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M
odern technological advances make the
deployment of large groups of autono-
mous mobile agents with onboard com-
puting and communication capabilities
increasingly feasible and attractive. In

the near future, large groups of such autonomous
agents will be used to perform complex tasks in
dynamic environments, including transporta-
tion and distribution, logistics, surveillance,
search and rescue operations, humanitarian de-
mining, environmental monitoring, and plane-
tary exploration [1], [2].

The potential advantages of multiple mobile
agents are numerous. For instance, the avail-
ability of real-time data collected in situ would
dramatically impact the modeling and study of
several critical, episodic, rapidly evolving, and
localized environmental phenomena such as
hurricanes, oil spills, and forest fires. Similar
considerations can be made for the study of ocean
currents, winds, and accurate local weather fore-
casting. Collection of such data is currently limited
by the fact that most available sensors are static (e.g.,
fixed monitoring stations) or remote (e.g., satellites).
Moreover, the intrinsic parallelism associated with a
multiagent system provides robustness to failures of single
agents and, in many cases, can guarantee better time effi-
ciency. It is also possible to reduce the total implementation and
operation cost, increase reactivity and system reliability, and add flex-
ibility and modularity to monolithic approaches. As a consequence,
the interest of the systems and control, robotics, computer science, and
networking communities for systems comprising multiple mobile agents has
increased rapidly in the last several years. In particular, the field of multiple
unmanned aerial vehicles (UAVs) has gathered a wealth of interest from the
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research community, because UAVs provide an ideal platform
for several of the applications mentioned earlier [3].

With such a powerful technology at hand, the major scientific
challenge is to design efficient coordination policies among these
agents. This article takes the viewpoint that the agents can be
interpreted as resources to be allocated to customers. In surveil-
lance and exploration missions, customers are points of interest
to be visited; in transportation and logistics applications, custom-
ers are people demanding delivery of some goods or service (e.g.,
utility repair). Finally, consider a possible architecture for net-
works of autonomous agents performing distributed sensing: a
set of n cheap-sensing devices (sensing nodes), distributed in the
environment, provides sensor measurements, while m sophisti-
cated agents (cluster heads) collect and process information from
the sensing nodes and transmit it to the outside world. In this
case, the sensing nodes represent customers, while the agents act-
ing as cluster heads represent the resources to be allocated.

The underlying mathematical problem in many of these
applications can be studied within the framework of spatial
queues, with the tasks as customers and the mobile agents as
servers. The solution has to typically address three key chal-
lenges: 1) task allocation among the agents, 2) service scheduling
for each agent, and 3) design of loitering strategies, i.e., strategies
to adopt for agents with no assigned tasks. In general, these chal-
lenges are coupled. Therefore, devising an optimal or at least
provably efficient policy is a difficult problem. Considering
motion constraints for the agents, as should be done for UAVs,
complicates things further.

A natural way to reduce the complexity is to partition the
workspace among the agents and then let each agent follow a
certain set of rules in its own region. To what extent does this
decoupling strategy affect optimality? The objective of this arti-
cle is to illustrate specific scenarios and recently developed parti-
tioning schemes whereby one can retain optimality, or at least
some degree of optimality under this decomposition.

This article is outlined as follows: First, we describe the
characteristics of a family of dynamic vehicle routing problems
that indeed capture the main features of a large number of
dynamic task-based motion coordination problems, appearing
in a variety of foreseen application domains. Second, we are
interested in identifying specific scenarios in which one can
decompose, through workspace partitioning, task allocation,
service scheduling, and loitering strategies, while maintaining
some degree of optimality for the original problem. For these
scenarios, we discuss which types of partitions should actually
be used: in some cases, the optimal partitions coincide with
well-known tessellation of the plane from computational geom-
etry (e.g., Voronoi diagrams [4]); while in other cases, new types
of partitions should be used. Finally, we present efficient algo-
rithms that achieve such spatial partitions.

Family of Dynamic Routing Problems
Consider a geographical region Q in which a certain dynamic
process generates spatially localized service requests (also called
demands). (Henceforth, if not otherwise stated, we assume
that Q is a compact, convex subset of R2, with an open inte-
rior.) Service requests can represent, for example, pickup or

delivery points, or events of interest that require close investi-
gation or measurement. The process generating service
requests is modeled as a spatiotemporal Poisson process with
temporal intensity k > 0 and spatial distribution u over Q
(i.e., upon arrival, the locations of service requests are identi-
cally and independently distributed according to u) and can be
known to various degrees of accuracy. (Indeed, most of the
results presented in this article are also valid when the arrival
process is a general renewal process.) A total of m mobile agents
provide service in Q; each service request requires an inde-
pendent and identically distributed amount of on-site service
with finite mean duration. A service request is fulfilled when
one of the agents moves to its location and completes its on-
site service; we assume that agents are able to service an unlim-
ited number of requests. Service requests can either stay active
until satisfied or they might expire after a certain time. The
time service requests that remain active can itself be a random
variable, describing customer impatience. There could be
multiple classes of service requests (i.e., heterogeneous service
requests), some of them requiring higher-priority service.

