs do not innately address.

Furthermore, a PCFG is a generative model over tree structures. (We discuss generative models

again in the next section.) Generative models can have limitations, particularly in situations in which
there are multiple, possibly conflicting, sources of information from which to make a decision. This

is somewhat problematic, since one of the goals of this work is to incorporate arbitrary image
features into our model, including the output of existing object detectors as well as more global

or local image features in the future. Discriminative models offer this type of flexibility, and also

allows us to leverage existing powerful methods for discriminative learning.

To address all of these issues, this thesis introduces a new class of grammatical models, weighted

geometric grammars (WGGs), which extend models developed recently for structured prediction
in natural language processing (Collins, 2002, 2004). Because WGGs are linear models, we can

incorporate arbitrary features of scene trees. In this thesis, we use features representing object

detector output, geometric properties and relationships, and tree structure; it would be possible to



use additional features as well. We can then learn weights on the features using the structured
perceptron algorithm. Thus, weight learning corresponds to determining how best to balance object
detector scores, geometry, and co-occurrence information, in a principled way. Finally, we develop
algorithms for learning effective WGG structures from data.

1.4 Related Work

This thesis draws on several lines of related work in computer vision, machine learning, and natural
language processing. In this section, we describe these bodies of research, and place our approach
in their context.

As we mentioned above, our weighted grammatical models are inspired by recent work done on
structured prediction in the natural language processing community (Collins, 2002, 2004). Because
we build directly on this work, we discuss it in detail in Chapters 2 and 3, rather than in this section.

1.4.1 Object Detection using Local Image Features

This thesis focuses on the relationships among objects, rather than their intrinsic image features,
to improve detection. However, we build on existing techniques for object detection using local
image features. Furthermore, we have been inspired by many of the historical and recent advances
in object class models in designing our own scene models.

Research on object recognition goes back almost as far as the entire field of artificial intelligence,
so we cannot hope to survey all of the literature. We focus here on trends in local object detection
that have influenced our own work.

Template Matching and Bag-of-Features Models

Perhaps the simplest class of approaches to object detection is that of template matching. These
methods use a separate template (perhaps in a transformed feature space) for each object category
and view. Detection then takes place using a scanning-window approach, in which the template
is scanned over every location and scale in the image, computing some measure of the similarity
between the template and each image window. Windows that match well enough are deemed object
detections. These methods have been successful for face and pedestrian detection (Turk & Pentland,
1991; Papageorgiou & Poggio, 2000; Viola & Jones, 2001). The most prominent recent example of
a template-based detector is that of Dalal and Triggs (2005), who introduced histograms of oriented
gradients (HOG) features, and achieved state-of-the-art results at the time.

Some work on object class models has focused on the problem of classification, rather than
detection. That is, the models are designed to recognize (and perhaps segment) objects in isolated
settings, where the object occupies most of the image. The task is then to classify the entire image
into a single object class.

The class of "bag-of-features" models fall into this category. In these models, the object is
represented as collection of parts, each with some model of appearance or image features, but there
are no spatial relationships among them.' These models can be very flexible, but cannot provide
much or any localization information about the object, only an estimate of the class of the image
as a whole. Representative examples of this class of models include the work of Csurka, Dance,
Fan, Willamowski, and Bray (2004), Sivic, Russell, Efros, Zisserman, and Freeman (2005), and
Grauman and Darrell (2005, 2006).

1Although these models are technically 'parts-based', the literature has tended to reserve that term for models that
incorporate spatial relationships among the parts; we follow the same convention.
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Figure 1-5: Fischler and Elschlager introduced one of the first parts-based models with spatial

relations among parts. This famous figure from their (1973) paper illustrates their "spring" analogy.

Parts-Based Models

In parts-based models, an object class is represented as collection of object parts, each with an

appearance model, and a set of flexible relative spatial relationships among the parts. Detection

usually occurs through some version of weighted voting; each part, at each possible location, votes

for where it thinks the object's center should be, and the part's vote is weighted by the quality of the

image at that location, according to its appearance model.
Parts-based models have existing in the literature for decades. Binford (1971) introduced gen-

eralized cylinders as a way to perform parts-based modeling in 3D. Along similar lines, Biederman

(1985, 1987) introduced geons as generic 3D volumetric primitives with which to describe object

parts. This work was often motivated by cognitive psychology rather than computational image-

based detection systems, and placed more emphasis on defining the set of primitives, rather than

representing the relationships among the parts.
Fischler and Elschlager (1973) were one of the first to address the issue of spatial relationships

among the parts. Their pictorial structures model, in which they formulated the parts as having

"springs" between them (see Figure 1-5), has strongly influenced more recent work.

One line of such research developed "constellation" or "star" models of object classes. Early
work modeled the spatial relations among all pairs of parts, leading to inefficient inference (Weber,
Welling, & Perona, 2000; Fergus, Perona, & Zisserman, 2003); more recent work used a single

center "landmark" part, such that the model forms a tree, allowing efficient recognition and more
parts (Fergus, Perona, & Zisserman, 2005). This research tended to focus on image classification,
rather than efficient object localization.

Meanwhile, a related vein of work by Felzenszwalb and Huttenlocher (2000, 2005), Crandall,
Felzenszwalb, and Huttenlocher (2005), Crandall and Huttenlocher (2006) extended Fischler and

Elschlager's (1973) pictorial structures framework to a statistical interpretation. The use of "k-fans"

(tree-structured models), dynamic programming, and distance transforms allowed efficient local-

ization and detection. One interesting result of this research was the demonstration that modeling

relations among a greater number of pairs of parts gives only slightly better recognition accuracy,
but with much greater computational cost (Crandall et al., 2005). This finding justifies simpler

tree-structured models.
Quattoni, Wang, Morency, Collins, and Darrell (2004, 2007) were one of the first to apply

conditional random fields (CRFs) to parts-based object recognition. This allowed the relaxation of



the traditional conditional independence assumptions among parts required by generative models,
and also provides an example of discriminative learning applied to parts-based models.

Finally, the discriminatively trained parts-based model developed by Felzenszwalb, Girshick,
McAllester, and Ramanan (2008, 2010) is the one we use as a component in our system. This model
extends the HOG models described above (Dalal & Triggs, 2005) to multiple parts and resolutions
for robust object detection.

Part Sharing Across Models

In the simplest version of parts-based models, each object class has its own unique set of parts.
However, researchers quickly observed that sharing parts across object class models can be very
powerful. Torralba, Murphy, and Freeman (2004, 2007) were one of the first to advocate this ap-
proach. They showed that sharing can produce more robust detectors, because choosing parts that
generalize to other classes often results in parts that generalize to new members of the same class
as well. Furthermore, part sharing can produce faster detectors, since the scores for each part need
only be computed once, even when detecting several classes.

Other prominent lines of research that make heavy use of part sharing include the work of
Sudderth, Torralba, Freeman, and Willsky (2005a, 2005b, 2006, 2008), who develop hierarchical
Dirichlet processes for learning and sharing parts among different object classes, and of Ommer
and Buhmann (2005, 2006, 2007), who learn compositional object class models that share primitive
parts among object models.

Hierarchical Parts-Based Models

In the same way that an object consists of parts in the models we have described so far, an object
part can itself consist of subparts. In fact, an object model can have arbitrarily many levels of hier-
archy.2 Many hierarchical parts-based models also exhibit part sharing, in that parts share subparts
or features (or that scenes share objects), in the same way that objects share parts or features.

Research on hierarchical models has been highly popular in recent years. The line of research
by Sudderth et al. (2005a, 2005b, 2006, 2008), which we already mentioned, falls into this category.
These models use hierarchical Dirichlet processes for detecting and recognizing objects with vari-
able numbers of parts, and scenes with variable numbers of objects. The compositional object class
models of Ommer and Buhmann (2005, 2006, 2007) are also prominent examples. Other represen-
tative work includes research by Epshtein and Ullman (2005a, 2005b, 2006), Fidler and Leonardis
(2007), Ranzato, Huang, Boureau, and LeCun (2007), and Felzenszwalb and Schwartz (2007).

A noteworthy category of hierarchical models focus on capturing structural variation within an
object class. Wang and Mori (2007) used a boosted forest of trees, each with different dependencies,
for articulated human pose recognition. Hess, Fern, and Mortensen (2007) used mixture-of-parts
pictorial structures to model object classes whose parts can vary in location, number, and type.
And our own previous work developed generative parts-based grammatical models for representing
structural variability within object classes (Lippow, Kaelbling, & Lozano-P6rez, 2008).

Generative versus Discriminative Approaches

The field of machine learning often draws a distinction between generative and discriminative ap-
proaches to modeling. Most of the classes of models we have discussed so far (parts-based, part-

2Note that these are compositional hierarchies, where the child-parent relationship means "is a component of", rather
than taxonomic hierarchies, where the child-parent relationship means "is an instance of".



sharing, hierarchical) can be generative or discriminative; this is an orthogonal distinction.
Let X be some data (e.g., the image pixels) and Y be the desired class labels (e.g., object classes

and their locations). In generative models, we learn a joint distribution P(X, Y) on both the image
data and their class labels. This distribution represents the probabilistic process by which a class
model generates new instances of its class, perhaps all the way down to the pixels themselves.
Generative approaches offer the potential advantage of more understandable, interpretable models.

Many of the models discussed so far fall into this category, including constellation or star mod-
els (Weber et al., 2000; Fergus et al., 2003, 2005), pictorial structures or k-fans (Felzenszwalb &
Huttenlocher, 2005; Crandall et al., 2005; Crandall & Huttenlocher, 2006), and the hierarchical
Dirichlet process models for objects and scenes (Sudderth et al., 2005a, 2005b, 2006, 2008).

In discriminative models, we instead learn a conditional distribution P(YIX) on the class labels
given the image data. In fact, the model need not be probabilistic at all; any function mapping X to Y
is sufficient. In these approaches, we only learn what aspects of members of Y make them different
from other classes; other properties are ignored. Scanning-window approaches to object detection
lend themselves easily to discriminative models, because each candidate window can be seen as an
independent data vector which the detector classifies to decide whether an object is present.

In general, discriminative approaches have been shown to have better test performance than
generative models, due to their ability to incorporate arbitrary features of the data, X, without hav-
ing to build a consistent probabilistic model that only explains each part of X once (so as to not
overcount likelihoods). Conditional random fields (CRFs) are a class of discriminative models that
leverage this flexibility and have been employed in object detection (Quattoni et al., 2004; Ramanan
& Sminchisescu, 2006; Quattoni et al., 2007).

Furthermore, a wide class of powerful discriminative learning methods have been developed in
recent years. One such method is boosting, which has been used for face detection (Viola & Jones,
2001) and feature selection for object detection (Torralba et al., 2004, 2007). Another is support
vector machines (SVMs) and related kernel methods, which appear in some of the most successful
detection methods in recent years (Dalal & Triggs, 2005; Felzenszwalb et al., 2008, 2010).

For these dual reasons-flexibility of features, and powerful machine learning tools-we adopt
exclusively discriminative approaches in this thesis.

1.4.2 Scene Classification

Turning from object recognition temporarily, we consider the task of scene classification-determining
the scene category of an image (e.g., outdoor, city, street, living room).

Research into human scene understanding has shown that people recognize the scene category
(or some sense of its semantic meaning), and its global layout and structure, faster than they recog-
nize individual objects within the scene (Potter, 1975; Navon, 1977; Oliva & Schyns, 2000). This
somewhat surprising result suggests that object recognition leverages scene information, rather than
vice versa. The term "gist" was first used in the psychological literature to refer to this visual
information about scene category or meaning that a viewer captures at a glance (Friedman, 1979).

From a computational perspective, these findings have motivated an approach to scene under-
standing which bypasses the objects and captures only global features. Oliva and Torralba (2001,
2006) argued that the primary perceptual units of scene understanding at the global level seem to
be low resolution spatial configurations. They demonstrated that the spatial envelope representa-
tion (also called gist), in which an image is modeled as a vector of values for a small set of global
properties (e.g., openness, naturalness, expansion, roughness), allows accurate scene classification
without recognizing individual objects or regions.



Most researchers in this area have primarily focused on representations for capturing these low-
dimensional global image features, then using off-the-shelf machine learning tools such as SVMs
to perform classification; although there are exceptions (e.g., Kivinen, Sudderth, & Jordan, 2007).

Bag-of-features representations appear in this setting as well. Fei-Fei and Perona (2005) mod-
eled a scene as a set of local regions, learning "themes" as hidden variables to group sets of regions,
but with no spatial relationships among the regions. Rasiwasia and Vasconcelos (2008) adopted
a similar approach, but showed that weak supervision of these themes produces results that better
correlate with human understanding.

However, incorporating some coarse spatial information seems important. Lazebnik, Schmid,
and Ponce (2006) classified images of both scenes and isolated objects by partitioning the image
into increasingly fine regions, and then computing histograms of features for each region. Kivinen
et al. (2007) developed nonparametric Bayesian models that capture multiscale spatial relationships
among features, and showed that these models classified images into scene categories better than
methods with no spatial knowledge.

1.4.3 Object Detection in Context

We return now to object detection. With ideal image conditions, an object can be recognized based
only on the image features belonging to that object. However, as we have discussed, a variety
of factors make this difficult and sometimes impossible in practice. Thus, many researchers have
turned to the question of how to incorporate image-based information and background knowledge
outside the object itself to improve recognition. We can think of this external information as the
context of the object.

Research on object detection in context can be loosely divided into two categories: approaches
that model relationships between the scene as a whole and individual objects ("scene-centered" ap-
proaches), and approaches that model relationships among objects ("object-centered" approaches).

Scene-Centered Approaches

Scene-centered approaches model relationships between global scene features and individual ob-
jects. Thus, there is no direct modeling of the spatial relationships among objects, only between the
objects and the global context.

One of the first, and perhaps the most influential, pieces of work in this area is that of Torralba
(2003). He modeled the expected location and scale of an object given the gist representation of
the scene, producing a computational model for object priming. The system learns, for example,
that pedestrians are often found in horizontal bands in the image, and the y-position of the band is
constrained by the scene context, but the x-location can vary widely. Because the approach used the
global features of the scene, rather than the recognition of other objects, to provide contextual cues,
it remains a canonical example of a scene-centered context-based approach to object detection.

Another example of "scene-centered" approaches is that of Murphy, Torralba, and Freeman
(2003), who used a conditional random field that incorporated global gist features of the scene, but
not relationships among objects, to help improve object detection.

Torralba, Murphy, Freeman, and Rubin (2003) focused on specific place recognition as well as
scene category, and using temporal cues rather than static images. They detected specific locations,
and then used that knowledge to provide contextual priors for object recognition.

More recently, Russell, Torralba, Liu, Fergus, and Freeman (2007) used gist features to find
a "retrieval set" of images in LabelMe that match the global structure of a test image. They then
built a probabilistic model to transfer object labels from the retrieval set to produce candidate object



detections in the query image. Spatial relationships among objects were modeled indirectly, also
allowing multimodal distributions in geometry.

Object-Centered Approaches

The notion of modeling a scene as a collection of objects has a long tradition in both biological and
computational vision, dating back at least as far as Minsky's (1974) frame systems. As does this
thesis, most early work attempted to perform object detection jointly among different object classes,
taking into account their expected relationships as a representation of the context of the scene.
However, most of this research used expert systems with hand-written rules to encode background
knowledge of expected scene arrangements. Examples include the VISIONS system (Hanson &
Riseman, 1978), the "Schema" system (Draper, Collins, Brolio, Hanson, & Riseman, 1989), and
the CONDOR system (Strat & Fischler, 1991), as well as work by Bobick and Pinhanez (1995) and
Moore, Essa, and Hayes (1999).

More recently, research has leveraged modern machine learning tools to model the relationships
among objects more robustly. Fink and Perona (2003) developed "mutual boosting" (extending
the work of Viola and Jones (2001)) to build object detectors that incorporated features from large
windows surrounding the object, as well as the output of boosting from other objects.

Often, graph structures are used to model objects and their relations. Some work has used a
nearest-neighbor topology, in which adjacent objects are connected in the graph. Carbonetto, de
Freitas, and Barnard (2004) framed multiclass object recognition as a segmentation task. They used
a Markov random field to label pixels, and captured spatial relationships among object by enforcing
consistency between neighboring labels and between labels and pixels.

However, approaches that only model relationships among adjacent objects have difficulty cap-
turing long-distance patterns. Thus, researchers have turned to alternative graph structures. He,
Zemel, and Carreira-Perpifiain (2004) performed pixel-wise labeling to segment an image with mul-
tiple object classes, using a conditional random field (CRF) with latent variables to capture long-
distance correlations between labels. And Torralba, Murphy, and Freeman (2005) learned a graph
structure among informative objects using boosting to select from a dictionary of connectivity tem-
plates. This allowed reliable objects (e.g., monitors) to be detected first, then providing strong
contextual cues for more challenging objects (e.g., keyboards and mice).

One class of graph structures model the pairwise spatial relations among objects. Several re-
cent papers have taken this approach. Galleguillos, Rabinovich, and Belongie (2008) frame object
recognition as a per-pixel labeling task, as others have done. They incorporate co-occurrence and
relative locations among objects using a CRF with discretized spatial relationships (above, below,
inside, around) learned from vector quantizing pairwise relations between objects in training data.
However, because of the pairwise relationships, they cannot perform exact inference, using Monte
Carlo importance sampling instead. Gould, Rodgers, Cohen, Elidan, and Koller (2008) also tackle
multiclass per-pixel segmentation, and incorporate inter-class spatial relationships among pairs of
objects. But they encode these global features as local features by learning nonparametric relative
location maps, thus allowing efficient inference.

The work of Desai, Ramanan, and Fowlkes (2009) shares many traits with our own. They also
use the output of existing state-of-the-art object detectors, and take a fully discriminative approach to
learning. However, as in the two papers we just described, they explicitly represent spatial relations
between pairs of objects with discrete canonical relations (above, below, next-to). Thus, they use
simple greedy forward search, because inference cannot be done exactly. They also do not explicitly
model co-occurrence among object classes, only relative location.

In contrast to these approaches, tree-structured models allow exact and efficient inference over



spatial locations and scale, while still capturing important geometric relationships among objects.
However, as we discussed in the introduction, rigid tree structures are usually not flexible enough to
model the widely varying numbers and types of objects that appear in scenes. Grammatical models,
which can produce trees with variable structures, provide one way to model these patterns. This is
the approach we take, so we devote Section 1.4.4 to discussing related work in that area.

But other types of work have leveraged tree-structured models for efficient inference. Crandall
and Huttenlocher (2007) extended their generative parts-based k-fan models (Crandall et al., 2005;
Crandall & Huttenlocher, 2006) to use scene context. They created a two-level hierarchical model
that represented the spatial configuration of regions in the scene at a coarse level and the multi-part
object models at a finer scale. They showed that using scene context in this way improved their
localization results.

One way to address the variability in numbers and types of objects is with nonparametric hi-
erarchical Bayesian models, which are based on generative topic models developed for language
tasks. The most prominent example of this approach is the work of Sudderth et al. (2005a, 2005b,
2006, 2008), as we have mentioned. The framework is hierarchical: scenes are composed of objects,
which are composed of parts, which are themselves composed of features. Hierarchical transformed
Dirichlet processes are then used to model objects with variable numbers of parts and scenes with
variable numbers of objects, with mixture components representing object positions in the scene.
Because the models have infinite components, sophisticated sampling techniques are needed for
both inference and learning.

Both of these lines of work represent holistic approaches to scene and object modeling, such
that the same framework governs both the way that scenes are composed of objects and the way
that objects are composed of parts. As we have argued, we propose that it may be more flexible and
robust to avoid this assumption, allowing any approach to local object detection to coexist with a
higher scene model.

Another very recent line of work adopting this philosophy is that of Choi, Lim, Torralba, and
Willsky (2010), who share many common themes with our own approach. They use a tree-structured
graphical model to learn dependencies in co-occurrence and spatial relationships among object
classes. The probabilistic model incorporates both global gist features and local object detector
output. 3 One difference with our approach is that in their model, each object class corresponds to
a single node in the tree; a hierarchical tree structure is learned in which all nodes correspond to
object classes. Thus, there is no notion of composite classes. Another difference is the probabilistic
interpretation, versus our purely discriminative linear model.

1.4.4 Grammatical Approaches to Vision

Since we take a grammatical approach to the problem of object detection in context, we devote
a section to reviewing previous work on using grammars in vision. The use of (deterministic)
grammars and syntactic models was quite popular in early computer vision and pattern recognition
research (Rosenfeld, 1973). But until relatively recently, grammars had largely disappeared from
modern object recognition.

The past decade, however, has seen a resurgence of research in grammatical approaches to
vision. Many of these lines of work focus on creating rich models that capture much of the imaging
process, from scene structure and object models to segmentation and curve detection. In contrast,
one of the goals of our research is to easily incorporate existing work on local object detection.

One example is the work of Pollak, Siskind, Harper, and Bouman (2003) and Siskind, Sherman,

3Thus, this work can be thought of as somewhat "scene-centered" as well.



Jr., Pollak, Harper, and Bouman (2007). They developed a generative model to directly extend
probabilistic context-free grammars (PCFGs) to two dimensions, in order to segment and explain
every pixel of images.

In a different body of work, Tu, Chen, Yuille, and Zhu (2003, 2005) attempted to unify seg-
mentation and recognition while parsing images into "constituent visual patterns". Han and Zhu
(2005) used graph grammars to decompose an image into its constituent components, rectangles and
straight lines. Related work by Tu and Zhu (2006) focused on parsing images into "middle level
vision representations," including regions and curves. And Zhu and Mumford (2006) developed
stochastic context-sensitive image grammars, with hierarchical decompositions from scenes to ob-
jects, parts, primitives, and pixels. Because of horizontal links in the model, MCMC sampling with
specially tuned proposal probabilities was necessary for efficient inference. In general, this body of
work tends to emphasize rich modeling of scene structure and long-range correlations, rather than
efficient recognition or learning. In the last paper cited, for example, learning occurs from a small
set of fully-labeled parse trees, and then the model is sampled to produce more synthetic data for
further training.

Another line of research has focused on tree-structured hierarchies or AND-OR graphs for de-
formable object matching and segmentation, with greater emphasis on efficient inference and learn-
ing (Zhu & Yuille, 2005; Zhu, Chen, & Yuille, 2006; Zhu, Chen, Ye, & Yuille, 2008b; Zhu, Chen,
Lin, Lin, & Yuille, 2008a). This research shares many motivations and attributes with our own,
using compositional models to represent geometry and appearance features hierarchically. The last
two papers (Zhu et al., 2008b, 2008a) even use the structured perceptron algorithm (Collins, 2002)
to learn the model parameters, as we do. However, the focus tends to be on segmentation and match-
ing, particularly for articulated objects that occupy most of the image, rather than object detection
in large and complex cluttered scenes. And again, the emphasis is on a holistic model for the entire
image, from regions to local image patches and curves.

Finally, as we mentioned, our own previous work used grammars to model structural variability
within object classes in synthetic 3D data (Aycinena, 2005) and images (Lippow et al., 2008).

1.4.5 Structure Learning and Grammar Induction

A huge body of literature addresses the related problems of structure learning and grammar in-
duction, which we only briefly address here. In particular, we focus on mechanisms for learning
structured models for cases in which the training data has not been fully labeled with internal struc-
ture. The majority of work on learning grammatical models for natural language processing has
not focused on the unsupervised case, because the problem is so challenging, and because of the
availability of large corpora of labeled tree banks of parsed sentences.

In structure learning, the goal is to find a model structure which both fits the training data and
generalizes to test data well. Many researchers have adopted a search-and-score approach to this
problem. In general, these algorithms explore the space of possible models using search operators
to modify a current structure into a slightly different one. They evaluate each structure using a score
that trades off the goodness-of-fit of the model to the training data and some estimate of the model's
ability to generalize to unseen data (e.g., compactness). Searching continues until a structure with
a locally-maximal score is found. Heckerman (1999) gives an overview of how algorithms of this
type have been used to learn the structure of Bayesian networks from data.

Classical approaches to unsupervised grammar induction for natural language processing of-
ten take this form. For example, Chen (1995) describes an induction algorithm for probabilistic
context-free grammars (PCFGs) that uses greedy heuristic search in a Bayesian framework. Along
similar lines, de Marcken (1996) fits a stochastic, generative model of language to the evidence,



using concepts such as concatenation and substitution/composition, estimation-maximization (EM)
to estimate parameters, and structural refinement operators to improve the grammar and reduce its
description length.

Our previous work on learning grammatical structures for object recognition also took a search-
and-score approach (Lippow et al., 2008). We explored the space of candidate grammars us-
ing search operators to create rules capturing repeated patterns of object parts, as well as OR-
structures-cases in which different patterns of parts appear in the same role or context. Candidate
grammars were evaluated using a score that combined the log likelihood of the training data under
the model with a penalty on the model's complexity.

However, search-and-score approaches can have serious drawbacks. First, the search problem
presents inherent computational challenges, often requiring that the best parameters for each can-
didate model be learned from the data as an inner loop within structure search. When parameter
learning is expensive, this is not a practical approach. Furthermore, the search space itself is usually
huge and highly non-convex, so greedily walking through the space of candidate structures until
reaching a local optimum is not always effective.

Second, constructing a good structure score is itself challenging. In particular, it is difficult to
effectively balance goodness-of-fit and generalization ability when scoring a candidate model. A
measure of the goodness of fit of a model is usually straightforward to obtain; the log likelihood
of the data under the model is a common choice. Quantifying the generalization ability, and in
a way that can be combined with the model's goodness-of-fit, is more challenging. A Bayesian
approach would use a structural prior to bias the search towards compact structures that are likely
to generalize well. However, the choice of structural prior is itself somewhat arbitrary.

In a related vein, researchers in the minimum description length (MDL) community have argued
that the complexity of the model should be a measure of how many data samples would be fit by
it (Grunwald, 2005). For example, in "refined MDL", the complexity of a model M is measured
as the log of the sum, over all possible datasets of a fixed size n, of the likelihood of that dataset
according to the maximum-likelihood parameters for M learned from the data. This directly and
elegantly measures the expressive power of the model in terms that can be combined with the log
likelihood of the data under the model. However, Grunwald shows that it is intractable to compute
for all but the simplest model classes, and is actually undefined in many cases.

For these reasons, this thesis adopts an approach to structure learning that departs from the
search-and-score methodology. The work of Nevill-Manning and Witten (1997) is an example of
(older) research on grammar induction in natural language that also does not explicitly use a search-
and-score technique. Rather, the authors infer hierarchical structure from a sequence of symbols by
recursively applying operators that replace repeated phrases with grammatical rules. In some ways,
this research is similar to our clustering-based approach to learning composite classes (Chapter 5),
in which we look for commonly occurring low-variance object groups.

Recent work on unsupervised grammar induction in natural language tends to focus on learning
classes of grammars that are less related to our model, such as dependency grammars or constituent-
context models (e.g., Klein & Manning, 2001, 2002, 2004, and others). Notable exceptions include
Mohri and Roark (2006), who use statistical tests to decide if a nonterminal combination is unob-
served due to sparse data or due to hard syntactic constraints. Haghighi and Klein (2006) take a
semi-supervised approach, in which they label a few canonical examples of each phrase type, and
then propagate the prototype information to other examples in a PCFG model.



1.5 What's To Come

In the next chapter, we formally introduce the weighted geometric grammar (WGG) formalism. We
define the structure of the model, and the features that capture object detector output, geometric
properties and relationships among objects, and scene tree structure. We then describe a parsing
algorithm for efficiently finding the best-scoring scene tree for a test image, given a WGG model.
The leaves of this tree correspond to detected objects in the image.

Chapter 3 addresses the problem of parameter learning in WGG models. We review the struc-
tured perceptron algorithm (Collins, 2002, 2004), and adapt it to our framework. We then intro-
duce the first of three new datasets contributed by this thesis, and show experimental results with a
hand-built WGG structure on the dataset. These results demonstrate that WGG models do improve
detection results over the object detector's performance.

In Chapter 4, we turn to the problem of structure learning in WGGs, constraining our learned
models to two levels (one for the scene, and one for all of the objects). In this setting, we can view
structure learning as a matching problem across training images. We propose a clustering-based
algorithm for finding these correspondences, and also for inferring the latent parent geometry on
the root scene nodes. In the second half of the chapter, we introduce the other two new datasets in
this thesis. We present full results on all three datasets, comparing the performance of the learned
two-level structures to the hand-built structure in Chapter 3, and to the performance of the object
detector. Again, the results show an advantage over the object detector alone.

Chapter 5 extends the structure learning algorithms in Chapter 4 to finding hierarchical gram-
mars with three levels. We develop a set of algorithms for finding composite classes that group
objects with high co-occurrence and low internal geometry variance. We then present experiments
comparing the performance of the learned hierarchical models to the two-level structures from the
previous chapter.

Finally, Chapter 6 discusses the conclusions and contributions of this thesis, and proposes av-
enues for future work.



Chapter 2

Weighted Geometric Grammars

In Chapter 1, we argued for a tree-structured grammatical approach to modeling sets of objects and
their relationships in scenes. We described how a scene can be represented as scene tree, with its
leaves corresponding to the objects in the scene.

We can draw an analogy between our scene trees, and parse trees used to model the syntactic and
semantic structure of sentences in the field of natural language processing (NLP). Recently, several
researchers in NLP have developed successful linear models and learning algorithms for parsing
sentences (Collins, 2002, 2004; Zettlemoyer & Collins, 2005, 2007). Our approach will extend this
work to modeling and detecting arrangements of objects in scenes.

2.1 Linear Models

The class of models introduced in this thesis, weighted grammatical models (WGGs), are instances
of weighted linear models, as described by Collins (2004). Basing WGGs on weighted linear mod-
els gives us the flexibility to incorporate arbitrary features of an image and scene tree into the
framework.

Before we formally define the elements of a WGG in the next section, we apply the general
definition of linear models from Collins (2004) to our context. We want to learn a function F : i -+
7, where I is a set of input images, and T is a set of scene trees with associated class, geometry, and
image information in the nodes. We assume:

" A set of training examples (Ii, Ti) for i = 1, ..., m, where It E E, T1 E T. (For most of this thesis,
we will not actually assume fully-labeled scene trees for the training images. But for clarity,
we start by making this assumption.)

" A function GEN which enumerates a set of candidate scene trees GEN(I) for an image I.

" A feature representation D mapping each (I, T) E i x 7 to a feature vector D(I, T) E R".

" A parameter vector 0 E R4.

The components GEN, 4, and e allow us to map an input image I to its scene tree T = F(I)
with this equation:

F(I)= argmax D(I, T) .E (2.1)
TEGEN(I)

In words, the function F maps the image I to the scene tree T which maximizes the inner product
between the feature vector 4(I, T) computed from the image and the tree, and the global parameter
vector 0. We will define (D and GEN for our context in the next few sections.



placesetting

C1 C2 C3

fork plate bowl spoon

placesetting

Cl C2 C3

plate
spoon fork fork spoon knife knife

Figure 2-1: Examples of possible scene tree structures for two images.

2.2 Weighted Geometric Grammars

Continuing the analogy to language approaches, we define a type of grammatical model for scene
classes. Recall that a traditional context-free grammar (CFG) defines a set of legal parse trees, each
of which maps to a string of symbols. This set of strings is the language of the CFG. In the same
way, our grammatical model represents a set of legal scene trees, each of which maps to a set of
object instances in an image. The model lets us represent the possible combinations of objects we
expect to see in an image, as well as their expected spatial arrangement and sizes.

Formally, a weighted geometric grammar (WGG) is a tuple G = (B, C, R, S, <, E), where:

* B is a set of primitive classes;

* C is a set of composite classes;

* R is a set of rules of the form
X -> Y1 , Y2, ., Yn

for n ; 0, X E C, and Y E (B U C);

* S C C is the set of root scene classes;

* CD is a feature representation mapping each image-tree pair (I, T) to a feature vector CD(I, T);
and

* 0 E Rn is a parameter vector.

We will refer to the first four of these elements, (B, C, R, S), as the structure of the model. 1 In the
rest of this section, we focus on these first elements; we will describe the last two elements <D and
0 in the next section.

The WGG structure (B, C, R, S) closely corresponds to the elements of a CFG. A primitive class
is like a terminal symbol in a CFG. In our context, each primitive class corresponds to an object
class.

'Sometimes we also use "structure" to refer to all of the components of a WGG except the weight vector; i.e.,
(B, C, R, S,<b).



A composite class is like a nonterminal in a CFG; it represents a (possibly hierarchical) group of
objects. In a CFG for language, a nonterminal corresponds to a part of speech, such a noun or verb
phrase. In a WGG, a composite class (that is not a scene class) represents a group of objects that
we expect to co-occur, and to maintain a relatively low-variance spatial arrangement with respect to
one another when they do occur. Put another way, we expect these objects to move together in the
scene-to be easier to find relative to one another than relative to other objects in the scene. We will
formalize this notion in greater detail in Chapter 5 when we discuss hierarchical structure learning.

Here is an example of a simple WGG structure for placesettings (D and 0 are not shown):

B {bowl, fork, knife, plate, spoon}

C {placesetting, C1, C2, C3}

placesetting -> Cl C2 C3

R = C1 -> spoon fork fork

C2 plate bowl
C3 -- spoon knife knife

S = {placesetting}

In the same way that a rule expands a nonterminal in a CFG, a rule in a WGG means that an instance
of the class on the left of the arrow consists of instances of the class on the right. We will refer to
the elements on the right side of each rule as rule parts. (The order in which the parts are listed in
the rule does not matter, as we will discuss below.)

We can draw the structure of a scene tree that might be produced by the above WGG like this:

placesetting

C1 C2 C3

plate bowl
spoon spoon fork spoon knife knife

Notice that more than one part on the right side of a rule may have the same class label. These
parts have different geometry parameters-we may expect the first fork in the rule for C2 to be
in the middle of the group of utensils to the left of the plate, while the second fork in the rule is
expected to appear on the right, closer to the plate.

To keep track of these differences, we identify each rule part in the grammar using an arbitrary
but unique rule part identifier (RPID). For a rule part with RPID k, we denote its class label as
class(k). Then, we would write the rules R in the above grammar as follows, with each rule part
written as its class label followed by its RPID as a subscript:

placesetting -> ClI C2 2 C3 3

R C1 -+ spoon 4 fork5 fork6
C2 ->plate7 bowls

C3- spoon9 knifeio knife11

Similarly, each node t in a scene tree T has both a class label class(t) and an RPID rpid(t), so it can
be mapped to a unique rule part in the grammar:



placesetting

Cl1  C22  C33

plate7 bowl 8
spoon4 spoon5 fork 6  spoon9  knifelo knife11

The root of a scene tree has no RPID, since it does not map to a rule part in the grammar, so we
define rpid(root(T)) to return some null symbol.

The use of RPIDs means that the order in which the parts of a rule or the children of a tree node
are listed does not matter; all that matters is the RPID associated with each of these components.

2.2.1 Structural Variability

Of course, not all placesettings have exactly the set of objects listed in the scene tree above-we
might see any subset of them in an actual scene, as in the examples in Figure 2-1. The number
of possible combinations of objects we might see in a scene is enormous. In placesettings, the
group of utensils to the right of a plate-the composite class C3 in the grammar above-might
include a spoon, a spoon and a knife, a spoon and two knives, a knife, and so on. We'll refer to this
phenomenon as structural variability.

How would we express structural variability using traditional CFGs? There are two options.
Recall that in a CFG, a nonterminal can be expanded in different ways by having multiple rules
with the same symbol on the left side. So one approach would be to write a separate rule for each
possible combination (using the original RPIDs from above, to show the correspondences):

C3

C3 - spoon9

C3 - knife1o

R C3 -knife 11

C3 -+ spoon9 knifeio

C3 - spoon9 knife11

C3 -* knife1 o knife11

C3 -- spoon9 knifeo knife11

We could then associate a weight with each rule to represent the relative likeliness of seeing that
particular subset of objects.

However, this approach is less than ideal. First, it requires enumerating an exponential number
of rules. Furthermore, we wrote the rule parts in each rule to reuse the same set of three RPIDs for
clarity only; in reality, each rule would have an unrelated set of rule parts. This is problematic be-
cause we expect these objects to maintain a similar spatial arrangement with respect to one another,
regardless of which subset of them occur. Having separate rules prevents the sharing of geometry
parameters among these related variations.

A second approach would be to introduce intermediate classes, one for each part on the right of



each rule. Each intermediate class then represents that its rule part is optional.

C3 - spoon99 knife1 1 0 knife 1 1

spoon9 - spoon 12

R spoon9 -

knife10 - knife13

knife0 -

knifell - knife14

knifell -

By associating weights with each rule in the intermediate classes, we can represent how likely each
object is to occur in its specific role. This approach seems to have the expressive power we need,
although it is not very compact.

In WGGs, we adopt a structural model which is closest to the second approach, but more com-
pact. Specifically, each part on the right side of a rule in a WGG is always optional. We can then
associate weights with the parts to model the relative likelihood of different subsets of the parts
occurring together; we will describe these weights in greater detail in Section 2.3.3 below.

In this thesis, we assume that each composite class c in a WGG is expanded by a single rule,
denoted rule(c). All of the structural variability within each class is therefore modeled by the
optionality of the parts in its one rule. However, this is by no means a necessary assumption, and
expanding the framework to include multiple rules for each composite class (each with optional
parts), would be straightforward.

2.2.2 Representing Geometry in Scene Trees

So far, our scene tree representation includes class labels and RPIDs to capture the set of objects
and composite classes present in an image. But in order to model the location of these objects in the
image, we also need geometry information in the tree.

Therefore, each node t in a scene tree has an associated geometry vector geom(t) = (x,y, s). If
we think of a node's geometry as a bounding box, -then (x,y) is the box's centroid, while s is the
scale factor at which the box's area equals that of a class-specific canonical size (W,width, Wc,height)
for class c. For a leaf node corresponding to a single object, the bounding box interpretation is very
natural-it is simply the bounding box of the labeled object silhouette. For a non-leaf node, we can
instead think of the geometry vector representing a coordinate frame, with origin (x,y) and scale
factor s. Since geom(t) is the location and scale of a node t in absolute image coordinates, we refer
to it as the absolute geometry vector for t.

2.3 Features and Weights in WGGs

We are now ready to define the feature representation <D(I, T) for an image I and scene tree T, and
the corresponding weights 0, of a WGG.

2.3.1 Features and Weights on Object Detector Output

Each primitive class in a WGG corresponds to an object class. We assume that we have a trained
object detector that can provide a score D(c, v, I) for each object class c at each location and scale



v = (x, y, s) in a (possibly subsampled) image I. In principle, any object detector can be used. In this
thesis, we use the discriminatively-trained parts-based object detector developed by Felzenszwalb
et al. (2008, 2010). The first type of feature we define is based on this object detector output.

In order to make learning more effective,2 it is important to keep feature values from taking on
arbitrarily high or low values with respect to the other features in the model. We also want to make
it likely that detector scores at correct.locations and scales are positive, so that a single linear weight
can be effective. Therefore, we add a class-specific offset te to the detector output, and then scale
and cap the result so that it lies in [-1, 1]:

min (I, max 1, D(c,v,I)+T if
f (c, v, I) = \ \ Kobj

0 otherwise
where Kobj is a constant chosen such that most (offset) detector scores will already fall into [-1, 1]
before capping. The Felzenszwalb detector learns a conservative per-class threshold, intended to be
used to produce high-recall (and low-precision) results. We use the negative of these thresholds for
the values of te in this thesis-thus, ideally, all but very low-confidence object detector scores are
positive. We then use Kobj = 1.

Then, for each class c E (B U C) in the WGG, we define a feature:

$f,'(I, T)= f f(c, geom (t), I)
tET s.t.

class(t)=c

fI
There is also corresponding scalar weight O , which will be set during learning. The feature and
its corresponding weight for class c are always zero if c is not primitive, but it will be convenient
later to make the features well-defined for all classes in the WGG.

Notice that in the features we have just defined, the same weight is used for each node with
primitive class c in a tree, regardless of which rule part is associated with the node. Thus, we can
interpret the weight for each class as a measure of confidence in the quality of the object detector
for that class.

However, it would be more expressive to allow each rule part its own weight. Then, the model
could represent that we may trust the object detector to a greater or less degree depending on the
context of the object in the scene. This can be achieved easily. For each rule part k, we define a
feature:

$~, 2(I, T)= f f(class (t), geom(t), I)
tET s.t.

rpid(t)=k

and a corresponding scalar weight O,2. Again, this feature and its weight are always 0 if rule part k
does not have a primitive class label.

The disadvantage of using rule-part-based object detector features is that it introduces many
more parameters, and thus makes the learning problem harder. We will evaluate both types of
features in the experiments in Chapters 3 and 4.

2We will describe the reasons for this when we discuss the structured perceptron algorithm in Section 3.1.



2.3.2 Features and Weights on Geometry

The first type of geometry features we define are relative; they capture the relative location and scale
of each non-root node with respect to the geometry of its parent. 3 Relative geometry features allow
the model to represent expected relationships among objects while being insensitive to the absolute
position or size of objects in the image, which we expect to vary widely across different images.

Given a child node with RPID k and absolute geometry vector v'= x', y', s'), and a parent node
with absolute geometry vector v (x, y, s), we compute the relative geometry feature vector of the
child with respect to the parent as:

g(k, v', v) = (12 2 2

where
m . s(x -X) - a,x

Kgeom,x

. s(y' - Y) - ak,y
min , mx (_1 7 Kgeom,y

.=mm (1max (I, logs' -logs- ak),s

Kgeom,s

The values s(x' - x) and s(y' - y) in the first two expressions represent the position of the child
node relative to the parent position, at an image scale s such that the parent has the canonical
size (Wc,width, Wc,height) for its class c. Similarly, logs' - logs in the third expression is the relative
difference in scale between the child and parent nodes, computed in log space since s and s' are mul-
tiplicative factors. 4 Then, (k,x, ak,y, ak,s) are rule-part-specific offsets that represent the expected
position and scale of the child relative to the parent. Finally, (Kgeom,x, Kgeom,y, Kgeom,s) are constants
to encourage the values of T, y, and 3 to lie in [-1, 1], and then they are capped to ensure this is true.
For the experiments in this thesis, we use:

Kgeom,x = Wwidth Kgeom,y Wc, 7 ight Kgeom,s = 2

where we choose the last value because the log of the smallest scale factor the object detector
considers is roughly 2.

Now, for each rule part k in the WGG, and a given scene tree T, we define a vector of features
by summing over the relative geometry feature vectors for all nodes in the tree with RPID k:

$ (I, T) = { g(k, geom(t), geom(parent(t)))
tcT s.t.

rpid(t)=k

And there is, of course, a corresponding vector of weights O .
By taking the inner product of the relative geometry features g(k, v', v) = (T2, y2,2,1 , y, ) and

the vector of weights, we can express a quadratic function on the relative position and scale of a
child given its parent. Put another way, the representation is a parabola in 4-dimensional space in
which the maximum output score is obtained at the expected values of the input variables (T, y, -).
The weights determine both the values of (,y, ) at which the function is maximized, as well as

3This explains why we can interpret the geometry vector of a non-leaf node as a coordinate frame in which we model
the geometry of its children.

4All logs in this thesis are the natural log.



the width or steepness of the parabola-how quickly the score drops off as the input variables get
further from their expected values.

It may seem counterintuitive that the values (otk,X, a k,y, aks) are not necessarily the final ex-
pected relative location and scale-in fact, they only represent initial guesses. This fact arises from
the basic equation for a parabola. The quadratic function ax2 + bx + c = 0 is maximized when
x = -b/2a. This means that by changing the weights (the 3-dimensional equivalents of a and b),
the parabola can be centered on any arbitrary values of (x, Y, S).

The second type of geometry features are absolute; they capture the absolute location and scale
of the root node of a scene tree. The absolute geometry features represent the expected location and
size of the entire group of objects in the image. For this reason, we only compute them for the root
scene classes in the grammar.

Given a node with class label c and absolute geometry vector v = (x, y, s), and an image I with
dimensions (width(I), height(I)), we compute the absolute geometry feature vector of the node as:

h(c, v, I) 2,
where

2x - width(I) 2y - height(I) i(. logs
x =_ y = . s =mmn 1,max -1width(I) height(I) ' Kgeom,s

Again, the first two expressions simply shift and scale x and y according to the image dimensions,
while the third expression scales and caps the log scale factor, so that x^ y and gall lie in [-1, 1].

