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Abstract

In this thesis I study the Seiberg-Witten equations on the product of a genus g surface
¥ and a circle. I exploit S! invariance to reduce to the vortex equations on ¥ and
thus completely describe the Seiberg-Witten monopoles.

In the case where the monopoles are not Morse-Bott regular, I explicitly perturb
the equations to obtain such a situation and thus find a candidate for the chain
complex that calculates the Seiberg-Witten Floer homology groups.
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Chapter 1

Introduction

1.1 Overview

The goal of this work is to understand the Seiberg-Witten equations on the product
of a genus g surface with a circle. This has applications to the study of 4-manifolds
containing an embedded genus g surface with trivial normal bundle. In particular, I
intend to study the Seiberg- Witten (monopole) Floer homology of S x X. The cases
g=0and g = 1 are worked out in [5].

It is straightforward to write down the solutions to the Seiberg-Witten equations
on Y; however, we must perturb them in order to achieve transversality, and in doing
so we may change the solution space. I write down an explicit perturbation of the
equations for which the solution spaces are Morse-Bott nondegenerate.

In general, the behavior of the Floer groups is very different depending on whether
the determinant line bundle of s has torsion first Chern class. In the nontorsion
case, there is really only one homology group rather than three, and solutions to the
equations are irreducible. The case ci(s) # 0 was studied by Mufioz and Wang in
[10]. T calculate that in this case, the solutions are all Morse-Bott nondegenerate.

The main contribution of this work, however, comes in the case c¢;(s) = 0; this
is the unique spin® structure that arises from a spin structure on Y. In this case
both irreducible and reducible solutions arise, and there really are three groups. In

this case the reducibles form a torus of dimension 2g + 1, which can be identified as



the product of the Jacobian torus of ¥ with the dual circle to the S! factor. The

irreducibles are a copy of the (g — 1)st symmetric product of X.

The equations on S* X I are rotationally invariant and in fact reduce to equations
on X. These are the vortex equations ([1]). Their solutions correspond to effective

divisors on the Riemann surface .

For the spin® structure s, with c;(s;) Poincare dual to 2k[S'], the irreducible
solutions correspond to Sym9~'~¥(X). In the case k = 0, all the solutions to the
equations are reducible, but after perturbing to achieve transversality, we see a copy

of Sym?~1(¥) in the irreducibles here as well.

There is another 3-manifold invariant, the Heegaard Floer homology of Ozsvath
and Szabd, that assigns three groups related by a long exact sequence to a spin® 3-
manifold. The two theories are conjectured to be isomorphic, and this work may be
considered as evidence for this conjecture. More specifically, Jabuka and Mark ([3])

show that

* (ST x B, 50; C) & H*(Sym973%; C)

red

as relatively Z-graded complex vector spaces. However, they observe that the C[U]-
module structure on this Floer cohomology group differs from that of the ordinary

cohomology of this symmetric product.

The calculations here provide an explanation for this: we see the Jacobian of
Y in the reducibles and the (g — 1)st symmetric product in the irreducibles. The
Abel-Jacobi map
p: Sym?~'Y — Jac,

which can be regarded as taking an effective divisor of degree g — 1 to the line bundle

it defines, induces a map in ordinary cohomology. The quotient
H*(Sym?™'%; C)/w*H*(Jac; C),

which is expected to equal HM}, (S x ¥, s0; C), is isomorphic to H*(Sym9—3L; C)
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as vector spaces (after a grading shift). However, the action of U is different in these

cases.

1.2 Riemann surfaces

Since, as will be seen later, the Seiberg-Witten equations on S 1% ¥ reduce to equations
on ¥, it will be necessary to understand some facts from complex geometry relating to
the Riemann surface. We will need the notions of the Jacobian or Picard variety of X,
which classifies isomorphism classes of holomorphic line bundles; the d-fold symmetric
product of ¥, which classifies divisors of degree d (that is, d-tuples of points); and the
Abel-Jacobi map relating the two. Another relevant notion for us will be the Lefschetz
decomposition of the cohomology of a compact Kahler manifold, which we will apply
in the simple case of a complex torus.

Throughout this section, let ¥ be a closed Riemann surface of genus g; i.e. X
is a closed oriented 2-manifold, and we fix a complex structure, or equivalently a

conformal class of metrics. This material is standard, found for instance in [2].

1.2.1 Line bundles and divisors over a Riemann surface

We consider the classifcation of complex line bundles over ¥. First, there is the
topological classification. Line bundles over ¥ are classified by their first Chern class
in H(X; Z) = Z. If we take holomorphic line bundles (so the transition functions are
holomorphic maps U, N Uy — C*, then we may ask about their classification up to

holomorphic isomorphism. We will understand this using Cech cohomology.

Definition 1. The Picard group Pic(X) of ¥ is the group of isomorphism classes of
holomorphic line bundles on . It has a subgroup Pic®(Z) consisting of isomorphism

classes of degree zero bundles.

Proposition 2. The group Pic®(X) is isomorphic to a 2g-dimensional torus; in par-
ticular,

Picl’() = HOY(X)/HY (S;Z).

11



There is a short exact sequence
0 — Pic®($) — Pic(L) = Z — 0

of abelian groups. This exact sequence splits, so Pic(¥) = Pic®(Z) x Z, but the

splitting is not natural.

Proof. Let {¢ag : UsNUz — C*} be holomorphic transition functions giving the topo-
logically trivial line bundle L. These give rise to an element of the Cech cohomology
H'(%; O*) with coefficients in the sheaf of nonvanishing holomorphic functions. The
degree zero condition means that it maps to zero and thus comes from an element of

H'(XZ;0). The exponential sequence
0-Z—-0-0"->0

gives rise to a long exact sequence in cohomology. Finally, the image of H(Z;Z) in
H'(X; O) corresponds to the trivial line bundles. Using the Dolbeault isomorphism
H'(3;0) = H*}(X), we conclude that Pic®(X) = H*(Z)/HY(Z; Z).

Now choose any holomorphic degree 1 line bundle A. Then for a line bundle L of
degree d, L ® A~ € Pic°(Z). This gives the desired splitting. O

Definition 3. The divisor group Div(X) of ¥ is the free abelian group generated by
the points of X. Its elements are called divisors on X.

Given a divisor D = ) a;z;, we may form the sheaf M(D) of meromorphic
functions with zeros/poles corresponding to D. There is a holomorphic line bundle
L(D) that has M(D) as its sheaf of sections.

A divisor is effective if a; > 0 for all 2. Two divisors are linearly equivalent if their
associated line bundles are isomorphic. A line bundle has a holomorphic section if and
only if it is the line bundle associated to some effective divisor. We write Divt(X)
for the space of effective divisors on ¥ and Div] (T) for the space of effective divisors

of degree d. Note that Div} (X) naturally corresponds to the dth symmetric product

12



of ¥, the space
Sym?(Z) = £¢/S,,

where the symmetric group Sy acts on £¢ by permutation. The symmetric product

Sym?(X) is a complex manifold of complex dimension d.

1.2.2 The Jacobian and the Abel-Jacobi map

The Jacobian Jac(X) is a g-dimensional complex torus naturally associated to 2. It

comes with a map, the Abel-Jacobi map, defined as follows:

Let {w;}?_, be a basis for the set of holomorphic 1-forms on X. Fix a basepoint

20 € ¥ and consider, for z € ¥, the g-tuple of integrals

z z
(/ wl,...,/ wg).
20 20

This does not make sense as a map ¥ — C? because it depends on a choice of path

~ from 2y to z. However, it is well-defined up to the lattice L generated by vectors

(o)

for o a class in H;(X;Z), and so it defines a map p : ¥ — C9/L. The complex torus
Jac = C9/L is known as the Jacobian of ¥, and u is the Abel-Jacobi map.

There is a more intrinsic description of Jac. We may write
Jac = H°(Z; Q") /H1(Z; Z)

without choosing a basis of holomorphic 1-forms. The map p depends on the chosen

basepoint, but only up to a translation.