Furthermore, the agents can be subject to several differential
constraints because of their dynamic capabilities; in particular,
most vehicles of practical interest are subject to first- or second-
order nonholonomic constraints (e.g., wheeled vehicles, air-
craft, and ships). The information available to the agents can
also be limited in several ways. For example, agents might be
able to communicate directly only with other agents (or static
nodes) that lie within a certain radius or might not have any
communication capability (e.g., when cheap mobile sensors are
used or stealthiness is required).

Finally, it is possible that no central authority is available,
which is aware of the state of all agents, and can process all the
information available to the system. Thus, the design of coop-
erative policies is also affected by the mode of its implementa-
tion (centralized or decentralized).

It is desired to maximize the quality of service delivered by the
mobile agents, for example, in terms of the average or worst-case
time delay between the issuance of a service request and the time
it is fulfilled. When service requests have a finite lifetime (i.e., they
can expire), another parameter of interest is the fraction of service
requests that is fulfilled before expiration. In general, the focus is
on the quality of service as perceived by the end user, rather than,
for example, fuel economies achieved by the mobile agents.

A natural strategy for load sharing

is to partition the workspace

among the agents and then let

each agent follow a certain set of

rules in its own region. To what

extent does this decoupling

strategy affect optimality?
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The basic version of the problem in which the agents do not
have any differential constraint, service requests do not expire
and do not have any priority, a central dispatcher is available, and
the objective is to minimize the average waiting time of service
requests is known in the literature as the dynamic traveling
repairman problem (DTRP) [5].

Spatial Tessellations for Workload Sharing
In this section, we identify specific cases, within the previous
family of dynamic vehicle routing problems, in which one can
decompose, by using partitioning policies, task allocation,
service scheduling, and loitering strategies, while maintaining
some degree of optimality for the original problem. For each
case, we discuss which types of spatial tessellations (partitions)
should indeed be used. In the following, an m partition of Q
(where m 2 N, m � 1) is a collection of m closed subsets
fQigm

i¼1, with disjoint interiors and whose union isQ.
Given a single-agent policy p and an m partition of Q, a

p-partitioning policy is a multiagent policy such that 1) one agent
is assigned to each subregion (thus, there is a one-to-one corre-
spondence between agents and subregions), and 2) each agent
executes the single-agent policy p to service demands that fall
within its own subregion. Note that a partitioning policy is para-
metrized by the single-agent policy p and by the m partition ofQ.

We start by discussing the most intuitive family of partition-
ing policies, namely the one that uses partitions ofQwith sub-
regions of equal measure (with respect to u).

Equitable Partitions
Arguably, the most widely applied resource allocation strategy
is to equalize the total workload assigned to each resource, i.e.,
in our context, to each agent. Indeed, assume heavy load con-
ditions (i.e., the fraction of time the agents are busy, i.e., they

are moving toward or providing on-site service to a service
request, is close to one), that the agents are first-order holo-
nomic vehicles, and that p� is a single-agent (unbiased) optimal
policy for the DTRP. Then, a p�-partitioning policy that uses
m partitions whose subregions have equal measure with respect
to u (i.e., equitable m partitions) is within a factor m of the
optimal (unbiased) performance [6]. Moreover, under the
same heavy load assumption, and if u is uniform over Q, such
equitable p�-partitioning policy is optimal. Two examples of
possible equitable partitions are depicted in Figure 1.

Recently, similar results have been proven for some general-
izations of the DTRP problem. In particular, in [7], we studied
a generalization of the DTRP problem in which service
requests might expire after a certain deterministic time T (called
time window). Time window constraints are indeed common
in many applications, including bank deliveries, postal deliv-
eries, grocery distribution, dial-a-ride service, bus routing, and
repairmen scheduling. The objective, then, is to minimize the
number of agents needed to ensure that a certain fraction e of
service requests is fulfilled before expiration. We proved that, in
heavy load, when u is uniform, demands do not require on-site
service, and e! 1� (i.e., almost all service requests have to be
fulfilled before expiration), an equitable partitioning policy in
which each agent services outstanding service requests inside its
own subregion by repeatedly forming optimal (i.e., of mini-
mum length) tours is within a factor 3:8 of the optimal. In par-
ticular, a number of agents sufficient to guarantee, in heavy load,
that almost all service requests are serviced before expiration, is

m ¼
ffiffiffi
k
p

b

ffiffiffiffi
2

T

r& ’
,

where b ’ 0:712.
Another generalization of the DTRP in which equitable par-

titioning policies perform within a constant factor of the optimal
is the problem of dynamic vehicle routing with heterogeneous
demands, introduced in [8]. The setup is similar to that of the
DTRP problem, but there are n different classes of service
requests; given coefficients c1, . . . , cn > 0,