Now, for each class c in the WGG, we define a vector of features:

$h (I, T) =[h(c, geom(t), I)
tET s.t.

class(t)=c

And again there is a corresponding vector of weights Oh, which we assume to be zero if c ( S.
Thus, in practice, the feature will only be computed on the root node of the tree, for mathematical
convenience we write it as a sum over all the nodes in the tree.

Consider the different roles played by the relative versus absolute geometry features. In a place-
setting, for example, the relative geometry features might represent that we expect to see a fork to
the left of the plate, and a knife to the right, while remaining independent to the absolute location
of the plate, knife, and fork in the image. The absolute geometry features, on the other hand, might
represent that we expect to see the entire group of plate, knife, and fork in the center of the image
and occupying most of it. The latter expectation may be less strong than the former, in which case
the weights on the absolute geometry features can be lower than those on the relative features.

2.3.3 Features and Weights on Tree Structure

The final category of features and weights are based on the structure of a scene tree. Recall that
in a WGG, each part on the right side of a rule is always optional. The structural features, and the
weights on them, let the model capture the relative likelihood of different subsets of the parts of a
rule occurring together.

First, for each rule part in k in the WGG, and a given scene tree T, we define a feature:

$rp(I, T)= l
tET s.t.

rpid(t)=k



and a corresponding scalar weight 9rP. These features simply count the number of times each rule
part appears in the tree, independently of any other parts. Thus, they provide only a weak model
for the expected appearance of each part, and cannot model preferences for the co-occurrence of
multiple parts.

For this reason, we define an additional set of pairwise structural features. For each pair of rule
parts (ki, k2) in the same rule in the WGG, and given a scene tree T, we define a feature:

opw (I T)-1

ti,t2 ET s.t.
parent(ti )=parent(t2),

rpid(ti)=ki and rpid(t2)=k2

and a corresponding scalar weight Opwk. These features count the number of times each pair of rulek1 ,k2~
parts occurs (as a pair of sibling nodes) in the tree.

In Section 2.2.1, we discussed ways to express the notion of optional rule parts within the
traditional CFG framework. We said that the idea of having every rule part always be optional was
equivalent to simply introducing an intermediate composite class for each rule part. But in fact, the
pairwise structural features we just introduced would not be possible if we were using intermediate
classes, because the rules of the grammar representing that the parts are optional would be separate
from the rule grouping the parts into a composite class. This observation makes clear that the WGG
formalism is actually not context-free, but rather context-sensitive in a very mild way. The decision
of whether to include each part in a rule depends on what other parts are also being included. This
is similar to the first approach we proposed for adapting CFGs-we could have multiple rules for
each composite class that are variations on a theme, and have weights on each rule. But recall that
in that approach, we could not easily share geometry or object detector weights across the rules.
The framework of optional parts with pairwise weights in WGGs lets us borrow some of the best of
both of these approaches to capturing structural variability.

2.3.4 WGGs as Linear Models

We can now define the feature representation CD(I, T) in a WGG as the concatenated output of the
feature functions we defined in the previous three sections. Similarly, the parameter vector e is the
concatenation of the weight vectors: 5

cEBUC (, T) VceBUC Oc

VrER VkCr 4f2(I, T) VrER VkEr 0f2

CD(I, T) VrER VkEr (I, T) VrER VkEr (.
VcEBUC E(B, T) VciBUC

VrER VkErorp (I, T) VrER VkEr k

VrER V(ki,k2)Erk k2 (I, T) VrER V(ki,k2)Erok2

where we use the subscripts k E r and (ki,k 2) E r to denote enumerating over each rule part k or
pair of rule parts (ki, k2), respectively, on the right side of rule r.

Finally, we must define the function GEN which enumerates the candidate scene trees GEN(I)
for an image I. We take GEN(I) to be the set of scene trees that have valid structure according to
G, and whose geometry vectors contain only valid locations and scales given the dimensions and
feasible resolutions of the (possibly subsampled) image I.

5In practice, we only use either the class-based object detector features $c (I, T) or the rule-part-based version

$ f2 (I, T). But we include both in what follows; whichever one is unused is simply removed from the parsing expressions.



2.4 Parsing

Imagine we are given a WGG G = (B, C, R, S, 4,0). The parsing task is to compute Equation (2.1);
i.e., to find the best scene tree T given an image I:

F(I)= argmax (D (I, T) -.
TEGEN(I)

(2.1)

The challenge is that the number of candidate trees in GEN(I) is exponential in the size of the gram-
mar and the image. A naive approach, in which we enumerate each tree T E GEN(I), compute the
tree's score CD(I, T) -0, and choose the tree with the highest score, would be completely intractable.

However, we intentionally constructed the feature functions in CD(I, T) to be simple counts or
sums of component functions, each of which operates on a local piece of a scene tree-a single node,
a node and its parent, or two sibling nodes. Thus, we can derive a CYK-style parsing algorithm
(Jurafsky & Martin, 2000) that uses dynamic programming to find the best scene tree in polynomial
time in the size of the grammar (number of classes and rule parts) and the size of the image.

2.4.1 Scoring a Scene Tree

First, let's consider how we would score a given tree. Let Q(I, T) = <D(I, T) -0 be the score of a
fixed scene tree T, given an image I. Expand <D(I, T) and 0 using Equation (2.2):

Q(I, T) = 4(I, T) .0

r R ( LE r Rk Er (2.3)
+ 9 $9(I, ) + 97$7 (I, T)

c6BUC j rERksr j
0k9k20k5k2 (I, T)+ (kik 2.

rER (k1,k2)Er

Consider the first term in this expression. Replace $," (I, T) with its definition,
range to get an expression in terms of nodes t E T:

BU (I, T)
cEBUC

and then rear-

= " f(c, geom(t), I)
cEBUC tET s.t.

class(t)=c

= 9 clas(t)f(class(t), geom(t), I)
tET

We can do something similar with the second term:

Ot2f,2 Q _
Ek O(I,T)
rERkEr

, k r2 f (class (t), geom(t), I)
rERkEr tET s.t.

rpid(t)=k

= [ 9 ,d(t)f(class(t),geom(t),I)
tE T s.t.

tfroot(T)

and the last four terms:

-$~(I, T) = [ -g(rpid(t), geom(t), geom(parent(t)))
rERkEr tET s.t.

t5root(T)



oh. Oh (I, T) = L 9 -ass(t) h(class(t), geom(t), I)
ccBUC tET

Or $p(I, T)
r ER k~r

= [Orid(t)
tET s.t.

tfroot(T)

E $klk2 (I,T)Okk 2 -
rER (ki k2 )Er (ti,t2 )ET s.t.

parent(ti )=parent(t 2 )

Opwrpid(ti ),rpid(t 2)

Now, replace the terms in Equation (2.3) with those we just found, and group them according to
the domain of each sum:

Q(I, T) L ( t 5 )f(class(t),geom(t),I) + 1ass(t) h(class(t),geom(t),I))
tET

+ rpid(t) rpid(t) f(class(t), geom(t),I)
tET s.t.

t=,root(T) / /

+
(ti.t2)ET s.

parent (tI )=pare

+ Urpd t). ~rid~t), geom~t), geom~parent~t)))

rpid(ti ),rpid(t 2 )
t.

nt(t 2)

Let children(t) be the child nodes of node t, and subtree(t) be the subtree of T rooted at node t.
Then we can rewrite Q(I, T) recursively:

= calass(root(T)as~otT) geomn(root (T)), I)

class(root(T)) -h(class (root(T)), geom(root(T)), I)

+ rp id (t) rpid(t)f (class(t), geom(t),I)

+ Le
(ti142)Ecchildren (root (T))

+ 0 id(t) -g (rpid(t), geom(t), geom(root(T))) + Q(I, subtree(t))
rpd

rpid(ti ),rpid(t 2 )

2.4.2 Finding the Max-Scoring Tree

For the parsing task, we want to find the scene tree T that maximizes the score Q(I, T). Let Z(c, v, I)
be the score of best-scoring subtree rooted at class c and location/scale v:

max Q(I,T)
TEGEN(I) s.t.

class(root(T))=c A
geom(root(T))=v

= Of Ic y,I) 9 -h(c, v, I)

+ maxE
TEGEN(I) s.t children(root(T))

class(root(T))=c A
geom(root(T))=v

id± +fd(t)f(class(t), geom(t), I)

+9id(t) -g (rpid(t), geom(t), v) + Q(I, subtree(t))

E rpid(ti),rpid(t2)
(ti ,t2 ) echildren(root(T))

Z(c,v,I)=



Without Pairwise Rule Part Features

First, consider the case in which we ignore the pairwise rule part features:

Znopair(C, v, I) = 91,'If (C, V, I) + 9h - h(c, v, I)

TEN) s (eid(t) +Oid(t)f(class(t), geom(t),I)
class(root(T))=c A t~children(root(T))
geom(root(T))=v + 0 p -g(rpid(t), geom(t), v) + Q(I, subtree(t))

We can flip the max and the sum over child nodes, because the search for the max subtree for each
rule part k can happen independently. Also, because each rule part is optional, we take the max
of 0 and the score for the best subtree T' rooted at part k. Only subtrees with positive scores can
contribute to the best global tree, so if the best subtree T' has a negative score, it does not get added:

= O9'f(c, v,I) + h h(c, vI)

+ max max (0, O9+e' 2f (class(k),geom(root(T')),I)
kErule(c) T'EGEN(I) s.t. k

+t . g(k, geom(root(T')), v) + Q(I, T')

Now, we can separate the max over subtrees T' into a max over root location/scales v' for the subtree,
and a max over subtrees T' with root location/scale v':

= 9'f(c, v,I)+ 9 -h(c, v,I)

+ E max (0, op + max 0 Of(class(k), v', I) + 9 -g(k, v', v)
kErule(c)

+ max Q(I, T')
T'cGEN(I) s.t.

class(root(T'))=class(k) A
geom (root(T')) =v'

Finally, we recognize the final max over subtrees as the recursive step:

= 99If(c,v,I)+C -h(c,v,I)

+ [ max(0,Op+ max (f2 f (class(k), v', I)+9 -g(k, v', v) + Znopair (class(k),v', I)
kErule(c)

Rewriting slightly, we have:

Znopair(C, v, I)= of If(c, v, I) + o -h(c,v,I) +

object detector output absolute geometry

[ max(O, Znopair(C, k, v, I))
kErule(c)

whether to add rule part

where

Znopair(C, k, v,I) = pr e

part weight

+ max
Vc

child locations

("'f(class(k), v', I)+9 -g(k, v', v) + Znopair(class(k),v', I))

object detector output relative geometry recursion

(2.5)
is the score of the best subtree rooted at rule part k, given a parent with class c and geometry v.

Writing the score in this manner shows that, in the absence of pairwise rule part features, each

(2.4)



individual rule part weight Op can be interpreted as (the negative of) a threshold on the score of the
subtree rooted at rule part k. If the score of the subtree rooted at the best child location v' is less than
-02P, the subtree score znopair(c, k, v, I) will be non-positive, and the subtree will not be included in
the global best tree.

Thus, in the absence of pairwise rule part features, Equations 2.4 and 2.5 lead directly to an
efficient and exact dynamic programming parsing algorithm, in which a table is maintained that
stores the score Znopair(c, v, I) for each class c at each location and scale v in the image I. Once the
table is fully constructed, the score of the best overall scene tree for the image I is given by:

max Qnopair(I, T) = argmaxZnopair(c, v, I)
TEGEN(I) cES,v

where Qnopair(I, T) is as in Equation 2.3 but without the pairwise term, and S is the set of root scene
classes in the WGG. By maintaining an additional chart that keeps track of the best subtree (which
rule parts are added, and their geometry values v') associated with each parent (c, v) in the table, the
best-scoring scene tree T itself can be reconstructed.

With Pairwise Rule Part Features

To reintroduce pairwise rule part features, we can still find the best subtree for each rule part k
independently, but we cannot decide whether to add each subtree without making a joint decision.
To compute this exactly, we would need to consider all subsets of rule parts in the rule:

Z(c,v,I)= ofcIf(c,v,I) + oh h(c,v,I) + max ( F k k2 + z(c,k,v,I)
KE'P(rule(c)) \(ki,k2 )EK kEK

object detector output absolute geometry 1% V %,-
all subsets of rule parts pairwise weights subtree scores

(2.6)
where 'P(rule(c)) is the set of all subsets of the rule parts in the rule for class c, and

z(c,k,v,I) = Or + max (9kf2f(class(k), vJ) + g -g(k, v', v) +Z(class(k), v',I))

part weight c object detector output relative geometry recursion
child locations

(2.7)
as before.

In general, it will not be tractable to enumerate all subsets of rule parts for each rule in the gram-
mar. Therefore, we adopt a greedy approach to this one aspect of an otherwise optimal algorithm.
Our approach is inspired by Torralba et al. (2007), who proposed a similar algorithm to search for
the best set of object classes to share a feature on each round of boosting.

For a parent class c and location/scale v, we must decide which of the N rule parts in rule(c)
should have their subtrees included in the best tree rooted at (c, v). For each rule part k, we precom-
pute the score z(c, k, v, I) of its best subtree. First, we select the rule part ki with the best score:

ki = argmaxz(c,k, v,I)
kErule(c)

Then, we select the next rule part k2 with the best score, jointly with the previously chosen part ki:

k2 = argmax z(c, k, v, I)±+ O9
ke (rule(c)-{ki })



This continues, so that the ith selected part is chosen as:

i-I

ki argmax z(c,k,v,I)+2 0k
kE(rule(c)-U' _{k1 }) j=1

until all parts k in rule(c) have been selected.
Each ki for i = 1... N corresponds to a subset of i of the N parts-specifically ki through ki.

And the ith subset has an associated joint score:

i-i i i

score(i) = 9k.k +LZ(C,kj,v,I)
j=1 E=j+1 j=1

We then pick the subset i with the highest score, unless no subsets have positive scores, in which
case we add no rule parts. Thus the final set of rule parts can have any size between 0 and N.

Because this algorithm is greedy, it is incapable of looking past rule parts with very good in-
dividual scores z(c, k, v, I)-it must either include the top-scoring part or none at all. However, in
practice it tends to be quite robust.

This approach replaces the exhaustive search over all rule part subsets in Equation 2.6. Other-
wise, we can implement a parsing algorithm based on Equations 2.6 and 2.7 in the same way we
described for the no-pairwise case.

2.4.3 Practical Considerations for Parsing

The parsing algorithm must be implemented with an awareness of the domain of v. The variable
v represents the location and scale (x, y, s) of an object or composite class instance, and in practice
it ranges over the (x, y) coordinates of each pixel at each level of an image pyramid-the (possibly
subsampled) image I, resized using a discrete set of scale factors s.

This has several implications. The first is computational. To perform the max over child loca-
tions v' in Equation 2.7, a naive approach would consider every possible child location (x',y') and
scale s' for each fixed parent location (x,y) and scale s, which would result in a parsing algorithm
with complexity that is squared in the total number of pixels in the image pyramid. To perform
this search more efficiently, we adapt the generalized distance transform techniques developed by
Felzenszwalb and Huttenlocher (2004, 2005).

Using Distance Transform Techniques

Felzenszwalb and Huttenlocher (2004) define the distance transform as follows. If Q is a regular
grid and f: G - R is a function on the grid, the distance transform of f is:

Df(p) = min(d(p,q)+ f(q))
qEg

where d(p, q) is a measure of the distance between p and q. In the case when the distance function
is the squared Euclidean norm d(p, q) = (p - q)2, they show that performing the one-dimensional
distance transform is equivalent to computing the lower envelope of the set of parabolas rooted at
(q, f(q)), as shown in Figure 2-2, and give an algorithm for computing this envelope in linear time.

For more complicated distance functions, linear minimization is often still possible. Felzen-



Figure 2-2: The one dimensional distance transform for squared Euclidean distance, as the lower
envelope of n parabolas. From Felzenszwalb & Huttenlocher, 2004.

szwalb et al. (2008) use this distance function in their object recognition system:

d(p,q) = a(p - q)2 +b(p - q)

They use a recursive algorithm to compute the distance transform under this function in linear time.
Although the recursive algorithm does not seem to be documented in their papers, the released code
has an implementation. 6

In our context, we want to write the maximization over child locations in Equation 2.7:

max (O'2f(class(k),v',I)+9 -g(k,vv)+Z(class(k),v',I) (2.8)

in terms of a distance transform over child locations (x', y'). First, define

(x', y Okf (class(k), (x', y', s'), I) +Z(class(k), (x', y', s'), I) (2.9)

to be everything inside the max except the relative geometry term. (We use f to distinguish this
function from f, our features on object detector output.) Then, recall the definition of g(k, v', v),
and that we can write e9 as a vector:

k -vkx2 ky2 ks2 k,x k,y k,s)

Now we can rewrite Equation 2.8 as:

max (O9 -g(k, v', v) + f(xy', s'))

m (1X ,x2 + ,y2 2 + ,s272 + k x k,y s

= max (s, 2+2 + g + D(x, y, s, s'))

6 Available at http: //people. cs.uchicago.edu/~pf f /latent/.



where
D(x, y, s, s') = + max (9 2 +9 2 + 9T +9 y+ f(x', y', s')

We can write D(x, y, s, s') as a distance transform as follows. First, we assume without loss of
generality that the parent and child scales s and s' are fixed and equal (we will discuss this again in
the next section). Then, we can consider x and y locations in an image already scaled by s. This
means that in the definition of T:

_~i . 'a(1 s(x' - X) - atk,xx mm (1,max (-1,~x
Kgeom,x

we can assume that s = 1. Next, since the x and y dimensions are separable, and their models have
the same form, we will consider just the x dimension. Finally, we always can turn a max into a min
by negating the arguments. This gives us:

D(x) = min (d(x, x') - f(x'))
X,

where
d(x,x') = a(d'(x,x' )) 2 +bd'(x,x')

and

d'(x, x') = min 1, max -1, xm) (2.10)
W j

with

a= -O, b = -9 mW Kgeom,x (2.11)k,x2 - k,x M= Ck~ x1

So by substituting our definition of d(x, x') into the recursive algorithm of Felzenszwalb et al. (2008),
we can perform the maximization over child locations for all parent locations (at a fixed scale s) in
time that is linear, rather than squared, in the size of the scaled image.

Different Parent and Child Scales

To derive the distance transform, we assumed that the parent and child scale factors were fixed and
equal. However, we need to be able to consider the relationship between a child location and a
parent location at two different scales in the image pyramid, despite the fact that we can only apply
a distance transform in one scale.

Note that the locations (x',y') over which f is defined in Equation 2.9 are pixels in the image
pyramid at the child scale s'. In fact, f(x',y', s') is actually a matrix of scores of the same size as
the image scaled by s'. We have two options. We could either rescale the child score matrix to the
parent scale s, and then perform the distance transforms in x and y at the parent scale. Or, we could
perform the distance transforms at the child scale, and then rescale the resulting matrix of scores to
the parent scale afterwards.

The first option is conceptually simpler, since the location features and weights for a rule part
k are already defined at the parent's scale. But in practice, it turns out to be very important to take
the second approach. It is often the case that the image pyramid level corresponding to the child
scale s' is much higher resolution than the parent scale s, because child instances tend to be (much)
smaller than their parents. For example, in a two-level grammar, a child might represent a tiny fork,
while the parent represents the group of all the objects in the scene. The scale at which the fork is
at its canonical size may be close to the full image resolution, while the scale at which the parent



is at its canonical size would be greatly subsampled.7 By scaling the child scores before applying
the geometry models, we would lose a great deal of precision in possible locations for the fork with
respect to the parent.

To apply the distance transforms at the child scale, however, we must scale the geometry model
parameters accordingly, since they are defined at the parent scale s. (To see this, note that in the
definition of x, we scale both the image coordinates x and x' by s before doing anything else.) So
now we want to have Equation 2.10 continue to be correct, but when x and x' are locations at the
child scale s', rather than the parent.

We can transform a location x at the child scale to the parent scale by dividing by a = s'/s. So
we replace x and x' in Equation 2.10 by x/a and x'/a, and simplify:

d'(x, x') = min 1, max ( 1 ,lax~ am))w

=min 1, max - 1,_ )/(T

= min 1, max (-1,lx-T

Thus, by redefining Equation 2.11 as:

a=- b = -g m = aTk,x w= geom,x (2.12)k,x2 - k~x 'go

we can use the original Equation 2.10 on locations at the child scale and have the result be correct.
Finally, the question remains of how to rescale a matrix of scores between two levels of the

image pyramid. If we need to upsample the matrix (because the target pyramid level is higher
resolution than the source one), we can simply replicate scores to neighboring pixels. However, if
we need to downsample the matrix (because the target level is lower resolution), some amount of
information must be lost. We use the fact that the sampling process is happening in the context of a
maximization algorithm, and set the value of each single pixel at the target scale to be the local max
score of its corresponding region of pixels at the source scale.

Mapping from Scene Trees to Object Detections

The last practical issue about parsing that we must address is how a predicted scene tree T maps to
a set of object detections for an image I. As we have said, the leaves of T correspond to the set of
detections, where the predicted class for each leaf node t is simply the object class corresponding
to class(t). So we must only specify how the geometry vector geom(t) = (x,y, s) for the node maps
to a predicted bounding box in image coordinates. This mapping is motivated by the bounding box
interpretation for the geometry vectors of leaf nodes in Section 2.2.2. The location values (x,y)
specify the centroid of the bounding box, while the scale factor s determines the dimensions of the
box as:

(Wc,width, Wc,height)

S

where (Wc,width, Wc,height) is the class-specific canonical size for c = class (t).

The mapping above produces a set of bounding boxes {bj} with class labels {c3}, one for each
leaf in the predicted tree T. However, some of these bounding boxes may overlap heavily with

7We use the same canonical sizes chosen by the Felzenzswalb detector. For each object class, a box is selected with
median aspect ratio such that most of the training objects have larger area.



one another. Two or more bounding boxes may even be exactly equal, which can happen when the
object detector score at a location and scale is very strong, thus tempting several rule parts to choose
that pixel as their centroid. Even if a ground-truth object actually exists at that location and scale,
only one of the predicted bounding boxes would be considered correct, while the others would be
labeled false positives.

Therefore, we perform a very conservative form of non-maximal suppression (NMS) on the
leaves of a predicted scene tree. We must adapt traditional NMS techniques, since we do not have a
single independent score for each predicted object. Instead, we must consider how removing each
overlapping object would affect the score of the entire scene tree.

The overlap between two bounding boxes b1 and b2 is defined as the area of their intersection
divided by the area of their union:

overlap(bI, b2) = area(bi nb2 )
area(bi Ub 2)

We choose a maximum threshold p on the allowable overlap between detected bounding boxes of
the same class. Then, we take the following best-first approach to removing detections that overlap
too much:

1. Find the set of leaf nodes {t1 } in T such that each leaf's bounding box overlaps with at least
one other leaf with the same class label by more than p.

2. For each overlapping leaf t1 , let T be the tree formed by removing tj from T (and all ancestor
nodes of t that no longer have any object descendents).

3. Update T to be the tree T with the highest score:

T = argmax<D(I, T) -0
Ti

We iterate this process until no leaf nodes overlap by more than p in Step 1.
For the experiments in this thesis, we apply NMS to detected scene trees at test time, with a

conservative overlap threshold of p = 0.95. However, we do not perform any NMS during parameter
learning; we will discuss the reasons for this in the next chapter.



Chapter 3

Parameter Learning in WGGs

In the last chapter, we introduced weighted geometric grammars (WGGs), and showed how to
perform parsing efficiently with a given model. In this chapter, we discuss the problem of learning
a good set of parameters for a WGG with fixed structure. Formally, we can state the parameter
learning problem in WGGs as follows. We are given:

" A WGG structure (B, C, R, S) and feature representation <D.

" A set of training images and scene trees (It, T) for i = 1, ... , m.

The goal is to find a good weight vector E.
At the beginning of the last chapter, we said that we would not assume fully labeled scene trees

T for the training images. However, in the context of parameter learning, we do assume that we
have labeled trees, with class and rule part ID tags corresponding to the WGG structure (B, C, R, S),
and with geometry information in all nodes. We can make this assumption because the structure
learning algorithms in the next two chapters output tree structure and geometry for the training
images, in addition to a learned grammar structure. Furthermore, the experiments in this chapter
use a hand-built grammar structure, for which we hand-annotated corresponding scene trees.

3.1 The Structured Perceptron Algorithm

To learn the weights for a WGG model, we adapt the structured perceptron algorithm, introduced by
Collins (2002, 2004) for a variety of natural language processing tasks. The simplicity and efficiency
of this algorithm are immediately appealing, but it also has some nice theoretical properties. The
algorithm extends the classical perceptron algorithm for classification (Rosenblatt, 1958, 1962), and
the voted or averaged versions of the perceptron (Freund & Schapire, 1999), to cases in which the
output is much richer than a simple binary class.

The original structured perceptron algorithm, written in our notation, is given in Algorithm 3.1.
The algorithm proceeds as follows. We choose an initial setting of the weights 0 (e.g., all zero).
Then, we make J passes over the training images. For the ith image on the jth pass, we perform
parsing on the image It using the current weights Of. If the predicted scene tree T* is incorrect, we
update the current weight vector by the difference between the feature vector <D(Ii, T1 ) for the correct
tree, and the feature vector CD(It, T*) for the predicted tree. If the predicted tree is correct, however,
the weights are unchanged. Finally, after all passes have completed, we set the final weight vector
0 to the average of the weight vectors after each image on each pass.

This last step may seem a bit surprising, but it approximates the voted perceptron of Freund
and Schapire (1999). In the voted perceptron, a single pass is made over the training examples (so



Input:
" Training examples (It, T) for i = 1,..., m
" WGG components (B, C, R, S, 5D)
" Initial weight vector 8 0 E R"
* Number of iterations J

Output: Final weight vector 0

1. f = 0
2. for j=1..J
3. for i=1, I...,Im
4. T* = argmaxTEGEN(Ii) 4I(Ii, 7
5. if T* 7 T,
6. Of+1I = Of + (D(It, T) -
7. else
8. E+1 = Of
9. f = f+ I
10. = EM"1E

) *)

5D(Ii, T*)

weight vector index

find best tree for Ii
check tree correctness
update weights

do not change weights

approximates voted perceptron

Algorithm 3.1: The structured perceptron algorithm (Collins, 2002).

J= 1). Let Oi be the weight vector after the ith training example. The voted perceptron outputs all
m of these weight vectors, rather than a single vector. Then, for a new test image Itest, parsing is
performed m separate times, once with each weight vector Oi:

Ttest,i = argmax (D(Itest, T) -Oi
TEGEN(Itest)

These m trees are "votes" for the output, and the most frequently occurring tree is chosen.

Thus, the averaging performed on Line 13 in Algorithm 3.1 can be seen as an approximation to
the voted perceptron. But averaging has the crucial advantage that we perform parsing on each test
image only once using the averaged weights, rather than parsing each test image m times with m
different weight vectors (Collins, 2002). Collins also shows that using the averaged version of the
algorithm can improve performance significantly compared to the unaveraged version.

Although this algorithm is beautifully simple, it can be quite powerful. In particular, the iterative
parsing steps serve to automatically find hard negative examples with which to update the model
weights. If a training image has an especially attractive, but incorrect, interpretation under the
current settings of the weights, the predicted scene tree will reflect that, and the weights will be
updated accordingly. This discriminative feature of the algorithm makes it a good fit for the task of
object detection, for which the mining of hard negative examples has been shown to be crucial for
good learning (e.g., Torralba et al., 2007; Felzenszwalb et al., 2008, 2010).

We will see that the structured perceptron is a good fit for the task of parameter learning in
WGGs, but we could have used other learning algorithms instead. For example, we could apply
the latent SVM formalism developed by Felzenszwalb et al. (2008, 2010), which adapts multiple-
instance SVMs to the problem of finding good parameters in a structured model. We could also
apply general optimization techniques, such as conjugate gradient descent, although gradient-based
approaches would need to be approximate, since scoring a training image using a candidate weight
vector involves taking a max over trees.



3.1.1 Theoretical Justification

Collins (2002) presents several theorems on the convergence and generalization of the structured
perceptron algorithm, which we paraphrase briefly here.

The first result is on the convergence of the algorithm when the training set is separable. A
training set (Ii, Ti) is separable with margin 8 if there exists some vector U with ||Ull = 1 such that

Vi, VT E GEN(Ii), U -((It, Ti) - U -@(It, T) ;> 8

where GEN(Ii) = GEN(Ii) - {T} is the set of incorrect candidate trees for image It, and ||Ul is the
L norm of U. Collins proves that for a training set that is separable with margin 6, the training error
of the algorithm is bounded by:

number of mistakes <

where R is a constant such that

Vi, VT E GEN(It), ||5P(It, T) - cP(It, T) 1 R

This implies that the algorithm is guaranteed to converge to a weight vector with zero training error
in a finite number of iterations, if such a vector exists.

Two observations are worth making. First, as Collins points out, the number of mistakes is not
dependent on the size of GEN(It), only on the margin of separability 6. This is important since in
practice the size of GEN(It) might be huge.

Second, notice that R depends on the max Euclidean distance between feature vectors of correct
and incorrect trees for an image. This is why it is so important to cap the features we defined in Sec-
tion 2.3 in a bounded range (e.g., [-1, 1]). Theoretically, even with feature vectors with unbounded
values, the algorithm could still converge, if the training data is separable. But in practice, conver-
gence will be much faster if the features cannot range too far. Intuitively, if the feature vectors can
take on unbounded values, then a particularly bad prediction in Line 4 of Algorithm 3.1 could result
in an update vector cI(It, Ti) - 4I(It, T*) with arbitrarily large magnitude. This update would push
the weight vector to a far extreme of the feature space, such that many steps might be required to
get the vector back into a good part of the space. Using feature vectors with bounded magnitude
means that no single image will be able to change the weight vector by a more than a fixed amount,
avoiding the scenario we just described.1

The next result presented by Collins (2002) concerns the training error when the training set is
not separable, which is virtually always the case in the context of this thesis. We will not state the
theorem here, but summarize its implications. If the training set is "close" to being separable with
margin 6 (for a formal definition of "close"), then theorem implies that the algorithm will eventually
make a small number of mistakes. This result demonstrates the robustness of the algorithm to
training sets in which some examples will never be parsed correctly.

Finally, Collins describes generalization results for the voted perceptron algorithm that were
originally presented by Freund and Schapire (1999). The results suggest that if the voted perceptron
makes relatively few mistakes on the training set, it is likely to generalize well to test examples.

'This is likely to be even more important in cases when the training set is not actually separable.



Input:
" Training examples (I, T) for i - 1,... , m
" WGG components (B, C, R, S, D)
" Initial weight vector 00 E Rn
" Number of iterations J
" Learning rate vector T E Rn

Output: Final weight vector 0

1. f = 0
2. for j 1,...,J
3. for i= 1,...,Im
4. T* = argmaxTEGEN(Ii) 'I(Ii, T) O
5. if -,correct(detections (T*), labels(Ii))
6. Ot+1 = Of + T o (CD (Ii, Ti) - CD (It, T*))
7. else
8. E12+1 =_ O
9. + I
10. E = E

weight vector index

find best tree for It
check detection correctness
update weights (Equation 3.1)

do not change weights

approximates voted perceptron

Algorithm 3.2: The structured perceptron algorithm, applied to parameter learning in WGGs. It is
identical to Algorithm 3.1, except for modifications in Lines 5 and 6.

3.1.2 The Structured Perceptron for WGGs

We can apply Algorithm 3.1 to learn the parameters of a WGG virtually as written, with only a small
number of tweaks, which we describe in this section. Algorithm 3.2 shows the modified version.

Evaluating Predicted Trees

Consider the test for tree correctness in Line 5 of Algorithm 3.1. Our scene trees have continuous
geometry values in their nodes, so performing a naive test for perfect equality between the predicted
tree T* and the labeled tree T1 seems inappropriate. Furthermore, we only want to penalize trees
which would not produce correct object detections at test time; otherwise, there should be no need
to update the weight vector.

In Section 3.2.2, we will formally define the precision/recall/f-measure metrics we use for the
experiments in this thesis. Briefly, the cumulative f-measure of a set of predicted bounding boxes
and a set of ground truth bounding boxes, each with associated object classes, is a number between
0 and 1. An f-measure of 1 means that all the predicted boxes were correct, and that all the ground
truth boxes were predicted.

Thus, we take the following approach to evaluating whether a predicted tree T* for a training
image It is correct in Line 5 of Algorithm 3.2. If the set of bounding boxes produced by the leaves of
the predicted tree T* (as described in Section 2.4.3) has a cumulative f-measure of 1 when compared
with the set of human-annotated bounding boxes for image It, then the tree is considered correct.
Otherwise, it is not, and the weight vector is updated in Line 6.

However, it is important that no non-maximal suppression (NMS) be applied to the leaves of
the predicted tree T*, despite the fact that we do apply conservative NMS at test time. This is
because NMS will produce a tree T*' which scores lower according to the model than the original
detected tree T* (even though the detections resulting from NMS may score higher against ground



truth labels). So using T*' instead of T* to update the weights in Line 6 would be misleading to the
perceptron, because it gives inaccurate feedback about how the current setting of the weights affect
the features of the highest-scoring detected tree.

A Learning Rate for Features on Tree Structure

We discussed in Section 2.4.2 how the weight O6p on each rule part tree structure feature can be
interpreted as (the negative of) a threshold on the score of the subtree rooted at rule part k. Similarly,
the pairwise weights O9"k have a thresholding role in determining how high the sum of scores for
sets of subtrees need to be in order to be included in the predicted tree.

However, these tree structure features themselves are binary-they are 0 or 1. Thus, performing
the simple additive update in Line 6 of Algorithm 3.1 would result in tree structure weights that
take only integer values (at least until the averaging step in Line 10). This seems too coarse, since
these weights are acting as thresholds on subtree scores which are functions of object detector and
geometry features that are capped to lie in [-1, 1].

In the limit of many iterations, the perceptron could always increase the object detector and
geometry weights so that the integer-valued tree structure weights can effectively threshold the
subtree scores. But in order to speed up learning, we introduce a learning rate I on only the tree
structure features (both single rule part and pairwise). Let T E R' be a vector with the same length
as the feature representation 4. All elements of T are 1 except for those corresponding to tree
structure features in (F; those elements have value y. Then, in Line 6 of Algorithm 3.2, we take
the entrywise product of the delta vector I(Ii, Ti) - 5D(Ii, T*) with the learning rate vector T, before

updating the weight vector:

Of+ = Of + T o ((D(It, Ti) - (D(It, T*) (3.1)

where o denotes the entrywise product between vectors.
For all the experiments in this thesis, we use y = 0.01, chosen based on preliminary results on

a development set. Again, this modification is only to achieve faster learning. In practice, we found
that after enough iterations, the perceptron could set the weights effectively even without a learning
rate (equivalently, with xy = 1), but that lower values of V produced faster convergence.

Initialization

For most of the experiments in this thesis, we initialize the weight vector 0 in Algorithm 3.2 to
zero. However, another reasonable initialization scheme is as follows:

* Initialize all object detector output weights 0 and 9k to 1. This expresses our expectation
that the object detector output correlates positive with object presence.

* Initialize all absolute and relative geometry weight vectors 6O and Oh to (-l, -1, -1,0,0,0).
This initializes the geometry models to simple parabolas with maximum score achieved when
the input variables (x, y, s) and (x, -s) equal the initial relative offsets (atx, ak,y, ak,s) and the
center and native scale of the image, respectively.

" Initialize all other weights (on tree structure) to 0.

We will use this initialization scheme in the next section.



Geometry in Ground Truth Trees

As we have said, we assume that we have fully specified structure for the "ground truth" trees Ti. In
this section, we discuss how we set the geometry values in the ground truth trees.

The leaves of the ground truth trees correspond to human-annotated objects in the training im-
ages. The obvious approach would be to use each labeled bounding box bgt to set the geometry
vector in the corresponding tree leaf directly. Instead, we use the object detector output on the
training image to choose a location and scale (x, y, s) for the leaf node that corresponds to a locally-
maximal object detector score, while still producing a bounding box that overlaps sufficiently with
bgt to be considered correct. This improves the learning, because it provides training examples with
correct leaf geometry that are more likely to be separable in object detector feature space.

To set the geometry of the internal nodes of the ground truth trees, we have two options. As we
mentioned at the beginning of this chapter, the structure learning algorithms and hand-built dataset
provide scene trees with both structure and geometry as input to parameter learning. So the first
option is simply to use the given geometry directly for the internal nodes. We will refer to this
method as "fixed ground truth internal geometry."

The second option is to perform an additional parsing at each step of the perceptron, in which
we find a tree that has the same structure and leaf geometry as the ground truth tree, while freely
setting the geometry on the internal and root nodes according to the current setting of the weights:

i argmax CD(It, T) -Of
TEGEN(Ii) s.t.

structure(T)=structure(T) A
geom(leaves(T))=geom(leaves(T))

We would insert this computation before Line 4 in Algorithm 3.2, and use i in place of Ti in Lines 5
and 6. We will refer to this method as "free ground truth internal geometry."

When using free ground truth geometry, it turns out to be important to use the alternative initial-
ization scheme we described last section. This is because we are more sensitive to the initial weight
values when using them to choose the ground truth geometry as well as the predicted geometry.
Again, the algorithm can still converge given enough time under either initialization scheme, but it
will probably take longer. Therefore, whenever we use free internal geometry, we will initialize the
weights as described in the previous section; otherwise, we will initialize the weights to all zeros.

We will investigate both methods for setting the internal geometry of ground truth trees in the
experiments in the next section and in Chapter 4.

Setting the Rule Part Offsets

Finally, we cannot apply the perceptron to a WGG structure (B, C, R, S, CD) before setting the offsets
(Ok,x, ak,y, atk,s) for each rule part k-these offsets are used to compute the relative geometry features
(Section 2.3.2). Since we assume scene trees Ti with labeled rule part IDs and geometry, we simply
compute the offsets for each rule part k as the sample means over all nodes with label k:

Nk,x N geom (t) aXk,y = E E geomytNki tETi s.t. Nk Eist
rpid(t)=k rpid(t)=k

Nk,s E Y log(geoms (t)) Nk= 1
Nk i tE7; s.t. i teT s.t.

rpid(t)=k rpid(t)=k

Again, we put the scale values geoms (t) into log space, since they are multiplicative factors.
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Figure 3-1: Examples of images and their labels from the small placesetting dataset.

3.2 Experiments with a Hand-built Structure

In this section, we introduce the first of the three datasets we use in this thesis, and show a WGG
structure we hand-built for the dataset. We explain the evaluation metrics we use for the exper-
iments, and present the baseline object detector against which we compare. Finally, we present
experiments evaluating the hand-built WGG structure on the first dataset, and exploring the varia-
tions on WGG models and perceptron learning that we discussed in the first of half of the chapter.

3.2.1 The Small Placesetting Dataset

This thesis contributes three new datasets for the task of object detection in context. The first, the
"small placesetting dataset," consists of 167 images of placesettings. The images have been labeled
with silhouettes for 1499 objects from 15 object classes. 2 Figure 3-1 shows example images and
labels from the dataset. Additional images are shown in Appendix A (Figure A-1). Table 3.1 lists
the object classes and their frequencies, while Figure 3-2 shows examples of each class.

The dataset is quite challenging. The number of objects per image is relatively high (an average
of 9), and also has high variance (a standard deviation of 5.7). Furthermore, the objects appear at a
wide range of scales and rotations, with occlusion and poor image quality not uncommon.

The small placesetting dataset was labeled using the LabelMe web-based image annotation
tool (Russell, Torralba, Murphy, & Freeman, 2008), and is freely available through the same sys-

2 Our system does not actually use the labeled silhouettes, only the bounding boxes.



object class

bowl
candle
cup
fork
forkside
glass
knife
knifeside
napkin
placemat
plate
saucer
shaker
spoon
spoonside

# instances

53
32
44

251
37

201
187
25
93
24

316
27
33

120
56

% objects

3.5
2.1
2.9

16.7
2.5

13.4
12.5

1.7
6.2
1.6

21.1
1.8
2.2
8.0
3.7

Table 3.1: The small placesetting dataset, with 167 images and 1499 labeled objects.

(a) bow

(d) fork

(b) candle

(e) forkside (f) glass

(i) napkin

(k) plate

(c) cup

(g) knife (h) knifeside

(j) placemat

(1) saucer

(m) shaker (n) spoon (o) spoonside

Figure 3-2: Examples of each object class in the small placesetting dataset. Notice the difference
between the fork and forkside, knife and knifeside, and spoon and spoonside classes.



B ={bowl, candle, cup, fork, forkside, glass, knife, knifeside, napkin, placemat, plate, saucer, shaker, spoon, spoonside}

C = {placesetting, CO1, C02, C03, C04, C05, C06, C07, C08, C09, C10, C11, C12, C13}

placesetting -> C011 C022 C033 C044 C05 5 C06 6 C077 C088 C099 C10 10 CI 1 1 C12 12 C13 13 placemat 14

CO -> plate 15 plate 16 plate 17 bowl 18 napkin19  dinner, salad, charger

C02 -+ fork20 fork 21 fork22 knife23 spoon24 spoon25 napkin 26  left of C01, right to left

C03 -> knife27 knife28 knife29 spoon30 spoon 31 fork32 fork33 napkin 34 right of C01, left to right

C04 -> forkside35 spoonside 36 knifeside 37 napkin38  above C01

C05 -> glass 39 glass 40 glass4 1 glass 42 napkin43  glasses, upper right

R C06 - glass44 glass 45 glass46 glass 47 napkin48  
glasses, upper left

C07 -> plate 49 plate50 knifeside5 knife52 napkin5 3  bread plate, upper left

C08 -* cup54 saucer55 plate56 spoonside57 spoon58  cup/saucer, upper right

C09 -> cup59 saucer 60 plate 61 spoonside 62 spoon63  cup/saucer, upper left

C1O -> bowl64 bowl65 bowl 66 plate67  bowls/plate, upper right

Cl I -> bowl 68 bowl69 bowl 70 plate71  bowls/plate, upper left

C12 -* shaker 72 shaker 73  above, left to right

S Cl 3 -> candle 74 candle 75 candle 76  above, left to right

S = {placesetting}

Figure 3-3: A hand-built WGG structure for the small placesetting dataset. Comments show guide-
lines for how each composite class was assigned in annotating scene trees for the training images.
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spoon (30)
spoon (31)
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I +-+ bowl (64)

+-+ placemat (14)

Figure 3-4: Examples of images and their labeled scene trees from the small placesetting dataset.
Notice that the bounding box on each leaf node is not exactly the bounding box of the labeled
silhouette; rather, it is centered on a locally-maximal object detector score.



Figure 3-5: The overlap score between b, and b2 is the area of their intersection (orange) divided
by the area of their union (red plus orange plus yellow).

tem.3 The dataset is a subset of the staticsilverware and staticwebsubmitted-meg_
placesettings LabelMe directories; Appendix A lists the 167 filenames from these directories.

This dataset is smaller than the others we consider. However, in addition to labeling object sil-
houettes, we also hand-built a WGG structure for the dataset, and annotated corresponding scene
tree structures for the images in the dataset. Figure 3-3 shows the hand-built structure, while Fig-
ure 3-4 show examples of labeled scene trees. This level of annotation would be very difficult for a
larger dataset. Therefore, the small placesetting dataset provides a useful testbed for exploring the
WGG framework and parameter learning, while controlling for the problem of structure learning.

3.2.2 Evaluation Metrics

Both the WGG parsing algorithm and the object detector against which we compare output bounding
boxes with class labels. How do we evaluate these detections to determine their correctness with
respect to the labeled annotations?

We use the overlap metric to determine whether a predicted bounding box is correct. This metric
has become the standard in object recognition, used among other contexts in the PASCAL visual
object classes (VOC) challenges (Everingham, Van Gool, Williams, Winn, & Zisserman, 2008). As
we discussed in Section 2.4.3, the overlap between two bounding boxes bi and b2 is defined as the
area of their intersection divided by the area of their union:

overlap(bi,b 2) = area(bi nb 2 )
area(bi Ub 2)

We consider a predicted bounding box bpred with object class c to be "correct" if it overlaps by more
than 0.5 with a ground truth bounding box bgt with class c. Overlap is an intuitive metric for object
detection, because it provides a measure in [0, 1]-it is one when the regions are identical, and zero
when they do not overlap at all.

We then evaluate a set of predicted bounding boxes for a class c using precision-recall. Let
{bi} be the set of detected bounding boxes with class c for an image, and {b;} be the set of ground
truth "target" boxes with class c. First, we compute the overlap score oi, between each detected
bounding box bi and each target box b.

Then, we sort the detected bounding boxes by decreasing confidence. For the object detector,
the confidence of a detection is simply its score. For-a box produced from a scene tree, we use the
object detector feature times its weight, plus the dot product of the local relative geometry features
and their weights-this is a local estimate of the contribution of the object to the overall tree score.