We may extend p to a map Picy; — Jac, still denoted p for simplicity, for any

natural number d. Simply define

/’L(zl’ SR Zd) = Z?:l:u(zd)'

13



There is a map Jac — Pico(X). This is an isomorphism, so we will frequently
identify the two. There is also a map Sym?% — Picyg(X) that takes a degree d
effective divisor to its corresponding line bundle. Making the above identification,
choosing an identification of Picy with Picq, and translating by a constant, this map

is just the map u defined above.

14



Chapter 2

Three-dimensional Seiberg-Witten

theory

2.1 Overview

We introduce the monopole or Seiberg-Witten Floer homology groups of a closed ori-
ented 3-manifold Y, developed in [5] and record some of their properties. This theory
associates to a closed oriented manifold Y equipped with a spin® structure s three
abelian groups:

—_—

HM(Y,s), HM(Y,s), HM(Y,s).

Roughly speaking, these groups are constructed as the Morse homology of an infinite-
dimensional space B(Y,s) together with a functional on that space. A generic per-
turbation of this functional will have only nondegenerate critical points, and we let
these generate the chain groups. The differentials count gradient flow lines between
critical points. However, because there is a group action and the stabilizers vary from
point to point (either the trivial group or the circle), we need a more sophisticated
picture. Instead of a single homology group, we get three groups fitting into a long

exact sequence

. HM(Y,s) — HM(Y,s) — HM(Y,s) — HMy_1(Y,8) — ---
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These are also modules over the opposite ring of the ordinary cohomology of the

configuration space,

N (H\(Y;Z)/T) @z Z[U].

The associated Floer cohomology groups are modules over the cohomology ring itself.

2.2 The Chern-Simons-Dirac functional

Our first step is to define the space B(Y,s) and the functional on it. Given a closed,

oriented, connected 3-manifold Y~ with spin® structure s = (.S, p), we may define

Definition 4. The configuration space C(Y,s) is the set of pairs (B, ¥), where B is

a smooth Clifford connection in E and ¥ is a smooth section of E.

The space C(Y, 5) is an affine space modeled on the vector space Q'(Y;:R)®T(E).

Suitable Sobolev completions are Banach manifolds.

Definition 5. The Chern-Simons-Dirac functional is the real valued function on

C(Y,s) given by

1 1
CSD(B,‘I’):-é-/Y(Bt_Bé)/\(FBt +FBé)+§/;<‘I’,DB\I/>dUOly

Here Dpg is the Dirac operator associated to the Clifford connection B.

Definition 6. The gauge group of Y is
G(Y) = Map(Y;, 5Y).

If we work with sufficiently regular configurations (LY with pk > 3), then this is

in fact a Banach Lie group. There is an action of G(Y') on C(Y, s)given by
u- (A, ¢) = (A—utdu,ud).

Roughly speaking, we want to look at the G(Y)-equivariant Morse theory of the

16



function CSD on C(Y,s). Define the quotient
B(Y,5) = C(Y,5)/G(Y).
The functional is invariant under the action of the identity component Go(Y") of

G(Y); in general, for u € G(Y) and (A, ®) € B(Y, s), we have the transformation law

CSD(u- (B, ¥)) = CSD(B, ¥) — dr’ < [%’1] Uci(s), [Y]> .

(Here, [%“] is the de Rham cohomology class of the imaginary-valued 1-form %i) In
particular, if ¢,(s) is torsion, then C'SD is invariant under the full gauge group and

so descends to a real-valued function on B(Y,s). In general, we have
o /| du
CSD : B(Y,s) — R/4r — Uei(s), Y] ) Z.

Note that in any case, the gradient of CSD is fully gauge-invariant.

Definition 7. We say that a configuration (B,¥) € C(Y,s) is reducible if ¥ =
0 and irreducible otherwise. Denote the subset of C(Y,s) consisting of irreducible

configurations by C*(Y, s).

The stabilizer of the gauge group action on C(Y,s) is trivial at the irreducible
configurations; at the reducibles, there is an S stabilizer consisting of the constant
maps Y — St

2.3 The three-dimensional Seiberg-Witten equations

To find the equations that a critical point must satisfy, we calculate the gradient of

CSD with respect to the L? inner product on C(Y,s). It is
gradCSD(B,¥) = (xFg — (¥¥*)o, DpV¥).

Here UU* € I'(EndE) is the endomorphism of E determined by the hermitian

17



metric, and the 0 subscript denotes taking the traceless part. Therefore, recalling
that p(xa) = —p(a), we find that the critical points of C'SD are the solutions to the

three-dimensional Seiberg- Witten equations

1
ép(FB:) - (\II\I]*)O = 0
Dg¥ = 0.

The tangent space to C(Y,s) at any configuration is

T, = iQ'(Y) & T(S).

These equations define a vector field on C(Ys).
Note that the solution set of these equations is invariant under G(Y'); that is, if
SW(B, V) =0, then SW(u-(B,¥))=0.
The linearization of the Seiberg-Witten equations at a configuration (B, ¥) is
given by
(b, %) — (p(db) — (VY + 9 U*)y, Dpyp + p(b)T).

2.4 Gauge fixing for irreducible configurations

The space B(Y,s) is given as the quotient of a Hilbert manifold by the action of a
Hilbert Lie group. Its points are not simply configurations but equivalence classes of
configurations. It is useful to have a way to work with subspaces of C(Y,s) rather
than quotients. In other words, given a configuration (B, ¥) € C(Y,s), we will find a
neighborhood U of [B, ¥] € B(Y,s) and a submanifold Y of C(Y, s) containing (B, ¥)

such that the two are diffeomorphic.

Fix an irreducible configuration v = (B, ¥) and let d, denote the linearization of

the gauge group action u — wy at u = 1. Explicitly, this is given by

18



Proposition 8 ([5], Corollary 9.38). Write 7, for the image of d, and K, for its L?
orthogonal complement. Let S., be the affine subspace v+ K of C(Y,s) . Then there
is a neighborhood U of v in S such that the quotient map is a diffeomorphism onto a

neighborhood of [] in B(Y,s).

Note that K, is the kernel of the L? adjoint d? of d,, which is given by

&5 (b,9) = d*b+ Im (3, 0} .

Define the Hessian of CSD to be the differential of gradCSDat  followed by the

projection to K.

Proposition 9. The extended Hessian of CSD,

HessCSD d,
d; 0

gives a Fredholm map of index zero from K @ iQ'(Y) to itself.

2.5 Gradient flows and the four-dimensional equa-

tions

We have written down the equations that a critical point of C'SD must satisfy; in
order to do Morse theory, we also need to understand the gradient flow lines between

critical points; that is, we need to understand the equation

dﬁlt-fy(t) + gradCSD(v(t)) =0

for apathy: R — C(Y,s). First of all, we can interpret such a path in terms of objects

defined on Z = R x Y. Define the spin® structure s; on Z to have S* = S~ = 71*S,

19



with the Clifford multiplication pz given by

(a) 0 -1
Pz\ o7 | =
ot 1 0

and

for v € TY. Then the time-dependent spinor ¥(¢) can be interpreted as a section ®
of St — Z.

The time-dependent connection B(t), on the other hand, pulls back to a Clifford
connection A in S — Z with the property that

We say that such a connection is in temporal gauge. Conversely, given a connection
on Z and a plus spinor, we can construct a path in C(Y,s) together with a function
¢ : Z — R. The Dirac operator Dy : ['(Z;7*S) — I'(Z;r*S) splits into D% :
[(Z;S*) — I'(Z; S¥).

