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Conditioning Stochastic Rainfall Replicates on
Remote Sensing Data

Rafał Wójcik, Dennis McLaughlin, Alexandra G. Konings, and Dara Entekhabi, Senior Member, IEEE

Abstract—Temporally and spatially variable rainfall replicates
are frequently required in hydrologic applications of ensemble
forecasting and data assimilation. Ensemble methods can be ex-
pected to work better when the rainfall replicates more closely
resemble observed storms. In particular, the replicates should cap-
ture the intermittency and variability that are dominant features
of rainfall events. In this paper, we present a new probabilistic
procedure for generating realistic rainfall replicates that are con-
strained by (or conditioned on) remote sensing measurements. The
procedure uses remotely sensed cloud top temperatures to identify
potentially rainy regions. The cloud top temperatures are obtained
from visible/infrared instruments in geostationary orbit. A mul-
tipoint geostatistical algorithm generates areas of nonzero rain
(rain clusters) within each cloudy region. This algorithm relies
on statistics derived from ground-based weather radar [National
Operational Weather Radar (NOWRAD)] data. A truncated mul-
tiplicative cascade generates rain rates within each rain cluster.
A computational experiment based on summer 2004 data from
the Central U.S. indicates that the rainfall replicates simulated by
the procedure are visually and statistically similar to individual
NOWRAD images and to a large ensemble of NOWRAD images
collected throughout the summer simulation period.

Index Terms—Data assimilation, Geostationary Operational
Environmental Satellites (GOES), multiple-point geostatistics,
multiscale tree, National Operational Weather Radar
(NOWRAD), precipitation, stochastic simulation.

I. INTRODUCTION

ENSEMBLE (or Monte Carlo) approaches provide a
flexible and convenient way to investigate the role of

uncertainty in a wide range of geophysical applications. In me-
teorology and hydrology, ensemble methods have been widely
used for both forecasting and data assimilation [1]–[4]. The
basic concept is to simulate many possible responses of a
system by varying uncertain inputs over a range of reasonable
values. For example, variations in land surface fluxes can be
investigated by using a hydrologic model to simulate responses
to different precipitation inputs. Sample statistics derived from
the simulated replicates provide useful information about the
probability of extreme events and long-term trends. They also
can be used to derive improved predictions.

In an analysis of hydrologic response, it is important to
insure that the precipitation replicates that force the land surface
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system look as much as possible like real rain events. In fact,
it is reasonable to ask that there be no obvious difference be-
tween the randomly generated replicates and observed events.
In order to develop a systematic way to generate realistic
rainfall replicates, we need to specify with some precision what
constitutes realism. One of the most notable features of real
rainfall is its spatial and temporal intermittency. Intermittency
presents a significant challenge for ensemble methods that need
to generate large numbers of rainfall replicates that properly
represent uncertainty while remaining physically realistic.

Methods for simulating rainfall divide naturally into physics-
based meteorological models and stochastic models. Physics-
based models generate rainfall replicates by perturbing the
initial and/or boundary conditions in primitive equations based
on mass, momentum, and energy conservation [5]. The compu-
tational demands of this approach make it impractical for most
ensemble applications. The alternative is to use a stochastic
model that reproduces the observed space-time structure of
rainfall without simulating the physical processes responsible
for this structure. Typical examples of the stochastic approach
include multifractal models and scaling laws [6], [7], multi-
plicative cascade models [8]–[10] which belong to a broader
class of multiscale tree models [11], clustered point processes
[12], and wavelet models [13]. Most stochastic models are
unable to limit rainfall to specified spatial supports. Such a
capability is required if rainfall data are to be conditioned on
remote sensing data.

This paper describes a new approach for generating spa-
tially and temporally intermittent rainfall replicates that are
constrained by remote sensing observations. Our objective in
this paper is to generate replicates that properly represent our
knowledge about the current spatial distribution of rainfall
intensity. We assume that this knowledge includes real-time
visible/infrared remote sensing measurements obtained from
a geostationary satellite (available at frequent intervals with
nearly global coverage). Such measurements provide reason-
ably accurate information on the location of cloudy regions
where rainfall may occur, but they are not able to reliably iden-
tify rain clusters within these regions. Ensembles of possible
rainfall replicates conditioned only on geostationary visible/
infrared measurement should display considerable variability,
particularly regarding the location and intensity of rain within
cloudy regions.

When uncertainty is large and the rainfall ensemble is
highly variable, it may be advisable to introduce additional
site-specific information to reduce uncertainty and obtain a
better description of current conditions. Such information could
include ground-based radar [14], disdrometer measurements
[15], and low orbit satellite measurements [16], [17]. These data
sources could be used to further constrain the set of possible
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Fig. 1. Central U.S. study region is the region inside the black square.

replicates, using a Bayesian estimation procedure (such as an
ensemble Kalman filter or a particle filter) that treats our rainfall
ensemble as prior information. As more data are included, we
expect the ensemble to become less variable and narrow in on
the true rainfall field. When coupled with a predictive model,
an improved ensemble could provide the basis for quantitative
precipitation forecasts. This is, however, not the focus of this
paper. Here, we are interested in generating a realistic rainfall
ensemble that describes uncertainty about current conditions,
conditioned only on geostationary data. This ensemble is in-
tended to provide prior information for uncertainty analyses or
for further Bayesian conditioning.

Our approach is best suited for situations in which clusters of
short-term high-intensity rain cells are embedded within larger
regions of low rain intensity that are characterized by longer
characteristic time scales [10]. Clustered mesoscale rainfall
systems are major contributors to summertime rainfall over
the Central U.S. [18]. Here, we use the term “rain cluster” or
just “cluster” to refer to a set of pixels with nonzero rain rate
that is completely surrounded by pixels with zero rain rate.
The “cluster support” is the set of pixels inside the cluster. The
cluster is completely characterized by its support and by the
rain rates at pixels in the support. Both of these attributes may
vary over time. In our approach, rain cluster supports are ob-
tained from a multipoint geostatistical algorithm that relies on
training images constructed from weather radar measurements.
Cluster rain rates are obtained from a multiplicative cascade
model.

The operation and performance of our stochastic rainfall
model are demonstrated here with data for summer 2004
from the Central U.S. region shown in Fig. 1. The Central
U.S. test indicates that the model generates cluster geome-
tries and rain rates similar to those observed in weather radar
images.