We walk through the detected boxes in order. For the current box bi, find the target bj with
highest overlap score oij. If oij > 0.5, we mark bi as correctly detecting the target object b. We

3http://labelme.csail.mit.edu/browseLabelMe/staticsilverware.html

http://labelme.csail.mit .edu/browseLabelMe/static-websubmitted-meg-placesettings.html



also set the overlap score between by and all other detected objects to -oo, so that once a target has
been assigned to a detection, it cannot be used again. However, if no target by overlaps with b; by
more than 0.5, we mark bi as a false positive, and move on.

In the end, each detected object has either been marked correct (assigned a target object), or
marked as a false positive. Then we can sum the number of correct detections for class c across all
test images, and compute the recall and precision of the detections as:

# correct detections . . # correct detections
recall =precision=

# target objects # detected objects

We can also compute the cumulative scores across all object classes, by summing the number of
correct detections, target objects, and detected objects across all images and all classes, rather than
within each class separately.

Recall captures the percentage of target objects were correctly detected, while precision captures
the percentage of detected objects that were correct. Detection systems often display a trade-off,
explicit or not, between higher recall and higher precision. In the simplest case, in which a detector
outputs a score for each candidate detection, thresholding the score at a low value will result in a
large number of detections. The target objects are more likely to be correctly detected, making the
recall higher, but many of the detections are also likely to be wrong, making the precision lower.
On the other hand, thresholding at a high value reverses this trend, often producing relatively low
recall but high precision.

To allow easier comparison among different detection systems, particularly because of this
trade-off, it is useful to have a single score summarizing both recall and precision. The f-measure
of a set of detections is defined as the harmonic mean of the recall and and precision:

2 x recall x precision
recall + precision

The harmonic mean is the appropriate method for averaging rates, and is lower than the arithmetic
mean. In practice, it tends to magnify the effect of the lower of the two contributing values; this
means that it is difficult for a detection system to achieve high f-measure without having both rel-
atively high recall and relatively high precision. Thus, f-measure is a challenging and effective
measure of comparison across multiple systems, even for systems which may fall on different sides
of the implicit trade-off between high recall and high precision.

Using Precision-Recall Rather than ROC

Precision-recall and f-measure are traditional evaluation metrics in the field of information retrieval.
However, the task of object detection is inherently similar to that of information retrieval. In par-
ticular, in both tasks, the number of possible detections is enormous-many orders of magnitude
greater than the number of targets. For object detection, even when an image contains many target
objects, the number of objects is tiny compared with the number of pixels at each scale of the image
pyramid!

For this reason, precision-recall is far more appropriate as a metric for object detection tasks
than ROC, which many authors have used. The problem with ROC is that it can present an overly
optimistic view of a system's performance in cases when there is great imbalance between the
number of positive and negative examples; i.e., when the number of possible detections is much
greater than the number of targets.

In a detection task, we can use a confusion matrix to summarize an algorithm's performance:



actual positive actual negative

predicted positive TP FP
predicted negative FN TN

TP is the number of true positives (target objects that were correctly detected) while FN is the
number of false negatives (target objects that were not detected). FP is the number of false posi-
tives (detected objects that were not correct), while TN is the number of true negatives (candidate
detections that were correctly not detected, because they do not map to a true target object).

Rewriting recall and precision in terms of the confusion matrix results in:

recall = precision TP
TP + FN TP+FP

ROC, however, evaluates detection systems by computing the true-positive rate and the false-positive
rate:

.. TP FP
true-positive rate = false-positive rate =

TP+sFN FP+TN

Notice that the true-positive rate of a system is identical to its recall. However, its false-positive
rate is very different from its precision. While a very large number of incorrect detections will result
in very low precision, it may not result in such a low false-positive rate. Although the numerator FP
would be large, the denominator FP+ TN would also be large, because there are so many candidate
detections in an image. Therefore, the false-positive rate can mask the fact that a system may make a
huge number of incorrect detections. Precision, on the other hand, simply computes the percentage
of detected objects that were correct.

Furthermore, it is not always clear how to even count the number of "actual negatives" in an
object detection task. The number of different candidate detections a system might consider is
heavily dependent on the details of a system (e.g., the number of scales in the image pyramid, the
subsampling rate of the image, etc.). So even if a number could be computed, it would not be
obvious how to compare fairly across different systems.

Precision-recall does not have these problems, because it never uses the number of "actual neg-
atives." This sidesteps the issue of how to count this number, but more importantly, it produces
metrics which correctly penalize a system for making many incorrect detections. Davis and Goad-
rich (2006) make many of these same arguments, and even prove that a ROC curve for one system
dominates the ROC curve for another system if and only if its precision-recall curve dominates the
precision-recall curve for the second system; i.e., that precision-recall is a strictly more informative
metric on an algorithm's performance than ROC.

Producing Detection Sets Rather than Precision-Recall Curves

Parsing with a WGG model produces a single highest-scoring scene tree for a test image, which then
results in a single set of detected objects. This process differs from most current object detection
systems (Dalal & Triggs, 2005; Torralba et al., 2007; Felzenszwalb et al., 2010), which assign
an independent score to each candidate detection in a test image, but do not directly address the
question of how to threshold these scores to produce a final set of detections. Indeed, the vast
majority of recent object recognition research has focused on how best to score candidate detections,
rather than on how to threshold those scores.

Instead, most systems control for the thresholding question by producing precision-recall or
ROC curves-sweeping over a large range of thresholds and plotting the scores associated with



each one. Different systems are then compared by computing the area under their curves or by
overlaying their curves on the same axes.

Object detection systems which maintain an agnostic stance towards threshold-setting do have
some advantages. A user with a particular task in mind may have a greater need for high recall, at
the cost of low precision, or vice versa; decision theorists would refer to this as the utility of various
outcomes. By outputting what is essentially a set of score matrices rather than a set of detections,
these systems theoretically allow the user to choose a threshold (i.e., a point on the precision-recall
curve) that best meets their needs.

However, this line of reasoning has allowed the field to largely ignore the challenging question of
how to best set these thresholds in a general, not-task-specific manner. A user who simply wants an
effective object detection system, but does not want to be deeply involved in tweaking the internals,
has few options.

In this context, we view the fact that WGG parsing produces a single set of detections as a
possible advantage, rather than a disadvantage, of the system. We can view parameter learning
as jointly setting both the weights on object detector and geometry features, and also the context-
specific thresholds across all components of the model. Thus, it attempts to address both the scoring
and threshold problems, rather than just the first. Nonetheless, one area of future work would be
to consider ways to incorporate a measure of utility, or the relative importance of recall versus
precision, directly into the learning process.

3.2.3 Baseline Model

The object detector features in the WGG model (Section 2.3.1) are based on the discriminatively-
trained parts-based object detector (DTPBM) developed by Felzenszwalb, Girshick, McAllester,
and Ramanan (2008, 2010). This detector is one of the best in the field, achieving state-of-the-art
results on the PASCAL VOC benchmarks in 2007 and 2008 (Everingham et al., 2008). For both of
these reasons, it is the most natural system against which to compare the WGG framework.

We used code available from http://people.cs.uchicago.edu/~pff/latent/, training a

single-component model with one root and six deformable parts for each object class, as is done
in Felzenszwalb et al.'s paper. For each object class, the code outputs a score at each location and
scale in each image; these scores provide the basis of the WGG object detector features. It also
learns a canonical height and width for the "root" part of each object class c, which we used as our
canonical size (Wc,width, Wc,height) for that class.

The DTPBM code also learns a conservative threshold for each object class, chosen to produce
high recall but very low precision. Then simple non-maximal suppression is used to produce a large
number of candidate detections as follows. The first detection is created from the root box at the
best-scoring location and scale. The next detection is created from the root box at the next best-
scoring location and scale, but constrained to not overlap with any previous detection by more than
0.5. This continues until no more valid detections score higher than the conservative threshold. This
very large set of detections is used by Felzenszwalb et al. to produce precision-recall curves.

There is also a variant in which, instead of simply using the root box associated with the best-
scoring location, a bounding box prediction is made based on both the root box and the predicted
locations of the parts in the deformable model. Then, the same non-maximal suppression scheme
as described above is applied to produce a slightly different large set of detections. Felzenszwalb
et al. (2010) found that this predicted-box version performed slightly better than the simple root-box
version described above.

In our experiments, we produced detection sets using both versions. We found that on the
small placesetting dataset, the root-box method outperformed the predicted-box version by a slight



margin, while the reverse was true on our other two datasets. Although these differences are slight,
we report baseline results based on whichever version performed better on the dataset in question.

Producing a Good Detection Set

Regardless of which bounding box prediction method is used, the DTPBM system produces a huge
set of detections for a test set, intentionally achieving high recall and low precision. So we must
select a good subset of these detections against which to fairly compare our system. For example,
we could choose a less conservative threshold for each object class, perhaps to maximize f-measure
on the training set or a development set.

Instead, however, we use a simple heuristic based on the number of objects of each class in an
image. Let n, be the maximum number of objects of class c ever seen in a training image. Then,
for each object class c in each test image, we choose the ne highest-scoring detections from the set
produced by the DTPBM, discarding the rest. These detections already score above the conservative
threshold and do not overlap with one another by much, so no additional processing is needed.

Comparing against DTPBM detections selected this way allows us to control somewhat for any
advantage the WGG gains from simply capturing the maximum number of objects of a class ever
seen in a training image (which is an upper bound on the number of objects a WGG will predict).

To further investigate the power of knowing the number of objects of each class in an image,
we also compare against DTPBM detections chosen as follows. Let n.i be the actual number of
ground truth target objects with class c in the ith test image. We then choose the ne,i highest-scoring
detections from the set produced by the DTPBM, discarding the rest. This is cheating-no actual
system would have access to this information. However, the performance of detections chosen with
this knowledge lends insight into both the quality of the object detector, and the value of good
estimates for the expected number of target objects in an image.

3.2.4 Results on the Small Placesetting Dataset

We are now ready to present experimental results using the hand-built WGG structure on the small
placesetting dataset. First, we compare the performance of the simplest version of the WGG model
to the DTPBM object detector. Then, we explore different variations of the WGG model and the
perceptron algorithm. In particular, we consider the effects of:

" associating the WGG object detector features with an entire object class versus each rule part;

" using fixed versus free internal geometry in the ground truth trees during the perceptron; and

" removing the pairwise tree structure weights, using the individual weights on each rule part.

For each set of experiments, we randomly split the dataset into a training set with 87 images
and a test set with 80 images. We trained and tested each model on exactly the same images,
computing per-class and cumulative precision, recall, and f-measure on the test set. Then, to control
for variance in the training and test sets, we performed the same experiments for 5 different splits
of the dataset. The results we present here are averaged over these 5 splits, with the minimum and
maximum scores across runs measuring the variability in performance.

In the following sections, we will compare numerical results for the different models cumula-
tively (across all object classes), only showing per-class results graphically. However, the complete
numerical results, cumulative and per-class, for all models are listed in Appendix B.
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Figure 3-6: The performance of a WGG model over the 10 iterations of the perceptron. The left

plot shows average cumulative f-measure across each iteration. The right plot shows the average

difference in score between the detected tree and the ground truth tree.
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Figure 3-7: Cumulative results for the DTPBM object detector (dark and light blue) and the hand-

built WGG structure (orange). Mean, minimum, and maximum scores across runs are shown. 'clas-

sobj' means class-based object detector features were used, while 'fixed' refers to fixed ground-truth

internal geometry.

The WGG versus the DTPBM Object Detector

The most straightforward version of the WGG uses class-based object detector features and pairwise

weights, with fixed ground-truth internal geometry during the perceptron. All WGG experiments in

this chapter used 10 iterations of the perceptron, chosen based on preliminary experiments. Figure 3-

6 illustrates one model's performance on the training data over the 10 iterations of the perceptron.

Figure 3-7 summarizes the cumulative average performance of the hand-built WGG model, and

compares it to both versions of the DTPBM object detector. (We break the results out by object
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Figure 3-8: Representative detections from the heuristic DTPBM object detector (second column)
and a WGG model (third column).

class later in the section.)
The first observation we can make is that the WGG (orange) performs significantly better ac-

cording to f-measure than the heuristic DTPBM (light blue). Although the heuristic DTPBM has
much higher recall than the WGG, the WGG's vastly higher precision results in an higher f-measure
score overall. To further understand these numbers, consider the last two columns in the table in
Figure 3-7. While the WGG detects an average of 312 objects and gets 188 correct, the DTPBM
detects over 2200, getting 307 correct on average. The DTPBM's high recall is due to the fact that
it detects such a large number of objects in each image that it is more likely to find the correct ob-
jects. The WGG, on the other hand, detects relatively few objects, but its detections are very likely
to be correct. Figure 3-8 shows example detections from both systems, illustrating the qualitative
difference in the results. Additional WGG detections are shown in Figure 3-14 at the end of the
chapter.

A second observation is that the WGG performs quite a bit worse than the DTPBM when it
knows the ground-truth number of objects of each class for each test image (dark blue). Remember
that this version of the DTPBM is cheating, so it is not a completely fair comparison. However, the
fact that the object detector can perform so well when it has access to this information is interesting.
It suggests that the detector is doing a good job of ranking candidate detections, but that it has
trouble knowing where to threshold them, even using a simple heuristic on the number of objects
per image. A WGG model can thus be seen as one way to capture how many objects are expected
from each class, while taking into account both the detector scores and geometry information.

The relatively low recall and high precision of the WGG model here will turn out to be a consis-
tent feature of its performance. It makes few detections, but those detections are often correct. (And
even when they are not correct, they are often close misses; see the examples in Figure 3-14.) It
seems that the perceptron tends to set the weights on tree structure such that both the object detector
and geometry features need to be satisfied in order for a detection to be made. This is likely due to
the fact that the object detector's output is so noisy, while the inherent variance in spatial arrange-
ments means that the geometry models cannot be informative enough to overcome the noise. In
Chapter 6, we will discuss several paths of future work that could address this issue.

Finally, notice that all the models perform poorly, by absolute standards, on this dataset. Even
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Figure 3-9: Cumulative results for the DTPBM object detector (dark and light blue) and the hand-

built WGG structure with class-based (orange) versus rule-part-based (yellow) object detector fea-

tures. 'classobj' means class-based object detector features were used, while 'rpobj' means rule-

part-based features were used.

the DTPBM, a state-of-the-art object detector, when given ground truth knowledge about the number

of each object class in each test image, produces a cumulative f-measure of significantly less than

0.5. This highlights the difficulty of the dataset. There are actually a fair number of objects which

are strictly impossible to detect, because they are too large or small to be captured by the range of

scales the detector considers, or because they are rotated such that their aspect ratio is too different

from the detector's canonical object size. However, the poor performance also points to the inherent

difficulty of the object recognition task in general, and emphasizes the extent to which the current

abilities of the field are lacking.

Class-Based Versus Rule-Part-Based Object Detector Features

In Section 2.3.1, we described how the features and weights on the object detector output could

either be associated with an entire object class c ($" (I, T)), or with each individual rule part k in

each rule ($(, T)). We discussed how the rule-part-based version offers greater expressive power,
since it allows the weights to capture that the object detector may be more or less reliable depending

on the context of the object in the scene. However, the class-based version has the advantage of

fewer parameters and greater sharing of training data across different parts of the model.

Figure 3-9 summarizes the cumulative performance of each approach, and compares them to

both versions of the DTPBM object detector. We can see that the choice of class-based object de-

tector features (orange) versus rule-part-based features (yellow) does not make much of a difference,

at least on this dataset and with the hand-built WGG structure. The rule-part-based features perform

better in precision but slightly worse in recall than the class-based features. But because the overall

recall scores are lower, the class-based features' slight advantage in recall is more important than
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Figure 3-10: Cumulative results for the DTPBM object detector and four variations of the hand-
built WGG structure. 'fixed' refers to fixed ground-truth internal geometry, while 'free' refers to
free ground-truth internal geometry.

the rule-part-based features' advantage in precision. However, in general, the difference between
the two versions is only barely significant in this context. We will revisit the question of class-based
versus rule-part-based object detector features again next chapter.

Fixed Versus Free Internal Geometry in Ground-Truth Trees

We discussed in Section 3.1.2 how we have two options for setting the geometry of the internal
nodes of the ground truth tree for each training image during the perceptron. First, we can simply
use the provided tree geometry. For the hand-build WGG structure, we have labeled ground truth
tree structure, and labeled bounding boxes on the leaf nodes (corresponding to labeled object sil-
houettes). We then compute the geometry vector for each internal node from the bounding box of
its descendent leaves' bounding boxes. We call this "fixed ground truth internal geometry." All the
WGG experiments we have presented so far have used this method.

However, this approach is sometimes less than optimal. The geometry vectors on the internal
nodes represent coordinate frames in which the expected locations and scales of their children are
represented. The bounding boxes of for two sets of corresponding leaf nodes, one of which is miss-
ing an object, are likely to be very different. This would result in very different relative geometry
vectors for corresponding objects, in turn misleading the geometry models. (We will discuss this
issue in much more detail in the context of structure learning next chapter.)

In these cases, a better approach is to run parsing to determine the best geometry vectors for the
internal nodes, while constraining the tree structure to match the labeled structure, and the leaves to
have the correct locations and scales. We refer to this as "free ground truth internal geometry".
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Figure 3-11: Per-class results for the DTPBM object detector and the WGG hand-built structure.

For numeric per-class results, see Appendix B (Tables B.4, B.5, B.6, B.7, B.8, and B.9).

precis



iu-

U.b hand-buit WGG, pairwise, classobj, fixed
05- [~~]hand-built WGG, pairwise, rpobj, fixed

hand-built WGG, nopairwise, classobj, fixel
0.4- hand-built WGG, nopairwise, rpobj, free

0.3-

0.2-

recall precision f-measure

# targets (all models): 741.0

recall precision f-measure # detections # correct

pairwise, classobj, fixed 0.254 [0.244 0.264] 0.604 [0.561 0.647] 0.357 [0.353 0.362] 312.0 188.0
pairwise, rpobj, fixed 0.235 [0.221 0.253] 0.659 [0.623 0.705] 0.346 [0.332 0.359] 264.6 174.0
nopairwise, classobj, fixed 0.242 [0.218 0.260] 0.623 [0.584 0.643] 0.348 [0.325 0.361] 287.6 178.8
nopairwise, rpobj, fixed 0.217 [0.208 0.227] 0.698 [0.627 0.741] 0.331 [0.321 0.348] 231.2 161.0

Figure 3-12: Cumulative results for the hand-built WGG structure with and without pairwise fea-
tures.

In Figure 3-10, we see the performance of the WGG model using both methods. All four combi-
nations of class-based versus rule-part-based object detector features and fixed versus free internal
geometry are presented, and the results are again compared to the two version of the DTPBM object
detector. We also break out the results for all six models by object class in Figure 3-11.

As we would hope, using free internal geometry does give a slight improvement over fixed
geometry, with the hand-built structure. The improvement is more marked with the rule-part-based
features, and for certain object classes, such as cup, saucer, glass, and shaker. These objects almost
always appear in pairs or groups, such that misleading parent coordinate frames resulting from fixed
internal geometry would be more harmful.

Pairwise Tree Structure Features Versus None

The last set of experiments in this chapter explore the importance of the pairwise features on tree
structure in the WGG model. Our intuition is that the pairwise features play a critical role in cap-
turing co-occurrence information among sets of objects, because each rule part in a rule is optional.
To test this hypothesis, we remove the pairwise features from the model completely, relying only on
the individual rule part weights to act as thresholds on subtree scores.

Figure 3-12 compares the performance of the WGG model with and without pairwise features
(each with class-based and rule-part-based object detector features), while Figure 3-13 shows the
per-class results. We see that the pairwise weights do help by a small amount, but it is not significant.
They would likely help more, but the hand-built structure already builds in a fair amount of co-
occurrence information in the grouping of objects into composite classes.

We shall see in the next few chapters that pairwise features become more important in larger,
more complex datasets, when the grammar structure is not predefined by a human. Indeed, the next
two chapters focus on how to learn WGG models when there is no labeled structure.
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Figure 3-13: Per-class results for the WGG hand-built structure with and without pairwise features.
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Chapter 4

Two-Level Structure Learning in WGGs

In the last chapter, we presented the structured perceptron algorithm for learning the parameters of
a WGG with fixed structure. In this chapter and the next, we will discuss several algorithms for
learning the structure of the WGG itself.

The formal structure learning problem in WGGs is as follows. We are given:

" A set of object classes B and scene classes S.

" A set of training images Ii, for i = 1,... , m, in which the ith image is annotated with:

- a scene class ci E S, and

- a set of mi objects, in which the jth object has object class cij E B and bounding box

bi,7, for j = 1, .. ,Mi.

The goal is to find:

" A small set of good composite classes C.

" A set of rules R-one for each learned composite class, and one for each scene class in S.

" A set of scene trees T1 for the training images, with class and rule part labels corresponding
to C and R, and geometry vectors in the nodes.

In this chapter, we will simplify the problem by learning only two-level WGG structures. In
other words, we will not learn any new composite classes; we will only learn a single rule for each
scene class c E S, in which the rule parts correspond to primitive object classes directly. So all of
the scene trees for the WGG structures learned in this chapter will have two levels, like this:

placesetting

fork plate bowl spoon

In the next chapter, we will relax this assumption, and learn three-level hierarchical WGG struc-
tures. However, we shall see that in fact two-level WGGs are often powerful enough to capture the
co-occurrence and relative geometry information we need. Furthermore, the techniques we develop
to learn two-level structures will serve as building blocks for the algorithms in the next chapter.



Figure 4-1: Two images of simple placesettings.

4.1 Learning Class Templates

In the two-level learning case, the labels on the training images make it easy to initialize reasonable
scene trees. Each image Ii is labeled with a scene class ci and a set of mi objects with class and
bounding box information (ci,., bi,). So we can write down this tree Ti for image Ii:

ci

Ci,1 ... ci, ... cim,

where the geometry vector for in the jth leaf node is produced from the labeled bounding box bi,1,
and the geometry vector in the root is produced from the bounding box of the leaves.

Among images with the same scene class c, each tree will have the class label of c on the root
node, but a different set of leaf nodes. For the two placesetting images in Figure 4-1, we might have
the following tree structures (remember that the ordering of leaves is arbitrary):

placesetting placesetting

fork plate bowl spoon fork fork napkin knife spoon

In this simple example, we might want to learn this rule:

placesetting -+ fork, fork2 plate3 bowl4 napkin5 knife6 spoon7

with this set of rule part labels (RPIDs) on the tree leaves:

placesetting placesetting

fork 2  plate 3  bowl 4  spoon7 fork1  fork2  napkin5  knife6  spoon 7

The choice of which RPID to assign to each node is also a choice of the correspondence between
leaves in different trees, and it is important because assigning two leaves the same RPID means they
will share the same model parameters. The choice might be straightforward when there is at most
one instance of an object class in each image, and it appears at a fairly consistent position and size
with respect to the other objects. However, it becomes more challenging when there is more than



one object of the same class in some images (e.g., the two forks in the example above), and in cases
of high variability in the presence, locations, and scales of objects.

In this light, we can view the task of learning a rule for a scene class as a constrained matching
problem. The goal is to find an assignment of RPIDs to the leaves of the trees associated with the
training images (i.e., a correspondance among the leaves across trees) such that the object class
labels are respected, and that the variance in the geometry of the nodes assigned to the same RPID
(relative to their parents' geometry) is as small as possible. The rule we learn for the scene class is
is essentially a template specifying the set of RPIDs, and their associated object classes, that appear
in the tree leaf labels. For this reason, we will refer to this matching problem as "learning a class
template."

We will use agglomerative clustering on trees as the basis for our approach to learning class
templates. A cluster is a tuple (K, T), where:

" the template K is a set of RPIDs k and their class labels class(k); and

" T is a set of two-level trees, where for each tree T E T, each child node t E T has RPID label

rpid(t) E K. (We will use t E T as shorthand for t E children(root(T)) in this chapter.)

Again, the sets of child nodes in the trees of a cluster do not, in general, have the same number of
members or class labels. The template and the RPID labels on the nodes specify the correspondence
among these arbitrarily different sets.

Then, we can learn a template for a set of trees T (with the same root scene class) using the fol-
lowing strategy. First, we create an initial cluster for each training image It, with a single tree Ti and
a template simply listing the initial (arbitrary but unique) RPIDs of its leaf nodes. Then, we perform
agglomerative clustering on these clusters, merging the pair of clusters on each step that minimizes
the geometry variance across the trees in the merged cluster, and searching over matchings between
templates to resolve ambiguous RPID assignments. In this way, we incrementally build up clusters
with templates that fit their component trees well. We continue until a single cluster contains all
groups; the template for this final cluster is the learned rule.

Every approach to structure learning or clustering must somehow address the question of "How
many clusters?" In the approach we have just outlined, there is an implicit assumption that the
number of rule parts for each object class in the learned rule is the maximum number of instances
of that class ever seen in a single training image. There are some cases in which this is not an
appropriate assumption-for example, when an object class only occurs at most once in each image,
but appears at several different locations with respect to the other objects. However, this type of
situation is relatively rare in practice. In general, we expect that the advantage of having larger
clusters, and therefore more training examples for the parameters in each rule part, will tend to
outweigh the expressive power of having more clusters.

The next three sections describe the components we need to formalize this algorithm, which we
present in detail in Section 4.1.4.

4.1.1 Tree Node Geometry Vectors

In Section 2.2.2, we introduced the absolute geometry vector geom(t) = (x, y, s) associated with a
tree node t. In this chapter and the next, we will use the slightly modified version

geomabs(t) = (x, y, log s)

which will be convenient mathematically.
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(a) Initial parent bounding boxes (b) Initial parent geometry vectors (c) Updated parent geometry, for a
(dashed). (visualized as squares). match of t 1 to t2.1 and ti.2 to t2,2.

Figure 4-2: Two cartoon training images I, and I2, with object bounding boxes and parent geometry.
All objects have the same class.

We will also define a relative geometry vector geomreI(t) for each non-root node, which repre-
sents the geometry of a node t, transformed to lie in the coordinate frame defined by the geometry
its parent node. If we have child and parent absolute geometry vectors:

geomabs(t) = (xe,Yc,log se) geomabs (parent(t)) = (xp, yp, log sp)

then the relative geometry vector of t is given by:

geomre (t) - sp(xc -xp) Sp(YC -Yp) logsc -logsp (4.1)
Kgeom,x Kgeom,y Kgeom,s

where (Kgeom,x, Kgeom,y, Kgeom,s) are the same constants used to scale the relative geometry features
in Section 2.3.2.1

We will use the relative geometry vectors of the leaf nodes to perform the clustering and match-
ing to minimize variance. Therefore, since the relative geometry vectors are computed with respect
to the absolute geometry of the root, the value of the absolute root geometry vectors will play an
important role of the quality of the matching we learn. To see this, consider Figure 4-2.

In Figure 4-2(a), the root bounding box for each image is computed from the labeled object
bounding boxes. In Figure 4-2(b), each root bounding box from (a) is used to compute an absolute
geometry vector for the root, which is visualized as a square. 2 The relative geometry vectors for the
child nodes in each image are then computed with respect to these coordinate frames.

We want to find a matching such that ti,1 corresponds to t2,1 and ti,2 corresponds to t2 ,2, since
these pairs of objects have similar spatial relationships. But using relative geometry computed from
the parents in Figure 4-2(b) will not capture this pattern as clearly as we would like. For example,
ti,2's x position relative to the centroid of its parent in (b) will be negative, while t, 2 's relative x
position will be positive.

'The relative geometry vector is related, but not identical, to the relative geometry feature vector defined in Sec-
tion 2.3.2. There are no offset terms, and the values are not capped to lie in [-1, 1].

2The centroid of the bounding box defines an origin, while the scale factor can be seen as defining the unit length in a
coordinate frame. The process is the same as used in "Mapping from Scene Trees to Object Detections," in Section 2.4.3.

1,2.-

,2 -------. I2



In fact, we would like to hypothesize parent coordinate frames like those shown in Figure 4-
2(c), such that the relative geometry vectors of corresponding objects are numerically similar. We
can think of the absolute geometry vectors for the root nodes as hidden variables in the learning
problem. To address this issue, we incrementally update the parent absolute geometry vectors during
clustering. We jointly find an assignment of template RPIDs to leaf nodes and a set of parent
geometry values such that the variance of the relative geometry of child nodes, under the assignment
and with respect to the parent geometry, is as low as possible.

Updating Parent Geometry

Here, we describe an update step that improves the absolute geometry vectors for the parent nodes
of a set of trees, given a current set of parent absolute geometry vectors, and an assignment of
template RPIDs to the child nodes. We will incorporate this step into the clustering algorithm in
Section 4.1.4.

Given a cluster (K, T), we update the parent geometry vectors of the trees as follows:

1. For each child node t in each tree T E T, compute geomrel(t) using Equation 4.1, with respect
to the current setting of geomabs(root(T)).

2. For each rule part k E K, compute the mean relative geometry vector Pk across all child nodes
that are currently assigned RPID k:

Pk= - E geomrei(t) (4.2)
nk TeT tET s.t.

rpid(t)=k

where nk is the number of child nodes across all trees with RPID label k.

3. For each tree T E T,

(a) For each child node t1 E T, with absolute geometry geomabs (tj) = (x, y, log s) and RPID
rpid(ty) = k, compute the child's vote vj = (xj,y, logs1 ) for its ideal absolute parent
geometry vector, using the relative mean for k:

Sgeom,xgk,x _ - geom,yk,y log s1 = logs - Kgeom,sPk,s
si si

Notice that these expressions invert the relative geometry vector computation in Equa-
tion 4.1, so that if the relative geometry of tj was recomputed with respect to its ideal
parent geometry vj, it would exactly equal the mean vector pk.

(b) Update the absolute parent geometry geomabs(root(T)) to the mean of the votes of its
children:

geomabs(root(T)) = - v
Ij=1

where m = Ichildren(root(T))|.

In Figure 4-2, performing this update on the parent geometry in (b), with the correspondence of t1 I
to t2 ,1 and t2,1 to t2,2 , produces exactly the updated parents shown in (c).



4.1.2 Normalized Variance in Geometry

The agglomerative clustering algorithm iteratively merges the pair of clusters resulting in the lowest
variance in relative geometry. However, the trees in a cluster have different numbers of children,
with different class and RPID labels; we cannot simply concatenate their geometry vectors in some
canonical order. We need a measure of the variance of a cluster that can handle the fact that some
cluster members may be missing some elements of the template. Furthermore, we need to be able
to compare these measures across different choices of cluster pairs to merge, despite the fact that
the merged clusters might have different size templates.

Recall that the LP norm of a vector x is calculated as:

(~x n (~ ) 11
1xll,= [xilp

where n is the number of dimensions of x and Jx| is the absolute value of x. This norm is inherently
sensitive to the number of dimensions n in x. So we define the normalized LP norm of a vector x as:

||x||* = | xilP (4.3)
ni=1

This norm is dimensionless, in the sense that it can be used to compare vectors with different num-
bers of dimensions.

Using the normalized L2 norm, we define the normalized geometry variance of a set of trees T
and a template K, as follows: 3

1. Compute the mean relative geometry vector Pk for each RPID k E K, as in Equation 4.2.

2. For each tree Ti E T,

(a) Let Ji be the set of indices of child nodes of Ti whose RPID labels appear in K.

(b) Let vi be the vector produced by concatenating the relative geometry vectors for the
nodes in Ji:

vi= (geomrei(ti ))jEJ

(c) Let pi be the vector produced by concatenating the mean vectors for the RPIDs on nodes
in Ji:

i /rpid(tij) >j

3. The normalized geometry variance is the average squared normalized L2 distance to the mean,
over all trees:

1 ITI2(4)
vargeom(T, K) =TE (||vi - i1 2

(*)I Ii=1

If a tree Ti has no child nodes with RPIDs in K (so Ji = 0), it is not included in the average.

The normalized geometry variance is a scalar value that captures the distance between relative
geometry vectors of corresponding objects in different images, while handling the fact that not
all RPIDs in the template are present in all trees.

3This definition intentionally allows the template K to be any subset of the full set of RPIDs on the child nodes of the
trees in 'T. This will be useful in the next section.



Input:
" Template K1,c and set of trees T1.
" Template K2,c and set of trees T2.

* Assume ni = IKIc I < n2 = |K2 ,cJ and K1,, n K2,c = 0.

Output: Merged template Ke and updated RPID labels in T2 .

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Assign any fixed ordering k1 to elements of K1,c.
Let d* = oo.

For each subset K2 c K2,c such that |K2l = I,
For each permutation k2 of K',

Forti = 1, ...,I ni,
For each child node t in each tree T E T2 such that rpid(t) k2,,

Let rpid(t) = ki,f.
Let d = vargeom(TI U ,K1,c). Equation 4.4
If d < d*, let d* = d, and k* = k2.

Let Ke = K1,c U (K2 ,c - {k*}).
Fort= 1,...,Ini,

For each child node t in each tree T c T2 such that rpid(t) k*2,
Let rpid(t) = k* g.

Algorithm 4.1: An exact algorithm for matching cluster templates (for a single class c).

4.1.3 Matching Templates To Minimize Geometry Variance

There is one more component problem we must solve before presenting the full learning algorithm.
To merge two clusters, we need to search over correspondences to match their two templates, choos-
ing the matching that minimizes the geometry variance we just defined. The problem is constrained,
since only RPIDs with the same class label may be matched. So first, we consider the case of match-
ing the portion of the templates with the same class.

Let (K1, TI) and (K2, T2) be two clusters, and let c be a class that appears in both their templates.
Let K1,c be the set of ni RPIDs in K1 with class c, and K2,c be the same for K2, with size n2 Without
loss of generality, we can assume that ni < n2, and that K1,c n K 2,c = 0. Then we can search exactly
for the best matching of RPIDs in K2,c to RPIDs in K1,c by enumerating subsets and permutations
of the elements in K2,c (assuming a fixed ordering of elements of K1,c), and choosing the matching
that minimizes the geometry variance of the trees under that assignment. Pseudocode is shown in
Algorithm 4.1.

When ni and n2 are large, we cannot afford to find the best matching exactly. In that case, we
adopt an approximate strategy, in which we greedily assign elements of K2,c to elements of K1,c
until all members of K1,c are matched. This algorithm is shown in detail in Algorithm 4.2.

In practice, we use the exact algorithm whenever the number of loops it would take is small
enough:

n2)x n2 ! M
ni)

where M is some constant (we use M = 1000), and the approximate algorithm otherwise.

We can match full templates by performing the matching independently for each class that
appears in both templates. Any class that appears in only one of the templates can be included in
the final template with no changes. The full matching algorithm is shown in Algorithm 4.3.



Input:
" Template K1,c and set of trees T1.
" Template K2,c and set of trees T2 .
" Assume ni = IKi,c I n2 = |K2,cl and Kc, nK2,= 0.

Output: Merged template Ke and updated RPID labels in T2 .

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
11.
12.
13.
15.
16.
17.
18.

Assign any fixed orderings ki and k2 to the elements of K1,c and K2,c, respectively.
Let D be a matrix of size n, x n2.
For f 1 = 1,...,ni,

For f2 = 1, ... , n2,
For each child node t in each tree T E T2 such that rpid(t) = k2,2

Let rpid(t) = k i,f.
Let De1,e2 = vargeom(TI U T2, {k1 ,el}). Equ

Let k* = 0 with length nI.
Loop:

Let (, *bIf) = argminf 2 DiE2

If De*,*= oo, exit loop.
Let k* =2,t

For i= 1, ... ,ni, let Df,,; = oo.

For f 2 = 1,...,n2, let Dfi, = *0-
Let Ke = K1,c U (K2 ,c - {k*}).
Fort=1,...,ni,

For each child node t in each tree T E T2 such that rpid(t) k2,
Let rpid(t) = kI*I.

Algorithm 4.2: An approximate algorithm for matching cluster templates (for a single class c).

Input:
* Template K1 and set of trees Ti.
* Template K2 and set of trees T2 .

Output: Merged template K and updated RPID labels in T, and T2 .

1. Let K = 0.
2. For each class c in K1 but not K2, let K = K U K1,c.
3. For each class c in K2 but not K1, let K = K U K2,c.
4. For each class c in both K1 and K2,
5. If |K1,c I < |K2,c1, match K2,c to K1,c to get Ke (and update T2).
6. Otherwise, match Ki,c to K2,c to get Ke (and update Tl).
7. LetK=KUKc.

Algorithms 4.1, 4.2
Algorithms 4.1, 4.2

Algorithm 4.3: An algorithm for matching cluster templates, across all classes.

4.1.4 A Clustering-Based Algorithm for Learning Class Templates

Now we are ready to define our algorithm for learning a template for a set of trees T. The algorithm
is given in Algorithm 4.4, and proceeds as follows. We begin by creating an initial cluster for each
tree in T (Lines 1-5). Then, we perform agglomerative clustering on these clusters (Lines 6-15). On
each iteration, we try merging each pair of existing clusters, finding the best-matching template K
(Line 9), updating the parent geometry in the trees T (Line 11), and computing the relative geometry

ation 4.4



Input: Set of trees T, in which all trees have the same root class.

Output: Template K, and updated RPID labels on the child nodes in T.

1. Let F = 0.
2. For each tree T E T,
3. Assign each child node t E T a globally unique RPID.
4. Let K be the set of RPID (and class) labels on the child nodes in T.
5. Let F = FU {(K, {T})}.
6. While |1 > 1,
7. Let d* = oo.
8. For each pair of clusters ((Ki, '77), (Kj, 9)) E 1,
9. Match templates Ki and K to get K (and update Ti and T7).
10. Let T = T U T7.
11. Update the parent geometry for T under template K.
12. Let d = vargeom(T, K).
13. If d < d*, let d* = d, i* = i, j* = j, K* = K, and T* = T.
14. Let r = IF - {(Ki-, I T),7 (Kj-, 77-)}
15. Let F= F U {(K*, T*)}.
16. Let (K, T) be the one remaining cluster in F.

Algorithm 4.3

Section 4.1.1
Equation 4.4

Algorithm 4.4: An agglomerative clustering algorithm for learning a template for a set of trees.

variance for the resulting cluster (Line 12). We choose to merge the pair of clusters that produces
the lowest variance (Lines 13-15). When only one cluster remains, its template K is the final result.

Using Algorithm 4.4, we learn a template K for a scene class c, using trees initialized for the
training images labeled with scene class c, as described at the beginning of this chapter. From the
learned template, it is then trivial to write down the rule for class c:

c -* ... ,class(k)k... VkEK

We remove any rule part k that is assigned to less than two child nodes across all trees (and we
remove the single tree node as well-it will not be used in training).

We can independently learn a rule for each scene class that appears in the training data. These
rules form the learned WGG structure R, while the labeled trees T for the training images are exactly
those produced by the template learning.

4.2 Experiments with Two-Level Learned Structures

In this section, we introduce the other two datasets we use in this thesis. We then present ex-
periments evaluating two-level WGG models learned using the algorithms we just described. We
compare these results to the DTPBM object detector and hand-built WGG structure presented last
chapter.

4.2.1 The Big Placesetting Dataset

The second dataset used in this thesis, the "big placesetting dataset," has the same domain as the
small placesetting dataset, but is much larger. It consists of 1052 images of placesettings, labeled
with silhouettes for 10,177 objects from the same 15 object classes as the small placesetting dataset.



object class # instances % objects

bowl 509 5.0
candle 271 2.7
cup 461 4.5
fork 1185 11.6
forkside 243 2.4
glass 1815 17.8
knife 900 8.8
knifeside 200 2.0
napkin 842 8.3
placemat 345 3.4
plate 2064 20.3
saucer 285 2.8
shaker 195 1.9
spoon 574 5.6
spoonside 288 2.8

Table 4.1: The big placesetting dataset, with 1052 images and 10,177 labeled objects.

Figure 4-3 shows example images and labels from the dataset. Additional images are shown in
Appendix A (Figure A-5). Table 4.1 lists the object classes and their frequencies. (Refer back to
Figure 3-2 for examples of each object class).

The big placesetting dataset is even more challenging than its small version, with an average
and standard deviation number of objects per image of 9.7 and 6.2, respectively. Again, the objects
appear at a wide range of scales and rotations, with a wider range of object poses and occlusions
than in the small dataset.

As before, the big placesetting dataset was labeled using the LabelMe web-based image anno-
tation tool (Russell et al., 2008), and is freely available through the same system.4 It is exactly
equivalent to the staticwebsubmitted_meg-placesettings2 LabelMe directory.

4.2.2 The House Dataset

Our final dataset, the "house dataset" consists of 848 images of houses, labeled with silhouettes
for 13,801 objects from 10 object classes. Figure 4-4 shows example images and labels from the
dataset. Additional images are shown in Appendix A (Figure A-6). Table 4.2 lists the object classes
and their frequencies, and Figure 4-5 shows examples of each object class.

The house dataset is the most challenging of the three we consider. There are an average of 16.3
objects per image, with a standard deviation of 9, so there is enormous variability in the number and
types of objects present. There is also more variability in the scales and aspect ratios of the objects,
and their arrangement with respect to one another.

Again, the house dataset was labeled using LabelMe, and is freely available there, in the stat ic_
websubmittedmeg-placesettings2 directory. 5

4.2.3 Results on the Small Placesetting Dataset

In the next three sections, we evaluate the performance of learned two-level WGG models on each
of the three datasets. We explore the same model and perceptron variations as in Chapter 3, and

4http://labelme.csail.mit.edu/browseLabelMe/staticwebsubmitted -meg-placesettings2.html
5http://labelme.csail.mit.edu/browseLabelMe/static_websubmitted-meg-houses.html
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object class # instances % objects

car 224 1.6
chimney 709 5.1
door 1076 7.8
driveway 312 2.3
garagedoor 306 2.2
path 435 3.2
roof 1873 13.6
shutter 1743 12.6
steps 591 4.3
window 6532 47.3

Table 4.2: The house dataset, with 848 images and 13,801 labeled objects.

() I
(c) door(a) car (b) chimney

(d) driveway

(f) path

(g) roof (h) shutter

(i) steps

(j) window

Figure 4-5: Examples of each object class in the house dataset.
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Figure 4-6: Cumulative results for the DTPBM object detector, and four variations of hand-built and

learned two-level WGG models, on the small placesetting dataset. (Note that the table includes the

DTPBM and both the hand-built and learned WGGs, while the bar graph shows only the DTPBM

and learned WGGs.) 'classobj' means class-based object detector features were used, while 'rpobj'

means rule-part-based features were used. 'fixed' refers to fixed ground-truth internal geometry,

while 'free' refers to free ground-truth internal geometry.

compare them to the DTPBM object detector. For the small placesetting dataset, we also compare

learned two-level WGGs to the hand-built structure from last chapter.

We used the same setup for our experiments with learned two-level WGGs on the small place-

setting dataset as with the hand-built structure (see Section 3.2.4). In particular, we used exactly the

same 5 splits of the dataset into training and test sets (each with 87 images and 80 images, respec-

tively), to allow comparison between the hand-built and learned structures. Again, the perceptron

was trained with 10 iterations.
Figure 4-6 shows the performance of the DTPBM object detector, the hand-built WGG structure,

and learned two-level WGG models. For both categories of WGG structures, all four combinations

of class-based versus rule-part-based object detector features and fixed versus free internal geometry

are presented. As before, the results are compared to the two version of the DTPBM object detector.

Figure 4-7 breaks out the results for the DTPBM and the learned WGGs by object class.