After reformulating the problem as an equation on the cylinder, the gradient flow

equations take the form

1
9Pz (FX) - (@27, = 0

Do = 0.
These are the four-dimensional Seiberg- Witten equations, which make sense on a (not

necessarily cylindrical) spin® four-manifold X. As in the case of a three-manifold Y,

denote by C(X,sx) the space of configurations on which these equations are defined.
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2.6 The ¢ and 7 blowups

Note that the stabilizers of the G(Y')-action on C(Y,s) vary from point to point.

Proposition 10. Let v = (B, ¥) be a configuration in C(Y,s). Then the stabilizer of
the action of G(Y') at 7y is trivial if y is irreducible; if y is reducible, it is the subgroup
of G(Y) consisting of the constant maps Y — S*.

Note that a reducible solution to the equations is simply a pair (B,0) where B is
a flat connection. These exist if and only if ¢;(s) is a torsion element of H*(Y; Z).

As stated earlier, the gauge group action has an S' stabilizer at the reducible
configurations. We now introduce two “blown-up” versions of the configuration space,
on which G acts freely. The o model makes sense for any 3- or 4-dimensional manifold,
while the 7 model can be defined only in the case of a cylinder Z = I x Y, where I

is a (possibly infinite) interval.

Definition 11. Let M be a 3- or 4-dimensional manifold equipped with a spin®
structure s. The space C?(M,s) is the set of triples (B, s, ) such that

e B is a Clifford connection,
e 0<s<o00,and
® Y€ F(E) with H@DHLQ(M) =1.

There is a blowdown map 7 :C?(M,s) — C(M, s) given by ©(B, s,v) = (B, s¢). This
is a diffeomorphism over the space C*(M, s) of irreducible configurations. The gauge
action on C?(M, s) is free, and the quotient is denoted B7(M, s).

There is a vector field SW? on C? given by

SW (B, s, ) = (—% % Fe — 82 (Y*)o, —A(B, s,¢)r, —Dpth + A(B, s, z/f)w) .

At the irreducible configurations, this vector field corresponds to the SW defined
above under the blowdown map. There is a description of the zeros of SW7 in terms

of the zeros of SW.
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Proposition 12. A configuration (B, s,v) € C°(Y,s) is a zero of SW° if and only if
1. s # 0 and (B, sv) is a zero of SW; or

2. s=0, B is a flat connection, and % is an eigenvector of Dg.

There is another version of the blowup that is well suited to regarding the 4-dimensional
equations as a gradient flow. It makes sense only for a cylinder I x Y. The difference
is that instead of normalizing the spinor to have a global L? norm equal to one, we

require its L? norm on each time slice to be equal to one.

Definition 13. Let Z = I x Y and let s be a spin® structure on Z. Then C7(Z, 5) is
the set of triples (A, f,v) such that

e A is a Clifford connection on Z,
e f is a smooth function R — [0, o0|, and

® ¢ is a spinor such that |[¢||12(qxy) = 1 for all ¢.

There is a blowdown map to C(Z, s) in this case as well. In addition, for each ¢t € R,

there is a partially defined restriction map C™(Z) — C°(Y). Its domain is the set

{(A, f,4) € CT(Z,9)|f(¢) # 0}

2.7 The topology of B(Y,s)

We need to understand the algebraic topology of the space B(Y,s). First, we want
to understand G(Y) = Map(Y, S'). There is a short exact sequence

0— Go(Y)—G(Y)— H(Y;Z) - 0

where Gy is the identity component of G. There is a homotopy equivalence Gy — S*!

and the sequence splits. Since G acts freely on C?, we conclude that B(Y,s) has
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the weak homotopy type of a classifying space for S' x H'(Y;Z). Therefore its

cohomology ring is
H*(B(Y);Z) = A*(H\(Y;2)/T) @z Z[U],

where T is the torsion subgroup of H,(Y;Z) (so Hom(H*(Y;Z),Z) = H\(Y;Z)/T)
and U € H2(CP%) is a generator.

2.8 Moduli spaces of trajectories

Given critical points o and 8 in C°(Y’), we want to form suitable moduli spaces of
configurations on I X Y that solve the Seiberg-Witten equations and are asymptotic
to a as t — —oo and to 3 as t — +o0o. We will use these to define the differential in
the Floer complex.

In more detail, let 7o be a configuration on I X Y which agrees for |t| large with o
and 8. Define a configuration space Cf(a, ) to consist of all configurations whose dif-
ference from 7o is in L2. Then the gauge group Gy1 = {u: R xY = S':u—1¢€ L2}
acts on this, with a quotient Bi(Y, [a], [8]). We want to study the moduli space

M(a, ) = {["] € BL(Y, [o, [B] : F7(7) = 0} .

For generic values of the perturbation, all critical points are nondegenerate and
this moduli space is a finite-dimensional smooth oriented manifold. It is not neces-
sarily connected or equidimensional. There is an R-action by translation; denote the
quotient by M(a, 3).

The linearization of F7 at a configuration ~ is a Fredholm operator
T T
K=V

whose index is defined to be the relative grading gr(a, ) of a and 3. This grading

descends to the quotient space. If z is the homotopy class of v as an element of
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m(B7(Y), a, ), then we may also write gr.([a], [3]) for gr(a, ). However, this index

depends on z.
Lemma 14 ([5], Lemma 14.4.6). The relative grading is defined up to ([u}Uc,(s))[Y].

Definition 15. Denote by X the set of homotopy classes of paths from [o] to [8] in
B’(Y,s).
Any z € X determines a submanifold M,(a,3) of M(«, 3). Given two paths z

and w, their difference defines an element [z — w] of

m(B°(Y,s)) & H(Y;Z).

Similarly, if o and 3 are reducible critical points, we can form the moduli spaces
M™% (a, 8) and M™% (o, 8) of reducible flow lines from « to 3. There is a grading gr

in this case as well. This reducible grading is related to the ordinary grading by

r(la A>0
ol = 1 ([d) >
gr(le])) =1 A <o.

2.9 The Floer homology groups

Fix a metric g and a generic perturbation ¢q. Let C, be the free abelian group generated
by the set of irreducible critical points of C'SD + g¢; this is a finite set. Recall that
reducible critical points consist of a connection B and an eigenvector of the perturbed
Dirac operator Dg + g with eigenvalue A\ € R. Let C, and C; be the free abelian
groups generated by the sets of unstable and stable critical points, those with A\ < 0

and X\ > 0 respectively. Set

Qx

(Y757 Q) - Co @ 037

oy

(YVs,q) = C,®C,,
C(Y,s,q) = C,®C,.
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We will define differentials on these groups, and then the homology of these chain

complexes will be the three versions of Floer homology.

The boundary maps will count trajectories belonging to 0-dimensional moduli

spaces M ([a], [3]). We define

2:C, — C,
#:C, — C;
o C, — Cs
oa.C, — G

(93[0!] = Z |Mz([a]7[/8])l[ﬂ]

[8]€Co

o] = Y IM.(la], [B)IA]

[81€Cs

o] = Y IM.([a), [BDIIB]

(8leCo

o'la) = Y IM.([o], [BDIB):

(BleCs

Here the absolute value denotes a suitably oriented count of points. There are no
operators 05 or 92 because the moduli spaces that would correspond to these are

empty.

There are similar maps defined using the reducible moduli spaces M red  Define

#:Cy, — Cy
o :Cu — C
52:C, — Cy
§.C — C,



Oule) = ) 1Mz((a], [B])I(A]

(Bl€Cu

olal = Y 1Mo, [8)][A]
(Bl€Cs

O] = Y IM([a], [8))](B]
[B]€Cu

&l = > 1Mo, [B)IIB).
[BleC.

These maps are the components of the boundary maps in the Floer complex. Note

that both 9% and J* are defined, but the maps are different.