Pn
i¼1 ci ¼ 1, the goal

is to find the vehicle routing policy that minimizes the convex
combination c1D1 þ � � � þ cnDn, where Di is the expected delay
for service requests of class i. By increasing the coefficients for
certain classes, a higher priority level can be given to their service
requests. This problem has important applications in areas such
as UAV surveillance, where targets are given different priority
levels based on their urgency or potential importance. In [9], an
equitable partitioning policy is proposed, in which each agent
services (in its own region) demands in batches; each batch con-
tains the outstanding i class service requests with probability
pi ¼ ci, i ¼ 1, . . . , n. This policy is shown to be within a factor
2n2 of the optimal, in heavy load, and for uniform u.

All previous results hold for first-order holonomic agents
and in heavy load. In [10], we study a generalization of the
DTRP in which agents have nonholonomic motion con-
straints (as it is the case when the agents are fixed-wing UAVs).
In particular, we modeled the UAVs as a variant of the

(a) (b)

Figure 1. Different kinds of equitable partitions for a uniform
distribution u. (a) Fat equitable partition. (b) Skinny equitable
partition.

In the near future, large groups

of autonomous agents will be

used to perform complex tasks

in dynamic environments.
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well-studied Dubins model, where the agents are constrained
to move with constant forward speed along paths whose radius
of curvature is uniformly lower bounded by the parameter q.
(Henceforth, we implicitly use this model for fixed-wing
UAVs.) Moreover, for setups involving such vehicles, on-site
service corresponds to the vehicle simply passing through the
service location. (In the rest of the article, we maintain this
notion of on-site service for all vehicles except first-order holo-
nomic vehicles.) For the case of heavy load and uniform dis-
tr ibution, we proved that additively weighted equitable
partitioning policies are still within a constant factor of the opti-
mal, where the weights are related to the shape of subregions.
In particular, ifQ is a rectangular region, the workspace should
be partitioned into strips formed by placing equidistant dividers
parallel to the width (i.e., the largest of the two dimensions of
the rectangular region). For a general convex region, one can
optimize the performance by tuning the distance between the
dividers to the shape of Q in the following way. Let W and H
be the width and height of a minimum height rectangle en-
closing Q. Form strips by placing dividers parallel to the
width of the enclosing rectangle in the following way. Let
jQ1j, . . . , jQmj be the areas of the individual strips and let
H1, . . . , Hm be the heights of the resultant strips. Note thatPm

i¼1 jQij ¼ jQj and
Pm

i¼1 Hi ¼ H and that the jQijs are func-
tions of Hi. Then, the interstrip distances Hi are selected so that

jQij þ
7

3
pqHi ¼

1

m
jQj þ 7

3
pqH

� �
8i 2 f1, . . . , mg: (1)

Note that this rule for space partitioning could be regarded as
a general rule for the heavy load case, in the sense that, as
q! 0þ (which corresponds to first-order holonomic vehicles),
the corresponding strips would correspond to regular equitable
partitions, which we have already stated to be optimal (note that
we are assuming a uniform distribution of demands) for the first-
order holonomic vehicles.

Simultaneously Equitable Partitions
Given two functions uj : Q ! R>0, j 2 f1; 2g, with

R
Q uj(x)

dx ¼ 1, an m partition is simultaneously equitable with respect
to u1 and u2 if

R
Qi

ujðxÞ dx ¼ 1=m for all i 2 f1, . . . , mg and
j 2 f1, 2g. Theorem 12 in [11] shows that, given two such
functions uj, j 2 f1, 2g, there always exists an m partition that
is simultaneously equitable with respect to u1 and u2 and
whose subregions Qi are convex.

Assume heavy load conditions, that the agents are first-order
holonomic vehicles, and that p� is a single-agent (unbiased) opti-
mal policy for the DTRP; then, a p�-partitioning policy that uses
m partitions whose subregions have equal measure with respect to
both u and u1=2 (i.e., simultaneously equitable m partitions) is
optimal [6]. We will discuss in the ‘‘Algorithms for Partitioning
Policies’’ section, algorithms that compute simultaneously equita-
ble partitions; such algorithms are much more complicated than
those for equitable partitions and, unfortunately, no spatially dis-
tributed implementation is known.

All the previous results hold under the heavy load assump-
tion; when the load is only moderate, the shape of subregions

can have a significant effect. In moderate traffic and with holo-
nomic first-order agents, a solution that turns out to be effective
(although there is no certificate of optimality) is to adopt equi-
table partitioning policies in which the subregions are fat (i.e.,
with a small diameter for a given area), rather than long and
thin. We next investigate which partitioning policies should be
used, instead, in light load (i.e., when the fraction of time the
service vehicles are busy is close to zero).