First, we see that the learned two-level WGG models perform roughly the same as the hand-

built structure. This means our structure learning algorithms are finding reasonable object corre-

spondences across images. On the other hand, it is interesting that even a hand-built hierarchical



bowl

0.8

0.6

0.4

0.2

recall precision f-measure

fork

0.8

0.6f

0.4

0.2 I
0 recall precision f-measure

knife

0.4;r

recall precision f-measure

placemat
1L

0.8h

0.6

0.4,

0.2-

0 8 ----

recall precision f-measure

,shaker

0.81

0.6,

recall precision f-measure

DTPBM, known # objs
DTPBM, heuristic # objs
2-level WGG, classobj, fixe

]2-level WGG, tpobj, fixed
2-level WGG, classobj, free
2-level WGG, rpob free .

candle

0.8

0.6

02L
recall precision f-measure

forkside

0.8

0.6

0.4-

0.2

0 recall prec

08

06

I0.4',

I0.24

recall

on f-measure

precision

0.8'

0.6

0.2'

02

recall precision f-measure
1 - -

O glass

0.8-

0.6' 1

0.2*

recall precision f-measure

napkin

0.8

0.6'

0.4

f-measure

1 plate

0.8i

0.61

0.4'

0.2

0

spoon

0

.4

0 recall precision f-measure

~~Illll
0

recall

saucer

0.8

0.6 i
0.4

precision f-measure

ilMi

real precision f-measure

spoonside

0.8k

0.6

S0.4 - ri
0.2 hl111

0 recall precision f-measure

Figure 4-7: Per-class results for the DTPBM object detector and learned two-level WGG mod-
els on the small placesetting dataset. For numeric per-class results, see Appendix B (Ta-
bles B.4, B.5, B.12, B.13, B.14, and B.15). 76

1



recall precision f-measure

=2-level WGG, pairwise, classobj, fixed
]2-level WGG, pairwise, rpobj, fixed

=2-level WGG, nopairwise, classobj, fixed
L 2-level WGG, nopairwise, rpobj,_free

# targets (all models): 741.0

recall precision f-measure # detections # correct

hand-built, pairwise, classobj, fixed 0.254 [0.244 0.264] 0.604 [0.561 0.647] 0.357 [0.353 0.362] 312.0 188.0

hand-built, pairwise, rpobj, fixed 0.235 [0.221 0.253] 0.659 [0.623 0.705] 0.346 [0.332 0.359] 264.6 174.0

hand-built, nopairwise, classobj, fixed 0.242 [0.218 0.260] 0.623 [0.584 0.643] 0.348 [0.325 0.361] 287.6 178.8

hand-built, nopairwise, rpobj, fixed 0.217 [0.208 0.227] 0.698 [0.627 0.741] 0.331 [0.321 0.348] 231.2 161.0

2-level, pairwise, classobj, fixed 0.278 [0.248 0.304] 0.565 [0.512 0.601] 0.372 [0.346 0.404] 363.8 205.2

2-level, pairwise, rpobj, fixed 0.276 [0.258 0.294] 0.596 [0.571 0.621] 0.377 [0.360 0.399] 342.6 204.2

2-level, nopairwise, classobj, fixed 0.264 [0.231 0.284] 0.593 [0.549 0.631] 0.365 [0.333 0.387] 329.8 195.0

2-level, nopairwise, rpobj, fixed 0.248 [0.226 0.272] 0.654 [0.587 0.681] 0.359 [0.338 0.385] 281.4 183.6

Figure 4-8: Cumulative results for the hand-built and learned two-level WGG models, with and

without pairwise features, on the small placesetting dataset. (Note that the table lists both the hand-

built and learned WGGs, while the bar graph shows only the learned models.)

structure does not outperform learned two-level models to a significant degree. We will investigate

this issue in greater depth next chapter, but these results are already offering a taste of those to come.

Next, notice that free ground-truth internal geometry no longer seems to offer the small advan-

tage over fixed geometry in the learned models that it had in the hand-built structure. This matches

what we would expect. During the structure learning algorithm, we intentionally find parent geome-

try vectors for the internal trees nodes for the training images that represent good coordinate frames.

Therefore, using free geometry to find better internal geometry during the perceptron provides no

additional benefit. Furthermore, by finding good parent geometry jointly with learning the grammar

structure, we make better choices about which objects should be matched than we might by using

fixed bounding boxes for internal nodes.

Now consider the per-class results in Figure 4-7. The WGG models have an advantage over the

heuristic DTPBM in some of the classes. However, for some other classes, there is no advantage,

or the heuristic DTPBM even outperforms the WGGs in f-measure. These include classes with a

lot of training data (plate, fork) for which the DTPBM is already quite strong; perhaps the WGG

cannot hope to improve on the object detector by much. The WGGs also struggle in some classes

with relatively little data that are more challenging for the DTPBM (forkside, knifeside, napkin,

placemat). In these cases, the object detector is giving a noisy signal, while at the same time there is

very high variance in the spatial arrangements and very little data with which to learn these patterns.

We can also explore the role played by the pairwise tree structure features in the learned struc-

tures. Figure 4-8 compares the performance of learned two-level WGG models with and without
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DTPBM, heuristic # objs 0.475 [0.465 0.482] 0.079 [0.075 0.085] 0.135 [0.130 0.144] 23666.3 1850.3

2-level WGG, classobj, fixed 0.267 [0.255 0.274] 0.499 [0.492 0.508] 0.348 [0.336 0.356] 2086.7 1040.7
2-level WGG, rpobj, fixed 0.212 [0.201 0.220] 0.579 [0.569 0.587] 0.311 [0.297 0.320] 1429.0 828.0
2-level WGG, classobj, free 0.249 [0.231 0.264] 0.504 [0.471 0.562] 0.332 [0.327 0.338] 1946.0 970.3
2-level WGG, rpobj, free 0.214 [0.205 0.219] 0.595 [0.588 0.603] 0.314 [0.305 0.322] 1400.3 832.7

Figure 4-9: Cumulative results for the DTPBM object detector and four variations of learned two-
level WGG models, on the big placesetting dataset. 'classobj' means class-based object detector
features were used, while 'rpobj' means rule-part-based features were used. 'fixed' refers to fixed
ground-truth internal geometry, while 'free' refers to free ground-truth internal geometry.

pairwise features (each with class-based and rule-part-based object detector features), and also in-
cludes the same variations of the hand-built WGG structure.

Our intuition is that the pairwise features should be more important in two-level structures that
do not have composite classes, since they serve to capture co-occurrences among objects. But
the results on the small placesetting dataset only weakly confirm this hypothesis. However, it is
important to remember that the small placesetting dataset is, as its name suggests, small. Rather
than read too much into these results, we will evaluate this question again with the big placesetting
dataset.

4.2.4 Results on the Big Placesetting Dataset

We turn now to the large datasets introduced in this chapter. For each set of experiments with the
big placesetting dataset, we randomly selected a training set of 400 images and a test set of 400
images. Again, we trained and tested each model on exactly the same images, computing per-class
and cumulative precision, recall, and f-measure on the test set. Because the training sets for this
dataset are so much larger than those for its small counterpart, the perceptron needs fewer iterations
over the training data. All experiments here use 5 perceptron iterations, rather than 10.

Similarly, the larger test sets for this dataset result in less variance in performance across differ-
ent training and test sets. Thus, we performed the same experiments for 3 different random choices
of training and test sets, rather than 5. All results we present here are averaged over these 3 runs,
with the minimum and maximum scores across runs measuring the variability in performance.
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pairwise, classobj, fixed 0.267 [0.255 0.274] 0.499 [0.492 0.508] 0.348 [0.336 0.356] 2086.7 1040.7
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Figure 4-11: Cumulative results for learned two-level WGG models, with and without pairwise
features, on the big placesetting dataset.

Figure 4-9 shows the performance of the DTPBM object detector and learned two-level WGG
models on the big placesetting dataset. As before, we present all four combinations of class-based
versus rule-part-based object detector features and fixed versus free internal geometry, and compare
the results to the two versions of the DTPBM. Figure 4-10 shows the results by object class.

The general profile of the results has not changed substantially. The two versions of the object
detector continue to differ dramatically, while the WGG models outperform the heuristic DTPBM
in f-measure by a wide margin. Again, this advantage is due to the much higher precision of the
WGG models. Notice that the heuristic DTPBM makes over ten times as many detections as the
WGG models, but only correctly detects less than twice as many target objects. The difference in
average f-measure between the DTPBM with ground-truth object numbers and the WGG models
seems to have shrunk slightly, which is good. In general, the scores for all the models are lower than
in the small dataset, despite the large increase in training data, confirming that this dataset is more
challenging than its small counterpart. (See Figure 4-17 at the end of the chapter for representative
detections from a WGG model on this dataset.)

In the larger dataset, the advantage of the class-based object detector features over their rule-
part-based versions is more apparent. This is likely because the scenes in the big dataset are more
complex than in the small dataset, so each object class appears in a greater number of rule parts.
(Put another way, the maximum number of objects of each class ever seen in a training image is
higher.) This means that the training data for each object class is more fragmented across the rule
parts, so the parameter learning problem becomes more challenging. As the data becomes more
complex, it becomes more important to tie the object detector features across all rule parts with the
same object class, to avoid overfitting.

As with the learned WGGs in the small placesettings, the difference between fixed and free
internal ground-truth geometry is relatively low; if anything, it seems to hurt slightly. Again, this
suggests that the structure learning does a better job of finding geometry vectors for the internal tree
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Figure 4-13: Cumulative results for the DTPBM object detector and four variations of learned two-
level WGG models, on the house dataset. 'classobj' means class-based object detector features were
used, while 'rpobj' means rule-part-based features were used. 'fixed' refers to fixed ground-truth
internal geometry, while 'free' refers to free ground-truth internal geometry.

nodes for the training images than parsing the "ground truth" trees during the perceptron.
Turning to the per-class results in Figure 4-10, we see that the WGG models' advantage over

the heuristic DTPBM is more consistent across object classes than in the small placesetting dataset.
The exceptions occur in classes where the object detector output is so poor that there is very little
signal to build upon (candle, forkside, knifeside, shaker).

Finally, we again remove pairwise tree structure features to test their importance. Figure 4-11
compares the performance of the learned WGG models with and without pairwise features on the
big placesetting dataset, while Figure 4-12 shows the per-class results.

In the larger dataset, we see a more substantial improvement from using pairwise features. It is
possible that the small dataset did not offer enough training data to sufficiently learn the pairwise
features, again leading to overfitting. Looking at the per-class results, the classes for which the
pairwise features help the most are those which tend to appear in groups (cup, fork, glass, spoon).
The glass class gets by far the most dramatic benefit from the pairwise features. On the other hand,
it is somewhat surprising that the saucer class does not get a greater advantage, especially since the
cup class does show a small improvement, and they tend to co-occur.

4.2.5 Results on the House Dataset

For the house dataset, we used the same experimental setup as with the big placesetting dataset,
with randomly chosen training and test set of 400 images each, 5 perceptron iterations, and results
averaged over 3 different choices of training and test sets.
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Figure 4-13 shows the performance of the DTPBM object detector and learned two-level WGG
models on the big placesetting dataset. As before, we present all four combinations of class-based
versus rule-part-based object detector features and fixed versus free internal geometry, and compare
the results to the two version of the DTPBM. Figure 4-14 breaks out the results by object class.

Right away, we notice that the scores for the all models on this dataset are significantly lower
than they were on the placesetting datasets. Even the ground-truth-numbers DTPBM only achieves



an average cumulative f-measure of 0.215, versus an average of 0.408 on the large placesetting
dataset. As we have said, the house dataset is by far the most challenging of the three we consider.

To understand why, look back at Table 4.2, where we listed the object classes and their frequen-
cies. Notice that almost half of the 13,801 objects in the dataset are windows, and another 13% are
shutters. These objects are often tiny; in the subsampled images used by the object detector (with
a subsampling rate of 8), some of these objects are only a few pixels wide. Thus, if the detected
object is not centered on almost exactly the right pixel, the overlap score is not high enough to be
considered correct. At least shutters tend to be very uniform in appearance, whereas windows vary
widely in shape and aspect ratio.

Also, several of the larger object classes, such as path, driveway, and steps, have widely varying
aspect ratios, so they are not as easily detected with a sliding-window approach. The driveway,
roof, and path classes do not have as many local distinguishing features; they tend to be somewhat
textureless. And the chimney class varies widely in appearance-chimneys can be tall and thin or
short and squat or tiny and tubular, and made of brick or plaster or metal.

These difficulties manifest themselves in the per-class results in Figure 4-14. For many of
the classes, not only does the heuristic DTPBM (light blue) perform poorly, but the ground-truth-
numbers DTPBM (dark blue) does not do that much better. But there are several notable exceptions.
One is the shutter class; this is because houses tend to either have many shutters, or none. So when
the DTPBM is given the ground-truth number of shutters in a test image, this is hugely informative.
The detector then does not produce false alarms in the many images which have no shutters at all.
The same argument can be made for the car and garagedoor classes. Most houses have at most
one of each of these classes, but many houses do not have them at all; thus being told whether the
current test image does or does not have a car or garagedoor is very useful.

Overall WGG Performance

Now we consider the performance of the WGG models. They make even fewer detections, relative
to the number of target objects, than in the placesetting datasets. This results in low recall, although
the precision remains relatively high (at least compared to the heuristic DTPBM). In general, the
versions of the WGGs with class-based object detector features show a slight but significant im-
provement in cumulative f-measure over the heuristic DTPBM, while the rule-part-based versions
are slightly worse. (See Figure 4-18 at the end of the chapter for representative detections from a
WGG model on this dataset.)

Looking at the per-class results, we see that actually the WGG models' advantage varies quite a
bit for different object classes. For some classes (car, door, driveway, garagedoor, roof), some or all
of the WGG models outperform the heuristic DTPBM in f-measure by fair margin. These are cases
in which the object detector performs well enough to provide sufficient image-based information,
and the co-occurrence and geometry models are informative enough to improve on the detector.

Then, in some classes for which the DTPBM performs very poorly (path, steps), the WGG has
too little signal upon which to build, and performs equally poorly. As we have seen before, when
the detector essentially provides noise, no amount of background knowledge of expected scene
arrangements can overcome the lack of image-based information for the current scene.

Finally, the chimney, shutter, and window classes are cases in which the detector does only
somewhat poorly, but the WGGs perform the same or even worse than the detector. In these cases,
it seems that the WGG models cannot sufficiently model the spatial arrangements. While chimneys
do occur on roofs, they can appear almost anywhere in that region, and their sizes are usually
tiny compared to the variance in expected location. Thus, the variance in geometry is too high to
overcome the noise in the object detector, so the model has trouble predicting whether a chimney



is present in the image at all. Since chimneys are relatively uncommon, the perceptron is penalized
early and often for predicting nonexistent chimneys. So eventually it adjusts the threshold weights
to detect them very rarely or not at all, rather than continue to get them wrong.

For windows, there is actually relatively little spatial information to capture; windows tend to
appear uniformly scattered across the front of a house. All we can learn is their expected scale
relative to the entire house, and perhaps a broad region of expected location. In this situation, the
WGG makes detection decisions based primarily on the object detector output, combined with tree
structure weights (acting as thresholds) and the expected number of objects per class encoded in the
grammar structure itself. And as expected, the f-measure performance for the WGG models (with
class-based object detector scores) is roughly equivalent to the heuristic DTPBM.

The same lack of spatial information is true for shutters, except that we might hope to capture
the fact that they occur right next to windows (and usually in pairs). However, because we are only
learning a single flat rule for the entire house, the location of a shutter is conditionally independent
from that of a window-we cannot model this relationship as tightly as we want. When we learn
composite classes, we would hope to capture this pattern better.

Although the WGG models perform reasonably well on roughly half the object classes, this is
reflected only somewhat in the cumulative scores. This is because two of the classes on which it
performs less well-windows and shutters-account for 60% of the total objects.

Class-Based Versus Rule-Part-Based Object Detector Features

In Figure 4-13, the difference in cumulative f-measure between the class-based object detector fea-
tures (orange and dark red) and the rule-part-based versions (yellow and bright red) is more marked,
with the class-based features appearing to dominate. But again we have to look at the per-class
results in Figure 4-14 to see the full story. For the window class, the rule-part-based features in-
deed get no traction at all, while the class-based features perform the same as the heuristic DTPBM
(as we discussed). However, for almost every other class, the rule-part-based features outperform
the class-based features, or at least do no worse. In some cases, the rule-part-based features do
significantly better.

Remember the qualitative difference in expressive power between the two types of object de-
tector features. The class-based features force the model to put the same amount of weight on the
object detector output, regardless of the object's role in the scene. And the value of these weights
affect the balance between the object detector scores and the geometry features in the overall tree
score. The balance can still be different for different rule parts, because the geometry weights are
always rule-part-specific. But there is less freedom.

The rule-part-based features, in contrast, allow different weights on the object detector scores
for different rule parts. This means the perceptron will find a different balance between the object
detector scores and the geometry features for different rule parts. However, the increased expressive
power comes with an increased risk of overfitting.

Thus, for object classes which appear at most only a once or twice per image (if at all), the
rule-part-based features provide additional expressive power without too much cost in parameter
learning difficulty, because the training data is not fragmented by much across rule parts. This is
true of the car, driveway, garagedoor, and steps classes, which usually occur either once or not at
all in an image. These are also the classes where the rule-part-based features have a significant
advantage over the class-based features.

For the window class, however, the reverse is true. Most images have many windows, so the
data is very fragmented. Furthermore, as we discussed above, there is very little advantage to the
additional expressive power, because the geometry models are not helping much. With the class-
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Figure 4-15: Cumulative results for learned two-level WGG models, with and without pairwise
features, on the house dataset.

based features, the perceptron learns to trust the object detector to a greater degree, by increasing
the single weight on the window object detector score. But with the rule-part-based features, the
perceptron cannot learn this rule sufficiently. It might detect a window correctly, but using the wrong
rule part, according to the "ground truth" tree found during structure learning. So the object detector
weight on the wrong rule part is decremented by the object detector score, while the weight on the
right rule part is incremented. As the perceptron continues, these weights fluctuate, sometimes even
becoming negative temporarily (meaning the model thinks the object detector score is inversely
correlated to object presence). So eventually the perceptron stops trusting the window rule parts,
raising the thresholds to the point it detects windows very rarely or not at all. Compare the row
for the window class in Table B.52 versus Table B.53. In the former, the WGG with class-based
features makes an average of 1177 window detections on the test set, getting 253 correct on average.
In the latter, the WGG with rule-part-based features makes only 12.7 detections on average, over a
test set of 400 images.

Thus, it seems that some object classes need the expressive power of rule-part-based object
detector features, while others need the safeguard against overfitting that the class-based features
provide. To address this issue, one area of future work might be to include both types of object
detector features (in addition to other types of image-based features), as we will discuss in Chapter 6.

Pairwise Tree Structure Features Versus None

Figure 4-15 compares the performance of learned two-level WGG models with and without pairwise
features, each with class-based and rule-part-based object detector features. Figure 4-16 shows the
per-class results.

In this dataset, we again see a greater improvement from pairwise features than in the small
dataset. And again, the classes in which they help the most seem to be those in which tend to occur
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Figure 4-16: Per-class results for learned two-level WGG models with and without pairwise fea-
tures, on the house dataset. For numeric per-class results, see Appendix B (Tables B.52, B.53, B.56,
and B.57).

in pairs or groups. For example, the car, driveway, and garagedoor classes tend to occur together,
while roofs occur often, regardless of what other objects are present. For the window class, the
pairwise features seem to be crucial; and since windows are so common, this explains much of the
overall advantage in cumulative scores.

Pairwise tree structure features are only one approach to modeling co-occurrence patterns. In
the next chapter, we will explore the problem of learning composite classes, in which rules of the
grammar structure explicitly capture these patterns.
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Chapter 5

Three-Level Structure Learning in
WGGs

At the beginning of the last chapter, we presented the formal structure learning problem in WGGs.
We are given:

" A set of object classes B and scene classes S.

" A set of training images Ii, for i = 1,..., m, in which the ith image is annotated with:

- a scene class ci E S, and

- a set of mi objects, in which the jth object has object class cij E B and bounding box

bij, for j=1., mi.

The goal is to find:

" A small set of good composite classes C.

" A set of rules R-one for each learned composite class, and one for each scene class in S.

" A set of scene trees Ti for the training images, with class and rule part labels corresponding
to C and R, and geometry vectors in the nodes.

In the last chapter, we restricted the problem to learning only two-level WGG structures. In
this chapter, we extend our algorithms to learn one layer of composite classes C and their rules,
in addition to the top-level rules for the scene classes. Thus, the scene trees for the learned WGG
structures can have up to three levels.

As an example, for the simple placesettings shown in Figure 5-1, we might learn this set of
composite classes and rules:

C {placesetting, C1, C2, C3}

placesetting -+ C1I C22 C3 3 napkin 4

R 1 - fork5 fork6

C2 - plate7 bowl8
C3 -> knife9 spoon 0

with these scene trees:



Figure 5-1: Two images of simple placesettings.

placesetting placesetting

C11  C22  C33  Cl1  napkin4 C33

fork6  plate7 bowl8 spoonio fork5  fork6  knife9  spoonlo

We also present experiments in this chapter to explore the effect of adding this additional layer

of hierarchy.

5.1 Learning Composite Classes

Before addressing the problem of learning composite classes, it is worth discussing again why they

might be desirable. Our notion of a composite class is a group of objects that:

1. have low structural variance (they often co-occur), and

2. have low geometry variance with respect to one another.

We hope that learning composite classes with these properties will improve the model's ability to
capture patterns in the data. This could happen for several reasons.

First, composite classes can capture stronger patterns in object co-occurrence than using pair-
wise weights among rule parts. For example, if a saucer never appears without a cup, learning a
composite class for the cup-saucer combination allows the weight learning to focus on modeling
how often the pair occurs (and with what other objects), rather than on realizing that the presence
of the cup and saucer themselves are correlated.

Second, composite classes might help lessen the effects of the model's conditional independence

assumption in geometry-the assumption that, for a fixed parent location and scale, the best location

and scale for each child subtree is found independently of all other children. By introducing a

composite class for a subset of the objects in a scene class, we define a local parent coordinate

frame that captures the fact that these objects vary less in geometry with respect to one another

than they do to the rest of the objects in the scene. This may make the model better able to detect

new objects, in a similar arrangement, at test time. In the cup and saucer example, the location of

the saucer is actually heavily constrained, once the cup's location is known (see Figure 5-2). This

relationship might be better captured using a local coordinate frame.



Figure 5-2: Cups and saucers often co-occur, and vary less in location and scale with respect to one

another than with respect to other objects in the scene.

This interpretation of a composite class as a low-variance local coordinate frame leads to a

more specific definition of what it means for a composite class to have low variance in geometry. In

particular, we can state the following principle:

The variance in geometry for child nodes should be significantly lower with respect
to the geometry of a composite parent than with respect to the root geometry.

For example, in the two trees drawn below, introducing the composite parents as shown on the right

should lead to a reduction in variance in the relative geometry vectors across corresponding child

nodes in the two trees.

ti. I t2,
ti.1 2.1 1_ 1 _

ti 4  ... t2 ,4 ---

t1.2 t1.3 ... t2.2 t2.3 ---
t1. 2  t1. 3  t2 .2  t2 ,3

In any structure learning problem, the goal is to find a compact structure that fits the training

data well. Such a structure is expected to generalize well to new examples, since the compactness of

the model helps guard against overfitting. The traditional challenge in structure learning is how to

trade off the goodness of fit of a candidate model with its compactness, in order to select the model

that will generalize best.
The task of learning composite classes is a structure learning problem, in that we want to find a

small set of classes (i.e., a compact structure) that have low internal variance (i.e., that fit the training

data well). In our context, however, the principles we have described suggest a natural approach

to trading off the quality of a set of classes with their compactness. Specifically, we can define

thresholds on the structural and relative geometry variance of a class-a definition of what makes a

class a "good enough" fit. Then, we use a clustering-based algorithm to find the most compact set

of classes that are "good enough", where a compact set of classes is one in which each class covers

a relative large number of object instances.

The algorithm has two phases. In Phase 1, described in Section 5.1.1, we use iterative agglom-

erative clustering to find low-variance composite classes. In Phase 2, described in Section 5.1.2, we

learn the top-level scene class rules, with rule parts corresponding to both primitive object classes

and learned composite classes. Finally, Section 5.1.3 describes an optional step, in which single

objects may be assigned to existing composite classes.



5.1.1 Phase 1: Learning Composite Classes

The goal of Phase 1 is to find a small set of good composite classes, and the subtrees for the groups
of objects covered by those classes. As in the last chapter, our approach is based on clustering. A
cluster is a tuple (K, T), where:

" the template K is a set of RPIDs k and their class labels class(k), as in the last chapter; and

" T is a set of two-level subtrees, where for each tree T E T, each child node t E T has RPID
label rpid(t) E K. (Again, we will use t E T as shorthand for t E children(root(T)).)

In the context of learning composite classes, the members of each cluster are subtrees of full scene
trees. There will be multiple subtrees for each training image, and the leaf nodes of a subtree may
correspond to only a subset of the objects in a training image.

During the course of Phase 1, we maintain a set of clusters F*, which correspond to the com-
posite classes that have been learned so far. Note that the sets of subtrees for the clusters in F* must
be mutually exclusive and non-overlapping. Put another way, each object instance in the training
images must appear in at most one of the subtrees in the clusters in P*. Otherwise, we will not be
able to produce a set of consistent scene trees by merging the subtrees at the end of the learning
process, because some leaf nodes will have more than one parent.

In addition to the clusters F, we also maintain a set of subtrees T* that includes the subtrees
for all clusters in IF*, as well as a single-node subtree for each object in each training image that has
not been included in a cluster. At the beginning of Phase 1, T* consists of a single-node subtree for
each object in each training image, and F* is empty.

We then iterate three steps. On Step 1, we use clustering to propose candidate low-variance, but
possibly incompatible, composite classes. On Step 2, we choose the best set of mutually-consistent
classes from those proposed in Step 1, learning a rule template for each. On Step 3, we update the
subtrees for the training images using the clusters chosen in Step 2. We then return to Step 1. This
continues until no new classes can be created.

In this section, we will discuss each of these steps in detail, and then present the full algorithm.
But first, we describe how we compute the structural and geometry variance for composite classes,
and how we apply thresholds to obtain low-variance classes.

Structural and Geometry Variance for Composite Classes

In Section 4.1.2, we described a way to compute the normalized variance in relative geometry of a
cluster, while allowing the trees within the cluster to have different structure. We will use the same
method to compute the relative geometry variance of a composite class cluster in this chapter.

However, we want to find clusters that are low in both relative geometry variance and structural
variance. We would like to encourage a cluster to have subtrees with similar structure. Put another
way, each subtree in the cluster should contain as many of the RPIDs in the cluster template as
possible. Thus, we use the following simple definition of the structural variance of a set of subtrees
T, under a template K:

varstmt(TK) =_ 1 (5.1)

where nk is the number of subtrees in T with a child node with RPID label k. (Each subtree can
have at most one child labeled with k.) The quantity nl/ T I is the proportion of trees in which k
appears. So we can think of this as a measure of the variance across RPIDs in the template, in which
the "mean" is one, because that represents the state in which all RPIDs are present in all subtrees.



To perform clustering, we need a single scalar variance value for each cluster. So we take a
simple linear combination of the relative geometry variance and the structural variance:

var(T,K) = vargeom(T,K) + (1 - P)varstruct(T,K) (5.2)

where vargeom (T, K) is the relative geometry variance as computed in Equation 4.4, and S E [0, 1]
is a constant trade-off factor. For all experiments in this thesis, we use = 0.5.

Thresholding for Low-Variance Classes

Now we have a way to compare two clusters, but we also need a more absolute metric. How low-
variance is low enough to make a composite class good? As we discussed at the beginning of this
chapter, we would like to compare the following two values:

" the variance in relative geometry of the child nodes in a cluster with respect to their composite
parents; and

" the variance in relative geometry of those child nodes, but with respect to the roots of the full
two-level trees for each image (i.e., their parents, if no composite parents were introduced).

We only want to introduce composite classes in which the variance with respect to the new compos-
ite parents is much lower than with respect to the original root.

To do this, we assume that each node t in a subtree stores an additional geometry vector
geomabs,root(t). This is the absolute geometry vector produced from the bounding box of all la-
beled bounding boxes in the training image for node t. In other words, it is the geometry of the root
node of what would have been the initial two-level tree produced for t's training image in the last
chapter. (So this vector is identical for all nodes from the same image.)

The node t also stores a geometry vector geomre,root(t), which is the node's own absolute
geometry, but relative to geomabsroot(t). It is computed exactly as in Equation 4.1, but using
geomabs,root(t) instead of geomabs(parent(t)) as the "parent" geometry.

Then, for a fixed assignment of RPIDs to a set of subtrees T, we can compute, for each RPID
k, the normalized variance in the geomrei,root(t) vectors across all nodes assigned the label k:

vargeom,root(T,k) = - ( (Igeomre,root(t) - pgeom,root,k I (5.3)
nkTET tGT s.t.

rpid(t)=k

where nk is the number of child nodes across all trees with RPID label k, ||x| is the normalized L2

norm of a vector x (Equation 4.3), and

Ugeom,root,k = - geomrel,root(t)
nk TET tET s.t.

rpid(t)=k

is the mean relative-to-root geometry vector for RPID k. Again, this is the equivalent of how we
computed the relative geometry variance vargeom(T,k), but using the geomrei,root(t) vectors rather
than geomrei(t). (It is also computed for a single RPID k at a time.)

Now, for each RPID k in the rule for a new composite class, it seems natural to simply compare
vargeom(Tk) and vargeom,root(T,k) to see how much reduction in variance has been provided by
introducing the new composite parent nodes. However, this is not quite correct, because the x and



y values in the geometry vectors used to compute these variances are not in the same coordinate
frame-they have been scaled by different parent scale factors.

So we need to define yet one more type geometry vector, geomrei,rootsc(t), for a node t. This
vector is a modified form of the original relative geometry vector geomrei(t), but computed such
that the scale value of t's root absolute geometry vector, rather than t's parent's absolute geometry,
is used to scale the x and y values. Specifically, if we have the following absolute geometry vectors
for t, t's parent, and t's hypothetical root node:

geomabs(t) = (xe,ye,logse)

geomabs(parent(t)) (xp,yp,logsp)

geomabs,root (t) (Xr, Yr, log sr)

then

geomre,rootsc (t) = KSrX ), Sr(YcYp) logSc-logsp (5.4)
'Kgeom,x 'Kgeom,y I Egeom,s

The only difference between this expression and the definition of geomreI (t) in Equation 4.1 is that
we have replaced sp in the first two vector elements with sr-so we are scaling the child's x and y
values by the root's scale, rather than the parent's.

Now we can compute the variance in the geomrei,rootsc(t) vectors, for a specific RPID k, to have
a value that is directly comparable to the relative-to-root geometry variance vargeomroot (T, k). This
is given by:

vargeomrootsc (T, k) = ± geomrei,rootsc(t) - pgeomrootsc,k (5.5)
TET tET s.t.

rpid(t)=k

where

Pgeom,rootsc,k = -- geomrel,rootsc (t)
nk TT tET s.t.

rpid(t)=k

These expressions are identical to those before, but simply use a different geometry vector.
To decide if a cluster has low enough variance in geometry, we consider each rule part k in the

template K, and ask whether the relative-to-parent geometry standard deviation (but using root scale
in x and y) is lower than some percentage of the relative-to-root geometry standard deviation:

lowvargeom(T, K) = true if VkEK (vargeom,rootsc (T, k)) 1/2 < Ygeom (vargeom,root (T, k)) 1/2

false otherwise

(5.6)
where Ygeom E [0, 1] is a constant. For all experiments in this thesis, we use the conservative value

Ygeom = 0.25, chosen based on preliminary experiments. This means we will only learn composite
classes that reduce the geometry variance by a substantial amount, for all component rule parts.

Finally, we apply a simple constant threshold on structural variance:

lowvargeo ('T, K) = ftrue if varstruct(T, K) < Ystruct (5.7)
false otherwise

where ystruct E [0, 1] is a constant. For all experiments in this thesis, we use the conservative value
Ystruct = 0.25, again chosen based on preliminary experiments.



Figure 5-3: Merging subtrees.

Step 1: Clustering to Propose Candidate Classes

Phase 1 consists of iterating three steps. In Step 1, we perform clustering to find a large set F of
good candidate composite classes.

Given a set of current subtrees T*, let C be the set of classes that label the root nodes of the
subtrees. On the first iteration of Phase 1, this will simply be the set of object classes, since the
initial subtrees are singleton nodes. On later iterations, this will include composite classes created
on previous iterations.

Then, we consider each pair of classes (ci, cj) in C (including the case when ci = cy). For each
pair of classes, we create a new subtree for each pair of existing subtrees from the same image with
those two class labels on the root nodes. So, if the two classes are fork and knife, we would create a
new subtree for each instance of a fork-knife pair in the same image. If the two classes are fork and
fork, we would create a new subtree for each pair of forks in the same image.

Each new subtree has two levels, where the leaves are the union of the leaves of the source
subtrees. If either or both of the existing subtrees are singleton nodes, these nodes become leaf
nodes in the new tree. (See Figure 5-3 for examples.) We initialize the absolute geometry vector of
the new tree's root to the vector produced from the bounding box of its children's bounding boxes.

This merging process on pairs of subtrees creates a set of candidate subtrees Tc, for each pair
of classes. Within Tei, , the subtrees will likely overlap with one another, since the same object may
appear in multiple pairs.

Then, we perform agglomerative clustering separately within each set of new subtrees Ts,.
The clustering algorithm, for a single pair of classes, is shown in Algorithm 5.1. The algorithm
is very similar to the one for learning classes templates in the last chapter (Algorithm 4.4), with
a few changes. First, we impose two constraints on the clustering. In Line 9, two clusters that
contain overlapping subtrees may not be merged, since each cluster must be internally consistent. In
Line 13, we impose thresholds on the structural and geometry variance of a cluster, as we discussed
in the last section, to ensure that we only learn low-variance classes. Second, in Line 14 we use the
combined geometry and structural variance metric, rather than geometry variance alone.

The last change is that, for efficiency, we do not update the parent geometry for the trees T
in the merged cluster on each iteration. Updating the parent geometry is not as important when
dealing with small sets of objects, since in that case the initial parent bounding boxes in the subtree
root nodes tend to produce comparable coordinate frames across subtrees. Furthermore, the parent
geometry of subtrees in merged clusters will be updated during template learning in Step 2.

For each pair of classes (ci, cj), the clustering results in a set of low-variance clusters Fecec. We
take the union of the cluster sets found across all pairs of classes to produce the full set of candidate
clusters F.

t
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Input: Set of subtrees T, produced for the pair of classes (ci, c2).

Output: Set of candidate low-variance clusters F.

1. Let F = 0.
2. For each tree T C Tcc 2,
3. Assign each child node t E T a globally unique RPID.
4. Let K be the set of RPID (and class) labels on the child nodes in T.
5. Let F U= U{(K,{T})}.
6. Loop:
7. Let d* = oo.
8. For each pair of clusters ((Ki, T), (Kj, I)) E F,
9. If T and T have any objects in common, let d = oo.

10. Otherwise,
11. Match templates Ki and K to get K (and update T7 and Tj). Algorithm 4.3
12. Let T= 7U9j.
14. If -,lowvargeom(T, K) or -, lowvargeom(T, K), let d oo. Equations 5.6, 5.7
13. Otherwise, let d = var(T, K). Equation 5.2
15. If d < d*, let d* = d, i* = i, j* = j, K* = K, and T* = T.
16. If d* = oo, exit loop.
17. Let F = F - {(Ki-,IT1),I (Kj* , 7-)}
18. Let F= U {(K*, T*)}.

Algorithm 5.1: Phase 1, Step 1: An agglomerative clustering algorithm for proposing a set of
candidate low-variance composite classes (for a single pair of root classes (c1, c2)).

Step 2: Choosing the Best Set of Consistent Classes

Step 1 produces a large set of clusters F, each of which are internally consistent and low-variance.
But the clusters are not mutually compatible, since the same object will appear as a leaf node in
multiple clusters. The new clusters may also be incompatible with clusters in F* that were found on
previous iterations, since the class pairs in Step 1 included these already-learned composite classes.
Finally, the vast majority of the clusters in F will have only a few subtree members, so we would
not want to keep them even if they did not conflict with any other clusters. In Step 2, we look for a
subset of mutually consistent clusters from F* U F such that each cluster is large enough, according
to a simple thresholding scheme. These clusters will be the new set of composite classes F*.

Pseudocode for Step 2 is shown in Algorithm 5.2. In Line 1, we put all the new and old clusters
together to form the set F. In Lines 2-3, we make sure the clusters in F are big enough. But we
want a richer definition of "big enough" than a constant threshold, for several reasons. First, we
need to take into account the size of the training set. Second, we want to be sensitive to the relative
frequency of different object classes. If a cluster has few members, but the object classes is its
template are rare, the cluster might still be a good choice for a composite class-it captures an
important pattern. On the other hand, a cluster with few members but very common object classes
probably should not be kept-the "pattern" may actually be coincidental.

To capture this intuition, we define the following notion of minimum cluster size:

minclustersize(K) = min (max (Yminsize,abs, Yminsizemc))
cEclasses(K)

(5.8)

where classes(K) is the set of unique class labels on the RPIDs in K, and where me is the number
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2.
3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.
15.

Input:
" Set of old clusters 7*, from previous iterations.
" Set of new clusters F, produced in Step 1.

Output: New set of mutually-consistent clusters F*.

Let F = F* U F.
For each cluster (T,K) E F,

If |T I < minclustersize(K), let F = F - {(T,K)}. Equation
Let F* = 0.
Sort the clusters in F by decreasing size, breaking ties to prefer low variance.
For each cluster (T, K) E F (in order),

Let Foveriap be the set of clusters in F* that share objects with (T, K).

If Foveriap = 0, let F* = F* U {(T, K)}.

Otherwise,

Let Tew =T U (U(T,K')Eoveriap TI, merging any subtrees that share objects.

Learn a new template Knew for Tnew. Algorith
If lowvargeom (TnewKnew) and lowvargeom (Tnew, Knew), Equation

Let F* = F* - Foveriap.

Let F* F* U {(Tnew, Knew)}.
Otherwise, discard (T,K) and (Tnew,Knew).

Algorithm 5.2: Phase 1, Step 2: An algorithm for choosing a set of mutually-consistent clusters.

of object instances with class c across the entire training set. Essentially, this definition computes
the threshold on cluster size as a percentage of the number of training instances of the rarest object
class in the cluster template K. (There is also a fixed lower bound Yminsize,abs on the minimum
cluster size, which is relevant only for the smallest dataset. For all experiments in this thesis, we use

Yminsize,abs = 10.) The value of the percentage Yminsize determines how large clusters need to be-
higher values will result in fewer composite classes being learned. In the experiments in Section 5.2,
we will explore the effect of varying this percentage.

In Line 5, we sort the clusters in order of decreasing size, breaking ties to prefer lower variance
(using the combined geometry and structural metric). We then walk through the clusters in order.
For each cluster (T, K), we find all the already-accepted clusters Foveriap C_ F* that are not compat-
ible with (T, K), because they share one or more objects (Line 7). If (T, K) does not conflict with
any already-chosen clusters, we accept it (Line 8).

Otherwise, we have to resolve the conflict. We attempt to merge the new cluster with those it
overlaps with, hoping to produce a single cluster that still has low-enough variance. To merge clus-
ters, we take the union of their subtree sets. But the resulting set T will contain subsets of subtrees
that overlap with one another, since otherwise the clusters would not have been incompatible. So
each of these subsets of overlapping subtrees is merged to produce a single subtree, using the same
technique for merging subtrees described in Step 1. This process occurs in Line 10.

Now we have non-overlapping subtrees %ew for the merged cluster, but we need a good tem-
plate. To do this, we use exactly the same algorithm for learning class templates in Chapter 4, but
on subtrees rather than full scene trees. This produces the template Knew for the merged cluster
(Line 11). If the merged cluster (new, Knew) has low enough variance, we accept it and remove
all old overlapping clusters (Lines 12-14). Otherwise, we discard both the merged cluster and the
cluster (T, K) that prompted the merge (Line 15).

n 4.4
s 5.6, 5.7

5.8



Input: Set of initial subtrees T*, with a single-node tree for each object in each training image.
Output: Set of clusters F* and updated subtrees T*.

1. Let F* = 0.
2. Loop:
3. Let F = 0. Step 1
4. Let C be the set of classes labeling the root nodes of T*.
5. For each pair of classes (ci, cj) E C (including ci = cj),
6. Create set of merged subtrees T,,, from subtrees in T* labeled with ci and cj.
7. Perform clustering on TI,cj to get Fe,,cj. Algorithm 5.1
8. Let F = F U Fe,,cj.
9. Let Fold = F*. Step 2
10. Choose a new set of clusters F* from ]Fod and F. Algorithm 5.2
11. If F* =Fold, exit loop.
12. Update the subtrees in T* with those in P*. Step 3

Algorithm 5.3: Phase 1: An algorithm for learning a set of composite classes and subtrees.

Step 3: Updating Subtrees with New Classes

Now that we have a new set of good composite classes F, we need to update the global set of
subtrees T* accordingly. Since the clusters in F* are mutually consistent, we can take the union of
their sets of subtrees:

T'=- U T
(T,K)Er*

We then remove any subtree from T* that overlaps with a subtree in T', and add T' to T*.

Putting It All Together

The full algorithm for Phase 1 is shown in Algorithm 5.3. It simply iterates Step 1 (Lines 3-8),
Step 2 (Lines 9-10), and Step 3 (Line 12) until the set of clusters F* does not change in Line 11.

Finally, we need to convert the learned clusters F* and subtrees T* to a set of composite classes
C, each with a learned rule, and a set with a full scene trees Ti for each training images It. This is
straightforward. For each cluster (T, K) E F*, we create a new composite class with a unique class
name Cnew, and a rule produced from the cluster template K:

cnew -+ ... -, class (k) k... VkEK

Then, for each training image It labeled with scene class ci, let {Ti,... , Ti,,} be the set of subtrees
in T* that came from image It. We create the full scene tree Ti for image It as:

t

Ti1I ... Ti,ni

where class(t) = ci, and the absolute geometry vector of t is produced from the bounding box of the
bounding boxes on the leaves. The RPID labels on the root nodes of {Ti, 1,... , Ti,n,} are unset.
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5.1.2 Phase 2: Learning Scene Class Rules

In Phase 2, the goal is to learn the top-level rules for the scene classes S, and in the process, assign
the RPID labels to the root nodes of the subtrees in each scene tree Ti created at the end of Phase 1.

In fact, we already have an algorithm to do exactly this-Algorithm 4.4 for learning class tem-
plates. For each scene class c E S, we run template learning on the set of scene trees with root class
c, to produce a template Kc. (The template learning uses only the root node and its children in each
tree, so the fact that these are three-level trees is not a problem.) We then write down the rule for
scene class c as:

c -... ,class(k)k... VkEK

The template learning also updates the scene trees for each scene class to have RPID labels corre-
sponding to the learned rule. And it updates the root absolute geometry vectors in each scene tree
to something more appropriate than the simple bounding box of leaves set at the end of Phase 1.

Thus, by the end of Phase 2, we have learned a set of composite classes C, each with a single
rule; a top-level rule for each scene class in S; and a set of scene trees for the training images.

5.1.3 Assigning Single Objects to Composite Classes

In the example at the beginning of the chapter, we said that for the placesetting images in Figure 5-4,
we might want to learn the following grammar:

C = {placesetting, C1, C2, C3}

R =

placesetting

C1

C2

C11 C2 2 C3 3 napkin4

- fork5 fork 6

plate7 bowl 8

C3 -- knife9 spoonio

with these scene trees:

placesetting

C11  C22  C33

fork6 plate7 bowl 8 spoonio

placesetting

Cl1  napkin 4  C33

fork5 fork6 knife9 spoonio

But in fact, the two-phase algorithm we have described so far would not be able to learn the tree

structure on the left. Specifically, it could never assign the composite class label of C1 to a single
fork, or C3 to a single spoon, because singleton object groups are not included in the clustering
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Figure 5-4: Two images of simple placesettings, again.

process on pairs of subtrees. The current algorithm might produce this structure instead:1

C = {placesetting, C1, C2, C3}

placesetting -+ Cl1 C2 2 C3 3 fork4 napkin5 spoon 6

RC -+ fork7 fork8

C2 -+ plate9 bowlio
I C3 -+ knifeI spoon 12

with these trees:

placesetting

fork4  C22  spoon 6

plate9 bowl1 o

placesetting

Cl1  napkin5  C33

fork7 fork 8 knife11 spoon12

Although this structure is not as compact as the first one, there is nothing inherently wrong with
it. In fact, it more expressive. However, it comes with the problems that traditionally accompany less
compact structures. In particular, it does not allow the sharing of parameters across corresponding
forks and spoons in the two trees. It does not capture that the -relationship of the fork in the left
image to the rest of objects is very similar to the relationship of the pair of forks in the second image
to the rest of those objects.

These patterns occur at the top level. To discover them, we need to consider the geometry
of objects or object groups with respect to the root of the entire scene tree, rather than focusing
only on the relationships within groups as we did in Phase 1. Thus, we add an additional optional
step in which we consider adding singleton objects to existing composite classes. This step can
occur within Phase 1, at the beginning of Phase 2, or not at all; we will explore this choice in the
experiments this chapter.