Definition 16. On C = C, & C,,, define

_ a9 o
o= *° * 1.
9, Oy

OnC=0C,0 C., define

Finally, on C = C, & C,, define

o 90,
& 8- 0

Q¢
I

It is proved in [5] that each of these operators has square zero. The homology groups

of these complexes are independent of the choice of metric and perturbation; thus

they are invariants of (Y, s). They are denoted HM(Y,s),]?M(Y, s), and }TZT/[(Y, 5).
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2.10 Maps from cobordisms

Let W be a cobordism between closed oriented 3-manifolds Y~ and Y*; that is,
OW = Y+][(~Y ") as oriented manifolds. Let s be a spin® structure on W that
restricts to the spin® structures s* on Y*. Let u € H*(B(W,s)) be a cohomology

class. Then we will define maps

HM®(u|lW,s) : HM°(Y~,57) - HM°(Y*,s™)

using moduli spaces of solutions on the manifold W* obtained by attaching cylin-
drical ends to W. These will satisfy a functoriality property under composition of
cobordisms. Additionally, when W is a cylindrical cobordism I x Y, we can identify
Ay with Ay and this will give rise to the Ay-module structure.

Fix nondegenerate critical points o € M(Y*,s%) and a configuration y, on W*
that agrees with o at the ends. Define M (W, a, ) to consist of solutions v to the
four-dimensional equations on W* such that v — o € L?, up to gauge equivalence.
Then the evaluation of u on M(W, a, ) gives the matrix coefficient of HM®(u|W,s)

from a to B.

2.11 The module structure on Floer homology

We can make the Floer homology groups into modules over the ring
At(Y) = H*(B(Y,s); Z) = A*(H\(Y; 2)/T) ®z Z[U).

These maps are defined just as in the definition of the boundary maps. Instead of
counting points in zero-dimensional moduli spaces, however, we now evaluate a class

u € A(Y) on moduli spaces of the appropriate dimension.
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Chapter 3

The equations on S! x ¥

3.1 The form of the equations

We want to study the Floer homology groups of S* x ¥ for spin® structures s. There is
a general result that restricts the set of spin® structures for which the Floer homology

groups may be nonzero.

Proposition 17 ([5], Corollary 40.1.2). Suppose C C Y is an embedded closed surface
of genus g > 1 and let s be a spin® structure on Y such that c1(s) is not a torsion
class. If

[{er(s), [CD] > 29 = 2,

then the Floer homology groups of (Y,s) vanish.

Corollary 18. Let s be a spin® structure on Y = S x 3. Then HM°(Y,s) vanishes
unless ¢;(s) is Poincare dual to 2k[S'] with |k| < g — 1.

Proof. This follows from taking C to be the surfaces {pt} x ¥ and S' x « for loops
o in 2.1 ]

Because of this, we will confine our attention to the spin® structures s, with
c1(sx) = 2kPD[S']. We can write the Seiberg-Witten equations in a more explicit

form suitable for computations. Fix a constant curvature metric on ¥ and let S 1=
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R/27Z. For reference, fix a smooth Clifford connection By on Y that is rotationally

invariant and that satisfies VEOU = %—‘g. Then
36

A(Y) = {Bo +ala € Q' (Y;iR)}

is the space of Clifford connections. One-forms a € Q'(Y;iR) may be decomposed
as a = ag + 1bdf, where ay is a family of 1-forms on X, x {6}, and b is a real-valued
function on Y. Notice that by ignoring the # direction, a connection on Y gives rise to
a family of connections on ¥ parametrized by § € S'. However, given such a family,
we do not have enough information to reconstruct the connection on Y since we do
not know how to differentiate in the # direction. For this, we need the function b as

well; then covariant differentiation in the @ direction is given by

\Y%

ov .
6%\11 59“{'2[)(9. (311)
Since we are in a spin® structure sy, the spinor bundle S is pulled back from ¥. It
decomposes into the +1-eigenspaces for the action of —ip(df), S*. For the spin®

structure sy, S* has degree k & (g — 1).

Since the spinor bundle S* @ S~ is pulled back from ¥, we may regard a spinor

® = (o, f) on Y as a family of spinors on ¥, parametrized by § € S!.

Each of the connections By defines a d-operator on the surface {#} x £. With

respect to these operators and their formal adjoints, the Dirac operator is given by

iVe /205

Dp = ~
V20 —iV,

Now we turn to the curvature equation. The curvature of A is given by

FBZFBO+d2a9+(idb—%)/\d6 (312)
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and therefore, since p(df) acts as multiplication by ¢ on S* and —i on 5™, we have

—iA(Fpgt + 2dsa dbg + 1222
p(Fpt) = (Fpy +2dza0)  pldbo +i¢) ) (3.1.3)
—p(dby +1%2)  iA(Fpy + 2da0)
Here A is contraction with the area form of ¥. The final term is the quadratic term

(®®*)o. In matrix form, this term is the endomorphism

sla? =187 af,0)

(3.1.4)
Biay 58P = lof?)

of ST S~

3.2 Vanishing of a spinor component

We show that for any v € B(Y,s,) solving the Seiberg-Witten equations, one of
the two spinor components must vanish. In fact, we prove a slight generalization of
this. The parameter X in the lemma below is relevant for reducible solutions to the

equations, and g will appear when we consider a perturbation in the case ¢ (sx) = 0.

Lemma 19. Let A € R, let ¢ € R, and suppose (B, ¥) satisfies the modified Seiberg-

Witten equations

SP(3Fs) + (B8")o = pliqdd) (3.2.1)
Dpd = \®. (3.2.2)

Then oo =0 or = 0.

Proof. First pull back to a 2m-periodic configuration on R x ¥. Apply the gauge

transformation

o
u(f, z) = exp/ ib(o, 2)dg;

0
then the df component of B is zero. Our new configuration (B, a,3) is no longer

.. . .. 2 2 . ..
om-periodic; however, since u is circle-valued, |a|” and |3|” are still 27-periodic. Now
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calculate:

0?3 3

= _f<838“ (%5) )-;-,\%

0,1
= ——\/5 [53 (—i/\a + Z\/éggﬁ) + (%?‘) N«

9B

- _218383ﬂ+2\/_)\8305+)\ 5+ Blol”
_ —2i535§ﬁ+z')\2ﬁ+—i\/—ﬁ|af :

Now take the pointwise inner product with 3 and integrate over £ to conclude that

/<a‘;§ > /)aBﬁl +A2/|ﬁ| +/| *16°

for every 8 € R. Finally, integrate this from 0 to 27. Note that

*p \ _ 0 /98 9B
() = a{aw) oo

10 0
) - |5

2

2

S (1

Since |3|” is 2m-periodic, so are its derivatives, and so when we integrate, the boundary

term drops out and we obtain

ananz |08 5 gl 1 /5 \
MNIBIE = |51l +2195,8]" + V2 la® 8|7,
90

where the norms are all taken in L?([0,27) x ¥). An analogous calculation gives

oa |

2 2 _
el = 5

+2|0g,0|” + V2 |la ® 8]

as well. By applying the triangle inequality to each component of the Dirac equation,

we also find

oo ||

ol < 25,8 + | 55
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and

_ 8|2
N BI” < 2|0l + “%

Adding each pair of equations and comparing the results, we conclude that la® 5“2 =

0.

3.3 Rotational invariance and dimensional reduction

Given a solution to the modified Seiberg-Witten equations (3.2.1) on Y, pull it back
to [0, 2] x £ and kill (B — Bo)(4%) by a gauge transformation. Then we have a path

(Bg, ag, Bp) of connections and spinors on ,. They satisfy the following equations:
. /= A Oa
2\/5830[3 + '8—9 =0

- 0
—Z\/iagsa + a—g =0

i\(Fp, + dyag) = §(lﬁl2 — la*) — ¢
. 0
aff* =ip3 (5&92)

0
Ba* = —ip3 ( ;99)

The last two equations are to be interpreted as equations for sections of Hom(S*,57)

and Hom(S~, S*) respectively. Differentiate the first equation with respect to 0 to

get

i—az—a-— 8(26 B +iay'LB)
2062~ Tap OB T

_ (e/¢] 3(121

= 55 * a5 -
0,1
A .5 .0Gy
= 103, (\/52839(1) +ioy LB

= 3, (V2,0 + \_/—,;_alﬁiz.
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Now take the inner product with « and integrate along ¥ to get

1 P« - 1
5o = Vel = [t o

for all § € [0, 1]. This makes sense in S, so

72

In particular, this implies that o is independent of #. A similar argument shows that

2+ﬁ/y;539a|2+¢§/y|a|215|2 0.

da
00

B is independent of # as well.