II. DATA SETS

The geostationary data used to condition our rainfall en-
semble are obtained from the Geostationary Operational En-
vironmental Satellites (GOES) data set produced by the U.S.
National Oceanic and Atmospheric Administration. The mea-
surements of particular interest are from the so-called “window
channel” on the GOES infrared imager. The radio-brightness
temperature for this channel is measured in a window centered
on a wavelength of 10.7 μm, with a range from 10.23 to
11.24 μm. This measurement provides a reasonably accurate
indication of cloud-top temperature (Ttop) [19]. GOES data are
available every 30 min, but we rely on hourly samples due to the
large number of corrupt or missing data. The spatial resolution
is 4 km. The GOES-12 instrument is our primary data source,
with data from the GOES-10 satellite used to fill in times where
hourly GOES-12 measurements are missing.

Our rainfall generation procedure uses training images to
define the statistical properties of rain clusters within the GOES
region. For the Central U.S. application, we obtain these images
from the National Operational Weather Radar (NOWRAD)
weather radar product. It is important to note that individual
replicates generated by our procedure are not constrained by
the weather radar data—these data are only used to determine
rainfall statistics, as described below. Consequently, our proce-
dure can be applied in regions or at times where weather radar
data are unavailable, provided that the required statistics can be
inferred from other areas and/or times.

NOWRAD is a Weather Services International (WSI) Cor-
poration enhancement of the Next Generation Weather Radar
(NEXRAD) data set [14], [20] obtained from the National
Weather Service’s ground-based WSR-88D radar network. WSI
superimposes the assorted radars that are part of NEXRAD in a
mosaic, removes some data artifacts (using both automated and
manual intervention), and then uses an intensity–reflectivity
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(Z−R) relationship based on lookup tables to provide a final
rain rate product [21]. NOWRAD data are available every
15 min, quantized in 16 levels of radar reflectivity (Ze) factor
data defined at 5-dB Ze intervals [22]. Spatial resolution of the
NOWRAD product is 2 km.

For our example, the GOES and NOWRAD data sets are
both interpolated onto a common 0.05◦ (∼4 km) spatial grid
covering the Central U.S. region ranging from 25.85◦–49.01◦ N
and 114.07◦–90.12◦ W. This region is shown in Fig. 1. The
period of study was summer 2004 (June 1–August 31). Further
details on the methods used to identify GOES cloud regions
and the properties of rainfall clusters within these regions are
provided in Section III.

III. RAINFALL SIMULATION PROCEDURE

Our procedure for generating rainfall replicates consists of
three steps.

1) Use GOES Ttop data to identify cloudy regions where
rainfall may occur. All members of the rainfall ensemble
are conditioned on the same GOES data, and rain is
permitted only within the GOES cloudy regions. Much of
the area inside these cloudy regions may have no rainfall.

2) Use a multipoint geostatistical technique based on train-
ing images derived from NOWRAD data to generate
the spatial support for rain clusters within each GOES
region. Each replicate in the ensemble is characterized by
a different set of rainy clusters. Rain rates are nonzero
everywhere within each cluster.

3) Use a multiplicative cascade with parameters estimated
from NOWRAD data to generate rain rates within each
rain cluster for each replicate.

The GOES cloudy regions, training images, and rain supports
are all described by indicator values (zeros and ones) at the
pixels of the 0.05◦ computational grid previously mentioned.
The entire ensemble generation process is repeated for each
time in the period of interest (1 h for our example).

As time progresses, the changing GOES images account for
the temporal evolution of the large-scale rainfall field. The
rain cluster supports and the rain rates within clusters change
over time but are temporally uncorrelated, reflecting the short
characteristic time scales of convective rainfall described by the
clustering process. Further details on each step of our procedure
are described below.

A. Identification of Cloudy Regions Where Rainfall
May Occur

This step of the procedure uses GOES cloud top tempera-
tures to identify regions where rain may be occurring. These
regions are defined to be the generally disconnected areas where
Ttop < T0, where T0 is a specified threshold. The fractions of
rainy areas occurring inside and outside the thresholded region
depend on the threshold value selected. This dependence is
shown in Fig. 2, using Central U.S. GOES and NOWRAD
data from summer 2004. Fig. 2 shows the probability (or area
fraction) that the observed NOWRAD rain rate is zero outside
the GOES region versus the probability (or area fraction) that
the NOWRAD rain rate is greater than zero inside the GOES
region, for various GOES T0 values. Ideally, we would like
both probabilities to be 1.0, so that rainfall occurs everywhere

Fig. 2. Tradeoff curve for GOES Ttop threshold selection. The threshold of
T0 = 258 K (shown as triangle) gives a low probability of 0.01 for rain outside
the GOES region and a moderate probability of around 0.20 for rain inside the
GOES region.

inside the GOES region and nowhere outside it. Unfortunately,
these are conflicting objectives. Fig. 2 can be viewed as a
multiobjective tradeoff curve that shows how much we must
decrease one probability in order to increase the other. In the
experiments described here, we use a threshold of T0 = 258 K,
which gives a low probability of 0.01 for rain outside the
GOES region and a moderate probability of around 0.20 for
rain inside the GOES region. This choice supports our subse-
quent assumption that rain does not occur outside the 258-K
GOES region. As a result, we only generate rain clusters
inside this region in the subsequent steps of the procedure. In
other applications, it may be reasonable to choose a threshold
that gives different probabilities. Note that the selected T0 is
clearly dependent on the lowest NOWRAD quantization level
(1.2 mm · h−1). If this quantization level had been lower, the
total rainy area in the NOWRAD image would have increased
making the probability of rain inside the GOES region (for a
given T0) higher. Conversely, the probability of no rain outside
the GOES region would have slightly decreased simply because
the larger NOWRAD rain clusters could lead to larger mismatch
between GOES and NOWRAD rain support.

B. Generation of Rain Support Within Each Cloudy Region

As indicated above, 2004 summer rainfall in the Central
U.S. occurs in scattered clusters that cover only about 20% of
the area inside the T0 = 258 K GOES region selected for this
paper. GOES data do not provide reliable information about the
location of these clusters or the intensity distribution within
each cluster. We use a multipoint geostatistical technique to
generate realistic replicates of possible cluster configurations
within the GOES cloud region. The technique is based on
an algorithm that derives probabilities of particular rainfall
patterns from NOWRAD training images [23], [24].