The algorithm operates separately within each scene class, and assumes an existing set of com-
posite classes l7* and subtrees T* (that have not yet been merged to produce full scene trees).
Psuedocode is given in Algorithm 5.4.

'This example assumes there are other training images with similar structure as well-otherwise even the plate-bowl,
fork-fork, and knife-spoon pairs wouldn't be learned.
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Input: Set of composite clusters F* and current subtrees T*, for a single scene class.

Output: Updated clusters J7* and subtrees T*, with some singleton subtrees in T* assigned to
clusters in F*.

1. For each composite cluster (Ke, %) E F,
2. Perform clustering on subtrees in 'T, producing a set of groups {Tf,g}.

3. For each group Tg,
4. Let a be the normalized relative-to-root geometry variance for {,g}.
5. Loop:
6. Let d* = oo.
7. For each singleton subtree t E T* and each group %T,g,
8. Consider adding t to T,g, producing new tree T and distance d. Algorithm 5.5

9. If d < d*, let d* = d, T* = T, f* = f, and g* = g.
10. If d* = 00, exit loop.

11. Let class(root(T)) be the class label for composite class f*.
12. Let Tf.,g = T.,g U {T}.
13. Let T* = T* -- {t}.
14. Let T* = T* U{T}.
15. For each composite cluster (Kr, 'l) E F,
16. Let %= Ug T,g.

Algorithm 5.4: An algorithm for assigning single objects to existing composite classes (within a

single scene class).

First, we perform clustering within each composite class, to find groups of subtrees with similar
parent-to-root geometry. Formally, for each cluster (Kr, 'T) E F*, we compute the relative-to-root
geometry vector geomrel(root(T)) for each subtree T E 'T in the same way as the relative geom-
etry vector for a leaf node (Equation 4.1), but using geomabs(root(T)) as the "child" vector and

geomabs,root(root(T)) as the "parent". The goal is to partition the subtrees in Te into groups such
that within each group, the geomrei(root(T)) vectors have low variance, and each subtree T is from
a different image (since these groups are proxies for top-level rule parts that might be learned later
in Phase 2). We do this with agglomerative clustering on subtrees in %, minimizing variance in the

geomrel(root(T)) vectors while not allowing clusters with subtrees from the same image to merge.
This clustering-within-a-cluster occurs in Lines 1-2 of Algorithm 5.4, and produces a set of subtree
groups {%,g} for each composite cluster. We also compute the relative-to-root geometry variance
for each group (Lines 3-4), which will be used later.

Next, we perform constrained clustering to assign singleton objects to compatible composite
groups. For a single-node subtree t E T* a "compatible" composite group TIg is one whose tem-
plate K contains class(t), because we need to be able to assign t an existing RPID in Kf, but does

not contain any subtrees T E 'T,g from the same training image as t. So we perform agglomerative

clustering, but the only type of cluster merges we allow are between single subtrees t and compatible

groups T,g (Line 7).
In the earlier example, we might have singleton subtree t with class(t) = fork from the left

image, and a group Tci,g containing this subtree:

Clg

fork 7 fork8
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Input:
" Singleton subtree t.
" Composite class group T with class template K and original relative-to-root variance 2
Output: New two-node subtree T with t as a child, and a distance d* between T and T.

1. Let d* = oo.

2. If class(t) does not appear in K, return.
3. If any subtree T E T is from the same training image as t, return.
4. Let proot be the mean geomrei(root(T)) vector across subtrees T E T.
5. For each k E K such that class(k) = class(t),
6. Let pIk be the mean geomrei (tleaf) vector across leaf nodes tieaf in T with RPID label k.
7. Let t' be a new node, with geomabs(t') chosen such that geomrei(t) with parent t' equals Pk.
8. Let geomrei(t') be computed with parent geometry geomabsroot (t).
9. Let d = ||geomrei(t') - proot 1
10. If d < d*, let d* = d, k* = k, and t* = t'.
11. Let rpid(t) = k*.
12. Let T be a new two-node subtree with t'* as root and t as the only child.
13. Let a&e, be the normalized relative-to-root geometry variance for T U {T}.
14. I ew > 2 let d* = oo.

Algorithm 5.5: An algorithm for adding a single-object subtree to a composite class group.

from the right image. If we choose to add t to Tci,g, we need to create a new parent node t' for t with
class(t') = C1, and choose an RPID label rpid(t) for t and an absolute geometry vector geomabs(t')
for t' such that:

1. The relative-to-parent geometry vector geomrei(t) produced using geomabs(t') as parent is
similar to the equivalent vector for corresponding leaf nodes with rpid(t) in other subtrees
T E Tcig. If we assign t RPID 8, it should be on the same side with respect to its new parent
t as the fork labeled 8 is with respect to its parent in the right image.

2. The relative-to-root geometry vector geomrei (t') produced using geomabs (t') is similar to the
geomrei(root(T)) vectors on other subtrees T E Tci,g. The new parent t' should be on the left
side of the other objects in the same way that the pair of forks is in the right image.

In other words, we want to pick a parent node t' with geometry that makes both its child t and its
root (the bounding box of all the objects in the image) happy.

Pseudocode to do this is shown in Algorithm 5.5. For a singleton node t and a composite group
T with template K, we first check that T is compatible with t (Lines 2-3). Then, we search over
RPID assignments for t from those in K. For each RPID k, we choose a geomabs (t') vector for the
new parent node such that geomrei (t) would be exactly equal to the mean relative-to-parent geometry
vector across all leaf nodes with RPID label k in T (Lines 6-7). Thus, the first criteria above is
satisfied perfectly. We then let the "distance" between the singleton tree t and the group T be the
normalized L2 distance between the relative-to-root vector geomre i') produced using geomabs (t'),
and the mean relative-to-root vector across the root nodes of the subtrees in T (Lines 8-9). The
RPID k* that minimizes this distance is chosen to label t (Line 11), and this distance is also what
we minimize during agglomerative clustering.

This approach ensures that the internal geometry variance within a composite class will not
increase, since we choose RPID labels and parent vectors for the singleton objects that perfectly
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agree with the template mean (at least within the subset of the composite class in the group). So
the only concern is that the variance in the relative-to-root geometry vectors in each group T not
increase by much. Let a2 be the normalized relative-to-root geometry variance for T before any
single objects are added. Then, we will not add a singleton subtree t to T if adding the best two-
node tree T for t to T would produce a new relative-to-root geometry variance that is greater than

G2 (Lines 13-14).
Returning to Algorithm 5.4, the assigning of single objects to composite groups continues until

no more assignments are valid (Line 10). The remaining Lines 11-16 simply update the global set
of composite classes I'* and subtrees T* to reflect any changes.

We can insert the step of assigning single objects to composite classes in several places in the
full structure learning algorithm. First, we can perform it as Step 4 in each iteration of Phase 1
(Algorithm 5.3). In practice, this means we learn fewer composite classes, each containing many
member subtrees, but many of the subtrees are single-object trees. The learned structure is thus
very compact, but less expressive. Second, we can perform the step as a first step in Phase 2
(Section 5.1.2), before learning the top-level rules for each scene class. In this case, we give priority
to learning composite classes for multiple-object subtrees, and only assign single object subtrees
after full composite class learning has finished. Finally, we can choose to not perform the step at
all, in which case we learn less compact, but more expressive, structures. In the next section, we
explore these choices further.

5.2 Experiments with Three-Level Learned Structures

In this section, we present experiments evaluating three-level WGG models learned using the struc-
ture learning algorithms described in this chapter. We explore the following algorithm variations:

" the percentage 7minsize of training objects used to determine minimum cluster size; and

* whether and/or when to assign single-object subtrees to composite classes (during Phase 1 or
Phase 2, or not at all).

We compare these results to the DTPBM object detector and the hand-built and two-level WGG
models presented in previous chapters.

For each dataset, we used the same experimental setup as for that dataset in previous chapters.
For simplicity, we performed all the experiments in this chapter using pairwise weights, class-based
object detector features, and fixed ground-truth internal geometry.

5.2.1 Results on the Small Placesetting Dataset

Figure 5-5 shows the performance of the DTPBM object detector, the hand-built WGG structure,
the learned two-level WGG models from last chapter, and twelve variations of learned three-level
WGGs. The graph plots cumulative f-measure of three-level WGGs as a function of the value of

the Yminsize parameter, for each version of whether or when single objects are assigned to composite

classes. It also shows the average f-measure from the learned two-level WGG (dotted orange line),
for comparison. Figure 5-6 shows the same graph for each class.

The most salient feature of these results is that they are roughly equivalent, or slightly worse,
than the performance of the learned two-level WGGs from last chapter. Furthermore, the perfor-
mance does not differ much among different variations of the structure learning algorithm. As the

value of Yminsize increases (meaning that clusters need to be larger in order to be accepted as com-

posite clases), we do see a slight improvement in results. It also seems that not assigning singleton
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-- 3-level WGG, nosingletocomp
-4- 3-level WGG, singletocomp1
AU- 3-level WGG, singletocomp2 J

0.1 0.15 0.2 0.25 0.3 0.35
minsize

# targets (all models): 741.0

recall precision f-measure # detections # correct

DTPBM, known # objs 0.380 [0.341 0.420] 0.571 [0.521 0.598] 0.456 [0.412 0.493] 493.0 280.8

DTPBM, heuristic # objs 0.415 [0.376 0.447] 0.138 [0.117 0.171] 0.205 [0.184 0.235] 2263.6 306.8

hand-built WGG 0.254 [0.244 0.264] 0.604 [0.561 0.647] 0.357 [0.353 0.362] 312.0 188.0

2-level WGG 0.278 [0.248 0.304] 0.565 [0.512 0.601] 0.372 [0.346 0.404] 363.8 205.2

3-level WGG:

Yminsize 0.1, nosingletocomp 0235 [0.203 0.263] 0.606 [0.563 0.682] 0.338 [0.3010.380] 286.6 173.4

Yininsize 0.1, singletocomp1 0.215 [0.173 0.244] 0.610 [0.545 0.645] 0.316 [0.272 0.349] 262.6 159.2

minsize -0.1, singletocomp2 0.212 [0.180 0.238] 0.619 [0.576 0.679] 0.314 [0.285 0.346] 255.2 156.8

Ymne0. 15, nosigeo p 0.253 [0.222 0.282] 0.597 [0.532 0.639] 0.354 [0.330 0.386] 314.2 186.8
Ymnie= 0.15, nsingletocomp

Yminsize= 0.15, singletocomp1 0.236 [0.200 0.277] 0.614 [0.5580.644] 0.340 [0.294 0.382] 284.6 175.0

Yminsize -0.15, singletocomp2 0.235 [0.208 0.259] 0.612 [0.5620.644] 0.339 [0.303 0.366] 284.0 174.4

Yminsize = 0.2, nosingletocomp 0.258 [0.232 0.289] 0.582 [0.524 0.637] 0.356 [0.333 0.397] 327.8 190.2

Yminsize = 0.2, singletocomp1 0.245 [0.200 0.282] 0.586 [0.5310.619] 0.345 [0.294 0.386] 309.8 181.6

Yminsize = 0.2, singletocomp2 0.239 [0.189 0.282] 0.594 [0.560 0.617] 0.340 [0.284 0.386] 297.4 177.0

Yminsize = 0.3, nosingletocomp 0.265 [0.2410.292] 0.572 [0.540 0.605] 0.362 [0.340 0.393] 342.8 196.0

-minsize = 0.3, singletocompl 0.269 [0.257 0.287] 0.579 [0.530.603 0.367 [0.346 0.381] 343.8 199.0

Ymiinsize = 0.3, singletocomp2 0.269 [0.257 0.287] 0.579 [0.5310.603] 0.367 [0.346 0.381] 343.8 199.0

Figure 5-5: Cumulative results for the DTPBM object detector, the hand-built WGG structure and

learned two-level WGG models from last chapter, and variations of learned three-level WGGs on

the small placesetting dataset. yminsize is the percentage of training objects used to determine mini-

mum cluster size. nosingletocomp means that single-object subtrees are not assigned to composite

classes. singletocompi means that single-object subtrees were assigned to composite classes dur-

ing Phase 1, while singletocomp2 means single-object subtrees were assigned to composite classes

during Phase 2. All WGGs use pairwise tree structure features, class-based object detector features,

and fixed ground-truth internal geometry (pairwise, classobj, fixed).

objects to composite classes at all slightly outperforms assigning them during either Phase 1 or

Phase 2. Both of these trends suggest that the models perform better with fewer composite classes.

Put another way, hierarchy does not help, and perhaps even hurts performance-at least, hierarchy

learned with the algorithms in this chapter.

Figure 5-7 visualizes the results in a different way. For each learned three-level WGG, we

compute the percentage of training objects that were assigned to composite classes in the learned
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Figure 5-6: Per-class results for learned two-level and three-level WGG models on the small place-
setting dataset. For numeric per-class results, see Appendix B (Tables B.12 and B.18-B.29).
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Figure 5-7: Test performance (cumulative f-measure) of each learned three-level WGG model on
the small placesetting dataset, as a function of the percent of training objects assigned to composite
classes during structure learning for that model.

parse trees for the training images. We then plot the cumulative f-measure of the model on the test
set, as a function of that percentage. We do this for each individual experiment with each variation
of the model; since we performed 5 runs for each of 12 variations, this results in 60 total points
on the scatterplot. Again, we also plot the the average f-measure from the learned two-level WGG
(dotted orange line), for comparison.

The scatterplot illustrates more directly the relationship between amount of learned hierarchy
and test performance. It shows that, independent of which version of the algorithm learned the
model, there is a slight inverse correlation between the number of objects that are assigned to com-
posite classes, and the model's performance at test time.

These results may seem disappointing initially. We had hypothesized that by introducing com-
posite classes, we could better capture co-occurence patterns among groups of objects. We had also
hoped that the local coordinate frames associated with the composite classes would help weaken the
strong conditional independence assumptions of the geometry models. However, the results do not
seem to confirm these hypotheses.

In fact, these findings are consistent with the comparison between the hand-built WGG struc-
ture and the learned two-level models last chapter. There, we found that the learned models slightly
outperformed the hand-built structure; this despite that we deliberately constructed the model and
labeled trees to produce composite classes for co-occurring object groups with low internal geom-
etry variance. Figure 5-8 shows several representative learned three-level structures. Notice the
qualitative similarity between the learned structures and the hand-built one in Figure 3-3.

This analysis suggests that the structure learning algorithms are actually achieving our design
objectives to a reasonable degree. Rather, it seems that the objectives themselves, based on our
assumptions about the utility of composite classes, were incorrect.

Alternatively, we can interpret these results positively. The two-level structure learning algo-
rithm is much simpler than its three-level counterpart, and it produces it better results. A two-level
learned structure is a relatively compact model that assigns a larger number of training objects to
each rule part in the single flat rule, lessening the danger of overfitting. Furthermore, the use of pair-
wise tree structure features means that the perceptron actually performs some "structure learning"-
it learns a fairly rich model of co-occurrence among pairs of objects, without needing to search over
explicit subsets of objects.
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sceneClasses: {'placesetting')

objClasses: ('bowl' 'candle' 'cup' 'fork' 'forkside' 'glass' 'knife' 'knifeside' 'napkin' 'placemat'

'plate' 'saucer' 'shaker' 'spoon' 'spoonside')

placesetting -> C00016 (23963) C00016 (23964) C00016 (23965) C00017 (23966) C00018 (23967)

C00018 (23968) C00019 (23969) C00019 (23970) C00019 (23971) C00020 (23972)

C00020 (23973) C00020 (23974) C00021 (23976) C00021 (23977) C00021 (23978)

C00022 (23979) C00023 (23980) C00024 (23981) C00024 (23982) C00025 (23983)

C00025 (23984) bowl (23928) bowl (23929) bowl (23930) candle (23931)

candle (23932) candle (23933) cup (23935) cup (23936) fork (23937)

fork (23938) forkside (23939) glass (23940) glass (23941) glass (23942)

knife (23943) knife (23944) knifeside (23945) napkin (23947) napkin (23948)

placemat (23949) plate (23950) plate (23951) plate (23952) shaker (23953)

shaker (23954) spoon (23955) spoon (23956) spoonside (23957) spoonside (23958)

spoonside (23959) spoonside (23960)

C00016 -> bowl (371) napkin (372) plate (5173) plate (5174)

C00017 -> knife (4805) spoon (4806)

C00018 -> fork (1463) fork (1464)

C00019 -> glass (3127) glass (3128) glass (3129) glass (3130)

C00022 -> fork (7171) fork (7172) napkin (7357)

C00020 -> cup (1343) saucer (1344)

C00023 -> knife (9016) spoon (9017)

C00024 -> knife (8872) plate (8873)

C00021 -> forkside (3043) spoonside (3044)

C00025 > glass (13659) knife (13660)

Yminsize = 0.1, nosingletocomp

sceneClasses: {'placesetting'}
objClasses: ('bowl' 'candle' 'cup' 'fork' 'forkside' 'glass' 'knife' 'knifeside' 'napkin' 'placemat'

'plate' 'saucer' 'shaker' 'spoon' 'spoonside'}

placesetting -> C00016 (12347) C00016 (12348) C00016 (12349) C00017 (12350) C00018 (12351)

C00018 (12352) C00019 (12353) C00019 (12354) C00019 (12355) C00020 (12356)

C00020 (12357) C00020 (12358) C00020 (12359) C00021 (12360) C00021 (12361)

C00021 (12362) bowl (12318) bowl (12319) candle (12320) candle (12321)

candle (12322) fork (12325) forkside (12326) glass (12327) knife (12328)

knife (12329) knife (12330) knifeside (12331) knifeside (12332)

napkin (12333) napkin (12334) placemat (12335) plate (12336) plate (12337)

plate (12338) shaker (12339). shaker (12340) spoon (12341) spoonside (12342)

spoonside (12343) spoonside (12344) spoonside (12345)

C00016 > bowl (371) napkin (372) plate (5173) plate (5174)

C00018 -> fork (1463) fork (1464)

C00017 > knife (4805) spoon (4806)

C00019 -> glass (3127) glass (3128) glass (3129) glass (3130)

C00021 > forkside (3043) spoonside (3044)

C00020 > cup (1343) saucer (1344)

Yminsize = 0.1, singletocompI

Figure 5-8: Representative learned WGG three-level structures for the small placesetting dataset.
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0.35

# targets (all models): 3899.0

recall precision f-measure # detections # correct

DTPBM, known # objs 0.387 [0.381 0.390] 0.432 [0.428 0.437] 0.408 [0.403 0.412] 3494.7 1509.3
DTPBM, heuristic # objs 0.475 [0.465 0.482] 0.079 [0.075 0.085] 0.135 [0.130 0.144] 23666.3 1850.3

2-level WGG 0.267 [0.255 0.274] 0.499 [0.492 0.508] 0.348 [0.336 0.356] 2086.7 1040.7

3-level WGG:
Yrninsize = 0.1, nosingletocomp 0.242 [0.237 0.250] 0.535 [0.519 0.546] 0.333 [0.325 0.343] 1766.7 944.7
Yninsize = 0.1, singletocomp1 0.154 [0.114 0.193] 0.494 [0.410 0.543] 0.234 [0.178 0.285] 1204.0 601.0
Yminsize = 0.1, singletocomp2 0.166 [0.132 0.194] 0.611 [0.536 0.671] 0.261 [0.211 0.301] 1052.7 647.7
Yminsize = 0.15, nosingletocomp 0.245 [0.240 0.251] 0.521 [0.514 0.527] 0.333 [0.328 0.340] 1836.7 956.0
Yminsize = 0.15, singletocomp1 0.189 [0.164 0.209] 0.496 [0.462 0.526] 0.273 [0.242 0.300] 1479.7 736.0
Yminsize = 0.15, singletocomp2 0.177 [0.161 0.204] 0.535 [0.498 0.600] 0.266 [0.244 0.304] 1288.3 690.7
Yrinsize = 0.2, nosingletocomp 0.251 [0.238 0.258] 0.500 [0.487 0.516] 0.334 [0.320 0.344] 1956.3 977.7
Yninsize = 0.2, singletocompl 0.201 [0.155 0.232] 0.455 [0.393 0.492] 0.278 [0.222 0.313] 1706.7 782.0
Ymnsize = 0.2, singletocomp2 0.217 [0.204 0.235] 0.458 [0.456 0.461] 0.295 [0.283 0.310] 1851.0 847.7
Yninsize = 0.3, nosingletocomp 0.261 [0.252 0.266] 0.498 [0.489 0.511] 0.342 [0.333 0.348] 2042.7 1016.0
Yminsize = 0.3, singletocompl 0.248 [0.229 0.274] 0.491 [0.485 0.499] 0.329 [0.313 0.350] 1972.7 968.0
Yminsize = 0.3, singletocomp2 0.241 [0.211 0.271] 0.480 [0.463 0.490] 0.320 [0.290 0.348] 1958.3 940.7

Figure 5-9: Cumulative results for the DTPBM object detector, the learned two-level WGG models
from last chapter, and variations of learned three-level WGGs on the big placesetting dataset. Yminsize
is the percentage of training objects used to determine minimum cluster size. nosingletocomp means
that single-object subtrees are not assigned to composite classes. singletocomp1 means that single-
object subtrees were assigned to composite classes during Phase 1, while singletocomp2 means
single-object subtrees were assigned to composite classes during Phase 2. All WGGs use pairwise
tree structure features, class-based object detector features, and fixed ground-truth internal geometry
(pairwise, classobj, fixed).

5.2.2 Results on the Big Placesetting Dataset

Figure 5-9 shows the performance of the DTPBM object detector, the learned two-level WGG mod-
els from last chapter, and twelve variations of learned three-level WGGs. The graph plots cumu-
lative f-measure of three-level WGGs as a function of the value of the Yninsize parameter, for each
version of whether or when single objects are assigned to composite classes. It also shows the aver-
age f-measure from the learned two-level WGG (dotted orange line), for comparison. Figure 5-10
shows the same graph for each class. And Figure 5-11 shows the same results, but visualized as a
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Figure 5-10: Per-class results for learned two-level and three-level WGG models on the big place-
setting dataset. For numeric per-class results, see Appendix B (Tables B.32 and B.38-B.49).
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Figure 5-11: Test performance (cumulative f-measure) of each learned three-level WGG model on

the big placesetting dataset, as a function of the percent of training objects assigned to composite

classes during structure learning for that model.

scatterplot. (Review the description of how the plot was made in the last section.)

In this dataset, the learned models that do not assign singleton objects to composite classes at

all ('nosingletocomp') outperform those that do ('singletocompI' and 'singletocomp2') to a greater

degree, particularly for lower values of 7minsize. It seems that forcing single objects to participate in

composite classes damages performance more in this dataset, perhaps because the spatial arrange-

ments are more variable than in the smaller dataset.

It is also important to remember that when composite classes are formed, the objects in those

classes no longer have pairwise part presence features with objects not assigned to the same class.

Put another way, a two-level model can actually represent a richer set of co-occurrence patterns

than a three-level model, which explicitly hard-codes certain co-occurrence patterns at the expense

of others. Thus, another explanation for the greater drop in performance is that, in the more com-

plicated large placesetting dataset, there is more need for the greater expressive power offered by

the two-level models' pairwise features. This theory is consistent with the experiments in the last

chapter, in which we saw that removing the pairwise features from the learned two-level models

resulted in a significant drop in performance on the large placesetting dataset (Figure 4-11).

5.2.3 Results on the House Dataset

The cumulative and per-class results for three-level WGGs on the house dataset are shown in Fig-

ure 5-12 and Figure 5-13, respectively. Figure 5-14 shows the cumulative results, but visualized as

a scatterplot. (Again, review the description of how the scatterplot was made in Section 5.2.1.) And

Figure 5-15 shows several representative learned three-level structures.

The profile of the results on this dataset is consistent with the results on both datasets in the

placesetting domain. Again, we see that three-level WGGs in which only a relatively small percent-

age of objects are assigned to composite classes have very similar performance to two-level WGGs.

And again, as the number of objects assigned to composite classes grows, the performance of the

three-level WGGs degrades by a fair amount.

Overall, the experiments in this chapter have demonstrated that adding an additional level of

hierarchy to WGG models does not improve performance in general, and in fact can damage per-

formance if applied too aggressively. We observe this trend consistently across all three datasets,
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# targets (all models): 6558.0

recall precision f-measure # detections # correct

DTPBM, known # objs 0.214 [0.206 0.223] 0.216 [0.206 0.224] 0.215 [0.206 0.223] 6521.3 1406.0
DTPBM, heuristic # objs 0.337 [0.329 0.346] 0.053 [0.049 0.058] 0.092 [0.085 0.098] 41846.3 2210.0

2-level WGG 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] 2347.3 535.3

3-level WGG:

Yminsize = 0.1, nosingletocomp 0.078 [0.0710.087] 0.248 [0.209 0.273] 0.118 [0.106 0.130] 2077.3 511.7
Yminsize = 0.1, singletocomp1 0.035 [0.033 0.038] 0.172 [0.132 0.226] 0.058 [0.057 0.059] 1443.0 232.7
Yinsize = 0.1, singletocomp2 0.039 [0.0360.044] 0.198 [0.1440.291] 0.063 [0.058 0.069] 1417.3 253.0
Yminsize = 0.15, nosingletocomp 0.083 [0.077 0.088] 0.247 [0.210 0.274] 0.124 [0.113 0.133] 2218.0 544.0
Yminsize = 0.15, singletocomp1 0.054 [0.0510.056] 0.219 [0.171 0.247] 0.086 [0.084 0.088] 1651.7 351.0
Yminsize = 0.15, singletocomp2 0.059 [0.0370.088] 0.195 [0.143 0.274] 0.090 [0.0610.133] 1963.0 385.0
Yminsize = 0.2, nosingletocomp 0.081 [0.076 0.089] 0.232 [0.190 0.256] 0.120 [0.109 0.132] 2317.7 532.0
Yminsize = 0.2, singletocompl 0.076 [0.064 0.089] 0.235 [0.194 0.256] 0.115 [0.102 0.132] 2161.3 500.7
Yminsize = 0.2, singletocomp2 0.076 [0.064 0.089] 0.235 [0.194 0.256] 0.115 [0.102 0.132] 2161.3 500.7
Yminsize = 0.3, nosingletocomp 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] 2347.3 535.3
Yminsize = 0.3, singletocompl 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] 2347.3 535.3
Ymninsize = 0.3, singletocomp2 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] 2347.3 535.3

Figure 5-12: Cumulative results for the DTPBM object detector, the learned two-level WGG models
from last chapter, and variations of learned three-level WGGs on the house dataset. 7minsize is the
percentage of training objects used to determine minimum cluster size. nosingletocomp means
that single-object subtrees are not assigned to composite classes. singletocompi means that single-
object subtrees were assigned to composite classes during Phase 1, while singletocomp2 means
single-object subtrees were assigned to composite classes during Phase 2. All WGGs use pairwise
tree structure features, class-based object detector features, and fixed ground-truth internal geometry
(pairwise, classobj, fixed).

and even when using a hand-built three-level structure on the small placesetting dataset (Chapter 3').
Futhermore, the learned structures appear, qualitatively, to be grouping the expected types of objects
into composite classes (e.g., cups and saucers in placesettings, roofs and chimneys in houses, etc.).

These findings suggests that our learning algorithms are finding reasonable hierarchical struc-
tures, given our criteria. Instead, it seems that our assumptions about the advantages provided
by these structures (e.g., better modeling of co-occurrence patterns and spatial relations) were not
necessarily correct. In fact, learned two-level models with pairwise features provide significant ex-
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Figure 5-13: Per-class results for learned two-level and three-level WGG models

dataset. For numeric per-class results, see Appendix B (Tables B.52 and B.58-B.69).
on the house

pressive power, enough to capture both complex co-occurrence patterns and valuable information

about expected spatial relationships among objects.
Next chapter, we consider avenues for future work in the WGG framework, and summarize the

results and contributions of this thesis.
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Figure 5-14: Test performance (cumulative f-measure) of each learned three-level WGG model on
the house dataset, as a function of the percent of training objects assigned to composite classes
during structure learning for that model.
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sceneClasses: ('house'}

objClasses: ('car' 'chimney' 'door' 'driveway' 'garagedoor' 'path' 'roof' 'shutter' 'steps' 'window')
house -> C00011 (182138) C00011 (182139) C00011 (182140) C00011 (182141) C00011 (182142) C00011 (182143)

C00011 (182144) C00011 (182145) C00011 (182146) C00012 (182147) C00012 (182148) C00013 (182149)
C00014 (182150) C00014 (182151) C00015 (182152) C00015 (182153) C00015 (182154) C00016 (182155)
C00016 (182156) C00016 (182157) C00016 (182158) C00016 (182159) C00016 (182160) C00017 (182161)
C00017 (182162) C00018 (182163) C00018 (182164) C00019 (182165) C00019 (182166) C00020 (182167)
C00020 (182168) C00020 (182169) C00020 (182170) C00021 (182171) C00022 (182172) car (182056)
car (182057) chimney (182059) chimney (182060) chimney (182061) door (182062) door (182063)
door (182064) door (182065) door (182066) door (182067) door (182068) driveway (182069)
driveway (182070) garagedoor (182071) garagedoor (182072) garagedoor (182073) garagedoor (182074)
path (182075) path (182076) path (182077) roof (182078) roof (182079) roof (182080) roof (182081)
roof (182082) roof (182083) roof (182084) shutter (182085) shutter (182086) shutter (182087)
shutter (182088) shutter (182089) shutter (182090) shutter (182091) shutter (182092)
shutter (182093) shutter (182094) shutter (182095) shutter (182096) shutter (182097)
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window (182114) window (182115) window (182116) window (182117) window (182118) window (182119)
window (182120) window (182121) window (182122) window (182123) window (182124) window (182125)
window (182126) window (182127) window (182128) window (182129) window (182130) window (182131)
window (182132) window (182133) window (182134) window (182135) window (182136) window (182137)

C00011 > door (8243) shutter (8244) window (23517)

C00016 -> door (35986) shutter (35987) window (35988) window (35989)
C00019 > door (69108) steps (69109) window (89835)

C00012 -> driveway (9385) garagedoor (9386) roof (11843)

C00017 -> car (28799) driveway (28800) garagedoor (28943) roof (28944)
C00020 -> chimney (65707) window (65708)

C00013 -> steps (25253) window (25254)

C00018 > chimney (32209) window (32210)

C00014 -> chimney (2879) roof (2880)

C00015 -> car (1211) window (1212) window (1221)

C00021 -> path (112945) steps (112946)

C00022 -> driveway (109456) window (109457)

Yminsize 0.1, nosingletocomp

sceneClasses: ('house')

objClasses: ('car' 'chimney' 'door' 'driveway' 'garagedoor' 'path' 'roof' 'shutter' 'steps' 'window')
house -> C00011 (118520) C00011 (118521) C00011 (118522) C00011 (118523) C00011 (118524) C00011 (118525)

C00011 (118526) C00011 (118527) C00011 (118528) C00011 (118529) C00011 (118530) C00011 (118531)
C00011 (118532) C00011 (118533) C00011 (118534) C00011 (118535) C00011 (118536) C00011 (118537)
C00011 (118538) C00011 (118539) 000011 (118540) C00011 (118541) C00011 (118542) C00011 (118543)
C00011 (118544) C00011 (118545) 000011 (118546) C00011 (118547) C00011 (118548) C00011 (118549)
C00012 (118550) C00012 (118551) C00012 (118552) C00012 (118553) C00013 (118554) C00014 (118555)
C00014 (118556) C00014 (118557) C00015 (118558) C00015 (118559) C00015 (118560) C00015 (118561)
C00015 (118562) C00016 (118563) car (118478) car (118479) chimney (118480) chimney (118481)
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C00011 -> door (8243) shutter (8244) window (23517)

C00015 -> car (1211) window (1212) window (1221)

C00012 -> driveway (9385) garagedoor (9386) roof (11843)

C00014 -> chimney (2879) roof (2880)

C00013 -> steps (25253) window (25254)

C00016 > car (28639) driveway (28640)

Yminsize = 0.1, singletocompi

Figure 5-15: Representative learned WGG three-level structures for the house dataset.
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Chapter 6

Conclusions and Future Work

In this final chapter, we summarize the conclusions and contributions of this thesis. First, however,
we consider future work.

6.1 Future Work

There are number of avenues that future work on WGG models could take.

Additional Features

A first such area would be to introduce additional types of image-based features, to reduce the

model's sensitivity to noise in the object detector. For example, we saw in the experiments that

class-based object detector features outperformed their rule-part-based counterparts in some object

classes, sometimes dramatically, while the reverse was true in other cases. But in a feature-based

discriminative model, we have the flexibility to simply include both class-based and rule-part-based

object detector features. It would be interesting to see the effects of this simple extension.

The DTPBM object detector has the option to learn multiple components per class, rather the

one per class we used in our experiments. Each component corresponds roughly to a different

canonical aspect ratio for the object class, and outputs an independent score. Thus, another simple

modification could use these components as additional object detector features.

Extending this idea, we could use simple clustering on visual features to learn subclasses for

each object class, based on visual differences rather than just different aspect ratios. We could then

define features on the scores from object detectors trained for each subclass.
But perhaps most promising category of image-based features we might add are global scene-

centered features, such as gist features (Oliva & Torralba, 2001; Torralba, 2003) or global orientation

histograms (Lazebnik et al., 2006). We could associate these global features with the entire image,
but also with portions of the image, such as nodes corresponding to composite classes or object

classes themselves. Such a representation could provide an important additional source of infor-

mation about the image to overcome noise in the object detector's low-level signal. Furthermore,
incorporating such features into the model framework would be simple, and would only require

some thought to ensure that parsing can still be performed efficiently.

Although image-based features are crucial, we also might consider alternative forms of geom-

etry features. The quadratic (log Gaussian) models we use in this thesis are powerful and conve-

nient, but we demonstrated cases in which they cannot capture the spatial patterns that occur in the

data. For example, they are somewhat poorly suited to localizing tiny chimneys, which can occur
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anywhere within a much larger roof region. In such cases, some notion of a region of uniform ex-
pectation might be a better fit. It is also worth exploring the types of binary relationships (above,
below, etc.) that appear commonly in other work on contextual object detection. These relationships
could mitigate some of the conditional independence effects of the quadratic features in our current
model. The challenge would be incorporating or approximating such pairwise relationships while
maintaining efficient inference.

Balancing Recall and Precision

As we have seen in the experiments, the structured perceptron seems to consistently find weights that
result in very conservative interpretations of test images. The learned WGG models tend to make
few detections, but those detections are often correct; this leads to relatively low recall but very
high precision. We speculated in Section 3.2.4 that this trend occurs because the object detector
produces such noisy output, while the inherent variance in spatial arrangements means that the
geometry models cannot be informative enough to overcome the noise.

In most object detection systems, a per-class threshold on detector scores can be manually varied
in order to trade off between recall and precision at test time. This is desirable because there are
situations in which certain types of errors are more costly than others. In some contexts, false
negatives may be more severe than false positives, while the reverse may be true in other cases.
But the ability to perform manual tuning is also useful because it allows the system's designer to
counteract tendencies in the learning algorithms to prefer one type of error over another, as seems
to be happening in the perceptron for WGGs.

In a WGG model, on the other hand, there is no single global or per-class threshold to vary or
manually tune in this way. All of the per-part and pairwise weights are set jointly during learning,
along with the weights on geometry and object detector features, in order to minimize training error.
To allow manual balancing of recall and precision, the most principled approach would incorporate
into the perceptron's update step some type of asymmetric cost for each type of error.

There is precedent for using asymmetric costs in discriminative learning methods. For example,
Viola and Jones (2002) used biased costs within the AdaBoost framework, with simple binary per-
ceptrons as weak classifiers, to give one type of error (e.g., false negatives) more cost than another
(false positives).

In the structured perceptron, we could achieve something similar by using, for each feature on
tree structure, a different learning rate depending on the type of error made by the predicted tree for
that feature on that step. The type of error (false positive or false negative) would be determined
by looking at the sign of the difference between the detected and ground-truth feature values. (The
updates to geometry and object detector features would be performed as usual.) By varying the
magnitude of the learning rate on false positives versus false negatives, the learning process would
hopefully lead to more or less conservative detections at test time, thus trading off between recall
and precision.

Modeling in 3D

Finally, in the long term, we believe that effective modeling of the geometric relationships among
objects requires 3D reasoning. We chose the scene classes considered in this thesis because they
provided high levels of complexity while still offering a 2D framework some hope of success.
However, for most scenes, the rich pattern in object interactions is most compactly captured in 3D.
But again, the challenge is not how to incorporate such features into the WGG model, but rather
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what the features should be, and how to efficiently perform recognition from a single image using

such features.

6.2 Conclusions and Contributions

This thesis has introduced a novel formalism, weighted geometric grammars, for flexibly represent-

ing and recognizing combinations of objects and their spatial relationships in scenes. The model can

incorporate arbitrary image-based and geometry features, and compactly represents many combi-

nations of possible objects through optional rule parts with per-part and pairwise structure weights.

Because the geometry relationships are modeled in a tree-structured manner, we can perform pars-

ing efficiently.
We adapted the structured perceptron algorithm to parameter learning in WGG models, and

showed that it can find weights that effectively trade off among object detector output, geometric

relationships, and co-occurrence patterns. Furthermore, the model's optional parts and pairwise

weights means that the process of parameter learning actually performs a significant amount of

"structure learning"--determining patterns of co-occurring objects-in an efficient manner.

To learn the grammar structure, we developed two sets of clustering-based algorithms. The

first set learned two-level WGG structures, with no intermediate composite classes between the

object and scene levels. The second set of algorithms learned these composite classes, producing
hierarchical three-level WGGs.

We presented experiments using several variations on WGG models, comparing their perfor-

mance to a state-of-the-art object detector. The results suggested that there is certainly value in

capturing high-level co-occurrence and geometry information, but that it can often be represented

well enough without hierarchy. In particular, it seems that sometimes pairwise weights are more

valuable than hierarchical composite classes.
These findings are interesting, in part because they are somewhat surprising. Our instinct as

computer scientists is often to throw hierarchy at every problem we encounter, and these results

serve as a useful cautionary note. If there is valuable hierarchy in these datasets, our algorithms

are not finding it. This may be because the current state of object detectors does not provide strong

enough signal to support such deep learning yet. It may be because our algorithms for learning

composite classes from the variance in spatial relationships are based on inaccurate assumptions, as

we discussed last chapter. Or it may be that the domains we consider simply do not have the level

of hierarchical structure we imagine.
Nonetheless, even when no hierarchy is learned, the structure learning algorithms in Chapter 4

provide a valuable function. They determine what the modes should be for the multimodal geometry

models, and decide how many and which objects are present. And the perceptron algorithm learns

weights that trade off between geometry and object detector scores, while learning context-specific

thresholds and co-occurrence patterns. As a result, the non-hierarchical models are powerful enough

to outperform the state-of-the-art DTPBM object detector.
Finally, this thesis contributes three new fully-labeled datasets, in two domains, to the scene

recognition community. As the field continues to advance, we hope these challenging datasets will

provide a source of inspiration to researchers in scene understanding, and that the performance

levels demonstrated in this thesis can be improved upon further.
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Appendix A

Datasets

This appendix contains supplementary information about the three datasets used in this thesis.
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771 7

WNW4

Figure A-1: Images from the small placesetting dataset.
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Figure A-2: LabelMe directories and filenames for the small placesetting dataset.
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Figure A-3: LabelMe directories and filenames for the small placesetting dataset (cont.).
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Figure A-4: LabelMe directories and filenames for the small placesetting dataset (cont.).
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II

Figure A-5: Images from the big placesetting dataset.
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Figure A-6: Images from the house dataset.
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Appendix B

Results

This appendix lists the complete averaged results for all sets of experiments presented in this thesis.
The first three tables (B.1, B.2, B.3) summarize for each dataset the cumulative results across all
models. Each line in these tables then points to the table presenting the per-class results for that
individual set of experiments.

All results on the small placesetting dataset were averaged over 5 runs, while all results on
the big placesetting and house datasets were averaged over 3 runs. In all cases, the minimum and
maximum scores across runs are reported, in addition to the mean.

The following abbreviations are used in the tables:

DTPBM object detector
known # objects The ground-truth number of objects of each class in each image is used in selecting

detections. (Remember that this is cheating!)
heuristic # objects The maximum number of objects of each class seen in the training images is used in

selecting detections.

Hand-built and 2-level WGGs
pairwise Pairwise tree structure weights are used.
nopairwise Pairwise tree structure weights are not used.
classobj Class-based object detector features are used.
rpobj Rule-part-based object detector features are used.
fixed Fixed ground-truth internal geometry is used in the perceptron.
free Free ground-truth internal geometry is used in the perceptron.

3-level WGGs
Yminsize The percentage of training objects used to determine minimum cluster size.
nosingletocomp Single-object subtrees are not assigned to composite classes.
singletocompI Single-object subtrees are assigned to composite classes during Phase 1.
singletocomp2 Single-object subtrees are assigned to composite classes during Phase 2.