To summarize, we have the following result.

Proposition 20. If (B, V) satisfies (3.2.1), then there is a gauge transformation
u:Y — S! such that the configuration u - (B, ¥) is invariant under rotation in the

St factor.

Proposition 21. Suppose that (B, V) satisfies the equations (3.2.1) and q = 0 if
k # 0. Then at least one component of the spinor ¥ must vanish: if k < 0, then
B=0and if k >0, then o = 0. In particular, in the case k = 0, all solutions to the

equations with q = 0 are reducible.

Proof. This follows immediately from the Chern-Weil formula

1

1
2h = §/EFB ~ i /2<|ﬂ|2 ~ laf’ — g)dvols, (3:3.1)

together with the fact that a8 = 0. O

Rotational invariance allows us to reduce the equations (3.2.1) to a system of
equations on Y. First, we consider irreducible solutions. We may suppose that either

k <0or k=0and ¢ <0. Then § =0, and the curvature equation gives

1 . ;
§|a|2 = —iAFp, —q= —i\(2Fp, + Fr-2) +|q|
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or

, 1
iNFg, + §|04|2 —((29—2)m+g]) =0

since we gave T'Y a standard connection of constant curvature. Here B, denotes the

connection in S+ obtained by restricting B. The Dirac equation becomes simply

SBCY =0.

These are the vortex equations on X.

In the case of reducible solutions, the equation is simply
Fg: = 0.

Thinking of harmonic forms, for instance, we see that the gauge equivalence classes

of connections on S with flat determinant are given by the (2¢+ 1)-dimensional torus

Ty = iHYY;R)/2miH (Y; Z).

3.4 The vortex equations

Let M be a Kahler manifold and E — M a complex vector bundle with a hermitian
metric H.

The vortex equations are

F? =0 (3.4.1)
Oap = 0 (3.4.2)

1
iNFa+ 500 ¢" = %I (3.4.3)

for a unitary connection A and a section ¢. The group of bundle automorphisms of
E acts on the space of pairs (4, ¢), and we want to understand the space of solutions
up to gauge equivalence. We restate the problem using the following fact, proved for

instance in [2].
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Fact 22. Let E — M be a holomorphic vector bundle over a complex manifold, and
let H be a hermitian metric on E. Then there is a unique connection Dg y on E that

is compatible with the metric and satisfies (Dg g)* = Og.

This fact allows us to restate the problem, following Bradlow ([1]). We will fix a
holomorphic structure (g—operator) on F together with a section ¢ of E holomorphic
with respect to that structure. Then we will look for a hermitian metric X such that

Dg i satisfies the vortex equations.

In our case, F is a line bundle, so once we fix a background hermitian metric H,

any metric K has the form

K =e®H

for some real-valued function u : X — R. We need to rewrite the equations in terms

of u. If Vi and Vg are the connections associated to d and H, K respectively, then

iFK ZiFH+AU.

Proposition 23. (/1], Lemma 4.1) Let K = e®™H. Then the vortez equation for u
becomes

1
iAFy + A+ S|glhe™ - % = 0. (3.4.4)

As a first step toward solving this, observe that the Laplacian
A LA(X) — L}, (X)

has one-dimensional kernel and cokernel. The kernel consists of the constant func-
tions, and the image consists of those functions that have average value zero. As a

consequence of this, we may find a function v € C*(X; R) such that

Ay = (z'AFH - %) - /X (z’AFH - %) ,
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and v is unique up to a constant. Let
w = 2(u — v);

then u solves 3.4.4 if and only if w solves

—Aw — (|¢|}e*) e” — (/ iANFy — %) =0.

This is an equation studied by Kazdan and Warner in [4]. Their result is the

following.

Theorem 24. ([4]) Let M be a closed Riemannian manifold and consider the equation
—Au + he* —c =0, (3.4.5)

where ¢ is a real constant and h € C®°(M,R) is not identically zero. Suppose h <0
everywhere.
e Ifc =0, then there are no solutions unless h changes sign.

o Ifc < 0, then there exists a unique u € C*°(M,R) solving Equation 3.4.5.

In our case, we have

c= (/z‘AFH — (29— 2)7r> — 21 (c1 — (g — 1)) = —2nk.

In the case k # 0, we can conclude that given an effective divisor, there is a unique
solution to the vortex equations. In addition, this gives another proof that there are

no irreducible solutions in the case k = 0.

3.5 The case ¢; # 0

When the spin® structure has nonzero Chern class, we have seen that the equations

reduce to the vortex equations on Y. Since vortices correspond to effective divisors of
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the appropriate degree, we conclude that the moduli space is a copy of Sym9—1-ll%,

Next we will show that the solutions are Morse-Bott nondegenerate. This will

follow from nondegeneracy for the vortex equations.

Lemma 25. At any solution (A, ®) to the vortex equations, the linearized vortex

operator s a surjection
(ST ®iT*Y) - I'(S™ ®iR).
Proof. The operator is given by
(a,¢) — (2Ada + 2Re (®, ¢) , 0 + a™'®) . (3.5.1)

We will show that the image is dense. So suppose we have some pair (f, ¥) orthogonal
to the image. Here f is a function and ¥ a section of S~ = A% ® S*. By assumption,

for any pair (a, ¢),

0 = (2% da + 2iReh(®, ¢), f) + (Oa¢ + a™'®, T)
=2(a,d"(fw)) +2(¢,if®) + (¢, 91T) + (a”', ¥ ® ®*).

Taking ¢ = 0, we find that
—2d*(fw) + ¥ ® &* =0,

which implies immediately (by comparing types) that d(*fw) = df has type (1,0),
and so that f is a holomorphic function and therefore constant. Since f is constant,
the equation becomes ¥ ® ®* = 0, which implies that ¥ vanishes wherever ® does
not. But the zero set of @ is a finite set, so ¥ = 0. Now taking a = 0, we find that

f® =0 and so f = 0. Therefore the linearized operator has dense image.

The linearized operator is the second map in an elliptic complex, in which the
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first map is the map iC®(X) — (ST & ¢T*X) given by linearizing the gauge action:

£ (—dE,£D) . (3.5.2)

Ellipticity of the complex implies that the linearized vortex operator has closed image.

O

We can form an “extended Hessian” for the vortex equations just as we did for the
Seiberg-Witten equations. As in the case of the Seiberg-Witten equations, we use a
gauge-fixing condition to replace the elliptic complex with a single elliptic operator.

The gauge-fixing condition for the vortex operator is

d*a+ Im (®,¢) =0. (3.5.3)

Combining this gauge-fixing map with the linearized vortex map, we obtain a map

(St @iT*Y) — I(S” @R ®iR)

given by
2Ad  2Re(®,-)
7Ol Oa
d  Im(®,-)

Since we are on a closed manifold, the zeroth-order terms are compact operators, and

so this operator has the same index as the direct sum of
d+d Qo - Q*aQ°

and
0a:T(SY) = T(S7).
The index of the first operator is minus the Euler characteristic of ¥, or 2 — 2g. By
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the Riemann-Roch theorem, the second has complex index
deg(ST) — (g - 1) = k.

We showed above that the operator is surjective. So our operator has a kernel of real
dimension 2(g — 1 + |k|), which is exactly the dimension of Sym9—1*+E as expected.

Morse-Bott nondegeneracy for the Seiberg-Witten equations is a consequence of
this; we consider the extended Seiberg-Witten Hessian at a solution (A, a, 0) coming

from the vortex equations.