Median Voronoi Tessellation
We first introduce the concept of Voronoi tessellations (or Voro-
noi diagrams). The use of Voronoi tessellations is ubiquitous in
many fields of science, ranging from operations research, animal
ethology (territorial behavior of animals), computer science
(design of algorithms), to numerical analysis (construction of
adaptive grids for partial differential equations and general
quadrature rules), and algebraic geometry (moduli spaces of
Abelian varieties). We now give its formal definition. A detailed
exposition of Voronoi tessellations is given in [4].

Define G ¼: (g1, . . . , gm) 2 Qm. The Voronoi diagram
V(G) ¼ (V1(G), . . . , Vm(G)) of Q generated by points G is
defined by

Vi(G) ¼ fq 2 Qj kq� gik � kq� gjk, 8j 6¼ i, j 2 Img,

where Im ¼
: f1, 2, . . . , mg. G is the set of generators of V(G),

and Vi(G) is the Voronoi cell of the ith generator (see Figure 2).
AVoronoi diagram V(G) ¼ ðV1(G), . . . , Vm(G)Þ ofQ is called
a median Voronoi tessellation of Q with respect to the density
function u if the ordered set of generators G is equal to the
ordered set of generalized medians of the sets in V(G) with
respect to u, i.e., if

gi ¼ arg min
g2R2

Z
Vi(G)
kg � qku(q) dq; 8i 2 f1, . . . , mg:

It is possible to show that a median Voronoi tessellation
always exists for any domain Q and density u. It is interesting

Figure 2. A Voronoi diagram with nine generators (generators
are represented by black squares).
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to note that, as the number of generators increases, the median
Voronoi tessellation for a given region assumes a hexagonal
honeycomb structure [12].

A median Voronoi tessellation is proven [5] to be almost
optimal for the scenario involving an ensemble of first-order
agents responding to service requests that are generated very
rarely (i.e., in light load). The median locations in this case can
be understood to be loitering locations for the agents, i.e.,
locations at which the agents wait when there are no outstand-
ing service requests. The almost optimality in the light load
case is to be understood as follows. If one defines the average
waiting time for the service requests to be a function of the loiter-
ing locations of the agents, then the generalized median locations
that give rise to the median Voronoi tessellation correspond to
the local minima or the saddle point of this function. Additionally,
even for networks of UAVs (Dubins vehicle), tanks (differential
drive robots), or rotary wing aircraft (double integrator robots),
the median Voronoi tessellation is proven [10], [13] to be almost
optimal (in the same sense, as mentioned earlier) when the
robotic network is sparse, i.e., the density of agents is low. For
fixed-wing UAVs, the median locations in that case correspond
to the center of loitering circles, as illustrated in Figure 3. The
primary reason for optimality of median Voronoi tessellations for
sparse robotic networks in the light load case is that, since the
agents are well separated from each other, the length of the opti-
mal path from the loitering location of an agent to the location of
a service request can, on an average, be well approximated by the
Euclidean distance between those locations. However, this
approximation becomes weaker as the density of the robotic net-
work increases, in which case the optimal sharing of workload

necessitates a dynamic partitioning of space, i.e., space partitions
that change as a function of time.

Dynamic Partitions
The scope of partitioning policies can be easily extended to
include dynamic partitions. In [10], it was shown that for a
dense group of fixed-wing UAVs, a dynamic partitioning
policy performs within a constant factor of the optimal in light
load. The details of the partitioning scheme are as follows.
DivideQ into strips of width w, where

w ¼ min
4

3
ffiffiffi
q
p

WH þ 10:38qH
m

� �2=3
, 2q

( )
:

As before, W and H are the width and the height, respectively,
of the minimum height rectangle enclosing Q. Orient the
strips along the side of length W . Construct a closed loitering
path that runs along the longitudinal bisector of each strip, as
shown in Figure 4. The m UAVs loiter on this path, equally
spaced, in terms of path length. If ‘ is the inter-UAV distance,
then the subregion of Q allocated to every agent is a rectangle
of length ‘ and width w (intersected with Q) and offset by a
distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qw � w2=4

p
ahead of it, as shown in Figure 4. The

offset between the UAV’s position and its region of responsibil-
ity is to make sure that the UAV can travel to any location in
that region in a short time. Note that the dynamic partition
associated with a particular agent is in fact fixed in the refer-
ence frame of that agent and that in the global frame these par-
titions could be regarded as a dynamic version of an equitable
partition ofQ, modulo the boundary effects.