Fig. 3 shows some typical Central U.S. NOWRAD rainfall
clusters at different times during summer 2004. The upper left
panel in the figure is a blowup of one NOWRAD image with
nonzero rain rates indicated by varying colors set in a dark blue
background of zero rain rates. The upper right panel shows the
rain cluster supports for this image (rain area is blue and no rain
area is yellow).
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Fig. 3. (a) Typical NOWRAD signature of a summer storm that occurred on July 12, 2004, 00:00 UTC over (left panel) the Central U.S. region and its (right
panel) binary version. The latter is an example of a training image which generates rain support replicates. (b) Entire ensemble of 30 training images used in this
paper. The truncated logarithmic color scale in the left panel of (a) was constructed such that zero rain rates are represented as dark blue. Rain rates at NOWRAD
quantization threshold (1.2 mm · h−1) are represented with the light blue color. The maximum of the color scale corresponds to the maximum NOWRAD rain
rate (120 mm · h−1) observed in the study period.

In our experiment, there are 8796 different NOWRAD im-
ages for summer 2004. We sampled without replacement from
this population to obtain a working set of 550 images. The
working set sampling process was constrained to insure that the
time separation between any two sampled images was at least
2 h. This was done to reduce the effect of temporal correlation
between storms. Most summer rain events come from convec-
tive cells embedded in larger mesoscale features. These cells are
induced by convective clouds, mainly of cumulonimbus type,
with durations of about 2 h [25]–[28].

To obtain a set of training images, we selected a subgroup of
30 images from the NOWRAD working set and then identified
the cluster supports for each of the 30 samples. The 30 training
images, which are shown in Fig. 3(b), were selected to provide
a representative cross section of storms that occurred during the
summer 2004 study period.

The objective of the multipoint geostatistical procedure is to
generate cluster support replicates that have the same spatial
structure as the NOWRAD training images (e.g., that have
the same general size, shape, and spatial density). The key to
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Fig. 4. Identifying template patterns in multipoint geostatistical simulation.
(Upper left panel) An example of a training image. (Upper right panel) Nine-
pixel template. (Panels in the lower three rows on the left) Moving the template
(outlined in red) at random over the training image. (Panels in the lower
three rows on the right) Blowups that show the pixel configuration within the
randomly moving template.

generating realistic cluster supports is to describe the collec-
tion of possible cluster geometries (contiguous groups of rain
pixels) in a concise mathematical form. This can be done by
identifying a finite collection of possible pixel patterns and
assigning a probability to each pattern, based on the number of
times it is observed to occur in the training image. Multipoint
geostatistical techniques consider patterns composed of a small
number of pixels contained within a template that can be
superimposed on the training image. The procedure is shown
in Fig. 4.

The upper left panel of Fig. 4 is a small training image used to
generate template patterns. The panels in the lower three rows
on the left side of the figure show a small nine-pixel template
(outlined with a thick line) that can accommodate 29 = 512
possible patterns of rain pixels. The template is centered on a
different location in each panel. The corresponding panels on
the right side of the figure are blowups of the pixel configuration
within the template for this location. As the template is moved
over the training image in a specified path (usually random),
a tally is kept of the number of times each of the possible
512 patterns is observed (including the particular three patterns
identified in Fig. 4).

After the entire training image has been scanned, the sample
probabilities can be used to generate replicates with rain pixel
patterns that are similar but not identical to those observed

in the NOWRAD training image. As might be expected, the
generated patterns are more realistic when the template they
depend upon is larger. However, the computational effort re-
quired grows dramatically as the template size is increased.
This conflict can be mitigated somewhat if a multigrid template
approach is used [29].

The method used to derive pattern probabilities from tem-
plate data is based on Bayes rule. Suppose that we define a
reference pixel in the center of the template. The center of the
reference pixel is temporarily fixed at location x in the training
image, as indicated by the red dot in the template blowup in the
upper right panel of Fig. 4. Let Z(x) be a categorical variable
that can take on a discrete value k at x (for our example, k = 0
for no rain and k = 1 for rain). Let hj be a translation vector
that points from x to the center of one of the remaining J pixels
in the template. The values of Z at the remaining pixels can be
collected in a vector D(x) = [Z(x + h1), . . . , Z(x + hJ )]T .
The probability that the reference pixel value Z(x) is in state k
given a particular template pattern d(x) of remaining pixel
values is

PrZ(x)|D(x) (z(x)= k|d(x))=
PrZ(x)D(x) (z(x) = k,d(x))

PrD(x) (d(x))
.

(1)

The multiple-point probabilities on the right-hand side of (1)
are inferred from the training image as follows:

PrZ(x)D(x)(z(x) = k,d(x))= ck(d(x))/NTI (2)
PrD(x)(d(x))= c�(d(x))/NTI (3)

where NTI is the total number of pixels in the training image,
c�(d(x)) is the total number of occurrences of d(x) found in
the training image, and ck(d(x)) is the number of occurrences
of d(x) that are associated with the event z(x) = k at the
reference pixel. Various combinatorial algorithms are available
for efficient computation of these probabilities [29], [30].

Once the pattern probabilities are known, simulation of rain
support on a particular computational grid is performed sequen-
tially. First, one has to assign a random path visiting all the
grid nodes. Then, the template TJ = [h1, . . . ,hJ ]T is centered
on a particular randomly selected node and the value of z(x)
at this node is drawn using (1). Note that in the beginning of
the simulation, the probabilities will actually be unconditional
since the are no conditioning events present yet. As the simu-
lation progresses, the conditioning events are formed out of the
previously simulated values of z(x). Then, at another randomly
selected node x, the probability (1) is determined based on
values of D(x) inside the template, and a realization z(x) is
drawn based on this probability. This process continues until
all the grid nodes have been visited. If the multigrid approach is
used, the procedure above is performed on a series of nested and
increasingly finer grids G(l) where l = L − 1, . . . , 0 denotes the
grid aggregation level.1 Simulation starts on the coarsest grid,
and afterward, all the simulated nodes become part of the data
set (conditioning events) for simulation on the next finer grid.
This multigrid recursion continues for a number of grids L.