3.6 The case c;(s) = 0: perturbing the equations

We now consider the case of a spin structure, i.e. ¢; = 0. As stated above, crit-
ical points of the Chern-Simons-Dirac functional downstairs on B(Y,s) are all re-
ducible, and they are given by the gauge equivalence classes of connections that
induce flat connections in the determinant line bundle. These are classified by
iHY(Y;R)/2rniH\(Y; Z).

On the blowup B?(Y, s), solutions to the equations are triples (B, s, ¥), where B
is a flat connection, s = 0, and V¥ is an eigenvector for Dg of unit L? norm. The

equations on X become

Fg = 0
= {0
V20RB+i| = +ib)a = I
a0
\/ﬁéga—z'(%—ib)ﬁ = A3

The bundles St and S~ are complex line bundles of degrees g—1 and 1— g respectively.
We need to know which connections B give rise to Dirac operators Dg that have

a nontrivial kernel.

Proposition 26. If DgVU = 0 and ¥ # 0, then B is gauge equivalent to a connection
with b = 0.
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Proof. Decompose the sections o and B as a@ = Y., e and =3 Bne™;

then for each integer n, we get the equations

—z'(n—i—b)an—%-g;:ﬁn =0

i(n+b)oy + 040, = 0.

Apply 0% to the second equation, substitute into the first, and integrate against an

to find

A 2 2 2
s Zaggy = = (4 B2 lall gy -
Thus there is just one n for which a;, # 0, and we must have n = —b and a,, € ker 0p.
It follows immediately that 3, € ker 9% as well. O

So Djp has kernel precisely when the holomorphic line bundle defined by B lies in
the theta divisor and the df component b of B is an integer (so it can be made to

vanish by a gauge transformation). In other words, it lies in
O x {0} C Jac x S™.

Such critical points fail to be Morse-Bott nondegenerate. However, we can write down
a perturbation of the equations that removes these singularities but will introduce

irreducibles. For any spin® 3-manifold (Y, s), there is a map
w:B(Y,s) - Ty

defined as follows: first fix a base connnection By. Then given a configuration
(B, s, ¢) € C°(Y,s), project B— By to the space iH(Y) of imaginary-valued harmonic
1-forms. This projection is invariant under the action of the identity component of

G(Y). In our case, there is even a projection

7 B°(S' x B, 50) — S
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given by composing 7 with projection to ¢H'(S*; R)/2miH(S'; Z).

We will perturb the Chern-Simons-Dirac functional by adding a term f o’ for
some smooth f : S' — R; by Theorem 11.1.2 of [5], such a perturbation is allowable
for calculating Floer homology. The critical points of CSD + f o’ downstairs satisfy

the Dirac equation and the following curvature equation:

SP(# i) + (T0°)o = p(n(B,)) (3.6.1)

Here 7 is an imaginary-valued harmonic 1-form defined using the inner product on
Ts_p,Ty = iH'(Y)

as the L? gradient of f. If we choose f to be a function only of the df component of

By, then n will have the form
n=1iq((B — Bo),) d0 (3.6.2)

for a function ¢ : Ty — R.

Proposition 27. Suppose the function f : Ty — R is such that f(B) depends only on
the df component b of (B — By). Then a critical point of CSD + f o is rotationally

wnvariant, and at least one of its spinor components vanishes.

Proof. An irreducible solution satisfies Dg¥ = 0 and so by (26), it has b = 0 after a
gauge transformation. Critical points of C'SD+ f o7 satisfy (3.2.1) with the constant
q given by (3.6.2) and are thus rotationally invariant by (20).

By definition, a reducible solution has both spinor components equal to zero.
An irreducible, by Proposition 26, has b = 0. Then by Lemmal9, one component

vanishes. By Proposition 21, the sign of ¢ tells us which component must vanish. [

We observe that the irreducible solutions form a copy of the symmetric product.
In the ¢ < 0 case, for instance, § = 0, and reducing the equations to ¥, we get

the vortex equations for the line bundle ST — ¥ with the parameter 7 equal to
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4(g — 1)7 + 2|q|. This is greater than the critical value 4(g — 1), so by Theorem 24,

the set of solutions up to gauge is identified with Sym9—1%.

Proposition 28. A reducible solution (B, V) satisfies ¢ = 0; that is, h(B) is a critical
point of f: T(Y) — R.

Proof. This follows immediately from the Chern-Weil formula (3.3.1). O

It follows that above each critical point of f there is a 2g-torus of reducible solu-
tions.

To summarize, we have proved the following:

Theorem 29. Let f : S — R be a smooth function with f'(0) = 0 and suppose f has
exactly two critical points, a mazimum at ¢. € S' and a minimum at q_ € S*. Let
M be the moduli space of gauge equivalence classes of critical points of CSD+ fom'.
Then M intersects ezactly three fibers of the map ©'. The fiber over 0 consists of
irreducible solutions and is a Morse-Bott nondegenerate copy of Sym?9—*%. The fibers

over q,. and q_ are 2g-tori consisting of reductble solutions.
The statement about the reducibles follows from the next lemma.

Lemma 30. A configuration (B,0) is a reducible critical point of CSD +mo f in
B(S! x X, 50) if and only if

e B is a flat connection and
e 7'(B) is a critical point of f.

Proof. By integrating (3.6.1) with ¥ = 0, we see that for a reducible solution (B +
ibdf, 0), ibdf must be a critical point of the function f. O

Before we perturbed the equations, the solutions were a copy of T%9*! correspond-
ing to the flat connections on Y. In other words, over each point in the dual circle
there was a 2¢-torus. The perturbation splits this torus into two 2g-tori, located above
the points ¢_ and g, of the dual circle. At the same time, it introduces irreducibles

that did not exist before.
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3.6.1 Morse-Bott nondegeneracy

Using the fact that the irreducibles are Morse-Bott nondegenerate, we will write down
a further perturbation in the next chapter in order to show that they contribute pre-
cisely H*(Sym9~'Z) to the chain complex. The reducibles are not yet nondegenerate,

but we should be able to make them so.
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Chapter 4

Perturbing the equations

4.1 Overview

The definition of the Seiberg-Witten Floer homology groups involves a perturbation
of the Chern-Simons-Dirac functional to a Morse function. The aim of this chapter is
to extend the definition to the Morse-Bott situation, in which the critical points are

no longer fully nondegenerate but instead form nondegenerate critical manifolds.

4.2 Sobolev completions

We will need to consider suitable Sobolev completions of the spaces we are using. For

this, fix a smooth connection By on Y .

Definition 31. The L configuration space Cx(Y, ) is the space
Ce(Y,s) = {(Bo+b,¥)|b e Ly(Y;iT*Y), ¥ € Li(Y; )} .
There is also a Sobolev completion of the gauge group.
Definition 32. Let k > 2. The L} gauge group Gi(Y,s) is

G(Y,s) = Li(Y, SY).
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Ifk> %, then this is in fact a Hilbert Lie group and there is a smooth action
Gr X Cr—1 — Cr1.

The quotient of this action is denoted By(Y, s).

Given a configuration v € Ci(Y,s), the tangent space to the Hilbert manifold
Cr(Y,s) at v is

Tin(Y,8) = {(b,0)|b € LY(Y;iT*Y), ¥ € LY (Y; S)} .
In addition, for j < k, we can also define the completion of T}, in the L? norm:
TjA(Y,8) = {(b,¥)|b € L3(Y;iT*Y), ¥ € L3(Y; S)}.

Then we have bundles T; — Cj, for j < k. At an irreducible configuration y € Ci (Y, s),
define d,, toe be the linearization at 1 of the gauge group multiplication by +; this is
given by

d’r§ = (—df’ f‘I’)-

The map d, extends to a map sz_ 1 (Y5iR) — T, for each j < k; let J;, be the

image of this map and Ky, the L? orthogonal complement of J;, in T}.,.