The same kind of dynamic partitioning policy is proven to
perform within a constant factor of the optimal for a dense
group of agents modeled as double integrators [13]. The rea-
son that such dynamic partitions help to give good perform-
ance is that they help to keep the region of responsibility for an
agent directly in front of it, thereby minimizing the time taken
to travel to the location of a service request.

Phase Transition Between Tessellations
We have illustrated the use of many well-known spatial tessella-
tions for optimal or almost optimal distribution of workload for
dynamic task-allocation-based scenarios. Mathematically, many
of these scenarios could be considered to be variants of the same
basic DTRP, in some cases representing extreme regions of the
parameter space for that problem. For example, we considered
the heavy load case when the fraction of time the agents are busy
(i.e., they are moving toward or providing on-site service to a
service request), is close to one, and the light load case, i.e.,
when the fraction of time the agents are busy is close to zero.
We have seen that different spatial tessellations give optimal
performance for these two extremes, suggesting the existence of
a phase transition between tessellations driven by exogenous
factors, such as k, in such applications. Additionally, we have
seen drastically different partitions giving optimal performance,
as the network of robots with motion constraints gets denser.
This suggests phase transition in tessellations also being driven

Q

Figure 3. Fixed-wing UAVs loitering around median locations.

Q

Figure 4. Loitering pattern for a dense network of UAVs, with
the illustration of region of responsibility for one of them.
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by endogenous factors like density of the robotic network. In
[10], we studied such a phase transition between a median Voro-
noi tessellation (Figure 5) and a dynamic partition (Figure 6)
with respect to the density of the robotic network in an
unbounded domain. We identified a dimensionless parameter,
the nonholonomic density¼: q2 ~m, with ~m being the number of
vehicles per unit area, whose critical value (�0.06) characterizes
the corresponding phase transition. Similar endogenous phase
transitions for other models of robots were investigated in [13].
A formal study of the factors driving such phase transitions
would help the system planner to select an appropriate tessella-
tion for a given set of problem parameters. In addition, a funda-
mental understanding of such phase transitions could help to
give a better insight into similar phenomena in naturally occur-
ring systems, e.g., transition from solitary to gregarious behavior
in desert locusts, as reported in [14].

Algorithms for Partitioning Policies
In this section, we present several algorithms to implement the
different partitioning policies presented in the ‘‘Spatial Tessel-
lations for Workload Sharing’’ section.

Algorithms for Equitable Partitions
If we model the workload for subregion S � Q as kS ¼:
k
R

S u(q) dq, then the workload for agent i is kQi . Then, equi-
table partitioning entails equalizing the workload kQi in the
m subregions.

We first assume that a central dispatcher is available. In such
case, many simple algorithms provide equitable partitions. For
example, one could sweepQ from a point in the interior ofQ
using an arbitrary starting ray until k

R
Q1

u(q) dq ¼ k=m, con-
tinuing the sweep until k

R
Q2

u(q) dq ¼ k=m, etc. Sweeping
techniques can also be devised for dividing Q into strips of
equal area or width or according to the rule described in (1).

Indeed, to the best of our knowledge, all equitable parti-
tioning policies inherently assume a central dispatcher that
computes a tessellation of the workspace. This fact is in sharp
contrast with the desire of a fully distributed architecture for a
multiagent system. The lack of a fully distributed architecture
limits the applicability of equitable partitioning policies to
limited-size, multiagent systems operating in a known static
environment. If a central dispatcher is not available, then a possi-
ble solution is to run a distributed leader election algorithm, let
the leader execute one of the centralized algorithms discussed
earlier, and finally let the leader broadcast subregion’s assign-
ments to all other agents. Such conceptually simple solution,
however, can be impractical in scenarios where the density u
changes over time or agents can fail, since at every parameter’s
change a new time-consuming leader election is needed. In
[15], we introduced a radically different, spatially distributed
algorithm for equitable partitioning, which does not require
any leader election. Such algorithm is described next.

1) Power diagrams and virtual generators: In the solution
proposed in [15], power diagrams are the key geomet-
rical concept. Define GW ¼: ((g1, w1), . . . , (gm, wm)) 2
(Q3 R)m. We refer to the pair (gi, wi) as a power
point. The power diagram V(GW ) ¼ (V1(GW ), . . . ,

Vm(GW )) of Q generated by power points GW is
defined by

Vi(GW ) ¼ fq 2 Qj kq� gik2 � wi� kq� gjk2 � wj,

8j 6¼ i, j 2 Img:

We refer to GW as the set of power generators of
V(GW ) and to Vi(GW ) as the power cell of the ith
power generator. Notice that, when all weights are the
same, the power diagram coincides with the Voronoi
diagram; indeed, power diagrams are a generalization
of Voronoi diagrams. A useful property of power dia-
grams is that each cell Vi(GW ) is a convex set. In the
following, we simply refer to Vi(GW ) as Vi.