1G(l) is obtained by down-sampling G(l−1) by a factor of two in two
coordinate directions, i.e., G(l) is the subset of G(l−1) obtained by retaining
every other node of G(l−1).
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Fig. 5. Kernel representations of probability densities for: 1) (uppermost
panel) fractional rainy area Arain; 2) (middle panel) mean rain rate R̄M on
NOWRAD rain support at 0.05◦ resolution; and 3) (lowermost panel) logarithm
of breakdown coefficients log(W (s)). The first density is used for rain support
simulations using multipoint geostatistics; the second and the third densities are
used for rain rate simulation with the multiscale truncated quad tree.

The template T
(l)
J for the coarse grid G(l) is simply a rescaled

version of the finest grid’s template T
(0)
J

T
(l)
J = 2lT

(0)
J . (4)

Note that the template size does not decrease with the grid
aggregation level.

In the rainfall application, it is useful to further constrain
the cluster support generated by the geostatistical algorithm to
insure that the total support area approximates the total rainy
area observed in NOWRAD images. This can be achieved by
updating PrZ(x)|D(x)(z(x) = k|d(x)) subject to the constraint
that the marginal probability PrZ(x)(z = 1) is equal to a spec-
ified area fraction Arain [31]. We treat Arain as a random
variable characterized by a probability density fArain(arain) and
infer its distribution from the working set of 550 NOWRAD
images. The uppermost panel in Fig. 5 shows a kernel den-
sity estimate [32]–[34] of fArain(arain). This density estimate
uses a Gaussian kernel with Silverman’s rule-of-thumb band-
width [33].

The performance of the multipoint geostatistical algorithm
is shown in Fig. 6. The upper left panel of this figure shows a
typical GOES image with cloudy regions (regions with GOES
brightness temperature Ttop below the threshold of 258 K)
outlined in red. The upper right panel shows the cluster supports

Fig. 6. (a) GOES signature of Ttop on July 12, 2004, 00:00 UTC over the
Central U.S. region. Solid red line delineates an irregular grid on which Ttop <
258 K. (b) Corresponding NOWRAD rain support image which serves as a
training image for multipoint geostatistical simulation. (c)–(f) Four examples of
rain support replicates simulated on the irregular GOES grid using multipoint
geostatistics and the NOWRAD training image in (b).

identified from a NOWRAD image taken at the same time as
the GOES image. The remaining four panels show the supports
for four replicates generated with the geostatistical technique
summarized above. The pattern probabilities used to generate
these replicates were derived from the NOWRAD image in the
upper right, which served as the training image. The template
size was 21 × 21 pixels, and a four-level multigrid approach
was used to identify the probabilities. We used these parameters
because they gave results that are consistent with the training
image ensemble. This is shown in Fig. 7. The left side of
this figure shows one of the training images divided into rain
cluster supports of different size classes (indicated by different
colors). Fig. 7(b) and (c) show, respectively, the histogram
of the logarithm of the cluster support size over 300 training
images from the NOWRAD working set and the correspond-
ing histogram from 300 simulated replicates. Comparison of
the two histograms confirms that the procedure is producing
clusters of the right size.



2442 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 8, AUGUST 2009

Fig. 7. (a) Example of partitioning a NOWRAD training image (July 1, 2004, 00:30 UTC) into disjoint rain support clusters of different sizes. (b) (Upper panel)
Histogram of the logarithm of the cluster size for the ensemble of training images in Fig. 3(b). (Lower panel) Histogram of the logarithm of the cluster size for the
simulated replicates.

The multipoint geostatistical approach is a flexible and
convenient way to generate rainfall support replicates having
complex shapes. Most importantly, it is able to constrain these
shapes to lie within specified irregular regions such as the
thresholded GOES cloud top temperature regions of interest in
our application. To constrain the simulation to the estimated
GOES clouds’ boundaries, we first perform the simulation with
a given Arain over the entire study domain and then set to zero
all the pixels outside GOES clouds. Due to stationarity, this
is equivalent to performing geostatistical simulation on GOES
cloudy regions.

C. Generation of Rain Rates Within Cluster Supports

The first two steps of our rainfall generation procedure
together define the intermittent and irregular spatial support
for the rain field. We still need to specify rain rates within
this support. While there are many alternatives, we have found
that multiscale truncated tree models provide a particularly
convenient and flexible option.

To formulate a truncated tree model, we map an inverted
tree onto all pixels in the specified simulation region (e.g.,
the rectangular Central U.S. region shown in Fig. 1). This is
shown in Fig. 8 for a simple example with a single cluster
contained within a 4 × 4 simulation region. The tree consists
of nodes (rectangular areas) arranged into a series of connected
scales. A particular node s is located at scale m(s), with the
scales indexed from m(s) = 0 (the coarsest or highest scale) to
m(s) = M (the finest or lowest scale).

Each node in the truncated quad tree used in our example is
associated with up to four children sα1, sα2, sα3, sα4 (except
at the finest scale) and one parent sγ (except at the coarsest
scale). Each of the nodes at the finest scale of the tree is
matched to a particular rainy pixel in the cluster support. Active
nodes are defined to have rainy finest scale descendants while
inactive nodes do not. The active nodes are connected to their
rainy descendants through a series of parent–child relationships
indicated by thin lines. Inactive nodes are omitted from the
tree (i.e., are truncated or pruned) and have no connections to
other nodes. The example shown in Fig. 8 applies to a 4 × 4

Fig. 8. Example of truncated quad tree model. Active (gray) nodes at the finest
resolution correspond to rain cluster support.

simulation region containing a single rain cluster. In general,
this region will contain many clusters covered by a single tree.
The tree is truncated to retain only nodes with finest scale
descendants in the clusters.