4.3 Global slices

Let v = (Bo, 0) be a reducible configuration in Cy(Y,s). Following section 9.6 of [5],
we will exhibit Bi(Y, s) as the quotient of an affine Hilbert manifold by the group G".

The gauge group G, contains a subgroup leH defined by

Gt = {e§|§ € L§+1(Y;¢R),/Y§ = o} .

Denote the space of harmonic gauge transformations by G" (this is independent of
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k). Let
G ={ue G" : u(xo) = 1}

for some fixed basepoint zo € Y, and let G2, , = G"° x Gi,. Define B} to be the
quotient of C; by the action of Gp,,. There is a product decomposition Grr1 =

Git,1 x G". Define a map Gir; X Kiqo — Ci(Y;5) by
(eéa (a) ¢)) = (BO +a- d{v ¢) .

We claim that this is a diffeomorphism. Given a pair (B,v) € Ci(Y,s), we want to
find ¢ and (a, ¢) such that d*a = 0, b = a — d§, and ef¢p = 1. Applying the first
equation to the second gives

d*b = —AE.

The Laplacian on Y is an isomorphism A : L7, o(Y;iR) — Li_, o(Y;4R), where the
0 subscript denotes the space of functions with integral zero. So we can define the

inverse map by
(B, 1) (e—A‘ld*b, (a — AN, eA‘ld*%/))) .

Note that it is essential here that 7y is reducible; otherwise the equation would have a
zeroth order term in addition to the Laplacian, and we would not have such a simple

description of the solutions.

4.4 Finite-dimensional approximation

According to Proposition 11.2.1 of [5], we can approximate B°(Y,s) by a finite-
dimensional manifold E in such a way that we get an embedding of the moduli

space MY into E. More precisely,

Proposition 33. Suppose M°® C BY(Y,s) is an S'-invariant finite-dimensional com-
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pact C' manifold. We may define an S'-invariant map
U BY(Y,s) - R" x T" x C™

and a neighborhood U of M° in BE(Y,s) such that U embeds U in R x T? x C™.

We briefly describe the construction of ¥. Let {ci}?:lt be coclosed one-forms, with

the first n coexact and the last ¢ = b;(Y") a basis for the space of harmonic one-forms.

Then we can define maps r; : C(Y,s) — R by

Ti(Bo+b,\I/)=/b/\*c_,-.
Y

Then define ¥ to be
(B, ¥),...,r.(B, V),

\I/(B,’lb) = Tn-f-l(B’ ‘I’),...,Tn+t(B, \11)7
(h(B,?P)a ttt )qm(B’d))

Then Wis a map C(Y,s) — R" x R* x C™ and descends to an S'-invariant map
B°(Y,s) — R™ x T* x C™. The proposition states that by taking enough forms and
spinors, we can arrange that ¥|y is an embedding,.

This finite-dimensional approximation gives a way of constructing perturbations.

Definition 34. Suppose g : R® x T% x C™ — R is a smooth S-invariant function

with compact support. Then we say the composition g o ¥ is a cylinder function.

Kronheimer and Mrowka definte a class of tame perturbations, which are sections

q of Ty — C having the following properties (among others):
e For every k > 2, q extends to a smooth section of T}, — Cy;
e The linearization dg extends to a smooth section of End(Ty) — Cy.

If g is a tame perturbation such that the critical points of C'SD + q are nondegenerate

and the moduli spaces of trajectories are regular, thatn the perturbation ¢ can be
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used to calculate the Floer groups. Kronheimer and Mrowka ([5], Theorem 11.6.1)
construct a Banach space of tame perturbations that is large enough to ensure the

needed transversality.

Proposition 35 (([5], Theorem 11.1.2)). If f is a cylinder function, then its gradient

gradf is a tame perturbation.

4.5 Defining the perturbations

Definition 36. Let v be a critical point of CSD. If the image M of CritC'SD in
B(Y,s) is a manifold and the kernel of Hess,CSD is the tangent space to M, then

we say v is Morse-Bott regular.

Suppose the critical set M of CSD is Morse-Bott regular. Our goal is to find a
perturbation h of C'SD such that C'SD + h has only nondegenerated critical points.
We would like h to be such that h|ss is a Morse function, and then we want to show
that the critical points of C.SD + h correspond naturally to those of h|.

Choose ¥ so that it restricts to an embedding of M° into R™ x T* x C™. Let
f° be a smooth S'-invariant function on M? that descends to a Morse function f on
M. Then regarding f° as a function on ¥[M?)], extend f° to a tubular neighborhood
of U[M°] in R™ x T* x C™ by choosing a normal bundle structure and making f°
constant on fibers; finally, extend to all of R™ x T* x C™ by a cutoff function. Then

take our perturbing function h to be h = ¥ o f°.

4.6 Nondegeneracy for the perturbed equations

Now that we have constructed the perturbing function f, we need to show that it

actually brings us into a nondegenerate situation.

Theorem 37. There exists € > 0 such that for 0 < t < €, each critical point x of

fleritcsp, T is a nondegenerate critical point of CSD +tf.
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Proof. Write H = Hess,CSD and F = Hess,f. Since gradf is a section of Ty, — C,
d[gradf], has image contained in L?. This implies that

H:Kiy— Kio1y

is a compact operator, and so for any t, H 4+ tf is a Fredholm operator of index zero.

Therefore H + tf is surjective if and only if it is injective.

Now we will show that we can choose t small enough that H + tf has no kernel.

Let v be a complement of T,M in Ky ,. Then the operator H has the form

Ly O
0 0

H =

where Ly is an isomorphism v, — 1. In this same decomposition, f decomposes as

A B
¢ D

F=

where D is an isomorphism T,M — T,M. Now suppose we have a pair (z,y) in the

kernel of H + tf. This means that

(Lo + tA)SC + tBy = 0

tCx+tDy = 0.

Since Ly is an isomorphism, Lo + tA is also an isomorphism if we choose ¢ such that

0<tllAll <3 HL(;1||_l , and then we have

- Lyt _
(Lo +tA)|| < t"i‘ﬂ%}bﬁn <2||Lg|-

Now solve the first equation for z and substitute into the second to get

t*C(Ly +tA)"*By = tDy.
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Now take t even smaller so that
1 _
o< 2tlcl-||ILg*] - 1Bl < 5 1D

then tC(Lo + tA)™!B — D is an isomorphism, and therefore y = 0. But since Ly +tA

is an isomorphism, this implies z = 0 as well. Therefore H + tA is surjective. O

ol
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Chapter 5

The conjectured Seiberg-Witten

groups

5.1 Overview

Based on the analysis of the critical points in the previous chapter, we write down

conjectured groups of Seiberg-Witten cochains.

Definition 38. Let
C; = H*(Symf™1x),

Cr = (H*(Jac;Z) ® H*(Jac; Z)[—1]) ®z Z[U],

and

C: = (H*(Jac; Z) ® H*(Jac; Z)[-1)) ®z (Z[U, U/ Z[U])) .

u

For now, these are simply graded abelian groups. We will make each into a cochain

complex and the cohomology of each complex will be a module over A(Y).
Define
é = Cvs D Cua

é:Co@Oua
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and

C=C,dC,.

To write down the boundary maps of these chain complexes, we will need some facts
about Riemann surfaces. First of all, we relate HM (Y’) to the cohomology ring of Y,

as is done in [5].

5.2 The Lefschetz decomposition and HM(Y)

Theorem 39. Let s be a spin® structure on Y with ¢,(s) torsion. Then there is a

spectral sequence with Es term
By = A*(H\(Y;Z)/T) @2 Z[U, U]

that converges to HM(Y). The only nonzero differential is dz, given by dz(z @ U*) =
(€ -x) @ UF'. Here € € A3(H\(Y;Z)/T) arises from the triple cup product map
NHY(Y;Z) — Z.