All experiments with three-level WGG structures were run with pairwise weights, class-based object
detector features, and fixed ground-truth internal geometry (pairwise, classobj, fixed).
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recall precision f-measure Table

DTPBM obj detector known # objects 0.380 [0.341 0.420] 0.571 [0.521 0.598] 0.456 [0.412 0.493] B.4
heuristic # objects 0.415 [0.376 0.447] 0.138 [0.117 0.171] 0.205 [0.184 0.235] B.5

pairwise, classobj, fixed 0.254 [0.244 0.264] 0.604 [0.5610.647] 0.357 [0.353 0.362] B.6
pairwise, rpobj, fixed 0.235 [0.2210.253] 0.659 [0.623 0.705] 0.346 [0.332 0.359] B.7
pairwise, classobj, free 0.278 [0.237 0.306] 0.561 [0.547 0.571] 0.371 [0.334 0.397] B.8
pairwise, rpobj, free 0.282 [0.256 0.304] 0.608 [0.576 0.637] 0.385 [0.357 0.409] B.9
nopairwise, classobj, fixed 0.242 [0.218 0.260] 0.623 [0.584 0.643] 0.348 [0.325 0.361] B.10
nopairwise, rpobj, fixed 0.217 [0.208 0.227] 0.698 [0.627 0.741] 0.331 [0.3210.348] B.11

pairwise, classobj, fixed 0.278 [0.248 0.304] 0.565 [0.512 0.601] 0.372 [0.346 0.404] B.12
pairwise, rpobj, fixed 0.276 [0.258 0.294] 0.596 [0.5710.621] 0.377 [0.360 0.399] B.13
WGG, 2-l pairwise, classobj, free 0.267 [0.233 0.289] 0.569 [0.513 0.614 0.362 [0.338 0.383] B.14
WGG,2-level pairwise, rpobj, free 0.273 [0.241 0.290] 0.612 [0.592 0.631 0.377 [0.346 0.395] B.15
nopairwise, classobj, fixed 0.264 [0.2310.284] 0.593 [0.549 0.631] 0.365 [0.333 0.387] B.16
nopairwise, rpobj, fixed 0.248 [0.226 0.272] 0.654 [0.587 0.681] 0.359 [0.338 0.385] B.17

Yninsize - 0. 1, nosingletocomp 0.235 [0.203 0.263] 0.606 [0.563 0.682] 0.338 [0.3010.380] B.18
Yninsize -. 1, singletocompi1 0.215 [0.173 0.244] 0.610 [0.545 0.6451] 0.316 [0.272 0.349] B.19
7minsize 0. 1, singletocomp2 0.212 [0.180 0.238] 0.619 [0.576 0.679] 0.314 [0.285 0.346] B.20
Yrrnsize 0. 15, nosingletocomp 0.253 [0.222 0.282] 0.597 [0.532 0.639] 0.354 [0.330 0.386] B.21
Yninsize = 0. 15, singletocomp 1 0.236 [0.200 0.277] 0.614 [0.558 0.644] 0.340 [0.294 0.382] B.22

WGG, 3-level Ynsize = 0-15, singletocomp2 0.235 [0.208 0.259] 0.612 [0.562 0.644] 0.339 [0.303 0.366] B.23
Yinsize - 0.2, flosingletocomp 0.258 [0.232 0.289] 0.582 [0.524 0.637] 0.356 [0.333 0.397] B.24
'insize 0.2, singletocompi 0.245 [0.200 0.282] 0.586 [0.53 1 0.6 19] 0.345 [0.294 0.386] B.25
Umnsize =0.2, singletocomp2 0.239 [0.189 0.282] 0.594 [0.560 0.6 17] 0.340 [0.284 0.386] B.26
Yinsize =0.3, nosingletocomp 0.265 [0.241 0.292] 0.572 [0.540 0.605] 0.362 [0.340 0.393] B.27
Yinsize 0.3, singletocompi 0.269 [0.257 0.287] 0.579 [0.53 1 0.603] 0.367 [0.346 0.381] B.28

nsize -0.3, singletocomp2 0.269 [0.257 0.287] 0.579 [0.531 0.6031] 0.367 [0.346 0.381] B.29

Table B.1: Cumulative results on the small placesetting dataset.

recall precision f-measure Table

DTPBM obj detector known # objects 0.387 [0.38 10.390] 0.432 [0.428 0.437] 0.408 [0.403 0.412] B.30DTPBMbdetector heuristic # objects 0.475 [0.465 0.482] 0.079 [0.075 0.085] 0.135 [0.130 0.144] B.31

pairwise, classobj, fixed 0.267 [0.255 0.274] 0.499 [0.492 0.508] 0.348 [0.336 0.356] B.32
pairwise, rpobj, fixed 0.212 [0.201 0.220] 0.579 [0.569 0.587] 0.311 [0.297 0.320] B.33
WGG, 2-le pairwise, classobj, free 0.249 [0.231 0.264] 0.504 [0.4710.562] 0.332 [0.327 0.338] B.34

opairwise, rpobj, free 0.214 [0.205 0.219 0.595 [0.588 0.603] 0.314 [0.305 0.322] B.35
nopairwise, classobj, fixed 0.209 [0.206 0.212] 0.580 [0.550 0.612] 0.307 [0.303 0.315] B.36
nopairwise, rpobj, fixed 0.178 [0.172 0.184] 0.682 [0.618 0.722] 0.282 [0.278 0.284] B.37

Yinsize 0. 1, nosingletocomp 0.242 [0.237 0.250] 0.535 [0.519 0.5461] 0.333 [0.325 0.343] B.38
Yinsize = 0. 1, singletocompi1 0.154 [0.114 0.193] 0.494 [0.410 0.5431] 0.234 [0.178 0.285] B.39

mnsize - 0. 1, singletocomp2 0.166 [0.132 0.194] 0.611 [0.536 0.671] 0.261 [0.2110.301] B.40
Yinsize 0. 15, nosingletocomp 0.245 [0.240 0.251] 0.521 [0.514 0.527] 0.333 [0.328 0.340] B.41

nilsize 0. 15, singletocompi 0.189 [0.164 0.209] 0.496 [0.462 0.526] 0.273 [0.242 0.300] B.42
WGG, 3-level 'ninsize 0.15, singletocomp2 0.177 [0.161 0.204] 0.535 [0.498 0.600] 0.266 [0.244 0.304] B.43

insize =0.2, nosingletocomp 0.25 1 [0.238 0.258] 0.500 [0.487 0.5 16] 0.334 [0.320 0.344] B.44
nsize = 0.2, singletocompi 0.201 [0.155 0.232] 0.455 [0.393 0.492] 0.278 [0.222 0.313] B.45

insize =0.2, singletocomp2 0.2 17 [0.204 0.235] 0.458 [0.456 0.461] 0.295 [0.283 0.310] B.46
Yminsize = 0.3, nosingletocomp 0.261 [0.252 0.266] 0.498 [0.489 0.511] 0.342 [0.333 0.348] B.47
Yminsize = 0.3, singletocompl 0.248 [0.229 0.274] 0.491 [0.485 0.499] 0.329 [0.313 0.350] B.48
Yminsize = 0.3, singletocomp2 0.241 [0.2110.271] 0.480 [0.463 0.490] 0.320 [0.290 0.348] B.49

Table B.2: Cumulative results on the big placesetting dataset.
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recall precision f-measure Table

known # objects 0.214 [0.206 0.223] 0.216 [0.206 0.224] 0.215 [0.206 0.223] B.50
DTPBM obj detector heuristic # objects 0.337 [0.329 0.346] 0.053 [0.049 0.058] 0.092 [0.085 0.098] B.51

pairwise, classobj, fixed 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] B.52
pairwise, rpobj, fixed 0.053 [0.051 0.054] 0.215 [0.177 0.237] 0.085 [0.082 0.088] B.53

WGG, 2-level pairwise, classobj, free 0.080 [0.074 0.086] 0.234 [0.191 0.269] 0.119 [0.107 0.130] B.54
pairwise, rpobj, free 0.050 [0.049 0.052] 0.203 [0.161 0.231] 0.080 [0.078 0.082] B.55
nopairwise, classobj, fixed 0.043 [0.038 0.051] 0.392 [0.355 0.421] 0.078 [0.069 0.089] B.56
nopairwise, rpobj, fixed 0.038 [0.037 0.039] 0.418 [0.410 0.426] 0.069 [0.067 0.071] B.57

Yminsize = 0.1, nosingletocomp 0.078 [0.0710.087] 0.248 [0.209 0.273] 0.118 [0.106 0.130] B.58

Yminsize = 0.1, singletocompl 0.035 [0.033 0.038] 0.172 [0.132 0.226] 0.058 [0.057 0.059] B.59

Yminsize = 0.1, singletocomp2 0.039 [0.036 0.044] 0.198 [0.1440.291] 0.063 [0.058 0.069] B.60

Yminsize = 0.15, nosingletocomp 0.083 [0.077 0.088] 0.247 [0.210 0.274] 0.124 [0.113 0.133] B.61

Yminsize = 0.15, singletocompl 0.054 [0.0510.056] 0.219 [0.1710.247] 0.086 [0.084 0.088] B.62

WGG, 3-level Yminsize 0.15, singletocomp2 0.059 [0.037 0.088] 0.195 [0.143 0.274] 0.090 [0.0610.f33] B.63
Yminsize = 0.2, nosingletocomp 0.081 [0.076 0.089] 0.232 [0.190 0.256] 0.120 [0.109 0.132] B.64

Yminsize = 0.2, singletocompi 0.076 [0.064 0.089] 0.235 [0.194 0.256] 0.115 [0.102 0.132] B.65

Yminsize = 0.2, singletocomp2 0.076 [0.0640.089 0.235 [0.1940.256] 0.115 [0.102 0.132] B.66

Yminsize = 0.3, nosingletocomp 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] B.67

Yminsize = 0.3, singletocompi 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] B.68

Yminsize = 0.3, singletocomp2 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] B.69

Table B.3: Cumulative results on the house dataset.
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recall precision f-measure # targets # detections # correct

bowl 0.103 [0.037 0.250] 0.775 [0.429 1.000] 0.154 [0.071 0.320] 25.4 5.6 2.8
candle 0.314 [0.111 0.455] 0.314 [0.111 0.455] 0.314 [0.111 0.455] 14.6 14.6 4.6
cup 0.387 [0.310 0.429] 0.675 [0.429 0.900] 0.476 [0.429 0.545] 21.2 12.4 8.0
fork 0.604 [0.563 0.639] 0.749 [0.705 0.848] 0.667 [0.655 0.677] 121.6 98.8 73.4
forkside 0.027 [0.000 0.059] 0.027 [0.000 0.059] 0.027 [0.000 0.059] 21.4 21.4 0.6
glass 0.522 [0.477 0.612] 0.597 [0.486 0.768] 0.555 [0.481 0.681] 100.0 89.0 52.2
knife 0.271 [0.202 0.330] 0.339 [0.310 0.400] 0.299 [0.259 0.361] 90.8 73.0 24.6
knifeside 0.013 [0.000 0.067] 0.013 [0.000 0.067] 0.013 [0.000 0.067] 13.8 13.6 0.2
napkin 0.060 [0.000 0.136] 0.693 [0.364 1.000] 0.100 [0.000 0.214] 46.8 5.8 2.8
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.364 [0.270 0.497] 0.948 [0.910 1.000] 0.519 [0.425 0.643] 154.8 59.0 55.6
saucer 0.494 [0.333 0.643] 0.878 [0.714 1.000] 0.618 [0.467 0.750] 13.6 7.4 6.4
shaker 0.324 [0.176 0.389] 0.324 [0.176 0.389] 0.324 [0.176 0.389] 17.8 17.8 5.8
spoon 0.626 [0.516 0.704] 0.785 [0.706 0.896] 0.691 [0.649 0.775] 60.0 48.2 37.4
spoonside 0.269 [0.030 0.500] 0.273 [0.030 0.500] 0.271 [0.030 0.500] 27.4 26.4 6.4

cumulative 0.380 [0.341 0.420] 0.571 [0.521 0.598] 0.456 [0.412 0.493] 741.0 493.0 280.8

Table B.4: DTPBM object detector, small placesetting dataset, known # objects.

recall precision f-measure # targets # detections # correct

bowl 0.109 [0.037 0.281] 0.367 [0.097 1.000] 0.107 [0.069 0.200] 25.4 19.4 3.0
candle 0.314 [0.111 0.455] 0.016 [0.003 0.022] 0.030 [0.006 0.042] 14.6 294.4 4.6
cup 0.438 [0.310 0.643] 0.259 [0.058 0.600] 0.268 [0.106 0.409] 21.2 60.0 8.8
fork 0.645 [0.611 0.683] 0.421 [0.345 0.510] 0.504 [0.450 0.558] 121.6 192.4 78.4
forkside 0.045 [0.000 0.074] 0.004 [0.000 0.008] 0.008 [0.000 0.015] 21.4 252.4 1.0
glass 0.591 [0.484 0.657] 0.275 [0.141 0.464] 0.358 [0.232 0.531] 100.0 274.0 59.4
knife 0.357 [0.261 0.437] 0.164 [0.130 0.216] 0.218 [0.195 0.241] 90.8 209.8 32.4
knifeside 0.013 [0.000 0.067] 0.003 [0.000 0.013] 0.004 [0.000 0.021] 13.8 108.6 0.2
napkin 0.060 [0.000 0.136] 0.419 [0.000 1.000] 0.091 [0.000 0.179] 46.8 9.4 2.8
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.374 [0.270 0.524] 0.913 [0.843 1.000] 0.522 [0.425 0.647] 154.8 63.4 57.2
saucer 0.506 [0.286 0.875] 0.351 [0.096 0.667] 0.343 [0.173 0.519] 13.6 31.0 6.2
shaker 0.324 [0.176 0.389] 0.041 [0.025 0.063] 0.072 [0.044 0.107] 17.8 143.2 5.8
spoon 0.647 [0.516 0.722] 0.449 [0.277 0.635] 0.511 [0.400 0.614] 60.0 94.4 38.6
spoonside 0.362 [0.061 0.636] 0.025 [0.003 0.066] 0.041 [0.006 0.087] 27.4 511.2 8.4

cumulative 0.415 [0.376 0.447] 0.138 [0.117 0.171] 0.205 [0.184 0.235] 741.0 2263.6 306.8

Table B.5: DTPBM object detector, small placesetting dataset, heuristic # objects.
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recall precision f-measure # targets # detections # correct

bowl 0.045 [0.000 0.094] 0.599 [0.143 1.000] 0.077 [0.000 0.162] 25.4 3.4 1.2
candle 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 14.6 0.0 0.0
cup 0.082 [0.034 0.143] 1.000 [1.000 1.000] 0.150 [0.067 0.250] 21.2 1.6 1.6
fork 0.349 [0.325 0.381] 0.514 [0.417 0.592] 0.414 [0.369 0.455] 121.6 83.6 42.4
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.275 [0.243 0.297] 0.660 [0.578 0.738] 0.388 [0.342 0.413] 100.0 41.6 27.4
knife 0.257 [0.170 0.330] 0.348 [0.242 0.425] 0.295 [0.200 0.371] 90.8 66.6 23.4
knifeside 0.000 [0.000 0.000] 0.600 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.8 0.0
napkin 0.034 [0.000 0.068] 1.000 [1.000 1.000] 0.064 [0.000 0.128] 46.8 1.6 1.6
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.371 [0.305 0.413] 0.907 [0.855 0.981] 0.524 [0.465 0.566] 154.8 63.0 57.0
saucer 0.135 [0.048 0.250] 1.000 [1.000 1.000] 0.232 [0.091 0.400] 13.6 1.6 1.6
shaker 0.074 [0.000 0.130] 0.650 [0.500 1.000] 0.125 [0.000 0.222] 17.8 2.4 1.4
spoon 0.499 [0.422 0.574] 0.673 [0.544 0.805] 0.568 [0.524 0.635] 60.0 45.0 29.8
spoonside 0.030 [0.000 0.105] 0.933 [0.667 1.000] 0.054 [0.000 0.182] 27.4 0.8 0.6

cumulative 0.254 [0.244 0.264] 0.604 [0.561 0.647] 0.357 [0.353 0.362] 741.0 312.0 188.0

Table B.6: Hand-built WGG structure, small placesetting dataset, pairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.033 [0.000 0.048] 0.533 [0.333 1.000] 0.059 [0.000 0.083] 25.4 2.0 0.8
candle 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 14.6 0.0 0.0
cup 0.120 [0.059 0.174] 0.840 [0.400 1.000] 0.202 [0.111 0.286] 21.2 3.4 2.6
fork 0.317 [0.260 0.365] 0.543 [0.453 0.636] 0.396 [0.354 0.430] 121.6 72.6 38.6
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.192 [0.148 0.242] 0.686 [0.656 0.708] 0.298 [0.244 0.355] 100.0 27.8 19.0
knife 0.237 [0.182 0.297] 0.430 [0.356 0.488] 0.304 [0.241 0.351] 90.8 50.2 21.6
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 13.8 0.0 0.0
napkin 0.033 [0.000 0.057] 0.633 [0.000 1.000] 0.063 [0.000 0.102] 46.8 2.6 1.6
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.373 [0.310 0.413] 0.951 [0.900 1.000] 0.535 [0.474 0.573] 154.8 60.4 57.4
saucer 0.181 [0.100 0.267] 0.900 [0.500 1.000] 0.287 [0.182 0.421] 13.6 2.8 2.4
shaker 0.050 [0.000 0.130] 0.750 [0.500 1.000] 0.087 [0.000 0.222] 17.8 1.6 1.0
spoon 0.468 [0.438 0.500] 0.709 [0.659 0.789] 0.562 [0.549 0.594] 60.0 39.6 28.0
spoonside 0.048 [0.000 0.136] 0.880 [0.400 1.000] 0.081 [0.000 0.240] 27.4 1.6 1.0

cumulative 0.235 [0.221 0.253] 0.659 [0.623 0.705] 0.346 [0.332 0.359] 741.0 264.6 174.0

Table B.7: Hand-built WGG structure, small placesetting dataset, pairwise, rpobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.047 [0.000 0.080] 0.292 [0.000 0.667] 0.080 [0.000 0.143] 25.4 4.0 1.2
candle 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 14.6 1.4 0.0
cup 0.118 [0.069 0.143] 0.830 [0.400 1.000] 0.201 [0.129 0.231] 21.2 3.2 2.4
fork 0.354 [0.328 0.380] 0.472 [0.382 0.537] 0.404 [0.353 0.438] 121.6 91.8 43.0
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.360 [0.315 0.388] 0.656 [0.574 0.741] 0.464 [0.417 0.510] 100.0 54.8 35.8
knife 0.276 [0.202 0.319] 0.304 [0.232 0.341] 0.289 [0.216 0.330] 90.8 82.0 25.0
knifeside 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.2 0.0
napkin 0.029 [0.000 0.057] 0.787 [0.333 1.000] 0.054 [0.000 0.103] 46.8 2.6 1.4

placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.400 [0.270 0.469] 0.890 [0.842 0.959] 0.547 [0.422 0.612] 154.8 69.2 61.2
saucer 0.192 [0.095 0.250] 0.830 [0.400 1.000] 0.297 [0.174 0.353] 13.6 3.2 2.4

shaker 0.086 [0.000 0.188] 0.750 [0.500 1.000] 0.135 [0.000 0.273] 17.8 2.8 1.6
spoon 0.499 [0.452 0.574] 0.624 [0.596 0.667] 0.554 [0.523 0.588] 60.0 47.8 29.8
spoonside 0.059 [0.000 0.158] 0.520 [0.000 1.000] 0.098 [0.000 0.250] 27.4 2.4 1.2

cumulative 0.278 [0.237 0.306] 0.561 [0.547 0.571] 0.371 [0.334 0.397] 741.0 365.4 205.0

Table B.8: Hand-built WGG structure, small placesetting dataset, pairwise, classobj, free.
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recall precision f-measure # targets # detections # correct

bowl 0.055 [0.000 0.094] 0.263 [0.000 0.500] 0.090 [0.000 0.1581 25.4 4.4 1.4
candle 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 14.6 0.4 0.0
cup 0.196 [0.130 0.261] 0.805 [0.500 1.000] 0.304 [0.231 0.400] 21.2 5.2 4.0
fork 0.344 [0.244 0.420] 0.505 [0.455 0.562] 0.405 [0.319 0.481] 121.6 82.8 41.8
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.325 [0.280 0.379] 0.758 [0.627 0.868] 0.451 [0.417 0.506] 100.0 43.2 32.4
knife 0.298 [0.234 0.368] 0.345 [0.275 0.411] 0.319 [0.253 0.370] 90.8 78.4 27.0
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 13.8 0.0 0.0
napkin 0.043 [0.000 0.091] 0.467 [0.000 1.000] 0.075 [0.000 0.154] 46.8 4.6 2.0
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.393 [0.328 0.441] 0.946 [0.903 1.000] 0.554 [0.494 0.606] 154.8 64.0 60.4
saucer 0.280 [0.143 0.400] 0.900 [0.500 1.000] 0.405 [0.250 0.571] 13.6 4.0 3.4
shaker 0.129 [0.000 0.222] 0.633 [0.500 1.000] 0.192 [0.000 0.308] 17.8 4.4 2.4
spoon 0.523 [0.476 0.593] 0.658 [0.564 0.705] 0.580 [0.530 0.615] 60.0 47.8 31.2
spoonside 0.119 [0.000 0.368] 0.727 [0.000 1.000] 0.167 [0.000 0.467] 27.4 3.6 2.4

cumulative 0.282 [0.256 0.304] 0.608 [0.576 0.637] 0.385 [0.357 0.409] 741.0 342.8 208.4

Table B.9: Hand-built WGG structure, small placesetting dataset, pairwise, rpobj, free.

recall precision f-measure # targets # detections # correct

bowl 0.044 [0.000 0.125] 0.612 [0.143 1.000] 0.072 [0.000 0.211] 25.4 3.4 1.2
candle 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 14.6 0.0 0.0
cup 0.052 [0.000 0.087] 1.000 [1.000 1.000] 0.097 [0.000 0.160] 21.2 1.0 1.0
fork 0.335 [0.303 0.361] 0.520 [0.483 0.550] 0.407 [0.385 0.427] 121.6 78.8 40.8
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.301 [0.287 0.341] 0.611 [0.540 0.721] 0.402 [0.383 0.440] 100.0 49.4 30.0
knife 0.200 [0.159 0.245] 0.447 [0.359 0.500] 0.274 [0.220 0.324] 90.8 41.0 18.2
knifeside 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.2 0.0
napkin 0.038 [0.000 0.068] 0.950 [0.750 1.000] 0.072 [0.000 0.128] 46.8 2.0 1.8
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.364 [0.287 0.400] 0.868 [0.829 0.926] 0.511 [0.439 0.541] 154.8 64.8 56.0
saucer 0.087 [0.000 0.143] 1.000 [1.000 1.000] 0.156 [0.000 0.250] 13.6 1.0 1.0
shaker 0.051 [0.000 0.130] 0.830 [0.400 1.000] 0.082 [0.000 0.222] 17.8 1.8 1.0
spoon 0.460 [0.419 0.556] 0.645 [0.526 0.794] 0.530 [0.486 0.557] 60.0 43.6 27.4
spoonside 0.020 [0.000 0.053] 0.800 [0.000 1.000] 0.037 [0.000 0.100] 27.4 0.6 0.4

cumulative 0.242 [0.218 0.260] 0.623 [0.584 0.643] 0.348 [0.325 0.361] 741.0 287.6 178.8

Table B.10: Hand-built WGG structure, small placesetting dataset, nopairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.045 [0.000 0.094] 0.670 [0.250 1.000] 0.080 [0.000 0.162] 25.4 2.4 1.2
candle 0.000 {0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 14.6 0.0 0.0
cup 0.075 [0.059 0.087] 0.833 [0.500 1.000] 0.136 [0.111 0.160] 21.2 2.0 1.6
fork 0.302 [0.260 0.341] 0.579 [0.471 0.686] 0.394 [0.366 0.428] 121.6 65.0 36.8
forkside 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 21.4 0.2 0.0
glass 0.183 [0.131 0.242] 0.686 [0.647 0.737] 0.285 [0.222 0.352] 100.0 26.4 18.0
knife 0.177 [0.068 0.275] 0.508 [0.261 0.615] 0.260 [0.108 0.376] 90.8 30.8 16.2
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 13.8 0.0 0.0
napkin 0.034 [0.000 0.091] 0.680 [0.000 1.000] 0.062 [0.000 0.163] 46.8 2.4 1.6
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 1-1.8 0.0 0.0
plate 0.365 [0.310 0.413] 0.935 [0.895 1.000] 0.524 [0.474 0.571] 154.8 60.2 56.2
saucer 0.119 [0.095 0.143] 1.000 [1.000 1.000] 0.213 [0.174 0.250] 13.6 1.6 1.6
shaker 0.078 [0.000 0.188] 0.700 [0.500 1.000] 0.128 [0.000 0.273] 17.8 2.4 1.4
spoon 0.432 [0.365 0.500] 0.694 [0.667 0.719] 0.531 [0.484 0.581] 60.0 37.2 25.8
spoonside 0.030 [0.000 0.105] 1.000 [1.000 1.000] 0.055 [0.000 0.190] 27.4 0.6 0.6

cumulative 0.217 [0.208 0.227] 0.698 [0.627 0.741] 0.331 [0.321 0.348] 741.0 231.2 161.0

Table B. 11: Hand-built WGG structure, small placesetting dataset, nopairwise, rpobj, fixed.
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recall precision f-measure # targets # detections # correct

bowl 0.076 [0.037 0.125] 0.556 [0.111 1.000] 0.127 [0.067 0.200] 25.4 5.0 2.0
candle 0.071 [0.000 0.182] 0.111 [0.000 0.286] 0.086 [0.000 0.222] 14.6 7.2 0.8
cup 0.208 [0.069 0.294] 0.566 [0.308 0.8001 0.278 [0.125 0.370] 21.2 8.0 4.0
fork 0.370 [0.328 0.420] 0.552 [0.494 0.585] 0.442 [0.413 0.476] 121.6 81.8 45.0
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.335 [0.282 0.352] 0.570 [0.500 0.659] 0.419 [0.395 0.451] 100.0 59.8 33.4
knife 0.269 [0.205 0.363] 0.344 [0.220 0.423] 0.301 [0.212 0.391] 90.8 72.0 24.4
knifeside 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.2 0.0
napkin 0.042 [0.000 0.089] 0.400 [0.000 1.000] 0.071 [0.000 0.154] 46.8 8.2 2.0

placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.373 [0.293 0.434] 0.891 [0.841 0.944] 0.523 [0.447 0.577] 154.8 64.4 57.2
saucer 0.312 [0.143 0.500] 0.877 [0.750 1.000] 0.453 [0.240 0.667] 13.6 4.4 3.8
shaker 0.075 [0.000 0.188] 0.256 [0.000 0.600] 0.116 [0.000 0.286] 17.8 3.8 1.4

spoon 0.488 [0.413 0.611] 0.695 [0.667 0.744] 0.570 [0.510 0.647] 60.0 41.8 29.0
spoonside 0.107 [0.000 0.421] 0.558 [0.125 1.000] 0.115 [0.000 0.372] 27.4 7.2 2.2

cumulative 0.278 [0.248 0.304] 0.565 [0.512 0.601] 0.372 [0.346 0.404] 741.0 363.8 205.2

Table B. 12: Learned 2-level WGGs, small placesetting dataset, pairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.080 [0.000 0.120] 0.509 [0.118 1.000] 0.121 [0.000 0.188] 25.4 6.8 2.0
candle 0.047 [0.000 0.125] 0.090 [0.000 0.250] 0.062 [0.000 0.167] 14.6 4.8 0.6
cup 0.227 [0.103 0.294] 0.608 [0.375 0.750] 0.317 [0.182 0.387] 21.2 7.8 4.6
fork 0.373 [0.336 0.429] 0.550 [0.537 0.566] 0.444 [0.419 0.477] 121.6 82.6 45.4
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.315 [0.282 0.330] 0.699 [0.6540.744] 0.433 [0.403 0.455] 100.0 45.2 31.4
knife 0.271 [0.202 0.341] 0.358 [0.2710.437] 0.308 [0.232 0.383] 90.8 69.4 24.6
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 13.8 0.0 0.0
napkin 0.038 [0.000 0.067] 0.455 [0.000 1.000] 0.066 [0.000 0.120] 46.8 7.4 1.8
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.386 [0.333 0.420] 0.900 [0.853 0.983] 0.538 [0.498 0.565] 154.8 66.2 59.4

saucer 0.303 [0.095 0.500] 0.820 [0.667 1.000] 0.428 [0.167 0.615] 13.6 4.4 3.6
shaker 0.094 [0.000 0.174] 0.627 [0.333 1.000] 0.152 [0.000 0.286] 17.8 3.4 1.8
spoon 0.453 [0.365 0.519] 0.696 [0.6510.800] 0.545 [0.479 0.577] 60.0 39.0 27.0
spoonside 0.084 [0.000 0.211] 0.600 [0.333 1.000] 0.121 [0.000 0.258] 27.4 5.6 2.0

cumulative 0.276 [0.258 0.294] 0.596 [0.571 0.621] 0.377 [0.360 0.399] 741.0 342.6 204.2

Table B. 13: Learned 2-level WGGs, small placesetting dataset, pairwise, rpobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.093 [0.074 0.125] 0.548 [0.167 1.000] 0.151 [0.1210.205 25.4 6.0 2.4
candle 0.050 [0.000 0.111] 0.440 [0.000 1.000] 0.067 [0.000 0.167] 14.6 5.4 0.6
cup 0.222 [0.172 0.304] 0.601 [0.308 0.833] 0.306 [0.250 0.412] 21.2 8.4 4.6
fork 0.363 [0.339 0.382] 0.539 [0.453 0.652] 0.432 [0.396 0.465] 121.6 83.2 44.2
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.310 [0.253 0.363] 0.619 [0.534 0.707] 0.407 [0.3710.440 100.0 51.6 31.0
knife 0.250 [0.160 0.341] 0.328 [0.221 0.443] 0.282 [0.185 0.385] 90.8 70.0 22.6
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 13.8 0.0 0.0
napkin 0.042 [0.000 0.089] 0.382 [0.000 1.000] 0.070 [0.000 0.148] 46.8 6.8 2.0

placemnat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.368 [0.299 0.434] 0.885 [0.827 0.946] 0.5 17 [0.452 0.569] 154.8 64.4 56.6
saucer 0.284 [0.143 0.500] 0.850 [0.667 1.000] 0.400 [0.240 0.571] 13.6 4.2 3.4

shaker 0.041 [0.000 0.118] 0.507 [0.000 1.000] 0.057 [0.000 0.148] 17.8 3.4 0.8
spoon 0.466 [0.397 0.537] 0.673 [0.592 0.735] 0.547 [0.515 0.571] 60.0 41.6 27.8
spoonside 0.070 [0.000 0.211] 0.637 [0.286 1.000] 0.105 [0.000 0.276] 27.4 4.0 1.6

cumulative 0.267 [0.233 0.289] 0.569 [0.5 13 0.614] 0.362 [0.338 0.383] 741.0 349.0 197.6

classobj, free.Table B.14: Learned 2-level WGGs, small placesetting dataset, pairwise,
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recall precision f-measure # targets # detections # correct

bowl 0.058 [0.000 0.143] 0.417 [0.167 1.0001 0.081 [0.000 0.154] 25.4 6.4 1.4
candle 0.036 [0.000 0.182] 0.067 [0.000 0.333] 0.047 [0.000 0.235] 14.6 5.8 0.4
cup 0.256 [0.176 0.348] 0.637 [0.300 0.800] 0.361 [0.222 0.485] 21.2 8.6 5.4
fork 0.367 [0.336 0.405] 0.555 [0.517 0.590] 0.441 [0.419 0.480] 121.6 80.4 44.6
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.295 [0.259 0.352] 0.720 [0.652 0.842] 0.417 [0.383 0.496] 100.0 40.8 29.2
knife 0.287 [0.213 0.374] 0.400 [0.268 0.540] 0.333 [0.259 0.442] 90.8 66.2 26.0
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 13.8 0.0 0.0
napkin 0.050 [0.021 0.111] 0.502 [0.091 1.000] 0.086 [0.036 0.185] 46.8 6.8 2.4
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.375 [0.293 0.420] 0.900 [0.853 0.944] 0.527 [0.447 0.580] 154.8 64.2 57.6
saucer 0.277 [0.190 0.375] 0.860 [0.667 1.000] 0.414 [0.296 0.545] 13.6 4.4 3.6
shaker 0.110 [0.067 0.130] 0.620 [0.333 1.000] 0.181 [0.125 0.214] 17.8 3.8 2.0
spoon 0.459 [0.419 0.519] 0.712 [0.605 0.778] 0.556 [0.495 0.596] 60.0 38.8 27.4
spoonside 0.072 [0.000 0.211] 0.533 [0.000 1.000] 0.115 [0.000 0.320] 27.4 3.8 1.8

cumulative 0.273 [0.241 0.290] 0.612 [0.592 0.631] 0.377 [0.346 0.395] 741.0 330.0 201.8

Table B.15: Learned 2-level WGGs, small placesetting dataset, pairwise, rpobj, free.

recall precision f-measure # targets # detections # correct

bowl 0.058 [0.000 0.156] 0.529 [0.100 1.000] 0.095 [0.000 0.256] 25.4 4.4 1.6
candle 0.018 [0.000 0.091] 0.467 [0.000 1.000] 0.029 [0.000 0.143] 14.6 1.8 0.2
cup 0.277 [0.138 0.412] 0.633 [0.357 0.800] 0.362 [0.235 0.519] 21.2 9.2 5.4
fork 0.339 [0.294 0.380] 0.501 [0.451 0.536] 0.402 [0.378 0.443] 121.6 82.8 41.2
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.370 [0.301 0.407] 0.565 [0.461 0.660] 0.442 [0.413 0.471] 100.0 67.6 37.0
knife 0.212 [0.160 0.319] 0.506 [0.386 0.652] 0.292 [0.256 0.392] 90.8 39.2 19.2
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 13.8 0.0 0.0
napkin 0.038 [0.000 0.068] 0.550 [0.000 1.000] 0.069 [0.000 0.125] 46.8 3.6 1.8
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.360 [0.276 0.413] 0.807 [0.747 0.923] 0.493 [0.425 0.536] 154.8 69.2 55.2
saucer 0.306 [0.143 0.500] 0.821 [0.500 1.000] 0.412 [0.240 0.545] 13.6 5.0 3.8
shaker 0.100 [0.056 0.188] 0.576 [0.200 1.000] 0.160 [0.091 0.261] 17.8 3.8 1.8
spoon 0.435 [0.365 0.481] 0.678 [0.639 0.727] 0.529 [0.465 0.565] 60.0 38.4 26.0
spoonside 0.087 [0.000 0.316] 0.620 [0.200 1.000] 0.110 [0.000 0.353] 27.4 4.8 1.8

cumulative 0.264 [0.231 0.284] 0.593 [0.549 0.631] 0.365 [0.333 0.387] 741.0 329.8 195.0

Table B.16: Learned 2-level WGGs, small placesetting dataset, nopairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.058 [0.000 0.156] 0.308 [0.000 0.714] 0.093 [0.000 0.256] 25.4 5.4 1.6
candle 0.032 [0.000 0.111] 0.300 [0.000 1.000] 0.048 [0.000 0.167] 14.6 2.8 0.4
cup 0.286 [0.172 0.357] 0.681 [0.417 1.000] 0.382 [0.294 0.444] 21.2 9.2 5.8
fork 0.339 [0.285 0.395] 0.538 [0.448 0.581] 0.411 [0.378 0.452] 121.6 78.0 41.2
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.278 [0.233 0.341] 0.707 [0.614 0.756] 0.397 [0.353 0.470] 100.0 39.2 27.6
knife 0.218 [0.160 0.374] 0.570 [0.429 0.704] 0.309 [0.233 0.463] 90.8 35.2 19.8
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 13.8 0.0 0.0
napkin 0.033 [0.000 0.057] 0.455 [0.000 1.000] 0.060 [0.000 0.094] 46.8 4.6 1.6
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.346 [0.293 0.407] 0.918 [0.871 0.980] 0.500 [0.447 0.555] 154.8 58.2 53.2
saucer 0.278 [0.143 0.500] 0.853 [0.714 1.000] 0.399 [0.240 0.615] 13.6 4.2 3.4
shaker 0.078 [0.000 0.188] 0.667 [0.250 1.000] 0.128 [0.000 0.300] 17.8 3.0 1.4
spoon 0.425 [0.333 0.468] 0.701 [0.618 0.765] 0.528 [0.433 0.571] 60.0 36.2 25.4
spoonside 0.102 [0.000 0.273] 0.648 [0.125 1.000] 0.142 [0.000 0.400] 27.4 5.4 2.2

cumulative 0.248 [0.226 0.272] 0.654 [0.587 0.681] 0.359 [0.338 0.385] 741.0 281.4 183.6

Table B.17: Learned 2-level WGGs, small placesetting dataset, nopairwise, rpobj, fixed.
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recall precision f-measure # targets # detections # correct

bowl 0.053 [0.000 0.094] 0.495 [0.100 1.000] 0.088 [0.000 0.150] 25.4 4.8 1.4

candle 0.059 [0.000 0.182] 0.085 [0.000 0.333] 0.067 [0.000 0.235] 14.6 8.0 0.6

cup 0.159 [0.130 0.176] 0.620 [0.400 0.833] 0.252 [0.211 0.286] 21.2 5.4 3.4

fork 0.256 [0.203 0.314] 0.617 [0.553 0.674] 0.360 [0.301 0.418] 121.6 50.2 31.0
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0

glass 0.279 [0.269 0.297] 0.620 [0.509 0.718] 0.383 [0.354 0.419] 100.0 46.0 27.8
knife 0.254 [0.182 0.319] 0.427 [0.250 0.630] 0.317 [0.211 0.423] 90.8 55.8 23.0
knifeside 0.000 [0.000 0.000] 0.200 [0.000 1.000] 0.000 [0.000 0.000] 13.8 1.2 0.0

napkin 0.033 [0.000 0.057] 0.800 [0.000 1.000] 0.064 [0.000 0.107] 46.8 2.6 1.6

placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0

plate 0.347 [0.276 0.387] 0.842 [0.800 0.941] 0.489 [0.427 0.530] 154.8 63.8 53.4

saucer 0.140 [0.000 0.267] 0.960 [0.800 1.000] 0.232 [0.000 0.421] 13.6 2.4 2.2

shaker 0.064 [0.000 0.111] 0.473 [0.200 1.000] 0.102 [0.000 0.190] 17.8 4.0 1.2

spoon 0.428 [0.403 0.463] 0.697 [0.649 0.758] 0.530 [0.505 0.575] 60.0 36.8 25.6

spoonside 0.097 [0.000 0.263] 0.547 [0.182 1.000] 0.145 [0.000 0.370] 27.4 5.6 2.2

cumulative 0.235 [0.203 0.263] 0.606 [0.563 0.682] 0.338 [0.301 0.380] 741.0 286.6 173.4

Table B.18: Learned 3-level WGGs, small placesetting dataset, Yminsize = 0.1, nosingletocomp.

recall precision f-measure # targets # detections # correct

bowl 0.060 [0.000 0.125] 0.577 [0.250 1.000] 0.103 [0.000 0.216] 25.4 3.2 1.6

candle 0.078 [0.000 0.182] 0.333 [0.000 1.000] 0.098 [0.000 0.235] 14.6 5.8 1.0

cup 0.121 [0.059 0.174] 0.760 [0.500 1.000] 0.208 [0.105 0.294] 21.2 3.4 2.8
fork 0.301 [0.235 0.387] 0.565 [0.414 0.718] 0.382 [0.346 0.455] 121.6 69.2 36.6
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0

glass 0.272 [0.241 0.330] 0.700 [0.565 0.828] 0.390 [0.338 0.448] 100.0 39.2 27.0
knife 0.191 [0.011 0.299] 0.403 [0.310 0.500] 0.236 [0.022 0.340] 90.8 46.0 17.4

knifeside 0.000 [0.000 0.000] 0.400 [0.000 1.000] 0.000 [0.000 0.000] 13.8 2.2 0.0

napkin 0.029 [0.000 0.057] 0.900 [0.500 1.000] 0.055 [0.000 0.102] 46.8 2.0 1.4

placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0

plate 0.292 [0.166 0.364] 0.869 [0.803 0.960] 0.430 [0.280 0.507] 154.8 52.0 44.8

saucer 0.170 [0.100 0.267] 0.920 [0.600 1.000] 0.282 [0.182 0.421] 13.6 2.8 2.4

shaker 0.090 [0.059 0.125] 0.513 [0.333 1.000] 0.147 [0.100 0.200] 17.8 3.8 1.6

spoon 0.357 [0.032 0.526] 0.777 [0.675 1.000] 0.443 [0.062 0.606] 60.0 29.0 21.0

spoonside 0.082 [0.000 0.368] 0.540 [0.000 1.000] 0.113 [0.000 0.483] 27.4 4.0 1.6

cumulative 0.215 [0.173 0.244] 0.610 [0.545 0.645] 0.316 [0.272 0.349] 741.0 262.6 159.2

Table B.19: Learned 3-level WGGs, small placesetting dataset, Yminsize = 0.1, singletocompl.

recall precision f-measure # targets # detections # correct

bowl 0.058 [0.000 0.156] 0.500 [0.167 1.000] 0.093 [0.000 0.238] 25.4 4.2 1.6

candle 0.032 [0.000 0.111] 0.038 [0.000 0.111] 0.034 [0.000 0.111] 14.6 6.8 0.4

cup 0.158 [0.059 0.241] 0.820 [0.500 1.000] 0.263 [0.105 0.389] 21.2 4.2 3.6
fork 0.280 [0.235 0.361] 0.661 [0.589 0.691] 0.389 [0.347 0.448] 121.6 52.0 34.0

forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.255 [0.159 0.308] 0.726 [0.643 0.850] 0.372 [0.268 0.434] 100.0 35.4 25.2
knife 0.193 [0.011 0.275] 0.298 [0.143 0.500] 0.225 [0.021 0.355] 90.8 55.4 17.6

knifeside 0.000 [0.000 0.000] 0.600 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.4 0.0

napkin 0.020 [0.000 0.057] 0.800 [0.000 1.000] 0.039 [0.000 0.107] 46.8 1.2 1.0

placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0

plate 0.307 [0.247 0.353] 0.843 [0.791 0.935] 0.447 [0.391 0.488] 154.8 56.4 47.2

saucer 0.176 [0.048 0.267] 0.900 [0.500 1.000] 0.289 [0.087 0.421] 13.6 2.4 2.2

shaker 0.076 [0.000 0.125] 0.600 [0.333 1.000] 0.127 [0.000 0.211] 17.8 3.0 1.4

spoon 0.357 [0.127 0.491] 0.736 [0.696 0.800] 0.462 [0.219 0.583] 60.0 29.4 21.4

spoonside 0.063 [0.000 0.316] 0.509 [0.000 1.000] 0.080 [0.000 0.400] 27.4 4.4 1.2

cumulative 0.212 [0.180 0.238] 0.619 [0.576 0.679] 0.314 [0.285 0.346] 741.0 255.2 156.8

= 0.1, singletocomp2.Table B.20: Learned 3-level WGGs, small placesetting dataset, Yminsize
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recall precision f-measure # targets # detections # correct

bowl 0.081 [0.037 0.156] 0.367 [0.143 0.500] 0.123 [0.069 0.227] 25.4 6.8 2.2
candle 0.050 [0.000 0.111] 0.076 [0.000 0.200] 0.056 [0.000 0.125] 14.6 8.4 0.6
cup 0.181 [0.087 0.294] 0.812 [0.429 1.000] 0.282 [0.160 0.435] 21.2 4.8 3.6
fork 0.330 [0.260 0.395] 0.586 [0.522 0.632] 0.417 [0.366 0.463] 121.6 69.2 40.0
forkside 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 21.4 0.2 0.0
glass 0.312 [0.262 0.343] 0.598 [0.507 0.692] 0.407 [0.380 0.449] 100.0 53.2 31.2
knife 0.269 [0.213 0.330] 0.431 [0.308 0.532] 0.330 [0.252 0.403] 90.8 58.0 24.4
knifeside 0.000 [0.000 0.000] 0.200 [0.000 1.000] 0.000 [0.000 0.000] 13.8 1.6 0.0
napkin 0.034 [0.000 0.089] 0.472 [0.000 1.000] 0.061 [0.000 0.148] 46.8 3.6 1.6
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.350 [0.276 0.406] 0.877 [0.784 0.966] 0.497 [0.427 0.538] 154.8 61.8 53.8
saucer 0.121 [0.000 0.267] 0.933 [0.667 1.000] 0.204 [0.000 0.421] 13.6 2.0 1.8
shaker 0.082 [0.000 0.174] 0.517 [0.250 1.000] 0.129 [0.000 0.276] 17.8 3.8 1.6
spoon 0.400 [0.339 0.481] 0.701 [0.684 0.724] 0.507 [0.462 0.571] 60.0 34.0 23.8
spoonside 0.103 [0.000 0.263] 0.424 [0.000 1.000] 0.129 [0.000 0.303] 27.4 6.8 2.2

cumulative 0.253 [0.222 0.282] 0.597 [0.532 0.639] 0.354 [0.330 0.386] 741.0 314.2 186.8

Table B.21: Learned 3-level WGGs, small placesetting dataset, Yminsize = 0.15, nosingletocomp.

recall precision f-measure # targets # detections # correct

bowl 0.039 [0.000 0.062] 0.442 [0.125 1.000] 0.066 [0.000 0.111] 25.4 3.8 1.0
candle 0.050 [0.000 0.111] 0.136 [0.000 0.500] 0.064 [0.000 0.154] 14.6 6.0 0.6
cup 0.126 [0.059 0.241] 0.767 [0.333 1.000] 0.214 [0.100 0.389] 21.2 3.6 3.0
fork 0.340 [0.228 0.429] 0.564 [0.490 0.677] 0.418 [0.313 0.483] 121.6 74.0 41.2
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.269 [0.241 0.319] 0.727 [0.617 0.846] 0.390 [0.366 0.443] 100.0 37.6 26.8
knife 0.204 [0.057 0.286] 0.460 [0.304 0.833] 0.253 [0.106 0.335] 90.8 49.8 18.6
knifeside 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.8 0.0
napkin 0.030 [0.000 0.045] 1.000 [1.000 1.000] 0.057 [0.000 0.087] 46.8 1.4 1.4
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.356 [0.227 0.407] 0.853 [0.753 0.969] 0.494 [0.366 0.540] 154.8 65.6 55.0
saucer 0.156 [0.100 0.267] 0.950 [0.750 1.000] 0.263 [0.182 0.421] 13.6 2.4 2.2
shaker 0.085 [0.000 0.130] 0.620 [0.500 1.000] 0.140 [0.000 0.214] 17.8 3.0 1.6
spoon 0.380 [0.016 0.526] 0.779 [0.682 1.000] 0.461 [0.031 0.606] 60.0 31.0 22.4
spoonside 0.057 [0.000 0.182] 0.543 [0.000 1.000] 0.079 [0.000 0.276] 27.4 5.6 1.2

cumulative 0.236 [0.200 0.277] 0.614 [0.558 0.644] 0.340 [0.294 0.382] 741.0 284.6 175.0

Table B.22: Learned 3-level WGGs, small placesetting dataset, Yminsize = 0.15, singletocomp1.