Rain rates at the finest scale nodes of each tree (i.e., at pixels
within each rain cluster) are generated with a multiscale recur-
sion, starting at the coarsest scale and moving downward. The
nodal rain rate (in LT−1) at active tree node s is characterized
by a random variable R(s). In order to conserve the volume of
water generated at the finest scale (in an ensemble sense), the
expected value of the rain rate (taken over all replicates in the
ensemble) at each tree node must equal the spatial average rain
rate R̄M taken over all pixels in the rain cluster (i.e., all nodes
at the finest scale)

E[R(s)] = R̄M . (5)

The multiscale recursion starts at the single coarsest scale node
(the root node) by setting the rain rate R(0) equal to R̄M .
Since R̄M is generally uncertain, it is sampled from a specified
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probability distribution. The rain rates at the children in the
next scale down are obtained by multiplying the root node
rain rate by a nonnegative random variable W (s), referred to
here as a breakdown coefficient. The breakdown coefficient is
independent of the root node rain rate and all other breakdown
coefficients and has a specified scale-dependent probability
distribution (discussed below). When repeated at each scale, the
rain rate generation procedure forms a multiplicative cascade
that can be represented by the following recursive equation at a
particular node s

R(s) = R(sγ)W (s). (6)

For computational reasons, it is convenient to put (6) in an
equivalent additive form. This is accomplished by taking the
logarithm of (6)

log(R(s)) = log (R(sγ)) + log (W (s)) . (7)

The multiplicative cascade algorithm requires the probability
density fR̄M

(r̄M ) of the average cluster rain rate and the break-
down coefficient densities fW (s)(w(s)) for s = 1, . . . ,M . For
our Central U.S. application, samples of the average cluster
rain rate were obtained from the population of spatial average
rain rates for the NOWRAD working set. The fR̄M

(r̄M ) kernel
density estimate derived from this population is shown in the
middle panel in Fig. 5.

Sample densities for the breakdown coefficients can be es-
timated indirectly from upscaled NOWRAD rain rates. The
upscaled rates are computed with a recursion, starting with the
finest scale pixel-based values obtained from NOWRAD and
moving up the tree

R̂(s) =
R̄M

Nc(s)R̄m(s)+1

Nc(s)∑
i=1

R̂(sαi), s = M − 1, . . . , 0

(8)

where R̂(s) is the upscaled rain rate at node s, R̄M is the spatial
average rain rate over all finest scale nodes (i.e., over all pixels
in the rain cluster), Nc(s) ≤ 4 is the number of active children
of node s, and R̄m(s)+1 is the average over R̂(s) at all active
nodes at scale m(s) + 1 (not just those that are children of s).
This upscaling relationship satisfies the ensemble mass balance
requirement imposed in (5). Sample estimates of the breakdown
coefficients between particular scales may be computed from
the ratio of the upscaled rain rates

Ŵ (s) = R̂(s)/R̂(sγ). (9)

The breakdown coefficient estimates at a given scale form
a population that can be sampled by bootstrapping without
replacement during the multiscale rain rate generation process.
The flog(W (s))(log(w(s))) kernel density estimates for all
scales used in our Central U.S. example are plotted in the
lowermost panel of Fig. 5. It is clear from the figure that the
variability of log(w(s)) decreases as the scale gets finer.

Once the tree structure is derived from the cluster geometry
and the required probability densities are specified, the simula-
tion of rain rates is straightforward. First, the user sets the root
rain rate equal to a random sample of R̄M from the probability
density fR̄M

(r̄M ). Then, at each remaining scale, from the
coarsest to the finest scale, independent samples of W (s) are
drawn at random from the specified density fW (s)(w(s)). These

random samples are inserted into the recursion of (6), which
gives the nodal rainfall values at the next scale down. The
process is repeated over all scales until the desired rain rates are
obtained at the finest scale tree nodes (i.e., at the pixels inside
the rain cluster). Rainfall replicates are generated in this way at
each simulation time, using a new GOES image, a new set of
rain cluster supports, and a new set of multiscale trees.

IV. ANALYSIS OF GENERATED REPLICATES

The availability of extensive NOWRAD data for the Central
U.S. region makes it possible for us to compare the statisti-
cal properties of simulated replicates and NOWRAD images.
There are various ways to do this. One option is to compare
univariate rain rate probability distributions, computed over all
pixels in a given region. The resulting rain rate cumulative dis-
tribution functions (cdfs) may be interpreted as area-intensity
curves, with the function value giving the fraction of total area
with a rain rate less than the argument.

Assessments of spatial structure, including relationships be-
tween rain rates at different pixels, must rely on other metrics.
For example, the cluster size histogram analysis shown in Fig. 7
provides a useful way to compare the sizes of observed and
simulated rain cluster supports. Spatial correlation plots can
also be informative. In this section, we describe several perfor-
mance measures for quantifying differences between simulated
and observed rainfall images and then evaluate these measures
for the summer 2004 Central U.S. example.

A. Probabilistic Measures of Simulation Performance

There are a number of probabilistic measures that can be used
to quantify differences between two probability distributions.
Here, we use three different performance measures to compare
univariate simulated and observed rain rate probability densi-
ties, indicated by fs(R) and fo(R), respectively.

Probabilistic distance measures can be conveniently in-
terpreted if we view the ordinates of two different density
functions as points in a plane. If the densities are identical,
these points form a straight line with a slope of one. More
generally, the points will be scattered around this line. Different
distance measures use different ways to define the scatter in
these points.

1) The Hellinger distance is a generalized measure of
dispersion in the density ordinates

dH(fs, fo) =
1√
2

[∫ (√
fs(ξ) −

√
fo(ξ)

)2

dξ

]1/2

. (10)

The Hellinger distance is always finite and assumes
values in the interval [0, 1]. In particular, dH = 0
when fs = fo and dH = 1 when fs and fo are Dirac
delta functions at different rain rates. This distance
belongs to a broader class of so-called α-divergences
[35] that contains many measures commonly used
to compare two distributions, including the chi-
squared divergence and the information-theoretic
Kullback–Leibler divergence [36]. In fact, the square of
(10) can be viewed as an approximation to a symmetrized
Kullback–Leibler divergence (also referred to as the
Jensen–Shannon divergence) and is the lower bound on
the Kullback–Leibler divergence, as shown in [36].
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2) The L2 correlation distance is a generalized measure of
correlation between the density ordinates

dL2
corr

(fs, fo) = 1 −
∫

fs(ξ)fo(ξ)dξ√∫
fs(ξ)2dξ

∫
fo(ξ)2dξ

. (11)

The correlation distance is another measure defined over
the interval [0, 1]. If fs and fo are similar the inner
product

∫
fs(ξ)2dξ

∫
fo(ξ)2dξ is larger than if fs and fo

are dissimilar [37].
3) Zero rain rate difference. The measures given in (10)

and (11) compare entire probability densities without
making any distinction between values at zero versus
other values. The rain rate over an arbitrary spatial region
is generally a mixed density characterized by a nonzero
probability of no rain and a probability of rain that is less
than one [38]. That is, the rain rate probability density is
a combination of a discrete atom (or Dirac delta function)
at zero and a continuous density function for rain rates
above zero. The difference between the atoms for two
mixed densities is a useful measure of the realism of the
simulated rain rate. This difference is given by

dDA(fs, fo) = ps − po (12)

where ps is the probability of no rain for the simulated
population and po is the probability of no rain for the
observed population. In the context presented here, these
probabilities are the fractions of total area with no rain for
the two populations, taken over all simulated or observed
NOWRAD images.