The key advantage of power diagrams is that an equi-
table power diagram always exists for any density u [15].
More precisely, given m � 1 distinct points (g1, . . . , gm)
in Q, there exist weights wi, i 2 f1, . . . , mg, such that
the power points ((g1, w1), . . . , (gm, wm)) generate a
power diagram that is equitable with respect to u (i.e.,R

Vi
u(q) dq ¼

R
Q u(q) dq =m).

The basic idea is to associate to each agent i a
virtual power generator (virtual generator for short)
(gi, wi); then, the power cell Vi becomes the region of
dominance for agent i (see Figure 7). A virtual genera-
tor (gi, wi) is simply an artificial (or logical) variable,
whose value is locally controlled by the ith agent; in

Figure 5. The median Voronoi tessellation for an unbounded
domain with UAVs loitering about median locations.

Figure 6. UAVs loitering in an unbounded domain. The
dynamic partition associated with a UAV is also illustrated.
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particular, gi is a virtual point and wi is its weight. In
general, the position of an agent and the position of its
virtual generator are distinct, i.e., the position of an
agent inside its own region of dominance Vi is inde-
pendent from the position of its virtual generator.

2) Locational optimization: In light of the previous result
on the existence of equitable power diagrams, we ena-
ble the weights of the virtual generators to follow a
spatially distributed gradient descent law (while main-
taining the positions of the virtual generators fixed)
such that an equitable partition is reached. Assume,
henceforth, that the positions of the virtual generators
are distinct, i.e., gi 6¼ gj for i 6¼ j, and belong to Q. Let
W ¼: (w1, . . . , wm) 2 Rm and define the set

S ¼: fW j kVi > 0 8i 2 Img:

Set S contains all possible vectors of weights such that
no region of dominance has zero measure. We introduce
the locational optimization function HV : S! R>0:

HV (W ) ¼:
Xm

i¼1

k
Z

Vi(W )
u(q) dq

� ��1

¼
Xm

i¼1

k�1
Vi(W ):

Assume that the virtual generators’ weights obey a
first-order dynamical behavior described by _wi ¼ ui. Then,
we set up the following control law defined over the set S

ui ¼ �
@HV
@wi

(W ), (2)

where we assume that the power diagram V(W ) ¼
(V1, . . . , Vm) is continuously updated. One can prove
that virtual generators’ weights starting at t ¼ 0 at
W (0) 2 S (this is the case, for example, if all weights are
initialized to zero), and evolving under (2) remain in S
and converge asymptotically to a vector of weights that
yields an equitable power diagram.

It is possible to show (see [15]) that the computation of
the partial derivative in (2) only requires information from
the agents with neighboring power cells. Therefore, the
gradient descent law (2) is indeed spatially distributed over
the dual graph of the power diagram; thus, the overall algo-
rithm is spatially distributed. We mention that, in a power
diagram, each power generator has an average number of
neighbors less than or equal to six; therefore, the computa-
tion of gradient (2) is scalable with the number of agents.

3) Optimizing secondary objectives: The previous gradient
descent law, although effective in providing an equitable
partition (with convex subregions), can yield long and
skinny subregions. Notice that, to obtain an equitable
power diagram, changing the virtual generators’ weights,
while maintaining their positions fixed, is sufficient.
Then, we can use the degrees of freedom given by the
positions of the virtual generators to optimize secondary
objectives, e.g., to obtain power diagrams similar to Vor-
onoi diagrams or to obtain cells whose shapes show cir-
cular symmetry (which are especially useful for
moderate loads, as discussed earlier). These extensions
are discussed in [15]; typical equitable partitions achieved
by using the control laws in [15] are shown in Figure 8.

Algorithms for Simultaneously Equitable Partitions
An approximate algorithm to compute an m partition that is
simultaneously equitable with respect to two functions uj,
j 2 f1, 2g, can be found in [11] (specifically, see discussion on p.
621); in the particular case when both functions uj, j 2 f1, 2g,
are uniform, the problem reduces to the previous case. To the
best of our knowledge, there are no spatially distributed algo-
rithms to compute simultaneously equitable partitions.

Algorithms for Dynamic Partitions
Dynamic partitions (that are almost equitable) that have been
shown to be useful for dense networks of fixed-wing UAVs in

Demand

Vehicle

Virtual Generator
(Weight)

Virtual Generator
(Position)

Region of
Dominance

Figure 7. Vehicles, virtual generators, demands, and regions of
dominance. A positive weight w is represented by a yellow
circle with radius

ffiffiffiffi
w
p

; a negative weight w is represented by a
blue circle with radius

ffiffiffiffiffiffiffi
jwj

p
. Note that the position of a vehicle

and the position of its virtual generator are, in general, distinct.