recall precision f-measure # targets # detections # correct

bowl 0.052 [0.000 0.125] 0.521 [0.200 1.000] 0.087 [0.000 0.205] 25.4 3.4 1.4
candle 0.028 [0.000 0.091] 0.081 [0.000 0.333] 0.040 [0.000 0.143] 14.6 7.2 0.4
cup 0.149 [0.059 0.241] 0.733 [0.500 1.000] 0.246 [0.105 0.389] 21.2 4.2 3.4
fork 0.333 [0.228 0.429] 0.573 [0.418 0.677] 0.408 [0.339 0.462] 121.6 74.8 40.4
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.255 [0.184 0.319] 0.744 [0.609 0.950] 0.373 [0.309 0.450] 100.0 35.2 25.2
knife 0.198 [0.057 0.264] 0.402 [0.275 0.500] 0.252 [0.101 0.346] 90.8 47.6 18.0
knifeside 0.000 [0.000 0.000] 0.600 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.8 0.0
napkin 0.025 [0.000 0.044] 1.000 [1.000 1.000] 0.049 [0.000 0.085] 46.8 1.2 1.2
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.361 [0.327 0.401] 0.875 [0.800 0.969] 0.510 [0.473 0.545] 154.8 64.0 56.0
saucer 0.182 [0.100 0.286] 0.950 [0.750 1.000] 0.300 [0.182 0.444] 13.6 2.6 2.4
shaker 0.074 [0.000 0.130] 0.503 [0.250 1.000] 0.117 [0.000 0.214] 17.8 3.6 1.4
spoon 0.388 [0.127 0.484] 0.698 [0.675 0.727] 0.480 [0.216 0.566] 60.0 33.2 23.0
spoonside 0.081 [0.000 0.316] 0.457 [0.000 1.000] 0.093 [0.000 0.300] 27.4 6.2 1.6

cumulative 0.235 [0.208 0.259] 0.612 [0.562 0.644] 0.339 [0.303 0.366] 741.0 284.0 174.4

Table B.23: Learned 3-level WGGs, small placesetting dataset, Yminsize = 0.15, singletocomp2.
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recall precision f-measure # targets # detections # correct

bowl 0.067 [0.037 0.125] 0.342 [0.143 0.500] 0.108 [0.069 0.190] 25.4 5.6 1.8
candle 0.028 [0.000 0.091] 0.065 [0.000 0.200] 0.039 [0.000 0.125] 14.6 8.0 0.4

cup 0.115 [0.087 0.143] 0.733 [0.333 1.000] 0.191 [0.154 0.242] 21.2 3.6 2.4
fork 0.347 [0.285 0.420] 0.590 [0.495 0.636] 0.434 [0.393 0.500] 121.6 72.4 42.2
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.332 [0.301 0.361] 0.590 [0.523 0.660] 0.423 [0.395 0.449] 100.0 57.2 33.2
knife 0.267 [0.213 0.308] 0.399 [0.308 0.538] 0.319 [0.252 0.392] 90.8 61.8 24.2

knifeside 0.013 [0.000 0.067] 0.233 [0.000 1.000] 0.019 [0.000 0.095] 13.8 4.0 0.2
napkin 0.033 [0.000 0.057] 0.477 [0.000 1.000] 0.061 [0.000 0.103] 46.8 3.6 1.6
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.350 [0.264 0.406] 0.856 [0.763 0.966] 0.493 [0.411 0.541] 154.8 63.4 53.8
saucer 0.109 [0.000 0.143] 0.950 [0.750 1.000] 0.189 [0.000 0.250] 13.6 1.8 1.6
shaker 0.053 [0.000 0.087] 0.617 [0.250 1.000] 0.091 [0.000 0.148] 17.8 2.4 1.0
spoon 0.410 [0.365 0.519] 0.693 [0.686 0.700] 0.513 [0.479 0.596] 60.0 35.2 24.4

spoonside 0.158 [0.000 0.364] 0.519 [0.143 1.000] 0.191 [0.000 0.471] 27.4 8.8 3.4

cumulative 0.258 [0.232 0.289] 0.582 [0.524 0.637] 0.356 [0.333 0.397] 741.0 327.8 190.2

Table B.24: Learned 3-level WGGs, small placesetting dataset, Yminsize 0.2, nosingletocomp.

recall precision f-measure # targets # detections # correct

bowl 0.052 [0.000 0.125] 0.425 [0.125 1.000] 0.083 [0.000 0.200] 25.4 4.8 1.4

candle 0.059 [0.000 0.111] 0.160 [0.000 0.500] 0.076 [0.000 0.154] 14.6 6.4 0.8
cup 0.124 [0.059 0.214] 0.693 [0.333 1.000] 0.205 [0.100 0.333] 21.2 3.8 2.6
fork 0.324 [0.228 0.412] 0.526 [0.440 0.597] 0.398 [0.313 0.462] 121.6 75.2 39.4

forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.303 [0.231 0.363] 0.657 [0.610 0.725] 0.413 [0.336 0.455] 100.0 45.8 30.0
knife 0.231 [0.170 0.308] 0.355 [0.250 0.424] 0.279 [0.203 0.357] 90.8 59.6 21.0

knifeside 0.000 [0.000 0.000] 0.600 [0.000 1.000] 0.000 [0.000 0.000] 13.8 1.2 0.0
napkin 0.034 [0.000 0.067] 0.850 [0.500 1.000] 0.063 [0.000 0.125] 46.8 2.0 1.6
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.357 [0.227 0.441] 0.864 [0.778 0.952] 0.496 [0.366 0.562] 154.8 64.8 55.0

saucer 0.094 [0.000 0.143] 1.000 [1.000 1.000] 0.168 [0.000 0.250] 13.6 1.4 1.4

shaker 0.085 [0.000 0.130] 0.567 [0.333 1.000] 0.135 [0.000 0.200] 17.8 3.8 1.6
spoon 0.424 [0.317 0.526] 0.724 [0.690 0.765] 0.531 [0.435 0.606] 60.0 34.8 25.2
spoonside 0.068 [0.000 0.182] 0.567 [0.143 1.000] 0.093 [0.000 0.258] 27.4 6.2 1.6

cumulative 0.245 [0.200 0.282] 0.586 [0.531 0.619] 0.345 [0.294 0.386] 741.0 309.8 181.6

Table B.25: Learned 3-level WGGs, small placesetting dataset, Yminsize 0.2, singletocompl.

recall precision f-measure # targets # detections # correct

bowl 0.052 [0.000 0.125] 0.475 [0.125 1.000] 0.084 [0.000 0.200] 25.4 4.4 1.4

candle 0.059 [0.000 0.111] 0.126 [0.000 0.333] 0.073 [0.000 0.143] 14.6 6.4 0.8
cup 0.147 [0.087 0.217] 0.643 [0.500 0.833] 0.238 [0.154 0.345] 21.2 4.8 3.2
fork 0.302 [0.000 0.438] 0.634 [0.473 1.000] 0.351 [0.000 0.462] 121.6 68.8 36.6
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.296 [0.231 0.330] 0.681 [0.610 0.763] 0.412 [0.336 0.453] 100.0 43.2 29.4

knife 0.222 [0.170 0.308] 0.332 [0.254 0.424] 0.266 [0.204 0.357] 90.8 60.8 20.2

knifeside 0.000 [0.000 0.000] 0.600 [0.000 1.000] 0.000 [0.000 0.000] 13.8 1.4 0.0
napkin 0.029 [0.000 0.067] 0.950 [0.750 1.000] 0.055 [0.000 0.125] 46.8 1.6 1.4

placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0

plate 0.345 [0.308 0.380] 0.899 [0.841 0.978] 0.496 [0.468 0.528] 154.8 59.8 53.4

saucer 0.143 [0.000 0.286] 1.000 [1.000 1.000] 0.237 [0.000 0.444] 13.6 2.0 2.0

shaker 0.074 [0.000 0.130] 0.633 [0.333 1.000] 0.116 [0.000 0.188] 17.8 3.6 1.4

spoon 0.426 [0.333 0.481] 0.719 [0.675 0.765] 0.533 [0.457 0.591] 60.0 35.4 25.4

spoonside 0.082 [0.000 0.316] 0.721 [0.250 1.000] 0.101 [0.000 0.333] 27.4 5.2 1.8

cumulative 0.239 [0.189 0.282] 0.594 [0.560 0.617] 0.340 [0.284 0.386] 741.0 297.4 177.0

= 0.2, singletocomp2.Table B.26: Learned 3-level WGGs, small placesetting dataset, Yminsize
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recall precision f-measure # targets # detections # correct

bowl 0.045 [0.000 0.094] 0.500 [0.167 1.000] 0.078 [0.000 0.167] 25.4 3.4 1.2
candle 0.032 [0.000 0.111] 0.054 [0.000 0.143] 0.038 [0.000 0.118] 14.6 7.6 0.4
cup 0.143 [0.071 0.235] 0.683 [0.200 1.000] 0.230 [0.105 0.348] 21.2 4.6 3.0
fork 0.375 [0.328 0.420] 0.548 [0.518 0.608] 0.444 [0.413 0.467] 121.6 83.6 45.6
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.331 [0.291 0.370] 0.581 [0.468 0.682] 0.419 [0.391 0.440] 100.0 58.8 33.2
knife 0.267 [0.213 0.330] 0.389 [0.279 0.536] 0.316 [0.244 0.408] 90.8 63.0 24.2
knifeside 0.000 [0.000 0.000] 0.400 [0.000 1.000] 0.000 [0.000 0.000] 13.8 1.8 0.0
napkin 0.043 [0.000 0.068] 0.566 [0.000 1.000] 0.075 [0.000 0.122] 46.8 5.4 2.0
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.357 [0.264 0.434] 0.875 [0.822 0.958] 0.503 [0.414 0.569] 154.8 63.2 54.8
saucer 0.104 [0.000 0.143] 0.950 [0.750 1.000] 0.181 [0.000 0.250] 13.6 1.8 1.6
shaker 0.067 [0.000 0.188] 0.467 [0.000 1.000] 0.107 [0.000 0.300] 17.8 3.0 1.2
spoon 0.447 [0.365 0.537] 0.692 [0.617 0.788] 0.538 [0.479 0.574] 60.0 38.8 26.6
spoonside 0.104 [0.000 0.368] 0.512 [0.125 1.000] 0.117 [0.000 0.311] 27.4 7.8 2.2

cumulative 0.265 [0.241 0.292] 0.572 [0.540 0.605] 0.362 [0.340 0.393] 741.0 342.8 196.0

Table B.27: Learned 3-level WGGs, small placesetting dataset, Yminsize = 0.3, nosingletocomp.

recall precision f-measure # targets # detections # correct

bowl 0.068 [0.000 0.125] 0.577 [0.250 1.000] 0.114 [0.000 0.216] 25.4 3.6 1.8
candle 0.081 [0.000 0.182] 0.242 [0.000 0.500] 0.108 [0.000 0.267] 14.6 6.4 1.0
cup 0.166 [0.087 0.217] 0.770 [0.500 1.000] 0.271 [0.148 0.357] 21.2 4.4 3.4
fork 0.359 [0.306 0.412] 0.538 [0.440 0.581] 0.430 [0.361 0.480] 121.6 81.2 43.6
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.327 [0.291 0.363] 0.576 [0.468 0.630] 0.415 [0.397 0.455] 100.0 57.8 32.6
knife 0.249 [0.170 0.309] 0.345 [0.250 0.439] 0.289 [0.203 0.363] 90.8 64.8 22.6
knifeside 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.8 0.0
napkin 0.042 [0.000 0.111] 0.741 [0.455 1.000] 0.074 [0.000 0.179] 46.8 3.6 2.0
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.388 [0.345 0.441] 0.834 [0.765 0.952] 0.527 [0.506 0.562] 154.8 72.2 59.8
saucer 0.143 [0.000 0.286] 0.893 [0.667 1.000] 0.231 [0.000 0.421] 13.6 2.4 2.0
shaker 0.085 [0.000 0.130] 0.636 [0.250 1.000] 0.134 [0.000 0.200] 17.8 3.8 1.6
spoon 0.445 [0.317 0.509] 0.715 [0.638 0.784] 0.545 [0.435 0.592] 60.0 37.4 26.6
spoonside 0.100 [0.000 0.316] 0.364 [0.000 1.000] 0.120 [0.000 0.343] 27.4 5.4 2.0

cumulative 0.269 [0.257 0.287] 0.579 [0.531 0.603] 0.367 [0.346 0.381] 741.0 343.8 199.0

Table B.28: Learned 3-level WGGs, small placesetting dataset, Yminsize = 0.3, singletocompl.

recall precision f-measure # targets # detections # correct

bowl 0.068 [0.000 0.125] 0.577 [0.250 1.000] 0.114 [0.000 0.216] 25.4 3.6 1.8
candle 0.081 [0.000 0.182] 0.242 [0.000 0.500] 0.108 [0.000 0.267] 14.6 6.4 1.0
cup 0.166 [0.087 0.217] 0.770 [0.500 1.000] 0.271 [0.148 0.357] 21.2 4.4 3.4
fork 0.359 [0.306 0.412] 0.538 [0.440 0.581] 0.430 [0.361 0.480] 121.6 81.2 43.6
forkside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 21.4 0.0 0.0
glass 0.327 [0.291 0.363] 0.576 [0.468 0.630] 0.415 [0.397 0.455] 100.0 57.8 32.6
knife 0.249 [0.170 0.309] 0.345 [0.250 0.439] 0.289 [0.203 0.363] 90.8 64.8 22.6
knifeside 0.000 [0.000 0.000] 0.800 [0.000 1.000] 0.000 [0.000 0.000] 13.8 0.8 0.0
napkin 0.042 [0.000 0.111] 0.741 [0.455 1.000] 0.074 [0.000 0.179] 46.8 3.6 2.0
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 11.8 0.0 0.0
plate 0.388 [0.345 0.441] 0.834 [0.765 0.952] 0.527 [0.506 0.562] 154.8 72.2 59.8
saucer 0.143 [0.000 0.286] 0.893 [0.667 1.000] 0.231 [0.000 0.421] 13.6 2.4 2.0
shaker 0.085 [0.000 0.130] 0.636 [0.250 1.000] 0.134 [0.000 0.200] 17.8 3.8 1.6
spoon 0.445 [0.317 0.509] 0.715 [0.638 0.784] 0.545 [0.435 0.592] 60.0 37.4 26.6
spoonside 0.100 [0.000 0.316] 0.364 [0.000 1.000] 0.120 [0.000 0.343] 27.4 5.4 2.0

cumulative 0.269 [0.257 0.287] 0.579 [0.531 0.603] 0.367 [0.346 0.381] 741.0 343.8 199.0

Table B.29: Learned 3-level WGGs, small placesetting dataset, Yminsize = 0.3, singletocomp2.
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recall precision f-measure # targets # detections # correct

bowl 0.367 [0.356 0.379] 0.369 [0.356 0.387] 0.368 [0.356 0.383] 202.7 201.3 74.3

candle 0.229 [0.161 0.286] 0.230 [0.165 0.286] 0.229 [0.163 0.286] 105.0 104.3 24.3

cup 0.556 [0.527 0.577] 0.567 [0.527 0.610] 0.562 [0.527 0.593] 178.3 175.0 99.3
fork 0.471 [0.447 0.484] 0.561 [0.482 0.705] 0.506 [0.482 0.547] 459.0 401.3 216.3
forkside 0.085 [0.062 0.106] 0.085 [0.062 0.106] 0.085 [0.062 0.106] 86.3 85.7 7.3

glass 0.471 [0.456 0.484] 0.476 [0.460 0.490] 0.473 [0.458 0.487] 682.3 676.0 321.7
knife 0.328 [0.314 0.344] 0.343 [0.330 0.354] 0.336 [0.322 0.349] 345.3 330.3 113.3
knifeside 0.035 [0.013 0.056] 0.054 [0.013 0.094] 0.041 [0.013 0.056] 77.0 61.0 2.7
napkin 0.132 [0.117 0.150] 0.149 [0.131 0.167] 0.140 [0.130 0.158] 295.7 263.3 39.0
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 141.0 0.0 0.0

plate 0.482 [0.454 0.497] 0.560 [0.554 0.566] 0.518 [0.504 0.527] 802.0 690.3 386.7

saucer 0.495 [0.455 0.536] 0.505 [0.470 0.536] 0.500 [0.462 0.536] 116.3 114.0 57.7
shaker 0.112 [0.077 0.167] 0.112 [0.077 0.167] 0.112 [0.077 0.167] 77.7 77.7 8.7
spoon 0.563 [0.549 0.589] 0.608 [0.564 0.658] 0.584 [0.558 0.599] 223.3 207.7 125.7
spoonside 0.304 [0.252 0.337] 0.305 [0.252 0.337] 0.305 [0.252 0.337] 107.0 106.7 32.3

cumulative 0.387 [0.381 0.390] 0.432 [0.428 0.437] 0.408 [0.403 0.412] 3899.0 3494.7 1509.3

Table B.30: DTPBM object detector, big placesetting dataset, known # objects.

recall precision f-measure # targets # detections # correct

bowl 0.529 [0.507 0.564] 0.059 [0.048 0.078] 0.105 [0.087 0.135] 202.7 1931.0 107.3
candle 0.310 [0.226 0.371] 0.016 [0.014 0.017] 0.031 [0.027 0.033] 105.0 2009.0 33.0
cup 0.696 [0.632 0.728] 0.064 [0.046 0.085] 0.118 [0.087 0.151] 178.3 2056.0 124.0

fork 0.548 [0.497 0.584] 0.223 [0.123 0.385] 0.296 [0.202 0.434] 459.0 1470.0 251.7
forkside 0.144 [0.097 0.176] 0.008 [0.007 0.009] 0.015 [0.013 0.018] 86.3 1494.7 12.3
glass 0.581 [0.572 0.587] 0.110 [0.108 0.113] 0.185 [0.183 0.189] 682.3 3601.7 396.7
knife 0.419 [0.397 0.443] 0.101 [0.090 0.123] 0.162 [0.148 0.188] 345.3 1460.3 144.7
knifeside 0.048 [0.037 0.070] 0.006 [0.002 0.013] 0.009 [0.003 0.019] 77.0 1274.7 3.7
napkin 0.234 [0.179 0.274] 0.064 [0.052 0.074] 0.098 [0.087 0.104] 295.7 1143.3 69.3
placemat 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 141.0 0.0 0.0
plate 0.557 [0.517 0.583] 0.318 [0.282 0.366] 0.403 [0.378 0.429] 802.0 1427.0 446.7

saucer 0.610 [0.554 0.660] 0.039 [0.034 0.045] 0.073 [0.064 0.083] 116.3 1848.0 70.7
shaker 0.180 [0.128 0.221] 0.009 [0.006 0.011] 0.017 [0.012 0.020] 77.7 1599.7 14.0

spoon 0.623 [0.598 0.636] 0.152 [0.111 0.233] 0.238 [0.188 0.335] 223.3 1040.7 139.0

spoonside 0.350 [0.313 0.375] 0.029 [0.023 0.033] 0.054 [0.042 0.061] 107.0 1310.3 37.3

cumulative 0.475 [0.465 0.482] 0.079 [0.075 0.085] 0.135 [0.130 0.144] 3899.0 23666.3 1850.3

Table B.3 1: DTPBM object detector, big placesetting dataset, heuristic # objects.
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recall precision f-measure # targets # detections # correct

bowl 0.212 [0.193 0.222] 0.303 [0.248 0.398] 0.248 [0.217 0.285] 202.7 147.0 43.0
candle 0.023 [0.009 0.048] 0.347 [0.167 0.625] 0.042 [0.017 0.088] 105.0 6.0 2.3
cup 0.366 [0.355 0.379] 0.538 [0.513 0.566] 0.436 [0.420 0.454] 178.3 121.3 65.3
fork 0.318 [0.282 0.358] 0.579 [0.479 0.698] 0.406 [0.379 0.437] 459.0 260.7 146.0
forkside 0.004 [0.000 0.012] 0.048 [0.000 0.143] 0.007 [0.000 0.022] 86.3 3.0 0.3
glass 0.261 [0.249 0.272] 0.417 [0.395 0.441] 0.321 [0.311 0.336] 682.3 427.3 178.0
knife 0.283 [0.274 0.290] 0.424 [0.417 0.432] 0.339 [0.331 0.347] 345.3 230.3 97.7
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.0 0.0 0.0
napkin 0.111 [0.083 0.133] 0.168 [0.127 0.203] 0.134 [0.100 0.161] 295.7 194.3 32.7
placemat 0.028 [0.016 0.041] 0.556 [0.500 0.667] 0.053 [0.030 0.076] 141.0 7.0 4.0
plate 0.408 [0.400 0.416] 0.745 [0.683 0.816] 0.527 [0.517 0.537] 802.0 442.3 327.7
saucer 0.357 [0.306 0.388] 0.516 [0.430 0.662] 0.418 [0.366 0.480] 116.3 81.7 41.3
shaker 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 77.7 1.7 0.0
spoon 0.429 [0.407 0.448] 0.638 [0.588 0.693] 0.513 [0.481 0.533] 223.3 150.7 96.0
spoonside 0.060 [0.035 0.108] 0.504 [0.440 0.571] 0.103 [0.065 0.173] 107.0 13.3 6.3

cumulative 0.267 [0.255 0.274] 0.499 [0.492 0.508] 0.348 [0.336 0.356] 3899.0 2086.7 1040.7

Table B.32: Learned 2-level WGGs, big placesetting dataset, pairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.207 [0.183 0.241] 0.357 [0.280 0.480] 0.262 [0.222 0.321] 202.7 120.7 42.0
candle 0.013 [0.009 0.019] 0.389 [0.167 0.667] 0.025 [0.016 0.037] 105.0 4.0 1.3
cup 0.313 [0.277 0.331] 0.579 [0.513 0.680] 0.402 [0.394 0.412] 178.3 98.3 55.7
fork 0.255 [0.237 0.267] 0.633 [0.530 0.709] 0.361 [0.349 0.380] 459.0 188.7 117.0
forkside 0.008 [0.000 0.012] 0.389 [0.000 1.000] 0.015 [0.000 0.023] 86.3 2.7 0.7
glass 0.035 [0.019 0.063] 0.772 [0.667 0.929] 0.065 [0.037 0.116] 682.3 31.7 23.3
knife 0.246 [0.227 0.264] 0.568 [0.536 0.592] 0.343 [0.326 0.365] 345.3 150.7 85.3
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.0 0.0 0.0
napkin 0.102 [0.092 0.113] 0.218 [0.210 0.226] 0.138 [0.130 0.150] 295.7 137.7 30.0
placemat 0.035 [0.027 0.047] 0.607 [0.571 0.667] 0.066 [0.052 0.088] 141.0 8.3 5.0
plate 0.426 [0.414 0.439] 0.698 [0.634 0.735] 0.528 [0.519 0.539] 802.0 492.0 341.7
saucer 0.274 [0.223 0.359] 0.640 [0.509 0.833] 0.375 [0.310 0.443] 116.3 51.0 31.3
shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0
spoon 0.399 [0.388 0.420] 0.688 [0.570 0.874] 0.499 [0.477 0.537] 223.3 134.0 89.0
spoonside 0.054 [0.017 0.077] 0.570 [0.400 0.727] 0.098 [0.033 0.139] 107.0 9.3 5.7

cumulative 0.212 [0.201 0.220] 0.579 [0.569 0.587] 0.311 [0.297 0.320] 3899.0 1429.0 828.0

Table B.33: Learned 2-level WGGs, big placesetting dataset, pairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.169 [0.148 0.207] 0.306 [0.200 0.365] 0.215 [0.174 0.264] 202.7 118.3 34.3
candle 0.013 [0.000 0.029] 0.617 [0.250 1.000] 0.024 [0.000 0.055] 105.0 3.0 1.3
cup 0.343 [0.290 0.379] 0.549 [0.486 0.583] 0.419 [0.387 0.443] 178.3 113.3 61.3
fork 0.297 [0.273 0.315] 0.567 [0.467 0.651] 0.387 [0.376 0.399] 459.0 248.3 136.7
forkside 0.000 [0.000 0.000] 0.333 [0.000 1.000] 0.000 [0.000 0.000] 86.3 1.7 0.0
glass 0.237 [0.197 0.262] 0.417 [0.394 0.461] 0.299 [0.276 0.315] 682.3 392.0 161.3
knife 0.280 [0.277 0.284] 0.444 [0.427 0.469] 0.343 [0.339 0.349] 345.3 218.0 96.7
knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 1.0 0.0
napkin 0.100 [0.076 0.126] 0.161 [0.138 0.179] 0.121 [0.106 0.143] 295.7 188.0 29.7
placemat 0.026 [0.016 0.041] 0.589 [0.500 0.667] 0.049 [0.030 0.076] 141.0 6.0 3.7
plate 0.390 [0.371 0.416] 0.733 [0.668 0.806] 0.507 [0.500 0.513] 802.0 430.0 312.3
saucer 0.326 [0.289 0.368] 0.536 [0.427 0.600] 0.405 [0.345 0.451] 116.3 72.0 38.0
shaker 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.7 0.7 0.0
spoon 0.409 [0.375 0.444] 0.636 [0.595 0.683] 0.496 [0.484 0.509] 223.3 144.7 91.3
spoonside 0.036 [0.000 0.108] 0.167 [0.000 0.500] 0.059 [0.000 0.177] 107.0 9.0 3.7

cumulative 0.249 [0.231 0.264] 0.504 [0.471 0.562] 0.332 [0.327 0.338] 3899.0 1946.0 970.3

Table B.34: Learned 2-level WGGs, big placesetting dataset, pairwise, classobj, free.
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recall precision f-measure # targets # detections # correct

bowl 0.194 [0.172 0.232] 0.333 [0.259 0.448] 0.244 [0.211 0.305] 202.7 121.3 39.3
candle 0.019 [0.011 0.029] 0.472 [0.333 0.750] 0.036 [0.021 0.055] 105.0 4.3 2.0

cup 0.293 [0.245 0.319] 0.623 [0.477 0.882] 0.385 [0.379 0.392] 178.3 92.0 52.0
fork 0.263 [0.246 0.280] 0.667 [0.564 0.727] 0.376 [0.358 0.4011 459.0 184.0 120.7
forkside 0.008 [0.000 0.025] 0.697 [0.091 1.000] 0.013 [0.000 0.039] 86.3 7.3 0.7
glass 0.045 [0.034 0.066] 0.783 [0.632 1.000] 0.083 [0.064 0.121] 682.3 40.3 30.0

knife 0.244 [0.224 0.267] 0.591 [0.540 0.618] 0.346 [0.329 0.373] 345.3 144.0 84.7
knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 0.3 0.0

napkin 0.105 [0.083 0.117] 0.240 [0.212 0.274] 0.146 [0.119 0.164] 295.7 129.0 31.0
placemat 0.040 [0.027 0.061] 0.589 [0.500 0.667] 0.074 [0.052 0.110] 141.0 9.7 5.7

plate 0.420 [0.394 0.446] 0.717 [0.647 0.757] 0.528 [0.519 0.538] 802.0 473.7 337.0

saucer 0.297 [0.231 0.388] 0.645 [0.538 0.791] 0.401 [0.324 0.473] 116.3 53.7 34.0

shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0

spoon 0.405 [0.397 0.415] 0.714 [0.600 0.836] 0.514 [0.491 0.538] 223.3 129.0 90.3
spoonside 0.052 [0.009 0.077] 0.432 [0.200 0.727] 0.091 [0.017 0.139] 107.0 11.7 5.3

cumulative 0.214 [0.205 0.219] 0.595 [0.588 0.603] 0.314 [0.305 0.322] 3899.0 1400.3 832.7

Table B.35: Learned 2-level WGGs, big placesetting dataset, pairwise, classobj, free.

recall precision f-measure # targets # detections # correct

bowl 0.171 [0.139 0.197] 0.405 [0.301 0.476] 0.241 [0.190 0.279] 202.7 86.3 34.7

candle 0.016 [0.011 0.019] 0.236 [0.125 0.333] 0.029 [0.020 0.036] 105.0 7.3 1.7
cup 0.304 [0.296 0.313] 0.628 [0.564 0.718] 0.409 [0.397 0.427] 178.3 87.3 54.3

fork 0.263 [0.236 0.292] 0.610 [0.504 0.741] 0.362 [0.359 0.369] 459.0 206.0 120.7
forkside 0.004 [0.000 0.011] 0.833 [0.500 1.000] 0.007 [0.000 0.021] 86.3 0.7 0.3
glass 0.003 [0.000 0.009] 0.867 [0.600 1.000] 0.006 [0.000 0.018] 682.3 3.3 2.0

knife 0.252 [0.234 0.281] 0.564 [0.536 0.596] 0.348 [0.325 0.382] 345.3 154.3 87.3
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.0 0.0 0.0
napkin 0.095 [0.066 0.123] 0.210 [0.206 0.217] 0.129 [0.100 0.157] 295.7 132.7 28.0

placemat 0.026 [0.016 0.034] 0.595 [0.500 0.714] 0.049 [0.030 0.065] 141.0 6.0 3.7

plate 0.440 [0.417 0.464] 0.684 [0.649 0.722] 0.534 [0.517 0.545] 802.0 516.7 352.3

saucer 0.321 [0.264 0.388] 0.618 [0.519 0.765] 0.416 [0.362 0.444] 116.3 61.3 37.0
shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0

spoon 0.366 [0.276 0.420] 0.687 [0.632 0.762] 0.470 [0.405 0.515] 223.3 120.3 81.3
spoonside 0.101 [0.070 0.147] 0.582 [0.326 0.727] 0.161 [0.127 0.203] 107.0 23.3 10.7

cumulative 0.209 [0.206 0.212] 0.580 [0.550 0.612] 0.307 [0.303 0.315] 3899.0 1405.7 814.0

Table B.36: Learned 2-level WGGs, big placesetting dataset, nopairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

bowl 0.150 [0.099 0.192] 0.467 [0.278 0.591] 0.226 [0.146 0.290] 202.7 66.0 30.3
candle 0.013 [0.009 0.019] 0.192 [0.091 0.286] 0.024 [0.016 0.036] 105.0 7.7 1.3

cup 0.235 [0.207 0.280] 0.703 [0.614 0.816] 0.350 [0.310 0.397] 178.3 60.3 42.0

fork 0.227 [0.200 0.260] 0.666 [0.496 0.754] 0.333 [0.315 0.342] 459.0 167.0 104.3
forkside 0.007 [0.000 0.022] 0.778 [0.333 1.000] 0.013 [0.000 0.040] 86.3 2.0 0.7

glass 0.011 [0.000 0.034] 0.933 [0.800 1.000] 0.022 [0.000 0.065] 682.3 10.0 8.0
knife 0.202 [0.187 0.227] 0.704 [0.693 0.721] 0.314 [0.295 0.346] 345.3 99.3 70.0

knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 0.3 0.0

napkin 0.080 [0.059 0.102] 0.262 [0.247 0.273] 0.122 [0.098 0.148] 295.7 90.7 23.7

placemat 0.030 [0.023 0.041] 0.640 [0.571 0.750] 0.058 [0.045 0.077] 141.0 6.7 4.3

plate 0.380 [0.368 0.398] 0.841 [0.748 0.901] 0.522 [0.519 0.528] 802.0 365.3 304.7

saucer 0.243 [0.132 0.350] 0.727 [0.679 0.775] 0.354 [0.224 0.462] 116.3 38.3 27.7

shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0

spoon 0.297 [0.220 0.344] 0.783 [0.658 0.895] 0.423 [0.353 0.464] 223.3 87.3 66.0

spoonside 0.102 [0.052 0.147] 0.576 [0.366 0.750] 0.163 [0.098 0.210] 107.0 22.3 10.7

cumulative 0.178 [0.172 0.184] 0.682 [0.618 0.722] 0.282 [0.278 0.284] 3899.0 1023.3 693.7

Table B.37: Learned 2-level WGGs, big placesetting dataset, nopairwise, classobj, fixed.
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recall precision f-measure # targets # detections # correct

bowl 0.135 [0.079 0.167] 0.325 [0.208 0.386] 0.191 [0.115 0.234] 202.7 83.0 27.3
candle 0.019 [0.009 0.038] 0.156 [0.083 0.286] 0.034 [0.016 0.067] 105.0 12.0 2.0
cup 0.315 [0.296 0.326] 0.604 [0.566 0.649] 0.414 [0.407 0.420] 178.3 94.0 56.3
fork 0.272 [0.244 0.317] 0.616 [0.538 0.720] 0.374 [0.345 0.412] 459.0 206.7 124.7
forkside 0.008 [0.000 0.024] 0.061 [0.000 0.182] 0.014 [0.000 0.042] 86.3 6.0 0.7
glass 0.271 [0.254 0.282] 0.416 [0.400 0.437] 0.328 [0.310 0.343] 682.3 444.0 184.7
knife 0.272 [0.264 0.278] 0.481 [0.4710.497] 0.348 [0.339 0.353] 345.3 195.7 94.0
knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.0 0.0 0.0
napkin 0.092 [0.078 0.109] 0.183 [0.172 0.195] 0.122 [0.110 0.133] 295.7 150.3 27.3
placemat 0.002 [0.000 0.007] 0.667 [0.000 1.000] 0.005 [0.000 0.014] 141.0 0.7 0.3
plate 0.394 [0.383 0.400] 0.752 [0.728 0.777] 0.516 [0.513 0.520] 802.0 420.3 315.7
saucer 0.199 [0.149 0.264] 0.777 [0.720 0.826] 0.315 [0.247 0.395] 116.3 30.0 23.3
shaker 0.000 [0.000 0.000] 0.333 [0.000 1.000] 0.000 [0.000 0.000] 77.7 1.3 0.0
spoon 0.367 [0.308 0.397] 0.769 [0.680 0.844] 0.494 [0.442 0.540] 223.3 107.3 82.0
spoonside 0.058 [0.019 0.087] 0.391 [0.200 0.538] 0.101 [0.035 0.145] 107.0 15.3 6.3

cumulative 0.242 [0.237 0.250] 0.535 [0.519 0.546] 0.333 [0.325 0.343] 3899.0 1766.7 944.7

Table B.38: Learned 3-level WGGs, big placesetting dataset, Yrninsize = 0. 1, nosingletocomp.

recall precision f-measure, # targets # detections # correct

bowl 0.089 [0.074 0.118] 0.310 [0.227 0.414] 0.138 [0.112 0.184] 202.7 58.7 18.0
candle 0.021 [0.000 0.034] 0.655 [0.364 1.000] 0.039 [0.000 0.063] 105.0 5.3 2.3
cup 0.252 [0.179 0.3 14] 0.590 [0.541 0.635] 0.347 [0.280 0.397] 178.3 77.0 44.7
fork 0.188 [0.015 0.296] 0.648 [0.468 1.000] 0.241 [0.030 0.362] 459.0 179.7 86.0
forkside 0.008 [0.000 0.0 12] 0.078 [0.000 0.200] 0.013 [0.000 0.022] 86.3 12.0 0.7
glass 0.148 [0.091 0.1781 0.550 [0.500 0.625] 0.228 [0.159 0.266] 682.3 188.0 100.3
knife 0.205 [0.134 0.259] 0.602 [0.532 0.705] 0.298 [0.225 0.348] 345.3 124.7 71.7
knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 2.0 0.0
napkin 0.087 [0.055 0.117] 0.181 [0.125 0.232] 0.110 [0.088 0.121] 295.7 162.3 25.7
placemnat 0.009 [0.000 0.027] 0.889 [0.667 1.000] 0.018 [0.000 0.053] 141.0 2.0 1.3
plate 0.202 [0.020 0.3 16] 0.552 [0.2 19 0.762] 0.288 [0.036 0.430] 802.0 243.0 161.0
saucer 0.207 [0.136 0.311] 0.676 [0.516 0.944] 0.297 [0.238 0.388] 116.3 39.0 23.3
shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0
spoon 0.258 [0.089 0.444] 0.657 [0.592 0.701] 0.341 [0.157 0.507] 223.3 93.0 58.7
spoonside 0.068 [0.000 0.127] 0.290 [0.000 0.450] 0.109 [0.000 0.195] 107.0 173 73

cumulative 0.154 [0.114 0.193] 0.494 [0.410 0.543] 0.234 [0.178 0.285] 3899.0 1204.0 601.0

Table B.39: Learned 3-level WGGs, big placesetting dataset, Yminsize -0. 1, singletocompi.

recall precision f-measure # targets # detections # correct

bowl 0.086 [0.059 0.109] 0.369 [0.232 0.474] 0.133 [0.103 0.149] 202.7 54.3 17.3
candle 0.003 [0.000 0.009] 0.389 [0.000 1.000] 0.005 [0.000 0.016] 105.0 3.0 0.3
cup 0.247 [0.245 0.249] 0.703 [0.634 0.763] 0.365 [0.353 0.373] 178.3 63.0 44.0
fork 0.204 [0.088 0.267] 0.698 [0.603 0.796] 0.301 [0.159 0.374] 459.0 142.3 94.3
forkside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 86.3 3.7 0.0
glass 0.144 [0.094 0.177] 0.542 [0.502 0.588] 0.224 [0.162 0.2621] 682.3 183.0 97.3
knife 0.222 [0.209 0.234] 0.627 [0.564 0.673] 0.326 [0.319 0.3301] 345.3 122.3 76.3
knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 1.3 0.0
napkin 0.071 [0.061 0.083] 0.277 [0.231 0.300] 0.112 [0.102 0.122] 295.7 78.3 21.0
placemnat 0.010 [0.007 0.014] 0.833 [0.500 1.000] 0.000 [0.013 0.027] 141.0 1.7 1.3
plate 0.239 [0.170 0.329] 0.742 [0.569 0.846] 0.360 [0.262 0.474] 802.0 255.7 191.7
saucer 0.204 [0.174 0.223] 0.881 [0.844 0.913] 0.331 [0.292 0.357] 116.3 27.0 23.7
shaker 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.7 0.3 0.0
spoon 0.335 [0.290 0.379] 0.734 [0.706 0.765] 0.459 [0.4 15 0.507] 223.3 102.0 75.0
spoonside 0.051 [0.026 0.088] 0.575 [0.281 1.000] 0.085 [0.0510.134] 107.0 14.7 5.3

cumulative 0.166 [0.132 0.194] 0.611 [0.536 0.671] 0.261 [0.211 0.301] 3899.0 1052.7 647.7

Table B.40: Learned 3-level WGGs, big placesetting dataset, Yminsize
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recall precision f-measure # targets # detections # correct

bowl 0.168 [0.134 0.202] 0.311 [0.225 0.386] 0.217 [0.168 0.248] 202.7 111.7 34.0

candle 0.010 [0.000 0.019] 0.217 [0.000 0.400] 0.019 [0.000 0.036] 105.0 4.7 1.0
cup 0.311 [0.272 0.335] 0.588 [0.530 0.622] 0.405 [0.379 0.426] 178.3 95.7 55.7
fork 0.289 [0.262 0.328] 0.570 [0.471 0.667] 0.381 [0.349 0.417] 459.0 238.7 132.7
forkside 0.004 [0.000 0.011] 0.400 [0.000 1.000] 0.007 [0.000 0.020] 86.3 2.7 0.3

glass 0.271 [0.245 0.284] 0.414 [0.406 0.425] 0.327 [0.307 0.340] 682.3 445.3 184.3

knife 0.268 [0.264 0.277] 0.481 [0.436 0.530] 0.344 [0.339 0.353] 345.3 193.3 92.7

knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 0.7 0.0

napkin 0.092 [0.086 0.100] 0.153 [0.145 0.158] 0.114 [0.108 0.122] 295.7 176.7 27.0

placemat 0.002 [0.000 0.007] 0.667 [0.000 1.000] 0.005 [0.000 0.014] 141.0 0.7 0.3

plate 0.390 [0.378 0.396] 0.771 [0.758 0.786] 0.517 [0.507 0.525] 802.0 405.0 312.3

saucer 0.192 [0.066 0.288] 0.815 [0.735 0.889] 0.296 [0.123 0.414] 116.3 28.7 22.3

shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0
spoon 0.397 [0.348 0.422] 0.747 [0.672 0.848] 0.515 [0.494 0.533] 223.3 120.7 88.7

spoonside 0.046 [0.009 0.118] 0.403 [0.333 0.500] 0.072 [0.017 0.179] 107.0 12.3 4.7

cumulative 0.245 [0.240 0.251] 0.521 [0.514 0.527] 0.333 [0.328 0.340] 3899.0 1836.7 956.0

Table B.41: Learned 3-level WGGs, big placesetting dataset, Yminsize 0.15, nosingletocomp.

recall precision f-measure # targets # detections # correct

bowl 0.076 [0.059 0.089] 0.317 [0.214 0.409] 0.122 [0.093 0.146] 202.7 49.7 15.3

candle 0.013 [0.010 0.017] 0.245 [0.200 0.286] 0.024 [0.018 0.032] 105.0 5.3 1.3

cup 0.229 [0.190 0.284] 0.668 [0.578 0.765] 0.337 [0.295 0.381] 178.3 62.3 40.7

fork 0.275 [0.257 0.304] 0.587 [0.486 0.651] 0.373 [0.342 0.409] 459.0 218.7 126.3

forkside 0.004 [0.000 0.012] 0.006 [0.000 0.019] 0.005 [0.000 0.015] 86.3 19.0 0.3

glass 0.212 [0.162 0.269] 0.467 [0.412 0.502] 0.287 [0.246 0.325] 682.3 317.0 144.3

knife 0.255 [0.227 0.284] 0.492 [0.389 0.690] 0.327 [0.308 0.342] 345.3 195.3 88.3

knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 0.7 0.0

napkin 0.088 [0.055 0.106] 0.207 [0.150 0.302] 0.115 [0.092 0.128] 295.7 148.3 26.0

placemat 0.011 [0.000 0.034] 0.875 [0.625 1.000] 0.022 [0.000 0.065] 141.0 2.7 1.7

plate 0.224 [0.047 0.315] 0.568 [0.253 0.743] 0.318 [0.079 0.438] 802.0 279.3 179.0

saucer 0.197 [0.096 0.330] 0.730 [0.642 0.857] 0.292 [0.173 0.436] 116.3 32.0 22.0

shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0

spoon 0.388 [0.286 0.444] 0.662 [0.516 0.842] 0.473 [0.427 0.514] 223.3 140.3 86.7

spoonside 0.039 [0.009 0.098] 0.568 [0.250 1.000] 0.066 [0.017 0.161] 107.0 9.0 4.0

cumulative 0.189 [0.164 0.209] 0.496 [0.462 0.526] 0.273 [0.242 0.300] 3899.0 1479.7 736.0

Table B.42: Learned 3-level WGGs, big placesetting dataset, Yminsize = 0.15, singletocompi.

recall precision f-measure # targets # detections # correct

bowl 0.129 [0.099 0.148] 0.359 [0.262 0.429] 0.186 [0.157 0.220] 202.7 76.3 26.0

candle 0.017 [0.009 0.032] 0.205 [0.115 0.250] 0.028 [0.017 0.050] 105.0 11.3 1.7

cup 0.248 [0.213 0.280] 0.701 [0.648 0.766] 0.364 [0.333 0.398] 178.3 64.0 44.3

fork 0.279 [0.257 0.308] 0.612 [0.536 0.691] 0.381 [0.360 0.409] 459.0 212.3 128.0

forkside 0.000 [0.000 0.000] 0.333 [0.000 1.000] 0.000 [0.000 0.000] 86.3 1.0 0.0
glass 0.207 [0.158 0.281] 0.492 [0.409 0.553] 0.283 [0.242 0.333] 682.3 301.3 141.3

knife 0.270 [0.243 0.290] 0.474 [0.443 0.500] 0.344 [0.314 0.367] 345.3 197.0 93.7

knifeside 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.0 0.0 0.0

napkin 0.073 [0.048 0.096] 0.210 [0.168 0.244] 0.105 [0.079 0.122] 295.7 109.0 21.7

placemat 0.005 [0.000 0.014] 1.000 [1.000 1.000] 0.009 [0.000 0.027] 141.0 0.7 0.7

plate 0.151 [0.010 0.280] 0.658 [0.444 0.855] 0.234 [0.019 0.422] 802.0 157.0 120.3

saucer 0.234 [0.207 0.272] 0.800 [0.758 0.852] 0.361 [0.325 0.405] 116.3 34.3 27.3

shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0

spoon 0.370 [0.344 0.401] 0.699 [0.605 0.770] 0.482 [0.455 0.515] 223.3 119.3 82.7

spoonside 0.029 [0.000 0.088] 0.564 [0.000 1.000] 0.052 [0.000 0.157] 107.0 4.7 3.0

cumulative 0.177 [0.161 0.204] 0.535 [0.498 0.600] 0.266 [0.244 0.304] 3899.0 1288.3 690.7