As mentioned in Section II, NOWRAD rain rates are quan-
tized, with a minimum nonzero value of 1.2 mm · h−1. The
rain rates generated by our stochastic model are not quantized
and may generally take values smaller than the NOWRAD
threshold. In order to be able to compare NOWRAD data
with simulated rain rates, we assume that both quantities are
described by mixed probability density functions with atoms
equal to the probability that the rain rate is smaller than or
equal to 1.2 mm · h−1. With this definition, we can use (10)
and (11) to compare the continuous (positive rain rate) parts of
the probability densities and (12) to compare their atoms.

In order to compute the integrals appearing in (10) and
(11), we need discretized numerical approximations for fs

and fo. The kernel density estimator technique mentioned in
Section III-B accomplishes this but is computationally inten-
sive. It is much more efficient to approximate the densities of
interest with an average shifted histogram (ASH) [39]. This
density estimator maintains the computational simplicity of
the histogram while providing flexibility comparable to kernel
density estimators. To insure that the estimators of fs and fo

give bounded rain rates, the ASH is fit to the log-transformed
data. After fitting, the log transformed ASH estimates are back-
transformed to give the rain rate probability densities required
in the integrals of the Hellinger and L2

corr metrics.

B. Comparison of Generated Rainfall Ensembles
With NOWRAD

When assessing the performance of a rainfall generator, it is
useful to consider comparisons for individual storms as well as
a larger population of similar storms. We begin by examining

two typical summer storms that occurred on June 24, 2004
at 08:00 UTC and on August 19, 2004 at 06:00 UTC. Fig. 9
compares the NOWRAD image for each storm with some
representative simulated replicates. All replicates for a given
storm use the associated NOWRAD image for training, with
rainfall constrained to occur only within the cloudy region
identified from the corresponding GOES image. The root node
rain rate in the multiscale tree model is set equal to the ob-
served spatial average rain rate from the NOWRAD image. The
experimental procedure for this storm-specific assessment is
summarized in the pseudocode provided in Algorithm 1 of the
Appendix.

Fig. 9 shows that the simulated storm images are qualitatively
similar to the corresponding NOWRAD images with respect to
criteria such as the typical size, shape, and density of clusters,
and the magnitude of high-rainfall regions. The blockiness
occasionally observed in the simulated rain storms is an artifact
due to the finite number of scales and children used in the tree.

Fig. 10(a) and (b) shows a more quantitative assessment
of the performance of the rainfall generator by comparing
the NOWRAD and generated rain rate cdfs for each of the
two storms. The red line in each figure is obtained from the
quantized NOWRAD data while the continuous dark gray lines
are obtained from 300 simulated replicates. In both cases,
there is reasonable correspondence between the NOWRAD
and simulated cdfs. The comparisons suggest that the rain-
fall generator slightly underestimates rain rates in the interval
[1.2; 7] mm · h−1. Possible reasons for this underestimation
are the following: 1) the breakdown coefficients used in the
multiscale tree are uncorrelated (correlated breakdown coef-
ficients may give a better representation of spatial structure)
and 2) there is no effort to distinguish between stratiform and
convective rainfall within GOES cloud regions. The multiplica-
tive cascade is better able to reproduce the high rain rates
associated with convective storms than the low rates associated
with stratiform rainfall.

The lower right panels of Fig. 10(a) and (b) compare the
75th, 90th, and 100th rainfall percentiles (p75, p90, and max,
respectively) for the selected NOWRAD image with ensemble
probability densities of the same percentiles for the ensemble
of 300 simulated replicates. The densities are presented in the
form of violin plots which include a marker for the median of
the data (white dot), a black box indicating the interquartile
range, and whiskers which extend to 1.5 times the interquartile
range from the box as in standard box-and-whiskers plots.
Overlaid on this plot is a kernel estimate of the probability
density. The violin plots reveal that reproduction of high
percentiles is very good. In particular, the medians of the
high percentiles’ distributions for simulated replicates are
close to the point estimates of high percentiles extracted from
NOWRAD data.

The upper left panels of Fig. 10(a) and (b) show violin plots
for the three performance measures defined in the previous
section. The distribution of the zero rain distance dDA in (12)
confirms the underestimation of low rain rates at the smallest
NOWRAD quantization level (1.2 mm · h−1). The narrow
range of variability in the dL2corr correlation in (11) shows a
very good agreement between the shapes of the NOWRAD
and replicate density functions. The Hellinger distance has a
slightly higher median value and broader interquartile range.
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Fig. 9. (a) NOWRAD signature of a summer storm that occurred on June 24, 2004, 08:00 UTC over (upper left panel) the Central U.S. region and seven examples
of simulated replicates. (b) NOWRAD signature of a summer storm that occurred on August 19, 2004, 06:00 UTC over (upper left panel) the Central U.S. region
and seven examples of simulated replicates. The white contour in each image (both (a) and (b) part) delineates the region where GOES Ttop < 258 K. To make
both simulated and NOWRAD rain support visible and in order to avoid overemphasis on very small rain rates in the replicates, the truncated logarithmic color
scale was constructed such that zero rain rates are represented as dark blue. For the replicates, the rain rates below or equal to NOWRAD quantization threshold
(1.2 mm · h−1) are represented using the same (light blue) color as the rain rates in NOWRAD images equal to that threshold. The maximum of the color scale
corresponds to the maximum NOWRAD rain rate (120 mm · h−1) observed in the study period.