Now we can define the boundary map 0 to be

_ 0 0
0
ds 0

Here juxtaposition represents the exterior product in A*(H(Y';Z)/T), which is not
to be confused with the cup product in H*(Y; Z).

We can apply the Lefschetz decomposition to determine the group HM (Y, s0; C).

For any vector space V, we may define a bilinear contraction

e VEX ARV — ALY

atvy A Ay = (=D Ta(v)vy - AG A - A
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This extends naturally to a bilinear map A'V* x A¥V — AV for | < k. Now
suppose V is a complex vector space of dimension 2g equipped with a symplectic
form w € A2V*. Then contraction with w defines a map A*V — A*=2V for any k.
There is also an isomorphism V — V* defined by v — w(-,v); using this, we may
regard w as an element of A%V and can thus take the wedge product with w.

Define operators L,A, and H on A*V by La = w Aa,Aa = —wLa, and Ha =
(p — g)a for a p-form «. These operators give A*V the structure of a representation

of 5l5(C). Therefore we obtain a decomposition
MV =P owAP 20w APA. ..,

where Pi = kerA N A'V is the primitive part of A'V.

The above is a special case of the Lefschetz decomposition of the cohomology of
a compact Kahler manifold (X,w). If we represent cohomology by harmonic forms,
then the above operators still act on H*(X), making it into an sly(C) representation.
The case above corresponds to the case when our manifold X is a complex torus, and
we will apply it in the case of the Jacobian of ¥. Geometrically, we will see the cap
product with w on H,(J), which corresponds to the cup product with w on H*(J).

However, with integral coefficients, this representation theory no longer applies.
The kernel and cokernel of wedge product with w were calculated by Lee and Packer
in [6]. However, because of the extension problems arising from the spectral sequence,

we cannot identify this with the groups HM(Y').

5.3 The Abel-Jacobi map and the zero spin® struc-

ture

Now we turn to HM (Y'), the definition of which which involves the irreducible solu-
tions. We will construct the boundary map d? in our complex using the Abel-Jacobi
map for ¥. We noted above that for the given perturbation, the irreducibles form a

copy of Sym?9~'%,.
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There is a map

11 H*(Z) — H*(Sym®%)

arising as follows (the discussion and notation follow [[11]]):

There is a universal divisor
A ={(z,D) € £ x Sym?T|z € D}
inside the product ¥ x Sym9%. We can use this to define the map 1 by

T a = (pra)(A U pri(a)),

where the pr; are the ith projections and the ! denotes “integration along the fibers.”

Note that using the notation of Macdonald, T1 =17, T a; = &;, and | a; = ¢,. The

map T gives H*(Sym“L) the structure of a module over A*H'(X) ® Sym*H(X).
Now we return to our situation, in which d = g — 1. The degree g — 1 Abel-Jacobi

map induces a map

p*: H*(Jac) — H*(Sym9~1%).

Define the boundary map d? to be (u*,0). Then the contribution of C¥ to the

cohomology of our complex is the quotient

H} = H*(Sym?™'S,)/u*H*(Jac).

As stated above, p* is an isomorphism on first cohomology.

5.4 The cohomology of symmetric products

Let Sym?Y be the dth symmetric product of a genus ¢ Riemann surface . Let
Qq, -, O, 0/1, ‘e ,a; be a standard basis for the first cohomology of C' and let 8 =
a; A o be a generator of H?. In the d-fold product C¢, denote the corresponding

elements for the jth factor by «; ;,¢; ;, and 3;.

!
i7j7
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Consider the jth projection map pr; : C¢ — C. Define elements of H *(C?) by

/
10

Qij = Pri, o ; = prja; , and B; = pr*f3. Following Macdonald’s notation, write

n=PF+ - +PBs & =1+ +aig and & = aj, + -+ + o githese elements of

H*(C%) are invariant under the S? action. The following is a theorem of Macdonald

(17D

Theorem 40. The cohomology of SymiC is isomorphic to the subring of H*(C?)
invariant under the Sy action. H*(Cy) = H*(C%)5". The elements n and & are gen-

erators of the ring. As an abelian group, H k(Symax) is freely generated by elements

&r&rm?

with |I| + |I'| + 2q = k. In particular, the Betti numbers are

In addition, Macdonald gives a description of the ring structure of SymgX.

Theorem 41. The cohomology ring of Sym?Y is generated by the & and n subject

to the relations

i &y &5 (e, — ) - (i, — M =0

fori+j+2k+q=d+1.

We perform the following calculation using ths relation:

=[T@-m=> os=n*"

el JCI
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and therefore

0=k Z ZU](—n)k—|J|

)=k JCI

S —

\|=k JCI

=W R Y (=)

[I|=k JCI

—wf kY (Z :;) S os(=n)t

Jj<k |J|=3

_ K 9g—J\1 ; k—j
=w +klz<k_j>,—.aﬂ(——n) I

i<k

k

Therefore we can write w* as a sum of terms w/n*~7 with nonzero integer coefficients.

Proposition 42. The map p* : H(T?9) — HY(Sym.X) is an isomorphism of abelian

groups taking o; to & and o to €.
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Chapter 6

The 4-dimensional equations

6.1 Overview

In order to understand the differentials in the Seiberg-Witten chain complex, we need
to understand the equations on the cylinder Z = R x S! x X. First we write down

the equations on a Kahler manifold, following, for instance, [8] or [9]:

AF; = i(laf*~16l)
FY? = a*®p
3/104 + 52ﬁ = 0.

Let 7 = ¢ + i0 be a complex coordinate on R x S!. Then we can write a plus spinor
on Z as a pair (a, 3d7) where « is a section of E and 3 is an E-valued one-form. A
connection on Z has the form Ay + £ + 1hdf where £ is a section of 7*7T™Y and ¢ is a
complex-valued function.

With these conventions, the curvature equation, perturbed as in the previous

chapter, becomes

p(%FAt + g (b)vol(a)) = (2P*)o

The idea for solving the equation is to reduce it to a vortex equation on the 4-

manifold Z. As a first step, we consider the unperturbed equations on Z. Given two
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critical points 7, and 7, necessarily reducible by the arguments of Chapter 3, we

want to study the 4-dimensional solutions with these limits at ¢ = +o0.

6.2 Flow lines and vortices

We will study the relation between solutions on Z and vortices on the closed complex

surface R = S%? x X.

Proposition 43. A flow line on Z that converges exponentially to critical points of

the unperturbed equations as t — oo must satisfy

F? = 0 (6.2.1)
a=0 or [=0 (6.2.2)
Oaa=0 and 943 =0. (6.2.3)

Proof. This follows from the same argument as in [9], Proposition 6.0.10. Applying
04 to0 6.2.3, we see that

0 = éAgAO{ + 5,452,3
= F2’2a’ + 5A(‘§2ﬁ
= |a|2 ﬂ + 5A(§Zﬁ

and so,
la?|B8]* + (04038, 8) =0

pointwise on R x S! X £. Now integrate along [T, T] x S* x &, let T — oo, and use

the exponential decay. a

This tells us that we can have exponentially decaying flow lines only between
critical points that have one of the spinor components vanishing. Next, we want

to show that these flow lines can be extended over the closed manifold. We map
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R x S! x ¥ into R by sending
(t,0,2) — (e 2).

This is a holomorphic map onto R minus the two copies of ¥ at the poles. Write
(A, &) for the image of (A, «) under this map.

As t — —o0, the exponential decay on the cylinder says that

|A - Ao| < Ce

la| < Ce.

The second condition tells us that & extends over the disk; however, the norm of
one-forms changes, so we do not know that A extends.

Conversely, suppose we are given an effective divisor in R. It has an associated
holomorphic line bundle £ and a holomorphic section «, and we can find a connection
A giving rise to the holomorphic structure. Pulling back to R x S! x &, we get a pair
(A, ) with exponential convergence at the ends. As above, we would like to find a

complex gauge transformation u that takes us to a solution to the vortex equations.
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