(0,1)

(0,0) (1,0)
(a) (b)

(0,1)

(0,0) (1,0)

Figure 8. Typical equitable partitions achieved by using the
control laws in [15]. The yellow squares represent the position
of the generators, while the blue circles represent the agents.
(a) Typical equitable partition of Q for u(q) ¼ 1. (b) Typical
equitable partition of Q for u(q) ¼ e�5kq�ck2 , c ¼ (0:8, 0:8).
(We are omitting the normalization constant for u.)
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light load scenarios can be obtained using a central dispatcher.
As noted earlier, the dynamic partition associated with an
agent is fixed in its own reference frame. Therefore, it can be
completely specified by its dimensions and its offset with
respect to the agent’s position. The central dispatcher can com-
pute these quantities along with the closed loitering path as
shown in Figure 4. The specification of the initial location and
orientation of the vehicles along this path then completes the
specification of the dynamic partitioning policy.

Algorithms for Median Voronoi Tessellations
For the case of equitable partitions, we presented a spatially dis-
tributed equitable partitioning policy. The strategy is scalable in
the sense that every agent needs to talk only to a few others to
determine its action. A similar algorithm can be given for the
problem of achieving median Voronoi tessellations. Indeed,
assume that the agents update generators’ locations (in this case,
the position of the generators should coincide with the position
of the agents) and weights according to the following law:

_wi ¼ 0, wi(0) ¼ 0,

_gi ¼ �
Z

Vi(GW )

gi � q
kgi � qku(q)dq, gi(0) 2 Q,

8<
:

where the partition V(GW ) is updated continuously (note that,
under this control law, the weights do not have any dynamics;
since all weights are the same, the partition V(GW ) is always a
Voronoi diagram). One can prove that, under this control law,
the generator locations converge asymptotically to a set that
contains the generalized median locations, i.e., the locations
that generate a median Voronoi tessellation.

The success of the previous strategy depends on the fidelity of
communication channels between agents. In fact, a common
theme in cooperative control is the investigation of the effects of
different communication and information sharing protocols on
the system performance. Clearly, the ability to access more infor-
mation at each single agent cannot decrease the performance
level; hence, it is commonly believed that providing better com-
munication among agents will improve the system’s performance.
In this section, we show that median Voronoi tessellations can be
attained without any explicit communication between agents; in
other words, the no-communication constraint in such case is
not binding and does not limit the steady-state performance.

In [16], a median Voronoi partitioning policy that does not
rely on interagent communication is proposed. Moreover, this
policy does not assume any prior knowledge of the spatial
density function u. This policy is closely related to an algo-
rithm due to MacQueen [17], originally designed as a simple
online adaptive algorithm to solve clustering problems and
later used as the method of choice in several vector quantiza-
tion problems, where little information about the underlying
geometric structure is available. MacQueen’s algorithm has
the advantage to be a learning adaptive algorithm, not requir-
ing a priori knowledge of the distribution of the objects, but
rather allowing the online generation of samples.

The behavior of the policy in the light load, i.e., for small
values of k, can be summarized as follows:

1) At the initial time, m agents are assumed to be
deployed at general positions in Q, and there are no
outstanding service requests.

2) The agents do not move until the first service request
appears. On the appearance of a service request, every
agent moves toward the service request location.

3) As soon as one agent reaches the service request, all
agents start moving toward their current reference
point, which is the point minimizing the average dis-
tance to demands serviced in the past by each agent (if
there is no unique minimizer then move to the nearest
one) and the process continues.

It was proven in [16] that, in the light load, almost surely,
the set of reference points, fp�1(tj), . . . , p�m(tj)g, converges to
the set of generalized m median locations ofQ as j !1.

Figure 9 shows the results of numerical experiments with a
nonuniform distribution, namely an isotropic normal distri-
bution centered at (0:25, 0:25), with a standard deviation
equal to 0:25.

It is interesting to compare the performance of this no-
communication policy with a sensor-based policy that allows
agents to have access to each other’s positions at all times. The
outcome of this additional capability in the light load case is
that an agent will move toward a service request location only

Figure 9. Numerical simulation in the light load case, for a
normal spatial distribution. Paths followed by the reference
points up to t ¼ 104 (corresponding to approximately 5,000
demands), using the no-communication policy. The locations
of all demands visited by one of the agents are also shown.