Comparisons of generated replicates and NOWRAD images
for individual storms are useful, particularly to give a qualitative
sense of the generator’s ability to produce realistic looking
rain replicates. However, comparisons that use storm-specific
NOWRAD images for training do not provide a realistic test
for situations where NOWRAD data are not available. In such
cases, the generator must rely on weather radar images from
other sites or times for its statistical inputs. Then, performance
is better measured by comparing observed and simulated cdfs
over a range of different storms, using generic rather than
storm-specific training images.

This is done in Fig. 10(c), which compares cumulative distri-
butions for 300 NOWRAD images (red) to 300 simulated repli-
cates (dark gray). The NOWRAD images are drawn without
replacement from the summer 2004 working set. One simulated
replicate is generated for each storm (i.e., for each NOWRAD
image). The GOES image for each storm defines the cloudy
region containing rain clusters, but the statistical inputs used to
generate the simulated replicate are obtained from the generic

set of 30 training images shown in Fig. 3(b). The root node
rain rate required by the multiscale tree model is drawn at
random, for each replicate, from the NOWRAD working set.
The experimental procedure for this summer-long assessment
is summarized in the pseudocode provided in Algorithm 2 of
the Appendix.

Fig. 10(c) shows that the simulated and NOWRAD images
compare favorably. The NOWRAD percentiles considered in
the violin plots in the lower right portion of the figure are now
described as probability densities rather than point values. The
percentile densities for the model replicates display somewhat
more variability than in Fig. 10(a) and (b), reflecting the greater
diversity of storms and training images used in Fig. 10(c).
Fig. 10(c) shows a reasonable indication of the performance
that might be expected over a large set of storms that share
general features conveyed by a limited number of generic
training images.

The univariate probability distribution comparisons shown
in Fig. 10 show that the rainfall generator is producing the
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Fig. 10. CDFs for (gray lines) simulated replicates and (red lines) NOWRAD,
respectively. (a) and (b) Ensemble simulation of 300 replicates with single
NOWRAD signature for a summer storms that occurred on (a) June 24, 2004,
08:00 UTC and (b) August 19, 2004, 06:00 UTC. These simulations were
performed using Algorithm 1. (c) Ensemble simulation of 300 replicates with
ensemble of 300 NOWRAD images selected at random from the study period
of summer 2004 (June 1–August 31). This simulation was performed using
Algorithm 2. The upper left panel in each figure shows violin plots (see text)
for performance statistics defined in (10)–(12), whereas the lower right panel
shows violin plots for 75th, 90th, and 100th percentiles (p75, p90, and max,
respectively) for simulated replicates (REPS) and NOWRAD, respectively.

correct range of rainfall values over the simulated clusters. The
histograms shown in Fig. 7 show that the sizes of simulated
rain clusters are similar to the sizes of NOWRAD clusters. In
addition to these comparisons, it is useful to compare the spatial
structure of simulated and NOWRAD rain rates within clusters.
A commonly used quantity for describing the structure of ran-
dom fields is the spatial correlation function, which quantifies

Fig. 11. Radially averaged spatial correlation function for NOWRAD and
simulated replicates computed from the 300 storms considered in Fig. 10.

the tendency for values of the field at two pixels to deviate in
the same direction above or below the spatial mean. If the field
of interest is smooth and statistically homogeneous, the spatial
correlation can be used to estimate the second moment of the
bivariate probability distribution for the field values at any two
pixels. Gaussian random fields are completely described by
their mean and this second moment.

Caution must be taken when using spatial correlation func-
tions to support probabilistic conclusions about intermittent
nonstationary non-Gaussian fields such as the rain rate fields
considered here. In such cases, spatial moments are not neces-
sarily the same as ensemble moments. Nevertheless, it is useful
to compare the spatial correlations obtained from NOWRAD
and the rainfall generator, in order to get a feeling for the degree
of spatial persistence exhibited in each case.

When computing spatial correlation functions for intermit-
tent fields, it is necessary to decide on a support. Three possible
alternatives are to: 1) compute correlations over the entire study
area; 2) compute correlations over GOES regions (which are
the same for NOWRAD and simulated images for any given
storm); and 3) compute correlations only over rainy areas
within GOES images. Moreover, correlations can be derived
for single NOWRAD or simulated images (assuming spatial ho-
mogeneity) or they can be averaged over many replicates and/or
over many storms. Comparisons are complicated by differences
in simulated rain cluster supports within GOES cloudy regions.
In order to keep the comparison straightforward and unambigu-
ous, the correlation functions presented here are computed over
the entire study region, including areas with no rain.

The results of the spatial correlation comparison are shown
in Fig. 11, which plots correlation coefficient versus distance.
For our application, the correlations were nearly isotropic, so
the plots obtained in different directions were nearly identical.
The correlations are computed from the 300 storms considered
in Fig. 10. The NOWRAD and simulated correlation functions
have similar shapes. The NOWRAD field reveals somewhat
higher spatial correlations than the simulated field, suggesting
that the NOWRAD rain rates have more spatial persistence,
and the simulated rain rates vary more over shorter distances.
Note, however, that the fact that the NOWRAD product is
quantized has the impact on spatial correlation. For exam-
ple, the lowest quantization level (1.2 mm · h−1) determines
the number of zero rainfall events in a particular NOWRAD
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image. Generally, increasing the lowest quantization level
would increase the number of zeros, decrease size of rain
clusters, and, as a consequence, decrease the spatial correlation.
Further insight about spatial structure could probably be ob-
tained by examining conditional correlations (e.g., correlations
in rainy areas or correlations within clusters of a given size). For
present purposes, it is sufficient to note that the spatial correla-
tion plots shown in Fig. 11 confirm the qualitative comparisons
of Fig. 9.

V. CONCLUSION AND FUTURE RESEARCH

This paper presents a new procedure for generating real-
istic rainfall replicates conditioned on geostationary satellite
(GOES) infrared measurements. Conditioning enables the pro-
cedure to reproduce the spatial and temporal intermittency ob-
served in real rainfall events. Spatial intermittency is achieved
by constraining rainfall to occur only in clusters generated
within GOES cloudy regions. Temporal intermittency is a direct
result of the temporal evolution of the GOES regions, which
continually form, move, and dissipate over time. When taken
as a whole, groups of simulated clusters inside GOES regions
tend to move with the corresponding GOES images. However,
the supports and rain rates of individual clusters within the
GOES cloudy regions are not correlated over time, reflecting
the transient nature of the convective rainfall emphasized in our
summer 2004 example.