Table B.43: Learned 3-level WGGs, big placesetting dataset, Yminsize =0. 15, singletocomp2.
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recall precision f-measure # targets # detections # correct

bowl 0.156 [0.124 0.177] 0.322 [0.217 0.382] 0.210 [0.158 0.239] 202.7 100.7 31.7
candle 0.017 [0.009 0.0221 0.252 [0.071 0.400] 0.030 [0.015 0.040] 105.0 8.7 1.7
cup 0.292 [0.237 0.324] 0.611 [0.586 0.625] 0.393 [0.343 0.426] 178.3 86.0 52.3
fork 0.318 [0.255 0.371] 0.526 [0.467 0.585] 0.392 [0.355 0.435] 459.0 283.7 146.3
forkside 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 86.3 5.0 0.0
glass 0.273 [0.266 0.284] 0.400 [0.389 0.421] 0.324 [0.316 0.339] 682.3 465.3 186.0
knife 0.271 [0.255 0.281] 0.450 [0.406 0.500] 0.338 [0.314 0.355] 345.3 208.7 93.7
knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 1.0 0.0
napkin 0.112 [0.102 0.117] 0.164 [0.152 0.177] 0.133 [0.122 0.140] 295.7 201.7 33.0
placemat 0.007 [0.000 0.014] 0.833 [0.500 1.000] 0.013 [0.000 0.027] 141.0 1.3 1.0
plate 0.393 [0.373 0.404] 0.753 [0.741 0.760] 0.517 [0.500 0.528] 802.0 418.7 315.3
saucer 0.202 [0.165 0.248] 0.780 [0.690 0.833] 0.321 [0.267 0.380] 116.3 30.3 23.7
shaker 0.004 [0.000 0.013] 0.417 [0.000 1.000] 0.008 [0.000 0.025] 77.7 2.0 0.3
spoon 0.387 [0.339 0.457] 0.674 [0.642 0.724] 0.488 [0.462 0.534] 223.3 129.7 86.7
spoonside 0.057 [0.010 0.127] 0.596 [0.308 1.000] 0.094 [0.019 0.202] 107.0 13.7 6.0

cumulative 0.251 [0.238 0.258] 0.500 [0.487 0.516] 0.334 [0.320 0.344] 3899.0 1956.3 977.7

Table B.44: Learned 3-level WGGs, big placesetting dataset, 7minsize = 0.2, nosingletocomp.

recall precision f-measure # targets # detections # correct

bowl 0.046 [0.030 0.079] 0.263 [0.214 0.333] 0.075 [0.052 0.119] 202.7 37.3 9.3
candle 0.013 [0.010 0.017] 0.219 [0.125 0.333] 0.023 [0.019 0.031] 105.0 7.0 1.3
cup 0.213 [0.178 0.264] 0.789 [0.716 0.833] 0.332 [0.293 0.386] 178.3 49.0 38.0
fork 0.308 [0.257 0.362] 0.534 [0.468 0.613] 0.386 [0.362 0.427] 459.0 271.7 141.7
forkside 0.004 [0.000 0.012] 0.167 [0.000 0.500] 0.008 [0.000 0.023] 86.3 2.0 0.3
glass 0.264 [0.245 0.275] 0.400 [0.362 0.433] 0.318 [0.292 0.336] 682.3 452.0 180.0
knife 0.274 [0.268 0.281] 0.415 [0.347 0.535] 0.327 [0.302 0.369] 345.3 235.3 94.7
knifeside 0.000 [0.000 0.000] 0.333 [0.000 1.000] 0.000 [0.000 0.000] 77.0 0.7 0.0
napkin 0.109 [0.086 0.130] 0.166 [0.137 0.189] 0.131 [0.105 0.154] 295.7 192.7 32.0
placemat 0.005 [0.000 0.007] 0.833 [0.500 1.000] 0.009 [0.000 0.014] 141.0 1.0 0.7
plate 0.213 [0.050 0.338] 0.545 [0.288 0.748] 0.302 [0.085 0.466] 802.0 280.0 171.3
saucer 0.166 [0.074 0.233] 0.802 [0.649 0.900] 0.265 [0.137 0.343] 116.3 25.0 19.0
shaker 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.7 0.3 0.0
spoon 0.394 [0.344 0.440] 0.634 [0.600 0.694] 0.482 [0.460 0.507] 223.3 140.3 88.0
spoonside 0.054 [0.000 0.127] 0.469 [0.000 1.000] 0.087 [0.000 0.194] 107.0 12.3 5.7

cumulative 0.201 [0.155 0.232] 0.455 [0.393 0.492] 0.278 [0.222 0.313] 3899.0 1706.7 782.0

Table B.45: Learned 3-level WGGs, big placesetting dataset, 7minsize = 0.2, singletocompl.

recall precision f-measure # targets # detections # correct

bowl 0.089 [0.064 0.119] 0.339 [0.276 0.394] 0.137 [0.110 0.166] 202.7 56.3 18.0
candle 0.009 [0.000 0.017] 0.089 [0.000 0.143] 0.016 [0.000 0.030] 105.0 10.0 1.0
cup 0.223 [0.183 0.253] 0.787 [0.729 0.836] 0.347 [0.298 0.388] 178.3 51.0 40.0
fork 0.336 [0.289 0.366] 0.518 [0.435 0.601] 0.403 [0.390 0.421] 459.0 308.3 154.7
forkside 0.008 [0.000 0.024] 0.048 [0.000 0.143] 0.013 [0.000 0.040] 86.3 6.0 0.7
glass 0.266 [0.252 0.275] 0.388 [0.375 0.410] 0.316 [0.302 0.329] 682.3 466.0 181.0
knife 0.280 [0.273 0.289] 0.421 [0.367 0.462] 0.335 [0.324 0.343] 345.3 233.0 96.7
knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 0.3 0.0
napkin 0.130 [0.116 0.157] 0.170 [0.138 0.211] 0.147 [0.126 0.180] 295.7 227.0 38.3
placemat 0.002 [0.000 0.007] 1.000 [1.000 1.000] 0.005 [0.000 0.014] 141.0 0.3 0.3
plate 0.261 [0.237 0.305] 0.648 [0.527 0.725] 0.371 [0.327 0.424] 802.0 327.0 209.3
saucer 0.160 [0.000 0.248] 0.887 [0.750 1.000] 0.249 [0.000 0.390] 116.3 22.0 18.3
shaker 0.000 [0.000 0.000] 0.333 [0.000 1.000] 0.000 [0.000 0.000] 77.7 1.0 0.0
spoon 0.370 [0.332 0.431] 0.676 [0.654 0.716] 0.476 [0.441 0.519] 223.3 123.3 83.0
spoonside 0.059 [0.000 0.098] 0.555 [0.281 1.000] 0.093 [0.000 0.156] 107.0 19.3 6.3

cumulative 0.217 [0.204 0.235] 0.458 [0.456 0.461] 0.295 [0.283 0.310] 3899.0 1851.0 847.7

Table B.46: Learned 3-level WGGs, big placesetting dataset, Yminsize
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= 0.2, singletocomp2.



recall precision f-measure # targets # detections # correct

bowl 0.195 [0.153 0.251] 0.304 [0.203 0.367] 0.237 [0.175 0.298] 202.7 133.3 39.7
candle 0.017 [0.009 0.022] 0.223 [0.125 0.400] 0.030 [0.016 0.037] 105.0 9.0 1.7
cup 0.303 [0.290 0.310] 0.587 [0.566 0.606] 0.399 [0.389 0.410] 178.3 92.0 54.0

fork 0.326 [0.275 0.369] 0.542 [0.491 0.626] 0.402 [0.382 0.428] 459.0 283.7 150.0
forkside 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 86.3 3.3 0.0
glass 0.279 [0.269 0.287] 0.415 [0.408 0.423] 0.334 [0.324 0.339] 682.3 458.3 190.3
knife 0.286 [0.284 0.287] 0.435 [0.409 0.455] 0.345 [0.337 0.352] 345.3 226.7 98.7
knifeside 0.000 [0.000 0.000] 0.333 [0.000 1.000] 0.000 [0.000 0.000] 77.0 1.7 0.0

napkin 0.110 [0.092 0.143] 0.152 [0.132 0.174] 0.128 [0.109 0.157] 295.7 213.3 32.7
placemat 0.012 [0.007 0.016] 0.611 [0.333 1.000] 0.023 [0.013 0.030] 141.0 3.0 1.7

plate 0.398 [0.380 0.417] 0.761 [0.752 0.778] 0.523 [0.505 0.537] 802.0 420.0 319.7

saucer 0.209 [0.140 0.272] 0.776 [0.739 0.815] 0.325 [0.236 0.402] 116.3 31.3 24.3

shaker 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.7 0.3 0.0

spoon 0.432 [0.415 0.457] 0.650 [0.627 0.679] 0.519 [0.513 0.529] 223.3 149.0 96.7
spoonside 0.063 [0.000 0.118] 0.262 [0.000 0.400] 0.100 [0.000 0.180] 107.0 17.7 6.7

cumulative 0.261 [0.252 0.266] 0.498 [0.489 0.511] 0.342 [0.333 0.348] 3899.0 2042.7 1016.0

Table B.47: Learned 3-level WGGs, big placesetting dataset, Yminsize = 0.3, nosingletocomp.

recall precision f-measure # targets # detections # correct

bowl 0.136 [0.044 0.188] 0.317 [0.248 0.383] 0.178 [0.078 0.242] 202.7 91.7 27.7

candle 0.014 [0.009 0.022] 0.270 [0.143 0.500] 0.024 [0.016 0.038] 105.0 7.0 1.3

cup 0.235 [0.207 0.286] 0.687 [0.650 0.731] 0.348 [0.322 0.397] 178.3 61.7 42.0

fork 0.328 [0.287 0.353] 0.544 [0.459 0.635] 0.404 [0.395 0.419] 459.0 285.7 150.7
forkside 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 86.3 2.0 0.0

glass 0.264 [0.258 0.275] 0.400 [0.390 0.409] 0.318 [0.311 0.329] 682.3 450.0 180.0
knife 0.273 [0.261 0.289] 0.426 [0.396 0.443] 0.333 [0.320 0.350] 345.3 221.0 94.3

knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 0.7 0.0

napkin 0.114 [0.102 0.123] 0.165 [0.158 0.179] 0.135 [0.124 0.146] 295.7 203.7 33.7

placemat 0.012 [0.007 0.016] 0.667 [0.500 1.000] 0.023 [0.013 0.030] 141.0 2.7 1.7

plate 0.404 [0.319 0.461] 0.706 [0.656 0.752] 0.509 [0.448 0.541] 802.0 463.0 323.7
saucer 0.132 [0.000 0.272] 0.553 [0.000 0.882] 0.207 [0.000 0.403] 116.3 18.0 14.3

shaker 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 77.7 0.0 0.0
spoon 0.416 [0.348 0.466] 0.608 [0.574 0.634] 0.491 [0.450 0.514] 223.3 154.0 93.0
spoonside 0.054 [0.000 0.127] 0.383 [0.000 0.667] 0.089 [0.000 0.202] 107.0 11.7 5.7

cumulative 0.248 [0.229 0.274] 0.491 [0.485 0.499] 0.329 [0.313 0.350] 3899.0 1972.7 968.0

Table B.48: Learned 3-level WGGs, big placesetting dataset, Yminsize 0.3, singletocompl.

recall precision f-measure # targets # detections # correct

bowl 0.179 [0.133 0.217] 0.335 [0.248 0.397] 0.228 [0.199 0.271] 202.7 114.3 36.3
candle 0.013 [0.009 0.019] 0.209 [0.083 0.400] 0.024 [0.016 0.036] 105.0 8.0 1.3

cup 0.203 [0.172 0.231] 0.778 [0.731 0.853] 0.320 [0.286 0.353] 178.3 47.3 36.3
fork 0.331 [0.287 0.367] 0.542 [0.458 0.635] 0.406 [0.389 0.434] 459.0 288.7 152.0
forkside 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 86.3 3.0 0.0
glass 0.275 [0.258 0.288] 0.414 [0.401 0.426] 0.331 [0.314 0.344] 682.3 453.3 187.7
knife 0.274 [0.267 0.287] 0.438 [0.396 0.460] 0.337 [0.320 0.353] 345.3 216.3 94.7

knifeside 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.0 0.7 0.0

napkin 0.114 [0.102 0.131] 0.173 [0.158 0.193] 0.138 [0.124 0.156] 295.7 194.0 33.7

placemat 0.010 [0.000 0.016] 0.500 [0.000 1.000] 0.019 [0.000 0.030] 141.0 2.3 1.3

plate 0.362 [0.203 0.452] 0.619 [0.509 0.711] 0.452 [0.290 0.538] 802.0 458.3 290.0

saucer 0.094 [0.000 0.184] 0.635 [0.000 1.000] 0.162 [0.000 0.306] 116.3 11.3 10.3

shaker 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 77.7 0.3 0.0

spoon 0.403 [0.295 0.478] 0.652 [0.572 0.767] 0.486 [0.426 0.521] 223.3 143.7 90.0

spoonside 0.066 [0.000 0.127] 0.292 [0.000 0.542] 0.107 [0.000 0.206] 107.0 16.7 7.0

cumulative 0.241 [0.211 0.271] 0.480 [0.463 0.490] 0.320 [0.290 0.348] 3899.0 1958.3 940.7

Table B.49: Learned 3-level WGGs, big placesetting dataset, Yminsize 0.3, singletocomp2.
147



recall precision f-measure # targets # detections # correct

car 0.373 [0.360 0.388] 0.376 [0.360 0.398] 0.374 [0.360 0.393] 110.0 109.0 41.0
chimney 0.164 [0.132 0.219] 0.164 [0.132 0.219] 0.164 [0.132 0.219] 344.0 344.0 55.7
door 0.283 [0.220 0.3191 0.283 [0.220 0.319] 0.283 [0.220 0.319] 497.0 497.0 141.0
driveway 0.170 [0.121 0.230] 0.227 [0.173 0.273] 0.188 [0.165 0.233] 145.3 112.3 24.7
garagedoor 0.327 [0.306 0.349] 0.328 [0.306 0.349] 0.327 [0.306 0.349] 142.7 142.3 46.7
path 0.055 [0.052 0.058] 0.055 [0.052 0.058] 0.055 [0.052 0.058] 199.7 199.7 11.0
roof 0.262 [0.260 0.264] 0.263 [0.260 0.266] 0.263 [0.260 0.265] 891.3 889.0 234.0
shutter 0.237 [0.225 0.249] 0.237 [0.225 0.249] 0.237 [0.225 0.249] 819.7 819.7 194.3
steps 0.121 [0.100 0.135] 0.121 [0.100 0.135] 0.121 [0.100 0.135] 272.0 272.0 33.0
window 0.199 [0.186 0.212] 0.199 [0.186 0.212] 0.199 [0.186 0.212] 3136.3 3136.3 624.7

cumulative 0.214 [0.206 0.223] 0.216 [0.206 0.224] 0.215 [0.206 0.223] 6558.0 6521.3 1406.0

Table B.50: DTPBM object detector, house dataset, known # objects.

recall precision f-measure # targets # detections # correct

car 0.420 [0.400 0.440] 0.030 [0.025 0.036] 0.057 [0.047 0.067] 110.0 1535.3 46.3
chimney 0.263 [0.241 0.304] 0.027 [0.023 0.032] 0.050 [0.043 0.056] 344.0 3333.3 90.0
door 0.510 [0.441 0.548] 0.071 [0.060 0.078] 0.124 [0.105 0.136] 497.0 3599.0 254.0
driveway 0.209 [0.121 0.277] 0.088 [0.062 0.133] 0.111 [0.098 0.127] 145.3 417.7 30.3
garagedoor 0.439 [0.431 0.452] 0.047 [0.042 0.057] 0.085 [0.076 0.101] 142.7 1348.3 62.7
path 0.100 [0.073 0.116] 0.019 [0.018 0.019] 0.031 [0.028 0.033] 199.7 1066.7 20.0
roof 0.335 [0.332 0.338] 0.103 [0.083 0.119] 0.158 [0.133 0.176] 891.3 2946.0 299.0
shutter 0.390 [0.374 0.417] 0.027 [0.026 0.028] 0.049 [0.048 0.052] 819.7 12000.0 318.3
steps 0.185 [0.157 0.204] 0.038 [0.034 0.044] 0.063 [0.056 0.072] 272.0 1333.3 50.3
window 0.331 [0.312 0.347] 0.075 [0.064 0.093] 0.122 [0.108 0.143] 3136.3 14266.7 1039.0

cumulative 0.337 [0.329 0.346] 0.053 [0.049 0.058] 0.092 [0.085 0.098] 6558.0 41846.3 2210.0

Table B.51: DTPBM object detector, house dataset, heuristic # objects.
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recall precision f-measure # targets # detections # correct

car 0.157 [0.080 0.219] 0.614 [0.471 0.714] 0.248 [0.137 0.329] 110.0 27.7 17.7

chimney 0.004 [0.003 0.006] 0.238 [0.071 0.500] 0.008 [0.005 0.012] 344.0 12.3 1.3

door 0.149 [0.099 0.193] 0.191 [0.115 0.244] 0.167 [0.106 0.215] 497.0 392.0 74.0

driveway 0.059 [0.036 0.087] 0.177 [0.104 0.232] 0.088 [0.053 0.127] 145.3 48.3 8.7

garagedoor 0.103 [0.083 0.130] 0.396 [0.324 0.439] 0.163 [0.133 0.201] 142.7 37.0 14.7

path 0.007 [0.000 0.0101 0.010 [0.000 0.016] 0.008 [0.000 0.012] 199.7 102.3 1.3

roof 0.172 [0.161 0.185] 0.383 [0.352 0.414] 0.237 [0.221 0.256] 891.3 399.7 153.3

shutter 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 819.7 2.0 0.0

steps 0.042 [0.025 0.054] 0.118 [0.044 0.200] 0.054 [0.045 0.072] 272.0 149.0 11.3

window 0.081 [0.071 0.088] 0.215 [0.185 0.237] 0.117 [0.103 0.128] 3136.3 1177.0 253.0

cumulative 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] 6558.0 2347.3 535.3

Table B.52: Learned 2-level WGGs, house dataset, pairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

car 0.191 [0.120 0.246] 0.555 [0.394 0.750] 0.274 [0.195 0.324] 110.0 42.0 21.3

chimney 0.003 [0.000 0.009] 0.792 [0.375 1.000] 0.006 [0.000 0.018] 344.0 2.7 1.0

door 0.166 [0.136 0.184] 0.202 [0.151 0.251] 0.182 [0.143 0.209] 497.0 416.3 82.7

driveway 0.113 [0.074 0.137] 0.204 [0.179 0.220] 0.143 [0.111 0.167] 145.3 81.7 16.3

garagedoor 0.194 [0.181 0.219] 0.302 [0.276 0.329] 0.234 [0.226 0.244] 142.7 92.7 27.7

path 0.018 [0.010 0.025] 0.018 [0.012 0.027] 0.016 [0.015 0.016] 199.7 260.7 3.7

roof 0.187 [0.185 0.189] 0.418 [0.415 0.425] 0.259 [0.256 0.261] 891.3 400.0 167.3

shutter 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 819.7 2.0 0.0

steps 0.086 [0.062 0.100] 0.072 [0.064 0.081] 0.077 [0.070 0.084] 272.0 328.7 23.3

window 0.001 [0.000 0.003] 0.763 [0.289 1.000] 0.002 [0.000 0.007] 3136.3 12.7 3.7

cumulative 0.053 [0.051 0.054] 0.215 [0.177 0.237] 0.085 [0.082 0.088] 6558.0 1639.3 347.0

Table B.53: Learned 2-level WGGs, house dataset, pairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

car 0.078 [0.000 0.149] 0.427 [0.000 0.714] 0.130 [0.000 0.236] 110.0 15.0 9.0

chimney 0.003 [0.000 0.009] 0.059 [0.000 0.176] 0.006 [0.000 0.018] 344.0 7.3 1.0

door 0.153 [0.111 0.205] 0.203 [0.125 0.279] 0.174 [0.117 0.236] 497.0 383.0 76.0

driveway 0.055 [0.036 0.081] 0.253 [0.238 0.280] 0.088 [0.062 0.121] 145.3 32.0 8.0

garagedoor 0.077 [0.062 0.097] 0.357 [0.341 0.385] 0.126 [0.105 0.151] 142.7 31.0 11.0

path 0.003 [0.000 0.010] 0.009 [0.000 0.027] 0.005 [0.000 0.015] 199.7 39.0 0.7

roof 0.169 [0.163 0.179] 0.377 [0.357 0.400] 0.233 [0.224 0.247] 891.3 399.0 150.7

shutter 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 819.7 4.0 0.0

steps 0.036 [0.007 0.054] 0.104 [0.053 0.182] 0.042 [0.014 0.058] 272.0 149.3 9.7

window 0.083 [0.074 0.089] 0.215 [0.186 0.232] 0.119 [0.106 0.127] 3136.3 1209.7 260.0

cumulative 0.080 [0.074 0.086] 0.234 [0.191 0.269] 0.119 [0.107 0.130] 6558.0 2269.3 526.0

Table B.54: Learned 2-level WGGs, house dataset, pairwise, classobj, free.
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recall precision f-measure # targets # detections # correct

car 0.156 [0.070 0.224] 0.493 [0.318 0.591] 0.236 [0.115 0.325] 110.0 33.7 17.7
chimney 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 344.0 0.0 0.0
door 0.173 [0.159 0.193] 0.195 [0.115 0.262] 0.179 [0.136 0.222] 497.0 485.3 85.7
driveway 0.102 [0.060 0.137] 0.298 [0.260 0.333] 0.147 [0.102 0.179] 145.3 51.0 14.7
garagedoor 0.157 [0.111 0.185] 0.366 [0.247 0.485] 0.210 [0.181 0.245] 142.7 68.0 22.3
path 0.015 [0.005 0.030] 0.023 [0.010 0.044] 0.014 [0.007 0.020] 199.7 186.0 3.0
roof 0.178 [0.172 0.182] 0.396 [0.388 0.400] 0.245 [0.238 0.251] 891.3 400.0 158.3
shutter 0.003 [0.000 0.007] 0.345 [0.015 1.000] 0.004 [0.000 0.009] 819.7 127.3 2.0
steps 0.072 [0.029 0.104] 0.072 [0.057 0.084] 0.066 [0.043 0.087] 272.0 288.3 19.7
window 0.002 [0.000 0.006] 0.753 [0.260 1.000] 0.004 [0.000 0.012] 3136.3 25.7 6.7

cumulative 0.050 [0.049 0.052] 0.203 [0.161 0.231] 0.080 [0.078 0.082] 6558.0 1665.3 330.0

Table B.55: Learned 2-level WGGs, house dataset, pairwise, classobj, free.

recall precision f-measure # targets # detections # correct

car 0.127 [0.060 0.175] 0.656 [0.588 0.750] 0.206 [0.111 0.270] 110.0 23.0 14.3
chimney 0.002 [0.000 0.006] 0.889 [0.667 1.000] 0.004 [0.000 0.012] 344.0 1.0 0.7
door 0.070 [0.027 0.122] 0.384 [0.351 0.432] 0.115 [0.050 0.190] 497.0 86.7 34.7
driveway 0.076 [0.065 0.081] 0.194 [0.176 0.226] 0.109 [0.095 0.119] 145.3 57.0 11.0
garagedoor 0.128 [0.116 0.151] 0.492 [0.425 0.579] 0.203 [0.185 0.239] 142.7 37.3 18.3
path 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 199.7 0.0 0.0
roof 0.184 [0.176 0.193] 0.416 [0.405 0.437] 0.256 [0.246 0.268] 891.3 395.7 164.3
shutter 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 819.7 0.3 0.0
steps 0.015 [0.011 0.019] 0.379 [0.263 0.444] 0.028 [0.021 0.036] 272.0 11.7 4.0
window 0.012 [0.000 0.030] 0.595 [0.284 1.000] 0.021 [0.000 0.054] 3136.3 118.0 35.7

cumulative 0.043 [0.038 0.051] 0.392 [0.355 0.421] 0.078 [0.069 0.089] 6558.0 730.7 283.0

Table B.56: Learned 2-level WGGs, house dataset, nopairwise, classobj, fixed.

recall precision f-measure # targets # detections # correct

car 0.133 [0.070 0.190] 0.666 [0.579 0.778] 0.215 [0.128 0.286] 110.0 24.0 15.0
chimney 0.003 [0.000 0.009] 0.917 [0.750 1.000] 0.006 [0.000 0.019] 344.0 1.3 1.0
door 0.054 [0.029 0.083] 0.416 [0.377 0.494] 0.095 [0.053 0.142] 497.0 63.0 27.0
driveway 0.078 [0.068 0.086] 0.241 [0.235 0.250] 0.118 [0.105 0.126] 145.3 47.0 11.3
garagedoor 0.119 [0.111 0.130] 0.495 [0.457 0.528] 0.192 [0.179 0.209] 142.7 34.3 17.0
path 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 199.7 0.0 0.0
roof 0.187 [0.181 0.196] 0.419 [0.410 0.430] 0.258 [0.251 0.269] 891.3 398.3 166.7
shutter 0.000 [0.000 0.000] 1.000 [1.000 1.000] 0.000 [0.000 0.000] 819.7 0.0 0.0
steps 0.008 [0.004 0.014] 0.323 [0.125 0.444] 0.016 [0.007 0.028] 272.0 7.3 2.3
window 0.002 [0.000 0.006] 0.571 [0.250 1.000] 0.004 [0.000 0.011] 3136.3 18.3 7.3

cumulative 0.038 [0.037 0.039] 0.418 [0.410 0.426] 0.069 [0.067 0.071] 6558.0 593.7 247.7
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recall precision f-measure # targets # detections # correct

car 0.119 [0.060 0.149] 0.583 [0.462 0.739] 0.195 [0.106 0.245] 110.0 22.3 13.3
chimney 0.010 [0.000 0.022] 0.283 [0.000 0.750] 0.017 [0.000 0.036] 344.0 29.7 3.3
door 0.121 [0.080 0.201] 0.229 [0.170 0.274] 0.155 [0.109 0.232] 497.0 254.0 60.0
driveway 0.048 [0.036 0.054] 0.273 [0.211 0.381] 0.081 [0.062 0.094] 145.3 27.0 7.0
garagedoor 0.089 [0.082 0.097] 0.437 [0.293 0.538] 0.147 [0.128 0.165] 142.7 30.7 12.7
path 0.005 [0.000 0.015] 0.007 [0.000 0.021] 0.006 [0.000 0.0181 199.7 55.3 1.0
roof 0.177 [0.164 0.187] 0.395 [0.360 0.417] 0.244 [0.226 0.258] 891.3 399.0 157.7
shutter 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 819.7 0.7 0.0
steps 0.019 [0.000 0.054] 0.038 [0.000 0.093] 0.025 [0.000 0.068] 272.0 67.3 5.0
window 0.080 [0.069 0.086] 0.211 [0.197 0.233] 0.116 [0.102 0.125] 3136.3 1191.3 251.7

cumulative 0.078 [0.071 0.087] 0.248 [0.209 0.273] 0.118 [0.106 0.130] 6558.0 2077.3 511.7

Table B.58: Learned 3-level WGGs, big placesetting dataset, 7minsize = 0.1, nosingletocomp.

recall precision f-measure # targets # detections # correct

car 0.064 [0.018 0.095] 0.906 [0.800 1.000] 0.117 [0.034 0.172] 110.0 8.0 7.0
chimney 0.043 [0.005 0.066] 0.060 [0.049 0.072] 0.046 [0.010 0.069] 344.0 224.0 14.3
door 0.093 [0.033 0.142] 0.367 [0.116 0.525] 0.122 [0.062 0.176] 497.0 243.7 46.0
driveway 0.014 [0.000 0.022] 0.310 [0.000 0.500] 0.026 [0.000 0.041] 145.3 5.0 2.0

garagedoor 0.030 [0.014 0.041] 0.561 [0.417 0.667] 0.056 [0.028 0.077] 142.7 8.3 4.3

path 0.003 [0.000 0.010] 0.010 [0.000 0.029] 0.005 [0.000 0.015] 199.7 28.7 0.7
roof 0.127 [0.096 0.182] 0.324 [0.262 0.413] 0.182 [0.145 0.253] 891.3 345.3 113.7
shutter 0.001 [0.000 0.003] 0.002 [0.000 0.005] 0.001 [0.000 0.004] 819.7 228.0 1.0
steps 0.055 [0.000 0.102] 0.044 [0.000 0.087] 0.049 [0.000 0.094] 272.0 242.3 15.3
window 0.009 [0.005 0.015] 0.270 [0.234 0.325] 0.017 [0.009 0.028] 3136.3 109.7 28.3

cumulative 0.035 [0.033 0.038] 0.172 [0.132 0.226] 0.058 [0.057 0.059] 6558.0 1443.0 232.7

Table B.59: Learned 3-level WGGs, big placesetting dataset, Yminsize 0.1, singletocompl.

recall precision f-measure # targets # detections # correct

car 0.050 [0.026 0.080] 0.738 [0.600 1.000] 0.092 [0.050 0.142] 110.0 7.7 5.3
chimney 0.049 [0.028 0.063] 0.095 [0.064 0.156] 0.063 [0.039 0.090] 344.0 199.7 17.3
door 0.042 [0.032 0.051] 0.430 [0.223 0.667] 0.074 [0.062 0.083] 497.0 63.7 21.0
driveway 0.057 [0.036 0.087] 0.237 [0.175 0.310] 0.091 [0.062 0.136] 145.3 34.7 8.3
garagedoor 0.037 [0.034 0.042] 0.363 [0.250 0.545] 0.067 [0.060 0.077] 142.7 16.0 5.3
path 0.020 [0.000 0.040] 0.010 [0.000 0.020] 0.014 [0.000 0.027] 199.7 266.3 4.0

roof 0.169 [0.163 0.174] 0.384 [0.370 0.399] 0.235 [0.226 0.240] 891.3 393.3 151.0
shutter 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 819.7 32.0 0.0
steps 0.061 [0.043 0.077] 0.063 [0.032 0.091] 0.061 [0.037 0.074] 272.0 289.3 16.3
window 0.008 [0.000 0.017] 0.144 [0.000 0.222] 0.015 [0.000 0.032] 3136.3 114.7 24.3

cumulative 0.039 [0.036 0.044] 0.198 [0.144 0.291] 0.063 [0.058 0.069] 6558.0 1417.3 253.0

Table B.60: Learned 3-level WGGs, big placesetting dataset, Yminsize = 0.1, singletocomp2.



recall precision f-measure # targets # detections # correct

car 0.115 [0.050 0.155] 0.510 [0.417 0.581] 0.185 [0.089 0.245] 110.0 24.3 13.0
chimney 0.025 [0.011 0.050] 0.196 [0.116 0.238] 0.039 [0.022 0.070] 344.0 58.7 8.3
door 0.141 [0.078 0.227] 0.214 [0.112 0.291] 0.169 [0.092 0.255] 497.0 326.7 70.3
driveway 0.062 [0.047 0.088] 0.321 [0.259 0.371] 0.103 [0.080 0.142] 145.3 27.7 9.0
garagedoor 0.076 [0.043 0.110] 0.305 [0.273 0.333] 0.120 [0.075 0.162] 142.7 35.7 11.0
path 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 199.7 40.3 0.0
roof 0.185 [0.182 0.190] 0.412 [0.400 0.422] 0.255 [0.251 0.262] 891.3 400.0 164.7
shutter 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 819.7 5.0 0.0
steps 0.022 [0.000 0.042] 0.044 [0.000 0.087] 0.030 [0.000 0.057] 272.0 98.0 6.0
window 0.083 [0.074 0.092] 0.217 [0.200 0.230] 0.121 [0.108 0.132] 3136.3 1201.7 261.7

cumulative 0.083 [0.077 0.088] 0.247 [0.210 0.274] 0.124 [0.113 0.133] 6558.0 2218.0 544.0

Table B.61: Learned 3-level WGGs, big placesetting dataset, Yminsize = 0.15, nosingletocomp.

recall precision f-measure # targets # detections # correct

car 0.044 [0.020 0.086] 0.590 [0.500 0.769] 0.081 [0.038 0.155] 110.0 7.7 5.0
chimney 0.002 [0.000 0.003] 0.045 [0.000 0.077] 0.004 [0.000 0.006] 344.0 10.3 0.7
door 0.114 [0.045 0.176] 0.320 [0.141 0.629] 0.132 [0.083 0.183] 497.0 308.7 57.0
driveway 0.016 [0.000 0.027] 0.194 [0.000 0.333] 0.029 [0.000 0.050] 145.3 13.0 2.3
garagedoor 0.051 [0.029 0.069] 0.475 [0.400 0.526] 0.091 [0.055 0.123] 142.7 15.7 7.3
path 0.012 [0.005 0.020] 0.015 [0.013 0.018] 0.012 [0.007 0.016] 199.7 162.7 2.3
roof 0.178 [0.171 0.191] 0.390 [0.376 0.405] 0.244 [0.236 0.260] 891.3 406.3 158.7
shutter 0.002 [0.000 0.004] 0.004 [0.000 0.009] 0.002 [0.000 0.005] 819.7 203.3 1.3
steps 0.025 [0.000 0.051] 0.072 [0.000 0.151] 0.037 [0.000 0.076] 272.0 69.7 7.0
window 0.035 [0.030 0.041] 0.248 [0.209 0.294] 0.061 [0.053 0.069] 3136.3 454.3 109.3

cumulative 0.054 [0.051 0.056] 0.219 [0.171 0.247] 0.086 [0.084 0.088] 6558.0 1651.7 351.0

Table B.62: Learned 3-level WGGs, big placesetting dataset, Yminsize = 0.15, singletocompl.

recall precision f-measure # targets # detections # correct

car 0.077 [0.050 0.121] 0.732 [0.417 1.000] 0.138 [0.089 0.209] 110.0 12.3 8.7
chimney 0.053 [0.006 0.138] 0.270 [0.072 0.500] 0.044 [0.011 0.095] 344.0 212.0 17.0
door 0.154 [0.111 0.227] 0.222 [0.124 0.291] 0.180 [0.117 0.255] 497.0 358.7 76.7
driveway 0.039 [0.027 0.047] 0.313 [0.259 0.364] 0.069 [0.050 0.080] 145.3 19.0 5.7
garagedoor 0.046 [0.027 0.076] 0.529 [0.333 0.800] 0.081 [0.053 0.124] 142.7 16.3 6.7
path 0.002 [0.000 0.005] 0.001 [0.000 0.004] 0.001 [0.000 0.004] 199.7 105.7 0.3
roof 0.172 [0.147 0.190] 0.404 [0.390 0.422] 0.240 [0.215 0.262] 891.3 378.7 153.0
shutter 0.003 [0.000 0.006] 0.007 [0.000 0.014] 0.005 [0.000 0.009] 819.7 293.7 3.0
steps 0.023 [0.000 0.068] 0.026 [0.000 0.078] 0.024 [0.000 0.073] 272.0 94.7 6.3
window 0.034 [0.000 0.084] 0.246 [0.222 0.265] 0.052 [0.001 0.122] 3136.3 472.0 107.7

cumulative 0.059 [0.037 0.088] 0.195 [0.143 0.274] 0.090 [0.061 0.133] 6558.0 1963.0 385.0

Table B.63: Learned 3-level WGGs, big placesetting dataset, Yminsize = 0.15, singletocomp2.

152



recall precision f-measure # targets # detections # correct

car 0.137 [0.080 0.167] 0.519 [0.452 0.633] 0.214 [0.137 0.260] 110.0 29.7 15.3

chimney 0.012 [0.003 0.022] 0.231 [0.073 0.500] 0.020 [0.005 0.034] 344.0 43.7 4.0

door 0.128 [0.088 0.193] 0.187 [0.125 0.244] 0.151 [0.103 0.215] 497.0 336.0 63.7

driveway 0.070 [0.036 0.088] 0.287 [0.232 0.317] 0.110 [0.065 0.138] 145.3 37.7 10.3

garagedoor 0.093 [0.083 0.110] 0.402 [0.324 0.500] 0.150 [0.133 0.170] 142.7 34.3 13.3

path 0.005 [0.000 0.010] 0.006 [0.000 0.013] 0.005 [0.000 0.011] 199.7 137.0 1.0

roof 0.171 [0.160 0.185] 0.382 [0.350 0.414] 0.236 [0.219 0.256] 891.3 400.0 152.7

shutter 0.000 [0.000 0.000] 0.667 [0.000 1.000] 0.000 [0.000 0.000] 819.7 1.3 0.0

steps 0.025 [0.007 0.042] 0.097 [0.034 0.200] 0.035 [0.012 0.049] 272.0 95.3 6.7

window 0.085 [0.078 0.088] 0.220 [0.197 0.237] 0.122 [0.112 0.128] 3136.3 1202.7 265.0

cumulative 0.081 [0.076 0.089] 0.232 [0.190 0.256] 0.120 [0.109 0.132] 6558.0 2317.7 532.0

Table B.64: Learned 3-level WGGs, big placesetting dataset, Yminsize = 0.2, nosingletocomp.

recall precision f-measure # targets # detections # correct

car 0.093 [0.080 0.105] 0.577 [0.471 0.688] 0.161 [0.137 0.178] 110.0 18.0 10.3

chimney 0.009 [0.000 0.025] 0.202 [0.000 0.500] 0.015 [0.000 0.041] 344.0 26.0 3.0

door 0.104 [0.002 0.193] 0.200 [0.107 0.250] 0.110 [0.004 0.215] 497.0 308.0 51.0

driveway 0.048 [0.022 0.087] 0.347 [0.208 0.600] 0.076 [0.042 0.127] 145.3 28.3 7.0

garagedoor 0.062 [0.029 0.083] 0.461 [0.324 0.667] 0.105 [0.056 0.133] 142.7 23.7 9.0

path 0.010 [0.005 0.015] 0.024 [0.013 0.045] 0.011 [0.009 0.014] 199.7 132.3 2.0

roof 0.184 [0.182 0.185] 0.410 [0.404 0.414] 0.254 [0.252 0.256] 891.3 400.0 164.0

shutter 0.000 [0.000 0.000] 0.333 [0.000 1.000] 0.000 [0.000 0.000] 819.7 2.0 0.0

steps 0.031 [0.000 0.068] 0.102 [0.000 0.200] 0.043 [0.000 0.083] 272.0 72.7 8.7

window 0.078 [0.071 0.088] 0.214 [0.191 0.237] 0.115 [0.107 0.128] 3136.3 1150.3 245.7

cumulative 0.076 [0.064 0.089] 0.235 [0.194 0.256] 0.115 [0.102 0.132] 6558.0 2161.3 500.7

Table B.65: Learned 3-level WGGs, big placesetting dataset, 7minsize = 0.2, singletocompl.

recall precision f-measure # targets # detections # correct

car 0.093 [0.080 0.105] 0.577 [0.471 0.688] 0.161 [0.137 0.178] 110.0 18.0 10.3

chimney 0.009 [0.000 0.025] 0.202 [0.000 0.500] 0.015 [0.000 0.041] 344.0 26.0 3.0

door 0.104 [0.002 0.193] 0.200 [0.107 0.250] 0.110 [0.004 0.215] 497.0 308.0 51.0

driveway 0.048 [0.022 0.087] 0.347 [0.208 0.600] 0.076 [0.042 0.127] 145.3 28.3 7.0

garagedoor 0.062 [0.029 0.083] 0.461 [0.324 0.667] 0.105 [0.056 0.133] 142.7 23.7 9.0

path 0.010 [0.005 0.015] 0.024 [0.013 0.045] 0.011 [0.009 0.014] 199.7 132.3 2.0

roof 0.184 [0.182 0.185] 0.410 [0.404 0.414] 0.254 [0.252 0.256] 891.3 400.0 164.0

shutter 0.000 [0.000 0.000] 0.333 [0.000 1.000] 0.000 [0.000 0.000] 819.7 2.0 0.0

steps 0.031 [0.000 0.068] 0.102 [0.000 0.200] 0.043 [0.000 0.083] 272.0 72.7 8.7

window 0.078 [0.071 0.088] 0.214 [0.191 0.237] 0.115 [0.107 0.128] 3136.3 1150.3 245.7

cumulative 0.076 [0.064 0.089] 0.235 [0.194 0.256] 0.115 [0.102 0.132] 6558.0 2161.3 500.7

Table B.66: Learned 3-level WGGs, big placesetting dataset, Yminsize = 0.2, singletocomp2.
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recall precision f-measure # targets # detections # correct

car 0.157 [0.080 0.219] 0.614 [0.471 0.714] 0.248 [0.137 0.329] 110.0 27.7 17.7
chimney 0.004 [0.003 0.006] 0.238 [0.071 0.500] 0.008 [0.005 0.012] 344.0 12.3 1.3
door 0.149 [0.099 0.193] 0.191 [0.115 0.244] 0.167 [0.106 0.215] 497.0 392.0 74.0
driveway 0.059 [0.036 0.087] 0.177 [0.104 0.232] 0.088 [0.053 0.127] 145.3 48.3 8.7
garagedoor 0.103 [0.083 0.130] 0.396 [0.324 0.439] 0.163 [0.133 0.201] 142.7 37.0 14.7
path 0.007 [0.000 0.010] 0.010 [0.000 0.016] 0.008 [0.000 0.012] 199.7 102.3 1.3
roof 0.172 [0.161 0.185] 0.383 [0.352 0.414] 0.237 [0.221 0.256] 891.3 399.7 153.3
shutter 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 819.7 2.0 0.0
steps 0.042 [0.025 0.054] 0.118 [0.044 0.200] 0.054 [0.045 0.072] 272.0 149.0 11.3
window 0.081 [0.071 0.088] 0.215 [0.185 0.237] 0.117 [0.103 0.128] 3136.3 1177.0 253.0

cumulative 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] 6558.0 2347.3 535.3

Table B.67: Learned 3-level WGGs, big placesetting dataset, 7minsize = 0.3, nosingletocomp.

recall precision f-measure # targets # detections # correct

car 0.157 [0.080 0.219] 0.614 [0.471 0.714] 0.248 [0.137 0.329] 110.0 27.7 17.7
chimney 0.004 [0.003 0.006] 0.238 [0.071 0.500] 0.008 [0.005 0.012] 344.0 12.3 1.3
door 0.149 [0.099 0.193] 0.191 [0.115 0.244] 0.167 [0.106 0.215] 497.0 392.0 74.0
driveway 0.059 [0.036 0.087] 0.177 [0.104 0.232] 0.088 [0.053 0.127] 145.3 48.3 8.7
garagedoor 0.103 [0.083 0.130] 0.396 [0.324 0.439] 0.163 [0.133 0.201] 142.7 37.0 14.7
path 0.007 [0.000 0.010] 0.010 [0.000 0.016] 0.008 [0.000 0.012] 199.7 102.3 1.3
roof 0.172 [0.161 0.185] 0.383 [0.352 0.414] 0.237 [0.221 0.256] 891.3 399.7 153.3
shutter 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 819.7 2.0 0.0
steps 0.042 [0.025 0.054] 0.118 [0.044 0.200] 0.054 [0.045 0.072] 272.0 149.0 11.3
window 0.081 [0.071 0.088] 0.215 [0.185 0.237] 0.117 [0.103 0.128] 3136.3 1177.0 253.0

cumulative 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] 6558.0 2347.3 535.3

Table B.68: Learned 3-level WGGs, big placesetting dataset, Yminsize 0.3, singletocompl.

recall precision f-measure # targets # detections # correct

car 0.157 [0.080 0.219] 0.614 [0.471 0.714] 0.248 [0.137 0.329] 110.0 27.7 17.7
chimney 0.004 [0.003 0.006] 0.238 [0.071 0.500] 0.008 [0.005 0.012] 344.0 12.3 1.3
door 0.149 [0.099 0.193] 0.191 [0.115 0.244] 0.167 [0.106 0.215] 497.0 392.0 74.0
driveway 0.059 [0.036 0.087] 0.177 [0.104 0.232] 0.088 [0.053 0.127] 145.3 48.3 8.7
garagedoor 0.103 [0.083 0.130] 0.396 [0.324 0.439] 0.163 [0.133 0.201] 142.7 37.0 14.7
path 0.007 [0.000 0.010] 0.010 [0.000 0.016] 0.008 [0.000 0.012] 199.7 102.3 1.3
roof 0.172 [0.161 0.185] 0.383 [0.352 0.414] 0.237 [0.221 0.256] 891.3 399.7 153.3
shutter 0.000 [0.000 0.000] 0.000 [0.000 0.000] 0.000 [0.000 0.000] 819.7 2.0 0.0
steps 0.042 [0.025 0.054] 0.118 [0.044 0.200] 0.054 [0.045 0.072] 272.0 149.0 11.3
window 0.081 [0.071 0.088] 0.215 [0.185 0.237] 0.117 [0.103 0.128] 3136.3 1177.0 253.0

cumulative 0.082 [0.073 0.089] 0.230 [0.185 0.256] 0.120 [0.105 0.132] 6558.0 2347.3 535.3

Table B.69: Learned 3-level WGGs, big placesetting dataset, 7minsize = 0.3, singletocomp2.
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