The most widely applied resource

allocation strategy is to equalize the

total work-load assigned to each

resource, i.e., in our context,

to each robot.
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if it is the closest among all the agents. The sensor-based policy
is more efficient than the no-communication policy in terms
of the length of the path traveled by each agent, since there is
no duplication of effort, as several agents pursue the same
demand (unless a demand is on the boundary of two or more
Voronoi regions). However, in terms of quality of service, it is
shown that there is no difference between the two policies, for
low-demand generation rates. Numerical results show that the
sensor-based policy is more efficient in a broader range of
demand generation rates and, in fact, provides almost optimal
performance both in light- and heavy load conditions. How-
ever, as k is increased from low values, the performance of the
no-communication policy degrades significantly, almost
approaching the performance of a single-vehicle system over
an intermediate range of values of k. The intuition in this phe-
nomenon is the following. As agents do not return to their
own reference points between visiting successive demands,
their efficiency decreases since they are no longer able to effec-
tively separate regions of responsibility. In practice, unless they
communicate and concentrate on their Voronoi region, agents
are likely to duplicate efforts as they pursue the same demand
and effectively behave as a single-vehicle system. Interestingly,
this efficiency loss seems to decrease for large k, and the
numerical results suggest that the no-communication policy
recovers a similar performance as the sensor-based policy in
the heavy load limit. Unfortunately, at this time, there exists
no rigorous analysis of the proposed policies for general values
of the demand-generation rate.

Another attractive feature of the no-communication-based
policy is that the distribution u need not be constant: Indeed,
the algorithm will provide a good approximation to a local
optimum for the cost function as long as the characteristic time
it takes for the demand-generation process to vary significantly
is much greater than the relaxation time of the algorithm. In
summary, the no-communication policy can be seen as a
learning mechanism in which the agents learn the demand-
generation process, the ensuing demand spatial distribution,
and adapt their own behavior to it.

Game-Theoretic Perspective for the
No-Communication Policy
Interestingly, the no-communication-based policy can be
regarded as a learning algorithm in the context of the following
game [16]. The service requests are considered as resources and
the agents as selfish entities. The resources offer rewards in a
continuous fashion, and the agents can collect these rewards by
traveling to the resource locations. Every resource offers reward at
a rate, which depends on the number of agents present at its loca-
tion: the reward rate is unity when there is one agent, and it is
zero when there are more than one agent. Moreover, the life of
the resource ends when more than one agent is present at its loca-
tion. This setup can be understood to be an extreme form of con-
gestion game, where the resource cannot be shared between
agents and is cutoff at the first attempt to share it. The total reward
for agent i from a particular resource is the time difference
between its arrival and the arrival of the next vehicle, if i is the first
vehicle to reach the location of the resource, and zero otherwise.
The utility function of agent i is then defined to be the expected
value of reward, where the expectation is taken over the location
of the next resource. Hence, the goal of every vehicle is to select
their reference location to maximize the expected value of the
reward from the next resource. In [16], we prove that the median
locations, as a choice for reference positions, are an efficient pure
Nash equilibrium for this game. Moreover, we prove that, by
maximizing their own utility function, the agents also maximize
the common global utility function, which is the negative of the
average wait time for service requests.

Conclusions
In this article, we discussed the use of various spatial tessellations
to determine, in the framework of partitioning policies, opti-
mal workload share in a mobile robotic network. We provide a
succinct summary in Table 1, where the various superscripts
have the following meaning: 1) no subscript implies that the
corresponding partitioning policy is within a constant factor of
the optimal for a uniform distribution 2) supercript � implies
that the partition gives optimal performance for a uniform
distribution, 3) �,� implies that the partition gives optimal
performance for a general nonuniform distribution u.

We also proposed efficient and spatially distributed algorithms
for achieving some of these tessellations with minimum or no
communication between the agents. Because of space limita-
tions, we have not reported results of numerical experiments in
this article but provided bibliographic references to publications

containing such results and further
details. It is interesting to note that
these tessellations appear while
considering different variations of
the same basic problem (DTRP). It
is then natural to investigate the
existence of a single objective func-
tion, whose optima correspond to
the various tessellations under these
different variations. The game
theory approach seems to be a
promising one. We have already

Table 1. Spatial partitions for load sharing
by mobile robotic networks in dynamic environments.

Light Load Heavy Load

First-order holo-

nomic vehicle

Median Voronoi tessellations�;y Simultaneously equitable

partitions�;y
Dubins vehicle Median Voronoi tessellations�

(sparse robotic network)

Additively weighted equi-

table partitions

Dynamic partition (dense

robotic network)

The scope of partitioning policies can

be easily extended to include

dynamic partitions.
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shown the equilibrium status of the median locations in the con-
text of an appropriate game.

Another interesting field of study in the context of spatial
tessellations is the emergent group behavior, i.e., territorial
versus gregarious behavior arising out of foraging and hunting
strategies of animals. The utility function approach again is a
promising tool, since it provides a natural framework to study
the behavior of animals as selfish agents. This line of research
would be in stark contrast to the discipline of biorobotics,
where instead of taking inspiration from nature, we would try
to identify possible motives explaining the observed behavior
of animal populations.

Keywords
Dynamic vehicle routing, cooperative control, robotic net-
works, distributed algorithms, spatial partitions.
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