Our rainfall generation procedure relies on rainfall training
images to obtain statistical information about the spatial struc-
ture of rain clusters and the average rain rates within cloudy
regions. When weather radar measurements (e.g., NOWRAD)
are available, they may be used to construct these images.
The training images are scanned by a multipoint geostatistical
procedure that computes the probabilities of all possible rainfall
patterns within a specified spatial template. The procedure
uses these properties to generate cluster support replicates that
are statistically consistent with the training images. Replicates
of rain rates within the cluster supports are obtained from a
truncated multiplicative cascade model. The statistical inputs
needed to construct the cascade model may be derived from
weather radar data, when they are available. It is important
to emphasize that weather radar provides a valuable but not
essential source of input information for our rainfall generation
procedure. If necessary, other rainfall data sources may be used.
In this paper, uncertainties in weather radar were neglected, and
the NOWRAD product was assumed to provide ground truth for
verification of ensemble statistics. In reality, weather radar data
are uncertain and sometimes even misleading [40]. It would be
useful in future research to consider the implications of weather
radar uncertainties and to incorporate quantitative descriptions
of these uncertainties into the ensemble generation procedure.

Computational experiments for the Central U.S. during sum-
mer 2004 demonstrate that our procedure is able to produce
spatially and temporally intermittent rainfall that is clustered in
patterns comparable to those observed in NOWRAD images.
The simulated rainfall support is limited to regions with GOES
temperatures below a 258-K threshold. Simulated rain rates
match observed NOWRAD weather radar values very well, par-
ticularly for rain rates higher than 7 mm · h−1. This is confirmed
by visual comparisons, as well as quantitative comparisons of

univariate rain rate cdfs (or area intensity curves), rain cluster
size distributions, and rain rate spatial correlation functions.

A number of issues raised by this paper merit further investi-
gation. Currently, the breakdown coefficient probability densi-
ties depend on scale but not on the number of active children. It
is possible that performance could be improved if distinctions
were made between breakdown densities for nodes with one,
two, three, and four children. Moreover, it may be useful to rely
on conditional breakdown coefficient probability densities that
depend on the geometrical arrangement of the active children
associated with a given parent node. This conditioning could
lead to better performance of our algorithm for lower rain rates.

Another useful enhancement would be to distinguish con-
vective and stratiform rainfall based on additional information
available from remote sensing sources (e.g., CAPE [41]). Such
information could be incorporated into the geostatistical tech-
nique used to generate rain support so that different supports
could be used for the two types of rainfall. Since stratiform
events generally produce lower rain rates over larger areas,
they are less spatially variable. For this reason, it is possible
that stratiform rainfall does not need to be simulated with a
multiscale tree but can be adequately represented with a simpler
model, such as a Gauss–Markov random field. Disaggregation
of breakdown coefficient probability densities combined with a
distinction between convective and stratiform rainfall could po-
tentially enhance the performance of the generation procedure
at low rain rates.

It is possible that GOES-derived rapid-scan wind field vec-
tors [42] could be incorporated into the multipoint geostatis-
tical procedure to align simulated rain cluster supports along
observed wind directions. This could give a more realistic
description of rain support within GOES cloud regions. Wind
information may also prove useful for enhancements that ac-
count for spatial advection of clusters that persist longer than
the 1-h GOES update interval.

The rainfall generation procedure described in this paper
addresses the need for realistic rainfall replicates to support
ensemble prediction and data assimilation studies in hydrology,
meteorology, and related disciplines. The realism offered by
this procedure is largely due to its reliance on GOES imagery,
which provides a frequent near-global picture of cloudy re-
gions, and the NOWRAD weather radar product, which pro-
vides statistical inputs used by the procedure.

One of the most attractive features of our rainfall generation
procedure is its ability to reproduce the general patterns of ob-
served rainfall intensity, in both space and time. The replicates
simulated by the procedure look very similar to NOWRAD
images observed at the same times and locations. This sug-
gests that the generator goes a long way toward fulfilling our
objective of producing rainfall replicates that are visually and
statistically indistinguishable from observations.

APPENDIX

ALGORITHM

Algorithm 1 ENSEMBLE SIMULATION WITH ENSEM-
BLE OF NOWRAD IMAGES

Select a NOWRAD image and the corresponding GOES
image
ii = 1
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loop over replicates
for i = 1 to 300 do

Multipoint geostatistics:
generate ar ∼ fAr(ar)

if mod(ii, 10) = 1 then
select iith training image form the training image
ensemble
ii = ii + 1

end if
simulate rain support in GOES region where Ttop <

258 K
Multiscale tree:
set r̄M = r̄NOWRAD

loop over scales
for m(s) = 1 to M do

coarse grain simulated rain support to scale m(s)

loop over the # of pixels in simulated rain support at
scale m(s)

for s = 1 to # pixels do
log(w(s)) ∼ flog(W (s))(log(w(s)))

Use (7) to obtain log(r(s))

exponentiate to obtain r(s)

end for
end for
make sure that at scale M maximum simulated rain rate
does not exceed maximum NOWRAD rain rate in the
study period
while max({r(s)}# pixels

s=1 ) > 120 mm · h−1 do
Multiscale tree

end while
end for

Algorithm 2 ENSEMBLE SIMULATION WITH ENSEM-
BLE OF NOWRAD IMAGES

ii = 1

loop over replicates
for i = 1 to 300 do

Select a NOWRAD image and the corresponding GOES
image
Multipoint geostatistics:
generate ar ∼ fAr(ar)

if mod(ii, 10) = 1 then
select iith training image form the training image
ensemble
ii = ii + 1

end if
simulate rain support in GOES region where Ttop <

258 K
Multiscale tree:
generate r̄M ∼ fR̄M

(r̄M )

loop over scales
for m(s) = 1 to M do

coarse grain simulated rain support to scale m(s)

loop over the # of pixels in simulated rain support at
scale m(s)

for s = 1 to # pixels do
log(w(s)) ∼ flog(W (s))(log(w(s)))

Use (7) to obtain log(r(s))

exponentiate to obtain r(s)

end for
end for
make sure that at scale M maximum simulated rain rate
does not exceed maximum NOWRAD rain rate in the
study period
while max({r(s)}# pixels

s=1 ) > 120 mm · h−1 do
Multiscale tree

end while
end for
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